WorldWideScience

Sample records for cms silicon strip

  1. The CMS silicon strip tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Bartalini, P.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Raffaelli, F.; Raso, G.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Wang, Y.; Watts, S.; Wittmer, B.

    1999-01-01

    The Silicon Strip Tracker (SST) is the intermediate part of the CMS Central Tracker System. SST is based on microstrip silicon devices and in combination with pixel detectors and the Microstrip Gas Chambers aims at performing pattern recognition, track reconstruction and momentum measurements for all tracks with p T ≥2 GeV/c originating from high luminosity interactions at √s=14 TeV at LHC. We aim at exploiting the advantages and the physics potential of the precise tracking performance provided by the microstrip silicon detectors on a large scale apparatus and in a much more difficult environment than ever. In this paper we describe the actual SST layout and the readout system. (author)

  2. CMS Silicon Strip Tracker Performance

    CERN Document Server

    Agram, Jean-Laurent

    2012-01-01

    The CMS Silicon Strip Tracker (SST), consisting of 9.6 million readout channels from 15148 modules and covering an area of 198 square meters, needs to be precisely calibrated in order to correctly reconstruct the events recorded. Calibration constants are derived from different workflows, from promptly reconstructed events with particles as well as from commissioning events gathered just before the acquisition of physics runs. The performance of the SST has been carefully studied since the beginning of data taking: the noise of the detector, data integrity, signal-over-noise ratio, hit reconstruction efficiency and resolution have been all investigated with time and for different conditions. In this paper we describe the reconstruction strategies, the calibration procedures and the detector performance results from the latest CMS operation.

  3. The New Silicon Strip Detectors for the CMS Tracker Upgrade

    CERN Document Server

    Dragicevic, Marko

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the ...

  4. The CMS silicon strip tracker and its electronic readout

    International Nuclear Information System (INIS)

    Friedl, M.

    2001-05-01

    The Large Hadron Collider (LHC) at CERN (Geneva, CH) will be the world's biggest accelerator machine when operation starts in 2006. One of its four detector experiments is the Compact Muon Solenoid (CMS), consisting of a large-scale silicon tracker and electromagnetic and hadron calorimeters, all embedded in a solenoidal magnetic field of 4 T, and a muon system surrounding the magnet coil. The Silicon Strip Tracker has a sensitive area of 206m 2 with 10 million analog channels which are read out at the collider frequency of 40 MHz. The building blocks of the CMS Tracker are the silicon sensors, APV amplifier ASICs, supporting front-end ASICs, analog and digital optical links as well as data processors and control units in the back-end. Radiation tolerance, readout speed and the huge data volume are challenging requirements. The charge collection in silicon detectors was modeled, which is discussed as well as the concepts of readout amplifiers with respect to the LHC requirements, including the deconvolution method of fast pulse shaping, electronic noise constraints and radiation effects. Moreover, extensive measurements on prototype components of the CMS Tracker and different versions of the APV chip in particular were performed. There was a significant contribution to the construction of several detector modules, characterized them in particle beam tests and quantified radiation induced effects on the APV chip and on silicon detectors. In addition, a prototype of the analog optical link and the analog performance of the back-end digitization unit were evaluated. The results are very encouraging, demonstrating the feasibility of the CMS Silicon Strip Tracker system and motivating progress towards the construction phase. (author)

  5. The new silicon strip detectors for the CMS tracker upgrade

    International Nuclear Information System (INIS)

    Dragicevic, M.

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the tracker caused by the increase in luminosity which is proposed as an upgrade to the LHC accelerator (sLHC). This chapter motivates the work I have conducted and clarifies why the solutions proposed by myself are important contributions to the upgrade of the CMS tracker. The following chapters present the concepts that are necessary to operate the silicon strip sensors at sLHC luminosities and additional improvements to the construction and quality assurance of the sensors and the detector modules. The most important concepts and works presented in chapters 7 to 9 are: Development of a software framework to enable the flexible and quick design of test structures and sensors. Selecting a suitable sensor material which is sufficiently radiation hard. Design, implementation and production of a standard set of test structures to enable the quality assurance of such sensors and any future developments. Electrical characterisation of the test structures and analysis

  6. Silicon strip detector qualification for the CMS experiment

    International Nuclear Information System (INIS)

