WorldWideScience

Sample records for cms silicon tracker

  1. CMS silicon tracker developments

    International Nuclear Information System (INIS)

    Civinini, C.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.D.R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2002-01-01

    The CMS Silicon tracker consists of 70 m 2 of microstrip sensors which design will be finalized at the end of 1999 on the basis of systematic studies of device characteristics as function of the most important parameters. A fundamental constraint comes from the fact that the detector has to be operated in a very hostile radiation environment with full efficiency. We present an overview of the current results and prospects for converging on a final set of parameters for the silicon tracker sensors

  2. The CMS silicon tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Leubelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B.Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Rizzo, F.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2000-01-01

    This paper describes the Silicon microstrip Tracker of the CMS experiment at LHC. It consists of a barrel part with 5 layers and two endcaps with 10 disks each. About 10 000 single-sided equivalent modules have to be built, each one carrying two daisy-chained silicon detectors and their front-end electronics. Back-to-back modules are used to read-out the radial coordinate. The tracker will be operated in an environment kept at a temperature of T=-10 deg. C to minimize the Si sensors radiation damage. Heavily irradiated detectors will be safely operated due to the high-voltage capability of the sensors. Full-size mechanical prototypes have been built to check the system aspects before starting the construction

  3. The CMS silicon tracker

    International Nuclear Information System (INIS)

    D'Alessandro, R.; Biggeri, U.; Bruzzi, M.; Catacchini, E.; Civinini, C.; Focardi, E.; Lenzi, M.; Loreti, M.; Meschini, M.; Parrini, G.; Pieri, M.; Albergo, S.; Boemi, D.; Potenza, R.; Tricomi, A.; Angarano, M.; Creanza, D.; Palma, M. de; Fiore, L.; Maggi, G.; My, S.; Raso, G.; Selvaggi, G.; Tempesta, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Candelori, A.; Castro, A.; Da Rold, M.; Giraldo, A.; Martignon, G.; Paccagnella, A.; Stavitsky, I.; Babucci, E.; Bartalini, P.; Bilei, G.M.; Checcucci, B.; Ciampolini, P.; Lariccia, P.; Mantovani, G.; Passeri, D.; Santocchia, A.; Servoli, L.; Wang, Y.; Bagliesi, G.; Basti, A.; Bosi, F.; Borello, L.; Bozzi, C.; Castaldi, R.; Dell'Orso, R.; Giassi, A.; Messineo, A.; Palla, F.; Raffaelli, F.; Sguazzoni, G.; Starodumov, A.; Tonelli, G.; Vannini, C.; Verdini, P.G.; Xie, Z.; Breuker, H.; Caner, A.; Elliott-Peisert, A.; Feld, L.; Glessing, B.; Hammerstrom, R.; Huhtinen, M.; Mannelli, M.; Marchioro, A.; Schmitt, B.; Stefanini, G.; Connotte, J.; Gu, W.H.; Luebelsmeyer, K.; Pandoulas, D.; Siedling, R.; Wittmer, B.; Della Marina, R.; Freudenreich, K.; Lustermann, W.; Viertel, G.; Eklund, C.; Karimaeki, V.; Skog, K.; French, M.; Hall, G.; Mc Evoy, B.; Raymond, M.; Hrubec, J.; Krammer, M.; Piperov, S.; Tuuva, T.; Watts, S.; Silvestris, L.

    1998-01-01

    The new silicon tracker layout (V4) is presented. The system aspects of the construction are discussed together with the expected tracking performance. Because of the high radiation environment in which the detectors will operate, particular care has been devoted to the study of the characteristics of heavily irradiated detectors. This includes studies on performance (charge collection, cluster size, resolution, efficiency) as a function of the bias voltage, integrated fluence, incidence angle and temperature. (author)

  4. The CMS Silicon Tracker Alignment

    CERN Document Server

    Castello, R

    2008-01-01

    The alignment of the Strip and Pixel Tracker of the Compact Muon Solenoid experiment, with its large number of independent silicon sensors and its excellent spatial resolution, is a complex and challenging task. Besides high precision mounting, survey measurements and the Laser Alignment System, track-based alignment is needed to reach the envisaged precision.\\\\ Three different algorithms for track-based alignment were successfully tested on a sample of cosmic-ray data collected at the Tracker Integration Facility, where 15\\% of the Tracker was tested. These results, together with those coming from the CMS global run, will provide the basis for the full-scale alignment of the Tracker, which will be carried out with the first \\emph{p-p} collisions.

  5. The CMS silicon strip tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Bartalini, P.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Raffaelli, F.; Raso, G.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Wang, Y.; Watts, S.; Wittmer, B.

    1999-01-01

    The Silicon Strip Tracker (SST) is the intermediate part of the CMS Central Tracker System. SST is based on microstrip silicon devices and in combination with pixel detectors and the Microstrip Gas Chambers aims at performing pattern recognition, track reconstruction and momentum measurements for all tracks with p T ≥2 GeV/c originating from high luminosity interactions at √s=14 TeV at LHC. We aim at exploiting the advantages and the physics potential of the precise tracking performance provided by the microstrip silicon detectors on a large scale apparatus and in a much more difficult environment than ever. In this paper we describe the actual SST layout and the readout system. (author)

  6. CMS Silicon Strip Tracker Performance

    CERN Document Server

    Agram, Jean-Laurent

    2012-01-01

    The CMS Silicon Strip Tracker (SST), consisting of 9.6 million readout channels from 15148 modules and covering an area of 198 square meters, needs to be precisely calibrated in order to correctly reconstruct the events recorded. Calibration constants are derived from different workflows, from promptly reconstructed events with particles as well as from commissioning events gathered just before the acquisition of physics runs. The performance of the SST has been carefully studied since the beginning of data taking: the noise of the detector, data integrity, signal-over-noise ratio, hit reconstruction efficiency and resolution have been all investigated with time and for different conditions. In this paper we describe the reconstruction strategies, the calibration procedures and the detector performance results from the latest CMS operation.

  7. The CMS all silicon Tracker simulation

    CERN Document Server

    Biasini, Maurizio

    2009-01-01

    The Compact Muon Solenoid (CMS) tracker detector is the world's largest silicon detector with about 201 m$^2$ of silicon strips detectors and 1 m$^2$ of silicon pixel detectors. It contains 66 millions pixels and 10 million individual sensing strips. The quality of the physics analysis is highly correlated with the precision of the Tracker detector simulation which is written on top of the GEANT4 and the CMS object-oriented framework. The hit position resolution in the Tracker detector depends on the ability to correctly model the CMS tracker geometry, the signal digitization and Lorentz drift, the calibration and inefficiency. In order to ensure high performance in track and vertex reconstruction, an accurate knowledge of the material budget is therefore necessary since the passive materials, involved in the readout, cooling or power systems, will create unwanted effects during the particle detection, such as multiple scattering, electron bremsstrahlung and photon conversion. In this paper, we present the CM...

  8. The Alignment of the CMS Silicon Tracker

    CERN Document Server

    Lampen, Pekka Tapio

    2013-01-01

    The CMS all-silicon tracker consists of 16588 modules, embedded in a solenoidal magnet providing a field of B = 3.8 T. The targeted performance requires that the alignment determines the module positions with a precision of a few micrometers. Ultimate local precision is reached by the determination of sensor curvatures, challenging the algorithms to determine about 200k parameters simultaneously, as is feasible with the Millepede II program. The main remaining challenge are global distortions that systematically bias the track parameters and thus physics measurements. They are controlled by adding further information into the alignment workflow, e.g. the mass of decaying resonances or track data taken with B = 0 T. To make use of the latter and also to integrate the determination of the Lorentz angle into the alignment procedure, the alignment framework has been extended to treat position sensitive calibration parameters. This is relevant since due to the increased LHC luminosity in 2012, the Lorentz angle ex...

  9. Wedge silicon detectors for the inner trackering system of CMS

    International Nuclear Information System (INIS)

    Catacchini, E.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Meschini, M.; Parrini, G.; Pieri, M.; Wheadon, R.

    1997-01-01

    One ''wedge'' double sided silicon detector prototype for the CMS forward inner tracker has been tested both in laboratory and on a high energy particle beam. The results obtained indicate the most reliable solutions for the strip geometry of the junction side. Three different designs of ''wedge'' double sided detectors with different solutions for the ohmic side strip geometry are presented. (orig.)

  10. The Laser Alignment System for the CMS silicon strip tracker

    CERN Document Server

    Olzem, Jan

    2009-01-01

    The Laser Alignment System (LAS) of the CMS silicon strip Tracker has been designed for surveying the geometry of the large-scale Tracker support structures. It uses 40 laser beams ($\\lambda$ = 1075 nm) that induce signals on a subset of the Tracker silicon sensors. The positions in space of the laser spots on the sensors are reconstructed with a resolution of 30 $\\mu$m. From this, the LAS is capable of permanent in-time monitoring of the different Tracker components relative to each other with better than 30 $\\mu$m precision. Additionally, it can provide an absolute measurement of the Tracker mechanical structure with an accuracy better than 70 $\\mu$m, thereby supplying additional input to the track based alignment at detector startup. 31 out of the 40 LAS beams have been successfully operated during the CMS cosmic muon data taking campaign in autumn 2008. The alignment of the Tracker Endcap Discs and of the discs with respect to the Tracker Inner Barrel and Tracker Outer Barrel subdetectors was measured w...

  11. The CMS silicon strip tracker and its electronic readout

    International Nuclear Information System (INIS)

    Friedl, M.

    2001-05-01

    The Large Hadron Collider (LHC) at CERN (Geneva, CH) will be the world's biggest accelerator machine when operation starts in 2006. One of its four detector experiments is the Compact Muon Solenoid (CMS), consisting of a large-scale silicon tracker and electromagnetic and hadron calorimeters, all embedded in a solenoidal magnetic field of 4 T, and a muon system surrounding the magnet coil. The Silicon Strip Tracker has a sensitive area of 206m 2 with 10 million analog channels which are read out at the collider frequency of 40 MHz. The building blocks of the CMS Tracker are the silicon sensors, APV amplifier ASICs, supporting front-end ASICs, analog and digital optical links as well as data processors and control units in the back-end. Radiation tolerance, readout speed and the huge data volume are challenging requirements. The charge collection in silicon detectors was modeled, which is discussed as well as the concepts of readout amplifiers with respect to the LHC requirements, including the deconvolution method of fast pulse shaping, electronic noise constraints and radiation effects. Moreover, extensive measurements on prototype components of the CMS Tracker and different versions of the APV chip in particular were performed. There was a significant contribution to the construction of several detector modules, characterized them in particle beam tests and quantified radiation induced effects on the APV chip and on silicon detectors. In addition, a prototype of the analog optical link and the analog performance of the back-end digitization unit were evaluated. The results are very encouraging, demonstrating the feasibility of the CMS Silicon Strip Tracker system and motivating progress towards the construction phase. (author)

  12. The New Silicon Strip Detectors for the CMS Tracker Upgrade

    CERN Document Server

    Dragicevic, Marko

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the ...

  13. Data quality monitoring of the CMS Silicon Strip Tracker detector

    International Nuclear Information System (INIS)

    Benucci, L.

    2010-01-01

    The Physics and Data Quality Monitoring (DQM) framework aims at providing a homogeneous monitoring environment across various applications related to data taking at the CMS experiment. In this contribution, the DQM system for the Silicon Strip Tracker will be introduced. The set of elements to assess the status of detector will be mentioned, along with the way to identify problems and trace them to specific tracker elements. Monitoring tools, user interfaces and automated software will be briefly described. The system was used during extensive cosmic data taking of CMS in Autumn 2008, where it demonstrated to have a flexible and robust implementation and has been essential to improve the understanding of the detector. CMS Collaboration believes that this tool is now mature to face the forthcoming data-taking era.

  14. Radiation hard silicon sensors for the CMS tracker upgrade

    CERN Document Server

    Pohlsen, Thomas

    2013-01-01

    At an instantaneous luminosity of $5 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of $3\\,000$ fb$^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation dose of the tracking systems will be severe, requiring new radiation hard sensors for the CMS tracker. The CMS tracker collaboration has initiated a large material investigation and irradiation campaign to identify the silicon material and design that fulfils all requirements for detectors for the HL-LHC. Focussing on the upgrade of the outer tracker region, pad sensors as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for the positions of detector layers in the future tracker. Different proton energies were used for irr...

  15. The new silicon strip detectors for the CMS tracker upgrade

    International Nuclear Information System (INIS)

    Dragicevic, M.

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the tracker caused by the increase in luminosity which is proposed as an upgrade to the LHC accelerator (sLHC). This chapter motivates the work I have conducted and clarifies why the solutions proposed by myself are important contributions to the upgrade of the CMS tracker. The following chapters present the concepts that are necessary to operate the silicon strip sensors at sLHC luminosities and additional improvements to the construction and quality assurance of the sensors and the detector modules. The most important concepts and works presented in chapters 7 to 9 are: Development of a software framework to enable the flexible and quick design of test structures and sensors. Selecting a suitable sensor material which is sufficiently radiation hard. Design, implementation and production of a standard set of test structures to enable the quality assurance of such sensors and any future developments. Electrical characterisation of the test structures and analysis

  16. Performance of the CMS Silicon Tracker at LHC

    CERN Document Server

    Benelli, Gabriele

    2011-01-01

    The CMS all-silicon Tracker, comprising 16588 modules covering an area of more than $200 \\mathrm{m}^2$, needs to be precisely calibrated and aligned in order to correctly interpret and reconstruct the events recorded from the detector, ensuring that the performance fully meets the physics research program of the CMS experiment. The performance have been carefully studied since the start of data taking: the noise of the detector, the data integrity, the S/N ratio, the hit resolution and efficiency have been all investigated with time. In 2010 it has been successfully aligned using tracks from cosmic rays and pp-collisions, following the time dependent movements of its innermost pixel layers. Ultimate local precision is now achieved by the determination of sensor curvatures, challenging the algorithms to determine about 200000 parameters. Remaining alignment uncertainties are dominated by systematic effects that are controlled by adding further information, such as constraints from resonance decays.

  17. Planar silicon sensors for the CMS Tracker upgrade

    CERN Document Server

    Junkes, Alexandra

    2013-01-01

    The CMS tracker collaboration has initiated a large material investigation and irradiation campaign to identify the silicon material and design that fulfills all requirements for detectors for the high-luminosity phase of the Large Hadron Collider (HL-LHC).A variety of silicon p-in-n and n-in-p test-sensors made from Float Zone, Deep-Diffused FZ and Magnetic Czochralski materials were manufactured by one single industrial producer, thus guaranteeing similar conditions for the production and design of the test-structures. Properties of different silicon materials and design choices have been systematically studied and compared.The samples have been irradiated with 1 MeV neutrons and protons corresponding to maximal fluences as expected for the positions of detector layers in the future tracker. Irradiations with protons of different energies (23 MeV and 23 GeV) have been performed to evaluate the energy dependence of the defect generation in oxygen rich material. All materials have been characterized before an...

  18. Large-scale module production for the CMS silicon strip tracker

    CERN Document Server

    Cattai, A

    2005-01-01

    The Silicon Strip Tracker (SST) for the CMS experiment at LHC consists of 210 m**2 of silicon strip detectors grouped into four distinct sub-systems. We present a brief description of the CMS Tracker, the industrialised detector module production methods and the current status of the SST with reference to some problems encountered at the factories and in the construction centres.

  19. CMS silicon tracker alignment strategy with the Millepede II algorithm

    International Nuclear Information System (INIS)

    Flucke, G; Schleper, P; Steinbrueck, G; Stoye, M

    2008-01-01

    The positions of the silicon modules of the CMS tracker will be known to O(100 μm) from survey measurements, mounting precision and the hardware alignment system. However, in order to fully exploit the capabilities of the tracker, these positions need to be known to a precision of a few μm. Only a track-based alignment procedure can reach this required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel χ 2 minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously and all correlations between their position parameters taken into account. Different simulated data, such as Z 0 decays and muons originated in air showers were used for the study. Additionally information about the mechanical structure of the tracker, and initial position uncertainties have been used as input for the alignment procedure. A proof of concept of this alignment strategy is demonstrated using simulated data

  20. Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

    CERN Document Server

    D'Alessandro, Raffaello

    2011-01-01

    CMS started a campaign to identify the future silicon sensor technology baseline for a new Tracker for the high-luminosity phase of LHC, coupled to a new effective way of providing tracking information to the experiment trigger. To this end a large variety of 6'' wafers was acquired in different thicknesses and technologies at HPK and new detector module designs were investigated. Detector thicknesses ranging from 50$\\mu$m to 300$\\mu$m are under investigation on float zone, magnetic Czochralski and epitaxial material both in n-in-p and p-in-n versions. P-stop and p-spray are explored as isolation technology for the n-in-p type sensors as well as the feasibility of double metal routing on 6'' wafers. Each wafer contains different structures to answer different questions, e.g. influence of geometry, Lorentz angle, radiation tolerance, annealing behaviour, validation of read-out schemes. Dedicated process test-structures, as well as diodes, mini-sensors, long and very short strip sensors and real pixel sensors ...

  1. Commissioning and Performance of the CMS Silicon Strip Tracker with Cosmic Ray Muons

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    During autumn 2008, the Silicon Strip Tracker was operated with the full CMS experiment in a comprehensive test, in the presence of the 3.8 T magnetic field produced by the CMS superconducting solenoid. Cosmic ray muons were detected in the muon chambers and used to trigger the readout of all CMS sub-detectors. About 15 million events with a muon in the tracker were collected. The efficiency of hit and track reconstruction were measured to be higher than 99% and consistent with expectations from Monte Carlo simulation. This article details the commissioning and performance of the Silicon Strip Tracker with cosmic ray muons.

  2. Reception Test of Petals for the End Cap TEC+ of the CMS Silicon Strip Tracker

    CERN Document Server

    Bremer, R; Klein, Katja; Schmitz, Stefan Antonius; Adler, Volker; Adolphi, Roman; Ageron, Michel; Agram, Jean-Laurent; Atz, Bernd; Barvich, Tobias; Baulieu, Guillaume; Beaumont, Willem; Beissel, Franz; Bergauer, Thomas; Berst, Jean-Daniel; Blüm, Peter; Bock, E; Bogelsbacher, F; de Boer, Wim; Bonnet, Jean-Luc; Bonnevaux, Alain; Boudoul, Gaelle; Bouhali, Othmane; Braunschweig, Wolfgang; Brom, Jean-Marie; Butz, Erik; Chabanat, Eric; Chabert, Eric Christian; Clerbaux, Barbara; Contardo, Didier; De Callatay, Bernard; Dehm, Philip; Delaere, Christophe; Della Negra, Rodolphe; Dewulf, Jean-Paul; D'Hondt, Jorgen; Didierjean, Francois; Dierlamm, Alexander; Dirkes, Guido; Dragicevic, Marko; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Esser, Hans; Estre, Nicolas; Fahrer, Manuel; Fernández, J; Florins, Benoit; Flossdorf, Alexander; Flucke, Gero; Flügge, Günter; Fontaine, Jean-Charles; Freudenreich, Klaus; Frey, Martin; Friedl, Markus; Furgeri, Alexander; Giraud, Noël; Goerlach, Ulrich; Goorens, Robert; Graehling, Philippe; Grégoire, Ghislain; Gregoriev, E; Gross, Laurent; Hansel, S; Haroutunian, Roger; Hartmann, Frank; Heier, Stefan; Hermanns, Thomas; Heydhausen, Dirk; Heyninck, Jan; Hosselet, J; Hrubec, Josef; Jahn, Dieter; Juillot, Pierre; Kaminski, Jochen; Karpinski, Waclaw; Kaussen, Gordon; Keutgen, Thomas; Klanner, Robert; König, Stefan; Kosbow, M; Krammer, Manfred; Ledermann, Bernhard; Lemaître, Vincent; De Lentdecker, Gilles; Linn, Alexander; Lounis, Abdenour; Lübelsmeyer, Klaus; Lumb, Nicholas; Maazouzi, Chaker; Mahmoud, Tariq; Michotte, Daniel; Militaru, Otilia; Mirabito, Laurent; Müller, Thomas; Neukermans, Lionel; Ollivetto, C; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pein, Uwe; Pernicka, Manfred; Perriès, Stephane; Piaseki, C; Pierschel, Gerhard; Piotrzkowski, Krzysztof; Poettgens, Michael; Pooth, Oliver; Rouby, Xavier; Sabellek, Andreas; Schael, Stefan; Schirm, Norbert; Schleper, Peter; Schultz von Dratzig, Arndt; Siedling, Rolf; Simonis, Hans-Jürgen; Stahl, Achim; Steck, Pia; Steinbruck, G; Stoye, Markus; Strub, Roger; Tavernier, Stefaan; Teyssier, Daniel; Theel, Andreas; Trocmé, Benjamin; Udo, Fred; Van der Donckt, M; Van der Velde, C; Van Hove, Pierre; Vanlaer, Pascal; Van Lancker, Luc; Van Staa, Rolf; Vanzetto, Sylvain; Weber, Markus; Weiler, Thomas; Weseler, Siegfried; Wickens, John; Wittmer, Bruno; Wlochal, Michael; De Wolf, Eddi A; Zhukov, Valery; Zoeller, Marc Henning

    2009-01-01

    The silicon strip tracker of the CMS experiment has been completed and was inserted into the CMS detector in late 2007. The largest sub system of the tracker are its end caps, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted onto the TEC support structures. Each end cap consists of 144 such petals, which were built and fully qualified by several institutes across Europe. From

  3. Interference coupling mechanisms in Silicon Strip Detectors - CMS tracker "wings" A learned lesson for SLHC

    CERN Document Server

    Arteche, F; Rivetta, C

    2009-01-01

    The identification of coupling mechanisms between noise sources and sensitive areas of the front-end electronics (FEE) in the previous CMS tracker sub-system is critical to optimize the design and integration of integrated circuits, sensors and power distribution circuitry for the proposed SLHC Silicon Strip Tracker systems. This paper presents a validated model of the noise sensitivity observed in the Silicon Strip Detector-FEE of the CMS tracker that allows quantifying both the impact of the noise coupling mechanisms and the system immunity against electromagnetic interferences. This model has been validated based on simulations using finite element models and immunity tests conducted on prototypes of the Silicon Tracker End-Caps (TEC) and Outer Barrel (TOB) systems. The results of these studies show important recommendations and criteria to be applied in the design of future detectors to increase the immunity against electromagnetic noise.

  4. New results on silicon microstrip detectors of CMS tracker

    International Nuclear Information System (INIS)

    Demaria, N.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bolla, G.; Bosi, F.; Borrello, L.; Bortoletto, D.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; De Palma, M.; Dell'Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Favro, G.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Li Yahong; Watts, S.; Wittmer, B.

    2000-01-01

    Interstrip and backplane capacitances on silicon microstrip detectors with p + strip on n substrate of 320 μm thickness were measured for pitches between 60 and 240 μm and width over pitch ratios between 0.13 and 0.5. Parametrisations of capacitance w.r.t. pitch and width were compared with data. The detectors were measured before and after being irradiated to a fluence of 4x10 14 protons/cm 2 of 24 GeV/c momentum. The effect of the crystal orientation of the silicon has been found to have a relevant influence on the surface radiation damage, favouring the choice of a substrate. Working at high bias (up to 500 V in CMS) might be critical for the stability of detector, for a small width over pitch ratio. The influence found to enhance the stability

  5. P-Type Silicon Strip Sensors for the Future CMS Tracker

    CERN Document Server

    The Tracker Group of the CMS Collaboration

    2016-01-01

    The upgrade to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at CMS. Based on these results, the collaboration has chosen to use n-in-p type strip and macro-pixel sensors and focus further investigations on the optimization of that sensor type. This paper describes the main measurement results and conclusions that motivated this decision.

  6. Alignment of the CMS Silicon Strip Tracker during stand-alone Commissioning

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruhwirth, R.; Hansel, S.; Hrubec, J.; Krammer, M.; Oberegger, M.; Pernicka, M.; Schmid, S.; Stark, R.; Steininger, H.; Uhl, D.; Waltenberger, W.; Widl, E.; Van Mechelen, P.; Cardaci, M.; Beaumont, W.; de Langhe, E.; de Wolf, E.A.; Delmeire, E.; Hashemi, M.; Bouhali, O.; Charaf, O.; Clerbaux, B.; Dewulf, J.-P.; Elgammal, S.; Hammad, G.; de Lentdecker, G.; Marage, P.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Adler, V.; Devroede, O.; De Weirdt, S.; D'Hondt, J.; Goorens, R.; Heyninck, J.; Maes, J.; Mozer, Matthias Ulrich; Tavernier, S.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.; Bonnet, J.-L.; Bruno, G.; De Callatay, B.; Florins, B.; Giammanco, A.; Gregoire, G.; Keutgen, Th.; Kcira, D.; Lemaitre, V.; Michotte, D.; Militaru, O.; Piotrzkowski, K.; Quertermont, L.; Roberfroid, V.; Rouby, X.; Teyssier, D.; daubie, E.; Anttila, E.; Czellar, S.; Engstrom, P.; Harkonen, J.; Karimaki, V.; Kostesmaa, J.; Kuronen, A.; Lampen, T.; Linden, T.; Luukka, P.-R.; Maenaa, T.; Michal, S.; Tuominen, E.; Tuominiemi, J.; Ageron, M.; Baulieu, G.; Bonnevaux, A.; Boudoul, G.; Chabanat, E.; Chabert, E.; Chierici, R.; Contardo, D.; Della Negra, R.; Dupasquier, T.; Gelin, G.; Giraud, N.; Guillot, G.; Estre, N.; Haroutunian, R.; Lumb, N.; Perries, S.; Schirra, F.; Trocme, B.; Vanzetto, S.; Agram, J.-L.; Blaes, R.; Drouhin, F.; Ernenwein, J.-P.; Fontaine, J.-C.; Berst, J.-D.; Brom, J.-M.; Didierjean, F.; Goerlach, U.; Graehling, P.; Gross, L.; Hosselet, J.; Juillot, P.; Lounis, A.; Maazouzi, C.; Olivetto, C.; Strub, R.; Van Hove, P.; Anagnostou, G.; Brauer, R.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Kukulies, C.; Olzem, J.; Ostapchuk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schwering, G.; Sprenger, D.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.; Beissel, F.; Bock, E.; Flugge, G.; Gillissen, C.; Hermanns, T.; Heydhausen, D.; Jahn, D.; Kaussen, G.; Linn, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Stahl, A.; Zoeller, M.H.; Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R.; Hauk, J.; Klanner, R.; Pein, U.; Schleper, P.; Steinbruck, G.; Blum, P.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Fahrer, M.; Frey, M.; Furgeri, A.; Hartmann, F.; Heier, S.; Hoffmann, K.-H.; Kaminski, J.; Ledermann, B.; Liamsuwan, T.; Muller, S.; Muller, Th.; Schilling, F.-P.; Simonis, H.-J.; Steck, P.; Zhukov, V.; Cariola, P.; De Robertis, G.; Ferorelli, R.; Fiore, L.; Preda, M.; Sala, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.; Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M.A.; Sparti, V.; Sutera, C.; Tricomi, A.; Tuve, C.; Brianzi, M.; Civinini, C.; Maletta, F.; Manolescu, F.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Broccolo, B.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Magini, N.; Parrini, G.; Scarlini, E.; Cerati, G.; Azzi, P.; Bacchetta, N.; Candelori, A.; Dorigo, T.; Kaminsky, A.; Karaevski, S.; Khomenkov, V.; Reznikov, S.; Tessaro, M.; Bisello, D.; De Mattia, M.; Giubilato, P.; Loreti, M.; Mattiazzo, S.; Nigro, M.; Paccagnella, A.; Pantano, D.; Pozzobon, N.; Tosi, M.; Bilei, G.M.; Checcucci, B.; Fano, L.; Servoli, L.; Ambroglini, F.; Babucci, E.; Benedetti, D.; Biasini, M.; Caponeri, B.; Covarelli, R.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Marcantonini, M.; Postolache, V.; Santocchia, A.; Spiga, D.; Bagliesi, G.; Balestri, G.; Berretta, L.; Bianucci, S.; Boccali, T.; Bosi, F.; Bracci, F.; Castaldi, R.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A.S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Lomtadze, T.; Lungu, G.A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Sentenac, D.; Serban, A.T.; Slav, A.; Soldani, A.; Spagnolo, P.; Tenchini, R.; Tolaini, S.; Venturi, A.; Verdini, P.G.; Vos, M.; Zaccarelli, L.; Avanzini, C.; Basti, A.; Benucci, L.; Bocci, A.; Cazzola, U.; Fiori, F.; Linari, S.; Massa, M.; Messineo, A.; Segneri, G.; Tonelli, G.; Azzurri, P.; Bernardini, J.; Borrello, L.; Calzolari, F.; Foa, L.; Gennai, S.; Ligabue, F.; Petrucciani, G.; Rizzi, A.; Yang, Z.; Benotto, F.; Demaria, N.; Dumitrache, F.; Farano, R.; Borgia, M.A.; Castello, R.; Costa, M.; Migliore, E.; Romero, A.; Abbaneo, D.; Abbas, M.; Ahmed, I.; Akhtar, I.; Albert, E.; Bloch, C.; Breuker, H.; Butt, S.; Buchmuller, O.; Cattai, A.; Delaere, C.; Delattre, M.; Edera, L.M.; Engstrom, P.; Eppard, M.; Gateau, M.; Gill, K.; Giolo-Nicollerat, A.-S.; Grabit, R.; Honma, A.; Huhtinen, M.; Kloukinas, K.; Kortesmaa, J.; Kottelat, L.J.; Kuronen, A.; Leonardo, N.; Ljuslin, C.; Mannelli, M.; Masetti, L.; Marchioro, A.; Mersi, S.; Michal, S.; Mirabito, L.; Muffat-Joly, J.; Onnela, A.; Paillard, C.; Pal, I.; Pernot, J.F.; Petagna, P.; Petit, P.; Piccut, C.; Pioppi, M.; Postema, H.; Ranieri, R.; Ricci, D.; Rolandi, G.; Ronga, F.; Sigaud, C.; Syed, A.; Siegrist, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vander Donckt, M.; Vasey, F.; Alagoz, E.; Amsler, Claude; Chiochia, V.; Regenfus, Christian; Robmann, P.; Rochet, J.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Wilke, L.; Church, I.; Cole, J.; Coughlan, J.; Gay, A.; Taghavi, S.; Tomalin, I.; Bainbridge, R.; Cripps, N.; Fulcher, J.; Hall, G.; Noy, M.; Pesaresi, M.; Radicci, V.; Raymond, D.M.; Sharp, P.; Stoye, M.; Wingham, M.; Zorba, O.; Goitom, I.; Hobson, P.R.; Reid, I.; Teodorescu, L.; Hanson, G.; Jeng, G.-Y.; Liu, H.; Pasztor, G.; Satpathy, A.; Stringer, R.; Mangano, B.; Affolder, K.; Affolder, T.; Allen, A.; Barge, D.; Burke, S.; Callahan, D.; Campagnari, C.; Crook, A.; D'Alfonso, M.; Dietch, J.; Garberson, Jeffrey Ford; Hale, D.; Incandela, H.; Incandela, J.; Jaditz, S.; Kalavase, P.; Kreyer, S.; Kyre, S.; Lamb, J.; Mc Guinnessr, C.; Mills, C.; Nguyen, H.; Nikolic, M.; Lowette, S.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rubinstein, N.; Sanhueza, S.; Shah, Y.; Simms, L.; Staszak, D.; Stoner, J.; Stuart, D.; Swain, S.; Vlimant, J.-R.; White, D.; Ulmer, K.A.; Wagner, S.R.; Bagby, L.; Bhat, P.C.; Burkett, K.; Cihangir, S.; Gutsche, O.; Jensen, H.; Johnson, M.; Luzhetskiy, N.; Mason, D.; Miao, T.; Moccia, S.; Noeding, C.; Ronzhin, A.; Skup, E.; Spalding, W.J.; Spiegel, L.; Tkaczyk, S.; Yumiceva, F.; Zatserklyaniy, A.; Zerev, E.; Anghel, I.; Bazterra, V.E.; Gerber, C.E.; Khalatian, S.; Shabalina, E.; Baringer, Philip S.; Bean, A.; Chen, J.; Hinchey, C.; Martin, C.; Moulik, T.; Robinson, R.; Gritsan, A.V.; Lae, C.K.; Tran, N.V.; Everaerts, P.; Hahn, K.A.; Harris, P.; Nahn, S.; Rudolph, M.; Sung, K.; Betchart, B.; Demina, R.; Gotra, Y.; Korjenevski, S.; Miner, D.; Orbaker, D.; Christofek, L.; Hooper, R.; Landsberg, G.; Nguyen, D.; Narain, M.; Speer, T.; Tsang, K.V.

    2009-01-01

    The results of the CMS tracker alignment analysis are presented using the data from cosmic tracks, optical survey information, and the laser alignment system at the Tracker Integration Facility at CERN. During several months of operation in the spring and summer of 2007, about five million cosmic track events were collected with a partially active CMS Tracker. This allowed us to perform first alignment of the active silicon modules with the cosmic tracks using three different statistical approaches; validate the survey and laser alignment system performance; and test the stability of Tracker structures under various stresses and temperatures ranging from +15C to -15C. Comparison with simulation shows that the achieved alignment precision in the barrel part of the tracker leads to residual distributions similar to those obtained with a random misalignment of 50 (80) microns in the outer (inner) part of the barrel.

  7. Silicon Sensor Development for the CMS Tracker Upgrade

    CERN Document Server

    Auzinger, Georg; Elliott-Peisert, Anna

    The Large Hadron Collider at the European Council for Nuclear Research in Geneva is scheduled to undergo a major luminosity upgrade after its lifetime of ten years of operation around the year 2020, to maximize its scientific discovery potential. The total integrated luminosity will be increased by a factor of ten, which will dramatically change the conditions under which the four large detectors at the LHC will have to operate. The Compact Muon Solenoid, which has contributed to the recent discovery of a new, Higgs-like boson is one of them. Its innermost part -- the so-called tracker -- is a high-precision instrument that measures the created particles' trajectories by means of silicon detectors. With a total surface of more than 200 square-meters it is the largest device of its kind ever built. The increase in instantaneous luminosity in the upgraded LHC will lead to a dramatically increased track density at the interaction points of the colliding beams and thus also to a much more hostile radiation env...

  8. Stand-alone Cosmic Muon Reconstruction Before Installation of the CMS Silicon Strip Tracker

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruhwirth, R.; Hansel, S.; Hrubec, J.; Krammer, M.; Oberegger, M.; Pernicka, M.; Schmid, S.; Stark, R.; Steininger, H.; Uhl, D.; Waltenberger, W.; Widl, E.; Van Mechelen, P.; Cardaci, M.; Beaumont, W.; de Langhe, E.; de Wolf, E.A.; Delmeire, E.; Hashemi, M.; Bouhali, O.; Charaf, O.; Clerbaux, B.; Dewulf, J.-P.; Elgammal, S.; Hammad, G.; de Lentdecker, G.; Marage, P.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Adler, V.; Devroede, O.; De Weirdt, S.; D'Hondt, J.; Goorens, R.; Heyninck, J.; Maes, J.; Mozer, Matthias Ulrich; Tavernier, S.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.; Bonnet, J.-L.; Bruno, G.; De Callatay, B.; Florins, B.; Giammanco, A.; Gregoire, G.; Keutgen, Th.; Kcira, D.; Lemaitre, V.; Michotte, D.; Militaru, O.; Piotrzkowski, K.; Quertermont, L.; Roberfroid, V.; Rouby, X.; Teyssier, D.; Daubie, E.; Anttila, E.; Czellar, S.; Engstrom, P.; Harkonen, J.; Karimaki, V.; Kostesmaa, J.; Kuronen, A.; Lampen, T.; Linden, T.; Luukka, P.-R.; Maenpaa, T.; Michal, S.; Tuominen, E.; Tuominiemi, J.; Ageron, M.; Baulieu, G.; Bonnevaux, A.; Boudoul, G.; Chabanat, E.; Chabert, E.; Chierici, R.; Contardo, D.; Della Negra, R.; Dupasquier, T.; Gelin, G.; Giraud, N.; Guillot, G.; Estre, N.; Haroutunian, R.; Lumb, N.; Perries, S.; Schirra, F.; Trocme, B.; Vanzetto, S.; Agram, J.-L.; Blaes, R.; Drouhin, F.; Ernenwein, J.-P.; Fontaine, J.-C.; Berst, J.-D.; Brom, J.-M.; Didierjean, F.; Goerlach, U.; Graehling, P.; Gross, L.; Hosselet, J.; Juillot, P.; Lounis, A.; Maazouzi, C.; Olivetto, C.; Strub, R.; Van Hove, P.; Anagnostou, G.; Brauer, R.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Kukulies, C.; Olzem, J.; Ostapchuk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schwering, G.; Sprenger, D.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.; Beissel, F.; Bock, E.; Flugge, G.; Gillissen, C.; Hermanns, T.; Heydhausen, D.; Jahn, D.; Kaussen, G.; Linn, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Stahl, A.; Zoeller, M.H.; Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R.; Hauk, J.; Klanner, R.; Pein, U.; Schleper, P.; Steinbruck, G.; Blum, P.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Fahrer, M.; Frey, M.; Furgeri, A.; Hartmann, F.; Heier, S.; Hoffmann, K.-H.; Kaminski, J.; Ledermann, B.; Liamsuwan, T.; Muller, S.; Muller, Th.; Schilling, F.-P.; Simonis, H.-J.; Steck, P.; Zhukov, V.; Cariola, P.; De Robertis, G.; Ferorelli, R.; Fiore, L.; Preda, M.; Sala, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.; Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M.A.; Sparti, V.; Sutera, C.; Tricomi, A.; Tuve, C.; Brianzi, M.; Civinini, C.; Maletta, F.; Manolescu, F.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Broccolo, B.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Magini, N.; Parrini, G.; Scarlini, E.; Cerati, G.; Azzi, P.; Bacchetta, N.; Candelori, A.; Dorigo, T.; Kaminsky, A.; Karaevski, S.; Khomenkov, V.; Reznikov, S.; Tessaro, M.; Bisello, D.; De Mattia, M.; Giubilato, P.; Loreti, M.; Mattiazzo, S.; Nigro, M.; Paccagnella, A.; Pantano, D.; Pozzobon, N.; Tosi, M.; Bilei, G.M.; Checcucci, B.; Fano, L.; Servoli, L.; Ambroglini, F.; Babucci, E.; Benedetti, D.; Biasini, M.; Caponeri, B.; Covarelli, R.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Marcantonini, M.; Postolache, V.; Santocchia, A.; Spiga, D.; Bagliesi, G.; Balestri, G.; Berretta, L.; Bianucci, S.; Boccali, T.; Bosi, F.; Bracci, F.; Castaldi, R.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A .S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Lomtadze, T.; Lungu, G.A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Sentenac, D.; Serban, A.T.; Slav, A.; Soldani, A.; Spagnolo, P.; Tenchini, R.; Tolaini, S.; Venturi, A.; Verdini, P.G.; Vos, M.; Zaccarelli, L.; Avanzini, C.; Basti, A.; Benucci, L.; Bocci, A.; Cazzola, U.; Fiori, F.; Linari, S.; Massa, M.; Messineo, A.; Segneri, G.; Tonelli, G.; Azzurri, P.; Bernardini, J.; Borrello, L.; Calzolari, F.; Foa, L.; Gennai, S.; Ligabue, F.; Petrucciani, G.; Rizzi, A.; Yang, Z.; Benotto, F.; Demaria, N.; Dumitrache, F.; Farano, R.; Borgia, M.A.; Castello, R.; Costa, M.; Migliore, E.; Romero, A.; Abbaneo, D.; Abbas, M.; Ahmed, I.; Akhtar, I.; Albert, E.; Bloch, C.; Breuker, H.; Butt, S.; Buchmuller, O.; Cattai, A.; Delaere, C.; Delattre, M.; Edera, L.M.; Engstrom, P.; Eppard, M.; Gateau, M.; Gill, K.; Giolo-Nicollerat, A.-S.; Grabit, R.; Honma, A.; Huhtinen, M.; Kloukinas, K.; Kortesmaa, J.; Kottelat, L.J.; Kuronen, A.; Leonardo, N.; Ljuslin, C.; Mannelli, M.; Masetti, L.; Marchioro, A.; Mersi, S.; Michal, S.; Mirabito, L.; Muffat-Joly, J.; Onnela, A.; Paillard, C.; Pal, I.; Pernot, J.F.; Petagna, P.; Petit, P.; Piccut, C.; Pioppi, M.; Postema, H.; Ranieri, R.; Ricci, D.; Rolandi, G.; Ronga, F.; Sigaud, C.; Syed, A.; Siegrist, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vander Donckt, M.; Vasey, F.; Alagoz, E.; Amsler, Claude; Chiochia, V.; Regenfus, Christian; Robmann, P.; Rochet, J.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Wilke, L.; Church, I.; Cole, J.; Coughlan, J.; Gay, A.; Taghavi, S.; Tomalin, I.; Bainbridge, R.; Cripps, N.; Fulcher, J.; Hall, G.; Noy, M.; Pesaresi, M.; Radicci, V.; Raymond, D.M.; Sharp, P.; Stoye, M.; Wingham, M.; Zorba, O.; Goitom, I.; Hobson, P.R.; Reid, I.; Teodorescu, L.; Hanson, G.; Jeng, G.-Y.; Liu, H.; Pasztor, G.; Satpathy, A.; Stringer, R.; Mangano, B.; Affolder, K.; Affolder, T.; Allen, A.; Barge, D.; Burke, S.; Callahan, D.; Campagnari, C.; Crook, A.; D'Alfonso, M.; Dietch, J.; Garberson, Jeffrey Ford; Hale, D.; Incandela, H.; Incandela, J.; Jaditz, S.; Kalavase, P.; Kreyer, S.; Kyre, S.; Lamb, J.; Mc Guinness, C.; Mills, C.; Nguyen, H.; Nikolic, M.; Lowette, S.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rubinstein, N.; Sanhueza, S.; Shah, Y.; Simms, L.; Staszak, D.; Stoner, J.; Stuart, D.; Swain, S.; Vlimant, J.-R.; White, D.; Ulmer, K.A.; Wagner, S.R.; Bagby, L.; Bhat, P.C.; Burkett, K.; Cihangir, S.; Gutsche, O.; Jensen, H.; Johnson, M.; Luzhetskiy, N.; Mason, D.; Miao, T.; Moccia, S.; Noeding, C.; Ronzhin, A.; Skup, E.; Spalding, W.J.; Spiegel, L.; Tkaczyk, S.; Yumiceva, F.; Zatserklyaniy, A.; Zerev, E.; Anghel, I.; Bazterra, V.E.; Gerber, C.E.; Khalatian, S.; Shabalina, E.; Baringer, Philip S.; Bean, A.; Chen, J.; Hinchey, C.; Martin, C.; Moulik, T.; Robinson, R.; Gritsan, A.V.; Lae, C.K.; Tran, N.V.; Everaerts, P.; Hahn, K.A.; Harris, P.; Nahn, S.; Rudolph, M.; Sung, K.; Betchart, B.; Demina, R.; Gotra, Y.; Korjenevski, S.; Miner, D.; Orbaker, D.; Christofek, L.; Hooper, R.; Landsberg, G.; Nguyen, D.; Narain, M.; Speer, T.; Tsang, K.V.

    2009-01-01

    The subsystems of the CMS silicon strip tracker were integrated and commissioned at the Tracker Integration Facility (TIF) in the period from November 2006 to July 2007. As part of the commissioning, large samples of cosmic ray data were recorded under various running conditions in the absence of a magnetic field. Cosmic rays detected by scintillation counters were used to trigger the readout of up to 15% of the final silicon strip detector, and over 4.7 million events were recorded. This document describes the cosmic track reconstruction and presents results on the performance of track and hit reconstruction as from dedicated analyses.

  9. Integration of the End Cap TEC+ of the CMS Silicon Strip Tracker

    CERN Document Server

    Adler, Volker; Ageron, Michel; Agram, Jean-Laurent; Atz, Bernd; Barvich, Tobias; Baulieu, Guillaume; Beaumont, Willem; Beissel, Franz; Bergauer, Thomas; Berst, Jean-Daniel; Blüm, Peter; Bock, E; Bogelsbacher, F; de Boer, Wim; Bonnet, Jean-Luc; Bonnevaux, Alain; Boudoul, Gaelle; Bouhali, Othmane; Braunschweig, Wolfgang; Bremer, R; Brom, Jean-Marie; Butz, Erik; Chabanat, Eric; Chabert, Eric Christian; Clerbaux, Barbara; Contardo, Didier; De Callatay, Bernard; Dehm, Philip; Delaere, Christophe; Della Negra, Rodolphe; Dewulf, Jean-Paul; D'Hondt, Jorgen; Didierjean, Francois; Dierlamm, Alexander; Dirkes, Guido; Dragicevic, Marko; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Esser, Hans; Estre, Nicolas; Fahrer, Manuel; Feld, Lutz; Fernández, J; Florins, Benoit; Flossdorf, Alexander; Flucke, Gero; Flügge, Günter; Fontaine, Jean-Charles; Freudenreich, Klaus; Frey, Martin; Friedl, Markus; Furgeri, Alexander; Giraud, Noël; Goerlach, Ulrich; Goorens, Robert; Graehling, Philippe; Grégoire, Ghislain; Gregoriev, E; Gross, Laurent; Hansel, S; Haroutunian, Roger; Hartmann, Frank; Heier, Stefan; Hermanns, Thomas; Heydhausen, Dirk; Heyninck, Jan; Hosselet, J; Hrubec, Josef; Jahn, Dieter; Juillot, Pierre; Kaminski, Jochen; Karpinski, Waclaw; Kaussen, Gordon; Keutgen, Thomas; Klanner, Robert; Klein, Katja; König, Stefan; Kosbow, M; Krammer, Manfred; Ledermann, Bernhard; Lemaître, Vincent; De Lentdecker, Gilles; Linn, Alexander; Lounis, Abdenour; Lübelsmeyer, Klaus; Lumb, Nicholas; Maazouzi, Chaker; Mahmoud, Tariq; Michotte, Daniel; Militaru, Otilia; Mirabito, Laurent; Müller, Thomas; Neukermans, Lionel; Ollivetto, C; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pein, Uwe; Pernicka, Manfred; Perriès, Stephane; Piaseki, C; Pierschel, Gerhard; Piotrzkowski, Krzysztof; Poettgens, Michael; Pooth, Oliver; Rouby, Xavier; Sabellek, Andreas; Schael, Stefan; Schirm, Norbert; Schleper, Peter; Schmitz, Stefan Antonius; Schultz von Dratzig, Arndt; Siedling, Rolf; Simonis, Hans-Jürgen; Stahl, Achim; Steck, Pia; Steinbruck, G; Stoye, Markus; Strub, Roger; Tavernier, Stefaan; Teyssier, Daniel; Theel, Andreas; Trocmé, Benjamin; Udo, Fred; Van der Donckt, M; Van der Velde, C; Van Hove, Pierre; Vanlaer, Pascal; Van Lancker, Luc; Van Staa, Rolf; Vanzetto, Sylvain; Weber, Markus; Weiler, Thomas; Weseler, Siegfried; Wickens, John; Wittmer, Bruno; Wlochal, Michael; De Wolf, Eddi A; Zhukov, Valery; Zoeller, Marc Henning

    2009-01-01

    The silicon strip tracker of the CMS experiment has been completed and inserted into the CMS detector in late 2007. The largest sub-system of the tracker is its end cap system, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted into the TEC support structures. Each end cap consists of 144 petals, and the insertion of these petals into the end cap structure is referred to as TEC integration. The two end caps were integrated independently in Aachen (TEC+) and at CERN (TEC--). This note deals with the integration of TEC+, describing procedures for end cap integration and for quality control during testing of integrated sections of the end cap and presenting results from the testing.

  10. Studies for the Commissioning of the CERN CMS Silicon Strip Tracker

    CERN Document Server

    Bloch, Christoph; Abbaneo, Duccio; Fabjan, Christian Wolfgang

    2008-01-01

    In 2008 the Large Hadron Collider (LHC) at CERN will start producing proton-proton collisions of unprecedented energy. One of its main experiments is the Compact Muon Solenoid (CMS), a general purpose detector, optimized for the search of the Higgs boson and super symmetric particles. The discovery potential of the CMS detector relies on a high precision tracking system, made of a pixel detector and the largest silicon strip Tracker ever built. In order to operate successfully a device as complex as the CMS silicon strip Tracker, and to fully exploit its potential, the properties of the hardware need to be characterized as precisely as possible, and the reconstruction software needs to be commissioned with physics signals. A number of issues were identified and studied to commission the detector, some of which concern the entire Tracker, while some are specific to the Tracker Outer Barrel (TOB): - the time evolution of the signals in the readout electronics need to be precisely measured and correctly simulate...

  11. CMS tracker observes muons

    CERN Multimedia

    2006-01-01

    A computer image of a cosmic ray traversing the many layers of the TEC+ silicon sensors. The first cosmic muon tracks have been observed in one of the CMS tracker endcaps. On 14 March, a sector on one of the two large tracker endcaps underwent a cosmic muon run. Since then, thousands of tracks have been recorded. These data will be used not only to study the tracking, but also to exercise various track alignment algorithms The endcap tested, called the TEC+, is under construction at RWTH Aachen in Germany. The endcaps have a modular design, with silicon strip modules mounted onto wedge-shaped carbon fibre support plates, so-called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an endcap is populated with 18 petals and called a sector. The next major step is a test of the first sector at CMS operating conditions, with the silicon modules at a temperature below -10°C. Afterwards, the remaining seven sectors have to be integrated. In autumn 2006, TEC+ wil...

  12. Development of a new Silicon Tracker at CMS for Super-LHC

    CERN Document Server

    Pesaresi, Mark

    2010-01-01

    Tracking is an essential requirement for any high energy particle physics experiment. The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) employs an all silicon tracker, the largest of its kind, for the precise measurement of track momentum and vertex position. With approximately 10 million detector channels in the strip tracker alone, the analogue non-sparsified readout system has been designed to handle the large data volumes generated at the 100 kHz Level 1 (L1) trigger rate. Fluctuations in the event rate are controlled using buffers whose occupancies are constantly monitored to prevent overflows, otherwise causing loss of synchronisation and data. The status of the tracker is reported by the APV emulator (APVe), which has now been successfully commissioned within the silicon strip tracker readout system. The APVe plays a crucial role in the synchronisation of the tracker by deterministic calculation of the front end buffer occupancy and by monitoring the status of the Front End Dr...

  13. System tests with silicon strip module prototypes for the Phase-2-upgrade of the CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Preuten, Marius [I. Physikalisches Institut B, RWTH Aachen University (Germany)

    2016-07-01

    To prepare the CMS experiment for the High Luminosity LHC and its instantaneous luminosity of 5 . 10{sup 34} cm{sup -2}s{sup -1}, in the Long Shutdown 3 (around 2024) the CMS Silicon Tracker will be replaced. The Silicon Strip Modules for the new Tracker will host two vertically stacked sensors. The combination of hit information from both sensors will allow the estimation of the transverse momentum (p{sub T}) of charged particles in the module front-end. This can be used to identify hits from potential interesting high-p{sub T} tracks (above 2 GeV) for the first trigger level. The CMS Binary Chip (CBC) provides the analogue readout of two sensors and a digital section, into which the momentum discrimination is integrated. The modules will host a new DC-DC converter chain, which will allow individual powering of each module. First measurements with early prototypes on the interplay between DC-DC powering and the read-out functions of the module are presented in this talk.

  14. CMS Tracker Model

    CERN Multimedia

    Model of the tracking detector for the CMS experiment at the LHC. This object is a mock-up of an early design of the CMS Tracker mechanics. It is a segment of a “Wheel” to support Micro-Strip Gas Chamber (MSGC) detector modules on the outer layers and silicon-strip detector modules in the innermost layers. The particularity of that design is that modules are organised in spirals, along which power and optical cables and cooling pipes were planned to be routed. Some of such spirals are illustrated in the mock-up by the colors of the modules. With the detector development it became, however, evident that the silicon detectors would need to be operated in LHC experiments in cold temperatures, while the MSGC could stay in normal room-temperature. That split in two temperatures lead to separating those two detector types by a thermal barrier and therefore jeopardizing the idea of using common, vertical Wheels with services arranged along spirals.

  15. Simultaneous alignment and Lorentz angle calibration in the CMS silicon tracker using Millepede II

    CERN Document Server

    Bartosik, Nazar

    2013-01-01

    The CMS silicon tracker consists of 25 684 sensors that provide measurements of trajectories of charged particles that are used by almost every physics analysis at CMS. In order to achieve high measurement precision, the positions and orientations of all sensors have to be determined very accurately. This is achieved by track-based alignment using the global fit approach of the Millepede II program. This approach is capable of determining about 200 000 parameters simultaneously.The alignment precision reached such a high level that even small calibration inaccuracies are noticeable. Therefore the alignment framework has been extended to treat position sensitive calibration parameters. Of special interest is the Lorentz angle which affects the hit positions due to the drift of the signal electrons in the magnetic field. We present the results from measurements of the Lorentz angle and its time dependence during full 2012 data taking period as well as general description of the alignment and calibration procedu...

  16. Development and implementation of quality control strategies for CMS silicon strip tracker modules

    CERN Document Server

    Dirkes, Guido

    The LHC will explore physics at the energy frontier and will address many open questions in particle physics, like the search for the Higgs boson or Supersymmetry. For both high resolution track and vertex reconstruction is vital. The CMS silicon tracker consists of 15232 detector modules. Production and assembly of these will span two and a half years period, during which the quality control chain has to ensure functionality and reliability of the modules produced. The CMS group in Karlsruhe will produce and qualify 1600 modules. Therefore automatic test systems are developed and test strategies are worked out. Already during the RnD phase, first prototype tests were performed and some weak points of the design were uncovered. Two test stations are built. One focuses on a fast functionality test, including an active thermal cycle. The other focuses on debugging and repair requirements, including additional test options with lasers, radioactive sources, probes and infrared LEDs. For quality control measuremen...

  17. Test of the CMS microstrip silicon tracker readout and control system

    CERN Document Server

    Zghiche, A

    2001-01-01

    The Microstrip Silicon tracker of the CMS detector is designed to provide robust particle tracking and vertex reconstruction within a strong magnetic field in the high luminosity environment of the LHC. The Tracker readout system employs Front-End Driver cards to digitize and buffer the analogue data arriving via optical links from on detector pipeline chips. The control chain of the front-end electronic is built to operate via optical fibers in order to shield the communications from the outside noise. Components close to the final design have been assembled to be tested in the X5 beam area at CERN where a dedicated 25 ns temporal structure beam has been made available by the SPS. This paper describes the hardware and the software developed for readout and control of data acquired by the front-end electronics operating at 40 MHz, Some preliminary results of the tests performed in the 25 ns beam are also given. (8 refs).

  18. Characterization of silicon sensor materials and designs for the CMS Tracker Upgrade

    CERN Document Server

    Dierlamm, Alexander Hermann

    2012-01-01

    During the high luminosity phase of the LHC (HL-LHC, starting around 2020) the inner tracking system of CMS will be exposed to harsher conditions than the current system was designed for. Therefore a new tracker is planned to cope with higher radiation levels and higher occupancies. Within the strip sensor developments of CMS a comparative survey of silicon materials and technologies is being performed in order to identify the baseline material for the future tracker. Hence, a variety of materials (float-zone, magnetic Czochralski and epitaxially grown silicon with thicknesses from 50$\\mu$m to 320$\\mu$m as p- and n-type) has been processed at one company (Hamamatsu Photonics K.K.), irradiated (proton, neutron and mixed irradiations up to 1.5e15n$_{eq}$/cm$^2$ and beyond) and tested under identical conditions. The wafer layout includes a variety of devices to investigate different aspects of sensor properties like simple diodes, test-structures, small strip sensors and a strip sensor array with varying strip p...

  19. A silicon tracker for Christmas

    CERN Multimedia

    2008-01-01

    The CMS experiment installed the world’s largest silicon tracker just before Christmas. Marcello Mannelli: physicist and deputy CMS project leader, and Alan Honma, physicist, compare two generations of tracker: OPAL for the LEP (at the front) and CMS for the LHC (behind). There is quite a difference between 1m2 and 205m2.. CMS received an early Christmas present on 18 December when the silicon tracker was installed in the heart of the CMS magnet. The CMS tracker team couldn’t have hoped for a better present. Carefully wrapped in shiny plastic, the world’s largest silicon tracker arrived at Cessy ready for installation inside the CMS magnet on 18 December. This rounded off the year for CMS with a major event, the crowning touch to ten years of work on the project by over five hundred scientists and engineers. "Building a scientific instrument of this size and complexity is a huge technical a...

  20. Silicon sensor prototypes for the Phase II upgrade of the CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, Thomas, E-mail: thomas.bergauer@oeaw.ac.at

    2016-09-21

    The High-Luminosity LHC (HL-LHC) has been identified as the highest priority program in High Energy Physics in the mid-term future. It will provide the experiments an additional integrated luminosity of about 2500 fb{sup −1} over 10 years of operation, starting in 2025. In order to meet the experimental challenges of unprecedented p–p luminosity, especially in terms of radiation levels and occupancy, the CMS collaboration will need to replace its entire strip tracker by a new one. In this paper the baseline layout option for this new Phase-II tracker is shown, together with two variants using a tilted barrel geometry or larger modules from 8-inch silicon wafers. Moreover, the two module concepts are discussed, which consist either of two strip sensors (2S) or of one strip and one pixel sensor (PS). These two designs allow p{sub T} discrimination at module level enabling the tracker to contribute to the L1 trigger decision. The paper presents testing results of the macro-pixel-light sensor for the PS module and shows the first electrical characterization of unirradiated, full-scale strip sensor prototypes for the 2S module concept, both on 6- and 8-inch wafers.