    Kaussen, Gordon

    2008-01-01

    To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The performance of the participating two shells of the TIB, four rods of the TOB and two petals of the TEC (representing about 1% of the final strip tracker) could be studied in different magnetic fields over a period of approximately two month using cosmic muon signals. The last test before inserting the tracker in the CMS experiment was the Tracker Slice Test performed in spring/summer 2007 at the Tracker Integration Facility (TIF) at CERN after installing all subdetectors in the tracker support tube. Approximately 25% of the strip tracker +z side was powered and read out using a cosmic ray trigger built up of scintillation counters. In total, about 5 million muon events were recorded under various operating conditions. These events together with results from commissioning runs were used to study the detector response like cluster charges, signal-to-noise ratios and single strip noise behaviour as well as to identify faulty channels which turned out to be in the order of a few per mille. The performance of the silicon strip tracker during these different construction stages is discussed in this thesis with a special emphasis on the tracker end caps. (orig.)

  7. Silicon strip detector qualification for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaussen, Gordon

    2008-10-06

    To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The performance of the participating two shells of the TIB, four rods of the TOB and two petals of the TEC (representing about 1% of the final strip tracker) could be studied in different magnetic fields over a period of approximately two month using cosmic muon signals. The last test before inserting the tracker in the CMS experiment was the Tracker Slice Test performed in spring/summer 2007 at the Tracker Integration Facility (TIF) at CERN after installing all subdetectors in the tracker support tube. Approximately 25% of the strip tracker +z side was powered and read out using a cosmic ray trigger built up of scintillation counters. In total, about 5 million muon events were recorded under various operating conditions. These events together with results from commissioning runs were used to study the detector response like cluster charges, signal-to-noise ratios and single strip noise behaviour as well as to identify faulty channels which turned out to be in the order of a few per mille. The performance of the silicon strip tracker during these different construction stages is discussed in this thesis with a special emphasis on the tracker end caps. (orig.)

  8. Data quality monitoring of the CMS Silicon Strip Tracker detector

    International Nuclear Information System (INIS)

    Benucci, L.

    2010-01-01

    The Physics and Data Quality Monitoring (DQM) framework aims at providing a homogeneous monitoring environment across various applications related to data taking at the CMS experiment. In this contribution, the DQM system for the Silicon Strip Tracker will be introduced. The set of elements to assess the status of detector will be mentioned, along with the way to identify problems and trace them to specific tracker elements. Monitoring tools, user interfaces and automated software will be briefly described. The system was used during extensive cosmic data taking of CMS in Autumn 2008, where it demonstrated to have a flexible and robust implementation and has been essential to improve the understanding of the detector. CMS Collaboration believes that this tool is now mature to face the forthcoming data-taking era.

  9. Large-scale module production for the CMS silicon strip tracker

    CERN Document Server

    Cattai, A

    2005-01-01

    The Silicon Strip Tracker (SST) for the CMS experiment at LHC consists of 210 m**2 of silicon strip detectors grouped into four distinct sub-systems. We present a brief description of the CMS Tracker, the industrialised detector module production methods and the current status of the SST with reference to some problems encountered at the factories and in the construction centres.

  10. The Laser Alignment System for the CMS silicon strip tracker

    CERN Document Server

    Olzem, Jan

    2009-01-01

    The Laser Alignment System (LAS) of the CMS silicon strip Tracker has been designed for surveying the geometry of the large-scale Tracker support structures. It uses 40 laser beams ($\\lambda$ = 1075 nm) that induce signals on a subset of the Tracker silicon sensors. The positions in space of the laser spots on the sensors are reconstructed with a resolution of 30 $\\mu$m. From this, the LAS is capable of permanent in-time monitoring of the different Tracker components relative to each other with better than 30 $\\mu$m precision. Additionally, it can provide an absolute measurement of the Tracker mechanical structure with an accuracy better than 70 $\\mu$m, thereby supplying additional input to the track based alignment at detector startup. 31 out of the 40 LAS beams have been successfully operated during the CMS cosmic muon data taking campaign in autumn 2008. The alignment of the Tracker Endcap Discs and of the discs with respect to the Tracker Inner Barrel and Tracker Outer Barrel subdetectors was measured w...

  11. Commissioning and Performance of the CMS Silicon Strip Tracker with Cosmic Ray Muons

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    During autumn 2008, the Silicon Strip Tracker was operated with the full CMS experiment in a comprehensive test, in the presence of the 3.8 T magnetic field produced by the CMS superconducting solenoid. Cosmic ray muons were detected in the muon chambers and used to trigger the readout of all CMS sub-detectors. About 15 million events with a muon in the tracker were collected. The efficiency of hit and track reconstruction were measured to be higher than 99% and consistent with expectations from Monte Carlo simulation. This article details the commissioning and performance of the Silicon Strip Tracker with cosmic ray muons.