  1. Integration of the End Cap TEC+ of the CMS Silicon Strip Tracker

    CERN Document Server

    Bremer, Richard; Feld, Lutz

    2008-01-01

    At the European Organization for Nuclear Research (CERN) ne ar Geneva the new proton-proton collider ring LHC and the experiments that will be operated a t this accelerator are currently being finalised. Among these experiments is the multi-purpose det ector CMS whose aim it is to discover and investigate new physical phenomena that might become ac cessible by virtue of the high center- of-mass energy and luminosity of the LHC. Two of the most inte nsively studied possibilities are the discovery of the Higgs Boson and of particles from the spectr um of supersymmetric extensions of the Standard Model. CMS is the first large experiment of high- energy particle physics whose inner tracking system is exclusively instrumented with silicon d etector modules. This tracker comprises 15 148 silicon strip modules enclosing the interaction poin t in 10–12 layers. The 1. Physikalisches Institut B of RWTH Aachen was deeply involved in the completi on of the end caps of the tracking system. The institute played a leading...

  2. The Detector Control Unit An ASIC for the monitoring of the CMS silicon tracker

    CERN Document Server

    Magazzù, G; Moreira, P

    2004-01-01

    The Detector Control Unit (DCU) is an ASIC developed as the central building block of a monitoring system for the CMS Tracker. Leakage currents in the Silicon detectors, power supply voltages of the readout electronics and local temperatures will be monitored in order to guarantee safe operating conditions during the 10-years lifetime in the LHC environment. All these measurements can be performed by an A/D converter preceded by an analog multiplexer and properly interfaced to the central control system. The requirements in terms of radiation tolerance, low-power dissipation and integration with the rest of the system led to the design of a custom integrated circuit. Its structure and characteristics are described in this paper. (6 refs).

  3. Model of CMS Tracker

    CERN Multimedia

    Breuker

    1999-01-01

    A full scale CMS tracker mock-up exposed temporarily in the hall of building 40. The purpose of the mock-up is to study the routing of services, assembly and installation. The people in front are only a small fraction of the CMS tracker collaboration. Left to right : M. Atac, R. Castaldi, H. Breuker, D. Pandoulas,P. Petagna, A. Caner, A. Carraro, H. Postema, M. Oriunno, S. da Mota Silva, L. Van Lancker, W. Glessing, G. Benefice, A. Onnela, M. Gaspar, G. M. Bilei

  4. CMS tracker visualization tools

    CERN Document Server

    Zito, G; Osborne, I; Regano, A

    2005-01-01

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking.

  5. CMS tracker visualization tools

    Energy Technology Data Exchange (ETDEWEB)

    Mennea, M.S. [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' e INFN sezione di Bari, Via Amendola 173 - 70126 Bari (Italy); Osborne, I. [Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States); Regano, A. [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' e INFN sezione di Bari, Via Amendola 173 - 70126 Bari (Italy); Zito, G. [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' e INFN sezione di Bari, Via Amendola 173 - 70126 Bari (Italy)]. E-mail: giuseppe.zito@ba.infn.it

    2005-08-21

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking.

  6. CMS tracker visualization tools

    International Nuclear Information System (INIS)

    Mennea, M.S.; Osborne, I.; Regano, A.; Zito, G.

    2005-01-01

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking

  7. Integration of the end cap TEC+ of the CMS silicon strip tracker

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, Richard

    2008-04-28

    CMS is the first large experiment of high-energy particle physics whose inner tracking system is exclusively instrumented with silicon detector modules. This tracker comprises 15 148 silicon strip modules enclosing the interaction point in 10-12 layers. The 1. Physikalisches Institut B of RWTH Aachen was deeply involved in the completion of the end caps of the tracking system. The institute played a leading role in the end cap design, produced virtually all support structures and several important electrical components, designed and built the laser alignment system of the tracker, performed system tests and finally integrated one of the two end caps in Aachen. This integration constitutes the central part of the present thesis work. The main focus was on the development of methods to recognise defects early in the integration process and to assert the detector's functionality. Characteristic quantities such as the detector noise or the optical gain of the readout chain were determined during integration as well as during a series of tests performed after transport of the end cap from Aachen to CERN. The procedures followed during the mechanical integration of the detector and during the commissioning of integrated sectors are explained, and the software packages developed for quality assurance are described. In addition, results of the detector readout are presented. During the integration phase, sub-structures of the end cap - named petals - were subjected to a reception test which has also been designed and operated as part of this thesis work. The test setup and software developed for the test are introduced and an account of the analysis of the recorded data is given. Before the end cap project entered the production phase, a final test beam experiment was performed in which the suitability of a system of two fully equipped petals for operation at the LHC was checked. The measured ratio of the signal induced in the silicon sensors by minimal ionising

  8. Integration of the end cap TEC+ of the CMS silicon strip tracker

    International Nuclear Information System (INIS)

    Bremer, Richard

    2008-01-01

    CMS is the first large experiment of high-energy particle physics whose inner tracking system is exclusively instrumented with silicon detector modules. This tracker comprises 15 148 silicon strip modules enclosing the interaction point in 10-12 layers. The 1. Physikalisches Institut B of RWTH Aachen was deeply involved in the completion of the end caps of the tracking system. The institute played a leading role in the end cap design, produced virtually all support structures and several important electrical components, designed and built the laser alignment system of the tracker, performed system tests and finally integrated one of the two end caps in Aachen. This integration constitutes the central part of the present thesis work. The main focus was on the development of methods to recognise defects early in the integration process and to assert the detector's functionality. Characteristic quantities such as the detector noise or the optical gain of the readout chain were determined during integration as well as during a series of tests performed after transport of the end cap from Aachen to CERN. The procedures followed during the mechanical integration of the detector and during the commissioning of integrated sectors are explained, and the software packages developed for quality assurance are described. In addition, results of the detector readout are presented. During the integration phase, sub-structures of the end cap - named petals - were subjected to a reception test which has also been designed and operated as part of this thesis work. The test setup and software developed for the test are introduced and an account of the analysis of the recorded data is given. Before the end cap project entered the production phase, a final test beam experiment was performed in which the suitability of a system of two fully equipped petals for operation at the LHC was checked. The measured ratio of the signal induced in the silicon sensors by minimal ionising particles

  9. Validation of Kalman Filter alignment algorithm with cosmic-ray data using a CMS silicon strip tracker endcap

    CERN Document Server

    Sprenger, D; Adolphi, R; Brauer, R; Feld, L; Klein, K; Ostaptchuk, A; Schael, S; Wittmer, B

    2010-01-01

    A Kalman Filter alignment algorithm has been applied to cosmic-ray data. We discuss the alignment algorithm and an experiment-independent implementation including outlier rejection and treatment of weakly determined parameters. Using this implementation, the algorithm has been applied to data recorded with one CMS silicon tracker endcap. Results are compared to both photogrammetry measurements and data obtained from a dedicated hardware alignment system, and good agreement is observed.

  10. CMS Tracker Visualisation

    CERN Document Server

    Mennea, Maria Santa; Zito, Giuseppe

    2004-01-01

    To provide improvements in the performance of existing tracker data visualization tools in IGUANA, a 2D visualisation software has been developed, using the object oriented paradigm and software engineering techniques. We have designed 2D graphics objects and some of them have been implemented. The access to the new objects is made in ORCA plugin of IGUANA CMS. A new tracker object oriented model has been designed for developing these 2D graphics objects. The model consists of new classes which represent all its components (layers, modules, rings, petals, rods).The new classes are described here. The last part of this document contains a user manual of the software and will be updated with new releases.

  11. Irradiation study of different silicon materials for the CMS tracker upgrade

    International Nuclear Information System (INIS)

    Erfle, Joachim

    2014-05-01

    Around 2022, an upgrade of the LHC collider complex is planned to significantly increase the luminosity (the High Luminosity LHC, HL-LHC). This means that the experiments have to cope with a higher number of collisions per bunch crossing and survive in a radiation environment much harsher than that at the present LHC. Especially the tracking detectors have to be improved for the HL-LHC. The increased number of tracks requires an increase of the number of readout channels while the higher radiation makes new sensor materials necessary. Within CMS, a measurement campaign was initiated to study the performance of different silicon materials in a corresponding radiation environment. To simulate the expected radiation the samples were irradiated with neutrons and with protons with two different energies. Radiation damage can be divided in two categories. First, ionizing energy loss in the surface isolation layers of the sensor leads to a change of the concentration of charged states in the sensor surface and therefore alters the distribution of the electrical fields in the sensor. Second, non-ionizing energy loss in the bulk of the sensor material leads to a variety of defects in the silicon lattice. Electrically active defects can influence the material properties. The three properties under investigation are the reverse current, the full depletion voltage and the charge collection. While the reverse current and full depletion voltage influence the power dissipation and the noise of the detector, the charge collection directly influences the measurement. The material properties were studied using pad and strip sensor. The structures were electrically characterized before and after irradiation with different fluences of neutrons and protons, corresponding to the expected fluences at different radii of the outer tracker after 3000 fb -1 . The charge collection measurements were mainly performed using the ALiBaVa readout system and the charge was induced with

  12. Development and implementation of quality control strategies for CMS silicon strip tracker modules

    International Nuclear Information System (INIS)

    Dirkes, G.

    2003-01-01

    The CMS group in Karlsruhe is involved in the construction of the silicon trackers end-caps and will produce and qualify the 1 600 modules of ring 5. Therefore automatic test systems for module qualification are developed and test strategies are worked out. For the electrical tests a complete readout system is developed, based on readout modules available within the collaboration and extended by home build modules. These are based on a modular approach with less complex functional units attached to a motherboard and includes key functionalities like clock and trigger generation and their distribution, high and low voltage supply and test signal generation usable with lasers or infrared LEDs. The motherboard is connected to a standard PC, hosting a fast ADC, interface cards to the motherboard and the front-end electronics. Already during the R and D phase of this readout system, first prototype tests were performed and some weak points of the design were uncovered, resulting in changes of the electronics design of the front end hybrids. Two test stations are built. The first one focuses on a fast functionality test, which includes an active thermal cycle with readout at -10 C performed for each individual module. The other test station focuses on debugging and repair requirements. It disposes of sufficient space for a flexible use of the system, including the possibility of additional test options with lasers, radioactive sources, probes and LEDs. For quality control measurements at module level it turned out, that LEDs are of good use: Besides external signal generation by running them in a pulsed way, they can be used for constant illumination of sensors, inducing an artificial leakage current. This led to the discovery of gain losses of complete readout chips induced by shorted AC coupling capacitances of several readout channels, which are called pinholes. Therefore pinholes must be unbonded from the front end preamplifier, which requires faultless

  13. The CMS tracker control system

    International Nuclear Information System (INIS)

    Dierlamm, A; Dirkes, G H; Fahrer, M; Frey, M; Hartmann, F; Masetti, L; Militaru, O; Shah, S Y; Stringer, R; Tsirou, A

    2008-01-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 10 4 power supply parameters, about 10 3 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 10 5 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC experiments. The logical partitioning of the detector is reflected in the hierarchical structure of the TCS, where commands move down to the individual hardware devices, while states are reported up to the root which is interfaced to the broader CMS control system. The system computes and continuously monitors the mean and maximum values of critical parameters and updates the percentage of currently operating hardware. Automatic procedures switch off selected parts of the detector using detailed granularity and avoiding widespread TSS intervention

  14. The CMS tracker control system

    Science.gov (United States)

    Dierlamm, A.; Dirkes, G. H.; Fahrer, M.; Frey, M.; Hartmann, F.; Masetti, L.; Militaru, O.; Shah, S. Y.; Stringer, R.; Tsirou, A.

    2008-07-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 104 power supply parameters, about 103 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 105 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC experiments. The logical partitioning of the detector is reflected in the hierarchical structure of the TCS, where commands move down to the individual hardware devices, while states are reported up to the root which is interfaced to the broader CMS control system. The system computes and continuously monitors the mean and maximum values of critical parameters and updates the percentage of currently operating hardware. Automatic procedures switch off selected parts of the detector using detailed granularity and avoiding widespread TSS intervention.

  15. First half of CMS inner tracker barrel

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first half of the CMS inner tracker barrel is seen in this image consisting of three layers of silicon modules which will be placed at the centre of the CMS experiment at the LHC in CERN. Laying close to the interaction point of the 14 TeV proton-proton collisions, the silicon used here must be able to survive high doses of radiation and a 4 T magnetic field without damage.

  16. Quality Assurance and Performance Tests of Silicon Detector Modules for the CMS/Tracker

    CERN Document Server

    Dragicevic, Marko

    2005-01-01

    After providing a short overview of the LHC accelerator, the CMS experiment and it’s various detector systems, we will have an in-depth look on silicon semiconductor particle detectors. Various important aspects like theoretical principles, radiation damage and actual design considerations are discussed and the quality assurance scheme for the sensor and module production is introduced. A strong emphasis is made on the ARC module teststand which was set up and operated be the author. Another important aspect in establishing a good quality assurance scheme is flexibility and keeping an eye on the unexpected. At one such occasion, the author had to gather custom made test equipment, to investigate certain effects in silicon sensors manufactured by ST Microelectronics. Conclusions from these measurement could only be drawn very cautiously, as the manufacturing process and many of its subtle changes, remained a well kept secret of the company. Nevertheless, the investigations proofed to be useful and ST Microel...

  17. CMS tracker slides into centre stage

    CERN Document Server

    2006-01-01

    As preparations for the magnet test and cosmic challenge get underway, a prototype tracker has been carefully inserted into the centre of CMS. The tracker, in its special platform, is slowly inserted into the centre of CMS. The CMS prototype tracker to be used for the magnet test and cosmic challenge coming up this summer has the same dimensions -2.5 m in diameter and 6 m in length- as the real one and tooling exactly like it. However, the support tube is only about 1% equipped, with 2 m2 of silicon detectors installed out of the total 200 m2. This is already more than any LEP experiment ever used and indicates the great care needed to be taken by engineers and technicians as these fragile detectors were installed and transported to Point 5. Sixteen thousand silicon detectors with a total of about 10 million strips will make up the full tracker. So far, 140 modules with about 100 000 strips have been implanted into the prototype tracker. These silicon strips will provide precision tracking for cosmic muon...

  18. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    CERN Document Server

    Masetti, Lorenzo; Fischer, Peter

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a significant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specific requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specific design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper configuration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations...

  19. Irradiation study of different silicon materials for the CMS tracker upgrade

    CERN Document Server

    Erfle, Joachim; Hansen, Wolfgang; Garutti, Erika

    Around 2022, an upgrade of the LHC collider complex is planned to significantly increase the luminosity (the High Luminosity LHC, HL-LHC). This means that the experiments have to cope with a higher number of collisions per bunch crossing and survive in a radiation environment much harsher than that at the present LHC. Especially the tracking detectors have to be improved for the HL-LHC. The increased number of tracks requires an increase of the number of readout channels while the higher radiation makes new sensor materials necessary. Within CMS, a measurement campaign was initiated to study the performance of different silicon materials in a corresponding radiation environment. To simulate the expected radiation the samples were irradiated with neutrons and with protons with two different energies. Radiation damage can be divided in two categories. First, ionizing energy loss in the surface isolation layers of the sensor leads to a change of the concentration of charged states in the sensor surface and there...

  20. CMS Tracker Alignment Performance Results Summer 2016

    CERN Document Server

    CMS Collaboration

    2016-01-01

    The tracking system of the CMS detector provides excellent resolution for charged particle tracks and an efficient way of tagging jets. In order to reconstruct good quality tracks, the position and orientation of each silicon pixel and strip modules need to be determined with a precision of several micrometers. The performance of the CMS tracker alignment in 2016 using cosmic-ray data recorded at 0 T magnetic field and proton-proton collision data recorded at 3.8 T magnetic field has been studied. The data-driven validation of the results are presented. The time-dependent movement of the pixel detector's large-scale structure is demonstrated.

  1. Track based alignment of the CMS silicon tracker and its implication on physics performance

    International Nuclear Information System (INIS)

    Draeger, Jula

    2011-08-01

    In order to fully exploit the discovery potential of the CMS detector for new physics beyond the Standard Model at the high luminosity and centre-of-mass energy provided by the Large Hadron Collider, a careful calibration of the detector and profound understanding of its impact on physics performance are necessary to provide realistic uncertainties for the measurements of physics processes. This thesis describes the track-based alignment of the inner tracking system of CMS with the Millepede II algorithm. Using the combined information of tracks from cosmic rays and collisions taken in 2010, a remarkable local alignment precision has been reached that meets the design specification for most regions of the detector and takes into account instabilities of the detector geometry over time. In addition, the impact of the alignment of b tagging or the Z boson resonance are investigated. The latter is studied to investigate the impact of correlated detector distortions which hardly influence the overall solution of the minimisation problem but introduce biases in the track parameters and thus the derived physics quantities. The determination and constraint of these weak modes present the future challenge of the alignment task at CMS. (orig.)

  2. Track based alignment of the CMS silicon tracker and its implication on physics performance

    Energy Technology Data Exchange (ETDEWEB)

    Draeger, Jula

    2011-08-15

    In order to fully exploit the discovery potential of the CMS detector for new physics beyond the Standard Model at the high luminosity and centre-of-mass energy provided by the Large Hadron Collider, a careful calibration of the detector and profound understanding of its impact on physics performance are necessary to provide realistic uncertainties for the measurements of physics processes. This thesis describes the track-based alignment of the inner tracking system of CMS with the Millepede II algorithm. Using the combined information of tracks from cosmic rays and collisions taken in 2010, a remarkable local alignment precision has been reached that meets the design specification for most regions of the detector and takes into account instabilities of the detector geometry over time. In addition, the impact of the alignment of b tagging or the Z boson resonance are investigated. The latter is studied to investigate the impact of correlated detector distortions which hardly influence the overall solution of the minimisation problem but introduce biases in the track parameters and thus the derived physics quantities. The determination and constraint of these weak modes present the future challenge of the alignment task at CMS. (orig.)

  3. Quality assurance for CMS Tracker LV and HV Power Supplies

    CERN Document Server

    Costa, Marco; Sertoli, M; Trapani, P; Periale, L; Isabella, L; Landi, C; Lucchesi, A

    2007-01-01

    This work describes the quality assurance measurements that have been carried out on about 2000 Power Supply Units produced in CAEN technology for the CMS Silicon Tracker Detector. The automate procedure and the characteristics of the dedicated Test Fixture developed for this activity are described in details. Magnetic field tolerance and radiation hardness of Tracker power supply units is also discussed at length.

  4. CMS Tracker Alignment Performance Results 2016

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The tracking system of the CMS detector provides excellent resolution for charged particle tracks and an efficient way of tagging jets. In order to reconstruct good quality tracks, the position and orientation of each silicon pixel and strip module needs to be determined with a precision of several micrometers. The presented alignment results are derived following a global (Millepede-II) and a local (HipPy) fit approach. The performance of the CMS tracker alignment in 2016 using cosmic-ray data and the complete set of proton-proton collision data recorded at 3.8 T magnetic field has been studied. The data-driven validation of the results are shown. The time-dependent movement of the pixel detector's large-scale structure is demonstrated.

  5. The CMS Tracker Readout Front End Driver

    CERN Document Server

    Foudas, C.; Ballard, D.; Church, I.; Corrin, E.; Coughlan, J.A.; Day, C.P.; Freeman, E.J.; Fulcher, J.; Gannon, W.J.F.; Hall, G.; Halsall, R.N.J.; Iles, G.; Jones, J.; Leaver, J.; Noy, M.; Pearson, M.; Raymond, M.; Reid, I.; Rogers, G.; Salisbury, J.; Taghavi, S.; Tomalin, I.R.; Zorba, O.

    2004-01-01

    The Front End Driver, FED, is a 9U 400mm VME64x card designed for reading out the Compact Muon Solenoid, CMS, silicon tracker signals transmitted by the APV25 analogue pipeline Application Specific Integrated Circuits. The FED receives the signals via 96 optical fibers at a total input rate of 3.4 GB/sec. The signals are digitized and processed by applying algorithms for pedestal and common mode noise subtraction. Algorithms that search for clusters of hits are used to further reduce the input rate. Only the cluster data along with trigger information of the event are transmitted to the CMS data acquisition system using the S-LINK64 protocol at a maximum rate of 400 MB/sec. All data processing algorithms on the FED are executed in large on-board Field Programmable Gate Arrays. Results on the design, performance, testing and quality control of the FED are presented and discussed.

  6. Monitoring the CMS strip tracker readout system

    International Nuclear Information System (INIS)

    Mersi, S; Bainbridge, R; Cripps, N; Fulcher, J; Wingham, M; Baulieu, G; Bel, S; Delaere, C; Drouhin, F; Mirabito, L; Cole, J; Giassi, A; Gross, L; Hahn, K; Nikolic, M; Tkaczyk, S

    2008-01-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m 2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system

  7. Operation and Performance of the CMS Outer Tracker

    CERN Document Server

    Butz, Erik Manuel

    2017-01-01

    The CMS Silicon Strip Tracker with its more than 15000 silicon modules and 200\\,m$^2$ of active silicon area has been running together with the other subsystems of CMS for several years. We present the performance of the detector in the LHC Run 2 data taking. Results for signal-to-noise, hit efficiency and single hit resolution will be presented. We review the behavior of the system when running at beyond-design instantaneous luminosity and describe challenges observed under these conditions. The evolution of detector parameters under the influence of radiation damage will be presented and compared to simulations.

  8. Power distribution studies for CMS forward tracker

    International Nuclear Information System (INIS)

    Todri, A.; Turqueti, M.; Rivera, R.; Kwan, S.

    2009-01-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R and D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.

  9. The LHCb Silicon Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Mark, E-mail: Mark.Tobin@epfl.ch

    2016-09-21

    The LHCb experiment is dedicated to the study of heavy flavour physics at the Large Hadron Collider (LHC). The primary goal of the experiment is to search for indirect evidence of new physics via measurements of CP violation and rare decays of beauty and charm hadrons. The LHCb detector has a large-area silicon micro-strip detector located upstream of a dipole magnet, and three tracking stations with silicon micro-strip detectors in the innermost region downstream of the magnet. These two sub-detectors form the LHCb Silicon Tracker (ST). This paper gives an overview of the performance and operation of the ST during LHC Run 1. Measurements of the observed radiation damage are shown and compared to the expectation from simulation.

  10. The LHCb Silicon Tracker

    CERN Document Server

    Elsasser, Ch; Gallas Torreira, A; Pérez Trigo, A; Rodríguez Pérez, P; Bay, A; Blanc, F; Dupertuis, F; Haefeli, G; Komarov, I; Märki, R; Muster, B; Nakada, T; Schneider, O; Tobin, M; Tran, M T; Anderson, J; Bursche, A; Chiapolini, N; Saornil, S; Steiner, S; Steinkamp, O; Straumann, U; Vollhardt, A; Britsch, M; Schmelling, M; Voss, H; Okhrimenko, O; Pugatch, V

    2013-01-01

    The aim of the LHCb experiment is to study rare heavy quark decays and CP vio- lation with the high rate of beauty and charmed hadrons produced in $pp$ collisions at the LHC. The detector is designed as a single-arm forward spectrometer with excellent tracking and particle identification performance. The Silicon Tracker is a key part of the tracking system to measure the particle trajectories to high precision. This paper reports the performance as well as the results of the radiation damage monitoring based on leakage currents and on charge collection efficiency scans during the data taking in the LHC Run I.

  11. ATLAS Silicon Microstrip Tracker

    CERN Document Server

    Haefner, Petra; The ATLAS collaboration

    2010-01-01

    The SemiConductor Tracker (SCT), made up from silicon micro-strip detectors is the key precision tracking device in ATLAS, one of the experiments at CERN LHC. The completed SCT is in very good shape: 99.3% of the SCT strips are operational, noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector and observed problems, with stress on the sensor and electronics performance. TWEPP Summary In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton- proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The SemiConductor Tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The signal from the strips is processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data i...

  12. Data acquisition software for the CMS strip tracker

    International Nuclear Information System (INIS)

    Bainbridge, R; Cripps, N; Fulcher, J; Radicci, V; Wingham, M; Baulieu, G; Bel, S; Delaere, C; Drouhin, F; Gill, K; Mirabito, L; Cole, J; Jesus, A C A; Giassi, A; Giordano, D; Gross, L; Hahn, K; Mersi, S; Nikolic, M; Tkaczyk, S

    2008-01-01

    The CMS silicon strip tracker, providing a sensitive area of approximately 200 m 2 and comprising 10 million readout channels, has recently been completed at the tracker integration facility at CERN. The strip tracker community is currently working to develop and integrate the online and offline software frameworks, known as XDAQ and CMSSW respectively, for the purposes of data acquisition and detector commissioning and monitoring. Recent developments have seen the integration of many new services and tools within the online data acquisition system, such as event building, online distributed analysis, an online monitoring framework, and data storage management. We review the various software components that comprise the strip tracker data acquisition system, the software architectures used for stand-alone and global data-taking modes. Our experiences in commissioning and operating one of the largest ever silicon micro-strip tracking systems are also reviewed

  13. Comparison of silicon strip tracker module size using large sensors from 6 inch wafers

    CERN Multimedia

    Honma, Alan

    1999-01-01

    Two large silicon strip sensor made from 6 inch wafers are placed next to each other to simulate the size of a CMS outer silicon tracker module. On the left is a prototype 2 sensor CMS inner endcap silicon tracker module made from 4 inch wafers.

  14. Data quality monitoring of the CMS tracker

    CERN Document Server

    Potamianos, Karolos

    2009-01-01

    The Physics and Data Quality Monitoring (DQM) framework aims at providing a homogeneous monitoring environment across various applications related to data taking at the CMS experiment. It has been designed to be used during online data taking as well as during offline reconstruction. The goal of the online system is to monitor detector performance and identify problems very efficiently during data collection so that proper actions can be taken. On the other hand the reconstruction or calibration problems can be detected during offline processing using the same tool. The monitoring is performed with histograms, which are filled with information from raw and reconstructed data. All histograms can then be displayed both in the central CMS DQM graphical user interface (GUI), as well as in Tracker specific expert GUIs and socalled Tracker Maps. Applications are in place to further process the information from these basic histograms by summarizing them in overview plots, by evaluating them with automated statistica...

  15. The CMS Outer Tracker for HL-LHC

    CERN Document Server

    Dierlamm, Alexander Hermann

    2018-01-01

    The LHC is planning an upgrade program, which will bring the luminosity to about $5-7\\times10^{34}$~cm$^{-2}$s$^{-1}$ in 2026, with a goal of an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker is already running beyond design specifications and will not be able to cope with the HL-LHC radiation conditions. CMS will need a completely new Tracker in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Outer Tracker system is designed to provide robust tracking as well as Level-1 trigger capabilities using closely spaced modules composed of silicon macro-pixel and/or strip sensors. Research and development activities are ongoing to explore options and develop module components and designs for the HL-LHC environment. The design choices for the CMS Outer Tracker Upgrade are discussed along with some highlig...

  16. Data Quality Monitoring of the CMS Tracker

    International Nuclear Information System (INIS)

    Dutta, Suchandra

    2011-01-01

    The Data Quality Monitoring system for the Tracker has been developed within the CMS Software framework. It has been designed to be used during online data taking as well as during offline reconstruction. The main goal of the online system is to monitor detector performance and identify problems very efficiently during data collection so that proper actions can be taken to fix it. On the other hand any issue with data reconstruction or calibration can be detected during offline processing using the same tool. The monitoring is performed using histograms which are filled with information from raw and reconstructed data computed at the level of individual detectors. Furthermore, statistical tests are performed on these histograms to check the quality and flags are generated automatically. Results are visualized with web based graphical user interfaces. Final data certification is done combining these automatic flags and manual inspection. The Tracker DQM system has been successfully used during cosmic data taking and it has been optimised to fulfill the condition of collision data taking. In this paper we describe the functionality of the CMS Tracker DQM system and the experience acquired during proton-proton collision.

  17. CMS tracker towards the HL-LHC

    CERN Document Server

    Alunni Solestizi, Luisa

    2015-01-01

    In sight of the incoming new LHC era (High Luminosity - LHC), characterized by a jump forward in the precision boundary and in the event rate, all the CMS sub-detector are developing and studying innovative strategies of trigger, pattern recognition, event timing and so on. A crucial aspect will be the online event selection: a totally new paradigm is needed, given the huge amount of events. In this picture the most granular and innermost sub-detector, the tracker, will play a decisive role. The phase-2 tracker will be involved in the L1 Trigger and, taking advantage of both the Associative Memories and the FPGA, it can ensure a trigger decision in proper time and with satisfactory performances.

  18. Lorentz angle measurements as part of the sensor R\\&D for the CMS Tracker upgrade

    CERN Document Server

    Nurnberg, Andreas Matthias

    2012-01-01

    $200 m^2$ silicon strip tracker was designed to withstand the radiation of 10 years of LHC operation. The foreseen high luminosity upgrade of the LHC imposes even higher demands on the radiation tolerance and thus requires the construction of a new tracking detector. To determine the properties of different silicon materials and production processes, a campaign has been started by the CMS Tracker Collaboration to identify the most promising candidate material for the new CMS tracker. The silicon sensors of the CMS tracker are operated in a 3.8 T magnetic field. Charges created by traversing ionizing particles inside the active sensor volume are deflected by the Lorentz force. The Lorentz angle, under which the charge drifts through the sensor, is strongly dependent on the mobility, which in turn depends on the electric field and may depend on the radiation damage created by the particles produced by the LHC. Studying this is ...

  19. First cosmic rays seen in the CMS Tracker Endcap

    CERN Multimedia

    Lutz Feld, RWTH Aachen

    2006-01-01

    On March 14, 2006, first cosmic muon tracks have been measured in the Tracker EndCap TEC+ of the CMS silicon strip tracker. The end caps have silicon strip modules mounted onto wedge-shaped carbon fiber support plates called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an end cap (called sector) is populated with 18 petals. The TEC+ endcap is currently being integrated at RWTH Aachen. 400 silicon modules with a total of 241664 channels, corresponding to one eighth of the endcap, are read-out simultaneously by final power supply and DAQ components. On the left is the TEC+ in Aachen, whilst on the right is a computer image of a cosmic ray traversing the many layers of silicon sensors. To understand the response to real particles, basic functionality testing was followed by a cosmic muon run. A total of 400 silicon strip modules are read out with a channel inefficiency of below 1% and a common mode noise of only 25% of the intrinsic noise.

  20. Optical readout and control systems for the CMS tracker

    CERN Document Server

    Troska, Jan K; Faccio, F; Gill, K; Grabit, R; Jareno, R M; Sandvik, A M; Vasey, F

    2003-01-01

    The Compact Muon Solenoid (CMS) Experiment will be installed at the CERN Large Hadron Collider (LHC) in 2007. The readout system for the CMS Tracker consists of 10000000 individual detector channels that are time-multiplexed onto 40000 unidirectional analogue (40 MSample /s) optical links for transmission between the detector and the 65 m distant counting room. The corresponding control system consists of 2500 bi-directional digital (40 Mb/s) optical links based as far as possible upon the same components. The on-detector elements (lasers and photodiodes) of both readout and control links will be distributed throughout the detector volume in close proximity to the silicon detector elements. For this reason, strict requirements are placed on minimal package size, mass, power dissipation, immunity to magnetic field, and radiation hardness. It has been possible to meet the requirements with the extensive use of commercially available components with a minimum of customization. The project has now entered its vol...

  1. The LHCb Silicon Inner Tracker

    International Nuclear Information System (INIS)

    Sievers, P.

    2002-01-01

    A silicon strip detector has been adopted as baseline technology for the LHCb Inner Tracker system. It consists of nine planar stations covering a cross-shaped area around the LHCb beam pipe. Depending on the final layout of the stations the sensitive surface of the Inner Tracker will be of the order of 14 m 2 . Ladders have to be 22 cm long and the pitch of the sensors should be as large as possible in order to reduce costs of the readout electronics. Major design criteria are material budget, short shaping time and a moderate spatial resolution of about 80 μm. After an introduction on the requirements of the LHCb Inner Tracker we present a description and characterization of silicon prototype sensors. First, laboratory and test beam results are discussed

  2. DELPHI Silicon Tracker

    CERN Multimedia

    DELPHI was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The silicon tracking detector was nearest to the collision point in the centre of the detector. It was used to pinpoint the collision and catch short-lived particles.

  3. The LHCb Silicon Tracker Project

    International Nuclear Information System (INIS)

    Agari, M.; Bauer, C.; Baumeister, D.; Blouw, J.; Hofmann, W.; Knoepfle, K.T.; Loechner, S.; Schmelling, M.; Pugatch, V.; Bay, A.; Carron, B.; Frei, R.; Jiminez-Otero, S.; Tran, M.-T.; Voss, H.; Adeva, B.; Esperante, D.; Lois, C.; Vasquez, P.; Bernhard, R.P.; Bernet, R.; Ermoline, Y.; Gassner, J.; Koestner, S.; Lehner, F.; Needham, M.; Siegler, M.; Steinkamp, O.; Straumann, U.; Vollhardt, A.; Volyanskyy, D.

    2006-01-01

    Two silicon strip detectors, the Trigger Tracker(TT) and the Inner Tracker(Italy) will be constructed for the LHCb experiment. Transverse momentum information extracted from the TT will be used in the Level 1 trigger. The IT is part of the main tracking system behind the magnet. Both silicon detectors will be read out using a custom-developed chip by the ASIC lab in Heidelberg. The signal-over-noise behavior and performance of various geometrical designs of the silicon sensors, in conjunction with the Beetle read-out chip, have been extensively studied in test beam experiments. Results from those experiments are presented, and have been used in the final choice of sensor geometry

  4. The CMS tracker operation and performance at the Magnet Test and Cosmic Challenge

    International Nuclear Information System (INIS)

    Adam, W; Bergauer, T; Dragicevic, M; Friedl, M; Fruehwirth, R; Haensel, S; Hrubec, J; Krammer, M; Pernicka, M; Waltenberger, W; Widl, E; Mechelen, P Van; Cardaci, M; Beaumont, W; Langhe, E de; Wolf, E A de; Delmeire, E; Bouhali, O; Charaf, O; Clerbaux, B

    2008-01-01

    During summer 2006 a fraction of the CMS silicon strip tracker was operated in a comprehensive slice test called the Magnet Test and Cosmic Challenge (MTCC). At the MTCC, cosmic rays detected in the muon chambers were used to trigger the readout of all CMS sub-detectors in the general data acquisition system and in the presence of the 4 T magnetic field produced by the CMS superconducting solenoid. This document describes the operation of the Tracker hardware and software prior, during and after data taking. The performance of the detector as resulting from the MTCC data analysis is also presented

  5. Construction and calibration of the laser alignment system for the CMS tracker

    OpenAIRE

    Adolphi, Roman

    2006-01-01

    The CMS detector (Compact Muon Solenoid) is under construction at one of the four proton-proton interaction points of the LHC (Large Hadron Collider) at CERN, the European Organization for Nuclear Research (Geneva, Switzerland). The inner tracking system of the CMS experiment consisting of silicon detectors will have a diameter of 2.4 meter and a length of 5.4 meter representing the largest silicon tracker ever. About 15000 silicon strip modules create an active silicon area of 200 square met...

  6. EMC Diagnosis and Corrective Actions for Silicon Strip Tracker Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arteche, F.; /CERN /Imperial Coll., London; Rivetta, C.; /SLAC

    2006-06-06

    The tracker sub-system is one of the five sub-detectors of the Compact Muon Solenoid (CMS) experiment under construction at CERN for the Large Hadron Collider (LHC) accelerator. The tracker subdetector is designed to reconstruct tracks of charged sub-atomic particles generated after collisions. The tracker system processes analogue signals from 10 million channels distributed across 14000 silicon micro-strip detectors. It is designed to process signals of a few nA and digitize them at 40 MHz. The overall sub-detector is embedded in a high particle radiation environment and a magnetic field of 4 Tesla. The evaluation of the electromagnetic immunity of the system is very important to optimize the performance of the tracker sub-detector and the whole CMS experiment. This paper presents the EMC diagnosis of the CMS silicon tracker sub-detector. Immunity tests were performed using the final prototype of the Silicon Tracker End-Caps (TEC) system to estimate the sensitivity of the system to conducted noise, evaluate the weakest areas of the system and take corrective actions before the integration of the overall detector. This paper shows the results of one of those tests, that is the measurement and analysis of the immunity to CM external conducted noise perturbations.

  7. The control system for the CMS tracker front-end

    CERN Document Server

    Drouhin, F; Ljuslin, C; Maazouzi, C; Marchiero, A; Marinelli, N; Paillard, C; Siegrist, P; Tsirou, A L; Verdini, P G; Walsham, P; Zghiche, A

    2002-01-01

    The CMS Tracker uses complex, programmable embedded electronics for the readout of the Silicon sensors, for the control of the working point of the optical transmitters, for the phase adjustment of the 40 MHz LHC clock and for the monitoring of the voltages, currents and temperatures. In order to establish reliable, noise-free communication with the outside world the control chain has been designed to operate over a ribbon of optical fibers. The optical links, the Front End Controller board that carries their support electronics, the Clocking and Control Unit module receiving the signals over the high-speed link and fanning them out to the front- ends have recently become available. A multi-layered software architecture to handle these devices, and the front-ends, in a way transparent to the end-user, interfaced to an Oracle database for the retrieval of the parameters to be downloaded with the intent of building and operating a small-scale prototype of the control system for the CMS Tracker. The paper descri...

  8. Deployment of the CMS Tracker AMC as Backend for the CMS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2079000

    2016-01-01

    The silicon pixel detector of the CMS experiment at CERN will be replaced with an upgraded version at the beginning of 2017 with the new detector featuring an additional barrel- and end-cap layer resulting in an increased number of fully digital read-out links running at 400Mb/s. New versions of the PSI46 Read-Out Chip and Token Bit Manager have been developed to operate at higher rates and reduce data loss. Front-End Controller and Front-End Driver boards, based on the {\\textmu}TCA compatible CMS Tracker AMC, a variant of the FC7 card, are being developed using different mezzanines to host the optical links for the digital read-out and control system. An overview of the system architecture is presented, with details on the implementation, and first results obtained from test systems.

  9. Magnet Test Setup of the CMS Tracker ready for installation

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The pieces of the Tracker that will be operated in the forthcoming Magnet Test and Cosmic Challenge (MTCC) have been transported inside the dummy tracker support tube to the CMS experimental hall (Point 5, Cessy). The operation took place during the night of 12th May, covering the ~15km distance in about three hours. The transport was monitored for shocks, temperature and humidity with the help of the CERN TS-IC section. The Tracker setup comprises segments of the Tracker Inner Barrel (TIB), the Tracker Outer Barrel (TOB) and Tracker EndCaps (TEC) detectors. It represents roughly 1% of the final CMS Tracker. Installation into the solenoid is foreseen to take place on Wednesday 17th May.

  10. Sensor R&D for the CMS Tracker Upgrade for the HL-LHC

    CERN Document Server

    Behnamian, Hadi

    2014-01-01

    At an instantaneous luminosity of $5\\times 10^{34} cm^{-2} s^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of 3000 $fb^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation environment of the tracking system will be severe, requiring new radiation hard sensors for the CMS tracker. The CMS tracker collaboration has almost completed a large material investigation and irradiation campaign to identify the silicon material and design that fulfills all requirements of a new tracking detector at HL-LHC. Focusing on the upgrade of the outer tracker region, pad diodes as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for various positions in the future tracker. The measurements performed on the structures inc...

  11. Mechanical stability of the CMS Tracker

    CERN Document Server

    CMS Collaboration

    2015-01-01

    reconstructs the absolute position of individual detector modules with a similar accuracy but after days of data taking. During the long term operation at fixed temperature of +4$^o$C in years 2011--2013 the alignment of tracker components was stable within 10 microns. Temperature variations in the Tracker volume are found to cause the displacements of tracker structures of abou...

  12. Silicon strip detector qualification for the CMS experiment

    International Nuclear Information System (INIS)

    Kaussen, Gordon

    2008-01-01

    To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The performance of the participating two shells of the TIB, four rods of the TOB and two petals of the TEC (representing about 1% of the final strip tracker) could be studied in different magnetic fields over a period of approximately two month using cosmic muon signals. The last test before inserting the tracker in the CMS experiment was the Tracker Slice Test performed in spring/summer 2007 at the Tracker Integration Facility (TIF) at CERN after installing all subdetectors in the tracker support tube. Approximately 25% of the strip tracker +z side was powered and read out using a cosmic ray trigger built up of scintillation counters. In total, about 5 million muon events were recorded under various operating conditions. These events together with results from commissioning runs were used to study the detector response like cluster charges, signal-to-noise ratios and single strip noise behaviour as well as to identify faulty channels which turned out to be in the order of a few per mille. The performance of the silicon strip tracker during these different construction stages is discussed in this thesis with a special emphasis on the tracker end caps. (orig.)

  13. Silicon strip detector qualification for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaussen, Gordon

    2008-10-06

    To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The performance of the participating two shells of the TIB, four rods of the TOB and two petals of the TEC (representing about 1% of the final strip tracker) could be studied in different magnetic fields over a period of approximately two month using cosmic muon signals. The last test before inserting the tracker in the CMS experiment was the Tracker Slice Test performed in spring/summer 2007 at the Tracker Integration Facility (TIF) at CERN after installing all subdetectors in the tracker support tube. Approximately 25% of the strip tracker +z side was powered and read out using a cosmic ray trigger built up of scintillation counters. In total, about 5 million muon events were recorded under various operating conditions. These events together with results from commissioning runs were used to study the detector response like cluster charges, signal-to-noise ratios and single strip noise behaviour as well as to identify faulty channels which turned out to be in the order of a few per mille. The performance of the silicon strip tracker during these different construction stages is discussed in this thesis with a special emphasis on the tracker end caps. (orig.)

  14. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  15. Silicon photomultipliers for scintillating trackers

    Energy Technology Data Exchange (ETDEWEB)

    Rabaioli, S., E-mail: simone.rabaioli@gmail.com [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Berra, A.; Bolognini, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Bosisio, L. [Universita degli Studi di Trieste and INFN sezione di Trieste (Italy); Ciano, S.; Iugovaz, D. [INFN sezione di Trieste (Italy); Lietti, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Penzo, A. [INFN sezione di Trieste (Italy); Prest, M. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Rashevskaya, I.; Reia, S. [INFN sezione di Trieste (Italy); Stoppani, L. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2012-12-11

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain ({approx}10{sup 6}). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  16. Silicon photomultipliers for scintillating trackers

    Science.gov (United States)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  17. The LHCb Silicon Tracker, first operational results

    CERN Document Server

    Esperante, D; Adeva, B; Gallas, A; Pérez Trigo, E; Rodríguez Pérez, P; Pazos Álvarez, A; Saborido, J; Vàzquez, P; Bay, A; Bettler, M O; Blanc, F; Bressieux, J; Conti, G; Dupertuis, F; Fave, V; Frei, R; Gauvin, N; Haefeli, G; Keune, A; Luisier, J; Muresan, R; Nakada, T; Needham, M; Nicolas, L; Knecht, M; Potterat, C; Schneider, O; Tran, M; Aquines Gutierrez, O; Bauer, C; Britsch, M; Hofmann, W; Maciuc, F; Schmelling, M; Voss, H; Anderson, J; Buechler, A; Bursche, A; Chiapolini, N; de Cian, M; Elsaesser, C; Hangartner, V; Salzmann, C; Steiner, S; Steinkamp, O; Straumann, U; van Tilburg, J; Tobin, M; Vollhardt, A; Iakovenko, V; Okhrimenko, O; Pugatch, V

    2010-01-01

    The Large Hadron Collider beauty (LHCb) experiment at CERN (Conseil Européen pour la Recherche Nucléaire) is designed to perform precision measurements of b quark decays. The LHCb Silicon Tracker consists of two sub-detectors, the Tracker Turicensis and the Inner Tracker, which are built from silicon micro-strip technology. First performance results of both detectors using data from Large Hadron Collider synchronization tests are presented.

  18. Radiation-hard optoelectronic data transfer for the CMS tracker

    International Nuclear Information System (INIS)

    Troska, J.K.

    1999-01-01

    An introduction to the physics prospects of future experiments at the CERN Large Hadron Collider (LHC) will be given, along with the rather stringent requirements placed on their detectors by the LHC environment. Emphasis will be placed upon the particle tracking detectors, and the particular problem of their readout systems. The novel analogue optical readout scheme chosen by the Compact Muon Solenoid (CMS) experiment at the LHC will provide the basis for the thesis. The reasons for preferring analogue optical data transmission in CMS will be given, leading to a description of a generic optical readout scheme and its components. The particular scheme chosen by CMS makes as wide as possible use of commercially available components. These will be given greatest importance, with descriptions of component operation and characteristics pertinent to successful readout of the CMS tracker within the constraints of the LHC environment. Of particular concern is the effect of the LHC's harsh radiation environment on the operational characteristics of the readout system and its components. Work on radiation effects in components of the CMS tracker optical readout system will be described. This work includes the effects of ionising (gamma photon) and particle (neutron, proton, pion) irradiation on the operational characteristics and reliability of laser diodes, photodiodes, and optical fibres. System integration issues are discussed in the context of the long-term operation of the full CMS tracker readout system under laboratory conditions. It will be shown that system stability can be maintained even under widely varying ambient conditions. (author)

  19. The ATLAS Silicon Microstrip Tracker

    CERN Document Server

    Haefner, Petra

    2010-01-01

    In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV. This was followed by collisions at the unprecedented energy of 7 TeV in March 2010. The SemiConductor Tracker (SCT) is a precision tracking device in ATLAS made up from silicon micro-strip detectors processed in the planar p-in-n technology. The signal from the strips is processed in the front-end ASICs working in binary readout mode. Data is transferred to the off-detector readout electronics via optical fibers. The completed SCT has been installed inside the ATLAS experiment. Since then the detector was operated for two years under realistic conditions. Calibration data has been taken and analysed to determine the performance of the system. In addition, extensive commissioning with cosmic ray events has been performed both with and without magnetic field. The sensor behaviour in magnetic field was studied by measurements of the Lorentz angle. After ...

  20. Silicon tracker end cap of the CMS experiment at LHC and study of the discovery potential for resonances decaying in top quark pairs; Integration d'un bouchon du trajectographe au silicium de l'experience CMS au LHC et etude du potentiel de decouverte de resonances se desintegrant en paires de quarks top

    Energy Technology Data Exchange (ETDEWEB)

    Chabert, E

    2008-10-15

    The first part of this thesis is dedicated to the integration of one silicon tracker end cap of the CMS experiment. The procedures implemented and the tests that led to the qualification of the detection system are presented in this document. The first chapter is an introduction to the LHC and to the CMS experiment. The second chapter is dedicated to the CMS tracker, that is a detector made up of silicon micro-stripe whose purpose is to reconstruct the tracks of charged-particles, to measure their momentum, to reconstruct vertex and to contribute to the tagging of heavy flavour quarks. The third chapter presents the integration of one of the tracker end caps. The second part of this thesis is dedicated to the search for new physics in the top quark sector. One of the most promising channel is to look for a resonance in the invariant mass distribution of top quark pairs. The fourth chapter is a theoretical introduction to this work, the standard model is introduced and the top quarks physics as well as tt-bar resonances are highlighted. The fifth chapter describes the tools used to analyse data, all the data come from simulations. The search for tt-bar resonances is presented in the last chapter. This search involves a method to select right events, a strategy to reduce background noise and a method for the reconstruction of the events. A kinematical adjustment is made to identify the right combinations of jets and to improve the experimental resolution on the invariant mass. The full simulation analysis in the 'lepton + jets' channel shows that at the TeV scale, processes from a few hundred fb to one pb could be observed in the early years of data taking.

  1. Silicon Tracker Design for the ILC

    International Nuclear Information System (INIS)

    Nelson, T.; SLAC

    2005-01-01

    The task of tracking charged particles in energy frontier collider experiments has been largely taken over by solid-state detectors. While silicon microstrip trackers offer many advantages in this environment, large silicon trackers are generally much more massive than their gaseous counterparts. Because of the properties of the machine itself, much of the material that comprises a typical silicon microstrip tracker can be eliminated from a design for the ILC. This realization is the inspiration for a tracker design using lightweight, short, mass-producible modules to tile closed, nested cylinders with silicon microstrips. This design relies upon a few key technologies to provide excellent performance with low cost and complexity. The details of this concept are discussed, along with the performance and status of the design effort

  2. Data Quality Monitoring of the CMS Tracker

    CERN Document Server

    Dutta, Suchandra

    2010-01-01

    histograms which are filled with information from raw and reconstructed data computed at the level of individual detectors. Furthermore, statistical tests are performed on these histograms to check the quality and flags are generated automatically. Results are visualized with web based graphical user interfaces. Final data certification is done combining these automatic flags and manual inspection. The Tracker DQM system has been successfully used during cosmic data tak...

  3. The CMS tracker calibration workflow: Experience with cosmic ray data

    International Nuclear Information System (INIS)

    Frosali, Simone

    2010-01-01

    During the second part of 2008 a CMS commissioning was performed with the acquisition of cosmic events in global runs. Cosmic rays detected in the muon chambers were used to trigger the readout of all CMS subdetectors in the general data acquisition system. A total of about 300M of tracks were collected by the CMS Muon Chambers with a 3.8T magnetic field produced by the CMS superconducting solenoid, 6M of which pointing to the tracker region and reconstructed by the Si-Strip Tracker (SST) detectors. Other 1M of cosmic tracks were collected with the magnetic field off. Using the cosmic data available it was possible to validate the performances of the CMS tracker calibration workflows. In this paper the adopted calibration workflow is described. In particular, the three main calibration workflows requested for the low level reconstruction of the SST, i.e. gain calibration, Lorentz angle calibration and bad components identification, are described. The results obtained using cosmic tracks for these three calibration workflows are also presented.

  4. The CMS Tracker upgrade for HL-LHC

    CERN Document Server

    Ahuja, Sudha

    2017-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5 $\\times$ $10^{34} $cm$^{-2}$s$^{-1}$ in 2028, to possibly reach an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running beyond design specifications, and CMS Phase1 Pixel Detector will not be able to survive HL-LHC radiation conditions and CMS will need completely new devices, in order to fully exploit the high-demanding operating conditions and the delivered luminosity. The new Outer Tracker should have also trigger capabilities. To achieve such goals, R$\\&$D activities are ongoing to explore options both for the Outer Tracker, and for the pixel Inner Tracker. Solutions are being developed that would allow including tracking information at Level-1. The design choices for the Tracker upgrades are discussed along with some highlights...

  5. The CMS Tracker Data Quality Monitoring Expert GUI

    CERN Document Server

    Palmonari, Francesco

    2009-01-01

    The CMS Tracker data quality monitoring (DQM) is a demanding task due the detector's high granularity. It consists of about 15148 strip and 1440 pixel detector modules. About 350,000 histograms are defined and filled accessing information from different stages of data reconstruction to check the data quality. It is impossible to manage such a large number of histograms by shift personnel and experts. A tracker specific Graphical User Interface (GUI) is developed to simplify the navigation and to spot detector problems efficiently. The GUI is web-based and implemented with Ajax technology. We will describe the framework and the specific features of the expert GUI developed for the CMS Tracker DQM system.

  6. Status of the Silicon Strip Detector at CMS

    CERN Document Server

    Simonis, H J

    2008-01-01

    The CMS Tracker is the world's largest silicon detector. It has only recently been moved underground and installed in the 4T solenoid. Prior to this there has been an intensive testing on the surface, which confirms that the detector system fully meets the design specifications. Irradiation studies with the sensor material shows that the system will survive for at least 10 years in the harsh radiation environment prevailing within the Tracker volume. The planning phase for SLHC as the successor of LHC, with a ten times higher luminosity at the same energy has already begun. First R\\&D studies for more robust detector materials and a new Tracker layout have started.

  7. Alignment of the CMS Tracker: Latest results from LHC Run-II

    CERN Document Server

    Mittag, Gregor

    2017-01-01

    The all-silicon design of the tracking system of the CMS experiment provides excellent measurements of charged-particle tracks and an efficient tagging of jets. Conditions of the CMS tracker changed repeatedly during the 2015/2016 shutdown and the 2016 data-taking period. Still the true position and orientation of each of the 15 148 silicon strip and 1440 silicon pixel modules need to be known with high precision for all intervals. The alignment constants also need to be promptly re-adjusted each time the state of the CMS magnet is changed between 0T and 3.8 T. Latest Run-II results of the CMS tracker alignment and resolution performance are presented, which are obtained using several millions of reconstructed tracks from collision and cosmic-ray data of 2016. The geometries and the resulting performance of physics observables are carefully validated. In addition to the offline alignment, an online procedure has been put in place which continuously monitors movements of the pixel high-level structures and tri...

  8. arXiv Mechanical stability of the CMS strip tracker measured with a laser alignment system

    CERN Document Server

    Sirunyan, Albert M; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Dvornikov, Oleg; Makarenko, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; Zykunov, Vladimir; Shumeiko, Nikolai; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Ruan, Manqi; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Tsiakkouri, Demetra; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Lomidze, David; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Pasztor, Gabriella; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Lacaprara, Stefano; Margoni, Martino; Maron, Gaetano; Meneguzzo, Anna Teresa; Michelotto, Michele; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Fallavollita, Francesco; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Seitz, Claudia; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Squires, Michael; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Weber, Matthias; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Apresyan, Artur; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Yujun; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Bein, Samuel; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Jung, Kurt; Sandoval Gonzalez, Irving Daniel; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Forthomme, Laurent; Kenny III, Raymond Patrick; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Kumar, Ajay; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Rupprecht, Nathaniel; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Shi, Xin; Sun, Jian; Wang, Fuqiang; Xie, Wei; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Belknap, Donald; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-04-21

    The CMS tracker consists of 206 m$^2$ of silicon strip sensors assembled on carbon fibre composite structures and is designed for operation in the temperature range from $-25$ to $+25^\\circ$C. The mechanical stability of tracker components during physics operation was monitored with a few $\\mu$m resolution using a dedicated laser alignment system as well as particle tracks from cosmic rays and hadron-hadron collisions. During the LHC operational period of 2011-2013 at stable temperatures, the components of the tracker were observed to experience relative movements of less than 30$ \\mu$m. In addition, temperature variations were found to cause displacements of tracker structures of about 2$\\mu$m/$^\\circ$C, which largely revert to their initial positions when the temperature is restored to its original value.

  9. TRACKER

    CERN Multimedia

    C. Barth

    2012-01-01

      Strip Tracker In the end of 2011, the Silicon Strip Tracker participated in the very successful heavy-ion collision data-taking. With zero downtime attributed to the Strip Tracker, CMS could achieve the excellent efficiency of 96%. Thus we were able to improve on the already good uptime during pp collisions, and completed an excellent year for the Strip Tracker. The shift of responsibility to raise the high voltages at the declaration of Stable Beams from the Tracker DOC to the central crew went smoothly. The new scheme is working reliably and we improved our automatic DQM and DCS SMS services. With this further improvement we plan to discontinue calling the TK DOC at each Stable Beam; so far the TK DOC personally checked all systems. The biggest effort of this Year-End Technical Stop was a comprehensive evaluation of the C6F14 cooling system performance with respect to future cold operation. The analysis allows a dedicated planning of system refurbishments to be executed during 2012 and LS1....

  10. The CMS Outer Tracker Upgrade for the High Luminosity LHC

    CERN Document Server

    Luetic, Jelena

    2017-01-01

    The era of the High Luminosity Large Hadron Collider will pose unprecedented challenges for detector design and operation. The planned luminosity of the upgraded machine is $5$x$10^{34} $ cm$^{-2}$s$^{-1}$, reaching an integrated luminosity of more than 3000 fb$^{-1}$ by the end of 2037. The CMS Tracker detector will have to be replaced in order to fully exploit the delivered luminosity and cope with the demanding operating conditions. The new detector will provide robust tracking as well as input for the first level trigger. This report is focusing on the replacement of the CMS Outer Tracker system, describing the new layout and technological choices together with some highlights of research and development activities.

  11. Erwartete Messung der Z Produktionsrate mit dem CMS Detektor und Simulation des Tracker Laser Alignment Systems

    CERN Document Server

    Thomas, Maarten

    2009-01-01

    The Large Hadron Collider is a two-ring, superconducting accelerator and collider which can provide both proton and heavy-ion beams. First collisions are foreseen for 2009. The Compact Muon System (CMS) detector will measure the particles created in the hadron collisions and can confirm the Standard Model by establishing the existence of the Higgs boson, but also search for new phenomena. In order to provide a robust and precise track reconstruction, which can already be used in the High-Level Trigger systems, the positions of the silicon sensors in the CMS tracker have to been known with an accuracy of O(100µm). Therefore the CMS tracker has been equipped with a dedicated alignment system. The Laser Alignment System (LAS) aligns the tracker subdetectors with respect to each other and can also monitor the stability of the sensor positions during data taking. This study describes the implementation of a realistic simulation of the LAS in the CMS software framework (CMSSW) as well as the analysis of the first ...

  12. Upgrades of the CMS Outer Tracker for HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2067159

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5×1034cm$^{−2}$s$^{−1}$ around 2028, to possibly reach an integrated luminosity of 3000 fb$^{−1}$ in the following decade. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running close to its design limits, will not be able to survive HL-LHC radiation conditions and CMS will need a completely new device, in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Tracker should have also L1 trigger capabilities. To achieve such goals, R&D; activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS Outer Tracker upgrades are discussed along with some highlights of the R&D; activities.

  13. TRACKER

    CERN Multimedia

    D. Strom

    2011-01-01

    Strip Tracker Since the June CMS Week, the Silicon Strip Tracker has had another period of excellent detector operation with more than 97% system uptime. The focus on stable proton physics collection was fruitful, as CMS recorded greater than 5 fb–1 by the completion of the 2011 pp run. Following the November machine development and technical stop, the Strip Tracker now aims to provide the highest quality data during the heavy-ion run. The detector health, measured by the fraction of alive channels, is largely stable at around 97.8%. Recent failures include a TOB control ring, which now requires redundancy, and a TEC control ring with intermittent failures. These will be investigated during the Year-End Technical Stop. Critical services are very stable. The cooling system has a low total leak rate of less than 1 kg per day, and the power supply exchange rate is less than 1 unit per month. Two operational changes recently went into effect to optimise data-taking efficiency: (1) a tripped power su...

  14. The CMS Tracker Upgrade for HL-LHC\\\\ Sensor R$\\&$D

    CERN Document Server

    Naseri, Mohsen

    2014-01-01

    At an instantaneous luminosity of 5~$\\times10^{34}~cm^{-2}~s^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of 3000~fb$^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation environment of the tracking system will be severe, requiring new radiation hard sensors for the CMS tracker. Focusing on the upgrade of the outer tracker region, the CMS tracker collaboration has almost completed a large material investigation and irradiation campaign to identify the silicon material and design that fulfils all requirements of a new tracking detector at HL-LHC. Focusing on the upgrade of the outer tracker region, pad diodes as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for various positions in the future track...