  12. Reception Test of Petals for the End Cap TEC+ of the CMS Silicon Strip Tracker

    CERN Document Server

    Bremer, R; Klein, Katja; Schmitz, Stefan Antonius; Adler, Volker; Adolphi, Roman; Ageron, Michel; Agram, Jean-Laurent; Atz, Bernd; Barvich, Tobias; Baulieu, Guillaume; Beaumont, Willem; Beissel, Franz; Bergauer, Thomas; Berst, Jean-Daniel; Blüm, Peter; Bock, E; Bogelsbacher, F; de Boer, Wim; Bonnet, Jean-Luc; Bonnevaux, Alain; Boudoul, Gaelle; Bouhali, Othmane; Braunschweig, Wolfgang; Brom, Jean-Marie; Butz, Erik; Chabanat, Eric; Chabert, Eric Christian; Clerbaux, Barbara; Contardo, Didier; De Callatay, Bernard; Dehm, Philip; Delaere, Christophe; Della Negra, Rodolphe; Dewulf, Jean-Paul; D'Hondt, Jorgen; Didierjean, Francois; Dierlamm, Alexander; Dirkes, Guido; Dragicevic, Marko; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Esser, Hans; Estre, Nicolas; Fahrer, Manuel; Fernández, J; Florins, Benoit; Flossdorf, Alexander; Flucke, Gero; Flügge, Günter; Fontaine, Jean-Charles; Freudenreich, Klaus; Frey, Martin; Friedl, Markus; Furgeri, Alexander; Giraud, Noël; Goerlach, Ulrich; Goorens, Robert; Graehling, Philippe; Grégoire, Ghislain; Gregoriev, E; Gross, Laurent; Hansel, S; Haroutunian, Roger; Hartmann, Frank; Heier, Stefan; Hermanns, Thomas; Heydhausen, Dirk; Heyninck, Jan; Hosselet, J; Hrubec, Josef; Jahn, Dieter; Juillot, Pierre; Kaminski, Jochen; Karpinski, Waclaw; Kaussen, Gordon; Keutgen, Thomas; Klanner, Robert; König, Stefan; Kosbow, M; Krammer, Manfred; Ledermann, Bernhard; Lemaître, Vincent; De Lentdecker, Gilles; Linn, Alexander; Lounis, Abdenour; Lübelsmeyer, Klaus; Lumb, Nicholas; Maazouzi, Chaker; Mahmoud, Tariq; Michotte, Daniel; Militaru, Otilia; Mirabito, Laurent; Müller, Thomas; Neukermans, Lionel; Ollivetto, C; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pein, Uwe; Pernicka, Manfred; Perriès, Stephane; Piaseki, C; Pierschel, Gerhard; Piotrzkowski, Krzysztof; Poettgens, Michael; Pooth, Oliver; Rouby, Xavier; Sabellek, Andreas; Schael, Stefan; Schirm, Norbert; Schleper, Peter; Schultz von Dratzig, Arndt; Siedling, Rolf; Simonis, Hans-Jürgen; Stahl, Achim; Steck, Pia; Steinbruck, G; Stoye, Markus; Strub, Roger; Tavernier, Stefaan; Teyssier, Daniel; Theel, Andreas; Trocmé, Benjamin; Udo, Fred; Van der Donckt, M; Van der Velde, C; Van Hove, Pierre; Vanlaer, Pascal; Van Lancker, Luc; Van Staa, Rolf; Vanzetto, Sylvain; Weber, Markus; Weiler, Thomas; Weseler, Siegfried; Wickens, John; Wittmer, Bruno; Wlochal, Michael; De Wolf, Eddi A; Zhukov, Valery; Zoeller, Marc Henning

    2009-01-01

    The silicon strip tracker of the CMS experiment has been completed and was inserted into the CMS detector in late 2007. The largest sub system of the tracker are its end caps, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted onto the TEC support structures. Each end cap consists of 144 such petals, which were built and fully qualified by several institutes across Europe. From

  13. P-Type Silicon Strip Sensors for the Future CMS Tracker

    CERN Document Server

    The Tracker Group of the CMS Collaboration

    2016-01-01

    The upgrade to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at CMS. Based on these results, the collaboration has chosen to use n-in-p type strip and macro-pixel sensors and focus further investigations on the optimization of that sensor type. This paper describes the main measurement results and conclusions that motivated this decision.