  15. Construction and Calibration of the Laser Alignment System for the CMS Tracker

    CERN Document Server

    Adolphi, Roman

    2006-01-01

    The CMS detector (Compact Muon Solenoid) is under construction at one of the four proton-proton interaction points of the LHC (Large Hadron Collider) at CERN, the European Organization for Nuclear Research (Geneva, Switzerland). The inner tracking system of the CMS experiment consisting of silicon detectors will have a diameter of 2.4 m and a length of 5.4 m representing the largest silicon tracker ever. About 15000 silicon strip modules create an active silicon area of 200 m2 to detect charged particles from proton collisions. They are placed on a rigid carbon fibre structure, providing stability within the working conditions of a 4 T solenoid magnetic field at −10oC. Knowledge of the position of the silicon detectors at the level of 100 μm is needed for an efficient pattern recognition of charged particle tracks. Metrology methods are used to survey tracker subdetectors and the integrated Laser Alignment System (LAS) provides absolute positioning of support structure elements to better than 100 μm. Rela...

  16. Construction of the CMS Tracker End-Caps and an Impact Study on Defects

    CERN Document Server

    Linn, Alexander

    2008-01-01

    The CMS experiment at the LHC accelerator at the research center CERN close to Geneva will study proton proton collisions at up to now unprecedented centre of mass energies from the year 2008 on. To discover theoretically predicted elementary particles, CMS was equipped with the largest silicon tracker so far with a sensitive area of 198m2. Partitioned into more than 15.000 silicon strip modules, the construction and test of the tracker was a huge challenge for the involved institutes. The III. Physikalisches Institut B of the RWTH Aachen had a leading role in the construction and test of substructures, so called petals, for the end caps of the tracker. The petals were assembled in a clean room and underwent first basic tests to ensure the general operationability of each component. Failures detected during the assembly are described and improvements of the silicon strip modules are discussed. After the assembly the petals underwent a cold test for several days. For the first time all readout components of th...

  17. Performance studies of the CMS Strip Tracker before installation

    CERN Document Server

    Adam, Wolfgang; Dragicevic, Marko; Friedl, Markus; Fruhwirth, R; Hansel, S; Hrubec, Josef; Krammer, Manfred; Oberegger, Margit; Pernicka, Manfred; Schmid, Siegfried; Stark, Roland; Steininger, Helmut; Uhl, Dieter; Waltenberger, Wolfgang; Widl, Edmund; Van Mechelen, Pierre; Cardaci, Marco; Beaumont, Willem; de Langhe, Eric; de Wolf, Eddi A; Delmeire, Evelyne; Hashemi, Majid; Bouhali, Othmane; Charaf, Otman; Clerbaux, Barbara; Dewulf, Jean-Paul; Elgammal, Sherif; Hammad, Gregory Habib; de Lentdecker, Gilles; Marage, Pierre Edouard; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Adler, Volker; Devroede, Olivier; De Weirdt, Stijn; D'Hondt, Jorgen; Goorens, Robert; Heyninck, Jan; Maes, Joris; Mozer, Matthias Ulrich; Tavernier, Stefaan; Van Lancker, Luc; Van Mulders, Petra; Villella, Ilaria; Wastiels, C; Bonnet, Jean-Luc; Bruno, Giacomo; De Callatay, Bernard; Florins, Benoit; Giammanco, Andrea; Gregoire, Ghislain; Keutgen, Thomas; Kcira, Dorian; Lemaitre, Vincent; Michotte, Daniel; Militaru, Otilia; Piotrzkowski, Krzysztof; Quertermont, L; Roberfroid, Vincent; Rouby, Xavier; Teyssier, Daniel; Daubie, Evelyne; Anttila, Erkki; Czellar, Sandor; Engstrom, Pauli; Harkonen, J; Karimaki, V; Kostesmaa, J; Kuronen, Auli; Lampen, Tapio; Linden, Tomas; Luukka, Panja-Riina; Maenpaa, T; Michal, Sebastien; Tuominen, Eija; Tuominiemi, Jorma; Ageron, Michel; Baulieu, Guillaume; Bonnevaux, Alain; Boudoul, Gaelle; Chabanat, Eric; Chabert, Eric Christian; Chierici, Roberto; Contardo, Didier; Della Negra, Rodolphe; Dupasquier, Thierry; Gelin, Georges; Giraud, Noël; Guillot, Gérard; Estre, Nicolas; Haroutunian, Roger; Lumb, Nicholas; Perries, Stephane; Schirra, Florent; Trocme, Benjamin; Vanzetto, Sylvain; Agram, Jean-Laurent; Blaes, Reiner; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Fontaine, Jean-Charles; Berst, Jean-Daniel; Brom, Jean-Marie; Didierjean, Francois; Goerlach, Ulrich; Graehling, Philippe; Gross, Laurent; Hosselet, J; Juillot, Pierre; Lounis, Abdenour; Maazouzi, Chaker; Olivetto, Christian; Strub, Roger; Van Hove, Pierre; Anagnostou, Georgios; Brauer, Richard; Esser, Hans; Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Kukulies, Christoph; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pierschel, Gerhard; Raupach, Frank; Schael, Stefan; Schwering, Georg; Sprenger, Daniel; Thomas, Maarten; Weber, Markus; Wittmer, Bruno; Wlochal, Michael; Beissel, Franz; Bock, E; Flugge, G; Gillissen, C; Hermanns, Thomas; Heydhausen, Dirk; Jahn, Dieter; Kaussen, Gordon; Linn, Alexander; Perchalla, Lars; Poettgens, Michael; Pooth, Oliver; Stahl, Achim; Zoeller, Marc Henning; Buhmann, Peter; Butz, Erik; Flucke, Gero; Hamdorf, Richard Helmut; Hauk, Johannes; Klanner, Robert; Pein, Uwe; Schleper, Peter; Steinbruck, G; Blum, P; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Fahrer, Manuel; Frey, Martin; Furgeri, Alexander; Hartmann, Frank; Heier, Stefan; Hoffmann, Karl-Heinz; Kaminski, Jochen; Ledermann, Bernhard; Liamsuwan, Thiansin; Muller, S; Muller, Th; Schilling, Frank-Peter; Simonis, Hans-Jürgen; Steck, Pia; Zhukov, Valery; Cariola, P; De Robertis, Giuseppe; Ferorelli, Raffaele; Fiore, Luigi; Preda, M; Sala, Giuliano; Silvestris, Lucia; Tempesta, Paolo; Zito, Giuseppe; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Giordano, Domenico; Maggi, Giorgio; Manna, Norman; My, Salvatore; Selvaggi, Giovanna; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Galanti, Mario; Giudice, Nunzio; Guardone, Nunzio; Noto, Francesco; Potenza, Renato; Saizu, Mirela Angela; Sparti, V; Sutera, Concetta; Tricomi, Alessia; Tuve, Cristina; Brianzi, Mirko; Civinini, Carlo; Maletta, Fernando; Manolescu, Florentina; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Broccolo, B; Ciulli, Vitaliano; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Genta, Chiara; Landi, Gregorio; Lenzi, Piergiulio; Macchiolo, Anna; Magini, Nicolo; Parrini, Giuliano; Scarlini, Enrico; Cerati, Giuseppe Benedetto; Azzi, Patrizia; Bacchetta, Nicola; Candelori, Andrea; Dorigo, Tommaso; Kaminsky, A; Karaevski, S; Khomenkov, Volodymyr; Reznikov, Sergey; Tessaro, Mario; Bisello, Dario; De Mattia, Marco; Giubilato, Piero; Loreti, Maurizio; Mattiazzo, Serena; Nigro, Massimo; Paccagnella, Alessandro; Pantano, Devis; Pozzobon, Nicola; Tosi, Mia; Bilei, Gian Mario; Checcucci, Bruno; Fano, Livio; Servoli, Leonello; Ambroglini, Filippo; Babucci, Ezio; Benedetti, Daniele; Biasini, Maurizio; Caponeri, Benedetta; Covarelli, Roberto; Giorgi, Marco; Lariccia, Paolo; Mantovani, Giancarlo; Marcantonini, Marta; Postolache, Vasile; Santocchia, Attilio; Spiga, Daniele; Bagliesi, Giuseppe; Balestri, Gabriele; Berretta, Luca; Bianucci, S; Boccali, Tommaso; Bosi, Filippo; Bracci, Fabrizio; Castaldi, Rino; Ceccanti, Marco; Cecchi, Roberto; Cerri, Claudio; Cucoanes, Andi Sebastian; Dell'Orso, Roberto; Dobur, Didar; Dutta, Suchandra; Giassi, Alessandro; Giusti, Simone; Kartashov, Dmitry; Kraan, Aafke; Lomtadze, Teimuraz; Lungu, George-Adrian; Magazzu, Guido; Mammini, Paolo; Mariani, Filippo; Martinelli, Giovanni; Moggi, Andrea; Palla, Fabrizio; Palmonari, Francesco; Petragnani, Giulio; Profeti, Alessandro; Raffaelli, Fabrizio; Rizzi, Domenico; Sanguinetti, Giulio; Sarkar, Subir; Sentenac, Daniel; Serban, Alin Titus; Slav, Adrian; Soldani, A; Spagnolo, Paolo; Tenchini, Roberto; Tolaini, Sergio; Venturi, Andrea; Verdini, Piero Giorgio; Vos, Marcel; Zaccarelli, Luciano; Avanzini, Carlo; Basti, Andrea; Benucci, Leonardo; Bocci, Andrea; Cazzola, Ugo; Fiori, Francesco; Linari, Stefano; Massa, Maurizio; Messineo, Alberto; Segneri, Gabriele; Tonelli, Guido; Azzurri, Paolo; Bernardini, Jacopo; Borrello, Laura; Calzolari, Federico; Foa, Lorenzo; Gennai, Simone; Ligabue, Franco; Petrucciani, Giovanni; Rizzi, Andrea; Yang, Zong-Chang; Benotto, Franco; Demaria, Natale; Dumitrache, Floarea; Farano, R; Borgia, Maria Assunta; Castello, Roberto; Costa, Marco; Migliore, Ernesto; Romero, Alessandra; Abbaneo, Duccio; Abbas, M; Ahmed, Ijaz; Akhtar, I; Albert, Eric; Bloch, Christoph; Breuker, Horst; Butt, Shahid Aleem; Buchmuller, Oliver; Cattai, Ariella; Delaere, Christophe; Delattre, Michel; Edera, Laura Maria; Engstrom, Pauli; Eppard, Michael; Gateau, Maryline; Gill, Karl; Giolo-Nicollerat, Anne-Sylvie; Grabit, Robert; Honma, Alan; Huhtinen, Mika; Kloukinas, Kostas; Kortesmaa, Jarmo; Kottelat, Luc-Joseph; Kuronen, Auli; Leonardo, Nuno; Ljuslin, Christer; Mannelli, Marcello; Masetti, Lorenzo; Marchioro, Alessandro; Mersi, Stefano; Michal, Sebastien; Mirabito, Laurent; Muffat-Joly, Jeannine; Onnela, Antti; Paillard, Christian; Pal, Imre; Pernot, Jean-Francois; Petagna, Paolo; Petit, Patrick; Piccut, C; Pioppi, Michele; Postema, Hans; Ranieri, Riccardo; Ricci, Daniel; Rolandi, Gigi; Ronga, Frederic Jean; Sigaud, Christophe; Syed, A; Siegrist, Patrice; Tropea, Paola; Troska, Jan; Tsirou, Andromachi; Vander Donckt, Muriel; Vasey, François; Alagoz, Enver; Amsler, Claude; Chiochia, Vincenzo; Regenfus, Christian; Robmann, Peter; Rochet, Jacky; Rommerskirchen, Tanja; Schmidt, Alexander; Steiner, Stefan; Wilke, Lotte; Church, Ivan; Cole, Joanne; Coughlan, John A; Gay, Arnaud; Taghavi, S; Tomalin, Ian R; Bainbridge, Robert; Cripps, Nicholas; Fulcher, Jonathan; Hall, Geoffrey; Noy, Matthew; Pesaresi, Mark; Radicci, Valeria; Raymond, David Mark; Sharp, Peter; Stoye, Markus; Wingham, Matthew; Zorba, Osman; Goitom, Israel; Hobson, Peter R; Reid, Ivan; Teodorescu, Liliana; Hanson, Gail; Jeng, Geng-Yuan; Liu, Haidong; Pasztor, Gabriella; Satpathy, Asish; Stringer, Robert; Mangano, Boris; Affolder, K; Affolder, T; Allen, Andrea; Barge, Derek; Burke, Samuel; Callahan, D; Campagnari, Claudio; Crook, A; D'Alfonso, Mariarosaria; Dietch, J; Garberson, Jeffrey; Hale, David; Incandela, H; Incandela, Joe; Jaditz, Stephen; Kalavase, Puneeth; Kreyer, Steven Lawrence; Kyre, Susanne; Lamb, James; Mc Guinness, C; Mills, C; Nguyen, Harold; Nikolic, Milan; Lowette, Steven; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rubinstein, Noah; Sanhueza, S; Shah, Yousaf Syed; Simms, L; Staszak, D; Stoner, J; Stuart, David; Swain, Sanjay Kumar; Vlimant, Jean-Roch; White, Dean; Ulmer, Keith; Wagner, Stephen Robert; Bagby, Linda; Bhat, Pushpalatha C; Burkett, Kevin; Cihangir, Selcuk; Gutsche, Oliver; Jensen, Hans; Johnson, Mark; Luzhetskiy, Nikolay; Mason, David; Miao, Ting; Moccia, Stefano; Noeding, Carsten; Ronzhin, Anatoly; Skup, Ewa; Spalding, William J; Spiegel, Leonard; Tkaczyk, Slawek; Yumiceva, Francisco; Zatserklyaniy, Andriy; Zerev, E; Anghel, Ioana Maria; Bazterra, Victor Eduardo; Gerber, Cecilia Elena; Khalatian, S; Shabalina, Elizaveta; Baringer, Philip; Bean, Alice; Chen, Jie; Hinchey, Carl Louis; Martin, Christophe; Moulik, Tania; Robinson, Richard; Gritsan, Andrei; Lae, Chung Khim; Tran, Nhan Viet; Everaerts, Pieter; Hahn, Kristan Allan; Harris, Philip; Nahn, Steve; Rudolph, Matthew; Sung, Kevin; Betchart, Burton; Demina, Regina; Gotra, Yury; Korjenevski, Sergey; Miner, Daniel Carl; Orbaker, Douglas; Christofek, Leonard; Hooper, Ryan; Landsberg, Greg; Nguyen, Duong; Narain, Meenakshi; Speer, Thomas; Tsang, Ka Vang

    2009-01-01

    In March 2007 the assembly of the Silicon Strip Tracker was completed at the Tracker Integration Facility at CERN. Nearly 15% of the detector was instrumented using cables, fiber optics, power supplies, and electronics intended for the operation at the LHC. A local chiller was used to circulate the coolant for low temperature operation. In order to understand the efficiency and alignment of the strip tracker modules, a cosmic ray trigger was implemented. From March through July 4.5 million triggers were recorded. This period, referred to as the Sector Test, provided practical experience with the operation of the Tracker, especially safety, data acquisition, power, and cooling systems. This paper describes the performance of the strip system during the Sector Test, which consisted of five distinct periods defined by the coolant temperature. Significant emphasis is placed on comparisons between the data and results from Monte Carlo studies.

  18. GigaTracker, a Thin and Fast Silicon Pixels Tracker

    CERN Document Server

    Velghe, Bob; Bonacini, Sandro; Ceccucci, Augusto; Kaplon, Jan; Kluge, Alexander; Mapelli, Alessandro; Morel, Michel; Noël, Jérôme; Noy, Matthew; Perktold, Lukas; Petagna, Paolo; Poltorak, Karolina; Riedler, Petra; Romagnoli, Giulia; Chiozzi, Stefano; Cotta Ramusino, Angelo; Fiorini, Massimiliano; Gianoli, Alberto; Petrucci, Ferruccio; Wahl, Heinrich; Arcidiacono, Roberta; Jarron, Pierre; Marchetto, Flavio; Gil, Eduardo Cortina; Nuessle, Georg; Szilasi, Nicolas

    2014-01-01

    GigaTracker, the NA62’s upstream spectrometer, plays a key role in the kinematically constrained background suppression for the study of the K + ! p + n ̄ n decay. It is made of three independent stations, each of which is a six by three cm 2 hybrid silicon pixels detector. To meet the NA62 physics goals, GigaTracker has to address challenging requirements. The hit time resolution must be better than 200 ps while keeping the total thickness of the sensor to less than 0.5 mm silicon equivalent. The 200 μm thick sensor is divided into 18000 300 μm 300 μm pixels bump-bounded to ten independent read-out chips. The chips use an end-of-column architecture and rely on time-over- threshold discriminators. A station can handle a crossing rate of 750 MHz. Microchannel cooling technology will be used to cool the assembly. It allows us to keep the sensor close to 0 C with 130 μm of silicon in the beam area. The sensor and read-out chip performance were validated using a 45 pixel demonstrator with a laser test setu...

  19. The BaBar silicon vertex tracker

    International Nuclear Information System (INIS)

    Bozzi, C.; Carassiti, V.; Ramusino, A. Cotta; Dittongo, S.; Folegani, M.; Piemontese, L.; Abbott, B.K.; Breon, A.B.; Clark, A.R.; Dow, S.; Fan, Q.; Goozen, F.; Hernikl, C.; Karcher, A.; Kerth, L.T.; Kipnis, I.; Kluth, S.; Lynch, G.; Levi, M.; Luft, P.; Luo, L.; Nyman, M.; Pedrali-Noy, M.; Roe, N.A.; Zizka, G.; Roberts, D.; Barni, D.; Brenna, E.; Defendi, I.; Forti, A.; Giugni, D.; Lanni, F.; Palombo, F.; Vaniev, V.; Leona, A.; Mandelli, E.; Manfredi, P.F.; Perazzo, A.; Re, V.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Calderini, G.; Carpinelli, M.; Dutra, F.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Paoloni, E.; Profeti, A.; Rama, M.; Rampino, G.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Tritto, S.; Vitale, R.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.; Roat, C.; Bona, M.; Bianchi, F.; Daudo, F.; Girolamo, B. Di; Gamba, D.; Giraudo, G.; Grosso, P.; Romero, A.; Smol, A.; Trapani, P.; Zanin, D.; Bosisio, L.; Ricca, G. Della; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rastelli, C.; Vallazza, E.; Vuagnin, G.; Hast, C.; Potter, E.P.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Eppich, A.; Hale, D.; Hall, K.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.; Grothe, M.; Johnson, R.; Kroeger, W.; Lockman, W.; Pulliam, T.; Rowe, W.; Schmitz, R.; Seiden, A.; Spencer, E.; Turri, M.; Wilder, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Walsh, J.; Zobernig, H.

    2000-01-01

    The BaBar Silicon Vertex Tracker (SVT) is designed to provide the high-precision vertexing necessary for making measurements of CP violation at the SLAC B-Factory PEP-II. The instrument consists of five layers of double-sided silicon strip detectors and has been installed in the BaBar experiment and taking colliding beam data since May 1999. An overview of the design as well as performance and experience from the initial running will be presented

  20. Exploring the quality of latest sensor prototypes for the CMS Tracker Phase II Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    König, A., E-mail: axel.koenig@oeaw.ac.at

    2017-02-11

    The luminosity of the LHC will be increased by a factor of five to seven after the third long shutdown (LS3) scheduled in the mid of the next decade. The significant increase in luminosity along with the limitations of the current Tracker require a complete renewal of the CMS Outer Tracker, the Tracker Phase-2 Upgrade, during the LS3. New types of modules called PS and 2S modules are foreseen offering enhanced functionality and radiation hardness. Milestones in sensor R&D for the 2S modules as well as first characterization results are presented. AC-coupled silicon strip sensors of two vendors, produced on 6-inch as well as on 8-inch wafers, are considered which both are in n-on-p technology. Global as well as single strip parameters were measured providing insights into the quality of the sensors.

  1. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Rosendahl, P L; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon microstrip detector part of the ATLAS experiment at the CERN Large Hadron Collider (LHC). Together with the rest for the ATLAS Inner Detector (ID) it provides vital precision tracking information of charged particles. In this paper the performance and operational status of the SCT in the last two years of ATLAS data taking are reviewed.

  2. Development of Digital Readout Electronics for the CMS Tracker

    CERN Document Server

    Corrin, E P

    2002-01-01

    The Compact Muon Solenoid (CMS) is a general-purpose detector, based at CERN in Switzerland, designed to look for new physics in high-energy protonproton collisions provided by the Large Hadron Collider. The CMS tracker has 10 million readout channels being sampled at a rate of 40 MHz, then read out at up to 100 kHz, generating huge volumes of data; it is essential that the system can handle these rates without any of the data being lost or corrupted. The CMS tracker FED processes the data, removing pedestal and common mode-noise, and then performing hit and cluster finding. Strips below threshold are discarded, resulting in a significant reduction in data size. These zero suppressed data are stored in a buffer before being sent to the DAQ. The processing on the FEDs is done using FPGAs. Programmable logic was chosen over custom ASICs because of the lower cost, faster design and verification process, and the ability to easily upgrade the firmware at a later date. This thesis is concerned with the digital read...

  3. Construction and calibration of the laser alignment system for the CMS tracker

    International Nuclear Information System (INIS)

    Adolphi, R.

    2006-01-01

    A robust and reliable optical system able to measure and control the large CMS tracker geometry with high accuracy has been developed and validated. The construction and integration of the LAS fulfilling the requirements, as well as its calibration and performance are described in this thesis. The working principle is based on the partial transparency of silicon for light wavelengths in the near infrared region. The absorbed part of the laser beam generates a signal in the corresponding silicon strip module serving to reconstruct its position. The transmitted part reaches the subsequent module layer generating an optical link between the two layers. Investigation of the light generation and distribution led to a definition of the optical components and their optimization for Laser Alignment purposes. Laser diodes have been qualified as light sources and singlemode optical fibres, terminated by special connectors, distribute the light to the CMS tracker detector. The beamsplitting device, a key component of the LAS light distribution inside the CMS tracker, has been studied in detail. The challenge of splitting one collimated beam into two back-to-back beams inside a small available volume has been solved by using the polarization principle. Special test setups were developed to determine the collinearity of the two outgoing beams with a precision better than 50 μrad and it has been shown that their relative orientation remains constant under working conditions. The interface between the tracker and the LAS is given by the silicon sensors which are responsible both for particle detection and for the determination of the position of the laser spot. An anti-reflex-coating has been applied on the backside of all alignment sensors to improve their optical properties without deterioration of their tracking performance. A test setup has been developed to simultaneously study the transmission and reflection properties of the alignment sensors. The working principle of the

  4. Construction and calibration of the laser alignment system for the CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Adolphi, R.

    2006-11-28

    A robust and reliable optical system able to measure and control the large CMS tracker geometry with high accuracy has been developed and validated. The construction and integration of the LAS fulfilling the requirements, as well as its calibration and performance are described in this thesis. The working principle is based on the partial transparency of silicon for light wavelengths in the near infrared region. The absorbed part of the laser beam generates a signal in the corresponding silicon strip module serving to reconstruct its position. The transmitted part reaches the subsequent module layer generating an optical link between the two layers. Investigation of the light generation and distribution led to a definition of the optical components and their optimization for Laser Alignment purposes. Laser diodes have been qualified as light sources and singlemode optical fibres, terminated by special connectors, distribute the light to the CMS tracker detector. The beamsplitting device, a key component of the LAS light distribution inside the CMS tracker, has been studied in detail. The challenge of splitting one collimated beam into two back-to-back beams inside a small available volume has been solved by using the polarization principle. Special test setups were developed to determine the collinearity of the two outgoing beams with a precision better than 50 {mu}rad and it has been shown that their relative orientation remains constant under working conditions. The interface between the tracker and the LAS is given by the silicon sensors which are responsible both for particle detection and for the determination of the position of the laser spot. An anti-reflex-coating has been applied on the backside of all alignment sensors to improve their optical properties without deterioration of their tracking performance. A test setup has been developed to simultaneously study the transmission and reflection properties of the alignment sensors. The working principle of

  5. The Alpha Magnetic Spectrometer Silicon Tracker

    CERN Document Server

    Burger, W J

    1999-01-01

    The Alpha Magnetic Spectrometer (AMS) is designed as a independent module for installation on the International Space Station Alpha (ISSA) in the year 2002 for an operational period of three years. The principal scientific objectives are the searches for antimatter and dark matter in cosmic rays. The AMS uses 5.5 m sup 2 of silicon microstrip sensors to reconstruct charged particle trajectories in the field of a permanent magnet. The detector design and construction covered a 3 yr period which terminated with a test flight on the NASA space shuttle Discovery during June 2-12, 1988. In this contribution, we describe the shuttle version of the AMS silicon tracker, including preliminary results of the tracker performance during the flight. (author)

  6. The CDF online silicon vertex tracker

    International Nuclear Information System (INIS)

    Ashmanskas, W.

    2001-01-01

    The CDF Online Silicon Vertex Tracker reconstructs 2-D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker. The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II

  7. The CDF online Silicon Vertex Tracker

    International Nuclear Information System (INIS)

    Ashmanskas, W.; Bardi, A.; Bari, M.; Belforte, S.; Berryhill, J.; Bogdan, M.; Carosi, R.; Cerri, A.; Chlachidze, G.; Culbertson, R.; Dell'Orso, M.; Donati, S.; Fiori, I.; Frisch, H.J.; Galeotti, S.; Giannetti, P.; Glagolev, V.; Moneta, L.; Morsani, F.; Nakaya, T.; Passuello, D.; Punzi, G.; Rescigno, M.; Ristori, L.; Sanders, H.; Sarkar, S.; Semenov, A.; Shochet, M.; Speer, T.; Spinella, F.; Wu, X.; Yang, U.; Zanello, L.; Zanetti, A.M.

    2002-01-01

    The CDF Online Silicon Vertex Tracker (SVT) reconstructs 2D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker (XFT). The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II

  8. Radiation and Temperature Effects on the APV25 Readout Chip for the CMS Tracker

    CERN Document Server

    Messomo, Etam Albert Noah

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of four particle detectors designed for use at the Large Hadron Collider (LHC) currently under construction at CERN, the European Laboratory for Particle Physics in Geneva. The LHC will accelerate two counterrotating beams of protons to energies of 7 TeV and produce 109 proton-proton collisions per second at a bunch-crossing frequency of 40 MHz. These collisions occuring at the centre of CMS will generate a very hostile radiation environment. The CMS sub-detector system closest to the collision point is the highly segmented Tracker, consisting of a silicon pixel detector with 45 million channels and a silicon microstrip detector with 10 million channels. The microstrip detector will be read out by the APV25, a custom-made chip manufactured in a commercial 0.25 µm CMOS microelectronics process. Radiation and temperature studies are required to ensure that the APV25 can operate reliably in the CMS environment. The radiation effects to which the APV25 could be susceptible ...

  9. Silicon vertex tracker for RHIC PHENIX experiment

    Energy Technology Data Exchange (ETDEWEB)

    Taketani, A [RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama, Japan; Cianciolo, Vince [ORNL; Enokizono, Akitomo [Oak Ridge National Laboratory (ORNL); PHENIX, Collaboration [The

    2010-01-01

    The PHENIX experiment at Relativistic Heavy Ion Collider will be equipped with Silicon Vertex tracker to enhance its physics capability. There are four layers of silicon sensor to reconstruct charged tracks with 50 {micro}m resolution of decay length measurement. The VTX surrounds the collision point. The inner two layers and the outer two layers are composed of 30 pixel ladders and 44 stripixel ladders, respectively. We have been developing these detectors and done a performance test with 120 GeV proton beam.

  10. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Nagai, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is one of the key precision tracking devices in the ATLAS experiment at CERN Large Hadron Collider (LHC). The SCT was constructed of 4088 modules for a total of 6.3 million silicon strips and was installed into the ATLAS experiment in 2007. The SCT has been fully operational since then, and achieves a good tracking performance from the startup of the LHC operation.

  11. Petal Integration for the CMS Tracker End Caps

    CERN Document Server

    Bergauer, Thomas; Friedl, Markus; Hansel, S; Hrubec, Josef; Krammer, Manfred; Pernicka, Manfred; Beaumont, Willem; De Wolf, Eddi A; Bouhali, Othmane; Clerbaux, Barbara; Dewulf, Jean-Paul; De Lentdecker, Gilles; Mahmoud, Tariq; Neukermans, Lionel; Van der Velde, C; Vanlaer, Pascal; Wickens, John; D'Hondt, Jorgen; Goorens, Robert; Heyninck, Jan; Tavernier, Stefaan; Udo, Fred; Van Lancker, Luc; Bonnet, Jean-Luc; De Callatay, Bernard; Delaere, Christophe; Florins, Benoit; Grégoire, Ghislain; Keutgen, Thomas; Lemaître, Vincent; Michotte, Daniel; Militaru, Otilia; Piotrzkowski, Krzysztof; Rouby, Xavier; Teyssier, Daniel; Van der Donckt, M; Ageron, Michel; Baulieu, Guillaume; Bonnevaux, Alain; Boudoul, Gaelle; Chabanat, Eric; Chabert, Eric Christian; Contardo, Didier; Della Negra, Rodolphe; Estre, Nicolas; Giraud, Noël; Haroutunian, Roger; Lumb, Nicholas; Mirabito, Laurent; Perriès, Stephane; Trocmé, Benjamin; Vanzetto, Sylvain; Agram, Jean-Laurent; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Fontaine, Jean-Charles; Berst, Jean-Daniel; Brom, Jean-Marie; Didierjean, Francois; Hosselet, J; Goerlach, Ulrich; Graehling, Philippe; Gross, Laurent; Juillot, Pierre; Lounis, Abdenour; Maazouzi, Chaker; Ollivetto, C; Strub, Roger; Van Hove, Pierre; Adolphi, Roman; Brauer, Richard; Braunschweig, Wolfgang; Esser, Hans; Feld, Lutz; Karpinski, Waclaw; Klein, Katja; König, Stefan; Kosbow, M; Lübelsmeyer, Klaus; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pierschel, Gerhard; Schael, Stefan; Schmitz, Stefan Antonius; Schultz von Dratzig, Arndt; Siedling, Rolf; Weber, Markus; Wittmer, Bruno; Wlochal, Michael; Beissel, Franz; Bock, E; Flossdorf, E; Flügge, Günter; Hermanns, Thomas; Heydhausen, Dirk; Jahn, Dieter; Kaussen, Gordon; Linn, Alexander; Poettgens, Michael; Pooth, Oliver; Stahl, Achim; Zoeller, Marc Henning; Butz, Erik; Flucke, Gero; Klanner, Robert; Pein, Uwe; Schirm, Norbert; Schleper, Peter; Steinbruck, G; Stoye, Markus; Van Staa, Rolf; Atz, Bernd; Blüm, Peter; de Boer, Wim; Bogelsbacher, F; Barvich, Tobias; Dehm, Philip; Dierlamm, Alexander; Dirkes, Guido; Fahrer, Manuel; Fernández, J; Frey, Martin; Furgeri, Alexander; Gregoriev, E; Hartmann, Frank; Heier, Stefan; Kaminski, Jochen; Ledermann, Bernhard; Muller, Th; Piaseki, C; Sabellek, Andreas; Simonis, Hans-Jürgen; Steck, Pia; Theel, Andreas; Weiler, Thomas; Weseler, Siegfried; Zhukov, Valery; Freudenreich, Klaus

    2008-01-01

    This note describes the assembly and testing of the 292 petals built for the CMS Tracker End Caps from the beginning of 2005 until the summer of 2006. Due to the large number of petals to be assembled and the need to reach a throughput of 10 to 15 petals per week, a distributed integration approach was chosen. This integration was carried out by the following institutes: I. and III. Physikalisches Institut - RWTH Aachen University; IIHE, ULB \\& VUB Universities, Brussels; Hamburg University; IEKP, Karlsruhe University; FYNU, Louvain University; IPN, Lyon University; and IPHC, Strasbourg University. Despite the large number of petals which needed to be reworked to cope with a late-discovered module issue, the quality of the petals is excellent with less than 0.2\\% bad channels.

  12. CMS Tracker Alignment Performance Results Start-Up 2017

    CERN Document Server

    CMS Collaboration

    2017-01-01

    During the LHC shutdown in Winter 2016/17, the CMS pixel detector, the inner component of the CMS Tracker, was replaced by the Phase-1 upgrade detector. Among others improvements, the new pixel detector consists of four instead of three layers in the central barrel region (BPIX) and three instead of two disks in the endcap regions (FPIX). In this report, performance plots of the first pixel-detector alignment results are presented, which were obtained with cosmic-ray data taken prior to the start of the 2017 LHC pp operation. Alignment constants have been derived using the data collected initially at 0T and later at 3.8T magnetic field to the level of single module positions in the pixel detector, while keeping the alignment parameters of the strip detector fixed at the values determined in the end of 2016. The complete understanding of the alignment and biases was derived by using two algorithms, Millepede-II and HipPy. The results confirm each other.

  13. Upgrade of the CMS Tracker for the High Luminosity LHC

    CERN Document Server

    Auzinger, Georg

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about $ 5 \\times 10^{34}$cm$^{-2}$s$^{-1}$ in 2028, possibly reaching an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker, including both inner pixel and outer strip systems, is already running beyond design specifications and will not be able to survive HL-LHC radiation conditions. CMS will need a completely new device in order to fully exploit the demanding operating conditions and the delivered luminosity. The upgrade plan includes extending the Pixel Detector in the forward region from the current coverage of $ \\lvert \\eta \\rvert < 2.4 $ to $ \\lvert \\eta \\rvert < 4$, where up to seven forward- and four extension disks will compose the new detector. Additionally, the new outer system should also have trigger capabilities. To achieve such goals, R\\&...

  14. LHCb: The LHCb Silicon Tracker: Running experience

    CERN Multimedia

    Saornil Gamarra, S

    2012-01-01

    The LHCb Silicon Tracker is part of the main tracking system of the LHCb detector at the LHC. It measures very precisely the particle trajectories coming from the interaction point in the region of high occupancies around the beam axis. After presenting our production and comissioning issues in TWEPP 2008, we report on our running experience. Focusing on electronic and hardware issues as well as operation and maintenance adversities, we describe the lessons learned and the pitfalls encountered after three years of successful operation.

  15. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Yamada, M; The ATLAS collaboration

    2011-01-01

    The SemiConductor Tracker (SCT), comprising of silicon micro-strip detectors is one of the key precision tracking devices in the ATLAS Inner Detector. ATLAS is one of the experiments at CERN LHC. The completed SCT is in very good shapes with 99.3% of the SCT’s 4088 modules (a total of 6.3 million strips) are operational. The noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector, its performance and observed problems, with stress on the sensor and electronics performance.

  16. Control system design of the CERN/CMS tracker thermal screen

    CERN Document Server

    Carrone, E

    2003-01-01

    The Tracker is one of the CMS (Compact Muon Solenoid experiment) subdetectors to be installed at the LHC (Large Hadron Collider) accelerator, scheduled to start data taking in 2007 at CERN (European Organization for Nuclear Research). The tracker will be operated at a temperature of -10 degree C in order to reduce the radiation damage on the silicon detectors; hence, an insulated environment has to be provided by means of a screen that introduces a thermal separation between the Tracker and the neighboring detection systems. The control system design includes a formal description of the process by means of a thermodynamic model; then, the electrical equivalence is derived. The transfer function is inferred by the ratio of the voltage on the outer skin and the voltage input, i.e. the ratio of the temperature outside the tracker and the heat generated (which is the controlled variable). A PID (Proportional Integral Derivative) controller has been designed using MatLab. The results achieved so far prove that thi...

  17. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Yamada, M; The ATLAS collaboration

    2011-01-01

    The SemiConductor Tracker (SCT), comprising of silicon micro-strip detectors is one of the key precision tracking devices in the ATLAS Inner Detector. ATLAS is one of the experiments at CERN LHC. The completed SCT is in very good shapes with 99.3% of the SCT’s 4088 modules (a total of 6.3 million strips) are operational. The noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector, its performance and observed problems, with stress on the sensor and electronics performance. In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The Semi-Conductor Tracker (SCT) is the key precision tracking device in ATLAS, made from silicon micro-strip detectors processed in the planar p-in-n technology. The signals from the strip...

  18. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Chalupkova, I; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibers. The completed SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational since then. Calibration data has been taken regularly and analyzed to determine the noise performance of the ...

  19. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    NAGAI, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. The completed SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational since then. Calibration data has been taken regularly and analysed to determine the noise performance of the ...

  20. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Chalupkova, I; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector (ID) of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules with a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each side of the barrel). The SCT silicon microstrip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICs ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational ever since. Calibration data has been taken regularly and analysed to determine the noise performance of the system. ...

  1. Alignment of the CMS tracker with LHC and cosmic ray data

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Beaumont, Willem; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Lancker, Luc; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; De Callatay, Bernard; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Michotte, Daniel; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sauvan, Jean-baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bonnin, Christian; Brom, Jean-Marie; Chabert, Eric Christian; Charles, Laurent; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Gross, Laurent; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Baulieu, Guillaume; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Lumb, Nicholas; Mathez, Hervé; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Zoccarato, Yannick; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Calpas, Betty; Edelhoff, Matthias; Esser, Hans; Feld, Lutz; Hindrichs, Otto; Karpinski, Waclaw; Klein, Katja; Kukulies, Christoph; Lipinski, Martin; Ostapchuk, Andrey; Perieanu, Adrian; Pierschel, Gerhard; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Schwering, Georg; Sprenger, Daniel; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Wlochal, Michael; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Geiser, Achim; Grebenyuk, Anastasia; Gunnellini, Paolo; Habib, Shiraz; Hampe, Jan; Hansen, Karsten; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krämer, Mira; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Maser, Holger; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Muhl, Carsten; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Spannagel, Simon; Stein, Matthias; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Zuber, Adam; Aldaya Martin, Maria; Berger, Lutz Olaf; Biskop, Heike; Blobel, Volker; Buhmann, Peter; Centis Vignali, Matteo; Enderle, Holger; Erfle, Joachim; Frensche, Benno; Garutti, Erika; Goebel, Kristin; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Maettig, Stefan; Marchesini, Ivan; Matysek, Michael; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Barvich, Tobias; Baus, Colin; Berger, Joram; Boegelspacher, Felix; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Eber, Robert; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Heindl, Stefan Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Martschei, Daniel; Mozer, Matthias Ulrich; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Printz, Martin; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Steck, Pia; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Ntomari, Eleni; Psallidas, Andreas; Topsis-Giotis, Iasonas; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Jones, John; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Mittal, Monika; Nishu, Nishu; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Singh, Anil; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Cariola, Pasquale; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; De Robertis, Giuseppe; Fiore, Luigi; Franco, Michele; Iaselli, Giuseppe; Loddo, Flavio; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Sala, Giuliano; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Saizu, Mirela Angela; Scinta, Manuel; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Brianzi, Mirko; Ciaranfi, Roberto; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Scarlini, Enrico; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Musenich, Riccardo; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; D'Angelo, Pasqualino; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Fanzago, Federica; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Sgaravatto, Massimo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Gaioni, Luigi; Manazza, Alessia; Manghisoni, Massimo; Ratti, Lodovico; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Traversi, Gianluca; Vitulo, Paolo; Zucca, Stefano; Biasini, Maurizio; Bilei, Gian Mario; Bissi, Lucia; Checcucci, Bruno; Ciangottini, Diego; Conti, Elia; Fanò, Livio; Lariccia, Paolo; Magalotti, Daniel; Mantovani, Giancarlo; Menichelli, Mauro; Passeri, Daniele; Placidi, Pisana; Romeo, Francesco; Saha, Anirban; Salvatore, Michele; Santocchia, Attilio; Servoli, Leonello; Spiezia, Aniello; Androsov, Konstantin; Arezzini, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Basti, Andrea; Bernardini, Jacopo; Boccali, Tommaso; Bosi, Filippo; Broccolo, Giuseppe; Calzolari, Federico; Castaldi, Rino; Ciampa, Alberto; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Magazzu, Guido; Martini, Luca; Mazzoni, Enrico; Messineo, Alberto; Moggi, Andrea; Moon, Chang-Seong; Palla, Fabrizio; Raffaelli, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Rivetti, Angelo; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Trapani, Pier Paolo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kim, Tae Yeon; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jaramillo Echeverria, Richard William; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Moya, David; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Ahmed, Imtiaz; Albert, Eric; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Berruti, Gaia Maria; Bianchi, Giovanni; Blanchot, Georges; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Ceresa, Davide; Cerminara, Gianluca; Christiansen, Jorgen; Christiansen, Tim; Chávez Niemelä, Aleksis Osku; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Auria, Andrea; D'Enterria, David; Dabrowski, Anne; Daguin, Jerome; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Detraz, Stephane; Deyrail, Dominique; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Faccio, Federico; Felici, Daniele; Frank, Norbert; Franzoni, Giovanni; Funk, Wolfgang; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaplon, Jan; Karavakis, Edward; Katopodis, Theodoros; Kottelat, Luc-Joseph; Kousouris, Konstantinos; Kovács, Márk István; Krajczar, Krisztian; Krzempek, Lukasz; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marchioro, Alessandro; Marconi, Sara; Marques Pinho Noite, João; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Michelis, Stefano; Moll, Michael; Moortgat, Filip; Mulders, Martijn; Musella, Pasquale; Onnela, Antti; Orsini, Luciano; Pakulski, Tymon; Palencia Cortezon, Enrique; Pavis, Steven; Perez, Emmanuelle; Pernot, Jean-Francois; Perrozzi, Luca; Petagna, Paolo; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Postema, Hans; Racz, Attila; Reece, William; Rolandi, Gigi; Rovere, Marco; Rzonca, Marcin; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Szwarc, Tomasz; Tropea, Paola; Troska, Jan; Tsirou, Andromachi; Vasey, François; Veres, Gabor Istvan; Verlaat, Bart; Vichoudis, Paschalis; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Zeuner, Wolfram Dietrich; Zwalinski, Lukasz; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Beat; Renker, Dieter; Rohe, Tilman; Streuli, Silvan; Bachmair, Felix; Bäni, Lukas; Becker, Robert; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Da Silva Di Calafiori, Diogo Raphael; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Horisberger, Urs; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Ronga, Frederic Jean; Röser, Ulf; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tauscher, Ludwig; Theofilatos, Konstantinos; Treille, Daniel; von Gunten, Hans Peter; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Bösiger, Kurt; Chiochia, Vincenzo; De Cosa, Annapaola; Favaro, Carlotta; Hinzmann, Andreas; Hreus, Tomas; Ivova Rikova, Mirena; Kilminster, Benjamin; Lange, Clemens; Maier, Reto; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Wilken, Rachel; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarlı, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Ilic, Jelena; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Gardner, Michael; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Thomson, John; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sturdy, Jared; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Kovalskyi, Dmytro; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Campagnari, Claudio; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Kyre, Susanne; Magaña Villalba, Ricardo; Mccoll, Nickolas; Mullin, Sam Daniel; Pavlunin, Viktor; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; White, Dean; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Chramowicz, John; Cihangir, Selcuk; Cooper, William; Deptuch, Grzegorz; Derylo, Greg; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gingu, V Cristinel; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hoff, Jim R; Hooberman, Benjamin; Howell, Joseph; Hrycyk, Michael; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kwan, Simon; Lei, Chi Meng; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Los, Serguei; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; Matulik, Michael S; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Prosser, Alan; Ratnikova, Natalia; Rivera, Ryan; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Trimpl, Marcel; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Voirin, Erik; Whitbeck, Andrew; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kapustka, Brian; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Nash, Kevin; Osherson, Marc; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Gray, Julia; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Tinti, Gemma; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Taylor, Russell; Toda, Sachiko; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Cremaldi, Lucien Marcus; Kroeger, Rob; Oliveros, Sandra; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Monroy, Jose; Snow, Gregory R; Dolen, James; George, Jimin; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Sevova, Stanislava; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Arndt, Kirk; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; Bubna, Mayur; Cervantes, Mayra; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Bartz, Ed; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sakharov, Alexandre; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H

    2014-06-06

    The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200,000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10 microns.

  2. The DELPHI Silicon Tracker in the global pattern recognition

    CERN Document Server

    Elsing, M

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI.

  3. The DELPHI Silicon Tracker in the global pattern recognition

    International Nuclear Information System (INIS)

    Elsing, M.

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI

  4. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Barone, G; The ATLAS collaboration

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). In the talk the current results from the successful operation of the SCT Detector at the LHC and its status after three years of operation will be presented. We will report on the operation of the detector including an overview of the issues we encountered and the observation of significant increases in leakage currents (as expected) from bulk damage due to non-ionising radiation. The main emphasis will be given to the tracking performance of the SCT and the data quality during the >2 ye...

  5. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Barone, G; The ATLAS collaboration

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices of the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of $4088$ silicon detector modules for a total of 6.3 million channels. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel ($4$ cylinders) and two end-cap systems (9 disks on each). The current results from the successful operation of the SCT Detector at the LHC and its status after three years of operation will be presented. The operation of the detector including an overview of the main issues encountered is reported. The main emphasis is be given to the tracking performance of the SCT and the data quality during the $>2$ years of data taking of proton-proton collision data at $7$ TeV (and short periods of heavy ion collisions). The SCT has been fully operational throughout a...

  6. TRACKER

    CERN Multimedia

    R. Yohay and E. Butz

    2013-01-01

      Pixel Tracker Preparation of the newly built Pixel clean room in the radioprotection (RP) zone of SX5 has been proceeding at a steady clip since the beginning of 2013. The clean room is designed to provide a cold, dry, dust-free laboratory environment for storage and repairs of the CMS Pixel detector during LS1 and future LHC shutdown periods. To that end, it is required to have robust temperature and humidity control, standalone DAQ and DCS systems, and space for specialised silicon testing and repair equipment. Good progress has been made in delivering each of these items. The ongoing project of commissioning the clean room HVAC system has been a success so far. The clean room will be kept at 10–20 Pa above atmospheric pressure to ensure that contaminants flow out of the room. There are two operating temperatures for the room: 21°C will be used when the Pixel detector components are under cold storage at subzero temperatures in well-sealed “cold boxes,” ...

  7. TRACKER

    CERN Multimedia

    E. Butz

    2011-01-01

    The strip tracker took data very efficiently during 2010 with system availabilities of above 97% in the pp running and close to 100% during the heavy-ion running. The number of active channels in the readout is largely stable around 98%. The maintenance and development during the extended technical stop have been focussed on improving the operating conditions of the main silicon strip cooling plants SS1 and SS2, which have been items of concern (see last Bulletin). In order to stabilise and smooth the operation of SS1 and SS2, larger bypass valves and variable frequency drivers (VFDs) have been introduced. Possible noise induced by operation of the VFDs on other parts of CMS has been evaluated and no increased noise has been reported so far. The leak rate of every single line on SS2 was measured with the precise test-rig. Besides the known leaky lines, ten other SS2 lines were measured to leak between 120 g/day and 1200 g/day under the given test conditions, establishin...

  8. The LHCb Silicon Tracker - Control system specific tools and challenges

    CERN Document Server

    Adeva, G; Esperante Pereira, D; Gallas, A; Pazos Alvarez, A; Perez Trigo, E; Rodriguez Perez, P; Saborido, J; Amhis, Y; Bay, A; Blanc, F; Bressieux, J; Conti, G; Dupertuis, F; Fave, V; Frei, R; Gauvin, N; Haefeli, G; Keune, A; Luisier, J; Marki, R; Muresan, R; Nakada, T; Needham, M; Knecht, M; Schneider, O; Tran, M; Anderson, J; Buechler, A; Bursche, A; Chiapolini, N; De Cian, M; Elsasser, C; Salzmann, C; Saornil Gamarra, S; Steiner, S; Steinkamp, O; Straumann, U; van Tilburg, J; Tobin, M; Vollhardt, A; Aquines Gutierrez, O; Bauer, C; Britsch, M; Maciuc, F; Schmelling, M; Voss, H; Iakovenko, V; Okhrimenko, O; Pugatch, V

    2014-01-01

    The Experiment Control System (ECS) of the LHCb Silicon Tracker sub-detectors is built on the integrated LHCb ECS framework. Although all LHCb sub-detectors use the same framework and follow the same guidelines, the Silicon Tracker control system uses some interesting additional features in terms of operation and monitoring. The main details are described in this document. Since its design, the Silicon Tracker control system has been continuously evolving in a quite disorganized way. Some major maintenance activities are required to be able to keep improving. A description of those activities can also be found here.

  9. Expected measurement of the Z production rate with the CMS detector and simulation of the Tracker Laser Alignment System

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Maarten

    2009-06-16

    The Large Hadron Collider is a two-ring, superconducting accelerator and collider which can provide both proton and heavy-ion beams. First collisions are foreseen for 2009. The Compact Muon System (CMS) detector will measure the particles created in the hadron collisions and can confirm the Standard Model by establishing the existence of the Higgs boson, but also search for new phenomena. In order to provide a robust and precise track reconstruction, which can already be used in the High-Level Trigger systems, the positions of the silicon sensors in the CMS tracker have to been known with an accuracy of O(100 {mu}m). Therefore the CMS tracker has been equipped with a dedicated alignment system. The Laser Alignment System (LAS) aligns the tracker subdetectors with respect to each other and can also monitor the stability of the sensor positions during data taking. This study describes the implementation of a realistic simulation of the LAS in the CMS software framework (CMSSW) as well as the analysis of the first data collected during the integration of one of the tracker endcaps. In the present study it has been found that the alignment of the endcaps is possible with an accuracy of approximately 76 {mu}m. These results are in agreement with independent measurements of the TEC geometry using cosmic muons or photogrammetry measurements. The accuracy of approximately 100 {mu}m needed for track pattern recognition and reconstruction can be assured by the Laser Alignment System as shown in this study. Accurate knowledge of the luminosity delivered by the LHC to the experiments is an essential ingredient for many physics studies. The present work uses the production of lepton pairs via the Drell-Yan mechanism to determine the integrated luminosity with the CMS detector. A Monte Carlo generator (MC rate at NLO) including next-to-leading order QCD diagrams has been used to generate Drell-Yan events decaying into two muons. After a full CMS detector simulation, the events

  10. Expected measurement of the Z production rate with the CMS detector and simulation of the Tracker Laser Alignment System

    International Nuclear Information System (INIS)

    Thomas, Maarten

    2009-01-01

    The Large Hadron Collider is a two-ring, superconducting accelerator and collider which can provide both proton and heavy-ion beams. First collisions are foreseen for 2009. The Compact Muon System (CMS) detector will measure the particles created in the hadron collisions and can confirm the Standard Model by establishing the existence of the Higgs boson, but also search for new phenomena. In order to provide a robust and precise track reconstruction, which can already be used in the High-Level Trigger systems, the positions of the silicon sensors in the CMS tracker have to been known with an accuracy of O(100 μm). Therefore the CMS tracker has been equipped with a dedicated alignment system. The Laser Alignment System (LAS) aligns the tracker subdetectors with respect to each other and can also monitor the stability of the sensor positions during data taking. This study describes the implementation of a realistic simulation of the LAS in the CMS software framework (CMSSW) as well as the analysis of the first data collected during the integration of one of the tracker endcaps. In the present study it has been found that the alignment of the endcaps is possible with an accuracy of approximately 76 μm. These results are in agreement with independent measurements of the TEC geometry using cosmic muons or photogrammetry measurements. The accuracy of approximately 100 μm needed for track pattern recognition and reconstruction can be assured by the Laser Alignment System as shown in this study. Accurate knowledge of the luminosity delivered by the LHC to the experiments is an essential ingredient for many physics studies. The present work uses the production of lepton pairs via the Drell-Yan mechanism to determine the integrated luminosity with the CMS detector. A Monte Carlo generator (MC rate at NLO) including next-to-leading order QCD diagrams has been used to generate Drell-Yan events decaying into two muons. After a full CMS detector simulation, the events have

  11. The mechanical Design of the LHCb Silicon Trigger Tracker

    CERN Document Server

    Gassner, J; Steiner, S

    2010-01-01

    In this note, we describe the design of the Silicon Trigger Tracker for the LHCb experiment. We emphasize on detector module and station design and characterize the layout of all relevant parts and components.

  12. Silicon sensors for trackers at high-luminosity environment

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, Timo, E-mail: timo.peltola@helsinki.fi

    2015-10-01

    The planned upgrade of the LHC accelerator at CERN, namely the high luminosity (HL) phase of the LHC (HL-LHC foreseen for 2023), will result in a more intense radiation environment than the present tracking system that was designed for. The required upgrade of the all-silicon central trackers at the ALICE, ATLAS, CMS and LHCb experiments will include higher granularity and radiation hard sensors. The radiation hardness of the new sensors must be roughly an order of magnitude higher than in the current LHC detectors. To address this, a massive R&D program is underway within the CERN RD50 Collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” to develop silicon sensors with sufficient radiation tolerance. Research topics include the improvement of the intrinsic radiation tolerance of the sensor material and novel detector designs with benefits like reduced trapping probability (thinned and 3D sensors), maximized sensitive area (active edge sensors) and enhanced charge carrier generation (sensors with intrinsic gain). A review of the recent results from both measurements and TCAD simulations of several detector technologies and silicon materials at radiation levels expected for HL-LHC will be presented. - Highlights: • An overview of the recent results from the RD50 collaboration. • Accuracy of TCAD simulations increased by including both bulk and surface damage. • Sensors with n-electrode readout and MCz material offer higher radiation hardness. • 3D detectors are a promising choice for the extremely high fluence environments. • Detectors with an enhanced charge carrier generation under systematic investigation.

  13. The silicon sensors for the Inner Tracker of the Compact Muon Solenoid Experiment

    International Nuclear Information System (INIS)

    Krammer, M.

    2003-01-01

    Full text: The Inner Tracker of the Compact Muon Solenoid Experiment, at present under construction, will consist of more than 24000 silicon strip sensors arranged in 10 central concentric layers and 2 X 9 discs at both ends. The total sensitive silicon area will exceed 200 m 2 . The silicon sensors are produced in various thicknesses and geometries. Each sensor has 512 or 768 implanted strips which will allow to measure the position of traversing high energy charged particles. This paper a short overview of the CMS tracker system. Subsequently the design of the silicon sensors is explained with special emphasis on the radiation hardness and on the high voltage stability of the sensors. Two companies share the production of these sensors. The quality of the sensors is extensively checked by several laboratories associated with CMS. Important electrical parameters are measured on the sensors themselves. In addition, dedicated test structures were designed by CMS which allow the monitoring of many parameters sensitive to the production process. By May 2003 about 3000 sensors were delivered and a large fraction of these sensors and tests structures was measured. A summary of these measurements will be given and the main results will be discussed

  14. SVT: an online silicon vertex tracker for the CDF upgrade

    International Nuclear Information System (INIS)

    Bardi, A.; Belforte, S.; Berryhill, J.

    1997-07-01

    The SVT is an online tracker for the CDF upgrade which will reconstruct 2D tracks using information from the Silicon VerteX detector (SVXII) and Central Outer Tracker (COT). The precision measurement of the track impact parameter will then be used to select and record large samples of B hadrons. We discuss the overall architecture, algorithms, and hardware implementation of the system

  15. Hybrid Design, Procurement and Testing for the LHCb Silicon Tracker

    CERN Document Server

    Bay, A; Frei, R; Jiménez-Otero, S; Perrin, A; Tran, MT; Van Hunen, J J; Vervink, K; Vollhardt, A; Agari, M; Bauer, C; Blouw, J; Hofmann, W; Knöpfle, K T; Löchner, S; Schmelling, M; Schwingenheuer, B; Smale, N J; Adeva, B; Esperante-Pereira, D; Lois, C; Vázquez, P; Lehner, F; Bernhard, R P; Bernet, R; Gassner, J; Köstner, S; Needham, M; Steinkamp, O; Straumann, U; Volyanskyy, D; Voss, H; Wenger, A

    2005-01-01

    The Silicon Tracker of the LHCb experiment consists of four silicon detector stations positioned along the beam line of the experiment. The detector modules of each station are constructed from wide pitch silicon microstrip sensors. Located at the module's end, a polyimide hybrid is housing the front-end electronics. The assembly of the more than 600 hybrids has been outsourced to industry. We will report on the design and production status of the hybrids for the LHCb Silicon Tracker and describe the quality assurance tests. Particular emphasis is laid on the vendor qualifying and its impact on our hybrid design that we experienced during the prototyping phase.

  16. The silicon sensor for the compact muon solenoid tracker. Control of the fabrication process

    International Nuclear Information System (INIS)

    Manolescu, Florentina; Mihul, Alexandru; Macchiolo, Anna

    2005-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments at the Large Hadron Collider (LHC) under construction at CERN. The inner tracking system of this experiment consists of the world largest Silicon Strip Tracker (SST). In total, 24,244 silicon sensors are implemented covering an area of 206 m 2 . To construct this large system and to ensure its functionality for the full lifetime of ten years under the hard LHC condition, a detailed quality assurance program has been developed. This paper describes the strategy of the Process Qualification Control to monitor the stability of the fabrication process throughout the production phase and the results obtained are shown. (authors)

  17. Readout architecture for the Pixel-Strip module of the CMS Outer Tracker Phase-2 upgrade

    CERN Document Server

    Caratelli, Alessandro; Jan Kaplon; Kloukinas, Konstantinos; Simone Scarfi

    2017-01-01

    The Outer Tracker upgrade of the Compact Muon Solenoid (CMS) experiment at CERN introduces new challenges for the front-end readout electronics. In particular, the capability of identifying particles with high transverse momentum using modules with double sensor layers requires high speed real time interconnects between readout ASICs. The Pixel-Strip module combines a pixelated silicon layer with a silicon-strip layer. Consequently, it needs two different readout ASICs, namely the Short Strip ASIC (SSA) for the strip sensor and the Macro Pixel ASIC (MPA) for the pixelated sensor. The architecture proposed in this paper allows for a total data flow between readout ASICs of $\\sim$100\\,Gbps and reduces the output data flow from 1.3\\,Tbps to 30\\,Gbps per module while limiting the total power density to below 100\\,mW/cm$^2$. In addition a system-level simulation framework of all the front-end readout ASICs is developed in order to verify the data processing algorithm and the hardware implementation allowing mult...

  18. Characterization of the CBC2 readout ASIC for the CMS strip-tracker high-luminosity upgrade

    International Nuclear Information System (INIS)

    Braga, D; Hall, G; Pesaresi, M; Raymond, M; Jones, L; Murray, P; Prydderch, M

    2014-01-01

    The CMS Binary Chip 2 (CBC2) is a full-scale prototype ASIC developed for the front-end readout of the high-luminosity upgrade of the CMS silicon strip tracker. The 254-channel, 130 nm CMOS ASIC is designed for the binary readout of double-layer modules, and features cluster-width discrimination and coincidence logic for detecting high-P T track candidates. The chip was delivered in January 2013 and has since been bump-bonded to a dual-chip hybrid and extensively tested. The CBC2 is fully functional and working to specification: we present the result of electrical characterization of the chip, including gain, noise, threshold scan and power consumption, together with the performance of the stub finding logic. Finally we will outline the plan for future developments towards the production version

  19. Simulations of Inter-Strip Capacitance and Resistance for the Design of the CMS Tracker Upgrade

    CERN Document Server

    Eichhorn, Thomas; Ranjeet, Ranjeet; Eber, Robert; Lalwani, Kavita; Messineo, Alberto; Peltola, Timo Hannu Tapani; Printz, Martin; Ranjan, Kirti

    2014-01-01

    An upgrade of the LHC accelerator, the high luminosity phase of the LHC (HL-LHC), is foreseen for 2023. The tracking system of the CMS experiment at HL-LHC will face a more intense radiation environment than the present system was designed for. This requires an upgrade of the full tracker, which will be equipped with higher granularity as well as radiation harder sensors, which can withstand higher radiation levels and occupancies.\\\\ In order to address the problems caused by the intense radiation environment, extensive measurements and simulation studies have been initiated for investigating these different design and material options for Silicon micro-strip sensors.\\\\ The simulation studies are based on commercial packages (Silvaco and Synopsys TCAD) and aim to investigate sensor characteristics before and after irradiation for fluences up to $1.5 \\cdot 10^{15}\\,\\rm{n_{eq}/cm}^2$. A defect model was developed to implement the radiation damage and tuned to fit experimental measurements.\\\\ This paper cover...

  20. Towards Radiation Hard Sensor Materials for the CMS Tracker Upgrade

    CERN Document Server

    Steinbrueck, Georg

    2012-01-01

    Many measurements are described in literature, performed on a variety of silicon materials and technologies, but they are often hard to compare, because they were done under different conditions. To systematically compare the prope...

  1. Simulations of silicon vertex tracker for star experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)

    1991-12-31

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  2. Upgrade of the CMS Tracker with tracking trigger

    International Nuclear Information System (INIS)

    Abbaneo, D

    2011-01-01

    The planned upgrades of the LHC and its injector chain are expected to allow operation at luminosities around or above 5 × 10 34 cm −2 s −1 sometimes after 2020, to eventually reach an integrated luminosity of 3000 fb −1 at the end of that decade. In order to fully exploit such operating conditions and the delivered luminosity, CMS needs to upgrade its tracking detectors and substantially improve its trigger capabilities. To achieve such goals, R and D activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. Some of the options considered are reviewed, discussing their potential advantages and disadvantages.

  3. 3D Silicon Tracker for AFP - From Qualification to Operation

    CERN Document Server

    F\\"orster, Fabian Alexander; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) experiment is a detector located ~210 m away from the ATLAS interaction point on both sides. Its aim is to tag and measure forward protons produced in diffractive events. The detector consists of a 3D silicon pixel tracker, to measure the proton trajectory, as well as a time-of-flight system to suppress pileup-related backgrounds. Each tracker and the ToF system are placed inside a Roman Pot, allowing operation in the vicinity of the LHC beam, up to 2-3 mm. AFP was installed in 2 stages during the LHC technical shutdowns of 2015-2016 and 2016-2017. This presentation will give an overview of the silicon sensor qualification as well as the production, assembly and quality assurance of the tracker modules. The installation, commissioning and operation of the full detector will also be discussed.

  4. LHCb: Installation and operation of the LHCb Silicon Tracker detector

    CERN Multimedia

    Esperante Pereira, D

    2009-01-01

    The LHCb experiment has been designed to perform high-precision measurements of CP violation and rare decays of B hadrons. The construction and installation phases of the Silicon Tracker (ST) of the experiment were completed by early summer 2008. The LHCb Silicon Tracker sums up to a total sensitive area of about 12 m^2 using silicon micro-strip technology and withstands charged particle fluxes of up to 5 x 10^5cm^−2s^−1. We will report on the preparation of the detectors for the first LHC beams. Selected results from the commissioning in LHCb are shown, including the first beam-related events accumulated during LHC injection tests in September 2008. Lessons are drawn from the experience gathered during the installation and commissioning.

  5. Commissioning and Performance of the LHCb Silicon Tracker

    CERN Multimedia

    van Tilburg, J; Buechler, A; Bursche , A; Chiapolini, N; Elsaesser, C; Hangartner, V; Salzmann, C; Steiner, S; Steinkamp, O; Staumann, U; Tobin, M; Vollhardt, A; Bay, A; Bettler, M O; Blanc, F; Bressieux, J; Conti, G; Fave, V; Frei, R; Gauvin, N; Gonzalez, R; Haefeli, G; Hicheur, A; Keune, A; Luisier, J; Muresan, R; Nakada, T; Needham, M; Nicolas, L; Knecht, M; Perrin, A; Potterat, C; Schneider, O; Tran, M; Aquines Gutierrez, O; Bauer, C; Britsch, M; Hofmann, W; Maciuc, F; Schmelling, M; Voss, H; Adeva, B; Esperante, D; Fungueiriño Pazos, J; Gallas, A; Pazos-Alvarez, A; Pérez-Trigo, E; Pló Casasús, M; Rogríguez Pérez, P; Saborido, J; Vázquez, P; Iakovenko, V; Okhrimenko, O; Pugatch, V

    2010-01-01

    The LHCb Silicon Tracker is a silicon micro-strip detector with a sensitive area of 12 m$^2$ and a total of 272k readout channels. The Silicon Tracker consists of two parts that use different detector modules. The detector installation was completed by early summer 2008 and the commissioning without beam has reached its finals stage, successfully overcoming most of the encountered problems. Currently, the detector has more than 99% of the channels fully functioning. Commissioning with particles has started using beam-induced events from the LHC injection tests in 2008 and 2009. These events allowed initial studies of the detector performance. Especially, the detector modules could be aligned with an accuracy of about 20 $\\mu$m. Furthermore, with the first beam collisions that took place end of 2009 we could further study the performance and improve the alignment of the detector.

  6. Hybrid circuit prototypes for the CMS Tracker upgrade front-end electronics

    International Nuclear Information System (INIS)

    Blanchot, G; Honma, A; Kovacs, M; Braga, D; Raymond, M

    2013-01-01

    New high-density interconnect hybrid circuits are under development for the CMS tracker modules at the HL-LHC. These hybrids will provide module connectivity between flip-chip front-end ASICs, strip sensors and a service board for the data transmission and powering. Rigid organic-based substrate prototypes and also a flexible hybrid design have been built, containing up to eight front-end flip chip ASICs. A description of the function of the hybrid circuit in the tracker, the first prototype designs, results of some electrical and mechanical properties from the prototypes, and examples of the integration of the hybrids into detector modules are presented

  7. INNER TRACKER

    CERN Multimedia

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The Objective for 2007 is to deliver to CMS a completed, installed, commissioned and calibrated Tracking System (Silicon Strip and Pixels) aligned to < 100µ in April 2008 ready for the first physics collisions at LHC. On 21 March 2007, the integration of the CMS Silicon Strip Tracker was completed with the successful integration of TEC- into the Tracker Support Tube (TST). Since then ~25% of the complete Tracker Systems has been commission at the TIF at both room temperature and operating temperature (-100 C), and the Tracker Community has gained very valuable experience in operating, calibrating and aligning the Tracker at the TIF before it is prepared for transportation to P5 in July 2007. The CMS Pixel System continues to make good progress. Module and Plaquette production is very well advanced. The first 25% of the Forward Pixel detector (Fpix) was delivered to CERN in April and the second 25% will shipped to CERN on 19 ...

  8. TRACKER

    CERN Multimedia

    Frank Hartmann

    2012-01-01

      Strip Tracker In general, the Strip Tracker is operating smoothly with the current peak instantaneous luminosity beyond 6.5E33, high L1 rate and large pile-up. With several improvements in automatic DQM checks and an enhanced SMS and e-mail service system plus additional audio alarms, we have reduced the work-load of our TK DOC and stopped the calls made at the beginning of each fill. We successfully collected more than two million cosmic tracks in peak mode during inter-fill periods before June, fulfilling the request from the Tracker alignment group. Around 500k cosmic tracks were also collected at zero Tesla. All planned special measurements, namely DCU calibration and I-V scans, have been taken during the YETS and other technical stops. A peak-mode run, a delay run and two HV scans have also been taken during early collisions at the initial low-lumi runs as well as during the fill where CMS had a problem with the magnet. The largest source of downtime comes from TIB-2.8.1 a.k.a. FED 101, ...

  9. Reconstruction of electrons with the Gaussian-sum filter in the CMS tracker at the LHC

    International Nuclear Information System (INIS)

    Adam, W; Fruehwirth, R; Strandlie, A; Todorov, T

    2005-01-01

    The bremsstrahlung energy loss distribution of electrons propagating in matter is highly non-Gaussian. Because the Kalman filter relies solely on Gaussian probability density functions, it is not necessarily the optimal reconstruction algorithm for electron tracks. A Gaussian-sum filter (GSF) algorithm for electron reconstruction in the CMS tracker has therefore been developed and implemented. The basic idea is to model the bremsstrahlung energy loss distribution by a Gaussian mixture rather than by a single Gaussian. It is shown that the GSF is able to improve the momentum resolution of electrons compared to the standard Kalman filter. The momentum resolution and the quality of the error estimate are studied both with a fast simulation, modelling the radiative energy loss in a simplified detector, and the full CMS tracker simulation. (research note from collaboration)

  10. Single event upset studies on the CMS tracker APV25 readout chip

    International Nuclear Information System (INIS)

    Noah, E.; Bauer, T.; Bisello, D.; Faccio, F.; Friedl, M.; Fulcher, J.R.; Hall, G.; Huhtinen, M.; Kaminsky, A.; Pernicka, M.; Raymond, M.; Wyss, J.

    2002-01-01

    The microstrip tracker for the CMS experiment at the CERN Large Hadron Collider will be read out using APV25 chips. During high luminosity running the tracker will be exposed to particle fluxes up to 10 7 cm -2 s -1 , which raises concerns that the APV25 could occasionally suffer Single Event Upsets (SEUs). The effect of SEU on the APV25 has been studied to investigate implications for CMS detector operation and from the viewpoint of detailed circuit operation, to improve the understanding of its origin and what factors affect its magnitude. Simulations were performed to reconstruct the effects created by highly ionising particles striking sensitive parts of the circuits, along with consideration of the underlying mechanisms of charge deposition, collection and the consequences. A model to predict the behaviour of the memory circuits in the APV25 has been developed and data collected from dedicated experiments using both heavy ions and hadrons have been shown to support it

  11. Reconstruction of Electrons with the Gaussian-Sum Filter in the CMS Tracker at the LHC

    CERN Document Server

    Adam, Wolfgang; Strandlie, Are; Todor, T

    2005-01-01

    The bremsstrahlung energy loss distribution of electrons propagating in matter is highly non-Gaussian. Because the Kalman filter relies solely on Gaussian probability density functions, it is not necessarily the optimal reconstruction algorithm for electron tracks. A Gaussian-sum filter (GSF) algorithm for electron reconstruction in the CMS tracker has therefore been developed and implemented. The basic idea is to model the bremsstrahlung energy loss distribution by a Gaussian mixture rather than by a single Gaussian. It is shown that the GSF is able to improve the momentum resolution of electrons compared to the standard Kalman filter. The momentum resolution and the quality of he error estimate are studied both with a fast simulation, modelling the radiative energy loss in a simplified detector, and the full CMS tracker simulation.

  12. Charge determination of nuclei with the AMS-02 silicon tracker

    CERN Document Server

    Alpat, B; Azzarello, P; Battiston, R; Bene, P; Bertucci, B; Bizzaglia, S; Bizzarri, M; Blasko, S; Bourquin, M; Bouvier, P; Burger, W J; Capell, M; Cecchi, C; Chang, Y H; Cortina, E; Dinu, N; Esposito, G; Fiandrini, E; Haas, D; Hakobyan, H; Ionica, M; Ionica, R; Kounine, A; Koutsenko, V F; Lebedev, A; Lechanoine-Leluc, C; Lin, C H; Masciocchi, F; Menichelli, M; Natale, S; Paniccia, M; Papi, A; Pauluzzi, M; Perrin, E; Pohl, M; Rapin, D; Richeux, J P; Wallraff, W; Willenbrock, M; Zuccon, P

    2005-01-01

    The silicon tracker of the AMS-02 detector measures the trajectory in three dimensions of electrons, protons and nuclei to high precision in a dipole magnetic field and thus measures their rigidity (momentum over charge) and the sign of their charge. In addition, it measures the specific energy loss of charged particles to determine the charge magnitude. Ladders from the AMS-02 tracker have been exposed to ion beams at CERN and GSI to study their response to nuclei from helium up to the iron group. The longest ladder, 72 multiplied by 496mm2, verified in the tests contains 12 sensors. Good charge resolution is observed up to iron.

  13. Charge determination of nuclei with the AMS-02 silicon tracker

    OpenAIRE

    Alpat, B.; G. Ambrosi; Azzarello, P.; Battiston, R.; Bene, P.; Bertucci, B.; Bizzaglia, S.; Bizzarri, M.; Blasko, S.; Bourquin, M.; Cortina Gil, Eduardo

    2005-01-01

    The silicon tracker of the AMS-02 detector measures the trajectory in three dimensions of electrons, protons and nuclei to high precision in a dipole magnetic field and thus measures their rigidity (momentum over charge) and the sign of their charge. In addition, it measures the specific energy loss of charged particles to determine the charge magnitude. Ladders from the AMS-02 tracker have been exposed to ion beams at CERN and GSI to study their response to nuclei from helium up to the iron ...

  14. Quality Assurance Programme for the Environmental Testing of the CMS Tracker Optical Links

    OpenAIRE

    Gill, K; Grabit, R; Troska, Jan K; Vasey, F; Zanet, A

    2001-01-01

    The QA programme is reviewed for the environmental compliance tests of commercial off-the-shelf (COTS) components for the CMS Tracker Optical link system. These environmental tests will take place in the pre-production and final production phases of the project and will measure radiation resistance, component lifetime, and sensitivity to magnetic fields. The evolution of the programme from small-scale prototype tests to the final pre-production manufacturing tests is outlined and the main env...

  15. First Implementation of a Two-Stage DC-DC Conversion Powering Scheme for the CMS Phase-2 Outer Tracker

    CERN Document Server

    Feld, Lutz Werner; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Pauls, Alexander Josef; Preuten, Marius; Rauch, Max Philip; Wangelik, Frederik; Wlochal, Michael

    2017-01-01

    The 2S silicon strip modules for the CMS Phase-2 tracker upgrade will require two operating voltages. These will be provided via a two-step DC-DC conversion powering scheme, in which one DC-DC converter delivers 2.5\\,V while the second DC-DC converter receives 2.5\\,V at its input and converts it to 1.2\\,V. The DC-DC converters will be mounted on a flex PCB, the service hybrid, together with an opto-electrical converter module (VTRx+) and a serializer (LP-GBT). The service hybrid will be mounted directly on the 2S module. A prototype service hybrid has been developed and its performance has been evaluated, including radiative and conductive noise emissions, and efficiency. In addition system tests with a prototype module have been performed. In this report the service hybrid will be described and the test results will be summarized.

  16. ATLAS silicon microstrip Semiconductor Tracker (SCT)

    International Nuclear Information System (INIS)

    Unno, Y.

    2000-01-01

    Silicon microstrip semiconductor tracking system (SCT) will be in operation in the ATLAS detector in the Large Hadron Collider (LHC) at CERN. Challenging issues in the SCT are the radiation tolerance to the fluence of 2x10 14 1-MeV-neutron-equivalent particles/cm 2 at the designed luminosity of 1x10 34 cm -2 /s of the proton-proton collisions and the speed of the electronics to identify the crossing bunches at 25 ns. The developments and the status of the SCT are presented from the point of view of these issues. Series production of the SCT will start in the year 2001 and the SCT will be installed into the ATLAS detector during 2003-2004

  17. Development and Testing of the AMEGO Silicon Tracker System

    Science.gov (United States)

    Griffin, Sean; Amego Team

    2018-01-01

    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe-class mission in consideration for the 2020 decadal review designed to operate at energies from ˜ 200 keV to > 10 GeV. Operating a detector in this energy regime is challenging due to the crossover in the interaction cross-section for Compton scattering and pair production. AMEGO is made of four major subsystems: a plastic anticoincidence detector for rejecting cosmic-ray events, a silicon tracker for measuring the energies of Compton scattered electrons and pair-production products, a CZT calorimeter for measuring the energy and location of Compton scattered photons, and a CsI calorimeter for measuring the energy of the pair-production products at high energies. The tracker comprises layers of dual-sided silicon strip detectors which provide energy and localization information for Compton scattering and pair-production events. A prototype tracker system is under development at GSFC; in this contribution we provide details on the verification, packaging, and testing of the prototype tracker, as well as present plans for the development of the front-end electronics, beam tests, and a balloon flight.

  18. Monitoring radiation damage in the LHCb Silicon Tracker

    CERN Multimedia

    Graverini, Elena

    2018-01-01

    The purpose of LHCb is to search for indirect evidence of new physics in decays of heavy hadrons. The LHCb detector is a single-arm forward spectrometer with precise silicon-strip detectors in the regions with highest particle occupancies. The non-uniform exposure of the LHCb sensors makes it an ideal laboratory to study radiation damage effects in silicon detectors. The LHCb Silicon Tracker is composed of an upstream tracker, the TT, and of the inner part of the downstream tracker (IT). Dedicated scans are regularly taken, which allow a precise measurement of the charge collection efficiency (CCE) and the calibration of the operational voltages. The measured evolution of the effective depletion voltage $V_{depl}$ is shown, and compared with the Hamburg model prediction. The magnitudes of the sensor leakage current are also analysed and compared to their expected evolution according to phenomenological models. Our results prove that both the TT and the IT will withstand normal operation until the end of the L...

  19. TRACKER

    CERN Document Server

    Bora Akgun

    2013-01-01

    Pixel Tracker Maintenance of the Pixel Tracker has been ongoing since it was extracted from inside CMS and safely stored at low temperatures in Pixel laboratory at Point 5 (see previous Bulletin).    All four half cylinders of the forward Pixel detector (FPIX) have been repaired and the failures have been understood. In October, a team of technicians from Fermilab replaced a total of three panels that were not repairable in place. The replacement of panels is a delicate operation that involves removing the half disks that hold the panels from the half cylinders, removing the damaged panels from the half disks, installing the new panels on the half disks, and finally putting the half disks back into the half cylinders and hooking up the cooling connections. The work was completed successfully. The same team also prepared the installation of the Phase 1 Pixel pilot blade system, installing a third half disk mechanics in the half cylinders; these half disks will host new Phase 1 P...

  20. TRACKER

    CERN Multimedia

    K. Gill

    2010-01-01

    The Tracker has continued to operate with excellent performance during this first period with 7 TeV collisions. Strips operations have been very smooth. The up-time during collisions was 98.5%, up to end of May, with a large fraction of the down-time coming during the planned fine-timing scan with early 7 TeV collisions. Pixels operations are also going very well, besides problems related to background beam-gas collisions where the particles produced generate very large clusters in the barrel modules. When CMS triggers on these events, the FEDs affected overflow and then timeout. Effort was mobilised very quickly to understand and mitigate this problem, with modifications made to the pixel FED firmware in order to provide automatic recovery. With operations becoming more and more routine at P5, Pixels have begun the transition to centrally attended operation, which means that the P5 shifters will no longer be required to be on duty. The strip-Tracker is also planning to make this transition at the end of Ju...

  1. TRACKER

    CERN Multimedia

    L. Demaria

    2011-01-01

    Strip Tracker The Silicon Strip Tracker has maintained excellent operational performance during the 2011 data-taking period. The increase of instantaneous luminosity up to 1033 cm-2s-1 did not introduce any new issues in the detector. The detector has collected high-quality physics data with an uptime greater than 98%. Sources of downtime have been identified and problems were properly addressed. Improved firmware in the Front-End Driver (FED) firmware was deployed to increase the robustness of the readout against spurious extra frames coming from the detector. When a FED detects bad data, it goes into Out-Of-Sync (OOS) status, waits for a L1 resynchronisation command (resync) to clean up the culprit data and restarts. Resync commands are now sent automatically to the Strip Tracker when it signals OOS and, as a result, this source of downtime has been reduced significantly. The dead-time, caused by recoveries from OOS, accounts for less than 0.1%. Downtime was also found to be caused by a FED occasionally ge...

  2. Calibration, alignment and long-term performance of the CMS silicon tracking detector

    CERN Document Server

    Butz, Erik

    2009-01-01

    With an active area of more than 200 m2 , the CMS silicon strip detector is the largest silicon tracker ever built. It consists of more than 15,000 individual silicon modules which have to meet very high standards in terms of noise behavior and electronic crosstalk, as well as their exact positioning within the tracker. Furthermore, the modules will be exposed to a harsh radiation environment over the lifetime of the tracker. This thesis deals with several of the above-mentioned aspects. In the first part, individual modules are investigated using a testbeam. Some of the modules were irradiated up to an integrated dose which corresponds to the expected one over the life time of the tracker. These modules are investigated with respect to their signal- to-noise behavior, and their cross-talk. Several operational parameters are varied, such as the temperature and the bias voltage. It is shown that the modules behave as expected. The signal-to-noise ratio is well above the specifications and the cross-talk increa...

  3. CMS Tracker Upgrades: R\\&D Plans, Present Status and Perspectives

    CERN Document Server

    AUTHOR|(CDS)2091649

    2015-01-01

    The present CMS pixel detector designed for a luminosity of $10^{34}\\,\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ will have to be replaced at the end of 2016. The new upgraded detector will have higher tracking efficiency and lower mass with four barrel layers and three forward/backward disks to provide a hit coverage up to absolute pseudorapidities of $\\mid\\eta\\mid<2.5$. In a second stage, in order to maintain its physics reach during the high luminosity phase of the LHC (HL-LHC), when the machine is expected to deliver an instantaneous luminosity of $5\\times 10^{34}\\,\\mathrm{cm}^{-2} \\mathrm{s}^{-1}$ for a total of $3000\\,\\mathrm{fb}^{-1}$, CMS will build a new tracker, comprising a completely new pixel detector and outer tracker. The ongoing R\\&D activities on both pixel and strip sensors are presented. The present status of the Inner and Outer Tracker projects are illustrated, and the possible perspectives are discussed.

  4. LHCb Silicon Tracker DAQ and DCS Online Systems

    CERN Multimedia

    Buechler, A; Rodriguez, P

    2009-01-01

    The LHCb experiment at the Large Hadron Collider (LHC) at CERN in Geneva Switzerland is specialized on precision measurements of b quark decays. The Silicon Tracker (ST) contributes a crucial part in tracking the particle trajectories and consists of two silicon micro-strip detectors, the Tracker Turicensis upstream of the LHCb magnet and the Inner Tracker downstream. The radiation and the magnetic field represent new challenges for the implementation of a Detector Control System (DCS) and the data acquisition (DAQ). The DAQ has to deal with more than 270K analog readout channels, 2K readout chips and real time DAQ at a rate of 1.1 MHz with data processing at TELL1 level. The TELL1 real time algorithms for clustering thresholds and other computations run on dedicated FPGAs that implement 13K configurable parameters per board, in total 1.17 K parameters for the ST. After data processing the total throughput amounts to about 6.4 Gbytes from an input data rate of around ~337 Gbytes per second. A finite state ma...

  5. Quality Assurance Programme for the Environmental Testing of the CMS Tracker Optical Links

    CERN Document Server

    Gill, K; Troska, Jan K; Vasey, F; Zanet, A

    2001-01-01

    The QA programme is reviewed for the environmental compliance tests of commercial off-the-shelf (COTS) components for the CMS Tracker Optical link system. These environmental tests will take place in the pre-production and final production phases of the project and will measure radiation resistance, component lifetime, and sensitivity to magnetic fields. The evolution of the programme from small-scale prototype tests to the final pre-production manufacturing tests is outlined and the main environmental effects expected for optical links operating within the Tracker are summarised. A special feature of the environmental QA programme is the plan for Advance Validation Tests (AVT's) developed in close collaboration with the various industrial partners. AVT procedures involve validation of a relatively small set of basic samples in advance of the full production of the corresponding batch of devices. Only those lots that have been confirmed as sufficiently rad-tolerant will be purchased and used in the final prod...

  6. L1 track triggering with associative memory for the CMS HL-LHC tracker

    International Nuclear Information System (INIS)

    Sabes, D.

    2014-01-01

    One of the proposed solutions currently under study in Compact Muon Solenoid (CMS) collaboration [1] to reconstruct tracks at the first level trigger (L1) for the High Luminosity - Large Hadron Collider (HL-LHC) is based on the usage of Associative Memory [2] (AM) chips. The tracker information is first reduced to suppress low p T tracks and sent to boards equipped with AM chips. Each AM compares the tracker information with pre-calculated expectations (pattern matching) in a very short time (order of a μs), therefore providing a solution to the challenging computational problem of pattern recognition in a very busy environment. Associated to fast track fit methods, like the Hough transform, the AM approach should be able to fulfil the very demanding requirements of L1 tracking. The proposed architecture for the AM-based L1 track reconstruction system will be presented, together with the latest results obtained using a complete software emulation of this system

  7. The silicon microstrip sensors of the ATLAS semiconductor tracker

    International Nuclear Information System (INIS)

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-01-01

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS

  8. The silicon microstrip sensors of the ATLAS semiconductor tracker

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-04-13

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS.

  9. Readout electronics development for the ATLAS silicon tracker

    International Nuclear Information System (INIS)

    Borer, K.; Beringer, J.; Anghinolfi, F.; Aspell, P.; Chilingarov, A.; Jarron, P.; Heijne, E.H.M.; Santiard, J.C.; Verweij, H.; Goessling, C.; Lisowski, B.; Reichold, A.; Bonino, R.; Clark, A.G.; Kambara, H.; La Marra, D.; Leger, A.; Wu, X.; Richeux, J.P.; Taylor, G.N.; Fedotov, M.; Kuper, E.; Velikzhanin, Yu.; Campbell, D.; Murray, P.; Seller, P.

    1995-01-01

    We present the status of the development of the readout electronics for the large area silicon tracker of the ATLAS experiment at the LHC, carried out by the CERN RD2 project. Our basic readout concept is to integrate a fast amplifier, analog memory, sparse data scan circuit and analog-to-digital convertor (ADC) on a single VLSI chip. This architecture will provide full analog information of charged particle hits associated unambiguously to one LHC beam crossing, which is expected to be at a frequency of 40 MHz. The expected low occupancy of the ATLAS inner silicon detectors allows us to use a low speed (5 MHz) on-chip ADC with a multiplexing scheme. The functionality of the fast amplifier and analog memory have been demonstrated with various prototype chips. Most recently we have successfully tested improved versions of the amplifier and the analog memory. A piecewise linear ADC has been fabricated and performed satisfactorily up to 5 MHz. A new chip including amplifier, analog memory, memory controller, ADC, and data buffer has been designed and submitted for fabrication and will be tested on a prototype of the ATLAS silicon tracker module with realistic electrical and mechanical constraints. (orig.)

  10. A new silicon tracker for proton imaging and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.T., E-mail: jtaylor@hep.ph.liv.ac.uk [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Waltham, C. [Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln LN6 7TS (United Kingdom); Price, T. [School of Physics and Astronomy, University of Birmingham, Birmingham B25 2TT (United Kingdom); Allinson, N.M. [Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln LN6 7TS (United Kingdom); Allport, P.P. [School of Physics and Astronomy, University of Birmingham, Birmingham B25 2TT (United Kingdom); Casse, G.L. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Kacperek, A. [Douglas Cyclotron, The Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington, Wirral CH63 4JY (United Kingdom); Manger, S. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Smith, N.A.; Tsurin, I. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)

    2016-09-21

    For many years, silicon micro-strip detectors have been successfully used as tracking detectors for particle and nuclear physics experiments. A new application of this technology is to the field of particle therapy where radiotherapy is carried out by use of charged particles such as protons or carbon ions. Such a treatment has been shown to have advantages over standard x-ray radiotherapy and as a result of this, many new centres offering particle therapy are currently under construction around the world today. The Proton Radiotherapy, Verification and Dosimetry Applications (PRaVDA) consortium are developing instrumentation for particle therapy based upon technology from high-energy physics. The characteristics of a new silicon micro-strip tracker for particle therapy will be presented. The array uses specifically designed, large area sensors with technology choices that follow closely those taken for the ATLAS experiment at the HL-LHC. These detectors will be arranged into four units each with three layers in an x–u–v configuration to be suitable for fast proton tracking with minimal ambiguities. The sensors will form a tracker capable of tracing the path of ~200 MeV protons entering and exiting a patient allowing a new mode of imaging known as proton computed tomography (pCT). This will aid the accurate delivery of treatment doses and in addition, the tracker will also be used to monitor the beam profile and total dose delivered during the high fluences used for treatment. We present here details of the design, construction and assembly of one of the four units that will make up the complete tracker along with its characterisation using radiation tests carried out using a {sup 90}Sr source in the laboratory and a 60 MeV proton beam at the Clatterbridge Cancer Centre.

  11. TRACKER

    CERN Multimedia

    K. Gill and G. Bolla

    2010-01-01

    Silicon strips During the first collisions the strip-Tracker operated with excellent performance and stability. The results obtained were very impressive and this exciting experience marked a fine end to another intense year. Several issues were identified during 2009 operations that could benefit from improvement: to suppress the increased output data volume when in STANDBY state (LV ON, HV OFF), which is due to the larger noise amplitudes when the sensors are unbiased; to reduce the strips configuration time; to increase the stability of the power system, particularly during state transitions, and to decrease the powering up time. The strip-Tracker FEDs now react to changes in the HV conditions of the strips. Upon a transition to STAND-BY, central DAQ starts a PAUSE-RESUME cycle and a flag is issued to the FEDSupervisor. This results in forcing the common mode noise artificially to the maximum value, which effectively suppresses the analogue data output. This forced offset is removed as soon as the strips ...

  12. Fine pitch and low material readout bus in the Silicon Pixel Vertex Tracker for the PHENIX Vertex Tracker upgrade

    International Nuclear Information System (INIS)

    Fujiwara, Kohei

    2010-01-01

    The construction of the Silicon Pixel Detector is starting in spring 2009 as project of the RHIC-PHENIX Silicon Vertex Tracker (VTX) upgrade at the Brookhaven National Laboratory. For the construction, we have developed a fine pitch and low material readout bus as the backbone parts of the VTX. In this article, we report the development and production of the readout bus.

  13. TRACKER

    CERN Multimedia

    M. Dinardo and G. Benelli

    2013-01-01

    Pixel Tracker At the beginning of May, the Pixel detector was successfully extracted from inside CMS. The operation lasted one and a half days each for the forward and barrel Pixel detectors. Everything went smoothly: new people were trained during the exercise and care was taken to minimise radiation exposure – see Image 3.  Lessons learned were noted in an updated written extraction procedure.  Care was also taken to prepare for reinsertion around the new beam pipe next year, with new alignment targets placed on the barrel Pixel detector. All pieces were lifted to the surface and are now safely stored at low temperatures in the dedicated Pixel laboratory at Point 5 (see Image 4 and previous Bulletin). Image 3 (a) and (b): Extracted FPIX and BPIX detector The subsequent maintenance of the forward Pixel detector started on 27 May.  Since then one of four half cylinders has been repaired and, even more importantly, most of the failures have been fully understood. ...

  14. A large-scale application of the Kalman alignment algorithm to the CMS tracker

    International Nuclear Information System (INIS)

    Widl, E; Fruehwirth, R

    2008-01-01

    The Kalman alignment algorithm has been specifically developed to cope with the demands that arise from the specifications of the CMS Tracker. The algorithmic concept is based on the Kalman filter formalism and is designed to avoid the inversion of large matrices. Most notably, the algorithm strikes a balance between conventional global and local track-based alignment algorithms, by restricting the computation of alignment parameters not only to alignable objects hit by the same track, but also to all other alignable objects that are significantly correlated. Nevertheless, this feature also comes with various trade-offs: Mechanisms are needed that affect which alignable objects are significantly correlated and keep track of these correlations. Due to the large amount of alignable objects involved at each update (at least compared to local alignment algorithms), the time spent for retrieving and writing alignment parameters as well as the required user memory becomes a significant factor. The large-scale test presented here applies the Kalman alignment algorithm to the (misaligned) CMS Tracker barrel, and demonstrates the feasibility of the algorithm in a realistic scenario. It is shown that both the computation time and the amount of required user memory are within reasonable bounds, given the available computing resources, and that the obtained results are satisfactory

  15. Development of a Test System for the Quality Assurance of Silicon Microstrip Detectors for the Inner Tracking System of the CMS Experiment

    CERN Document Server

    Axer, Markus

    2003-01-01

    The inner tracking system of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) which is being built at the European Laboratory for Particle Physics CERN (Geneva, Switzerland) will be equipped with two different technologies of silicon detectors. While the innermost tracker will be composed of silicon pixel detectors, silicon microstrip detectors are envisaged for the outer tracker architecture. The silicon microstrip tracker will house about 15,000 single detector modules each composed of a set of silicon sensors, the readout electronics (front end hybrid), and a support frame. It will provide a total active area of 198 m2 and ten million analogue channels read out at the collider frequency of 40 MHz. This large number of modules to be produced and integrated into the tracking system is an unprecedented challenge involving industrial companies and various research institutes from many different countries. This thesis deals with the physics of silicon sensors and the preparation of ...

  16. ATLAS' inner silicon tracker on track for completion

    CERN Multimedia

    2005-01-01

    Last week, the team working at the SR1 facility on the inner detector of the ATLAS experiment reached a project milestone after the delivery of the last Semi-conductor Tracker (SCT) barrel to CERN. The third barrel before its insertion into the support structure.The insertion of a completed barrel to its support structure is one of the highlights of the assembly and test sequence of the SCT in SR1. The inner detector will eventually sit in the 2 teslas magnetic field of the ATLAS solenoid, tracking charged particles from proton-proton collisions at the centre of ATLAS. The particles will be measured by a pixel detector (consisting of 3 pixel layers), an SCT (4 silicon strip layers) and a transition radiation tracker (TRT) (consisting of more than 52,000 straw tubes - see Bulletin 14/2005). The SCT has a silicon surface area of 61m2 with about 6 million operational channels so that all tracks can be identified and precisely measured. During 2004 a team of physicists, engineers, and technicians from several...

  17. Nuclear interaction study around beam pipe region in the Tracker system at CMS with 13 TeV data

    CERN Document Server

    CMS Collaboration

    2015-01-01

    Analysis is presented to study the material in the Tracker system with nuclear interactions from proton-proton collisions recorded by the CMS experiment at the CERN LHC. The data correspond to an integrated luminosity of 7.3 pb$^{-1}$ at a centre-of-mass energy of 13 TeV collected at 3.8 Tesla magnetic field. With reconstructed nuclear interactions we observe the structure of the material, including beam pipe, in the Tracker system.

  18. Simulation of an all silicon tracker for CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Muenker, Magdalena; Nuernerg, Andreas [CERN (Switzerland); University of Bonn (Germany)

    2016-07-01

    CLIC is a proposed future electron-positron linear collider with a centre-of-mass energy up to 3 TeV. The aim of high precision measurements at CLIC is driving the design of the detector for CLIC. To perform a precise measurement of the Higgs recoil mass a momentum resolution of σ{sub p{sub T}}/p{sub T}{sup 2} ∝2 . 10{sup -5} GeV{sup -1} is required. This imposes a single point tracking resolution of ∝7 μm. To reach this aim an all silicon tracker is foreseen for CLIC. A simulation chain has been set up to study the performance of different silicon sensor designs. This simulation chain consists of a GEANT4 simulation to model the energy deposit in silicon, a finite element simulation of the charge drift and signal formation with TCAD and a fast parametric modelling of the front-end electronics. By that energy fluctuations, electronic noise and the digitalisation of the readout signal are taken into account. Furthermore this tool is used to predict the sensor performance in terms of efficiency, cluster-size and resolution. This framework is used to study the performance of e.g. sensors with different pitch and thickness. Various incident angles of charged particles with respect to the sensor surface and the effect of a magnetic field are taken into account. The simulation chain is validated with data.

  19. Characterisation of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bergauer, T.; Brondolin, E. [Institut fuer Hochenergiephysik, Vienna (Austria); and others

    2017-08-15

    The high luminosity upgrade of the Large Hadron Collider, foreseen for 2026, necessitates the replacement of the CMS experiment's silicon tracker. The innermost layer of the new pixel detector will be exposed to severe radiation, corresponding to a 1 MeV neutron equivalent fluence of up to Φ{sub eq} = 2 x 10{sup 16} cm{sup -2}, and an ionising dose of ∼5 MGy after an integrated luminosity of 3000 fb{sup -1}. Thin, planar silicon sensors are good candidates for this application, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. In this paper, the results obtained from the characterisation of 100 and 200 μm thick p-bulk pad diodes and strip sensors irradiated up to fluences of Φ{sub eq} = 1.3 x 10{sup 16} cm{sup -2} are shown. (orig.)

  20. Studies of the Silicon Tracker resolution using data

    CERN Document Server

    van Tilburg, J

    2010-01-01

    Several parameters that influence the hit resolution of the Silicon Tracker have been determined from data. These include charge sharing, cross talk and Lorentz deflection. A charge sharing width of ~4 $\\mu$m has been measured. No charge loss has been observed in the interstrip region. The cross talk to the neighbouring strips is found to vary between 4 − 14%, depending on the total capacitance (sensors plus cable), on whether it is the left or right neighbour and on the Beetle channel number (odd or even). The Lorentz deflection was also investigated and was observed to be small. Finally, the new parameters have been inserted in the LHCb Monte Carlo simulation to update the $\\eta$-correction functions required for the reconstruction of tracks. Compared to the previous tuning the hit resolution in the simulation has increased from ~35 $\\mu$m to ~50 $\\mu$m.

  1. Silicon photomultiplier arrays for the LHCb scintillating fibre tracker

    CERN Multimedia

    Girard, Olivier Goran; Kuonen, Axel Kevin; Stramaglia, Maria Elena

    2017-01-01

    For the LHCb detector upgrade in 2019, a large scale scintillating fibre tracker read out with silicon photomultipliers is under construction. The harsh radiation environment (neutron and ionising radiation), the 40MHz read-out rate of the trigger less system and the large detector surface of 320m2 impose many challenges. We present the results from lab tests with 1MeV electrons and from the SPS test facility at CERN for the mulitchannel SiPM array that combines peak photo-detection efficiency of 48% and extremely low correlated noise. The measurements were performed with detectors irradiated with neutrons up to a fluence of 12*1011 neq/cm2 and single photon detection was maintained. First results of the characterization of the pre-series of 500 detectors delivered by Hamamatsu and irradiation studies on a large sample will be included.

  2. CDF silicon vertex tracker: tevatron run II preliminary results

    International Nuclear Information System (INIS)

    Ashmanskas, W.; Belforte, S.; Budagov, Yu.

    2002-01-01

    The Online Silicon Vertex Tracker (SVT) is the unique new trigger processor dedicated to the 2-D reconstruction of charged particle trajectories at Level 2 of the CDF trigger. The SVT has been successfully built, installed and operated during the 2000 and 20001 CDF data taking runs. The performance of the SVT is already very close to the design. The SVT is able to find tracks and calculate their impact parameter with high precision (σ d = 35 μm). It is possible to correct the beam position offset and give the beam position feedback to accelerator in real time. In fact, the beam position is calculated online every few seconds with an accuracy of 1 to 5 μm. The beam position is continuously sent to the accelerator control. By using trigger tracks, parent particles such as K S 's and D 0 's are reconstructed, proving that the SVT is ready to be used for physics studies

  3. Error handling for the CDF Silicon Vertex Tracker

    CERN Document Server

    Belforte, S; Dell'Orso, Mauro; Donati, S; Galeotti, S; Giannetti, P; Morsani, F; Punzi, G; Ristori, L; Spinella, F; Zanetti, A M

    2000-01-01

    The SVT online tracker for the CDF upgrade reconstructs two- dimensional tracks using information from the Silicon Vertex detector (SVXII) and the Central Outer Tracker (COT). The SVT has an event rate of 100 kHz and a latency time of 10 mu s. The system is composed of 104 VME 9U digital boards (of 8 different types) and it is implemented as a data driven architecture. Each board runs on its own 30 MHz clock. Since the data output from the SVT (few Mbytes/sec) are a small fraction of the input data (200 Mbytes/sec), it is extremely difficult to track possible internal errors by using only the output stream. For this reason several diagnostic tools have been implemented: local error registers, error bits propagated through the data streams and the Spy Buffer system. Data flowing through each input and output stream of every board are continuously copied to memory banks named Spy Buffers which act as built in logic state analyzers hooked continuously to internal data streams. The contents of all buffers can be ...

  4. The silicon vertex tracker for star and future applications of silicon drift detectors

    International Nuclear Information System (INIS)

    Bellwied, Rene

    2001-01-01

    The Silicon Vertex Tracker (SVT) for the STAR experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory has recently been completed and installed. First data were taken in July 2001. The SVT is based on a novel semi-conductor technology called Silicon Drift Detectors. 216 large area (6 by 6 cm) Silicon wafers were employed to build a three barrel device capable of vertexing and tracking in a high occupancy environment. Its intrinsic radiation hardness, its operation at room temperature and its excellent position resolution (better than 20 micron) in two dimensions with a one dimensional detector readout, make this technology very robust and inexpensive and thus a viable alternative to CCD, Silicon pixel and Silicon strip detectors in a variety of applications from fundamental research in high-energy and nuclear physics to astrophysics to medical imaging. I will describe the development that led to the STAR-SVT, its performance and possible applications for the near future

  5. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    Science.gov (United States)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.; CMS Collaboration

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  6. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    International Nuclear Information System (INIS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F.R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-01-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  7. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jain, G., E-mail: geetikajain.hep@gmail.com [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Bhardwaj, A.; Dalal, R. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Eber, R. [Institute fur Experimentelle Kernphysik (Germany); Eichorn, T. [Deutsches Elektronen Synchrotron (Germany); Fernandez, M. [Instituto de Fisica de Cantabria (Spain); Lalwani, K. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Messineo, A. [Universita di Pisa & INFN sez. di Pisa (Italy); Palomo, F.R. [Escuela Superior de Ingenieros, Universidad de Sevilla (Spain); Peltola, T. [Helsinki Institute of Physics (Finland); Printz, M. [Institute fur Experimentelle Kernphysik (Germany); Ranjan, K. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Villa, I. [Instituto de Fisica de Cantabria (Spain); Hidalgo, S. [Instituto de Microelectronica de Barcelona, Centro Nacional de Microelectronica (Spain)

    2016-07-11

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  8. Description and performance of track and primary-vertex reconstruction with the CMS tracker

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Beaumont, Willem; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Lancker, Luc; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; De Callatay, Bernard; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Michotte, Daniel; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bonnin, Christian; Brom, Jean-Marie; Chabert, Eric Christian; Charles, Laurent; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Gross, Laurent; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Baulieu, Guillaume; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Lumb, Nicholas; Mathez, Hervé; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Zoccarato, Yannick; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Calpas, Betty; Edelhoff, Matthias; Esser, Hans; Feld, Lutz; Hindrichs, Otto; Karpinski, Waclaw; Klein, Katja; Kukulies, Christoph; Lipinski, Martin; Ostapchuk, Andrey; Perieanu, Adrian; Pierschel, Gerhard; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Schwering, Georg; Sprenger, Daniel; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Wlochal, Michael; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Geiser, Achim; Grebenyuk, Anastasia; Gunnellini, Paolo; Habib, Shiraz; Hampe, Jan; Hansen, Karsten; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krämer, Mira; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Maser, Holger; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Muhl, Carsten; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Spannagel, Simon; Stein, Matthias; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Zuber, Adam; Aldaya Martin, Maria; Berger, Lutz Olaf; Biskop, Heike; Blobel, Volker; Buhmann, Peter; Centis Vignali, Matteo; Enderle, Holger; Erfle, Joachim; Frensche, Benno; Garutti, Erika; Goebel, Kristin; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Maettig, Stefan; Marchesini, Ivan; Matysek, Michael; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Poehlsen, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Barvich, Tobias; Baus, Colin; Berger, Joram; Boegelspacher, Felix; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Eber, Robert; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Heindl, Stefan Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Martschei, Daniel; Mozer, Matthias Ulrich; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Printz, Martin; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Steck, Pia; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Jones, John; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Mittal, Monika; Nishu, Nishu; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Singh, Anil; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Chatterjee, Rajdeep Mohan; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Cariola, Pasquale; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; De Robertis, Giuseppe; Fiore, Luigi; Franco, Michele; Iaselli, Giuseppe; Loddo, Flavio; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Sala, Giuliano; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Saizu, Mirela Angela; Scinta, Manuel; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Brianzi, Mirko; Ciaranfi, Roberto; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Scarlini, Enrico; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Musenich, Riccardo; Robutti, Enrico; Tosi, Silvano; D'Angelo, Pasqualino; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Passaseo, Marina; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Gaioni, Luigi; Manazza, Alessia; Manghisoni, Massimo; Ratti, Lodovico; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Traversi, Gianluca; Vitulo, Paolo; Zucca, Stefano; Biasini, Maurizio; Bilei, Gian Mario; Bissi, Lucia; Checcucci, Bruno; Ciangottini, Diego; Conti, Elia; Fanò, Livio; Lariccia, Paolo; Magalotti, Daniel; Mantovani, Giancarlo; Menichelli, Mauro; Passeri, Daniele; Placidi, Pisana; Romeo, Francesco; Saha, Anirban; Salvatore, Michele; Santocchia, Attilio; Servoli, Leonello; Spiezia, Aniello; Androsov, Konstantin; Arezzini, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Basti, Andrea; Bernardini, Jacopo; Boccali, Tommaso; Bosi, Filippo; Broccolo, Giuseppe; Calzolari, Federico; Castaldi, Rino; Ciampa, Alberto; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Magazzu, Guido; Martini, Luca; Mazzoni, Enrico; Messineo, Alberto; Moggi, Andrea; Moon, Chang-Seong; Palla, Fabrizio; Raffaelli, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Rivetti, Angelo; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Trapani, Pier Paolo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kim, Tae Yeon; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Dordevic, Milos; Ekmedzic, Marko; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jaramillo Echeverria, Richard William; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Moya, David; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Ahmed, Imtiaz; Albert, Eric; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Berruti, Gaia Maria; Bianchi, Giovanni; Blanchot, Georges; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Ceresa, Davide; Cerminara, Gianluca; Christiansen, Jorgen; Christiansen, Tim; Chávez Niemelä, Aleksis Osku; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Auria, Andrea; D'Enterria, David; Dabrowski, Anne; Daguin, Jerome; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Detraz, Stephane; Deyrail, Dominique; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Faccio, Federico; Felici, Daniele; Frank, Norbert; Franzoni, Giovanni; Funk, Wolfgang; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaplon, Jan; Karavakis, Edward; Katopodis, Theodoros; Kottelat, Luc-Joseph; Kousouris, Konstantinos; Kovács, Márk István; Krajczar, Krisztian; Krzempek, Lukasz; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marchioro, Alessandro; Marconi, Sara; Marques Pinho Noite, João; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Michelis, Stefano; Moll, Michael; Moortgat, Filip; Mulders, Martijn; Musella, Pasquale; Onnela, Antti; Orsini, Luciano; Pakulski, Tymon; Palencia Cortezon, Enrique; Pavis, Steven; Perez, Emmanuelle; Pernot, Jean-Francois; Perrozzi, Luca; Petagna, Paolo; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Postema, Hans; Racz, Attila; Reece, William; Rolandi, Gigi; Rovere, Marco; Rzonca, Marcin; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Szwarc, Tomasz; Tropea, Paola; Troska, Jan; Tsirou, Andromachi; Vasey, François; Veres, Gabor Istvan; Verlaat, Bart; Vichoudis, Paschalis; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Zeuner, Wolfram Dietrich; Zwalinski, Lukasz; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Beat; Renker, Dieter; Rohe, Tilman; Streuli, Silvan; Bachmair, Felix; Bäni, Lukas; Becker, Robert; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Da Silva Di Calafiori, Diogo Raphael; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Horisberger, Urs; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Ronga, Frederic Jean; Röser, Ulf; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tauscher, Ludwig; Theofilatos, Konstantinos; Treille, Daniel; von Gunten, Hans Peter; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Bösiger, Kurt; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Favaro, Carlotta; Hinzmann, Andreas; Hreus, Tomas; Ivova Rikova, Mirena; Kilminster, Benjamin; Lange, Clemens; Maier, Reto; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Wilken, Rachel; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Ilic, Jelena; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Gardner, Michael; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Thomson, John; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sturdy, Jared; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Kovalskyi, Dmytro; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Kyre, Susanne; Magaña Villalba, Ricardo; Mccoll, Nickolas; Mullin, Sam Daniel; Pavlunin, Viktor; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; White, Dean; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Chramowicz, John; Cihangir, Selcuk; Cooper, William; Deptuch, Grzegorz; Derylo, Greg; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gingu, V Cristinel; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hoff, Jim R; Hooberman, Benjamin; Howell, Joseph; Hrycyk, Michael; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kwan, Simon; Lei, Chi Meng; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Los, Serguei; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; Matulik, Michael S; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Prosser, Alan; Ratnikova, Natalia; Rivera, Ryan; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Trimpl, Marcel; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Voirin, Erik; Whitbeck, Andrew; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kapustka, Brian; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Nash, Kevin; Osherson, Marc; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Gray, Julia; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Tinti, Gemma; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Taylor, Russell; Toda, Sachiko; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Cremaldi, Lucien Marcus; Kroeger, Rob; Oliveros, Sandra; Perera, Lalith; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Monroy, Jose; Snow, Gregory R; Dolen, James; George, Jimin; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Sevova, Stanislava; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Arndt, Kirk; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; Bubna, Mayur; Cervantes, Mayra; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Bartz, Ed; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sakharov, Alexandre; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Woods, Nathaniel

    2014-10-16

    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For $t\\bar{t}$ events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of $p_T$ > 0.9 GeV is 94% for pseudorapidities of |$\\eta$| < 0.9 and 85% for |$\\eta$| between 0.9 and 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of $p_T$ = 100 GeV emitted at |$\\eta$| lower than 1.4, the resolutions are approximately 2.8% in $p_T$, and respectively, 10 mi...

  9. Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN

    CERN Document Server

    Carrone, E; Tsirou, A

    The CERN (European Organization for Nuclear Research) laboratory is currently building the Large Hadron Collider (LHC). Four international collaborations have designed (and are now constructing) detectors able to exploit the physics potential of this collider. Among them is the Compact Muon Solenoid (CMS), a general purpose detector optimized for the search of Higgs boson and for physics beyond the Standard Model of fundamental interactions between elementary particles. This thesis presents, in particular, the design, construction, commissioning and test of the control system for a screen that provides a thermal separation between the Tracker and ECAL (Electromagnetic CALorimeter) detector of CMS (Compact Muon Solenoid experiment). Chapter 1 introduces the new challenges posed by these installations and deals, more in detail, with the Tracker detector of CMS. The size of current experiments for high energy physics is comparable to that of a small industrial plant: therefore, the techniques used for controls a...

  10. The Silicon Ministrip Detector of the DELPHI Very Forward Tracker

    CERN Document Server

    AUTHOR|(CDS)2067985

    1996-01-01

    The subject of this work is the design, test and construction of a new silicon tracking detector for the extreme forward region of the DELPHI experiment at LEP. I joined the Very Forward Tracker (VFT) Ministrip group in 1993, at a time when the upgrade of the DELPHI tracking system was proposed. My first task was to participate in the design of the ministrip detector for the VFT. This included the optimisation of the detector layout in simulations and the study of prototype detectors in the testbeam. In 1994 I became responsible for the tests and assembly' of the VFT ministrip detector at CERN. The main focus of my work was the study of the performance of a large variety of detectors in beam tests. This included the preparation of the test setup, the tests of different detectors and the analysis of the measurements. With these measurements it is possible to compare the advantages and disadvantages of various new layouts for large pitch silicon strip detectors. In particular the signal response and spatial res...

  11. Commissioning and first data with the ATLAS silicon microstrip tracker

    International Nuclear Information System (INIS)

    Rohne, Ole Myren

    2010-01-01

    The ATLAS experiment at the CERN large hadron collider (LHC) has started taking data this autumn with the inauguration of the LHC. The semiconductor tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The completed SCT has recently been installed inside the ATLAS experimental hall. Quick tests were performed last year to verify the connectivity of the electrical and optical services. Problems observed with the heaters for the evaporative cooling system have been resolved. This has enabled extended operation of the full detector under realistic conditions. Calibration data has been taken and analysed to determine the noise performance of the system. In addition, extensive commissioning with cosmic ray events has been performed. The cosmic muon data has been used to align the detector, to check the timing of the front-end electronics as well as to measure the hit efficiency of modules. The current status of the SCT will be reviewed, including results from the latest data-taking periods in autumn 2008, and from the detector alignment. We will report on the commissioning of the detector, including overviews on services, connectivity and observed problems. Particular emphasis will also be placed on the SCT data taken in the latest running period with the entire ATLAS detector participating. The SCT commissioning and running experience will then be used to extract valuable lessons for future silicon strip detector projects.

  12. Construction, Test And Calibration of the GLAST Silicon Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Sgro, C.; Atwood, W.B.; Baldini, L.; Barbiellini, G.; Bellazzini, R.; Belli, F.; Bonamente, E.; Borden, T.; Bregeon, J.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; De Angelis, A.; Drell, P.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Germani, S.; /INFN, Pisa /Pisa U. /UC, Santa Cruz /INFN, Trieste /Rome U.,Tor Vergata /SLAC /INFN, Bari /Bari U. /INFN, Perugia /Perugia U. /Udine U. /Hiroshima U. /Maryland U., JCA /Tokyo Inst. Tech. /JAXA, Sagamihara /INFN, Padua /Padua U. /Pisa, Scuola Normale Superiore /NASA, Goddard

    2009-06-05

    The Gamma-ray Large Area Space Telescope represents a great advance in space application of silicon detectors. With a surface of 80 m{sup 2} and about 1 M readout channels it is the largest silicon tracker ever built for a space experiment. GLAST is an astro-particle mission that will study the mostly unexplored, high energy (20 MeV-300 GeV) spectrum coming from active sources or diffused in the Universe. The detector integration and test phase is complete. The full instrument underwent environmental testing and the spacecraft integration phase has just started: the launch is foreseen in late 2007. In the meanwhile the spare modules are being used for instrument calibration and performance verification employing the CERN accelerator complex. A Calibration Unit has been exposed to photon, electron and hadron beams from a few GeV up to 300 GeV. We report on the status of the instrument and on the calibration campaign.

  13. Calibration, alignment and long-term performance of the CMS silicon tracking detector

    International Nuclear Information System (INIS)

    Butz, E.

    2009-03-01

    With an active area of more than 200 m 2 , the CMS silicon strip detector is the largest silicon tracker ever built. It consists of more than 15,000 individual silicon modules which have to meet very high standards in terms of noise behavior and electronic crosstalk, as well as their exact positioning within the tracker. Furthermore, the modules will be exposed to a harsh radiation environment over the lifetime of the tracker. This thesis deals with several of the above-mentioned aspects. In the first part, individual modules are investigated using a testbeam. Some of the modules were irradiated up to an integrated dose which corresponds to the expected one over the life time of the tracker. These modules are investigated with respect to their signal-to-noise behavior, and their cross-talk. Several operational parameters are varied, such as the temperature and the bias voltage. It is shown that the modules behave as expected. The signal-to-noise ratio is well above the specifications and the cross-talk increases only very moderately with irradiation. Furthermore, the spatial resolution of the modules is investigated. Different cluster algorithms are utilized and compared. It is shown that the spatial resolution is not much affected by irradiation and that the spatial resolution can be improved with respect to the current standard reconstruction. In the second part, larger structures of the silicon tracker are studied during the socalled ''tracker slice-test''. Two sectors from one of the tracker end caps are investigated. Special emphasis is given to the commissioning of the system and the monitoring of the various commissioning parameters. Furthermore, the noise of the system is investigated as a function of the ambient temperature and different powering schemes. It is shown that the noise of the system behaves as expected. The noise is stable within 2% for different powering schemes. Also possible failures of components are investigated and persistent defects are

  14. Calibration, alignment and long-term performance of the CMS silicon tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Butz, E.

    2009-03-15

    With an active area of more than 200 m{sup 2}, the CMS silicon strip detector is the largest silicon tracker ever built. It consists of more than 15,000 individual silicon modules which have to meet very high standards in terms of noise behavior and electronic crosstalk, as well as their exact positioning within the tracker. Furthermore, the modules will be exposed to a harsh radiation environment over the lifetime of the tracker. This thesis deals with several of the above-mentioned aspects. In the first part, individual modules are investigated using a testbeam. Some of the modules were irradiated up to an integrated dose which corresponds to the expected one over the life time of the tracker. These modules are investigated with respect to their signal-to-noise behavior, and their cross-talk. Several operational parameters are varied, such as the temperature and the bias voltage. It is shown that the modules behave as expected. The signal-to-noise ratio is well above the specifications and the cross-talk increases only very moderately with irradiation. Furthermore, the spatial resolution of the modules is investigated. Different cluster algorithms are utilized and compared. It is shown that the spatial resolution is not much affected by irradiation and that the spatial resolution can be improved with respect to the current standard reconstruction. In the second part, larger structures of the silicon tracker are studied during the socalled 'tracker slice-test'. Two sectors from one of the tracker end caps are investigated. Special emphasis is given to the commissioning of the system and the monitoring of the various commissioning parameters. Furthermore, the noise of the system is investigated as a function of the ambient temperature and different powering schemes. It is shown that the noise of the system behaves as expected. The noise is stable within 2% for different powering schemes. Also possible failures of components are investigated and persistent

  15. Design, Construction and Commissioning of the CMS Tracker at CERN and Proposed Improvements for Detectors at the Future International Linear Collider

    CERN Document Server

    Bergauer, T

    The CMS (Compact Muon Solenoid) detector is a huge particle physics experiment located at one of the four proton-proton interaction points of the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research (Geneva, Switzerland). With 27 km circumference it is the not only the largest particle accelerator in size, but with a center of mass energy of 2x7 TeV it will also set the world record in terms of energy. The inner tracking system of the CMS experiment has a diameter of 2.4 m and a length of 5.4 m and is representing the largest silicon tracker ever built. About 15,000 detector modules consisting of more than 24,000 silicon sensors create a silicon area of 206 m2 to detect charged particles from proton collisions. They are placed on a rigid carbon fibre structure in the center of the experiment, and have to operate reliably within a harsh radiation environment and the working conditions of a 3.8 Tesla solenoid magnetic field at -10 degree C temperature. This thesis was conducted ...