  14. Status of the Silicon Strip Detector at CMS

    CERN Document Server

    Simonis, H J

    2008-01-01

    The CMS Tracker is the world's largest silicon detector. It has only recently been moved underground and installed in the 4T solenoid. Prior to this there has been an intensive testing on the surface, which confirms that the detector system fully meets the design specifications. Irradiation studies with the sensor material shows that the system will survive for at least 10 years in the harsh radiation environment prevailing within the Tracker volume. The planning phase for SLHC as the successor of LHC, with a ten times higher luminosity at the same energy has already begun. First R\\&D studies for more robust detector materials and a new Tracker layout have started.

  15. Stand-alone Cosmic Muon Reconstruction Before Installation of the CMS Silicon Strip Tracker

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruhwirth, R.; Hansel, S.; Hrubec, J.; Krammer, M.; Oberegger, M.; Pernicka, M.; Schmid, S.; Stark, R.; Steininger, H.; Uhl, D.; Waltenberger, W.; Widl, E.; Van Mechelen, P.; Cardaci, M.; Beaumont, W.; de Langhe, E.; de Wolf, E.A.; Delmeire, E.; Hashemi, M.; Bouhali, O.; Charaf, O.; Clerbaux, B.; Dewulf, J.-P.; Elgammal, S.; Hammad, G.; de Lentdecker, G.; Marage, P.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Adler, V.; Devroede, O.; De Weirdt, S.; D'Hondt, J.; Goorens, R.; Heyninck, J.; Maes, J.; Mozer, Matthias Ulrich; Tavernier, S.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.; Bonnet, J.-L.; Bruno, G.; De Callatay, B.; Florins, B.; Giammanco, A.; Gregoire, G.; Keutgen, Th.; Kcira, D.; Lemaitre, V.; Michotte, D.; Militaru, O.; Piotrzkowski, K.; Quertermont, L.; Roberfroid, V.; Rouby, X.; Teyssier, D.; Daubie, E.; Anttila, E.; Czellar, S.; Engstrom, P.; Harkonen, J.; Karimaki, V.; Kostesmaa, J.; Kuronen, A.; Lampen, T.; Linden, T.; Luukka, P.-R.; Maenpaa, T.; Michal, S.; Tuominen, E.; Tuominiemi, J.; Ageron, M.; Baulieu, G.; Bonnevaux, A.; Boudoul, G.; Chabanat, E.; Chabert, E.; Chierici, R.; Contardo, D.; Della Negra, R.; Dupasquier, T.; Gelin, G.; Giraud, N.; Guillot, G.; Estre, N.; Haroutunian, R.; Lumb, N.; Perries, S.; Schirra, F.; Trocme, B.; Vanzetto, S.; Agram, J.-L.; Blaes, R.; Drouhin, F.; Ernenwein, J.-P.; Fontaine, J.-C.; Berst, J.-D.; Brom, J.-M.; Didierjean, F.; Goerlach, U.; Graehling, P.; Gross, L.; Hosselet, J.; Juillot, P.; Lounis, A.; Maazouzi, C.; Olivetto, C.; Strub, R.; Van Hove, P.; Anagnostou, G.; Brauer, R.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Kukulies, C.; Olzem, J.; Ostapchuk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schwering, G.; Sprenger, D.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.; Beissel, F.; Bock, E.; Flugge, G.; Gillissen, C.; Hermanns, T.; Heydhausen, D.; Jahn, D.; Kaussen, G.; Linn, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Stahl, A.; Zoeller, M.H.; Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R.; Hauk, J.; Klanner, R.; Pein, U.; Schleper, P.; Steinbruck, G.; Blum, P.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Fahrer, M.; Frey, M.; Furgeri, A.; Hartmann, F.; Heier, S.; Hoffmann, K.-H.; Kaminski, J.; Ledermann, B.; Liamsuwan, T.; Muller, S.; Muller, Th.; Schilling, F.-P.; Simonis, H.-J.; Steck, P.; Zhukov, V.; Cariola, P.; De Robertis, G.; Ferorelli, R.; Fiore, L.; Preda, M.; Sala, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.; Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M.A.; Sparti, V.; Sutera, C.; Tricomi, A.; Tuve, C.; Brianzi, M.; Civinini, C.; Maletta, F.; Manolescu, F.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Broccolo, B.