  16. The assembly of the silicon tracker for the GLAST beam test engineering model

    International Nuclear Information System (INIS)

    Allport, P.; Atwood, E.; Atwood, W.; Beck, G.; Bhatnager, B.; Bloom, E.; Broeder, J.; Chen, V.; Clark, J.; Cotton, N.; Couto e Silva, E. do; Feerick, B.; Giebels, G.; Godfrey, G.; Handa, T.; Hernando, J.A.; Hirayama, M.; Johnson, R.P.; Kamae, T.; Kashiguine, S.; Kroeger, W.; Milbury, C.; Miller, W.; Millican, O.; Nikolaou, M.; Nordby, M.; Ohsugi, T.; Paliaga, G.; Ponslet, E.; Rowe, W.; Sadrozinski, H.F.-W.; Spencer, E.; Stromberg, S.; Swensen, E.; Takayuki, M.; Tournear, D.; Webster, A.; Winkler, G.; Yamamoto, K.; Yamamura, K.; Yoshida, S.

    2001-01-01

    The silicon tracker for the engineering model of the GLAST Large Area Telescope (LAT) to date represents the largest surface of silicon microstrip detectors assembled in a tracker (2.7 m 2 ). It demonstrates the feasibility of employing this technology for satellite based experiments, in which large effective areas and high reliability are required. This note gives an overview of the assembly of this silicon tracker and discusses in detail studies performed to track quality assurance: leakage current, mechanical alignment and production yields

  17. Error handling for the CDF online silicon vertex tracker

    CERN Document Server

    Bari, M; Cerri, A; Dell'Orso, Mauro; Donati, S; Galeotti, S; Giannetti, P; Morsani, F; Punzi, G; Ristori, L; Spinella, F; Zanetti, A M

    2001-01-01

    The online silicon vertex tracker (SVT) is composed of 104 VME 9U digital boards (of eight different types). Since the data output from the SVT (few MB/s) are a small fraction of the input data (200 MB/s), it is extremely difficult to track possible internal errors by using only the output stream. For this reason, several diagnostic tools have been implemented: local error registers, error bits propagated through the data streams, and the Spy Buffer system. Data flowing through each input and output stream of every board are continuously copied to memory banks named spy buffers, which act as built-in logic state analyzers hooked continuously to internal data streams. The contents of all buffers can be frozen at any time (e.g., on error detection) to take a snapshot of all data flowing through each SVT board. The spy buffers are coordinated at system level by the Spy Control Board. The architecture, design, and implementation of this system are described. (4 refs).

  18. Quality control considerations for the development of the front end hybrid circuits for the CMS Outer Tracker upgrade

    CERN Document Server

    Gadek, Tomasz; Bonnaud, Julien Yves Robert; De Clercq, Jarne Theo; Honma, Alan; Koliatos, Alexandros; Kovacs, Mark Istvan; Luetic, Jelena

    2017-01-01

    The upgrade of the CMS Outer Tracker for the HL-LHC requires the design of new double-sensor modules. They contain two high-density front end hybrid circuits, equipped with flip-chip ASICs, passives and mechanical structures. First prototype hybrids in a close-to-final form have been ordered from three manufacturers. To qualify these hybrids a test setup was built, which emulates future tracker temperature and humidity conditions, provides temporary interconnection, and implements testing features. The system was automated to minimize the testing time in view of the production phase. Failure modes, deliberately implemented in the produced hybrids, provided feedback on the system’s effectiveness.

  19. Measurement of the total and differential b cross sections at HERA and CMS tracker alignment at LHC

    International Nuclear Information System (INIS)

    Stefaniuk, Nazar

    2017-09-01

    This thesis is logically divided into two main parts. The first part present a ZEUS analysis which was performed on the data obtained from electron-proton collisions measured by the ZEUS detector for the 2003-2007 running period. The full HERA-II integrated luminosity of 376 pb"-"1 is used. The ZEUS detector is sensitive to the full phase space of beauty production, since it has cylindrical geometry, covers a wide rapidity range and was able to measure low transverse momentum muons. In this part a measurement of beauty production was studied via the process ep→e"'b anti bX→e"'μμX. Making full use of the HERA-II detector upgrade, secondary vertex information was used to constrain the beauty and charm contribution to this process. The result of this analysis is the measurement of the total, visible and differential cross sections for beauty production. The cross sections are compared to next-to-leading order QCD calculations. Similar to the beauty events, instanton or instanton-induced events involving heavy flavour can also be a source for non-isolated, both like- and unlike-sign muon pairs. In this analysis, instantons were studied with using QCDINS predictions. The data show no indication for instanton-induced events. The second part is related to CMS tracker alignment. It uses collision and cosmic data samples obtained by the CMS detector at the Large Hadron Collider in 2012. This part consists of studies of the CMS tracker alignment weak modes and a detailed study of the ''z-rescaling'' weak mode. The CMS tracker alignment weak mode study includes the simulation of the weak modes, and the alignment implementation on top of such simulation. This study shows that the alignment procedure of the CMS tracker is stable with regard to the three weak modes: ''Twist, Sagitta and Telescope'' which stand for three types of systematic shifts of the CMS tracker. The ''z-rescaling'' weak mode shows a strong and unexpected shift of some tracker detector components in the

  20. Measurement of the total and differential b cross sections at HERA and CMS tracker alignment at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Stefaniuk, Nazar

    2017-09-15

    This thesis is logically divided into two main parts. The first part present a ZEUS analysis which was performed on the data obtained from electron-proton collisions measured by the ZEUS detector for the 2003-2007 running period. The full HERA-II integrated luminosity of 376 pb{sup -1} is used. The ZEUS detector is sensitive to the full phase space of beauty production, since it has cylindrical geometry, covers a wide rapidity range and was able to measure low transverse momentum muons. In this part a measurement of beauty production was studied via the process ep→e{sup '}b anti bX→e{sup '}μμX. Making full use of the HERA-II detector upgrade, secondary vertex information was used to constrain the beauty and charm contribution to this process. The result of this analysis is the measurement of the total, visible and differential cross sections for beauty production. The cross sections are compared to next-to-leading order QCD calculations. Similar to the beauty events, instanton or instanton-induced events involving heavy flavour can also be a source for non-isolated, both like- and unlike-sign muon pairs. In this analysis, instantons were studied with using QCDINS predictions. The data show no indication for instanton-induced events. The second part is related to CMS tracker alignment. It uses collision and cosmic data samples obtained by the CMS detector at the Large Hadron Collider in 2012. This part consists of studies of the CMS tracker alignment weak modes and a detailed study of the ''z-rescaling'' weak mode. The CMS tracker alignment weak mode study includes the simulation of the weak modes, and the alignment implementation on top of such simulation. This study shows that the alignment procedure of the CMS tracker is stable with regard to the three weak modes: ''Twist, Sagitta and Telescope'' which stand for three types of systematic shifts of the CMS tracker. The ''z-rescaling'' weak

  1. Test beam demonstration of silicon microstrip modules with transverse momentum discrimination for the future CMS tracking detector

    Science.gov (United States)

    Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Postiau, N.; Randle-Conde, A.; Seva, T.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Wang, Q.; Yang, Y.; Zenoni, F.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Cabrera Jamoulle, J.; De Favereau De Jeneret, J.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Dutta, S.; Chowdhury, S. Roy; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.-H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Lu, R.-S.; Moya, M.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Braga, D.; Coughlan, J. A.; Harder, K.; Jones, L.; Ilic, J.; Murray, P.; Prydderch, M.; Tomalin, I. R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Patel, R.; Perloff, A.; Ulmer, K. A.; Delannoy, A. G.; D'Angelo, P.; Johns, W.

    2018-03-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2026 onwards. It includes an outer tracker based on dedicated modules that will reconstruct short track segments, called stubs, using spatially coincident clusters in two closely spaced silicon sensor layers. These modules allow the rejection of low transverse momentum track hits and reduce the data volume before transmission to the first level trigger. The inclusion of tracking information in the trigger decision is essential to limit the first level trigger accept rate. A customized front-end readout chip, the CMS Binary Chip (CBC), containing stub finding logic has been designed for this purpose. A prototype module, equipped with the CBC chip, has been constructed and operated for the first time in a 4 GeemVem/emc positron beam at DESY. The behaviour of the stub finding was studied for different angles of beam incidence on a module, which allows an estimate of the sensitivity to transverse momentum within the future CMS detector. A sharp transverse momentum threshold around 2 emVem/emc was demonstrated, which meets the requirement to reject a large fraction of low momentum tracks present in the LHC environment on-detector. This is the first realistic demonstration of a silicon tracking module that is able to select data, based on the particle's transverse momentum, for use in a first level trigger at the LHC . The results from this test are described here.

  2. Silicon Sensors for High-Luminosity Trackers - RD50 Collaboration Status Report

    CERN Document Server

    Kuehn, Susanne

    2014-01-01

    The revised schedule for the Large Hadron Collider (LHC) upg rade foresees a significant increase of the luminosity of the LHC by upgrading towards the HL-LHC ( High Luminosity-LHC). The final upgrade is planned for around the year 2023, followed by the HL-LHC running. This is motivated by the need to harvest the maximum physics potenti al from the machine. It is clear that the high integrated luminosity of 3000 fb − 1 will result in very high radiation levels, which manifest a serious challenge for the detectors. This is espe cially true for the tracking detectors installed close to the interaction point. For HL-LHC, all-s ilicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silico n sensors to be employed in the innermost layers. Within the RD50 Collaboration, a massive R&D; program is underway, with an open cooperation across experimental boundaries to deve lop silicon sensors with sufficient radiation tolerance. This report presents several researc h topics...

  3. The AMS silicon tracker readout, performance results with minimum ionizing particles

    CERN Document Server

    Alpat, B; Battiston, R; Bourquin, Maurice; Burger, W J; Extermann, Pierre; Chang, Y H; Hou, S R; Pauluzzi, M; Produit, N; Qiu, S; Rapin, D; Ribordy, R; Toker, O; Wu, S X

    2000-01-01

    First results for the AMS silicon tracker readout performance are presented. Small 20.0*20.0*0.300 mm/sup 3/ silicon microstrip detectors were installed in a 50 GeV electron beam at CERN. The detector readout consisted of prototypes of the tracker data reduction card equipped with a 12-bit ADC and the tracker frontend hybrid with VA_hdr readout chips. The system performance is assessed in terms of signal-to-noise, position resolution, and efficiency. (13 refs).

  4. Silicon sensor probing and radiation studies for the LHCb silicon tracker

    International Nuclear Information System (INIS)

    Lois, Cristina

    2006-01-01

    The LHCb Silicon Tracker (ST) will be built using silicon micro-strip technology. A total of 1400 sensors, with strip pitches of approximately 200μm and three different substrate thicknesses, will be used to cover the sensitive area with readout strips up to 38cm in length. We present the quality assurance program followed by the ST group together with the results obtained for the first batches of sensors from the main production. In addition, we report on an investigation of the radiation hardness of the sensors. Prototype sensors were irradiated with 24GeV/c protons up to fluences equivalent to 20 years of LHCb operation. The damage coefficient for the leakage current was studied, and full depletion voltages were determined

  5. Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker

    International Nuclear Information System (INIS)

    Onuki, Y.; Akiba, Y.; En'yo, H.; Fujiwara, K.; Haki, Y.; Hashimoto, K.; Ichimiya, R.; Kasai, M.; Kawashima, M.; Kurita, K.; Kurosawa, M.; Mannel, E.J.; Nakano, K.; Pak, R.; Sekimoto, M.; Sondheim, W.E.; Taketani, A.; Togawa, M.; Yamamoto, Y.

    2009-01-01

    The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements.

  6. CMS Status

    International Nuclear Information System (INIS)

    Dobrzynski, L.

    2007-01-01

    The status of the construction and installation of CMS detector is reviewed. The 4T magnet is cold since end of February 2006. Its commissioning up to the nominal field started in July 2006 allowing a Cosmic Challenge in which elements of the final detector are involved. All big mechanical pieces equipped with muons chambers have been assembled in the surface hall SX5. Since mid July the detector is closed with commissioned HCAL, two ECAL supermodules and representative elements of the silicon tracker. The trigger system as well as the DAQ are tested. After the achievement of the physics TDR, CMS is now ready for the promising signal hunting. (author)

  7. TRACKER

    CERN Multimedia

    G. Dirkes

    2010-01-01

    The strip system has generally exhibited stable and high performance operation during the last six months of pp and heavy ion collisions. The up-time during pp collision from June onwards was 99.0% and during the first weeks of heavy-ion running we reached 99.7%. Most of the down-time during the proton runs came from Tracker DAQ problems. Spurious extra events from individual front-end channels caused ‘sync loss draining’ errors at the central DAQ system downstream of the Tracker FEDs. Once the problem was understood, new firmware that detects this error condition was installed on the FEDs. This has reduced the recovery procedure from this particular condition from a full reconfiguration requiring 170 s, to a simple re-synchronisation taking only ~1 s. We have also streamlined the instructions for the central DAQ shifters in order to minimise the time needed to decide the proper reaction to a given problem. The average down-time for problems triggered by the strip tracker DAQ is 395 s. Th...

  8. Study of Silicon Microstrip Detector Properties for the LHCb Silicon Tracker

    CERN Document Server

    Lois-Gómez, C; Vázquez-Regueiro, P

    2006-01-01

    The LHCb experiment, at present under construction at the Large Hadron Collider at CERN, has been designed to perform high-precision measurements of CP violating phenomena and rare decays in the B meson systems. The need of a good tracking performance and the high density of particles close to the beam pipe lead to the use of silicon microstrip detectors in a significant part of the LHCb tracking system. The Silicon Tracker (ST) will be built using p-on-n silicon detectors with strip pitches of approximately 200 $\\mu$m and readout strips up to 38 cm in length. This thesis describes the tests carried out on silicon microstrip detectors for the ST, starting from the characterization of different prototypes up to the final tests on the detectors that are being installed at CERN. The results can be divided in three main blocks. The first part comprises an exhaustive characterization of several prototype sensors selected as suitable candidates for the detector and was performed in order to decide some design param...

  9. Performance of CMS TOB Silicon Detector Modules on a Double Sided Prototype ROD

    CERN Document Server

    Valls, Juan

    2004-01-01

    In this paper we summarize results of the performance of CMS TOB silicon detector modules mounted on the first assembled double-sided rod at CERN. Results are given in terms of noise, noise occupancies, signal to noise ratios and signal efficiencies. The noise figures from the rod optical setup are compared to the single module setup with electrical read out. Both test setups show a small or negligible common mode noise picked up by the modules. Similar noise results are obtained in both setups after full calibration gain values are applied. We measure total noise values of ~1600 electrons in peak mode and ~2600 electrons in deconvolution mode. Signal to noise ratios of the order of 15 (25) for deconvolution (peak) operation modes are found. The noise occupancies on the modules have important implications for the zero suppression algorithms which the CMS Tracker FEDs will use to reduce t he data volume flowing to the DAQ. The detector signal efficiencies and noise occupancies are also shown as a function of t...

  10. Monitoring CMS tracker construction and data quality using a Grid/Web service based on a visualization tool

    CERN Document Server

    Zito, Giuseppe; Regano, A

    2004-01-01

    The complexity of the CMS tracker (more than 50 million channels to monitor) now in construction in ten laboratories worldwide with hundreds of interested people, will require new tools for monitoring both the hardware and the software. In our approach we use both visualization tools and Grid services to make this monitoring possible. The use of visualization enables us to represent in a single computer screen all those million channels at once. The Grid will make it possible to get enough data and computing power in order to check every channel and also to reach the experts everywhere in the world allowing the early discovery of problems. We report here on a first prototype developed using the Grid environment already available now in CMS i.e. LCG2. This prototype consists on a Java client which implements the GUI for tracker visualization and two data servers connected to the tracker construction database and to Grid catalogs of event datasets. All the communication between client and servers is done using ...

  11. INNER TRACKER

    CERN Multimedia

    Peter Sharp

    In March the Silicon Strip Detector had been successfully connected to the PP1 patch panels on the CMS Cryostat, and every thing had been prepared to check out the Tracker and commission it with CMS with the ambition of joining the CMS Global Cosmic Run in April.  There followed serious problems with the cooling plant which through tremendous effort have been overcome and recently allowed commissioning of the tracker to proceed. In November 2007 there had been a failure of the heat exchanger in one of the seven cooling plants in the UXC cavern. After an analysis of the failure it was decided to replace this heat exchanger with a well-proven commercial heat exchanger and to re-commission the system. Re-commissioning the system proved to be more difficult than anticipated as on May 8 there was a second failure of a heat exchanger, in the main chiller plant in the USC service cavern. The analysis of the failure showed it was very similar to the previous failure. It was decided to replace all the heat ...

  12. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    CERN Document Server

    Strobbe, N

    2017-01-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  13. Manufacturing experience and test results of the PS prototype flexible hybrid circuit for the CMS Tracker Upgrade

    CERN Document Server

    Kovacs, Mark Istvan; Gadek, Tomasz; Honma, Alan; Vasey, Francois

    2017-01-01

    The CMS Tracker Phase-2 Upgrade for HL-LHC requires High Density Interconnect (HDI) flexible hybrid circuits to build modules with low mass and high granularity. The hybrids are carbon fibre reinforced flexible circuits with flip-chips and passives. Three different manufacturers produced prototype hybrids for the Pixel-Strip type modules. The first part of the presentation will focus on the design challenges of this state of the art circuit. Afterwards, the difficulties and experience related to the circuit manufacturing and assembly are presented. The description of quality inspection methods with comprehensive test results will lead to the conclusion.

  14. Characterization of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Centis Vignali, Matteo; Garutti, Erika; Junkes, Alexandra; Steinbrueck, Georg [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Eckstein, Doris; Eichhorn, Thomas [Deutsches Elektronen Synchrotron (DESY) (Germany)

    2016-07-01

    The high-luminosity upgrade of the Large Hadron Collider, foreseen for 2025, necessitates the replacement of the tracker of the CMS experiment. The innermost layer of the new pixel detector will be exposed to severe radiation corresponding to a 1 MeV neutron equivalent fluence up to Φ{sub eq} = 2 . 10{sup 16} cm{sup -2} and an ionizing dose of ∼ 10 MGy after an integrated luminosity of 3000 fb{sup -1}. Silicon crystals grown with different methods and sensor designs are under investigation in order to optimize the sensors for such high fluences. Thin planar silicon sensors are good candidates to achieve this goal, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. Epitaxial pad diodes and strip sensors irradiated up to fluences of Φ{sub eq} = 1.3 . 10{sup 16} cm{sup -2} have been characterized in laboratory measurements and beam tests at the DESY II facility. The active thickness of the strip sensors and pad diodes is 100 μm. In addition, strip sensors produced using other growth techniques with a thickness of 200 μm have been studied. In this talk, the results obtained for p-bulk sensors are shown.

  15. Development and Evaluation of Test Stations for the Quality Assurance of the Silicon Micro-Strip Detector Modules for the CMS Experiment

    CERN Document Server

    Pöttgens, Michael

    2007-01-01

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m2, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control o...

  16. TRACKER

    CERN Multimedia

    D. Duggan and L. Demaria

    2012-01-01

    Pixels Tracker With the 2012 proton-proton run almost complete, the pixel detector continues to operate well in an environment with large pile-up and high L1 rate. During this period, the pixel detector has shown excellent stability, with the number of current active channels from each the BPIX and FPIX the same as from the first month of 2012 running, resulting in 96.3% of the detector active. This total includes the recovery of six FPIX channels, temporarily disabled due to an unexpected dependence on the magnetic field. From a dedicated study that identified a small crack in an optical cable connector, a repair was made which restored 120 ROCs in the FPIX. During 2012 there has been a close collaboration of the online operations with the offline studies, resulting in the first dedicated HV bias scans used for the pixel Lorentz Angle measurement. These scans help to better understand this important parameter that changes with temperature, irradiation, and bias voltage. This is in addition to all other s...

  17. The BaBar silicon vertex tracker, performance and running experience

    International Nuclear Information System (INIS)

    Re, V.; Borean, C.; Bozzi, C.; Carassiti, V.; Cotta Ramusino, A.; Piemontese, L.; Breon, A.B.; Brown, D.; Clark, A.R.; Goozen, F.; Hernikl, C.; Kerth, L.T.; Gritsan, A.; Lynch, G.; Perazzo, A.; Roe, N.A.; Zizka, G.; Roberts, D.; Schieck, J.; Brenna, E.; Citterio, M.; Lanni, F.; Palombo, F.; Ratti, L.; Manfredi, P.F.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Ceccanti, M.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Neri, N.; Paoloni, E.; Profeti, A.; Rama, M.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Walsh, J.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.I.; Roat, C.; Bona, M.; Bianchi, F.; Gamba, D.; Trapani, P.; Bosisio, L.; Della Ricca, G.; Dittongo, S.; Lanceri, L.; Pompili, A.; Poropat, P.; Rashevskaia, I.; Vuagnin, G.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Hale, D.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Mazur, M.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.A.; Grothe, M.; Johnson, R.P.; Kroeger, W.; Lockman, W.S.; Pulliam, T.; Rowe, W.; Schmitz, R.E.; Seiden, A.; Spencer, E.N.; Turri, M.; Walkowiak, W.; Wilder, M.; Wilson, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Zobernig, H.

    2002-01-01

    The Silicon Vertex Tracker (SVT) of the BaBar experiment at the PEP-II asymmetric B factory is a five-layer double-sided, AC-coupled silicon microstrip detector. It represents the crucial element to precisely measure the decay position of B mesons and extract time-dependent CP asymmetries. The SVT architecture is shown and its performance is described, with emphasis on hit resolutions and efficiencies

  18. The BaBar silicon vertex tracker, performance and running experience

    CERN Document Server

    Re, V; Bozzi, C; Carassiti, V; Cotta-Ramusino, A; Piemontese, L; Breon, A B; Brown, D; Clark, A R; Goozen, F; Hernikl, C; Kerth, L T; Gritsan, A; Lynch, G; Perazzo, A; Roe, N A; Zizka, G; Roberts, D; Schieck, J; Brenna, E; Citterio, M; Lanni, F; Palombo, F; Ratti, L; Manfredi, P F; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bosi, F; Bucci, F; Calderini, G; Carpinelli, M; Ceccanti, M; Forti, F; Gagliardi, D J; Giorgi, M A; Lusiani, A; Mammini, P; Morganti, M; Morsani, F; Neri, N; Paoloni, E; Profeti, A; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Burchat, Patricia R; Cheng, C; Kirkby, D; Meyer, T I; Roat, C; Bóna, M; Bianchi, F; Gamba, D; Trapani, P; Bosisio, L; Della Ricca, G; Dittongo, S; Lanceri, L; Pompili, A; Poropat, P; Rashevskaia, I; Vuagnin, G; Burke, S; Callahan, D; Campagnari, C; Dahmes, B; Hale, D; Hart, P; Kuznetsova, N; Kyre, S; Levy, S; Long, O; May, J; Mazur, M; Richman, J; Verkerke, W; Witherell, M; Beringer, J; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Johnson, R P; Kröger, W; Lockman, W S; Pulliam, T; Rowe, W; Schmitz, R E; Seiden, A; Spencer, E N; Turri, M; Walkowiak, W; Wilder, M; Wilson, M; Charles, E; Elmer, P; Nielsen, J; Orejudos, W; Scott, I; Zobernig, H

    2002-01-01

    The Silicon Vertex Tracker (SVT) of the BaBar experiment at the PEP-II asymmetric B factory is a five-layer double-sided, AC-coupled silicon microstrip detector. It represents the crucial element to precisely measure the decay position of B mesons and extract time-dependent CP asymmetries. The SVT architecture is shown and its performance is described, with emphasis on hit resolutions and efficiencies.

  19. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2007-07-01

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs.

  20. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    International Nuclear Information System (INIS)

    Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2007-01-01

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs

  1. Improvement in breakdown characteristics with multiguard structures in microstrip silicon detectors for CMS

    International Nuclear Information System (INIS)

    Bacchetta, N.; Bisello, D.; Candelori, A.; Rold, M. Da; Descovich, M.; Kaminski, A.; Messineo, A.; Rizzo, F.; Verzellesi, G.

    2001-01-01

    To obtain full charge collection the CMS silicon detectors should be able to operate at high bias voltage. We observed that multiguard structures enhance the breakdown performance of the devices on several tens of baby detectors designed for CMS. The beneficial effects of the multiguard structures still remains after the strong neutron irradiation performed to simulate the operation at the LHC

  2. Improvement in breakdown characteristics with multiguard structures in microstrip silicon detectors for CMS

    CERN Document Server

    Bacchetta, N; Candelori, A; Da Rold, M; Descovich, M; Kaminski, A; Messineo, A; Rizzo, F; Verzellesi, G

    2001-01-01

    To obtain full charge collection the CMS silicon detectors should be able to operate at high bias voltage. We observed that multiguard structures enhance the breakdown performance of the devices on several tens of baby detectors designed for CMS. The beneficial effects of the multiguard structures still remains after the strong neutron irradiation performed to simulate the operation at the LHC. (3 refs).

  3. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC)

    International Nuclear Information System (INIS)

    Moreau, St.

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  4. Preliminary results from the GLAST silicon tracker beam test

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Stefano [INFN sez.Perugia, Via A. Pascoli, 06123, Perugia (Italy)], E-mail: stefano.germani@pg.infn.it

    2007-12-01

    The Large Area Telescope (LAT) on board the Gamma-ray Large Area Space Telescope (GLAST) is a pair-conversion gamma-ray detector designed to explore the gamma-ray universe in the 20 MeV-300 GeV energy band. The Tracker subsystem of the LAT will perform tracking of electrons and positrons to determine the origin of the gamma-ray. The LAT instrument, the Calibration Unit (CU) and the beamtest performed at CERN during the summer 2006 are described in this paper.

  5. Preliminary Results From the GLAST Silicon Tracker Beam Test

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Stefano; /INFN, Perugia

    2009-05-12

    The Large Area Telescope (LAT) on board the Gamma-ray Large Area Space Telescope (GLAST) is a pair-conversion gamma-ray detector designed to explore the gamma-ray universe in the 20 MeV-300 GeV energy band. The Tracker subsystem of the LAT will perform tracking of electrons and positrons to determine the origin of the gamma-ray. The LAT instrument, the Calibration Unit (CU) and the beamtest performed at CERN during the summer 2006 are described in this paper.

  6. Fabrication of the GLAST Silicon Tracker Readout Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, Luca; Brez, Alessandro; Himel, Thomas; Johnson, R.P.; Latronico, Luca; Minuti, Massimo; Nelson, David; Sadrozinski, H.F.-W.; Sgro, Carmelo; Spandre, Gloria; Sugizaki, Mutsumi; Tajima, Hiro; Cohen Tanugi, Johann; Young, Charles; Ziegler, Marcus; /Pisa U. /INFN, Pisa /SLAC /UC, Santa Cruz

    2006-03-03

    A unique electronics system has been built and tested for reading signals from the silicon-strip detectors of the Gamma-ray Large Area Space Telescope mission. The system amplifies and processes signals from 884,736 36-cm long silicon strips in a 4 x 4 array of tower modules. An aggressive mechanical design fits the readout electronics in narrow spaces between the tower modules, to minimize dead area. This design and the resulting departures from conventional electronics packaging led to several fabrication challenges and lessons learned. This paper describes the fabrication processes and how the problems peculiar to this design were overcome.

  7. The silicon microstrip sensors of the ATLAS semiconductor tracker

    Czech Academy of Sciences Publication Activity Database

    Ahmad, A.; Albrechtskirchinger, Z.; Allport, P.; Böhm, Jan; Mikeštíková, Marcela; Šťastný, Jan

    2007-01-01

    Roč. 578, - (2007), s. 98-118 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * SCT * silicon * microstrip * module * LHC Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.114, year: 2007

  8. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  9. Quality assurance and irradiation studies on CMS silicon strip sensors

    CERN Document Server

    Furgeri, Alexander

    The high luminosity at the Large Hadron Collider at the European Particle Physics Laboratory CERN in Geneva causes a harsh radiation environment for the detectors. The most inner layers of the tracker are irradiated to an equivalent fluence of 1.6e14 1MeV-neutrons per cmˆ2. The radiation causes damage in the silicon lattice of the sensors. This increases the leakage current and changes the full depletion voltage. Both of these parameters are after irradiation neither stable with time nor with temperatures above 0oC. This thesis presents the changes of the leakage currents, the full depletion voltages, and all strip parameters of the sensors after proton and neutron irradiation. After irradiation annealing studies have been carried out. All observed effects are used to simulate the evolution of full depletion voltage for different annealing times and annealing temperatures in order to keep the power consumption as low as possible. From the observed radiation damage and annealing effects the sensors of the tra...

  10. Silicon tracker for the compressed baryonic matter experiment

    Directory of Open Access Journals (Sweden)

    M. S. Borysova

    2008-12-01

    Full Text Available Design of STS and module prototype of silicon micro-strip detector for particle momenta measurements with a resolution of around Δp/p ≈ 1 % are presented. Very high radiation level and inhomogeneous track distribution result in modular construction of the detector stations. The micro-strip detectors are planned to be read out with the help of СВМ-XYTER chip. The system requirements include radiation tolerant sensors with high spatial resolution and a fast readout compatible with high-level-only triggers. Concept of the silicon detection system and the R&D on micro-strip sensors as well as front-end electronics for the building blocks of the detector stations are discussed.

  11. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    Energy Technology Data Exchange (ETDEWEB)

    D0, SMT Production Testing Group; /Fermilab

    2006-03-01

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  12. THE 15 LAYER SILICON DRIFT DETECTOR TRACKER IN EXPERIMENT 896

    International Nuclear Information System (INIS)

    Pandey, S.U.

    1998-01-01

    Large linear silicon drift detectors have been developed and are in production for use in several experiments. Recently 15 detectors were used as a tracking device in BNL-AGS heavy ion experiment (E896). The detectors were successfully operated in a 6.2 T magnetic field. The behavior of the detectors, such as drift uniformity, resolution, and charge collection efficiency are presented. The effect of the environment on the detector performance is discussed. Some results from the experimental run are presented. The detectors performed well in an experimental environment. This is the first tracking application of these detectors

  13. Silicon sensors for the upgrades of the CMS pixel detector

    International Nuclear Information System (INIS)

    Centis Vignali, Matteo

    2015-12-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accelerator and its injection chain. Two major upgrades will take place in the next years. The first upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2.10 34 cm -2 s -1 . A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5.10 34 cm -2 s -1 . As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The first upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout electronics that allow efficient data taking up to a luminosity of 2.10 34 cm -2 s -1 , twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at different institutes. Hamburg (University and DESY) is responsible for the production of 350 pixel modules. The second upgrade (phase II) of the pixel detector is foreseen for 2025. The innermost pixel layer of the upgraded detector will accumulate a radiation damage corresponding to an equivalent fluence of Φ eq =2.10 16 cm -2 and a dose of ∼10 MGy after an integrated luminosity of 3000 fb -1 . Several groups are investigating sensor designs and configurations able to withstand such high doses and fluences. This work is divided into two parts related to important aspects of the upgrades of the CMS pixel detector. For the phase I upgrade, a setup has been developed to provide an absolute energy calibration of the pixel modules that will constitute the detector. The calibration is obtained using monochromatic X-rays. The same setup is used to test the buffering capabilities of the modules' readout chip. The maximum rate experienced by the modules produced in

  14. Identification of long lived charginos in the CMS pixel tracker with a Deep Neural Network

    CERN Document Server

    Bury, Florian Joel J

    2017-01-01

    In many models of physics beyond the Standard Model (BSM), Dark Matter (DM) particles are part of some multiplet and could be produced from the decay of other states in the multiplet. An example of this is the production of SUSY neutralinos from chargino decays. The mass split between the two states could be very small, such that the DM partner could become long-living and decay far from the interaction region. In this report is investigated a scenario where the decay occurs before the strip tracker resulting on a short track hard to distinguish from the background and pile-up. The analysis used here focused on the energy deposit in the pixel tracker by using a deep neural network.

  15. Proposal for the award of a contract for the supply of analogue optoelectronic receiver modules for the CMS tracker

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the supply of 12-channel analogue optoelectronic receiver modules for the CMS Tracker. Following a market survey carried out among 56 firms in seventeen Member States and four firms in two non-Member States, a call for tenders (IT-2810/EP/CMS) was sent on 29 June 2001 to one firm in a Member State and one firm in a non-Member State. By the closing date, CERN had received one tender. The Finance Committee is invited to agree to the negotiation of a contract with NGK INSULATORS (JP), the only bidder, for the supply of 4500 units of 12-channel analogue optoelectronic receiver modules for a total amount of 228 485 949 Japanese yen, not subject to revision until 31 December 2003. At the rate of exchange stipulated in the tender, this amount is equivalent to approximately 3 110 500 Swiss francs. CERN's contribution to the total cost is 1 863 967 Swiss francs. The firm has indicated the following distribution by country of the contract value covered by this adjudica...

  16. Developments toward a silicon strip tracker for the PANDA experiment

    International Nuclear Information System (INIS)

    Zaunick, Hans-Georg

    2013-01-01

    The PANDA detector at the future FAIR facility in Darmstadt will be a key experiment in the understanding of the strong interaction at medium energies where perturbative models fail to describe the quark-quark interaction. An important feature of the detector system is the ability to reconstruct secondary decay vertices of short-lived intermediate states by means of a powerful particle tracking system with the the Micro-Vertex Detector (MVD) as central element to perform high-resolution charmonium and open-charm spectroscopy. The MVD is conceived with pixel detectors in the inner parts and double-sided silicon strip detectors at the outer half in a very lightweight design. The PANDA detector system shall be operated in a self-triggering broadband acquisition mode. Implications on the read-out electronics and the construction of the front-end assemblies are analyzed and evaluation of prototype DSSD-detectors wrt. signal-to-noise ratio, noise figures, charge sharing behavior, spatial resolution and radiation degradation discussed. Methods of electrical sensor characterization with different measurement setups are investigated which may be useful for future large-scale QA procedures. A novel algorithm for recovering multiple degenerate cluster hit patterns of double-sided strip sensors is introduced and a possible architecture of a Module Data Concentrator ASIC (MDC) aggregating multiple front-end data streams conceived. A first integrative concept for the construction and assembly of DSSD modules for the barrel part of the MVD is introduced as a conclusion of the thesis. Furthermore, a detailed description of a simplified procedure for the calculation of displacement damage in compound materials is given as reference which was found useful for the retrieval of non-ionizing energy loss for materials other than silicon.

  17. Experience in the Development of the CMS Inner Tracker Analog Optohybrid Circuits: Project, Qualification, Volume Production, Quality Assurance and Final Performance

    CERN Document Server

    Ricci, Daniel; Bilei, Gian Mario; Casinini, F; Postolache, Vasile

    2005-01-01

    The Tracker system of the Compact Muon Solenoid (CMS) Experiment, will employ approximately 40,000 analog fibre-optic data and control links. The optical readout system is responsible for converting and transmitting the electrical signals coming out from the front-end to the outside counting room. Concerning the inner part of the Tracker, about 3,600 Analog Optohybrid circuits are involved in this tasks. These circuits have been designed and successfully produced in Italy under the responsibility of INFN Perugia CMS group completing the volume production phase by February 2005. Environmental features, reliability and performances of these circuits have been extensively tested and qualified. This paper reviews the most relevant steps of the manufacturing and quality assurance process: from prototypes to mass-production for the final CMS use.

  18. Development and evaluation of test stations for the quality assurance of the silicon micro-strip detector modules for the CMS experiment

    International Nuclear Information System (INIS)

    Poettgens, M.

    2007-01-01

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m 2 , the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control of the quality is done by the members of the 21 participating institutes. Since the access to the silicon micro-strip tracker will be very limited after the installation in the CMS detector the installed modules must be of high quality. For this reason the modules are thoroughly tested and the test results are uploaded to a central database. By the development of a read-out system and the corresponding software the III. Physikalisches Institut made an important contribution for the electrical and functional quality control of hybrids and modules. The read-out system provides all features for the operation and test of hybrids and modules and stands out due to high reliability and simple handling. Because a very user-friedly and highly automated software it became the official test tool and was integrated in various test stands. The test stands, in which the read-out system is integrated in, are described and the tests which are implemented in the corresponding

  19. Design and test of a prototype silicon detector module for ATLAS Semiconductor Tracker endcaps

    International Nuclear Information System (INIS)

    Clark, A.G.; Donega, M.; D'Onofrio, M.

    2005-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment. The SCT consists of four concentric barrels of silicon detectors as well as two silicon endcap detectors formed by nine disks each. The layout of the forward silicon detector module presented in this paper is based on the approved layout of the silicon detectors of the SCT, their geometry and arrangement in disks, but uses otherwise components identical to the barrel modules of the SCT. The module layout is optimized for excellent thermal management and electrical performance, while keeping the assembly simple and adequate for a large scale module production. This paper summarizes the design and layout of the module and present results of a limited prototype production, which has been extensively tested in the laboratory and testbeam. The module design was not finally adopted for series production because a dedicated forward hybrid layout was pursued