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Magini, N.; Parrini, G.; Scarlini, E.; Cerati, G.; Azzi, P.; Bacchetta, N.; Candelori, A.; Dorigo, T.; Kaminsky, A.; Karaevski, S.; Khomenkov, V.; Reznikov, S.; Tessaro, M.; Bisello, D.; De Mattia, M.; Giubilato, P.; Loreti, M.; Mattiazzo, S.; Nigro, M.; Paccagnella, A.; Pantano, D.; Pozzobon, N.; Tosi, M.; Bilei, G.M.; Checcucci, B.; Fano, L.; Servoli, L.; Ambroglini, F.; Babucci, E.; Benedetti, D.; Biasini, M.; Caponeri, B.; Covarelli, R.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Marcantonini, M.; Postolache, V.; Santocchia, A.; Spiga, D.; Bagliesi, G.; Balestri, G.; Berretta, L.; Bianucci, S.; Boccali, T.; Bosi, F.; Bracci, F.; Castaldi, R.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A .S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Lomtadze, T.; Lungu, G.A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Sentenac, D.; Serban, A.T.; Slav, A.; Soldani, A.; Spagnolo, P.; Tenchini, R.; Tolaini, S.; Venturi, A.; Verdini, P.G.; Vos, M.; Zaccarelli, L.; Avanzini, C.; Basti, A.; Benucci, L.; Bocci, A.; Cazzola, U.; Fiori, F.; Linari, S.; Massa, M.; Messineo, A.; Segneri, G.; Tonelli, G.; Azzurri, P.; Bernardini, J.; Borrello, L.; Calzolari, F.; Foa, L.; Gennai, S.; Ligabue, F.; Petrucciani, G.; Rizzi, A.; Yang, Z.; Benotto, F.; Demaria, N.; Dumitrache, F.; Farano, R.; Borgia, M.A.; Castello, R.; Costa, M.; Migliore, E.; Romero, A.; Abbaneo, D.; Abbas, M.; Ahmed, I.; Akhtar, I.; Albert, E.; Bloch, C.; Breuker, H.; Butt, S.; Buchmuller, O.; Cattai, A.; Delaere, C.; Delattre, M.; Edera, L.M.; Engstrom, P.; Eppard, M.; Gateau, M.; Gill, K.; Giolo-Nicollerat, A.-S.; Grabit, R.; Honma, A.; Huhtinen, M.; Kloukinas, K.; Kortesmaa, J.; Kottelat, L.J.; Kuronen, A.; Leonardo, N.; Ljuslin, C.; Mannelli, M.; Masetti, L.; Marchioro, A.; Mersi, S.; Michal, S.; Mirabito, L.; Muffat-Joly, J.; Onnela, A.; Paillard, C.; Pal, I.; Pernot, J.F.; Petagna, P.; Petit, P.; Piccut, C.; Pioppi, M.; Postema, H.; Ranieri, R.; Ricci, D.; Rolandi, G.; Ronga, F.; Sigaud, C.; Syed, A.; Siegrist, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vander Donckt, M.; Vasey, F.; Alagoz, E.; Amsler, Claude; Chiochia, V.; Regenfus, Christian; Robmann, P.; Rochet, J.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Wilke, L.; Church, I.; Cole, J.; Coughlan, J.; Gay, A.; Taghavi, S.; Tomalin, I.; Bainbridge, R.; Cripps, N.; Fulcher, J.; Hall, G.; Noy, M.; Pesaresi, M.; Radicci, V.; Raymond, D.M.; Sharp, P.; Stoye, M.; Wingham, M.; Zorba, O.; Goitom, I.; Hobson, P.R.; Reid, I.; Teodorescu, L.; Hanson, G.; Jeng, G.-Y.; Liu, H.; Pasztor, G.; Satpathy, A.; Stringer, R.; Mangano, B.; Affolder, K.; Affolder, T.; Allen, A.; Barge, D.; Burke, S.; Callahan, D.; Campagnari, C.; Crook, A.; D'Alfonso, M.; Dietch, J.; Garberson, Jeffrey Ford; Hale, D.; Incandela, H.; Incandela, J.; Jaditz, S.; Kalavase, P.; Kreyer, S.; Kyre, S.; Lamb, J.; Mc Guinness, C.; Mills, C.; Nguyen, H.; Nikolic, M.; Lowette, S.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rubinstein, N.; Sanhueza, S.; Shah, Y.; Simms, L.; Staszak, D.; Stoner, J.; Stuart, D.; Swain, S.; Vlimant, J.-R.; White, D.; Ulmer, K.A.; Wagner, S.R.; Bagby, L.; Bhat, P.C.; Burkett, K.; Cihangir, S.; Gutsche, O.; Jensen, H.; Johnson, M.; Luzhetskiy, N.; Mason, D.; Miao, T.; Moccia, S.; Noeding, C.; Ronzhin, A.; Skup, E.; Spalding, W.J.; Spiegel, L.; Tkaczyk, S.; Yumiceva, F.; Zatserklyaniy, A.; Zerev, E.; Anghel, I.; Bazterra, V.E.; Gerber, C.E.; Khalatian, S.; Shabalina, E.; Baringer, Philip S.; Bean, A.; Chen, J.; Hinchey, C.; Martin, C.; Moulik, T.; Robinson, R.; Gritsan, A.V.; Lae, C.K.; Tran, N.V.; Everaerts, P.; Hahn, K.A.; Harris, P.; Nahn, S.; Rudolph, M.; Sung, K.; Betchart, B.; Demina, R.; Gotra, Y.; Korjenevski, S.; Miner, D.; Orbaker, D.; Christofek, L.; Hooper, R.; Landsberg, G.; Nguyen, D.; Narain, M.; Speer, T.; Tsang, K.V.