  20. Commissioning and Performance of the CMS Pixel Tracker with Cosmic Ray Muons

    CERN Document Server

    Chatrchyan, S; Abbaneo, D; Abbiendi, G; Abbrescia, M; Abdullin, S; Abelev, B; Acosta, D; Acosta, J G; Actis, O; Adam, N; Adams, M R; Adams, T; Adam, W; Adiguzel, A; Adler, V; Adolphi, R; Adzic, P; Afaq, M A; Agostino, L; Agram, J L; Aguilar-Benitez, M; Ahmad, M; Ahmed, I; Ahmed, W; Ahuja, S; Aisa, D; Aisa, S; Akchurin, N; Akgun, B; Akgun, U; Akimenko, S; Akin, I V; Alagoz, E; Alampi, G; Albajar, C; Albayrak, E A; Alberdi, J; Albergo, S; Albert, E; Albrow, M; Alcaraz Maestre, J; Aldaya Martin, M; Alexander, J; Alidra, M; Aliev, T; Allfrey, P; Almeida, N; Altenhöfer, G; Altsybeev, I; Alver, B; Alverson, G; Alves, G A; Amaglobeli, N; Amapane, N; Ambroglini, F; Amsler, C; Anagnostou, G; Ananthan, B; Anastassov, A; Andelin, D; Anderson, M; Andrea, J; Andreev, V; Andreev, Yu; Anghel, I M; Anguelov, T; Anisimov, A; Antillon, E; Antipov, P; Antonelli, L; Anttila, E; Antunes Pedro, L; Antunovic, Z; Apanasevich, L; Apollinari, G; Apresyan, A; Arce, P; Arcidiacono, R; Arenton, M W; Arfaei, H; Argiro, S; Arisaka, K; Arneodo, M; Arnold, B; Arora, S; Artamonov, A; Asaadi, J; Asghar, M I; Ashby, S; Askew, A; Atac, M; Atramentov, O; Auffray, E; Aurisano, A; Autermann, C; Avery, P; Avetisyan, A; Avila, C; Awan, M I M; Ayan, A S; Ayhan, A; Azhgirey, I; Aziz, T; Azman Gokce, A; Azzi, P; Azzurri, P; Baarmand, M M; Babb, J; Babucci, E; Baccaro, S; Bacchetta, N; Bacchi, W; Bachtis, M; Baden, D; Badgett, W; Baechler, J; Baer, H; Baesso, P; Baffioni, S; Bagby, L; Bagliesi, G; Bahk, S Y; Bailleux, D; Baillon, P; Bainbridge, R; Bakhshiansohi, H; Bakirci, M N; Bakken, J A; Balazs, M; Baldin, B; Ball, A H; Ball, G; Ballin, J; Bally, S L; Bandurin, D; Banerjee, S; Banerjee, S; Banicz, K; Bansal, S; Ban, Y; Banzuzi, K; Baquero Ruiz, M; Barashko, V; Barbagli, G; Barberis, E; Barbone, L; Barcala, J M; Barcellan, L; Bard, R; Bargassa, P; Baringer, P; Barnes, V E; Barnett, B A; Barney, D; Barone, L; Bartalini, P; Bartoloni, A; Bartz, E; Basegmez, S; Battilana, C; Baty, C; Baud, A; Bauerdick, L A T; Bauer, G; Bauer, J; Baur, U; Bawa, H S; Bazterra, V E; Bean, A; Beauceron, S; Beaudette, F; Beaumont, W; Bechtel, F; Bedjidian, M; Beetz, C P; Behrens, U; Belforte, S; Beliy, N; Bellan, P; Bellan, R; Bellato, M; Bellinger, J N; Bell, K W; Belotelov, I; Benaglia, A; Bencze, G; Bendavid, J; Bender, W; Benedetti, D; Benelli, G; Benettoni, M; Beni, N; Benucci, L; Benussi, L; Benvenuti, A C; Beretvas, A; Bergauer, H; Bergauer, T; Beri, S B; Bernardini, J; Bernardino Rodrigues, N; Bernet, C; Berntzon, L; Berretta, L; Berry, D; Berry, E; Berryhill, J; Bertani, M; Bertl, W; Bertoldi, M; Berzano, U; Besancon, M; Besson, A; Betchart, B; Betev, B; Betts, R R; Beuselinck, R; Bhatnagar, V; Bhat, P C; Bhattacharya, S; Bhattacharya, S; Bhatti, A; Biallass, P; Bianchini, L; Bianco, S; Biasini, M; Biasotto, M; Biery, K; Biino, C; Bilei, G M; Bilki, B; Bilmis, S; Binkley, M; Bisello, D; Bitioukov, S; Blaha, J; Blanco Otano, M; Blekman, F; Bloch, D; Bloch, I; Bloch, P; Bloom, K; Bluj, M; Blumenfeld, B; Blüm, P; Blyweert, S; Boccali, T; Bocci, A; Bockelman, B; Bodek, A; Bodin, D; Boeriu, O; Boldini, M; Boldizsar, L; Bolla, G; Bolognesi, S; Bolton, T; Bonacorsi, D; Bona, M; Bonato, A; Bondar, N; Bonnett Del Alamo, M; Bontenackels, M; Boos, E; Borcherding, F; Borgia, M A; Bornheim, A; Borras, K; Borrello, L; Borsato, E; Bortoletto, D; Bose, M; Bose, S; Bose, T; Bosi, F; Bos, J; Bostock, F; Botta, C; Boudoul, G; Bouhali, O; Bourgeois, N; Bourilkov, D; Bourrel, T; Boutemeur, M; Boutle, S; Braibant-Giacomelli, S; Branca, A; Branson, J G; Brauer, R; Braunschweig, W; Breedon, R; Brett, A M; Breuker, H; Brew, C; Bricola, S; Briggs, R; Brigljevic, V; Broccolo, G; Brom, J M; Brooke, J J; Brown, R M; Brun, H; Bruno, G; Buchmuller, O; Budd, H; Buege, V; Buehler, M; Bunin, P; Bunkowski, K; Bunn, J; Buontempo, S; Burgos Lazaro, C; Burkett, K; Burtovoy, V; Busson, P; Busza, W; Butler, J N; Butler, P H; Butt, J; Butz, E; Bylsma, B; Caballero Bejar, J; Cabrillo, I J; Cafaro, V D; Caiazza, S S; Cai, J; Cakir, A; Calderon, A; Calderon De La Barca Sanchez, M; Cali, I A; Callner, J; Calloni, M; Calvo, E; Calzolari, F; Camanzi, B; Caminada, L; Campagnari, C; Campbell, A; Campi, D; Camporesi, T; Cankocak, K; Cano, E; Capiluppi, P; Caponeri, B; Cardaci, M; Cardenas Montes, M; Carleton, M; Carlin, R; Carlsmith, D; Carrillo Montoya, C A; Carrillo Moreno, S; Carroll, R; Cartiglia, N; Carvalho, W; Case, M; Cassel, D; Castaldi, R; Castellani, L; Castello, R; Castilla Valdez, H; Castro, A; Castro, E; Castro, M A; Cattai, A; Caudron, J; Cavallari, F; Cavallo, F R; Cavallo, N; Cavanaugh, R; Cebra, D; Cepeda, M; Cerati, G B; Cerci, S; Cerizza, G; Cerminara, G; Ceron, C; Cerrada, M; Chabert, E C; Chamizo Llatas, M; Chandra, A; Chang, P; Chang, S; Chang, Y H; Chan, M; Chanon, N; Chao, Y; Charaf, O; Charlot, C; Chatelain, J P; Chatterjee, A; Chauhan, S; Chauvey, M; Checchia, P; Checcucci, B; Chekhovsky, V; Chen, E A; Chen, G M; Cheng, T L; Chen, H S; Chen, J; Chen, K F; Chen, M; Chen, W T; Chen, Z; Chertok, M; Chetluru, V; Cheung, H W K; Chien, C Y; Chierici, R; Chiochia, V; Chiorboli, M; Chipaux, R; Chiumarulo, F; Chlebana, F; Choi, M; Choi, S; Choi, Y; Choudhary, B C; Choudhury, R K; Chou, J P; Christian, G; Christiansen, T; Chtchipounov, L; Chuang, S H; Chung, J; Chung, K; Chung, Y S; Churin, I; Chwalek, T; Cihangir, S; Cimmino, A; Cirino, G; Cittolin, S; Ciulli, V; Civinini, C; Claes, D R; Clare, R; Clarida, W; Clemente, A; Clemente, F; Clerbaux, B; Cline, D; Coarasa Perez, J A; Cockerill, D J A; Codispoti, G; Colafranceschi, S; Colaleo, A; Cole, J E; Colino, N; Colling, D; Colonna, D; Conde Garcia, A; Conetti, S; Contardo, D; Conte, E; Conti, E; Conway, J; Cooper, S I; Cossutti, F; Costa, M; Costa, S; Coughlan, J A; Cousins, R; Covarelli, R; Cox, B; Cox, P T; Crawford, M; Creanza, D; Cremaldi, L M; Cripps, N; Crotty, I; Cuevas, J; Cuffiani, M; Cumalat, J P; Cuplov, V; Curé, B; Cuscela, G; Cushman, P; Cussans, D; Cutts, D; Cwiok, M; Czellar, S; Dabrowski, R; Dafinei, I; Dagenhart, W; Dahmes, B; Dal Corso, F; D'Alessandro, R; D'Alfonso, M; Dallavalle, G M; Dambach, S; Damgov, J; Dammann, D; D'Angelo, P; Daniel, M; Danielson, T; D'Antone, I; Darmenov, N; Da Silva Di Calafiori, D R; Daskalakis, G; Das, S; Dasu, S; Dattola, D; Daubie, E; David, A; Davids, M; Davies, G; de Barbaro, P; Debbins, P; De Benedetti, A; De Boer, W; Debreczeni, G; De Filippis, N; De Gruttola, M; De Guio, F; Deiters, K; Dejardin, M; De Jesus Damiao, D; Delachenal, V; De La Cruz, B; Delaere, C; De Lentdecker, G; Delgado Peris, A; Deliomeroglu, M; Dellacasa, G; Della Negra, M; Della Ricca, G; Dell'Orso, R; Delmeire, E; Del Re, D; Demaria, N; Demarteau, M; De Mattia, M; Demina, R; Demin, P; Demir, D; Demortier, L; Denegri, D; Denisov, A; Deniz, M; D'Enterria, D; De Oliveira Martins, C; De Palma, M; Depasse, P; Dermenev, A; De Robertis, G; De Roeck, A; Dero, V; Derylo, G; Descamps, J; de Trocóniz, J F; De Visscher, S; Devroede, O; De Weirdt, S; De Wolf, E A; Deyrail, D; Dharmaratna, W G D; D'Hondt, J; Diaz Merino, I; Diemoz, M; Dierlamm, A; Diez Gonzalez, C; Diez Pardos, C; Di Giovanni, G P; Di Marco, E; Dimitrov, A; Dimitrov, L; Dinardo, M E; Dinu, N; Dirkes, G; Dissertori, G; Dittmar, M; Di Vincenzo, S; Djaoshvili, N; Djordjevic, M; Dobrzynski, L; Dobur, D; Dolen, J; Dolgopolov, A; Dominguez, A; Dominik, W; Donvito, G; Dorigo, T; Doroba, K; Dos Santos, S; Dosselli, U; Draeger, J; Dragicevic, M; Dragoiu, C; Drell, B R; Dremin, I; Drouhin, F; Drozdetskiy, A; Druzhkin, D; Duarte Campderros, J; Dubinin, M; Duda, M; Dudero, P R; Dudko, L; Dugad, S; Dughera, G; Dumanoglu, I; Dumitrache, F; Dupasquier, T; Dupont, T; Duric, S; Durkin, L S; Duru, F; Dusinberre, E; Dutta, D; Dutta, S; Dvornikov, O; Dykstra, D; Dyulendarova, M; Dzelalija, M; Eads, M; Eartly, D P; Eckerlin, G; Ecklund, K M; Eckstein, D; Edelhoff, M; Edera, L M; Efron, J; Egeland, R; Eggel, C; Eichberger, M; Elgammal, S; Elias, J E; Elliott-Peisert, A; Ellison, J A; El Mamouni, H; Elmer, P; Elvira, V D; Emeliantchik, I; Engh, D; Eno, S C; Eppard, M; Epshteyn, V; Erbacher, R; Erdmann, M; Erdmann, W; Erhan, S; Erö, J; Ershov, A; Ershov, Y; Esen, S; Eskut, E; Esser, H; Eugster, J; Eulisse, G; Eusebi, R; Evangelou, I; Evans, D; Evans, D; Everaerts, P; Everett, A; Fabbricatore, P; Fabbri, F; Fabbri, F; Fabbro, B; Faber, G; Fabozzi, F; Faccioli, P; Fahim, A; Fanfani, A; Fanò, L; Fanzago, F; Farina, F M; Farnesini, L; Fasanella, D; Fassi, F; Faure, J L; Favart, D; Favre, M; Fay, J; Fedele, F; Fedorov, A; Fehling, D; Feindt, M; Felcini, M; Feld, L; Felzmann, U; Feng, L; Ferencek, D; Fereos, R; Ferguson, T; Fernandez Bedoya, C; Fernandez Menendez, J; Fernandez, M; Fernandez Perez Tomei, T R; Fernández Ramos, J P; Ferrando, A; Ferreira Dias, M A; Ferreira Parracho, P G; Ferri, F; Fetchenhauer, G; Feyzi, F; Field, R D; Filozova, I; Finger, M.; Finger Jr., M.; Fiore, L; Fiori, F; Fischler, M; Fisk, I; Flacher, H; Flix, J; Flood, K; Florez, C; Flossdorf, A; Flucke, G; Flügge, G; Foà, L; Focardi, E; Fonseca De Souza, S; Fontaine, J C; Ford, W T; Foudas, C; Foulkes, S; Fouz, M C; Franci, D; Franco, M; Frangenheim, J; Frank, N; Franzoni, G; Frazier, R; Freeman, J; Freitas Ferreira, M; Freudenreich, K; Frey, M; Friedl, M; Friis, E; Frosali, S; Frueboes, T; Frühwirth, R; Fulcher, J; Funk, W; Furgeri, A; Furic, I K; Futyan, D; Fu, Y; Gabathuler, K; Gaddi, A; Galanti, M; Gallinaro, M; Gallo, E; Gamsizkan, H; Ganjour, S; Garberson, J; Garcia-Abia, P; Garcia-Bonilla, A C; Garcia Raboso, A; Garcia-Solis, E J; Garfinkel, A F; Garmash, A; Gartner, J; Gartung, P; Gary, J W; Gascon, S; Gasparini, F; Gasparini, U; Gastal, M; Gataullin, M; Gateau, M; Gaultney, V; Gavrikov, Y; Gavrilov, G; Gavrilov, V; Gay, A P R; Gebbert, U; Gecse, Z; Geddes, N I; Geenen, H; Geiser, A; Gelé, D; Genchev, V; Gennai, S; Genta, C; Gentit, F X; Geralis, T; Gerbaudo, D; Gerber, C E; Gershtein, Y; Gerwig, H; Geurts, F J M; Ge, Y; Ghete, V M; Ghezzi, A; Giacomelli, P; Giammanco, A; Giardoni, M; Giassi, A; Gibbons, L K; Giffels, M; Gigi, D; Gill, K; Gilmore, J; Giordano, D; Giordano, V; Girgis, S; Girod, J P; Giubilato, P; Giunta, M; Giurgiu, G; Givernaud, A; Glege, F; Gleyzer, S V; Gninenko, S; Go, A; Gobbi, B; Gobbo, B; Godang, R; Godinovic, N; Goerlach, U; Goh, J; Goitom, I; Gokieli, R; Goldstein, J; Golf, F; Gollapinni, S; Golovtsov, V; Golubev, N; Golunov, A; Golutvin, I; Golyash, A; Gomez, A; Gomez Ceballos, G; Gomez, G; Gomez Moreno, B; Gomez-Reino Garrido, R; Gonella, F; Gonzalez Caballero, I; Gonzalez Lopez, O; Gonzalez Sanchez, J; Gonzalez Suarez, R; Gorbounov, N; Górski, M; Goscilo, L; Gotra, Y; Gottschalk, E; Goudard, R; Goulianos, K; Gouskos, L; Govi, G; Govoni, P; Gowdy, S; Goy Lopez, S; Grab, C; Grachov, O; Grandi, C; Granier de Cassagnac, R; Grant, N; Gras, P; Grassi, T; Gray, L; Gray, R N C; Graziano, A; Green, D; Grégoire, G; Gregores, E M; Gresele, A; Gribushin, A; Grishin, V; Gritsan, A V; Grogg, K S; Gronberg, J; Gross, L; Grothe, M; Grunewald, M; Gruschke, J; Guan, W; Guchait, M; Guerra Jordao, M; Guerzoni, M; Guida, R; Guiducci, L; Gu, J; Guler, A M; Gülmez, E; Gulmini, M; Gumus, K; Gunthoti, K; Guo, S; Guo, Y; Guo, Z J; Gupta, P; Guragain, S; Gurpinar, E; Gurrola, A; Gurtu, A; Gutay, L; Gutleber, J; Gutsche, O; Haas, J; Hackstein, C; Hadley, N J; Hagopian, S; Hagopian, V; Haguenauer, M; Hahn, A; Hahn, G; Hahn, K A; Haj Ahmad, W; Hajdu, C; Halkiadakis, E; Hall, G; Hall-Wilton, R; Halu, A; Halyo, V; Hamel de Monchenault, G; Hammad, G H; Hammer, J; Hanlon, J; Hänsel, S; Hansen, M; Hansen, M; Hanson, G; Harder, K; Harel, A; Härkönen, J; Harper, S; Harris, P; Harris, R M; Harr, R; Hartl, C; Hartmann, F; Harvey, J; Hashemi, M; Hatakeyama, K; Hatton, D; Hauk, J; Haupt, J; Hauser, J; Hays, J; Hazen, E; Heath, G P; Heath, H F; Hebbeker, T; Heering, A H; Hegner, B; Heier, S; Heikkinen, A; Heinrich, M; Heister, A; Hektor, A; Held, H; Heltsley, B; Hermanns, T; Hernandez, J M; Hernath, S; Hervé, A; Heyburn, B; Heydhausen, D; Heyninck, J; Hidas, P; Hildreth, M; Hilgers, G; Hill, C; Hintz, W; Hinzmann, A; Hirosky, R; Hirschbuehl, D; Hits, D; Hobson, P R; Hoch, M; Hoepfner, K; Hof, C; Hoffmann, H F; Hoffmann, K H; Hofman, D J; Hohlmann, M; Hollar, J; Hollingsworth, M; Holmes, D; Holzman, B; Holzner, A; Honc, S; Hong, B; Honma, A; Hoorani, H R; Hopkins, W; Horisberger, R; Hörmann, N; Horvath, D; Hos, I; Hou, W S; Howell, J; Hrubec, J; Hsiung, Y; Huang, X T; Huckvale, B; Hufnagel, D; Huhtinen, M; Hunt, A; Hussain, I; Hu, Z; Iaselli, G; Iashvili, I; Iaydjiev, P; Ignatenko, M; Iles, G; Ilina, N; Ille, B; Imrek, J; Incandela, J; Ingram, F D; Ingram, Q; Innocente, V; Inyakin, A; Iorio, A O M; Ippolito, N; Isildak, B; Ivanov, Y; Jackson, J; Jaditz, S; Jafari, A; Jain, S; James, E; Jang, D W; Janot, P; Janssen, X; Janulis, M; Jarry, P; Jarvis, C; Jaworski, M; Jeitler, M; Jeng, G Y; Jenkins, M; Jensen, H; Jeong, C; Jeong, H; Jessop, C; Jha, M; Jiang, C H; Jindal, M; Jindal, P; John, J St; Johnson, K F; Johnson, M; Johns, W; Jones, C D; Jones, J; Jones, M; Jorda, C; Josa, M I; Joshi, U; Jovanovic, D; Juillot, P; Jung, C; Jung, H; Jung, S Y; Jun, S Y; Juska, E; Justus, C; Kaadze, K; Kachanov, V; Kadastik, M; Kadija, K; Kaestli, H C; Kaftanov, V; Kailas, S; Kaiser, J; Kalagin, V; Kalakhety, H; Kalavase, P; Kalinin, S; Kalogeropoulos, A; Kamenev, A; Kaminskiy, A; Kamon, T; Kannike, K; Kao, S C; Kapusi, A; Karafasoulis, K; Karaman, T; Karapostoli, G; Karchin, P E; Karimäki, V; Karjavin, V; Karmgard, D J; Karneyeu, A; Karpinski, W; Kaschube, K; Kasemann, M; Kasieczka, G; Kastner, K; Kataria, S K; Katkov, I; Katsas, P; Kaur, M; Kaur, R; Kaussen, G; Kaya, M; Kaya, O; Kayis Topaksu, A; Kazana, M; Kcira, D; Keller, J; Kelley, R; Kellogg, R G; Kelly, T; Kennedy, B W; Khachatryan, V; Khalatian, S; Khan, A; Khan, W A; Kharchilava, A; Khomich, A; Khukhunaishvili, A; Khurshid, T; Killewald, P; Kim, B; Kim, D H; Kim, G N; Kim, H; Kim, H; Kim, J H; Kim, J; Kim, T J; Kim, V; Kim, Y; Kinnunen, R; Kirakosyan, M; Kirn, M; Kirsanov, M; Kirsch, M; Klabbers, P; Klanner, R; Klapoetke, K; Klein, B; Klein, K; Kleinwort, C; Klem, J; Klima, B; Klimenko, S; Klimkovich, T; Kluge, H; Klukas, J; Klute, M; Klyukhin, V; Knutsson, A; Koay, S A; Kodolova, O; Kohli, J M; Kokkas, P; Kolberg, T; Kolosov, V; Konecki, M; Kong, D J; Konigsberg, J; König, S; Konoplyanikov, V; Konovalova, N; Konstantinov, D; Kopecky, A; Korenkov, V; Korjenevski, S; Korpela, A; Kortelainen, M J; Korytov, A; Korzhik, M; Kossiakov, S; Kossov, M; Kotlinski, D; Kotov, K; Kousouris, K; Kovalskyi, D; Ko, W; Koybasi, O; Kozhuharov, V; Kozlov, G; Kozlov, V; Kraan, A; Krajczar, K; Kramer, L; Krammer, M; Krasnikov, N; Kravchenko, I; Kreis, B; Kress, T; Kreuzer, P; Kroeger, R; Krofcheck, D; Krokhotin, A; Krolikowski, J; Kropivnitskaya, A; Krpic, D; Krutelyov, V; Krychkine, V; Kubik, A; Kubota, Y; Kuchinsky, P; Kuhr, T; Kukartsev, G; Kuleshov, S; Kumar, A; Kumar, A; Kunori, S; Kuo, C M; Kurca, T; Kurenkov, A; Kurt, P; Kuznetsova, E; Kuznetsov, V; Kwan, S; Kyberd, P; Kypreos, T; Kyriakis, A; Laasanen, A T; Lacalamita, N; Lacaprara, S; Lae, C K; Laird, E; Lamb, J; Lampén, T; Lanaro, A; Lander, R; Landi, G; Landsberg, G; Lanev, A; Lange, D; Langenegger, U; Lange, W; Lannon, K; Lanske, D; Lariccia, P; Lassila-Perini, K; Laszlo, A; Lath, A; Lawson, P; Lazaridis, C; Lazic, D; Lazo-Flores, J; Lazzizzera, I; Le Bihan, A C; Lebolo, L M; Lebourgeois, M; Lecomte, P; Lecoq, P; Ledovskoy, A; Lee, J; Lee, K S; Lee, S; Lee, S W; Lee, Y J; Le Godec, G; Le Grand, T; Lehti, S; Lei, C M; Lei, Y J; Lelas, K; Lemaire, M C; Lemaitre, V; Lenzi, P; Leonard, J; Leonardo, N; Leonidopoulos, C; Leslie, D; Lethuillier, M; Letts, J; Levchenko, P; Levchuk, L; Levine, A; Liamsuwan, T; Liang, D; Ligabue, F; Liko, D; Limon, P; Lindén, T; Ling, T Y; Linn, A; Linn, S; Lin, S W; Lin, W; Lipeles, E; Lista, L; Lister, A; Li, S W; Litomin, A; Litov, L; Litvine, V; Liu, A; Liu, B; Liu, C; Liu, F; Liu, H; Liu, H; Liu, J H; Li, W; Lloret Iglesias, L; Lobelle Pardo, P; Lobov, I; Locci, E; Loddo, F; Lohmann, W; Loizides, C; Lokhtin, I; Lomidze, D; Lomtadze, T; Longo, E; Loos, R; Lopez, A; Lopez Berengueres, J O; Lopez Perez, J A; Lopez Virto, A; Los, S; Loukas, D; Lourenço, C; Loveless, R; Lowette, S; Lucaroni, A; Luckey, P D; Lueking, L; Luiggi Lopez, E; Lukanin, V; Lukhanin, G; Lukyanenko, S; Lumb, N; Lundstedt, C; Lungu, G; Lu, R S; Lusin, S; Lusito, L; Lustermann, W; Luthra, A; Luukka, P; Lykken, J; Lynch, S; Lyonnet, A; MacEvoy, B C; Mackay, C K; Macpherson, A; Madorsky, A; Mäenpää, T; Maeshima, K; Maes, J; Maes, M; Maes, T; Maggi, G; Maggi, M; Magini, N; Magnan, A M; Magrans de Abril, I; Magrans de Abril, M; Maillefaud, J D; Maire, G; Maity, M; Majumder, D; Majumder, G; Makankin, A; Makarenko, V; Mäki, T; Maksimovic, P; Malberti, M; Malbouisson, H; Malcles, J; Maletic, D; Malgeri, L; Malik, S; Malvezzi, S; Mangano, B; Mankel, R; Manna, N; Mannelli, M; Mans, J; Manthos, N; Mantovani, G; Mao, Y; Marage, P E; Marangelli, B; Maravin, Y; Marcellini, S; Marchica, C; Marco, J; Marco, R; Marfin, I; Margoni, M; Marian, G; Mariani, F; Marienfeld, M; Marinelli, N; Marin, J; Marinova, E; Marinov, A; Marionneau, M; Mariotti, C; Markou, A; Markou, C; Markowitz, P; Marlow, D; Maronde, D; Marone, M; Maron, G; Maroussov, V; Marraffino, J M; Marrouche, J; Martelli, A; Martinez, G; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Martini, L; Martins, P; Martisiute, D; Martschei, D; Maruyama, S; Maselli, S; Masetti, G; Masetti, L; Mason, D; Massa, M; Matchev, K; Mateev, M; Matorras, F; Mattiazzo, S; Mattson, M; Ma, T; Matveev, M; Matveev, V; Mavrommatis, C; Ma, Y; Mazumdar, K; Mazzucato, M; McBride, P; McCauley, T; McCliment, E; Medvedeva, T; Mehta, M Z; Meier, F; Meijers, F; Mel'nik, Y; Menasce, D; Mendez, H; Meneghelli, M; Meneguzzo, A T; Meng, X; Meridiani, P; Merino, G; Merkel, P; Merlo, J P; Mermerkaya, H; Merschmeyer, M; Mersi, S; Meschi, E; Meschini, M; Mesropian, C; Messineo, A; Mestvirishvili, A; Metson, S; Meyer, A B; Meyer, A; Meynet Cordonnier, A; Miao, T; Miccio, V; Miceli, T; Michelotto, M; Miglioranzi, S; Migliore, E; Mikulec, I; Mila, G; Milenovic, P; Militaru, O; Miller, D H; Miller, M J; Miller, M; Millischer, L; Miné, P; Miner, D C; Mini, G; Mirabito, L; Mirman, N; Mironov, C; Mishra, K; Mitselmakher, G; Mitsyn, V V; Mittermayr, F; Mnich, J; Moccia, S; Moeller, A; Moggi, A; Mohammadi Najafabadi, M; Mohanty, A K; Mohapatra, A; Mohr, N; Moisenz, P; Molina, J; Molinero, A; Molnar, J; Mommsen, R; Monaco, V; Mondal, N K; Montanari, A; Montecassiano, F; Moon, D H; Mooney, M; Moortgat, F; Morelos Pineda, A; Moroni, L; Morovic, S; Morse, D M; Moser, R; Moshaii, A; Mossolov, V; Mousa, J; Mozer, M U; Mrenna, S; Mucibello, L; Mueller, S; Muelmenstaedt, J; Muhammad, A S; Muhammad, S; Mulders, M; Müller, Th; Mulon, J; Mumford, J; Mundim, L; Munro, C; Müntel, M; Mura, B; Murray, M; Murray, P; Musella, P; Musenich, R; Musich, M; Musienko, Y; Muzaffar, S; My, S; Nachtman, J; Nahn, S; Nappi, A; Narain, M; Nardulli, A; Nash, J; Natali, S; Nauenberg, U; Naumann-Emme, S; Navarrete, J J; Navarria, F L; Naves Sordo, H; Nawrocki, K; Nayak, A; Necchi, M M; Nedelec, P; Negri, P; Nervo, M; Nespolo, M; Nessi-Tedaldi, F; Neu, C; Neuherz, B; Neuland, M B; Neumeister, N; Newbold, D M; Newman, H B; Newman-Holmes, C; Newsom, C R; Nguyen, C N; Nguyen, D; Nguyen, H; Niegel, M; Nikitenko, A; Nikolic, M; Nikonov, E; Nirunpong, K; Nishu, N; Noeding, C; Noli, P; Norbeck, E; Norman, M; Novaes, S F; Novak, D; Nowack, A; Nowak, F; Noy, M; Nuzzo, S; Nysten, J; Oberegger, M; Oberst, O; Obertino, M M; Obrant, G; Öcalan, K; Ocampo Rios, A A; Ochesanu, S; O'Dell, V; Odorici, F; Oehler, A; Ofierzynski, R A; Oggero, S; Oguri, V; Oh, A; Ohlerich, M; Olesen, G; Oleynik, D; Oliveros, S; Oller, J C; Olsen, J; Olson, J; Olzem, J; Onel, Y; Önengüt Gökbulut, G; Önengüt, G; Onnela, A; Onoprienko, D; Orbaker, D; Organtini, G; Orimoto, T; Orishchin, E; Orsini, L; Osborne, D; Osborne, I; Osorio Oliveros, A F; Ostaptchouk, A; Ott, G; Ott, J; Oulianov, A; Ovyn, S; Ozdemir, K; Ozkorucuklu, S; Ozok, F; Ozturk, S; Padhi, S; Padley, B P; Padrta, M; Paganini, P; Pagano, D; Paganoni, M; Pakhotin, Y; Paktinat Mehdiabadi, S; Palichik, V; Palinkas, J; Palla, F; Palma, A; Palmonari, F; Panagiotou, A; Pandolfi, F; Pandoulas, D; Panero, R; Panov, V; Pant, L M; Paoletti, S; Paolucci, P; Papadakis, A; Papadopoulos, I; Papageorgiou, A; Papagni, G; Pape, L; Paramatti, R; Parashar, N; Parenti, A; Park, H; Park, I C; Park, S K; Parsons, J; Pashenkov, A; Passamonti, L; Passaseo, M; Pastrone, N; Pasztor, G; Patay, G; Pathak, S; Patois, Y; Patras, V; Patterson, J R; Paulini, M; Paul, T; Paus, C; Pauss, F; Pavlov, B; Pavlunin, V; Pedrini, D; Pegoraro, M; Peiffer, T; Pein, U; Pela, J; Pellegrini, G; Pellegrino, F; Pellett, D; Pelliccioni, M; Penzo, A; Perchalla, L; Perelygin, V; Perera, L; Perez, E; Perinic, G; Pernicka, M; Pernot, J F; Perries, S; Perrotta, A; Perrozzi, L; Pesaresi, M; Petagna, P; Petiot, P; Petkov, P; Petragnani, G; Petrakou, E; Petridis, K; Petrilli, A; Petrillo, G; Petrosyan, A; Petrov, P; Petrov, V; Petrucciani, G; Petrucci, A; Petrunin, A; Petrushanko, S; Petyt, D; Pfeiffer, A; Philipps, B; Phillips II, D; Piccolo, D; Piccolomo, S; Piedra Gomez, J; Pieri, M; Pierini, M; Pierluigi, D; Pierro, G A; Pierschel, G; Pieta, H; Pi, H; Piluso, A; Pimiä, M; Pinto, C; Pintus, R; Pioppi, M; Piotrzkowski, K; Piparo, D; Piperov, S; Pirollet, B; Piroué, P; Pivarski, J; Plager, C; Plestina, R; Poettgens, M; Polatöz, A; Polese, G; Polic, D; Pol, M E; Pompili, A; Ponzio, B; Pooth, O; Popescu, S; Postema, H; Postoev, V E; Postolache, V; Potenza, R; Pozdnyakov, A; Pozniak, K; Pozzobon, N; Prescott, C; Prettner, E; Prokofyev, O; Prosper, H; Ptochos, F; Puerta Pelayo, J; Pugliese, G; Puigh, D; Puljak, I; Pullia, A; Punz, T; Puzovic, J; Qazi, S; Qian, S J; Quast, G; Quertenmont, L; Rabbertz, K; Racz, A; Radicci, V; Raffaelli, F; Ragazzi, S; Rahatlou, S; Rahmat, R; Raics, P; Raidal, M; Rajan, R; Rakness, G; Ralich, R; Ramirez Vargas, J E; Rander, J; Ranieri, A; Ranieri, R; Ranjan, K; Raposo, L; Rappoccio, S; Rapsevicius, V; Ratnikova, N; Ratnikov, F; Ratti, S P; Raupach, F; Ravat, S; Raymond, D M; Razis, P A; Rebane, L; Rebassoo, F; Redaelli, N; Redjimi, R; Reeder, D; Regenfus, C; Reid, I D; Reithler, H; Rekovic, V; Remington, R; Renker, D; Renz, M; Reucroft, S; Rew, S B; Reyes Romero, D; Rhee, H B; Ribeiro, P Q; Ribnik, J; Riccardi, C; Richman, J; Rivera, R; Rivetta, C H; Rizzi, A; Roberts, J; Robles, J; Robmann, P; Rodrigo, T; Rodrigues Antunes, J; Rodriguez, J L; Rogan, C; Rohe, T; Rohlf, J; Rohringer, H; Roh, Y; Roinishvili, N; Roinishvili, V; Roland, C; Roland, G; Rolandi, G.; Romaniuk, Ryszard; Romano, F; Romero, A; Romero, L; Rommerskirchen, T; Rompotis, N; Ronchese, P; Ronga, F J; Ronquest, M; Ronzhin, A; Rose, A; Rose, K; Roselli, G; Rosemann, C; Rosowsky, A; Rossato, K; Rossi, A M; Rossin, R; Rossman, P; Rougny, R; Rouhani, S; Rousseau, D; Rovelli, C; Rovelli, T; Rovere, M; Ruchti, R; Rudolph, M; Rugovac, S; Ruiz Jimeno, A; Rumerio, P; Rusack, R; Rusakov, S V; Ruspa, M; Russ, J; Russo, A; Ryan, M J; Ryckbosch, D; Ryd, A; Ryjov, V; Ryu, S; Ryutin, R; Sabbatini, L; Sabonis, T; Sacchi, R; Safarzadeh, B; Safonov, A; Safronov, G; Saha, A; Saini, L K; Sakharov, A; Sakulin, H; Sala, L; Sala, S; Salerno, R; Sampaio, S; Samyn, D; Sanabria, J C; Sanchez, A K; Sánchez Hernández, A; Sander, C; Sanders, D A; Sanders, S; Sani, M; Santacruz, N; Santanastasio, F; Santaolalla, J; Santocchia, A; Santoro, A; Sanzeni, C; Saout, C; Sarkar, S; Sartisohn, G; Sarycheva, L; Satpathy, A; Sauce, H; Sauerland, P; Savin, A; Savrin, V; Sawley, M C; Schael, S; Schäfer, C; Scheurer, A; Schieferdecker, P; Schilling, F P; Schlatter, W D; Schlein, P; Schleper, P; Schmid, S; Schmidt, A; Schmidt, I; Schmidt, R; Schmitt, M; Schmitt, M; Schmitz, S A; Schnetzer, S; Schoerner-Sadenius, T; Schöfbeck, R; Schott, G; Schreiner, T; Schröder, M; Schroeder, M; Schul, N; Schultz von Dratzig, A; Schümann, J; Schum, T; Schwering, G; Schwick, C; Sciaba, A; Sciacca, C; Scodellaro, L; Scurlock, B; Searle, M; Sedov, A; Seez, C; Segneri, G; Segoni, I; Seixas, J; Sekhri, V; Sekmen, S; Selvaggi, G; Selvaggi, M; Semenov, R; Semenov, S; Sengupta, S; Sen, S; Serban, A T; Serin, M; Servoli, L; Sever, R; Sexton-Kennedy, E; Sfiligoi, I; Sguazzoni, G; Shabalina, E; Shahzad, H; Sharma, A; Sharma, A; Sharma, S; Sharma, V; Sharp, P; Shaw, T M; Shcheglov, Y; Shchetkovskiy, A; Sheldon, P; Shen, B C; Shepherd-Themistocleous, C H; Shinde, Y; Shipsey, I; Shiu, J G; Shivpuri, R K; Shi, X; Shmatov, S; Shpakov, D; Shreyber, I; Shukla, P; Shumeiko, N; Siamitros, C; Sibille, J; Sidiropoulos, G; Siegrist, N; Siegrist, P; Signal, T; Sikler, F; Sill, A; Sillou, D; Silva Do Amaral, S M; Silva, J; Silva, P; Silvestris, L; Sim, K S; Simonetto, F; Simonis, H J; Simon, S; Sinanis, N; Singh, A; Singh, J B; Singh, S P; Singovsky, A; Sirois, Y; Siroli, G; Sirunyan, A M; Sknar, V; Skuja, A; Skup, E; Slabospitsky, S; Slaunwhite, J; Smiljkovic, N; Smirnov, I; Smirnov, V; Smith, J; Smith, K; Smith, R P; Smith, V J; Smith, W H; Smolin, D; Smoron, A; Snigirev, A; Snow, G R; Soares, D; Sobol, A; Sobrier, T; Sobron Sanudo, M; Sogut, K; Soha, A; Solano, A; Solin, A; Solovey, A; Somalwar, S; Son, D C; Song, S; Sonmez, N; Sonnek, P; Sonnenschein, L; Sordini, V; Soroka, D; Sourkov, A; Sousa, M; Souza, M H G; Sowa, M; Spagnolo, P; Spalding, W J; Spanier, S; Speck, J; Speer, T; Sphicas, P; Spiegel, L; Spiga, D; Spiropulu, M; Sprenger, D; Squires, M; Srivastava, A K; Stadie, H; Stahl, A; Staiano, A; Stark, R; Starodumov, A; Stefanovitch, R; Steggemann, J; Steinbrück, G; Steininger, H; Stenson, K; Stephans, G; Stettler, M; Stickland, D; Stieger, B; Stilley, J; Stober, F M; Stöckli, F; Stolin, V; Stone, R; Stoye, M; Stoykova, S; Stoynev, S; Strang, M; Strauss, J; Stringer, R; Stroiney, S; Stuart, D; Sturdy, J; Sturm, P; Suarez Gonzalez, J; Sudhakar, K; Sulak, L; Sulimov, V; Sultanov, G; Summers, D; Sumorok, K; Sung, K; Sun, W; Surat, U E; Suzuki, I; Svintradze, I; Swain, J; Swanson, J; Swartz, M; Sytine, A; Sytnik, V; Szabo, Z; Szczesny, H; Szekely, G; Szillasi, Z; Szleper, M; Sznajder, A; Tabarelli de Fatis, T; Takahashi, M; Tali, B; Tancini, V; Tanenbaum, W; Tan, P; Tao, J; Tapper, A; Tarakanov, V; Taroni, S; Taurok, A; Tauscher, L; Tavernier, S; Taylor, L; Taylor, R; Teischinger, F; Temple, J; Tenchini, R; Teng, H; Teodorescu, L; Teo, W D; Terentyev, N; Teyssier, D; Thea, A; Themel, T; Theofilatos, K; Thiebaux, C; Thomas, M; Thomas, S; Thom, J; Thomsen, J; Thyssen, F; Tikhonenko, E; Tikhonov, A; Timciuc, V; Timlin, C; Titov, M; Tkaczyk, S; Toback, D; Tokesi, K; Tolaini, S; Tomalin, I R; Tonelli, G; Toniolo, N; Tonjes, M B; Tonoiu, D; Tonwar, S C; Toole, T; Topakli, H; Topkar, A; Torassa, E; Tornier, D; Toropin, A; Torre, P; Torromeo, G; Tosi, M; Toteva, Z; Toth, N; Tourneur, S; Tourtchanovitch, L; To, W; Traczyk, P; Tran, N V; Trapani, P P; Travaglini, R; Trayanov, R; Treille, D; Trentadue, R; Triantis, F A; Tricomi, A; Triossi, A; Tripathi, M; Trocino, D; Trocsanyi, Z L; Troendle, D; Troitsky, S; Tropea, P; Tropiano, A; Troshin, S; Troska, J; Trüb, P; Trunov, A; Tsang, K V; Tsiakkouri, D; Tsirigkas, D; Tsirou, A; Tucker, J; Tully, C; Tumanov, A; Tuominen, E; Tuominiemi, J; Tupputi, S; Tuura, L; Tuuva, T; Tuve, C; Twedt, E; Tytgat, M; Tyurin, N; Tzeng, Y M; Ueno, K; Uhl, D; Ujvari, B; Ulmer, K; Ungaro, D; Uplegger, L; Uvarov, L; Uzun, D; Uzunian, A; Vaandering, E W; Valuev, V; Vander Donckt, M; Vander Velde, C; Van Doninck, W; Vanelderen, L; Van Haevermaet, H; Van Hove, P; Vanini, S; Vankov, I; Vanlaer, P; Van Mechelen, P; Van Mulders, P; Van Remortel, N; Vardanyan, I; Varela, J; Varelas, N; Vasil'ev, S; Vasquez Sierra, R; Vaughan, J; Vaurynovich, S; Vavilov, S; Vazquez Acosta, M; Vedaee, A; Veelken, C; Veillet, L; Velasco, M; Velichko, G; Velikzhanin, Y; Velthuis, J; Ventura, S; Venturi, A; Verdier, P; Verdini, P G; Veres, G I; Vergili, L N; Vergili, M; Verrecchia, P; Verwilligen, P; Veszpremi, V; Vesztergombi, G; Veverka, J; Vicini, A; Vidal, R; Vila, I; Vilar Cortabitarte, R; Vilela Pereira, A; Villanueva Munoz, C; Villella, I; Vinogradov, A; Virdee, T; Visca, L; Vishnevskiy, A; Vishnevskiy, D; Vitulo, P; Viviani, C; Vizan Garcia, J M; Vlasov, E; Vlimant, J R; Vodopiyanov, I; Vogel, H; Volkov, A; Volkov, S; Volobouev, I; Volodko, A; Volpe, R; Volyanskyy, D; Vorobiev, I; Vorobyev, A; Voutilainen, M; Wagner-Kuhr, J; Wagner, P; Wagner, S R; Wagner, W; Wakefield, S; Wallny, R; Waltenberger, W; Walton, R; Walzel, G; Wang, C C; Wang, D; Wang, J; Wang, M; Wang, Z; Wan, Z; Warchol, J; Wardrope, D; Washington, E; Watts, T L; Wayne, M; Weber, M; Weber, M; Wehrli, L; Weinberger, M; Weinberg, M; Wendland, L; Wenger, E A; Weng, J; Weng, Y; Wenman, D; Wensveen, M; Werner, J S; Wertelaers, P; Wetzel, J; White, A; Whitmore, J; Whyntie, T; Wickens, J; Wicklund, E; Widl, E; Wigmans, R; Wildish, T; Wilke, L; Wilken, R; Wilkinson, R; Williams, G; Williams, J C; Williams, J H; Willmott, C; Wimpenny, S; Wingham, M; Winn, D; Wissing, C; Witherell, M; Wittich, P; Wittmer, B; Wlochal, M; Wöhri, H K; Wolf, R; Womersley, W J; Won, S; Wood, J S; Worm, S D; Wright, D; Wrochna, G; Wulz, C E; Würthwein, F; Wu, S; Wu, W; Wyslouch, B; Xie, S; Xie, Z; Xue, Z; Yagil, A; Yang, X; Yang, Y; Yang, Z C; Yan, M; Yarba, J; Yaselli, I; Yazgan, E; Yelton, J; Yetkin, T; Yi, K; Yilmaz, Y; Yohay, R; Yoo, H D; Yoon, A S; York, A; Yumiceva, F; Yun, J C; Yuste, C; Zabi, A; Zabolotny, W; Zachariadou, A; Zalewski, P; Zampieri, A; Zanetti, M; Zang, S L; Zarubin, A; Zatzerklyany, A; Zeidler, C; Zeinali, M; Zeise, M; Zelepoukine, S; Zeuner, W D; Zeyrek, M; Zhang, J; Zhang, L; Zhang, Y; Zhang, Z; Zheng, Y; Zhiltsov, V; Zhokin, A; Zhu, B; Zhukova, V; Zhukov, V; Zhu, K; Zhu, R Y; Ziebarth, E B; Zielinski, M; Zilizi, G; Zinonos, Z; Zito, G; Zoeller, M H; Zotto, P; Zub, S; Zumerle, G; Zuranski, A; Zuyeuski, R; Zych, P

    2010-01-01

    The pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.

  1. The cryogenic silicon Beam Tracker of NA60 for heavy ion and proton beams

    International Nuclear Information System (INIS)

    Rosinsky, P.; Borer, K.; Casagrande, L.; Devaux, A.; Granata, V.; Guettet, N.; Hess, M.; Heuser, J.; Jarron, P.; Li, Z.; Lourenco, C.; Manso, F.; Niinikoski, T.O.; Palmieri, V.G.; Radermacher, E.; Shahoyan, R.; Sonderegger, P.

    2003-01-01

    The cryogenic silicon Beam Tracker of NA60 is the first detector based on the Lazarus effect used in a high-energy physics experiment. It employs single-sided silicon strip sensors of 50 μm pitch operated at a temperature of 130 K. Two tracking stations determine the transverse coordinates of the interaction point at the target with 20 μm resolution, to improve the determination of the offset of secondary vertices. This impact parameter measurement allows NA60 to distinguish between prompt dimuons and muon pairs from D-meson decays. The detector concept and technical feasibility have been demonstrated in beam time periods between 1999 and 2002

  2. Commissioning of the LHCb Silicon Tracker using data from the LHC injection tests

    CERN Document Server

    Knecht, M; Blanc, F; Bettler, M-O; Conti, G; Fave, V; Frei, R; Gauvin, N; Haefeli, G; Keune, A; Luisier, J; Muresan, R; Nakada, T; Needham, M; Nicolas, L; Perrin, A; Potterat, C; Schneider, O; Tran, M; Bauer, C; Britsch, M; Hofmann, W; Maciuc, F; Schmelling, M; Voss, H; Anderson, J; Buechler, A; Chiapolini, N; Hangartner, V; Salzmann, C; Steiner, S; Steinkamp, O; Van Tilburg, J; Tobin, M; Vollhardt, A; Adeva, B; Fungueiri no Pazos, J; Gallas, A; Pazos-Alvarez, A; Pérez-Trigo, E; Pló-Casasus, M; Rodriguez Perez, P; Saborido, J; Vázquez, P; Iakovenko, V; Okhrimenko, O; Pugatch, V

    2011-01-01

    LHCb is a single-arm forward spectrometer dedicated to the study of the CP-violation and rare decays in the b-quark sector. An efficient and high precision tracking system is a key requirement of the experiment. The LHCb Silicon Tracker Project consists of two sub-detectors that make use of silicon micro-strip technology: the Tracker Turicensis located upstream of the spectrometer magnet and the Inner Tracker which covers the innermost part of the tracking stations after the magnet. In total an area of 12 m^2 is covered by silicon. In September 2008 and June 2009, injection tests from the SPS to the LHC were performed. Bunches of order 5x10^9 protons were dumped onto a beam stopper (TED) located upstream of LHCb. This produced a spray of ~10 GeV muons in the LHCb detector. Though the occupancy in this environment is relatively large, these TED runs have allowed a first space and time alignment of the tracking system. Results of these studies together and the overall detector performance obtained in the TED ru...

  3. Internal alignment and position resolution of the silicon tracker of DAMPE determined with orbit data

    Science.gov (United States)

    Tykhonov, A.; Ambrosi, G.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bertucci, B.; Bolognini, A.; Cadoux, F.; D'Amone, A.; De Benedittis, A.; De Mitri, I.; Di Santo, M.; Dong, Y. F.; Duranti, M.; D'Urso, D.; Fan, R. R.; Fusco, P.; Gallo, V.; Gao, M.; Gargano, F.; Garrappa, S.; Gong, K.; Ionica, M.; La Marra, D.; Lei, S. J.; Li, X.; Loparco, F.; Marsella, G.; Mazziotta, M. N.; Peng, W. X.; Qiao, R.; Salinas, M. M.; Surdo, A.; Vagelli, V.; Vitillo, S.; Wang, H. Y.; Wang, J. Z.; Wang, Z. M.; Wu, D.; Wu, X.; Zhang, F.; Zhang, J. Y.; Zhao, H.; Zimmer, S.

    2018-06-01

    The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy range, as well as cosmic-ray proton and nuclei components between 10 GeV and 100 TeV. The silicon-tungsten tracker-converter is a crucial component of DAMPE. It allows the direction of incoming photons converting into electron-positron pairs to be estimated, and the trajectory and charge (Z) of cosmic-ray particles to be identified. It consists of 768 silicon micro-strip sensors assembled in 6 double layers with a total active area of 6.6 m2. Silicon planes are interleaved with three layers of tungsten plates, resulting in about one radiation length of material in the tracker. Internal alignment parameters of the tracker have been determined on orbit, with non-showering protons and helium nuclei. We describe the alignment procedure and present the position resolution and alignment stability measurements.

  4. CMS Tracker Readout Prototype Front-End Driver PCI Mezzanine Card (Mk1) (connector side)

    CERN Multimedia

    J.Coughlan

    1998-01-01

    The tracking system of the CMS detector at the LHC employs Front End Driver (FED) cards to digitise, buffer and sparsify analogue data arriving via optical links from on detector pipeline chips. This paper describes a prototype version of the FED based upon the popular commercial PCI bus Mezzanine Card (PMC) form factor. The FED-PMC consists of an 8 channel, 9 bit ADC, card, providing a 1 MByte data buffer and operating at the LHC design frequency of 40 MHz. The core of the card is a re-programmable FPGA which allows the functionality of the card to be conveniently modified. The card is supplied with a comprehensive library of C routines.The PMC form factor allows the card to be plugged onto a wide variety of processor carrier boards and even directly into PCI based PCs. The flexibility of the FPGA based design permits the card to be used in a variety of ADC based applications.

  5. A bipolar analog front-end integrated circuit for the SDC silicon tracker

    International Nuclear Information System (INIS)

    Kipnis, I.; Spieler, H.; Collins, T.

    1993-11-01

    A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDC silicon tracker. The IC was designed and tested at LBL and was fabricated using AT ampersand T's CBIC-U2, 4 GHz f T complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 μm pitch double-sided silicon strip detector. The chip measures 6.8 mm x 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16 nsec time-walk for 1.25 to 10fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a Φ=10 14 protons/cm 2 have been performed on the IC, demonstrating the radiation hardness of the complementary bipolar process

  6. Production and performance of the silicon sensor and custom readout electronics for the PHENIX FVTX tracker

    International Nuclear Information System (INIS)

    Kapustinsky, Jon S.

    2010-01-01

    The Forward Silicon Vertex Tracker (FVTX) upgrade for the PHENIX detector at RHIC will extend the vertex capability of the central PHENIX Silicon Vertex Tracker (VTX). The FVTX is designed with adequate spatial resolution to separate decay muons coming from the relatively long-lived heavy quark mesons (Charm and Beauty), from prompt particles and the longer-lived pion and kaon decays that originate at the primary collision vertex. These heavy quarks can be used to probe the high-density medium that is formed in Au+Au collisions at RHIC. The FVTX is designed as two endcaps. Each endcap comprises four silicon disks covering opening angles from 10 o to 35 o to match the existing muon arm acceptance. Each disk consists of p-on-n, silicon wedges, with ac-coupled mini-strips on 75 μm radial pitch and projective length in the phi direction that increases with radius. A custom front-end chip, the FPHX, has been designed for the FVTX. The chip combines fast trigger capability with data push architecture in a low-power design.

  7. Production and performance of the silicon sensor and readout electronics for the PHENIX FVTX tracker

    International Nuclear Information System (INIS)

    Kapustinsky, Jon Steven

    2009-01-01

    The Forward Silicon Vertex Tracker (FVTX) upgrade for the PHENIX detector at RHIC will extend the vertex capability of the central PHENIX Silicon Vertex Tracker (VTX). The FVTX is designed with adequate spatial resolution to separate decay muons coming from the relatively long-lived heavy quark mesons (Charm and Beauty), from prompt particles and the longer-lived pion and kaon decays that originate at the primary collision vertex. These heavy quarks can be used to probe the high density medium that is formed in Au+Au collisions at RHIC. The FVTX is designed as two endcaps. Each endcap is comprised of four silicon disks covering opening angles from 10 to 35 degrees to match the existing muon arm acceptance. Each disk consists of p-on-n, silicon wedges, with ac-coupled mini-strips on 75 (micro)m radial pitch and proj ective length in the phi direction that increases with radius. A custom front-end chip, the FPHX, has been designed for the FVTX. The chip combines fast trigger capability with data push architecture in a low power design.

  8. Production and performance of the silicon sensor and custom readout electronics for the PHENIX FVTX tracker

    Energy Technology Data Exchange (ETDEWEB)

    Kapustinsky, Jon S., E-mail: jonk@lanl.go [Los Alamos National Laboratory, Mailstop H846, PO Box 1663, Los Alamos, 87545 New Mexico (United States)

    2010-05-21

    The Forward Silicon Vertex Tracker (FVTX) upgrade for the PHENIX detector at RHIC will extend the vertex capability of the central PHENIX Silicon Vertex Tracker (VTX). The FVTX is designed with adequate spatial resolution to separate decay muons coming from the relatively long-lived heavy quark mesons (Charm and Beauty), from prompt particles and the longer-lived pion and kaon decays that originate at the primary collision vertex. These heavy quarks can be used to probe the high-density medium that is formed in Au+Au collisions at RHIC. The FVTX is designed as two endcaps. Each endcap comprises four silicon disks covering opening angles from 10{sup o} to 35{sup o} to match the existing muon arm acceptance. Each disk consists of p-on-n, silicon wedges, with ac-coupled mini-strips on 75 {mu}m radial pitch and projective length in the phi direction that increases with radius. A custom front-end chip, the FPHX, has been designed for the FVTX. The chip combines fast trigger capability with data push architecture in a low-power design.

  9. Momentum bias determination in the tracker alignment and first differential t anti t cross section measurement at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Enderle, Holger

    2012-01-15

    This thesis is prepared within the framework of the CMS experiment at the Large Hadron Collider. It is divided into a technical topic and an analysis. In the technical part, a method is developed to validate the alignment of the tracker geometry concerning biases in the momentum measurement. The method is based on the comparison of the measured momentum of isolated tracks and the corresponding energy deposited in the calorimeter. Comparing positively and negatively charged hadrons, the twist of the tracker is constrained with a precision of ({delta}{phi})/({delta}z)=12 ({mu}rad)/(m). The analysis deals with cross section measurements in events containing an isolated muon and jets. The complete dataset of proton-proton collisions at a centre-of-mass energy of 7 TeV taken in 2010 is investigated. This corresponds to an integrated luminosity of 35.9 pb{sup -1}. Cross sections including different physics processes with an isolated muon and jets in the final state are measured for different jet multiplicities (N{sub jets} {>=}1;2;3;4). With increasing jet multiplicity, the transition from a W {yields} l{nu} dominated to a strongly t anti t enriched phase space becomes evident. The inclusive cross section for t anti t production derived from the four jet sample is measured to be {sigma}=172{+-}15(stat.){+-}41(syst.){+-}7(lumi.) pb. Cross sections differentially in kinematic quantities of the muon, (d{sigma})/(d{sub PT}), (d{sigma})/(d{eta}) are measured as well and compared to theoretical predictions.

  10. New technologies of silicon position-sensitive detectors for future tracker systems

    CERN Document Server

    Bassignana, Daniela; Lozano, M

    In view of the new generation of high luminosity colliders, HL-LHC and ILC, a farther investigation of silicon radiation detectors design and technology is demanded, in order to satisfy the stringent requirements of the experiments at such sophisticated machines. In this thesis, innovative technologies of silicon radiation detectors for future tracking systems are proposed. Three dierent devices have been studied and designed with the help of dierent tools for computer simulations. They have been manufactured in the IMB-CNM clean room facilities in Barcelona and characterized with proper experimental set-ups in order to test the detectors capabilities and the quality and suitability of the technologies used for their fabrication. The rst technology deals with the upgrade of dedicated sensors for laser alignment systems in future tracker detectors. The design and technology of common single-sided silicon microstrip detectors have been slightly modied in order to improve IR light transmittance of the devices. T...

  11. Development of radiation-hard optical links for the CMS tracker at CERN

    International Nuclear Information System (INIS)

    Vasey, F.; Arbet-Engels, V.; Cervelli, G.; Gill, K.; Grabit, R.; Mommaert, C.; Stefanini, G.

    1998-01-01

    A radiation-hard optical link is under development for readout and control of the tracking detector in the future CMS experiment at the CERN Large Hadron Collider. The authors present the optical system architecture based on edge-emitting InGaAsP laser-diode transmitters operating at a wavelength of 1.3 microm, single mode fiber ribbons, multi-way connectors and InGaAsP in photodiode receivers. They report on radiation hardness tests of lasers, photodiodes, fibers and connectors. Increases of laser threshold and pin leakage currents with hadron fluence have been observed together with decreases in laser slope-efficiency and photodiode responsivity. Short lengths of single-mode optical fiber and multi-way connectors have been found to be little affected by radiation damage. They analyze the analog and digital performance of prototype optical links transmitting data generated at a 40 MSample/s rate. Distortion, settling time, bandwidth, noise, dynamic range and bit-error-rate results are discussed

  12. In-flight operations and status of the AMS-02 silicon tracker

    CERN Document Server

    Ambrosi, G; Battiston, R; Bertucci, b B; Choumilov, E; Choutko, V; Crispoltoni, M; Delgado, C; Duranti, M; Donnini, F; D'Urso, D; Fiandrini, cE; Formato, V; Graziani, M; Habiby, M; Haino, S; Ionica, M; Kanishchev, K; Nozzoli, F; Oliva, c A; Paniccia, M; Pizzolotto, C; Pohl, c M; Qin, X; Rapin, d D; Saouter, P; Tomassetti, N; Vitale, V; Vitillo, c S; Wu, X; Zhang, Z; Zuccon, P

    2016-01-01

    The AMS-02 detector is a large acceptance magnetic spectrometer operating on the International Space Station since May 2011. More than 60 billion events have been collected by the instrument as of today. One of the key subdetectors of AMS-02 is the microstrip silicon Tracker, designed to precisely measure the trajectory and absolute charge of cosmic rays in the GeV-TeV energy range. In addition, with the magnetic field, is also measuring the particle magnetic rigidity, defined as R = pc/Ze, and the sign of the charge. This report presents the Tracker on-line operations and calibration during the first four years of data taking in space. The track reconstruction efficiency and the resolution will be also reviewed.

  13. The Silicon Microstrip Sensors of the ATLAS SemiConductor Tracker

    CERN Document Server

    Ahmad, A; Allport, P P; Alonso, J; Andricek, L; Apsimon, R J; Barr, A J; Bates, R L; Beck, G A; Bell, P J; Belymam, A; Benes, J; Berg, C M; Bernabeu, J; Bethke, S; Bingefors, N; Bizzell, J P; Bohm, J; Brenner, R; Brodbeck, T J; Bruckman De Renstrom, P; Buttar, C M; Campbell, D; Carpentieri, C; Carter, A A; Carter, J R; Charlton, D G; Casse, G-L; Chilingarov, A; Cindro, V; Ciocio, A; Civera, J V; Clark, A G; Colijn, A-P; Costa, M J; Dabrowski, W; Danielsen, K M; Dawson, I; Demirkoz, B; Dervan, P; Dolezal, Z; Dorholt, O; Duerdoth, I P; Dwuznik, M; Eckert, S; Ekelöf, T; Eklund, L; Escobar, C; Fasching, D; Feld, L; Ferguson, D P S; Ferrere, D; Fortin, R; Foster, J M; Fox, H; French, R; Fromant, B P; Fujita, K; Fuster, J; Gadomski, S; Gallop, B J; Garcia, C; Garcia-Navarro, J E; Gibson, M D; Gonzalez, S; Gonzalez-Sevilla, S; Goodrick, M J; Gornicki, E; Green, C; Greenall, A; Grigson, C; Grillo, A A; Grosse-Knetter, J; Haber, C; Handa, T; Hara, K; Harper, R S; Hartjes, F G; Hashizaki, T; Hauff, D; Hessey, N P; Hill, J C; Hollins, T I; Holt, S; Horazdovsky, T; Hornung, M; Hovland, K M; Hughes, G; Huse, T; Ikegami, Y; Iwata, Y; Jackson, J N; Jakobs, K; Jared, R C; Johansen, L G; Jones, R W L; Jones, T J; de Jong, P; Joseph, J; Jovanovic, P; Kaplon, J; Kato, Y; Ketterer, C; Kindervaag, I M; Kodys, P; Koffeman, E; Kohriki, T; Kohout, Z; Kondo, T; Koperny, S; van der Kraaij, E; Kral, V; Kramberger, G; Kudlaty, J; Lacasta, C; Limper, M; Linhart, V; Llosa, G; Lozano, M; Ludwig, I; Ludwig, J; Lutz, G; Macpherson, A; McMahon, S J; Macina, D; Magrath, C A; Malecki, P; Mandic, I; Marti-Garcia, S; Matsuo, T; Meinhardt, J; Mellado, B; Mercer, I J; Mikestikova, M; Mikuz, M; Minano, M; Mistry, J; Mitsou, V; Modesto, P; Mohn, B; Molloy, S D; Moorhead, G; Moraes, A; Morgan, D; Morone, M C; Morris, J; Moser, H-G; Moszczynski, A; Muijs, A J M; Nagai, K; Nakamura, Y; Nakano, I; Nicholson, R; Niinikoski, T; Nisius, R; Ohsugi, T; O'Shea, V; Oye, O K; Parzefall, U; Pater, J R; Pernegger, H; Phillips, P W; Posisil, S; Ratoff, P N; Reznicek, P; Richardson, J D; Richter, R H; Robinson, D; Roe, S; Ruggiero, G; Runge, K; Sadrozinski, H F W; Sandaker, H; Schieck, J; Seiden, A; Shinma, S; Siegrist, J; Sloan, T; Smith, N A; Snow, S W; Solar, M; Solberg, A; Sopko, B; Sospedra, L; Spieler, H; Stanecka, E; Stapnes, S; Stastny, J; Stelzer, F; Stradling, A; Stugu, B; Takashima, R; Tanaka, R; Taylor, G; Terada, S; Thompson, R J; Titov, M; Tomeda, Y; Tovey, D R; Turala, M; Turner, P R; Tyndel, M; Ullan, M; Unno, Y; Vickey, T; Vos, M; Wallny, R; Weilhammer, P; Wells, P S; Wilson, J A; Wolter, M; Wormald, M; Wu, S L; Yamashita, T; Zontar, D; Zsenei, A

    2007-01-01

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the SemiConductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd supplied 92.2% of the 15,392 installed sensors, with the remainder supplied by CiS.

  14. Construction of the new silicon microstrips tracker for the Phase-II ATLAS detector

    CERN Document Server

    Liang, Zhijun; The ATLAS collaboration

    2018-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of silicon microstrip sensors. This paper will focus on the latest research and development act...

  15. Functional tests of 2S modules for the CMS Phase-2 Tracker Upgrade with a MicroTCA-based readout system

    CERN Document Server

    Preuten, Marius; Klein, Katja; Lipinski, Martin; Rauch, Max; Feld, Lutz

    2017-01-01

    First full size 2S module prototypes for the CMS Phase-2 Outer Tracker Upgrade have been assembled. With two sensors of realistic dimensions and 16 CBC2 readout ASICs on two front-end hybrids, the characteristics of these novel and complex objects can be studied.A MicroTCA based readout system was developed to test multiple front-end hybrids simultaneously. Therefore the concurrent information of the full module can be used for noise and signal studies.

  16. In-flight operations and status of the AMS-02 silicon tracker

    OpenAIRE

    Ambrosi, G.; Azzarello, P.; Battiston, R.; Bertucci, B.; Choumilov, E.; Choutko, V.; Crispoltoni, M.; Delgado, C.; Duranti, M.; Donnini, F.; D'Urso, D.; Fiandrini, E.; Formato, V.; Graziani, M.; Habiby, M.

    2016-01-01

    The AMS-02 detector is a large acceptance magnetic spectrometer operating on the International Space Station since May 2011. More than 60 billion events have been collected by the instrument as of today. One of the key subdetectors of AMS-02 is the microstrip silicon Tracker, designed to precisely measure the trajectory and absolute charge of cosmic rays in the GeV-TeV energy range. In addition, with the magnetic field, is also measuring the particle magnetic rigidity, defined as R = pc/Ze, a...

  17. The SuperB Silicon Vertex Tracker and 3D vertical integration

    CERN Document Server

    Re, Valerio

    2011-01-01

    The construction of the SuperB high luminosity collider was approved and funded by the Italian government in 2011. The performance specifications set by the target luminosity of this machine (> 10^36 cm^-2 s^-1) ask for the development of a Silicon Vertex Tracker with high resolution, high tolerance to radiation and excellent capability of handling high data rates. This paper reviews the R&D activity that is being carried out for the SuperB SVT. Special emphasis is given to the option of exploiting 3D vertical integration to build advanced pixel sensors and readout electronics that are able to comply with SuperB vertexing requirements.

  18. Neutron irradiation results for the LHCb silicon tracker data readout system components

    CERN Document Server

    Vollhardt, A

    2003-01-01

    This note reports irradiation data for different components of the LHCb Silicon Tracker data readout system, which will be exposed to neutron fluences due to their location in the readout link service box on the tracking station frame. The components were part of a neutron irradiation campaign in April 2003 at the Prospero reactor at CEA Valduc (France) and were exposed to fluences 5 to 100 times higher than the expected fluences at the experiment. For all tested components, minor or no influence on device performance was measured. We therefore consider the tested components to be compatible with the expected neutron fluences at the foreseen locations in the LHCb experiment.

  19. arXiv Charge reconstruction study of the DAMPE Silicon-Tungsten Tracker with ion beams

    CERN Document Server

    Qiao, Rui; Guo, Dong-Ya; Zhao, Hao; Wang, Huan-Yu; Gong, Ke; Zhang, Fei; Wu, Xin; Azzarello, Phillip; Tykhonov, Andrii; Asfandiyarov, Ruslan; Gallo, Valentina; Ambrosi, Giovanni; Mazziotta, Nicola; De Mitri, Ivan

    The DArk Matter Particle Explorer (DAMPE) is one of the four satellites within Strategic Pioneer Research Program in Space Science of the Chinese Academy of Science (CAS). DAMPE can detect electrons, photons in a wide energy range (5 GeV to 10 TeV) and ions up to iron (100GeV to 100 TeV). Silicon-Tungsten Tracker (STK) is one of the four subdetectors in DAMPE, providing photon-electron conversion, track reconstruction and charge identification for ions. Ion beam test was carried out in CERN with 60GeV/u Lead primary beams. Charge reconstruction and charge resolution of STK detectors were investigated.

  20. Radioactivation of silicon tracker modules in high-luminosity hadron collider radiation environments

    CERN Document Server

    Dawson, I; Buttar, C; Cindro, V; Mandic, I

    2003-01-01

    One of the consequences of operating detector systems in harsh radiation environments will be radioactivation of the components. This will certainly be true in experiments such as ATLAS and CMS, which are currently being built to exploit the physics potential at CERN's Large Hadron Collider. If the levels of radioactivity and corresponding dose rates are significant, then there will be implications for any access or maintenance operations. This paper presents predictions for the radioactivation of ATLAS's Semi- Conductor Tracker (SCT) barrel system, based on both calculations and measurements. It is shown that both neutron capture and high-energy hadron reactions must be taken into account. The predictions also show that the SCT barrel-module should not pose any serious radiological problems after operation in high radiation environments.

  1. Embolization of carotid-cavernous fistula using a silicone balloon and a tracker-catheter system

    International Nuclear Information System (INIS)

    Kim, Sun Yong; Cho, Kil Ho; Park, Bok Hwan

    1992-01-01

    With the recent introduction and development of the detachable balloon system, it has become the treatment of choice in the management of carotid cavernous fistulas(CCFs). But, since most delivery systems for embolization of CCF mainly depend on flow guidance for balloon delivery, in case of small fistula, pseudo aneurysm and arterialized venous collaterals, failure of balloon embolization can occur. To overcome these limitation, the authors designed and used a new versatile, steerable, and flow-guided detachable balloon system by using a Tracker catheter system with silicone or latex balloons. Using this maneuver, we could get successful fistula occlusion in 7 out of 8 patients (silicone balloon). But in one case, we had to occlude the internal carotid artery at the fistula site, proximal and distal cervical portions of the internal carotid artery. This balloon delivery system proved to provide high selectivity for fistula and relatively ease of handing

  2. Development of fluorocarbon evaporative cooling recirculators and controls for the ATLAS inner silicon tracker

    CERN Document Server

    Bayer, C; Bonneau, P; Bosteels, Michel; Burckhart, H J; Cragg, D; English, R; Hallewell, G D; Hallgren, Björn I; Ilie, S; Kersten, S; Kind, P; Langedrag, K; Lindsay, S; Merkel, M; Stapnes, Steinar; Thadome, J; Vacek, V

    2000-01-01

    We report on the development of evaporative fluorocarbon cooling recirculators and their control systems for the ATLAS inner silicon tracker. We have developed a prototype circulator using a dry, hermetic compressor with C/sub 3/F/sup 8/ refrigerant, and have prototyped the remote-control analog pneumatic links for the regulation of coolant mass flows and operating temperatures that will be necessary in the magnetic field and radiation environment around ATLAS. pressure and flow measurement and control use 150+ channels of standard ATLAS LMB ("Local Monitor Board") DAQ and DACs on a multi-drop CAN network administered through a BridgeVIEW user interface. A hardwired thermal interlock system has been developed to cut power to individual silicon modules should their temperatures exceed safe values. Highly satisfactory performance of the circulator under steady state, partial-load and transient conditions was seen, with proportional fluid flow tuned to varying circuit power. Future developments, including a 6 kW...

  3. An analog front-end bipolar-transistor integrated circuit for the SDC silicon tracker

    International Nuclear Information System (INIS)

    Kipnis, I.; Spieler, H.; Collins, T.

    1994-01-01

    Since 1989 the Solenoidal Detector Collaboration (SDC) has been developing a general purpose detector to be operated at the Superconducting Super Collider (SSC). A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDS silicon tracker. The IC was designed and tested at LBL and was fabricated using AT and T's CBIC-U2, 4 GHz f T complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 μm pitch double-sided silicon strip detector. The chip measures 6.8 mm x 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16nsec time-walk for 1.25 to 10 fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a φ = 10 14 protons/cm 2 have been performed on the JC, demonstrating the radiation hardness of the complementary bipolar process

  4. LHCb: The LHCb Silicon Tracker - Control system specific tools and challenges

    CERN Multimedia

    Saornil Gamarra, S

    2013-01-01

    The experiment control system of the LHCb experiment is continuously evolving and improving. The guidelines and structure initially defined are kept, and more common tools are made available to all sub-detectors. Although the main system control is mostly integrated and actions are executed in common for the whole LHCb experiment, there is some degree of freedom for each sub-system to implement the control system using these tools or by creating new ones. The implementation of the LHCb Silicon Tracker control system was extremely disorganized and with little documentation. This was due to either lack of time and manpower, and/or to limited experience and specifications. Despite this, the Silicon Tracker control system has behaved well during the first LHC run. It has continuously evolved since the start of operation and been adapted to the needs of operators with very different degrees of expertise. However, improvements and corrections have been made on a best effort basis due to time constraints placed by t...

  5. Silicon Sensors for the Upgrades of the CMS Pixel Detector

    CERN Document Server

    Centis Vignali, Matteo; Schleper, Peter

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accel- erator and its injection chain. Two major upgrades will take place in the next years. The rst upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2 10 34 cm-2 s-1 A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5 10 34 cm-2 s1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The rst upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout elec- tronics that allow ecient data taking up to a luminosity of 2 10 34 cm-2s-1,twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at dierent institutes. Ham...

  6. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC); Conception d'un algorithme de reconstruction de vertex pour les donnees de CMS. Etude de detecteurs gazeux (MSGC) et silicium a micropistes

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, St

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  7. ATLAS Tracker Upgrade: Silicon Strip Detectors and Modules for the sLHC

    International Nuclear Information System (INIS)

    Lefebvre, Michel; Minano Moya, Mercedes

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. (authors)

  8. ATLAS Tracker Upgrade: Silicon Strip Detectors for the sLHC

    CERN Document Server

    Koehler, M; The ATLAS collaboration

    2010-01-01

    To extend the physics potential of the Large Hadron Colider (LHC) at CERN, upgrades of the accelerator complex and the detectors towards the Super-LHC (sLHC) are foreseen. The upgrades, separated in Phase-1 and Phase-2, aim at increasing the luminosity while leaving the energy of the colliding particles (7 TeV per proton beam) unchanged. After the Phase-2 upgrade the instantaneous luminosity will be a factor of 5-10 higher than the design luminosity of the LHC. Due to the increased track rate and extreme radiation levels for the tracking detectors, upgrades of the detectors are necessary. At ATLAS, one of the two general purpose detectors at the LHC, the current inner detector will be replaced by an all-silicon tracker. This article describes the plans for the Phase-2 upgrade of the silicon strip detector of ATLAS. Radiation hard n-in-p silicon detectors with shorter strips than currently installed in ATLAS are planned. Results of measurements with these sensors and plans for module designs will be discussed.

  9. ATLAS Tracker Upgrade: Silicon Strip Detectors for the sLHC

    CERN Document Server

    Koehler, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. A key issue ...

  10. ATLAS Tracker Upgrade: Silicon Strip Detectors and Modules for the SLHC

    CERN Document Server

    Minano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown.

  11. Atlas Tracker Upgrade: Silicon Strip Detectors and Modules for the SLHC

    CERN Document Server

    Minano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a significant factor, with the upgraded machine dubbed Super-LHC. The ATLAS experiment will require a new tracker for Super-LHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will imply a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown.

  12. Operating characteristics of radiation-hardened silicon pixel detectors for the CMS experiment

    CERN Document Server

    Hyosung, Cho

    2002-01-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will have forward silicon pixel detectors as its innermost tracking device. The pixel devices will be exposed to the harsh radiation environment of the LHC. Prototype silicon pixel detectors have been designed to meet the specification of the CMS experiment. No guard ring is required on the n/sup +/ side, and guard rings on the p/sup +/ side are always kept active before and after type inversion. The whole n/sup +/ side is grounded and connected to readout chips, which greatly simplifies detector assembling and improves the stability of bump-bonded readout chips on the n/sup +/ side. Operating characteristics such as the leakage current, the full depletion voltage, and the potential distributions over guard rings were tested using standard techniques. The tests are discussed in this paper. (9 refs).

  13. A radiation tolerant fiber-optic readout system for the LHCb Silicon Tracker

    CERN Document Server

    Agari, M; Blouw, J; Hofmann, W; Knöpfle, K T; Löchner, S; Schmelling, M; Schwingenheuer, B; Pugatch, V; Pylypchenko, Y; Bay, A; Carron, B; Fauland, P; Frei, R; Jiménez-Otero, S; Perrin, A; Tran, M T; Van Hunen, J J; Vervink, K; Vollhardt, A; Voss, H; Adeva, B; Esperante-Pereira, D; Lois, C; Vázquez, P; Bernhard, R P; Bernet, R; Gassner, J; Köstner, S; Lehner, F; Needham, M; Steinkamp, O; Straumann, U; Volyanskyy, D; Wenger, A

    2005-01-01

    A fiber-optic readout system has been designed for the LHCb Silicon Tracker to transmit the detector data to the counting room at a distance of 120 m from the detectors. In total, data from over 272000 detector channels have to be transmitted at an average trigger frequency of 1.1 MHz. In the design of the system, special attention was given to its radiation tolerance, as the transmitting section is located close to the beamline and therefore is exposed to moderate particle fluences and ionizing dose during the expected operational life of 10 years. We give a general overview of the readout link scheme and present performance data on its reliability and radiation tolerance obtained from first preseries elements of the system. Poster presented on the 10th European Symposium on Semiconductor Detectors, June 12th â€" June 16th 2005, Wildbad Kreuth, Germany.

  14. Charge reconstruction of the DAMPE Silicon-Tungsten Tracker: A preliminary study with ion beams

    Science.gov (United States)

    Qiao, Rui; Peng, Wen-Xi; Guo, Dong-Ya; Zhao, Hao; Wang, Huan-Yu; Gong, Ke; Zhang, Fei; Wu, Xin; Azzarello, Phillip; Tykhonov, Andrii; Asfandiyarov, Ruslan; Gallo, Valentina; Ambrosi, Giovanni

    2018-04-01

    The DArk Matter Particle Explorer (DAMPE) is one of the four satellites within Strategic Pioneer Research Program in Space Science of the Chinese Academy of Science (CAS). DAMPE can detect electrons, photons in a wide energy range (5 GeV to 10 TeV) and ions up to iron (100 GeV to 100 TeV). The silicon-Tungsten Tracker (STK) is one of the four subdetectors in DAMPE, providing photon-electron conversion, track reconstruction and charge identification for ions. An ion beam test was carried out in CERN with 60 GeV/u Lead primary beams. Charge reconstruction and charge resolution of the STK detectors were investigated.

  15. The rad-hard readout system of the BaBar silicon vertex tracker

    Science.gov (United States)

    Re, V.; DeWitt, J.; Dow, S.; Frey, A.; Johnson, R. P.; Kroeger, W.; Kipnis, I.; Leona, A.; Luo, L.; Mandelli, E.; Manfredi, P. F.; Nyman, M.; Pedrali-Noy, M.; Poplevin, P.; Perazzo, A.; Roe, N.; Spencer, N.

    1998-02-01

    This paper discusses the behaviour of a prototype rad-hard version of the chip developed for the readout of the BaBar silicon vertex tracker. A previous version of the chip, implemented in the 0.8 μm HP rad-soft version has been thoroughly tested in the recent times. It featured outstanding noise characteristics and showed that the specifications assumed as target for the tracker readout were met to a very good extent. The next step was the realization of a chip prototype in the rad-hard process that will be employed in the actual chip production. Such a prototype is structurally and functionally identical to its rad-soft predecessor. However, the process parameters being different, and not fully mastered at the time of design, some deviations in the behaviour were to be expected. The reasons for such deviations have been identified and some of them were removed by acting on the points that were left accessible on the chip. Other required small circuit modifications that will not affect the production schedule. The tests done so far on the rad-hard chip have shown that the noise behaviour is very close to that of the rad-soft version, that is fully adequate for the vertex detector readout.

  16. An on-line acoustic fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker

    Energy Technology Data Exchange (ETDEWEB)

    Bates, R. [Dept. of Physics and Astronomy, Univ. of Glasgow, G12 8QQ (United Kingdom); Battistin, M. [CERN, 1211 Geneva 23 (Switzerland); Berry, S.; Bitadze, A. [Dept. of Physics and Astronomy, Univ. of Glasgow, G12 8QQ (United Kingdom); Bonneau, P. [CERN, 1211 Geneva 23 (Switzerland); Bousson, N. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09 (France); Boyd, G. [Dept. of Physics and Astronomy, Univ. of Oklahoma, Norman, OK 73019 (United States); Botelho-Direito, J.; DiGirolamo, B. [CERN, 1211 Geneva 23 (Switzerland); Doubek, M. [Czech Technical Univ., Technicka 4, 166 07 Prague 6 (Czech Republic); Egorov, K. [Physics Dept., Indiana Univ., Bloomington, IN 47405 (United States); Godlewski, J. [CERN, 1211 Geneva 23 (Switzerland); Hallewell, G. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09 (France); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Inst. PNPI, 188300 St. Petersburg (Russian Federation); Mathieu, M.; McMahon, S. [Rutherford Appelton Laboratory - Science and Technology Facilities Council, Chilton, Didcot OX11 OQX (United Kingdom); Nagai, K. [Graduate School of Pure and Applied Sciences, Univ. of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Perez-Rodriguez, E. [CERN, 1211 Geneva 23 (Switzerland); Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09 (France); Vacek, V.; Vitek, M. [Czech Technical Univ., Technicka 4, 166 07 Prague 6 (Czech Republic)

    2011-07-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoro-propane (C{sub 3}F{sub 8}) evaporative cooling fluid - to a composite fluid with a probable 10-20% admixture of hexafluoro-ethane (C{sub 2}F{sub 6}). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C{sub 3}F{sub 8}/C{sub 2}F{sub 6} mixture ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound 'chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C{sub 3}F{sub 8}/C{sub 2}F{sub 6} flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semiconductor manufacture and anesthetic gas mixtures. (authors)

  17. Building CMS Pixel Barrel Detectur Modules

    CERN Document Server

    König, S; Horisberger, R.; Meier, B.; Rohe, T.; Streuli, S.; Weber, R.; Kastli, H.Chr.; Erdmann, W.

    2007-01-01

    For the barrel part of the CMS pixel tracker about 800 silicon pixel detector modules are required. The modules are bump bonded, assembled and tested at the Paul Scherrer Institute. This article describes the experience acquired during the assembly of the first ~200 modules.

  18. The upgrade of the vertex detector to form the central part of the silicon tracker in DELPHI

    International Nuclear Information System (INIS)

    Brenner, R.

    1997-01-01

    The DELPHI vertex detector has undergone a final upgrade to meet the physics requirements at LEP200. The old vertex detector has been made longer by 24 cm and is now the barrel part of the silicon tracker with a very forward part at both ends. The configuration and first results on the stability and performance of the barrel part is reported. (orig.)

  19. Calibration and alignment of the CMS silicon tracking detector

    International Nuclear Information System (INIS)

    Stoye, M.

    2007-07-01

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel χ 2 minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  20. Calibration and alignment of the CMS silicon tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Stoye, M.

    2007-07-15

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel {chi}{sup 2} minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  1. First-year experience with the Ba Bar silicon vertex tracker

    International Nuclear Information System (INIS)

    Bozzi, C.; Carassiti, V.; Cotta Ramusino, A.; Dittongo, S.; Folegani, M.; Piemontese, L.; Abbott, B.K.; Breon, A.B.; Clark, A.R.; Dow, S.; Fan, Q.; Goozen, F.; Hernikl, C.; Karcher, A.; Kerth, L.T.; Kipnis, I.; Kluth, S.; Lynch, G.; Levi, M.; Luft, P.; Luo, L.; Nyman, M.; Pedrali-Noy, M.; Roe, N.A.; Zizka, G.; Roberts, D.; Schieck, J.; Barni, D.; Brenna, E.; Defendi, I.; Forti, A.; Giugni, D.; Lanni, F.; Palombo, F.; Vaniev, V.; Leona, A.; Mandelli, E.; Manfredi, P.F.; Perazzo, A.; Re, V.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Calderini, G.; Carpinelli, M.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Neri, N.; Paoloni, E.; Profeti, A.; Rama, M.; Rampino, G.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Tritto, S.; Vitale, R.; Walsh, J.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.; Roat, C.; Bona, M.; Bianchi, F.; Daudo, F.; Di Girolamo, B.; Gamba, D.; Giraudo, G.; Grosso, P.; Romero, A.; Smol, A.; Trapani, P.; Zanin, D.; Bosisio, L.; Della Ricca, G.; Rashevskaia, I.; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rastelli, C.; Vallazza, E.; Vuagnin, G.; Hast, C.; Potter, E.P.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Eppich, A.; Hale, D.; Hall, K.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.; Grothe, M.; Johnson, R.; Kroeger, W.; Lockman, W.; Pulliam, T.; Rowe, W.; Schmitz, R.; Seiden, A.; Spencer, E.; Turri, M.; Walkowiak, W.; Wilder, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Zobernig, H.

    2001-01-01

    Within its first year of operation, the BaBar Silicon Vertex Tracker (SVT) has accomplished its primary design goal, measuring the z vertex coordinate with sufficient accuracy as to allow the measurement of the time-dependent CP asymmetry in the neutral B-meson system. The SVT consists of five layers of double-sided, AC-coupled silicon-strip detectors of 300 μm thickness with a readout strip pitch of 50-210 μm and a stereo angle of 90 deg. between the strips on the two sides. Detector alignment and performance with respect to spatial resolution and efficiency in the reconstruction of single hits are discussed. In the day-to-day operation of the SVT, radiation damage and protection issues were of primary concern. The SVT is equipped with a dedicated system (SVTRAD) for radiation monitoring and protection, using reverse-biased photodiodes. The evolution of the SVTRAD thresholds on the tolerated radiation level is described. Results on the first-year radiation exposure as measured with the SVTRAD system and on the so far accumulated damage are presented. The implications of test-irradiation results and possible future PEP-II luminosity upgrades on the radiation limited lifetime of the SVT are discussed

  2. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    International Nuclear Information System (INIS)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  3. Production and Quality Assurance of Detector Modules for the LHCb Silicon Tracker

    CERN Document Server

    Volyanskyy, D; Agari, M; Bauer, C; Blouw, J; Hofmann, W; Löchner, S; Maciuc, F; Schmelling, M; Smale, N; Schwingenheuer, B; Voss, H; Borysova, M; Ohrimenko, O; Pugatch, V; Yakovenko, V; Bay, A; Bettler, M O; Fauland, P; Frei, R; Nicolas, L; Knecht, M; Perrin, A; Schneider, O; Tran, M T; Van Hunen, J; Vervink, K; Adeva, B; Esperante-Pereira, D; Gallas, A; Fungueirino-Pazos, J L; Lois, C; Pazos-Alvarez, A; Pérez-Trigo, E; Pló-Casasus, M; Vázquez, P; Bernhard, R P; Bernet, R; Gassner, J; Köstner, S; Lehner, F; Needham, M; Sakhelashvili, T; Steiner, S; Straumann, U; Van Tilburg, J; Vollhardt, A; Wenger, A

    2007-01-01

    The LHCb experiment, which is currently under construction at the Large Hadron Collider~(CERN, Geneva), is designed to study $CP$ violation and find rare decays in the $B$ meson system. To achieve the physics goals the LHCb detector must have excellent tracking performance. An important element of the LHCb tracking system is the Silicon Tracker, which covers a sensitive surface of about 12~m$^2$ with silicon microstrip detectors and includes about 272k readout channels. It uses up to 132~cm long detector modules with readout strips of up to 38~cm in length and up to 57~cm long Kapton interconnects in between sensors and readout hybrids. The production of detector modules has been completed recently and the detector is currently under installation. A rigorous quality assurance programme has been performed to ensure that the detector modules meet the mechanical and electrical requirements and study their various characteristics. In this paper, the detector design, the module production steps, and the module qua...

  4. Testbeam evaluation of silicon strip modules for ATLAS Phase - II Strip Tracker Upgrade

    CERN Document Server

    Blue, Andrew; The ATLAS collaboration; Ai, Xiaocong; Allport, Phillip; Arling, Jan-Hendrik; Atkin, Ryan Justin; Bruni, Lucrezia Stella; Carli, Ina; Casse, Gianluigi; Chen, Liejian; Chisholm, Andrew; Cormier, Kyle James Read; Cunningham, William Reilly; Dervan, Paul; Diez Cornell, Sergio; Dolezal, Zdenek; Dopke, Jens; Dreyer, Etienne; Dreyling-Eschweiler, Jan Linus Roderik; Escobar, Carlos; Fabiani, Veronica; Fadeyev, Vitaliy; Fernandez Tejero, Javier; Fleta Corral, Maria Celeste; Gallop, Bruce; Garcia-Argos, Carlos; Greenall, Ashley; Gregor, Ingrid-Maria; Greig, Graham George; Guescini, Francesco; Hara, Kazuhiko; Hauser, Marc Manuel; Huang, Yanping; Hunter, Robert Francis Holub; Keller, John; Klein, Christoph; Kodys, Peter; Koffas, Thomas; Kotek, Zdenek; Kroll, Jiri; Kuehn, Susanne; Lee, Steven Juhyung; Liu, Yi; Lohwasser, Kristin; Meszarosova, Lucia; Mikestikova, Marcela; Mi\\~nano Moya, Mercedes; Mori, Riccardo; Moser, Brian; Nikolopoulos, Konstantinos; Peschke, Richard; Pezzullo, Giuseppe; Phillips, Peter William; Poley, Anne-luise; Queitsch-Maitland, Michaela; Ravotti, Federico; Rodriguez Rodriguez, Daniel

    2018-01-01

    The planned HL-LHC (High Luminosity LHC) is being designed to maximise the physics potential of the LHC with 10 years of operation at instantaneous luminosities of \\mbox{$7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$}. A consequence of this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron equivalences to over $1x10^{15}$ 1 MeV neutron equivalent per $cm^{2}$ in the ATLAS Strips system. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II test beam facility to investigate the detailed performance of a strip module with both 2.5cm and 5cm length strips before irradiation. The DURANTA telescope was used to obtain a pointing...

  5. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Simon, E-mail: sviel@lbl.gov [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Banerjee, Swagato [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Pranko, Aliaksandr [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Rieger, Julia [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); II Physikalisches Institut, Georg-August-Universität, Göttingen (Germany); Wolf, Julian [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Wu, Sau Lan; Yang, Hongtao [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States)

    2016-09-21

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  6. Development and evaluation of test stations for the quality assurance of the silicon micro-strip detector modules for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Poettgens, M.

    2007-11-22

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m{sup 2}, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control of the quality is done by the members of the 21 participating institutes. Since the access to the silicon micro-strip tracker will be very limited after the installation in the CMS detector the installed modules must be of high quality. For this reason the modules are thoroughly tested and the test results are uploaded to a central database. By the development of a read-out system and the corresponding software the III. Physikalisches Institut made an important contribution for the electrical and functional quality control of hybrids and modules. The read-out system provides all features for the operation and test of hybrids and modules and stands out due to high reliability and simple handling. Because a very user-friedly and highly automated software it became the official test tool and was integrated in various test stands. The test stands, in which the read-out system is integrated in, are described and the tests which are implemented in the

  7. The development of a high-resolution scintillating fiber tracker with silicon photomultiplier readout

    International Nuclear Information System (INIS)

    Roper Yearwood, Gregorio

    2013-01-01

    In this work I present the design and test results for a novel, modular tracking detector from scintillating fibers which are read out by silicon photomultiplier (SiPM) arrays. The detector modules consist of 0.25 mm thin scintillating fibers which are closely packed in five-layer ribbons. Two ribbons are fixed to both sides of a carbon-fiber composite structure. Custom made SiPM arrays with a photo-detection efficiency of about 50% read out the fibers. Several 860 mm long and 32 mm wide tracker modules were tested in a secondary 12 GeV/c beam at the PS facilities, CERN in November of 2009. During this test a spatial resolution better than 0.05 mm at an average light yield of about 20 photons for a minimum ionizing particle was determined. This work details the characterization of scintillating fibers and silicon photomultipliers of different make and model. It gives an overview of the production of scintillating fiber modules. The behavior of detector modules during the test-beam is analyzed in detail and different options for the front-end electronics are compared. Furthermore, the implementation of the proposed tracking detector from scintillating fibers within the scope of the PERDaix experiment is discussed. The PERDaix detector is a permanent magnet spectrometer with a weight of 40 kg. It consists of 8 tracking detector layers from scintillating fibers, a time-of-flight detector from plastic scintillator bars with silicon photomultiplier readout and a transition radiation detector from an irregular fleece radiator and Xe/CO 2 filled proportional counting tubes. The PERDaix detector was launched with a helium balloon within the scope of the ''Balloon-Experiments for University Students'' (BEXUS) program from Kiruna, Sweden in November 2010. For a few hours PERDaix reached an altitude of 33 km and measured cosmic rays. In May 2011, the PERDaix detector was characterized during a test-beam at the PS-facilities at CERN. This work introduces methods for event

  8. Combined radiation damage, annealing, and ageing studies of InGaAsP /InP 1310 nm lasers for the CMS tracker optical links

    CERN Document Server

    Gill, K; Troska, Jan K; Vasey, F

    2002-01-01

    A summary is presented of the combined effects of radiation damage, accelerated annealing and accelerated ageing in 1310 nm InGaAsP/InP multi-quantum-well lasers, the type chosen for use in the CMS Tracker optical links. The radiation damage effects are compared for a variety of radiation sources: /sup 60/Co-gamma, 0.8 MeV (average energy) neutrons, 20 MeV (average energy) neutrons and 300 MeV/c pions that represent important parts of the spectrum of particles that will be encountered in the CMS Tracker. The relative damage factors of the various sources are calculated by comparing the laser threshold current increase due to radiation damage giving approximately=0 : 0.12 : 0.53 : 1 for /sup 60/Co-gamma, approximately =0.8 MeV neutrons, approximately=20 MeV neutrons with respect to 300 MeV/c pions. The effects of bias current and temperature on the annealing were measured and, in all cases, the annealing is proportional to log(annealing time). A bias current of 60 mA increases the annealing, in terms of the ti...

  9. Radiation damage study on innovative silicon sensors for the CMS tracker upgrade

    CERN Document Server

    Pacifico, Nicola

    Throughout the last decades, High Energy Physics aims have shifted towards the search for evidence of events able to confirm or dismiss different physical models which all have proven able, to a certain extent, to give a reliable description of the laws governing the universe. Such models (Standard Model, Super Symmetric Theory, and so on) provide comparable predictions in the low-energy scale, starting to diverge only at energy scales of the order of hundreds or even thousands of GeV. For this reason, the latest developments in HEP experiments have seen the realization of massive colliders (starting from the Tevatron, going through the LEP and ending up to the LHC), able to provide particle beams of energies ranging from some hundred GeV up to several TeV. The current generation of experiments at LHC is expected to receive an integrated dose which, at the detectors closer to the interaction point, will reach levels of 10^6 Gray, corresponding to an equivalent hadron fluence of up to 3e15 neq/cm2. None of the...

  10. Validation of tracker alignment using electrons, and search for long-lived particles in the electron-muon channel, in the CMS experiment at LHC

    International Nuclear Information System (INIS)

    Goetzmann, Christophe

    2014-01-01

    The first part of my work concerns the development of an algorithm using CMS data to automatically detect the presence of particular deformations than can occur in the CMS tracker. The method takes advantage of the bias that such deformations induce in the measurement of electron impulsion. The reliability of the method has been proved using Monte-Carlo simulation. The algorithm was then used to certify that none of the considered deformations affected the data recorded in 2012. The second part of my work consists of a statistical analysis of the data recorded by CMS, in order to look for evidence of the presence of exotic long-lived particles. The latter could manifest themselves through their decay to an electron and a muon. Such an observation would provide a strong clue of the existence of new physics. In the absence of any observation statistically significant, a Bayesian method is used to interpret this result in term of constraints on a supersymmetric model (MSSM). (author)

  11. Electrical Qualification of the Pre-production of Analogue Opto-Hybrid Circuits for the CMS Tracker Inner Barrel and Inner Disks.

    CERN Document Server

    Brunetti, Maria Teresa; Postolache, Vasile; Ricci, Daniel

    2003-01-01

    A pre-production of 50 analogue opto-hybrid (AOH) circuits to be used in the front-end electronics of the CMS tracker was extensively tested before the incoming start of the massive production. A total of 4000 AOHs are required for the tracker inner barrel (TIB) and inner disk (TID) construction. The electrical response of the TIB/TID AOH pre-production was tested at 25°C both for the static and dynamic behavior. A subset of five AOHs was cooled and tested at -10°C and -15°C. A passive thermal cycle test from -20°C to 25°C was done on a sample of 22 pre-production AOHs, including the previous subset, to measure the mechanical response at possible variations of the nominal tracker temperature of -10°C. Four AOHs from the subset were also kept at -15°C for 20 hours in order to check the long-term stability of the response. The measurements were obtained with the automatic test equip ment (ATE) built for the fast qualification during the massive AOH production and with a custom setup dedicat...

  12. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    AKIBA,Y.

    2004-10-01

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--(a) Potential enhancement of charm production, (b) Open beauty production, (c) Flavor dependence of jet quenching and QCD energy loss, (d) Accurate charm reference for quarkonium, (e) Thermal dilepton radiation, (f) High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}, and (g) Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--(a) {Delta}G/G with charm, (b) {Delta}G/G with beauty, and (c) x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range.

  13. A combined ultrasonic flow meter and binary vapour mixture analyzer for the ATLAS silicon tracker

    CERN Document Server

    Bates, R; Berry, S; Berthoud, J; Bitadze, A; Bonneau, P; Botelho-Direito, J; Bousson, N; Boyd, G; Bozza, G; Da Riva, E; Degeorge, C; DiGirolamo, B; Doubek, M; Giugni, D; Godlewski, J; Hallewell, G; Katunin, S; Lombard, D; Mathieu, M; McMahon, S; Nagai, K; Perez-Rodriguez, E; Rossi, C; Rozanov, A; Vacek, V; Vitek, M; Zwalinski, L

    2013-01-01

    An upgrade to the ATLAS silicon tracker cooling control system may require a change from C3F8 (octafluoro-propane) evaporative coolant to a blend containing 10-25% of C2F6 (hexafluoro-ethane). Such a change will reduce the evaporation temperature to assure thermal stability following radiation damage accumulated at full LHC luminosity. Central to this upgrade is a new ultrasonic instrument in which sound transit times are continuously measured in opposite directions in flowing gas at known temperature and pressure to deduce the C3F8/C2F6 flow rate and mixture composition. The instrument and its Supervisory, Control and Data Acquisition (SCADA) software are described in this paper. Several geometries for the instrument are in use or under evaluation. An instrument with a pinched axial geometry intended for analysis and measurement of moderate flow rates has demonstrated a mixture resolution of 3.10-3 for C3F8/C2F6 molar mixtures with 20%C2F6, and a flow resolution of 2% of full scale for mass flows up to 30gs-...

  14. Recent developments on CMOS MAPS for the SuperB Silicon Vertex Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: rizzo@pi.infn.it [Università degli Studi di Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa (Italy); Comott, D. [Università degli Studi di Bergamo (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Università degli Studi di Bergamo (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia (Italy); Fabbri, L.; Gabrielli, A. [Università degli Studi di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Giorgi, F.; Pellegrini, G.; Sbarra, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A. [Università degli Studi di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Berra, A.; Lietti, D.; Prest, M. [Università dell' Insubria, Como (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca (Italy); Bevan, A. [School of Physics and Astronomy, Queen Mary, University of London, London E1 4NS (United Kingdom); Wilson, F. [STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Beck, G. [School of Physics and Astronomy, Queen Mary, University of London, London E1 4NS (United Kingdom); and others

    2013-08-01

    In the design of the Silicon Vertex Tracker for the high luminosity SuperB collider, very challenging requirements are set by physics and background conditions on its innermost Layer0: small radius (about 1.5 cm), resolution of 10–15μm in both coordinates, low material budget <1%X{sub 0}, and the ability to withstand a background hit rate of several tens of MHz/cm{sup 2}. Thanks to an intense R and D program the development of Deep NWell CMOS MAPS (with the ST Microelectronics 130 nm process) has reached a good level of maturity and allowed for the first time the implementation of thin CMOS sensors with similar functionalities as in hybrid pixels, such as pixel-level sparsification and fast time stamping. Further MAPS performance improvements are currently under investigation with two different approaches: the INMAPS CMOS process, featuring a quadruple well and a high resistivity substrate, and 3D CMOS MAPS, realized with vertical integration technology. In both cases specific features of the processes chosen can improve charge collection efficiency, with respect to a standard DNW MAPS design, and allow to implement a more complex in-pixel logic in order to develop a faster readout architecture. Prototypes of MAPS matrix, suitable for application in the SuperB Layer0, have been realized with the INMAPS 180 nm process and the 130 nm Chartered/Tezzaron 3D process and results of their characterization will be presented in this paper.

  15. Advances in the development of pixel detector for the SuperB Silicon Vertex Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Paoloni, E., E-mail: eugenio.paoloni@pi.infn.it [Università degli Studi di Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa (Italy); Comotti, D. [Università degli Studi di Bergamo (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Università degli Studi di Bergamo (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia (Italy); Fabbri, L.; Gabrielli, A. [Università degli Studi di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Giorgi, F.; Pellegrini, G.; Sbarra, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A. [Università degli Studi di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Berra, A.; Lietti, D.; Prest, M. [Università dell' Insubria, Como (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca (Italy); Bevan, A. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); Wilson, F. [STFC Rutherford Appleton Laboratory, Harwell, Oxford Didcot OX11 0QX (United Kingdom); Beck, G. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); and others

    2013-12-11

    The latest advances in the design and characterization of several pixel sensors developed to satisfy the very demanding requirements of the innermost layer of the SuperB Silicon Vertex Tracker will be presented in this paper. The SuperB machine is an electron positron collider operating at the ϒ(4S) peak to be built in the very near future by the Cabibbo Lab consortium. A pixel detector based on extremely thin, radiation hard devices able to cope with rate in the tens of MHz/cm{sup 2} range will be the optimal solution for the upgrade of the inner layer of the SuperB tracking system. At present several options with different levels of maturity are being investigated to understand advantages and potential issues of the different technologies: thin hybrid pixels, Deep N-Well CMOS MAPS, INMAPS CMOS MAPS featuring a quadruple well and high resistivity substrates and CMOS MAPS realized with Vertical Integration technology. The newest results from beam test, the outcomes of the radiation damage studies and the laboratory characterization of the latest prototypes will be reported.

  16. Thin pixel development for the SuperB silicon vertex tracker

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [INFN-Pisa and Universita di Pisa (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell' Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.A. [INFN-Pisa and Universita di Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN-Pisa (Italy); Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F.; Neri, N. [INFN-Pisa and Universita di Pisa (Italy); and others

    2011-09-11

    The high luminosity SuperB asymmetric e{sup +}e{sup -} collider, to be built near the INFN National Frascati Laboratory in Italy, has been designed to deliver a luminosity greater than 10{sup 36} cm{sup -2} s{sup -1} with moderate beam currents and a reduced center of mass boost with respect to earlier B-Factories. An improved vertex resolution is required for precise time-dependent measurements and the SuperB Silicon Vertex Tracker will be equipped with an innermost layer of small radius (about 1.5 cm), resolution of 10-15{mu}m in both coordinates, low material budget (<1% X0), and able to withstand a background rate of several tens of MHz/cm{sup 2}. The ambitious goal of designing a thin pixel device with these stringent requirements is being pursued with specific R and D programs on different technologies: hybrid pixels, CMOS MAPS and pixel sensors developed with vertical integration technology. The latest results on the various pixel options for the SuperB SVT will be presented.

  17. Advances in the development of pixel detector for the SuperB Silicon Vertex Tracker

    International Nuclear Information System (INIS)

    Paoloni, E.; Comotti, D.; Manghisoni, M.; Re, V.; Traversi, G.; Fabbri, L.; Gabrielli, A.; Giorgi, F.; Pellegrini, G.; Sbarra, C.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.; Berra, A.; Lietti, D.; Prest, M.; Bevan, A.; Wilson, F.; Beck, G.

    2013-01-01

    The latest advances in the design and characterization of several pixel sensors developed to satisfy the very demanding requirements of the innermost layer of the SuperB Silicon Vertex Tracker will be presented in this paper. The SuperB machine is an electron positron collider operating at the ϒ(4S) peak to be built in the very near future by the Cabibbo Lab consortium. A pixel detector based on extremely thin, radiation hard devices able to cope with rate in the tens of MHz/cm 2 range will be the optimal solution for the upgrade of the inner layer of the SuperB tracking system. At present several options with different levels of maturity are being investigated to understand advantages and potential issues of the different technologies: thin hybrid pixels, Deep N-Well CMOS MAPS, INMAPS CMOS MAPS featuring a quadruple well and high resistivity substrates and CMOS MAPS realized with Vertical Integration technology. The newest results from beam test, the outcomes of the radiation damage studies and the laboratory characterization of the latest prototypes will be reported

  18. INNER TRACKER

    CERN Multimedia

    Peter Sharp

    The last three months have been very productive for the CMS Tracking Systems. At the June CMS Week the Cooling System problems had delayed the commissioning of the Silicon Strip detector. These problems were successfully solved, and after a little over three weeks of commissioning a large fraction of the Silicon Strip detector was able to join the CMS Cruzet 3 Global Run (8 July). In addition on the Monday (14 July) following the end of the Global Run, the first preliminary results from both the reconstruction and alignment of Cosmic Tracks were presented to CMS. Starting in the week beginning 21 July both the Barrel and Forward Pixel Detectors were installed into CMS, connected to the pre-installed services and  commissioning was started. Since then all of the tracking Systems have been continuously commissioned and the focus has been on solving a number of small problems, and on calibrating the detectors and synchronizing the detectors with the CMS Trigger. More than 99% of the Silicon Strip Tr...

  19. Large-Area Silicon Detectors for the CMS High Granularity Calorimeter

    CERN Document Server

    Pree, Elias

    2017-01-01

    During the so-called Phase-2 Upgrade, the CMS experiment at CERN will undergo significant improvements to cope with the 10-fold luminosity increase of the High Luminosity LHC (HL-LHC) era. Especially the forward calorimetry will suffer from very high radiation levels and intensified pileup in the detectors. For this reason, the CMS collaboration is designing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The CE-E and a large fraction of CE-H will consist of a sandwich structure with silicon as active detector material. This paper presents an overview of the ongoing sensor development for the HGCAL and highlights important design features and measurement techniques. The design and layout of an 8-inch silicon sensor prototype is shown. The hexagonal sensors consist of 235 pads, each with an area of about \\mbox{1~cm$^{2}$}. Furthermore, Synopsys...

  20. Large-area hexagonal silicon detectors for the CMS High Granularity Calorimeter

    Science.gov (United States)

    Pree, E.

    2018-02-01

    During the so-called Phase-2 Upgrade, the CMS experiment at CERN will undergo significant improvements to cope with the 10-fold luminosity increase of the High Luminosity LHC (HL-LHC) era. Especially the forward calorimetry will suffer from very high radiation levels and intensified pileup in the detectors. For this reason, the CMS collaboration is designing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The CE-E and a large fraction of CE-H will consist of a sandwich structure with silicon as active detector material. This paper presents an overview of the ongoing sensor development for the HGCAL and highlights important design features and measurement techniques. The design and layout of an 8-inch silicon sensor prototype is shown. The hexagonal sensors consist of 235 pads, each with an area of about 1 cm2. Furthermore, Synopsys TCAD simulations regarding the high voltage stability of the sensors for different geometric parameters are performed. Finally, two different IV characterisation methods are compared on the same sensor.

  1. Beam loss studies on silicon strip detector modules for the CMS experiment

    CERN Document Server

    Fahrer, Manuel

    2006-01-01

    The large beam energy of the LHC demands for a save beam abort system. Nevertheless, failures cannot be excluded with last assurance and are predicted to occur once per year. As the CMS experiment is placed in the neighboured LHC octant, it is affected by such events. The effect of an unsynchronized beam abort on the silicon strip modules of the CMS tracking detector has been investigated in this thesis by performing one accelerator and two lab experiments. The dynamical behaviour of operational parameters of modules and components has been recorded during simulated beam loss events to be able to disentangle the reasons of possible damages. The first study with high intensive proton bunches at the CERN PS ensured the robustness of the module design against beam losses. A further lab experiment with pulsed IR LEDs clarified the physical and electrical processes during such events. The silicon strip sensors on a module are protected against beam losses by a part of the module design that originally has not been...

  2. Macro Pixel ASIC (MPA): The readout ASIC for the pixel-strip (PS) module of the CMS outer tracker at HL-LHC

    CERN Document Server

    Ceresa, Davide; Kloukinas, Konstantinos; Jan Kaplon; Bialas, Wojciech; Re, Valerio; Traversi, Gianluca; Gaioni, Luigi; Ratti, Lodovico

    2014-01-01

    The CMS tracker at HL-LHC is required to provide prompt information on particles with high transverse momentum to the central Level\\,1 trigger. For this purpose, the innermost part of the outer tracker is based on a combination of a pixelated sensor with a short strip sensor, the so-called Pixel-Strip module (PS). The readout of these sensors is carried out by distinct ASICs, the Strip Sensor ASIC (SSA), for the strip layer, and the Macro Pixel ASIC (MPA) for the pixel layer. The processing of the data directly on the front-end module represents a design challenge due to the large data volume (30720\\,pixels and 1920\\,strips per module) and the limited power budget. This is the reason why several studies have been carried out to find the best compromise between ASICs performance and power consumption. This paper describes the current status of the MPA ASIC development where the logic for generating prompt information on particles with high transverse momentum is implemented. An overview of the readout method i...

  3. Tracking performance with cosmic rays in CMS

    International Nuclear Information System (INIS)

    Cerati, G.B.

    2009-01-01

    The CMS Tracker is the biggest all-silicon detector in the world and is designed to be extremely efficient and accurate even in a very hostile environment such as the one close to the CMS collision point. It consists of an inner pixel detector, made of three barrel layers (48M pixels) and four forward disks (16M pixels), and an outer micro-strip detector, divided in two barrel sub-detectors, TIB and TOB, and two endcap sub-detectors, TID and TEC, for a total of 9.6M strips. The commissioning of the CMS Tracker detector has been initially carried out at the Tracker Integration Facility at CERN (TIF), where cosmic ray data were collected for the strip detector only, and is still ongoing at the CMS site (LHC Point 5). Here the Strip and Pixel detectors have been installed in the experiment and are taking part to the cosmic global-runs. After an overview of the tracking algorithms for cosmic-ray data reconstruction, the resulting tracking performance on cosmic data both at TIF and at P5 are presented. The excellent performance proves that the CMS Tracker is ready for the first collisions foreseen for 2009.

  4. INNER TRACKER

    CERN Multimedia

    P. Sharp

    The last three months have been very productive for the CMS Tracking Systems. By the September CMS Week, the complete Tracking System (silicon strips and pixel detectors) had been prepared for recording the first collisions from the LHC. After the events of 19 September, the focus of activity became the collection of a substantial data set of cosmic triggers with the CMS Magnet at 3.8T in the CMS CRAFT Global Run. During the four weeks of the CRAFT run, the complete Tracking Systems were available for data taking for 96% of the time, collecting ~290 million triggers which have in turn delivered ~8.5 million events with at least one reconstructed track in the silicon strip detector and ~100 K tracks in the pixel detector. Throughout the run, ~98% of the silicon strips and ~97% of the pixels collected data. The main causes of the 4% ‘down time’ during the four-week run were cooling problems associated with the high leak rate from the silicon strip cooling plants. The power, DAQ, DCS and ...

  5. Pre- and post-irradiation performance of FBK 3D silicon pixel detectors for CMS

    International Nuclear Information System (INIS)

    Krzywda, A.; Alagoz, E.; Bubna, M.; Obertino, M.; Solano, A.; Arndt, K.; Uplegger, L.; Betta, G.F. Dalla; Boscardin, M.; Ngadiuba, J.; Rivera, R.; Menasce, D.; Moroni, L.; Terzo, S.; Bortoletto, D.; Prosser, A.; Adreson, J.; Kwan, S.; Osipenkov, I.; Bolla, G.

    2014-01-01

    In preparation for the tenfold luminosity upgrade of the Large Hadron Collider (the HL-LHC) around 2020, three-dimensional (3D) silicon pixel sensors are being developed as a radiation-hard candidate to replace the planar ones currently being used in the CMS pixel detector. This study examines an early batch of FBK sensors (named ATLAS08) of three 3D pixel geometries: 1E, 2E, and 4E, which respectively contain one, two, and four readout electrodes for each pixel, passing completely through the bulk. We present electrical characteristics and beam test performance results for each detector before and after irradiation. The maximum fluence applied is 3.5×10 15 n eq /cm 2

  6. Silicon opto-electronic wavelength tracker based on an asymmetric 2x3 Mach-Zehnder Interferometer

    OpenAIRE

    Doménech Gómez, José David; Sanchez Fandiño, Javier Antonio; Gargallo Jaquotot, Bernardo Andrés; Baños Lopez, Rocio; Muñoz Muñoz, Pascual

    2014-01-01

    In this paper we report on the experimental demonstration of a Silicon-on-Insulator opto-electronic wavelength tracker for the optical telecommunication C-band. The device consist of a 2x3 Mach-Zehnder Interferometer (MZI) with 10 pm resolution and photo-detectors integrated on the same chip. The MZI is built interconnecting two Multimode Interference (MMI) couplers with two waveguides whose length difference is 56 mm. The first MMI has a coupling ratio of 95:05 to com...

  7. Microstrip gas detectors development for the CMS tracker and branching fractions measurement of hadronic B decays with the BaBar experiment

    International Nuclear Information System (INIS)

    Zghiche, A.

    2007-01-01

    The Compact Muon Solenoid (CMS) is one of the two detectors, designed for the search of the Higgs boson at the Large Hadron Collider (LHC), to operate late 2007 at CERN. Micro Strip Gas Counters (MSGC) have been extensively studied to qualify as part of the CMS tracker. When exposed to highly ionizing particles and to high rates of incident particles, MSGCs have shown a good behavior allowing them to cope with the LHC environment. Similar micro pattern gaseous detectors such as Gas Electron Multiplier (GEM) and Micro Mesh gas detectors (MicroMegas) are developed to be used in high energy physics. BaBar, the detector for the Slac PEP-II asymmetric e + e - B Factory operating at the Y(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. First observation of CP violation has been realized in 2001. Since then an impressive amount of B decays measurements has been performed. Among those, we present here the branching fraction measurements of charged and neutral B decays to Dπ - , D * π - , and D ** π - with a missing mass method, based on a sample of 231 million Y(4S) → BB-bar pairs. In order to do this, one of the B mesons is fully reconstructed and the 'recoil' one decays into a reconstructed charged pion and a companion charmed meson identified by its recoil mass, inferred by kinematics. The same sample is used to reconstruct charmed mesons (D, Ds) and baryons (Λ c ) in the 'recoil side' allowing the measurement of the charm number in the B decays. (author)

  8. Electrical measurements of silicon sensors for the upgrade of the CMS detector; Vermessung von Siliziumsensoren fuer das Upgrade des CMS-Detektors

    Energy Technology Data Exchange (ETDEWEB)

    Stegler, Martin

    2013-05-15

    Because of the upgrade in the LHC (2020-2022), in which the luminosity is increased to above 5.10{sup 34} cm{sup -2}s{sup -1}, in the CMS tracker a much higher radiation exposure than hitherto is to be expected. Therefore radiation-hardened sensors are required. For this reason in the framework of the Hamamatsu-Photonics-KK campaign among others Mpix sensors are studied. Furthermore they are tested concerning their material properties by characterizing befor and after the irradiation. Also the optimal geometry is searched for. This thesis studies two substrate types of the same thickness with two isolating mechanisms. Thereby also the influence of the geometry and different bias structures is regarded in order to draw conclusions on the radiation hardness.

  9. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT.

    Energy Technology Data Exchange (ETDEWEB)

    AKIBA,Y.

    2004-03-30

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--Potential enhancement of charm production; Open beauty production; Flavor dependence of jet quenching and QCD energy loss; Accurate charm reference for quarkonium; Thermal dilepton radiation; High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}; and Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--{Delta}G/G with charm; {Delta}G/G with beauty; and x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range. With the present PHENIX detector, heavy-quark production has been measured indirectly through the observation of single electrons. These measurements are inherently limited in accuracy by systematic uncertainties resulting from the large electron background from Dalitz decays and photon conversions. In particular, the statistical nature of the analysis does not allow for a model-independent separation of the charm and beauty contributions. The VTX detector will provide vertex tracking with a resolution of <50 {micro}m over a large coverage both in rapidity (|{eta}| < 1.2) and in azimuthal angle ({Delta}{phi} {approx

  10. Status of sensor qualification for the PS module with on-chip $p_T$ discrimination for the CMS tracker phase 2 upgrade

    CERN Document Server

    AUTHOR|(CDS)2095782

    2016-01-01

    The high luminosity upgrade of the LHC is targeted to deliver 3000 fb$^{-1}$ at a luminosity of $5\\times10^{34}$cm$^{-2}$s$^{-1}$. Higher granularity, 140 collisions per bunch crossing and existing bandwidth limitations require a reduction of the amount of data at module level. New modules have binary readout, on-chip $p_{\\mathrm{ T}}$ discrimination and capabilities to provide track finding data at 40 MHz to the L1-trigger. The CMS collaboration has undertaken R&D effort to develop new planar sensors for the pixel-strip (PS) module, which has to withstand $1\\times10^{15}$ cm$^{-2}$ 1 MeV neutron equivalent fluence in the innermost layer of the tracker. The module is composed of a strip sensor and a macro pixel sensor with 100$\\mu$m $\\times$ 1.5 mm pixel size. Sensors were characterized in the laboratory and the effects of different process parameters and sensor concepts were studied. This contribution presents a new sensor prototype with n-pixels in p-bulk material in planar technology for the PS module...

  11. The silicon strips Inner Tracker (ITk) of the ATLAS Phase-II upgrade detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220523; The ATLAS collaboration

    2018-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The inner detector of the current detector will be replaced by the Inner Tracker (ITk). It consists of an innermost pixel detector and an outer strips tracker. This contribution focuses on the strips tracker. The basic detection unit of the ...

  12. Track reconstruction in CMS high luminosity environment

    CERN Document Server

    AUTHOR|(CDS)2067159

    2016-01-01

    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  13. Track reconstruction in CMS high luminosity environment

    CERN Document Server

    Goetzmann, Christophe

    2014-01-01

    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  14. Radiation hardness and precision timing study of silicon detectors for the CMS High Granularity Calorimeter (HGC)

    Energy Technology Data Exchange (ETDEWEB)

    Currás, Esteban, E-mail: ecurrasr@cern.ch [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Fernández, Marcos [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Gallrapp, Christian [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Gray, Lindsey [Fermilab, Wilson Street and Kirk Road, Batavia, IL 60510-5011, Illinois (United States); Mannelli, Marcello [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Meridiani, Paolo [Istituto Nazionale Di Fisica Nucleare – Sezione di Roma, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Moll, Michael [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Nourbakhsh, Shervin [University of Minnesota, Minneapolis, MN 55455 (United States); Scharf, Christian [Hamburg University, Notkestraße 85, 22607 Hamburg (Germany); Silva, Pedro [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Steinbrueck, Georg [Hamburg University, Notkestraße 85, 22607 Hamburg (Germany); Fatis, Tommaso Tabarelli de [Istituto Nazionale di Fisica Nucleare – Sezione di Milano-Bicocca Piazza della Scienza 3, 20126 Milano (Italy); Vila, Iván [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain)

    2017-02-11

    The high luminosity upgraded LHC or Phase-II is expected to increase the instantaneous luminosity by a factor of 10 beyond the LHC's design value, expecting to deliver 250 fb{sup −1} per year for a further 10 years of operation. Under these conditions the performance degradation due to integrated radiation dose will need to be addressed. The CMS collaboration is planning to upgrade the forward calorimeters. The replacement is called the High Granularity Calorimeter (HGC) and it will be realized as a sampling calorimeter with layers of silicon detectors interleaved. The sensors will be realized as pad detectors with sizes of less that ∼1.0 cm{sup 2} and an active thickness between 100 and 300 μm depending on the position, respectively, the expected radiation levels. For an integrated luminosity of 3000 fb{sup −1}, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences up to 10{sup 16} neq/cm{sup 2}. A radiation tolerance study after neutron irradiation of 300, 200, and 100 μm n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6×10{sup 16} neq/cm{sup 2} is presented. The properties of these diodes studied before and after irradiation were leakage current, capacitance, charge collection efficiency, annealing effects and timing capability. The results of these measurements validate these sensors as candidates for the HGC system.

  15. Radiation hardness and precision timing study of Silicon detectors for the CMS High Granularity Calorimeter (HGC)

    CERN Document Server

    Curras, E; Gallrapp, C; Gray, L; Mannelli, M; Meridiani, P; Moll, M; Nourbakhsh, S; Scharf, C; Silva, P; Steinbrueck, G; Tabarelli de Fatis, T; Vila, I

    2017-01-01

    The high luminosity upgraded LHC or Phase-II is expected to increase the instantaneous luminosity by a factor of 10 beyond the LHC's design value, expecting to deliver 250 fb^−1 per year for a further 10 years of operation. Under these conditions the performance degradation due to integrated radiation dose will need to be addressed. The CMS collaboration is planning to upgrade the forward calorimeters. The replacement is called the High Granularity Calorimeter (HGC) and it will be realized as a sampling calorimeter with layers of silicon detectors interleaved. The sensors will be realized as pad detectors with sizes of less that ∼1.0 cm^2 and an active thickness between 100 and 300 μm depending on the position, respectively, the expected radiation levels. For an integrated luminosity of 3000 fb^−1, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences up to 10^16 neq/cm^2. A radiation tolerance study after neutron irradiation of 300, 200, and 100 μ...

  16. Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGCAL)

    CERN Document Server

    Curras Rivera, Esteban

    2016-01-01

    The high luminosity LHC (HL-LHC or Phase-II) is expected to increase the instantaneous luminosity of the LHC by a factor of about five, delivering about 250 fba-1 per year between 2025 and 2035. Under these conditions the performance degradation of detectors due to integrated radiation dose/fluence will need to be addressed. The CMS collaboration is planning to upgrade many components, including the forward calorimeters. The replacement for the existing endcap preshower, electromagnetic and hadronic calorimeters is called the High Granularity Calorimeter (HGCAL) and it will be realized as a sampling calorimeter, including 30 layers of silicon detectors totalling 600m^2. The sensors will be realized as pad detectors with cell sizes of between 0.5-1.0 cm^2 and an active thickness between 100 um and 300 um depending on their location in the endcaps the thinner sensors will be used in the highest radiation environment. For an integrated luminosity of 3000 fba-1, the electromagnetic calorimetry will sustain integ...

  17. The Development of silicon detectors for the CMS experiment and future experiments

    CERN Document Server

    Son, Seunghee

    A hybrid pixel detector will be installed as the inner most layer of the tracking system of the CMS experiment, currently under construction at the Large Hardron Collider (LHC) at CERN (Geneva, Switzerland) to provide high resolution tracking and vertex identification. Due to the severe radiation environment of the LHC, the performance of the sensors must be carefully evaluated up to a fluence of 6 × 1014 1-MeV equivalent neutrons per square centimeter. The sensors were fabricated "n on n", which means highly segmented n+ implants with 150 × 100 μm2 pitch are in n-type bulk material and p+ implants are used to isolate pixels. The electrical properties of these sensors has been studied. Studies of charge collection efficiency were carried out with a 1064 nm wavelength laser. Comparisons of charge collection efficiency among different sensor designs is presented. In addition, present and future possibilities for the production of thin silicon detectors are discussed. The electrical characteristics and the pe...

  18. Studies of adhesives and metal contacts on silicon strip sensors for the ATLAS Inner Tracker

    OpenAIRE

    Poley, Anne-Luise

    2018-01-01

    This thesis presents studies investigating the use of adhesives on the active area of silicon strip sensors for the construction of silicon strip detector modules for the ATLAS Phase-II Upgrade. 60 ATLAS07 miniature sensors were tested using three UV cure glues in comparison with the current baseline glue (a non-conductive epoxy).The impact of irradiation on the chemical composition of all adhesives under investigation was studied using three standard methods for chemical analysis: quadrupole...

  19. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Mori, R., E-mail: riccardo.mori@physik.uni-freiburg.de [Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Arratia-Munoz, M.I.; Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ullan, M.; Fleta, C.; Fernandez-Tejero, J. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Gregor, I.M.; Lohwasser, K. [DESY, Notkestrasse 85, 22607 Hambrug (Germany); and others

    2016-09-21

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  20. Radiation Hard GaNFET High Voltage Multiplexing (HV Mux) for the ATLAS Upgrade Silicon Strip Tracker

    CERN Document Server

    Lynn, David; The ATLAS collaboration

    2017-01-01

    The outer radii of the inner tracker (ITk) for the Phase-II Upgrade of the ATLAS experiment will consist of groups of silicon strip sensors mounted on common support structures. Lack of space creates a need to remotely disable a failing sensor from the common HV bus. We have developed circuitry consisting of a GaNFET transistor and a HV Multiplier circuit to disable a failed sensor. We will present two variants of the HV Mux circuitry and show irradiation results on individual components with an emphasis on the GaNFET results. We will also discuss the reliability of the HV Mux circuitry and show plans to ensure reliability during production.

  1. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    NARCIS (Netherlands)

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of

  2. Performance and track-based alignment of the Phase-1 upgraded CMS pixel detector

    CERN Document Server

    Botta, Valeria

    2017-01-01

    The Compact Muon Solenoid (CMS) detector is a multi-purpose detector constructed in order to study high-energy particle collisions at the Large Hadron Collider (LHC) at CERN. The all-silicon design of the tracking system of the CMS experiment provided excellent resolution for charged tracks and an efficient tagging of jets during Run 1 and Run 2 of the LHC. After the pixel detector of the CMS experiment was upgraded and installed during the shutdown in the beginning of 2017, the positions and orientations of the tracker modules needed to be determined with a precision of several micrometers. The alignment also needs to be quickly recalculated each time the state of the CMS magnet is changed between 0 T and 3.8 T. The latest results of the CMS tracker performance in the 2017 run are presented, with a special focus on alignment and resolution performance using several million reconstructed tracks from cosmic rays and collision data.

  3. A Combined On-Line Acoustic Flowmeter and Fluorocarbon Coolant Mixture Analyzer for The ATLAS Silicon Tracker

    CERN Document Server

    Bitadze, A.; Bates, R.; Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; DiGirolamo, B.; Godlewski, J.; Perez-Rodriguez, E.; Zwalinski, L.; Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A.; Boyd, G.; Doubek, M.; Vacek, V.; Vitek, M.; Egorov, K.; Katunin, S.; McMahon, S.; Nagai, K.

    2011-01-01

    An upgrade to the ATLAS silicon tracker cooling control system may require a change from C3F8 (octafluoro-propane) to a blend containing 10-30% of C2F6 (hexafluoro-ethane) to reduce the evaporation temperature and better protect the silicon from cumulative radiation damage with increasing LHC luminosity. Central to this upgrade is a new acoustic instrument for the real-time measurement of the C3F8/C2F6 mixture ratio and flow. The instrument and its Supervisory, Control and Data Acquisition (SCADA) software are described in this paper. The instrument has demonstrated a resolution of 3.10-3 for C3F8/C2F6 mixtures with ~20%C2F6, and flow resolution of 2% of full scale for mass flows up to 30gs-1. In mixtures of widely-differing molecular weight (mw), higher mixture precision is possible: a sensitivity of < 5.10-4 to leaks of C3F8 into the ATLAS pixel detector nitrogen envelope (mw difference 160) has been seen. The instrument has many potential applications, including the analysis of mixtures of hydrocarbons,...

  4. A combined on-line acoustic flowmeter and fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker

    International Nuclear Information System (INIS)

    Bates, R.; Bitadze, A.; Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Girolamo, B. Di; Godlewski, J.; Perez-Rodriguez, E.; Zwalinski, L.; Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A.; Boyd, G.; Doubek, M.; Vacek, V.; Vitek, M.; Egorov, K.; Katunin, S.; Konstantinov, B.P.; McMahon, S.; Nagai, K.

    2012-01-01

    An upgrade to the ATLAS silicon tracker cooling control system may require a change from C 3 F 8 (octafluoro-propane) to a blend containing 10-30% of C 2 F 6 (hexafluoro-ethane) to reduce the evaporation temperature and better protect the silicon from cumulative radiation damage with increasing LHC luminosity. Central to this upgrade is a new ultrasonic flowmeter and binary gas analyzer for the real-time measurement of the C 3 F 8 /C 2 F 6 mixture ratio and flow. The instrument and its Supervisory, Control and Data Acquisition (SCADA) software are described in this paper. The instrument has demonstrated a resolution of 3.10 -3 for C 3 F 8 /C 2 F 6 mixtures with about 20% C 2 F 6 , and flow resolution of 2% of full scale for mass flows up to 30 gs -1 . In mixtures of widely-differing molecular weight (mw), higher mixture precision is possible: a sensitivity of -4 to leaks of C 3 F 8 into the ATLAS pixel detector nitrogen envelope (mw difference 160) has been seen. The instrument has many potential applications, including the analysis of mixtures of hydrocarbons, vapours for semi-conductor manufacture and anaesthesia. (authors)

  5. Test-beam evaluation of heavily irradiated silicon strip modules for ATLAS Phase-II Strip Tracker Upgrade

    CERN Document Server

    Blue, Andrew; The ATLAS collaboration

    2018-01-01

    The planned HL-LHC (High Luminosity LHC) is being designed to maximise the physics potential of the LHC with 10 years of operation at instantaneous luminosities of 7.5x1034cm−2s−1. A consequence of this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron equivalences to over 1x1015 1 MeV neutron equivalent per cm2 in the ATLAS Strips system. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II and CERN SPS test beam facilities to investigate the detailed performance of a strip module with both 2.5cm and 5cm length strips before and after irradiation with 8x1014neqcm−2 protons and a total ionising dose of 37.2MRad. The DURA...

  6. Studies of adhesives and metal contacts on silicon strip sensors for the ATLAS Inner Tracker

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407830; Moenig, Klaus

    2018-04-04

    This thesis presents studies investigating the use of adhesives on the active area of silicon strip sensors for the construction of silicon strip detector modules for the ATLAS Phase-II Upgrade. 60 ATLAS07 miniature sensors were tested using three UV cure glues in comparison with the current baseline glue (a non-conductive epoxy). The impact of irradiation on the chemical composition of all adhesives under investigation was studied using three standard methods for chemical analysis: quadrupole time-of-flight mass spectroscopy, gel permeability chromatography and gas chromatography combined with mass spectrometry (GC-MS). GC-MS analyses of glue sample extracts before and after irradiation showed molecule cross-linking and broken chemical bonds to different extents and allowed to quantify the radiation hardness of the adhesives under investigation. Probe station measurements were used to investigate electrical characteristics of sensors partially covered with adhesives in comparison with sensors without adhesiv...

  7. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    CERN Document Server

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of the ITS use double-sided silicon strip detectors. This thesis focuses on testing of these detectors and performance studies of the detector module prototypes at the beam test. Silicon strip detector layers will require about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bond...

  8. Silicon Strip detectors for the ATLAS End-Cap Tracker at the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00232570

    Inside physics programme of the LHC different experiment upgrades are foreseen. After the phase-II upgrade of the ATLAS detector the luminosity will be increased up to 5-7.5x10E34 cm-2s-1. This will mean a considerable increase in the radiation levels, above 10E16 neq/cm2 in the inner regions. This thesis is focused on the development of silicon microstrip detectors enough radiation hard to cope with the particle fluence expected at the ATLAS detector during HL-LHC experiment. In particular on the electrical characterization of silicon sensors for the ATLAS End-Caps. Different mechanical and thermal tests are shown using a Petal core as well as the electrical characterization of the silicon sensors that will be used with the Petal structure. Charge collection efficiency studies are carried out on sensors with different irradiation fluences using the ALiBaVa system and two kinds of strips connection are also analized (DC and AC ganging) with a laser system. The Petalet project is presented and the electrical c...

  9. Moment of truth for CMS

    CERN Multimedia

    2006-01-01

    One of the first events reconstructed in the Muon Drift Tubes, the Hadron Calorimeter and elements of the Silicon Tracker (TK) at 3 Tesla. The atmosphere in the CMS control rooms was electric. Everbody was at the helm for the first full-scale testing of the experiment. This was a crunch moment for the entire collaboration. On Tuesday, 22 August the magnet attained almost its nominal power of 4 Tesla! At the same moment, in a tiny improvised control room, the physicists were keyed up to test the entire detector system for the first time. The first cosmic ray tracks appeared on their screens in the week of 15 August. The tests are set to continue for several weeks more until the first CMS components are lowered into their final positions in the cavern.

  10. Track Reconstruction with Cosmic Ray Data at the Tracker Integration Facility

    CERN Document Server

    Adam, Wolfgang; Dragicevic, Marko; Friedl, Markus; Fruhwirth, R; Hansel, S; Hrubec, Josef; Krammer, Manfred; Oberegger, Margit; Pernicka, Manfred; Schmid, Siegfried; Stark, Roland; Steininger, Helmut; Uhl, Dieter; Waltenberger, Wolfgang; Widl, Edmund; Van Mechelen, Pierre; Cardaci, Marco; Beaumont, Willem; de Langhe, Eric; de Wolf, Eddi A; Delmeire, Evelyne; Hashemi, Majid; Bouhali, Othmane; Charaf, Otman; Clerbaux, Barbara; Elgammal, J.-P. Dewulf. S; Hammad, Gregory Habib; de Lentdecker, Gilles; Marage, Pierre Edouard; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Adler, Volker; Devroede, Olivier; De Weirdt, Stijn; D'Hondt, Jorgen; Goorens, Robert; Heyninck, Jan; Maes, Joris; Mozer, Matthias Ulrich; Tavernier, Stefaan; Van Lancker, Luc; Van Mulders, Petra; Villella, Ilaria; Wastiels, C; Bonnet, Jean-Luc; Bruno, Giacomo; De Callatay, Bernard; Florins, Benoit; Giammanco, Andrea; Gregoire, Ghislain; Keutgen, Thomas; Kcira, Dorian; Lemaitre, Vincent; Michotte, Daniel; Militaru, Otilia; Piotrzkowski, Krzysztof; Quertermont, L; Roberfroid, Vincent; Rouby, Xavier; Teyssier, Daniel; Daubie, Evelyne; Anttila, Erkki; Czellar, Sandor; Engstrom, Pauli; Harkonen, J; Karimaki, V; Kostesmaa, J; Kuronen, Auli; Lampen, Tapio; Linden, Tomas; Luukka, Panja-Riina; Maenpaa, T; Michal, Sebastien; Tuominen, Eija; Tuominiemi, Jorma; Ageron, Michel; Baulieu, Guillaume; Bonnevaux, Alain; Boudoul, Gaelle; Chabanat, Eric; Chabert, Eric Christian; Chierici, Roberto; Contardo, Didier; Della Negra, Rodolphe; Dupasquier, Thierry; Gelin, Georges; Giraud, Noël; Guillot, Gérard; Estre, Nicolas; Haroutunian, Roger; Lumb, Nicholas; Perries, Stephane; Schirra, Florent; Trocme, Benjamin; Vanzetto, Sylvain; Agram, Jean-Laurent; Blaes, Reiner; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Fontaine, Jean-Charles; Berst, Jean-Daniel; Brom, Jean-Marie; Didierjean, Francois; Goerlach, Ulrich; Graehling, Philippe; Gross, Laurent; Hosselet, J; Juillot, Pierre; Lounis, Abdenour; Maazouzi, Chaker; Olivetto, Christian; Strub, Roger; Van Hove, Pierre; Anagnostou, Georgios; Brauer, Richard; Esser, Hans; Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Kukulies, Christoph; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pierschel, Gerhard; Raupach, Frank; Schael, Stefan; Schwering, Georg; Sprenger, Daniel; Thomas, Maarten; Weber, Markus; Wittmer, Bruno; Wlochal, Michael; Beissel, Franz; Bock, E; Flugge, G; Gillissen, C; Hermanns, Thomas; Heydhausen, Dirk; Jahn, Dieter; Kaussen, Gordon; Linn, Alexander; Perchalla, Lars; Poettgens, Michael; Pooth, Oliver; Stahl, Achim; Zoeller, Marc Henning; Buhmann, Peter; Butz, Erik; Flucke, Gero; Hamdorf, Richard Helmut; Hauk, Johannes; Klanner, Robert; Pein, Uwe; Schleper, Peter; Steinbruck, G; Blum, P; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Fahrer, Manuel; Frey, Martin; Furgeri, Alexander; Hartmann, Frank; Heier, Stefan; Hoffmann, Karl-Heinz; Kaminski, Jochen; Ledermann, Bernhard; Liamsuwan, Thiansin; Muller, S; Muller, Th; Schilling, Frank-Peter; Simonis, Hans-Jürgen; Steck, Pia; Zhukov, Valery; Cariola, P; De Robertis, Giuseppe; Ferorelli, Raffaele; Fiore, Luigi; Preda, M; Sala, Giuliano; Silvestris, Lucia; Tempesta, Paolo; Zito, Giuseppe; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Giordano, Domenico; Maggi, Giorgio; Manna, Norman; My, Salvatore; Selvaggi, Giovanna; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Galanti, Mario; Giudice, Nunzio; Guardone, Nunzio; Noto, Francesco; Potenza, Renato; Saizu, Mirela Angela; Sparti, V; Sutera, Concetta; Tricomi, Alessia; Tuve, Cristina; Brianzi, Mirko; Civinini, Carlo; Maletta, Fernando; Manolescu, Florentina; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Broccolo, B; Ciulli, Vitaliano; Focardi, R. D'Alessandro. E; Frosali, Simone; Genta, Chiara; Landi, Gregorio; Lenzi, Piergiulio; Macchiolo, Anna; Magini, Nicolo; Parrini, Giuliano; Scarlini, Enrico; Cerati, Giuseppe Benedetto; Azzi, Patrizia; Bacchetta, Nicola; Candelori, Andrea; Dorigo, Tommaso; Kaminsky, A; Karaevski, S; Khomenkov, Volodymyr; Reznikov, Sergey; Tessaro, Mario; Bisello, Dario; De Mattia, Marco; Giubilato, Piero; Loreti, Maurizio; Mattiazzo, Serena; Nigro, Massimo; Paccagnella, Alessandro; Pantano, Devis; Pozzobon, Nicola; Tosi, Mia; Bilei, Gian Mario; Checcucci, Bruno; Fano, Livio; Servoli, Leonello; Ambroglini, Filippo; Babucci, Ezio; Benedetti, Daniele; Biasini, Maurizio; Caponeri, Benedetta; Covarelli, Roberto; Giorgi, Marco; Lariccia, Paolo; Mantovani, Giancarlo; Marcantonini, Marta; Postolache, Vasile; Santocchia, Attilio; Spiga, Daniele; Bagliesi, Giuseppe; Balestri, Gabriele; Berretta, Luca; Bianucci, S; Boccali, Tommaso; Bosi, Filippo; Bracci, Fabrizio; Castaldi, Rino; Ceccanti, Marco; Cecchi, Roberto; Cerri, Claudio; Cucoanes, Andi Sebastian; Dell'Orso, Roberto; Dobur, Didar; Dutta, Suchandra; Giassi, Alessandro; Giusti, Simone; Kartashov, Dmitry; Kraan, Aafke; Lomtadze, Teimuraz; Lungu, George-Adrian; Magazzu, Guido; Mammini, Paolo; Mariani, Filippo; Martinelli, Giovanni; Moggi, Andrea; Palla, Fabrizio; Palmonari, Francesco; Petragnani, Giulio; Profeti, Alessandro; Raffaelli, Fabrizio; Rizzi, Domenico; Sanguinetti, Giulio; Sarkar, Subir; Sentenac, Daniel; Serban, Alin Titus; Slav, Adrian; Soldani, A; Spagnolo, Paolo; Tenchini, Roberto; Tolaini, Sergio; Venturi, Andrea; Verdini, Piero Giorgio; Vos, Marcel; Zaccarelli, Luciano; Avanzini, Carlo; Basti, Andrea; Benucci, Leonardo; Bocci, Andrea; Cazzola, Ugo; Fiori, Francesco; Linari, Stefano; Massa, Maurizio; Messineo, Alberto; Segneri, Gabriele; Tonelli, Guido; Azzurri, Paolo; Bernardini, Jacopo; Borrello, Laura; Calzolari, Federico; Foa, Lorenzo; Gennai, Simone; Ligabue, Franco; Petrucciani, Giovanni; Rizzi, Andrea; Yang, Zong-Chang; Benotto, Franco; Demaria, Natale; Dumitrache, Floarea; Farano, R; Borgia, Maria Assunta; Castello, Roberto; Costa, Marco; Migliore, Ernesto; Romero, Alessandra; Abbaneo, Duccio; Abbas, M; Ahmed, Ijaz; Akhtar, I; Albert, Eric; Bloch, Christoph; Breuker, Horst; Butt, Shahid Aleem; Buchmuller, Oliver; Cattai, Ariella; Delaere, Christophe; Delattre, Michel; Edera, Laura Maria; Engstrom, Pauli; Eppard, Michael; Gateau, Maryline; Gill, Karl; Giolo-Nicollerat, Anne-Sylvie; Grabit, Robert; Honma, Alan; Huhtinen, Mika; Kloukinas, Kostas; Kortesmaa, Jarmo; Kottelat, Luc-Joseph; Kuronen, Auli; Leonardo, Nuno; Ljuslin, Christer; Mannelli, Marcello; Masetti, Lorenzo; Marchioro, Alessandro; Mersi, Stefano; Michal, Sebastien; Mirabito, Laurent; Muffat-Joly, Jeannine; Onnela, Antti; Paillard, Christian; Pal, Imre; Pernot, Jean-Francois; Petagna, Paolo; Petit, Patrick; Piccut, C; Pioppi, Michele; Postema, Hans; Ranieri, Riccardo; Ricci, Daniel; Rolandi, Gigi; Ronga, Frederic Jean; Sigaud, Christophe; Syed, A; Siegrist, Patrice; Tropea, Paola; Troska, Jan; Tsirou, Andromachi; Vander Donckt, Muriel; Vasey, François; Alagoz, Enver; Amsler, Claude; Chiochia, Vincenzo; Regenfus, Christian; Robmann, Peter; Rochet, Jacky; Rommerskirchen, Tanja; Schmidt, Alexander; Steiner, Stefan; Wilke, Lotte; Church, Ivan; Cole, Joanne; Coughlan, John A; Gay, Arnaud; Taghavi, S; Tomalin, Ian R; Bainbridge, Robert; Cripps, Nicholas; Fulcher, Jonathan; Hall, Geoffrey; Noy, Matthew; Pesaresi, Mark; Radicci, Valeria; Raymond, David Mark; Sharp, Peter; Stoye, Markus; Wingham, Matthew; Zorba, Osman; Goitom, Israel; Hobson, Peter R; Reid, Ivan; Teodorescu, Liliana; Hanson, Gail; Jeng, Geng-Yuan; Liu, Haidong; Pasztor, Gabriella; Satpathy, Asish; Stringer, Robert; Mangano, Boris; Affolder, K; Affolder, T; Allen, Andrea; Barge, Derek; Burke, Samuel; Callahan, D; Campagnari, Claudio; Crook, A; D'Alfonso, Mariarosaria; Dietch, J; Garberson, Jeffrey; Hale, David; Incandela, H; Incandela, Joe; Jaditz, Stephen; Kalavase, Puneeth; Kreyer, Steven Lawrence; Kyre, Susanne; Lamb, James; Mc Guinness, C; Mills, C; Nguyen, Harold; Nikolic, Milan; Lowette, Steven; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rubinstein, Noah; Sanhueza, S; Shah, Yousaf Syed; Simms, L; Staszak, D; Stoner, J; Stuart, David; Swain, Sanjay Kumar; Vlimant, Jean-Roch; White, Dean; Ulmer, Keith; Wagner, Stephen Robert; Bagby, Linda; Bhat, Pushpalatha C; Burkett, Kevin; Cihangir, Selcuk; Gutsche, Oliver; Jensen, Hans; Johnson, Mark; Luzhetskiy, Nikolay; Mason, David; Miao, Ting; Moccia, Stefano; Noeding, Carsten; Ronzhin, Anatoly; Skup, Ewa; Spalding, William J; Spiegel, Leonard; Tkaczyk, Slawek; Yumiceva, Francisco; Zatserklyaniy, Andriy; Zerev, E; Anghel, Ioana Maria; Bazterra, Victor Eduardo; Gerber, Cecilia Elena; Khalatian, S; Shabalina, Elizaveta; Baringer, Philip; Bean, Alice; Chen, Jie; Hinchey, Carl Louis; Martin, Christophe; Moulik, Tania; Robinson, Richard; Gritsan, Andrei; Lae, Chung Khim; Tran, Nhan Viet; Everaerts, Pieter; Hahn, Kristan Allan; Harris, Philip; Nahn, Steve; Rudolph, Matthew; Sung, Kevin; Betchart, Burton; Demina, Regina; Gotra, Yury; Korjenevski, Sergey; Miner, Daniel Carl; Orbaker, Douglas; Christofek, Leonard; Hooper, Ryan; Landsberg, Greg; Nguyen, Duong; Narain, Meenakshi; Speer, Thomas; Tsang, Ka Vang

    2008-01-01

    The subsystems of the CMS silicon strip tracker were integrated and commissioned at the Tracker Integration Facility (TIF) in the period from November 2006 to July 2007. As part of the commissioning, large samples of cosmic ray data were recorded under various running conditions in the absence of a magnetic field. Cosmic rays detected by scintillation counters were used to trigger the readout of up to 15\\,\\% of the final silicon strip detector, and over 4.7~million events were recorded. This document describes the cosmic track reconstruction and presents results on the performance of track and hit reconstruction as from dedicated analyses.

  11. ATLAS semiconductor tracker installed into its barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS silicon tracker is installed in the silicon tracker barrel. Absolute precision was required in this operation to ensure that the tracker was inserted without damage through minimal clearance. The installation was performed in a clean room on the CERN site so that no impurities in the air would contaminate the tracker's systems.

  12. Beam Test Results for Single- and Double-Sided Silicon Detector Prototypes of the CMS Central Detector

    CERN Document Server

    Adriani, O

    1997-01-01

    We report the results of two beam tests performed in July and September 1995 at CERN using silicon microstrip detectors of various types: single sided, double sided with small angle stereo strips, double sided with orthogonal strips, double sided with pads. For the read-out electronics use was made of Preshape32, Premux128 and VA1 chips. The signal to noise ratio and the resolution of the detectors was studied for different incident angles of the incoming particles and for different values of the detector bias voltage. The goal of these tests was to check and improve the performances of the prototypes for the CMS Central Detector.

  13. The heart of ATLAS Commissioning and performance of the ATLAS silicon tracker

    CERN Document Server

    Magrath, Caroline Alexandra

    2009-01-01

    The Large Hadron Collider (LHC) has been built under the french-swiss border near Geneva, Switzerland. Two opposing beams of protons will collide with a centre of mass energy of 14 TeV, an energy seven million times that of the first accelerator. The LHC takes particle physics research to a new frontier. On September 10th 2008, the first single pilot beam of $2 x 10^9$ protons was circulated successfully through the entire LHC, with an injection energy of 0.45 TeV. The first collisions are expected in Summer 2009. One of the experiments designed to search for new particle phenomena is the ATLAS experiment. This is a general purpose detector capable of detecting and measuring the broadest range of particle signals. At the heart of the ATLAS detector lies the SemiConductor Tracker (SCT). It is a central part of the inner detector providing precision measurements of particle trajectories over a large $\\eta$ range. The work presented in this thesis focuses on the performance and commissioning of the SCT detector....

  14. Progress on DC-DC Converters for a Silicon Tracker for the sLHC Upgrade

    CERN Document Server

    Dhawan, S; Chen, H; Khanna, R; Kierstead, J; Lanni, F; Lynn, D; Musso, C; Rescia, S; Smith, H; Tipton, P; M. Weber, M

    2009-01-01

    There is a need for DC-DC converters which can operate in the extremely harsh environment of the sLHC Si Tracker. The environment requires radiation qualification to a total ionizing radiation dose of 50 Mrad and a displacement damage fluence of 5 x 1014 /cm2 of 1 MeV equivalent neutrons. In addition a static magnetic field of 2 Tesla or greater prevents the use of any magnetic components or materials. In February 2007 an Enpirion EN5360 was qualified for the sLHC radiation dosage but the converter has an input voltage limited to a maximum of 5.5V. From a systems point of view this input voltage was not sufficient for the application. Commercial LDMOS FETs have developed using a 0.25 μm process which provided a 12 volt input and were still radiation hard. These results are reported here and in previous papers. Plug in power cards with ×10 voltage ratio are being developed for testing the hybrids with ABCN chips. These plug-in cards have air coils but use commercial chips that are not designed to be radiatio...

  15. LHCb Upstream Tracker

    CERN Multimedia

    Gandini, Paolo

    2014-01-01

    The LHCb upgrade requires replacing the silicon strip tracker between the vertex locator (VELO) and the magnet. A new design has been developed and tested based on the "stave" concept planned for the ATLAS upgrade.

  16. LHCb Upstream Tracker

    CERN Multimedia

    Gandini, P

    2014-01-01

    The LHCb upgrade requires replacing the silicon strip tracker between the vertex locator (VELO) and the magnet. A new design has been developed and tested based on the "stave" concept planned for the ATLAS upgrade

  17. Upgrade of the ATLAS Silicon Tracker for the sLHC

    CERN Document Server

    Minano, M; The ATLAS collaboration

    2009-01-01

    While the CERN Large Hadron Collider (LHC) will start taking data this year, scenarios for a machine upgrade to achieve a much higher luminosity are being developed. In the current planning, it is foreseen to increase the luminosity of the LHC at CERN around 2016 by about an order of magnitude, with the upgraded muchine dubbed Super-LHC or SLHC. As radiation damage scales with integrated luminosity, the particle physics experiments at the SLHC will need to be equipped with a new generation of radiation-hard detectors. This is of particular importance for the semiconductor tracking detectors located close to the LHC interaction region, where the higest radiation doses occur. The ATLAS experiment will require a new particle tracking system for SLHC operation. In order to cope with the increase in background events by about one order of magnitude at the higher luminosity, an all silicon detector with enhanced radiation hardness is being designed. The new silicon strip detector will use significantly shorter stri...

  18. CMS AWARDS

    CERN Multimedia

    Steven Lowette

    Working under great time pressure towards a common goal in gradual steps can sometimes cause us to forget to take a step back, and celebrate what marvels have been achieved. A general need was felt within CMS to expand the recognition for our young scientists that made outstanding, well recognized and creative contributions to CMS, which served to significantly advance the performance of CMS as a complete and powerful experiment. Therefore, the Collaboration Board endorsed in March 2009 a proposal from the CB Chair and Advisory Group to award each year the newly created "CMS Achievement Award" to fourteen graduate students and postdocs that made exceptional contributions to the Tracker, ECAL, HCAL and Muon subdetectors as well as the TriDAS project, the Commissioning of CMS and the Offline Software and Computing projects. It was also agreed that there was a need to go back in time, and retroactively attribute awards for the years 2007 and 2008 when CMS went from a bare cavern to a detect...

  19. Alignment of the ATLAS Silicon Tracker and measurement of the top quark mass

    CERN Document Server

    Escobar, C; Marti i García, S

    2010-01-01

    The Large Hadron Collider (LHC) era started with its first proton-proton collisions produced in November 2009 at the CERN laboratory. In the coming decade, the high energy physics program will be dominated by the LHC and its experiments. Discoveries such as the Higgs or supersymmetric particles are some of the dreams that hopefully the LHC will bring us. This thesis is framed within the ATLAS experiment, which is one of the four large detectors located at the LHC. The work presented in this thesis is divided in two parts. The first part is dedicated to the alignment of the ATLAS silicon tracking detector using the GlobalChi2 algorithm, which is the actual baseline algorithm. It covers performance studies with Monte Carlo samples with a realistic detector description, with real cosmic rays as well as with first LHC collisions at 900 GeV. The main achievement was the production of a set of alignment constants for the real ATLAS detector. Those constants were obtained from the alignment of real cosmic ray data, ...

  20. Development of Silicon Sensor Characterization System for Future High Energy Physics Experiments

    OpenAIRE

    Preeti kumari; Kavita Lalwani; Ranjeet Dalal; Geetika Jain; Ashutosh Bhardwaj; Kirti Ranjan

    2015-01-01

    The Compact Muon Solenoid (CMS) is one of the general purpose experiments at the Large Hadron Collider (LHC), CERN and has its Tracker built of all silicon strip and pixel sensors. Si sensors are expected to play extremely important role in the upgrades of the existing Tracker for future high luminosity environment and will also be used in future lepton colliders. However, properties of the silicon sensors have to be carefully understood before they can be put in the extremely high luminos...

  1. Beam Test Results of Thin n-in-p 3D and Planar Pixel Sensors for the High Luminosity LHC Tracker Upgrade at CMS

    CERN Document Server

    Zoi, Irene; Dalla Betta, G. F; Dinardo, Mauro; Giacomini, G; Menasce, Dario; Mendicino, R; Meschini, Marco; Messineo, Alberto; Moroni, Luigi; Ronchin, S; Sultan, D.M.S; Uplegger, Lorenzo; Vernieri, Caterina; Viliani, Lorenzo; Zuolo, Davide

    2017-01-01

    This is necessary for the pixel tracker that is the closest to the interaction point and will be replaced. In this paper, the results, from beam tests performed at Fermilab Test Beam Facility, of thin (100 $\\mu$m and 130 $\\mu$m thick) n-in-p type sensors, assembled into hybrid single chip modules bump bonded to the PSI46dig readou...

  2. The Control System for the CMS Strip Tracking Detector

    CERN Document Server

    Fahrer, Manuel; Chen, Jie; Dierlamm, Alexander; Frey, Martin; Masetti, Lorenzo; Militaru, Otilia; Shah, Yousaf; Stringer, Robert; Tsirou, Andromachi

    2008-01-01

    The Tracker of the CMS silicon strip tracking detector covers a surface of 206 m2. 9648128 channels are available on 75376 APV front-end chips on 15232 modules, built of 24328 silicon sensors. The power supply of the detector modules is split up in 1944 power supplies with two low voltage for front end power and two high voltage channels each for the bias voltage of the silicon sensors. In addition 356 low voltage channels are needed to power the control chain. The tracker will run at -20°C at low relative humidity for at least 10 years. The Tracker Control System handles all interdependencies of control, low and high voltages, as well as fast ramp downs in case of higher than allowed temperatures or currents in the detector and experimental cavern problems. This is ensured by evaluating $10^{4}$ power supply parameters, $10^{3}$ information from Tracker Safety System and $10^{5}$ information from the tracker front end.

  3. Overview of CMS robotic silicon module assembly hardware based on Aerotech Gantry Positioning system.

    CERN Multimedia

    Honma, Alan

    1999-01-01

    The goal of the robotic silicon module assembly pilot project is to fully automate the gluing and pick and placement of silicon sensors and front-end hybrid onto a carbon-fibre frame. The basis for thesystem is the Aerotech Gantry Positioning System (AGS10000) machineshown in the centre of the picture. To the left is the PC which contains the controller card and runs the user interface. To the rightis the rack of associated electronics which interfaces with the CERNbuilt tooling and vacuum chuck system.

  4. Experimental and simulation study of irradiated silicon pad detectors for the CMS High Granularity Calorimeter

    CERN Document Server

    Peltola, Timo Hannu Tapani

    2017-01-01

    The foreseen upgrade of the LHC to its high luminosity phase (HL-LHC), will maximize the physics potential of the facility. The upgrade is expected to increase the instantaneous luminosity by a factor of 5 and deliver an integrated luminosity of 3000 fb$^{-1}$ after 10 years of operation. As a result of the corresponding increase in radiation and pileup, the electromagnetic calorimetry in the CMS endcaps will sustain maximum integrated doses of 1.5 MGy and neutron fluences above 10$^{16}$ n$_{\\mathrm{eq}}$/cm$^2$, necessitating their replacement for HL-LHC operation. The CMS collaboration has decided to replace the existing endcap electromagnetic and hadronic calorimeters by a High Granularity Calorimeter (HGCAL) that will provide unprecedented information on electromagnetic and hadronic showers in the very high pileup of the HL-LHC. The HGCAL will be realized as a sampling calorimeter with 52 layers of active material. The electromagnetic section and the high-radiation region of the hadronic section will use...

  5. Construction and beam-tests of silicon-tungsten and scintillator-SiPM modules for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Chang, Yung-wei

    2018-01-01

    A High Granularity Calorimeter (HGCAL) is being designed to replace the existing endcap calorimeters in CMS for the HL-LHC era. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments, with silicon sensors being chosen for the high-pseudorapidity regions due to their radiation tolerance. The remainder of the HGCAL, in the lower radiation environment, will use plastic scintillator with on-tile SiPM readout. Prototype hexagonal silicon modules, featuring a new Skiroc2-CMS front-end chip, together with a modified version of the scintillator-SiPM CALICE AHCAL, have been built and tested in beams at CERN in 2017. In this poster, we present measurements of noise, calibration, shower shapes and performance with electrons, pions and muons.

  6. W boson helicity measurement in tt̄ di-electron channel with the CMS detector at the LHC and the CMS outer tracker upgrade for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00346024

    This thesis presents a measurement of the W boson helicity fractions in the tt̄ di-electron final state. The top pair events are produced in proton-proton collisions at a center-of-mass energy of 8 TeV, collected by the CMS experiment at the Large Hadron Collider (LHC), corresponding to an integrated luminosity of 19.7 fb −1 . Only events with two energetic opposite-sign electrons, at least two b-tagged jets and large missing transverse energy in the final state, are considered as di-electron tt̄ signal. The tt̄ event is fully reconstructed using the Analytical Matrix Weighting Technique (AMWT). The helicity fractions of the W boson are estimated from the cos θl∗ distribution using an event-by-event re-weighting technique. Within the quoted statistic and systematic uncertainties, the results are in good agreement with the Standard Model prediction at the 95% confidence level. The results are also consistent with other W boson polarization measurements in the CMS and the ATLAS experiments. While the W ...

  7. Investigation of the charge collection for strongly irradiated silicon strip detectors of the CMS ECAL Preshower

    International Nuclear Information System (INIS)

    Bloch, Ph.; Peisert, A.; Chang, Y.H.; Chen, A.E.; Hou, S.; Lin, W.T.; Cheremukhin, A.E.; Golutvin, I.A.; Urkinbaev, A.R.; Zamyatin, N.I.; Loukas, D.

    2001-01-01

    Strongly irradiated (2.3·10 14 n/cm 2 ) silicon strip detectors of different size, thickness and different design options were tested in a muon beam at CERN in 1999. A charge collection efficiency in excess of 85% and a signal-to-noise ratio of about 6 are obtained in all cases at high enough bias voltage. Details of the charge collection in the interstrip and the guard ring region and cross-talk between strips were also studied. We find that the charge collection efficiency and the cross-talk between strips depend on the interstrip distance

  8. LHCb: LHCb Upstream Tracker

    CERN Multimedia

    Manning Jr, P; Stone, S

    2014-01-01

    The LHCb upgrade requires replacing the silicon strip tracker between the vertex locator and the magnet. A new design has been developed and tested based on the "stave" concept planned for the ATLAS upgrade. We will describe the new detector being constructed and show its improved performance in charged particle tracking and triggering.

  9. Measurement of the Inclusive $b$-jet cross section in $p\\bar{p}$ collisions at CDF RunII and Development of silicon microstrip detectors for the ATLAS silicon tracker

    Energy Technology Data Exchange (ETDEWEB)

    D' Onofrio, Monica [Univ. of Geneva (Switzerland)

    2005-01-01

    In the past twenty years, the study of events with bottom quark has led to many important Tevatron results- as the discovery of the top quark- and it will be as well crucial at the LHC for the search of new physics phenomena. This analysis exploits the good tracking capabilities of the detector and relies on b-jet identification made by secondary vertex reconstruction. The study of the Inner Tracker system performance and in particular the Semi conductor Tracker (SCT), can be considered one of the fundamental issues in the construction of the apparatus. The second part of this thesis work reports some of the crucial tests performed during the development of the silicon microstrip detectors composing the SCT.

  10. Design and performance of the ABCD3TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker

    Czech Academy of Sciences Publication Activity Database

    Campabadal, F.; Fleta, C.; Key, M.; Böhm, Jan; Mikeštíková, Marcela; Šťastný, Jan

    2005-01-01

    Roč. 552, - (2005), s. 292-328 ISSN 0168-9002 R&D Projects: GA MŠk 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : front-end electronics * binary readout * silicon strip detectors * application specific integrated circuits * quality assurance Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.224, year: 2005

  11. Microstrip gas detectors development for the CMS tracker and branching fractions measurement of hadronic B decays with the BaBar experiment; Developpement de detecteur gazeux a micropistes pour le trajectographe de l'experience CMS et mesures de rapports d'embranchement de desintegrations hadroniques du meson B dans l'experience BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Zghiche, A

    2007-01-15

    The Compact Muon Solenoid (CMS) is one of the two detectors, designed for the search of the Higgs boson at the Large Hadron Collider (LHC), to operate late 2007 at CERN. Micro Strip Gas Counters (MSGC) have been extensively studied to qualify as part of the CMS tracker. When exposed to highly ionizing particles and to high rates of incident particles, MSGCs have shown a good behavior allowing them to cope with the LHC environment. Similar micro pattern gaseous detectors such as Gas Electron Multiplier (GEM) and Micro Mesh gas detectors (MicroMegas) are developed to be used in high energy physics. BaBar, the detector for the Slac PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the Y(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. First observation of CP violation has been realized in 2001. Since then an impressive amount of B decays measurements has been performed. Among those, we present here the branching fraction measurements of charged and neutral B decays to D{pi}{sup -}, D{sup *}{pi}{sup -}, and D{sup **}{pi}{sup -} with a missing mass method, based on a sample of 231 million Y(4S) {yields} BB-bar pairs. In order to do this, one of the B mesons is fully reconstructed and the 'recoil' one decays into a reconstructed charged pion and a companion charmed meson identified by its recoil mass, inferred by kinematics. The same sample is used to reconstruct charmed mesons (D, Ds) and baryons ({lambda}{sub c}) in the 'recoil side' allowing the measurement of the charm number in the B decays. (author)

  12. Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruehwirth, R.; Hoch, M.; Hrubec, J.; Krammer, M.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Luyckx, S.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Grebenyuk, A.; Lenzi, Th.; Leonard, A.; Maerschalk, Th.; Mohammadi, A.; Pernie, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Zeid, S.Abu; Blekman, F.; De Bruyn, I.; D'Hondt, J.; Daci, N.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Mulders, P.; Van Onsem, G.; Van Parijs, I.; Strom, D.A.; Basegmez, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; De Callatay, B.; Delaere, C.; Pree, T.Du; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Michotte, D.; Nuttens, C.; Perrini, L.; Pagano, D.; Quertenmont, L.; Selvaggi, M.; Marono, M.Vidal; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G.H.; Harkonen, J.; Lampen, T.; Luukka, P.R.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Tuuva, T.; Beaulieu, G.; Boudoul, G.; Combaret, C.; Contardo, D.; Gallbit, G.; Lumb, N.; Mathez, H.; Mirabito, L.; Perries, S.; Sabes, D.; Vander Donckt, M.; Verdier, P.; Viret, S.; Zoccarato, Y.; Agram, J.L.; Conte, E.; Fontaine, J.Ch.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.M.; Chabert, E.; Charles, L.; Goetzmann, Ch.; Gross, L.; Hosselet, J.; Mathieu, C.; Richer, M.; Skovpen, K.; Pistone, C.; Fluegge, G.; Kuensken, A.; Geisler, M.; Pooth, O.; Stahl, A.; Autermann, C.; Edelhoff, M.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schwering, G.; Wittmer, B.; Wlochal, M.; Zhukov, V.; Bartosik, N.; Behr, J.; Burgmeier, A.; Calligaris, L.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Fluke, G.; Garcia, J.Garay; Gizhko, A.; Hansen, K.; Harb, A.; Hauk, J.; Kalogeropoulos, A.; Kleinwort, C.; Korol, I.; Lange, W.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Schroeder, M.; Seitz, C.; Spannagel, S.; Zuber, A.; Biskop, H.; Blobel, V.; Buhmann, P.; Centis-Vignali, M.; Draeger, A.R.; Erfle, J.; Garutti, E.; Haller, J.; Hoffmann, M.; Junkes, A.; Lapsien, T.; Mattig, S.; Matysek, M.; Perieanu, A.; Poehlsen, J.; Poehlsen, T.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Sola, V.; Steinbruck, G.; Wellhausen, J.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Eber, R.; Freund, B.; Hartmann, F.; Hauth, Th.; Heindl, S.; Hoffmann, K.H.; Husemann, U.; Kornmeyer, A.; Mallows, S.; Muller, Th.; Nuernberg, A.; Printz, M.; Simonis, H.J.; Steck, P.; Weber, M.; Weiler, Th.; Bhardwaj, A.; Kumar, A.; Ranjan, K.; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Creanza, D.; De Palma, M.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Di Mattia, A.; Potenza, R.; Saizu, M.A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Civinini, C.; Gallo, E.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Ciulli, V.; D'Alessandro, R.; Gonzi, S.; Gori, V.; Focardi, E.; Lenzi, P.; Scarlini, E.; Tropiano, A.; Viliani, L.; Ferro, F.; Robutti, E.; Lo Vetere, M.; Gennai, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.; Dinardo, M.; Fiorendi, S.; Manzoni, R.A.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Dorigo, T.; Giubilato, P.; Pozzobon, N.; Tosi, M.; Zucchetta, A.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Bilei, G.M.; Bissi, L.; Checcucci, B.; Magalotti, D.; Menichelli, M.; Saha, A.; Servoli, L.; Storchi, L.; Biasini, M.; Conti, E.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Salvatore, M.; Santocchia, A.; Solestizi, L.A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M.A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M.T.; Lomtadze, T.; Magazzu, G.; Mazzoni, E.; Minuti, M.; Moggi, A.; Moon, C.S.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Savoy-Navarro, A.; Serban, A.T.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.; Calzolari, F.; Donato, S.; Fiori, F.; Ligabue, F.; Vernieri, C.; Demaria, N.; Rivetti, A.; Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Migliore, E.; Monteil, E.; Musich, M.; Pacher, L.; Ravera, F.; Romero, A.; Solano, A.; Trapani, P.; Jaramillo Echeverria, R.; Fernandez, M.; Gomez, G.; Moya, D.; F. Gonzalez Sanchez, J.; Munoz Sanchez, F.J.; Vila, I.; Virto, A.L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Breuker, H.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Alfonso, M.; D'Auria, A.; Detraz, S.; De Visscher, S.; Deyrail, D.; Faccio, F.; Felici, D.; Frank, N.; Gill, K.; Giordano, D.; Harris, P.; Honma, A.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Mannelli, M.; Marchioro, A.; Marconi, S.; Martina, S.; Mersi, S.; Michelis, S.; Moll, M.; Onnela, A.; Pakulski, T.; Pavis, S.; Peisert, A.; Pernot, J.F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Rzonca, M.; Stoye, M.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; Bani, L.; di Calafiori, D.; Casal, B.; Djambazov, L.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Hits, D.; Horisberger, U.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Perrozzi, L.; Roeser, U.; Rossini, M.; Starodumov, A.; Takahashi, M.; Wallny, R.; Amsler, C.; Bosiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.H.; Dietz, C.; Grundler, U.; Hou, W.S.; Lu, R.S.; Moya, M.; Wilken, R.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; El Nasr-Storey, S.Seif; Cole, J.; Hobson, P.; Leggat, D.; Reid, I.D.; Teodorescu, L.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; Magnan, A.M.; Pesaresi, M.; Raymond, D.M.; Uchida, K.; Coughlan, J.A.; Harder, K.; Ilic, J.; Tomalin, I.R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay; Burt, K.; Ellison, J.; Hanson, G.; Malberti, M.; Olmedo, M.; Cerati, G.; Sharma, V.; Vartak, A.; Yagil, A.; Della Porta, G.Zevi; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; McColl, N.; Mullin, S.; White, D.; Cumalat, J.P.; Ford, W.T.; Gaz, A.; Krohn, M.; Stenson, K.; Wagner, S.R.; Baldin, B.; Bolla, G.; Burkett, K.; Butler, J.; Cheung, H.; Chramowicz, J.; Christian, D.; Cooper, W.E.; Deptuch, G.; Derylo, G.; Gingu, C.; Gruenendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Jung, A.; Joshi, U.; Kahlid, F.; Lei, C.M.; Lipton, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Yin, H.; Adams, M.R.; Berry, D.R.; Evdokimov, A.; Evdokimov, O.; Gerber, C.E.; Hofman, D.J.; Kapustka, B.K.; O'Brien, C.; Sandoval Gonzalez, D.I.; Trauger, H.; Turner, P.; Parashar, N.; Stupak, J.; I.I.I.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D.H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Majumder, D.; Noonan, D.; Sanders, S.; Stringer, R.; Ivanov, A.; Makouski, M.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J.G.; Cremaldi, L.M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Bose, S.; Claes, D.R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Meier, F.; Monroy, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Duggan, D.; Halkiadakis, E.; Lath, A.; Park, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Mendez, H.; Ramirez Vargas, J.E.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Kaufman, G.; Mirman, N.; Ryd, A.; Salvati, E.; Skinnari, L.; Thom, J.; Thompson, J.; Tucker, J.; Winstrom, L.; Akgun, B.; Ecklund, K.M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K.A.; Delannoy, A.G.; D'Angelo, P.; Johns, W.

    2016-04-22

    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 $\\mu$m thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to $3 \\cdot 10^{15}$ neq/cm$^2$. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes...

  13. arXiv Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    INSPIRE-00664095

    2018-02-26

    As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5–1.0 cm2 interspersed with absorbers. Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end ASIC (designed by the CALICE collaboration for ILC). In 2017, the setup has been extended with CALICE's AHCAL prototype, a scinitillator based sampling calorimeter, and it was further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end ASIC was used for the first time. We highlight final results from our studies in 2016, including ...

  14. Development and Evaluation of a Test System for the Quality Assurance during the Mass Production of Silicon Microstrip Detector Modules for the CMS Experiment

    CERN Document Server

    Franke, Torsten

    2005-01-01

    The Compact Muon Solenoid (CMS) is one of four large-scale experiments that is going to be installed at the Large Hadron Collider (LHC) at the European Laboratory for Particle Physics (CERN). For CMS an inner tracking system entirely equipped with silicon microstrip detectors was chosen. With an active area of about 198 m2 it will be the largest tracking device of the world that was ever constructed using silicon sensors. The basic components in the construction of the tracking system are approximately 16,000 so-called modules, which are pre-assembled units consisting of the sensors, the readout electronics and a support structure. The module production is carried out by a cooperation of number of institutes and industrial companies. To ensure the operation of the modules within the harsh radiation environment extensive tests have to be performed on all components. An important contribution to the quality assurance of the modules is made by a test system of which all components were developed in Aachen. In ad...

  15. Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Quast, Thorben

    2017-01-01

    As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5 - 1.0 cm$^2$ interspersed with absorbers.Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end chip (designed for the CALICE experiment for ILC). This year, the setup is extended with CALICE's AHCAL prototype and it is further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end chip is used for the first time.We present final results from our studies in 2016, including noise performance, calibration with MIPs, energy and p...

  16. Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    Science.gov (United States)

    Quast, Thorben

    2018-02-01

    As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-1.0 cm2 interspersed with absorbers. Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end ASIC (designed by the CALICE collaboration for ILC). In 2017, the setup has been extended with CALICE's AHCAL prototype, a scinitillator based sampling calorimeter, and it was further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end ASIC was used for the first time. We highlight final results from our studies in 2016, including position resolution as well as precision timing-measurements. Furthermore, the extended setup in 2017 is discussed and first results from beam tests with electrons and pions are shown.

  17. CMS Factsheet

    CERN Multimedia

    Lapka, Marzena; Rao, Achintya

    2016-01-01

    CMS Factsheets: containing facts about the CMS collaboration and detector. Printed copies of the English version are available from the CMS Secretariat. Responsible for translations: English only - E.Gibney (updated 2015)

  18. INNER TRACKER

    CERN Multimedia

    K. Gill.

    The clear highlight of recent months was switching on the Tracker to capture the first LHC collisions with 450GeV beams. This was during the first trial run of the LHC on 23rd November. On that day, the Tracker Outer Barrel (TOB) was powered and the detector performance was excellent, in accord with our expectations. Since then, the full Tracker, strips and pixels, has been powered up during “quiet” beam periods when there was judged to be little risk of damage due to sudden beam losses. All Tracker systems performed very well, considering the beam and trigger conditions in place, and we now eagerly anticipate the first collisions with stable beams. Besides this very intense and exciting recent period there has been a lot of other activity in the last 6 months. The full Tracker participated in CRAFT09 and operations of all systems went very smoothly for both pixels and strips, validating all the meticulous work that had taking place during the long shutdown, the subsequent re-commissionin...

  19. INNER TRACKER

    CERN Multimedia

    Karl Gill

    A series of important milestones have been passed during the last 3 months. With the delivery of refurbished cooling systems, pixels and strip systems have been brought back into operation after long shutdowns. Pixels has been operating since reinsertion of FPIX in April, and has been running at 4°C since May 16 when the bulkhead thermal screen was commissioned. More recently, on June 10 the Strip Tracker was powered up in its entirety, with cooling fluid circulating at 4°C, allowing commissioning of the Strip Tracker to proceed at full speed. The full Tracker is well on course to be ready for CRAFT, with Strip Tracker readout operation in ‘peak’ mode remaining also on track to be ready for beam operations in the Autumn in ‘deconvolution’ readout mode. The main Tracker activity during the shutdown was the cooling plant refurbishment for Strips and Pixels systems. The objectives were to reduce the serious leaks observed in 2008 and improve the longevity...

  20. Silicon Detectors-Tools for Discovery in Particle Physics

    International Nuclear Information System (INIS)

    Krammer, Manfred

    2009-01-01

    Since the first application of Silicon strip detectors in high energy physics in the early 1980ies these detectors have enabled the experiments to perform new challenging measurements. With these devices it became possible to determine the decay lengths of heavy quarks, for example in the fixed target experiment NA11 at CERN. In this experiment Silicon tracking detectors were used for the identification of particles containing a c-quark. Later on, the experiments at the Large Electron Positron collider at CERN used already larger and sophisticated assemblies of Silicon detectors to identify and study particles containing the b-quark. A very important contribution to the discovery of the last of the six quarks, the top quark, has been made by even larger Silicon vertex detectors inside the experiments CDF and D0 at Fermilab. Nowadays a mature detector technology, the use of Silicon detectors is no longer restricted to the vertex regions of collider experiments. The two multipurpose experiments ATLAS and CMS at the Large Hadron Collider at CERN contain large tracking detectors made of Silicon. The largest is the CMS Inner Tracker consisting of 200 m 2 of Silicon sensor area. These detectors will be very important for a possible discovery of the Higgs boson or of Super Symmetric particles. This paper explains the first applications of Silicon sensors in particle physics and describes the continuous development of this technology up to the construction of the state of the art Silicon detector of CMS.

  1. Development of trigger software for the silicon and fibre trackers and a study of B meson lifetimes for the D0 experiment

    International Nuclear Information System (INIS)

    Illingworth, Robert Arthur; Imperial Coll., London

    2002-01-01

    The D0 detector has recently undergone a major upgrade to maximize its potential to fully exploit Run II at the Tevatron 2 TeV proton-antiproton collider. The upgrade includes a completely new central tracking system with an outer scintillating fibre tracker and an inner silicon vertex detector. This thesis describes the development of the software to ''unpack'' the raw data from the central tracking detectors into a useful form, and the development of the Level 3 trigger algorithms to cluster the hit information from these detectors. One of the many areas of physics that is being studied by the D0 experiment is the physics of B mesons, particularly that involving CP violation. The second part of the thesis details a constrained mass fitting tool written to aid the reconstruction of B particles, and a Monte Carlo study into measuring the lifetime of B + and B 0 mesons. This thesis lays the foundations for the means by which physics is extracted from the vast amount of Tevatron data--the trigger--and illustrates how analyses will proceed through the key reconstruction of heavy quarks

  2. INNER TRACKER

    CERN Multimedia

    K. Gill

    During the winter shutdown several parts of the Tracker system are undergoing maintenance, revision or upgrade. The main items are the revision of the strips and pixels cooling plants, removal and maintenance of FPIX, sealing of Tracker patch-panels and the bulkhead, integration of strips and pixels DCS, and further development of the DAQ, Online and commissioning software and firmware. The revision of the cooling system involves the complete replacement of the tanks, distribution lines, valves and manifolds on the SS1 and SS2 strip tracker (182 circuits) and pixels (36 circuits) cooling plants. The objectives are to eliminate the large leaks experienced during 2008 operations and to assure the long-term reliability of the cooling systems. Additional instrumentation is being added to provide more detailed monitoring of the performance of the cooling system. This work is proceeding smoothly under close supervision. Procurements are almost completed and the quality of delivered parts and the subsequent assembl...

  3. CMS Tracking Performance Results from Early LHC Operation

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kasieczka, Gregor; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; Ceard, Ludivine; De Wolf, Eddi A.; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Adler, Volker; Beauceron, Stephanie; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Kalogeropoulos, Alexis; Maes, Joris; Maes, Michael; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Villella, Ilaria; Chabert, Eric Christian; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Marage, Pierre Edouard; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Marinov, Andrey; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; De Favereau De Jeneret, Jerome; Delaere, Christophe; Demin, Pavel; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Quertenmont, Loic; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Torres Da Silva De Araujo, Felipe; De Almeida Dias, Flavia; Ferreira Dias, Marco Andre; Tomei, Thiago; De Moraes Gregores, Eduardo; Da Cunha Marinho, Franciole; Novaes, Sergio F.; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Stoykova, Stefka; Sultanov, Georgi; Trayanov, Rumen; Vankov, Ivan; Dyulendarova, Milena; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Marinova, Evelina; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Yang, Min; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Hu, Zhen; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhu, Bo; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Fereos, Reginos; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A.; Rykaczewski, Hans; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Kannike, Kristjan; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Klem, Jukka; Kortelainen, Matti J.; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Sarkar, Subir; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Dejardin, Marc; Denegri, Daniel; Descamps, Julien; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Rousseau, Delphine; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Kalinowski, Artur; Miné, Philippe; Paganini, Pascal; Sabes, David; Sirois, Yves; Thiebaux, Christophe; Zabi, Alexandre; Agram, Jean-Laurent; Besson, Auguste; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Speck, Joaquim; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Xiao, Hong; Roinishvili, Vladimir; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Actis, Oxana; Ata, Metin; Bender, Walter; Biallass, Philipp; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Hof, Carsten; Kirsch, Matthias; Klimkovich, Tatsiana; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Sowa, Michael; Steggemann, Jan; Teyssier, Daniel; Zeidler, Clemens; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Borras, Kerstin; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Parenti, Andrea; Raspereza, Alexei; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Stein, Matthias; Tomaszewska, Justyna; Volyanskyy, Dmytro; Wissing, Christoph; Autermann, Christian; Bobrovskyi, Sergei; Draeger, Jula; Eckstein, Doris; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Srivastava, Ajay Kumar; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Wolf, Roger; Bauer, Julia; Buege, Volker; Cakir, Altan; Chwalek, Thorsten; Daeuwel, Daniel; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Piparo, Danilo; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Renz, Manuel; Sabellek, Andreas; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Petrakou, Eleni; Gouskos, Loukas; Katsas, Panagiotis; Panagiotou, Apostolos; Evangelou, Ioannis; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A.; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Debreczeni, Gergely; Hajdu, Csaba; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Laszlo, Andras; Sikler, Ferenc; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Sharma, Richa; Singh, Anil; Singh, Jas Bir; Singh, Supreet Pal; Ahuja, Sudha; Chauhan, Sushil; Choudhary, Brajesh C.; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Kumar, Ashok; Ranjan, Kirti; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kataria, Sushil Kumar; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Suggisetti, Praveenkumar; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Dimitrov, Anton; Fedele, Francesca; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Broccolo, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Genta, Chiara; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; Cerati, Giuseppe Benedetto; De Guio, Federico; Di Matteo, Leonardo; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Miccio, Vincenzo; Moroni, Luigi; Negri, Pietro; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Salerno, Roberto; Tabarelli de Fatis, Tommaso; Tancini, Valentina; Taroni, Silvia; Buontempo, Salvatore; Cimmino, Anna; De Cosa, Annapaola; De Gruttola, Michele; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Noli, Pasquale; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Carlin, Roberto; Checchia, Paolo; Conti, Enrico; De Mattia, Marco; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gresele, Ambra; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Santocchia, Attilio; Servoli, Leonello; Valdata, Marisa; Volpe, Roberta; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Organtini, Giovanni; Palma, Alessandro; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Trocino, Daniele; Vilela Pereira, Antonio; Ambroglini, Filippo; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Kim, Hyunsoo; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Son, Dohhee; Son, Dong-Chul; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Carrillo Moreno, Salvador; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A.; Allfrey, Philip; Krofcheck, David; Tam, Jason; Butler, Philip H.; Signal, Tony; Williams, Jennifer C.; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R.; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Sá Martins, Pedro; Mini, Giuliano; Musella, Pasquale; Nayak, Aruna; Raposo, Luis; Ribeiro, Pedro Quinaz; Seixas, Joao; Silva, Pedro; Soares, David; Varela, Joao; Wöhri, Hermine Katharina; Belotelov, Ivan; Bunin, Pavel; Finger, Miroslav; Finger Jr., Michael; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Bondar, Nikolai; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Kuleshov, Sergey; Oulianov, Alexei; Safronov, Grigory; Semenov, Sergey; Shreyber, Irina; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V.; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Datsko, Kirill; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Sytine, Alexandre; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Maletic, Dimitrije; Milosevic, Jovan; Puzovic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Diez Pardos, Carmen; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M.; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Diaz Merino, Irma; Diez Gonzalez, Carlos; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Gonzalez Suarez, Rebeca; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Rodrigo, Teresa; Ruiz Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Beaudette, Florian; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Breuker, Horst; Brona, Grzegorz; Bunkowski, Karol; Camporesi, Tiziano; Cano, Eric; Cattai, Ariella; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Covarelli, Roberto; Curé, Benoît; Dahms, Torsten; De Roeck, Albert; Elliott-Peisert, Anna; Funk, Wolfgang; Gaddi, Andrea; Gennai, Simone; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegner, Benedikt; Henderson, Conor; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Lecoq, Paul; Leonidopoulos, Christos; Lourenco, Carlos; Macpherson, Alick; Maki, Tuula; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Racz, Attila; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stöckli, Fabian; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Veres, Gabor Istvan; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Caminada, Lea; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hervé, Alain; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nardulli, Alessandro; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Schinzel, Dietrich; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguiló, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Jaeger, Andreas; Millan Mejias, Barbara; Regenfus, Christian; Robmann, Peter; Rommerskirchen, Tanja; Schmidt, Alexander; Tsirigkas, Dimitrios; Wilke, Lotte; Chang, Yuan-Hann; Chen, Kuan-Hsin; Chen, Wan-Ting; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Ming-Hsiung; Lu, Yun-Ju; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lin, Sheng-Wen; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Ueno, Koji; Wang, Chin-chi; Wang, Minzu; Wei, Jui-Te; Adiguzel, Aytul; Ayhan, Aydin; Bakirci, Mustafa Numan; Cerci, Salim; Demir, Zahide; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gökbulut, Gül; Güler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Kayis Topaksu, Aysel; Nart, Alisah; Önengüt, Gülsen; Ozdemir, Kadri; Ozturk, Sertac; Polatöz, Ayse; Sahin, Ozge; Sengul, Ozden; Sogut, Kenan; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Halu, Arda; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Özbek, Melih; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bell, Peter; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Cussans, David; Frazier, Robert; Goldstein, Joel; Hansen, Maria; Heath, Greg P.; Heath, Helen F.; Hill, Christopher; Huckvale, Benedickt; Jackson, James; Kreczko, Lukasz; Mackay, Catherine Kirsty; Metson, Simon; Newbold, Dave M.; Nirunpong, Kachanon; Smith, Vincent J.; Ward, Simon; Basso, Lorenzo; Bell, Ken W.; Belyaev, Alexander; Brew, Christopher; Brown, Robert M.; Camanzi, Barbara; Cockerill, David J.A.; Coughlan, John A.; Harder, Kristian; Harper, Sam; Kennedy, Bruce W.; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R.; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Foudas, Costas; Fulcher, Jonathan; Futyan, David; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R.; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Teodorescu, Liliana; Bose, Tulika; Carrera Jarrin, Edgar; Clough, Andrew; Fantasia, Cory; Heister, Arno; St. John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sulak, Lawrence; Andrea, Jeremy; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Esen, Selda; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Narain, Meenakshi; Nguyen, Duong; Speer, Thomas; Tsang, Ka Vang; Borgia, Maria Assunta; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Cebra, Daniel; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Erhan, Samim; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Wallny, Rainer; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Luthra, Arun; Nguyen, Harold; Pasztor, Gabriella; Satpathy, Asish; Shen, Benjamin C.; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G.; Dusinberre, Elizabeth; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bellan, Riccardo; Blume, Michael; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Garberson, Jeffrey; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lamb, James; Lowette, Steven; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Witherell, Michael; Bornheim, Adolf; Bunn, Julian; Gataullin, Marat; Kcira, Dorian; Litvine, Vladimir; Ma, Yousi; Newman, Harvey B.; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Terentyev, Nikolay; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T.; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Blekman, Freya; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Fields, Laura Johanna; Gibbons, Lawrence Kent; Heltsley, Brian; Henriksson, Kristofer; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Kuznetsov, Valentin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Riley, Daniel; Ryd, Anders; Saelim, Michael; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar A.T.; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C.; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Demarteau, Marcel; Eartly, David P.; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M.; Hirschauer, James; James, Eric; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Kilminster, Benjamin; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Limon, Peter; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; McCauley, Thomas; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Popescu, Sorina; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Smith, Richard P.; Soha, Aron; Spalding, William J.; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D.; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Kim, Bockjoo; Klimenko, Sergey; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Pakhotin, Yuriy; Piedra Gomez, Jonatan; Prescott, Craig; Remington, Ronald; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Mesa, Dalgis; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F.; Prosper, Harrison; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M.; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Mermerkaya, Hamit; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Garcia-Solis, Edmundo Javier; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Shabalina, Elizaveta; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Cankocak, Kerem; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Murray, Michael; Radicci, Valeria; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Bandurin, Dmitry; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Hadley, Nicholas John; Kellogg, Richard G.; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C.; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; D'Enterria, David; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cole, Perrie; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Sonnek, Peter; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R.; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Lundstedt, Carl; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R.; Baur, Ulrich; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Smith, Kenneth; Zennamo, Joseph; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Ofierzynski, Radoslaw Adrian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Killewald, Phillip; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E.; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F.; Gecse, Zoltan; Gutay, Laszlo; Jones, Matthew; Koybasi, Ozhan; Laasanen, Alvin T.; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Potamianos, Karolos; Shipsey, Ian; Silvers, David; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank J.M.; Liu, Jinghua H.; Morales, Jafet; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Demortier, Luc; Goulianos, Konstantin; Hatakeyama, Kenichi; Lungu, Gheorghe; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Asaadi, Jonathan; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Nguyen, Chi Nhan; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Buehler, Marc; Conetti, Sergio; Cox, Bradley; Hirosky, Robert; Ledovskoy, Alexander; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Gunthoti, Kranti; Harr, Robert; Karchin, Paul Edmund; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Dutta, Suchandra; Efron, Jonathan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Herndon, Matthew; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Lomidze, David; Loveless, Richard; Mohapatra, Ajit; Polese, Giovanni; Reeder, Don; Savin, Alexander; Smith, Wesley H.; Swanson, Joshua; Weinberg, Marc

    2010-01-01

    The first LHC pp collisions at centre-of-mass energies of 0.9 and 2.36 TeV were recorded by the CMS detector in December 2009. The trajectories of charged particles produced in the collisions were reconstructed using the all-silicon Tracker and their momenta were measured in the 3.8 T axial magnetic field. Results from the Tracker commissioning are presented including studies of timing, efficiency, signal-to-noise, resolution, and ionization energy. Reconstructed tracks are used to benchmark the performance in terms of track and vertex resolutions, reconstruction of decays, estimation of ionization energy loss, as well as identification of photon conversions, nuclear interactions, and heavy-flavour decays.

  4. Global noise studies for CMS Tracker upgrade

    CERN Document Server

    Arteche, F; Echevarria, I; Iglesias, M; Rivetta, C; Vila, I; 10.1088/1748-0221/5/12/C12029

    2010-01-01

    The characterization of the noise emissions of DC-DC converters at system level is critical to optimize the design of the detector and define rules for the integration strategy. This paper presents the impedance effects on the noise emissions of DC-DC converters at system level. Conducted and radiated noise emissions at the input and at the output from DC-DC converters have been simulated for different types of power network and FEE impedances. System aspects as granularity, stray capacitances of the system and different working conditions of the DC-DC converters are presented too. This study has been carried out using simulation models of noise emissions of DC-DC converters in the real scenario. The results of these studies show important recommendations and criteria to be applied to integrate the DC-DC converters and decrease the system noise level

  5. High Energy Physics Research with the CMS Experiment at CERN

    International Nuclear Information System (INIS)

    Hanson, Gail G.

    2013-01-01

    The highlight of our last budget period, June 1, 2010, to May 31, 2013, was the discovery of the Higgs boson by the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC), announced on July 4, 2012, and for which Francois Englert and Peter Higgs were awarded the 2013 Nobel Prize in Physics on October 8, 2013. The Higgs boson was postulated in 1964 to explain how elementary particles obtain mass and was the missing piece of the Standard Model. However, the Standard Model does not describe everything that we know. There are many unanswered questions, such as how can the Higgs boson have the mass that we have observed, are there more Higgs bosons, why is there more matter than antimatter, and what is the invisible dark matter, which constitutes about 85% of the matter in the universe. Our group played a significant role in the discovery of the Higgs boson and in subsequent analyses. We also carried out searches for new physics, in ways that could help elucidate some of the remaining questions. Our role in the CMS detector focused on the Tracker, a silicon strip outer tracker and pixel inner tracker.

  6. The CMS detector before closure

    CERN Multimedia

    Patrice Loiez

    2006-01-01

    The CMS detector before testing using muon cosmic rays that are produced as high-energy particles from space crash into the Earth's atmosphere generating a cascade of energetic particles. After closing CMS, the magnets, calorimeters, trackers and muon chambers were tested on a small section of the detector as part of the magnet test and cosmic challenge. This test checked the alignment and functionality of the detector systems, as well as the magnets.

  7. LHCb upstream tracker

    CERN Multimedia

    Artuso, Marina

    2016-01-01

    The detector for the LHCb upgrade is designed for 40MHz readout, allowing the experiment to run at an instantaneous luminosity of 2x10^33 cm$^2$s$^-1$. The upgrade of the tracker subsystem in front of the dipole magnet, the Upstream Tracker, is crucial for charged track reconstruction and fast trigger decisions based on a tracking algorithm involving also vertex detector information. The detector consists of 4 planes with a total area of about 8.5m$^2$, made of single sided silicon strip sensors read-out by a novel custom-made ASIC (SALT). Details on the performance of prototype sensors, front-end electronics, near-detector electronics and mechanical components are presented.

  8. CMS Collaboration

    International Nuclear Information System (INIS)

    Faridah Mohammad Idris; Wan Ahmad Tajuddin Wan Abdullah; Zainol Abidin Ibrahim

    2013-01-01

    Full-text: CMS Collaboration is an international scientific collaboration located at European Organization for Nuclear Research (CERN), Switzerland, dedicated in carried out research on experimental particle physics. Consisting of 179 institutions from 41 countries from all around the word, CMS Collaboration host a general purpose detector for example the Compact Muon Solenoid (CMS) for members in CMS Collaboration to conduct experiment from the collision of two proton beams accelerated to a speed of 8 TeV in the LHC ring. In this paper, we described how the CMS detector is used by the scientist in CMS Collaboration to reconstruct the most basic building of matter. (author)

  9. CBC2: A CMS microstrip readout ASIC with logic for track-trigger modules at HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G., E-mail: g.hall@imperial.ac.uk [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Pesaresi, M.; Raymond, M. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Braga, D.; Jones, L.; Murray, P.; Prydderch, M. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OQX (United Kingdom); Abbaneo, D.; Blanchot, G.; Honma, A.; Kovacs, M.; Vasey, F. [CERN, CH-1211, Geneva (Switzerland)

    2014-11-21

    The CBC2 is the latest version of the CMS Binary Chip ASIC for readout of the upgraded CMS Tracker at the High Luminosity LHC. It is designed in 130 nm CMOS with 254 input channels and will be bump-bonded to a substrate to which sensors will be wire-bonded. The CBC2 is designed to instrument double layer modules, consisting of two overlaid silicon microstrip sensors with aligned microstrips, in the outer tracker. It incorporates logic to identify L1 trigger primitives in the form of “stubs”: high transverse-momentum track candidates which are identified within the low momentum background by selecting correlated hits between two closely separated microstrip sensors. The first prototype modules have been assembled. The performance of the chip in recent laboratory tests is briefly reported and the status of module construction described.

  10. CERN Open Days CMS Posters

    CERN Multimedia

    Davis, Siona Ruth

    2016-01-01

    Themes: 1) You are here (location P5, Cessy) 2) CERN 3) LHC 4) CMS Detector 5) Magnet 6) Subdetectors (Tracker, ECAL, HCAL, Muons) 7) Trigger and Data Acquisition 8) Collaboration 9) Site Geography 10) Construction 11) Lowering and Installation 12) Physics

  11. Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Romeo, Francesco

    2017-01-01

    The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and pileup environment at the High Luminosity-LHC. The HGCAL is realized as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5 - 1.0 square centimetres interspersed with absorbers. Prototype modules, based on hexagonal silicon pad sensors, with 128 channels, have been constructed and tested in beams at FNAL and at CERN. The modules include many of the features required for this challenging detector, including a PCB glued directly to the sensor, using through-hole wire-bonding for signal readout and ~5mm spacing between layers - including the front-end electronics and all services. Tests in 2016 have used an existing front-end chip - Skiroc2 (designed for the CALICE experiment for ILC). We present results from first tests of these modules both in the laboratory and ...

  12. CMS Statistics

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Center for Strategic Planning produces an annual CMS Statistics reference booklet that provides a quick reference for summary information about health...

  13. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ General - CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. LHC Symposiums Management - CB - MB - FB - FMC Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2006 Annual reviews are posted.   CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat a...

  14. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ General - CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. LHC Symposiums Management - CB - MB - FB - FMC Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2006 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the natu...

  15. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ General - CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. LHC Symposiums Management - CB - MB - FB - FMC Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2006 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the natur...

  16. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ Management- CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. Management - CB - MB - FB Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2007 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the nature of employment and ...

  17. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ Management- CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. Management - CB - MB - FB Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2007 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on th