    2009-01-01

    The subsystems of the CMS silicon strip tracker were integrated and commissioned at the Tracker Integration Facility (TIF) in the period from November 2006 to July 2007. As part of the commissioning, large samples of cosmic ray data were recorded under various running conditions in the absence of a magnetic field. Cosmic rays detected by scintillation counters were used to trigger the readout of up to 15% of the final silicon strip detector, and over 4.7 million events were recorded. This document describes the cosmic track reconstruction and presents results on the performance of track and hit reconstruction as from dedicated analyses.

  16. Interference coupling mechanisms in Silicon Strip Detectors - CMS tracker "wings" A learned lesson for SLHC

    CERN Document Server

    Arteche, F; Rivetta, C

    2009-01-01

    The identification of coupling mechanisms between noise sources and sensitive areas of the front-end electronics (FEE) in the previous CMS tracker sub-system is critical to optimize the design and integration of integrated circuits, sensors and power distribution circuitry for the proposed SLHC Silicon Strip Tracker systems. This paper presents a validated model of the noise sensitivity observed in the Silicon Strip Detector-FEE of the CMS tracker that allows quantifying both the impact of the noise coupling mechanisms and the system immunity against electromagnetic interferences. This model has been validated based on simulations using finite element models and immunity tests conducted on prototypes of the Silicon Tracker End-Caps (TEC) and Outer Barrel (TOB) systems. The results of these studies show important recommendations and criteria to be applied in the design of future detectors to increase the immunity against electromagnetic noise.

  17. Integration of the End Cap TEC+ of the CMS Silicon Strip Tracker

    CERN Document Server

    Adler, Volker; Ageron, Michel; Agram, Jean-Laurent; Atz, Bernd; Barvich, Tobias; Baulieu, Guillaume; Beaumont, Willem; Beissel, Franz; Bergauer, Thomas; Berst, Jean-Daniel; Blüm, Peter; Bock, E; Bogelsbacher, F; de Boer, Wim; Bonnet, Jean-Luc; Bonnevaux, Alain; Boudoul, Gaelle; Bouhali, Othmane; Braunschweig, Wolfgang; Bremer, R; Brom, Jean-Marie; Butz, Erik; Chabanat, Eric; Chabert, Eric Christian; Clerbaux, Barbara; Contardo, Didier; De Callatay, Bernard; Dehm, Philip; Delaere, Christophe; Della Negra, Rodolphe; Dewulf, Jean-Paul; D'Hondt, Jorgen; Didierjean, Francois; Dierlamm, Alexander; Dirkes, Guido; Dragicevic, Marko; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Esser, Hans; Estre, Nicolas; Fahrer, Manuel; Feld, Lutz; Fernández, J; Florins, Benoit; Flossdorf, Alexander; Flucke, Gero; Flügge, Günter; Fontaine, Jean-Charles; Freudenreich, Klaus; Frey, Martin; Friedl, Markus; Furgeri, Alexander; Giraud, Noël; Goerlach, Ulrich; Goorens, Robert; Graehling, Philippe; Grégoire, Ghislain; Gregoriev, E; Gross, Laurent; Hansel, S; Haroutunian, Roger; Hartmann, Frank; Heier, Stefan; Hermanns, Thomas; Heydhausen, Dirk; Heyninck, Jan; Hosselet, J; Hrubec, Josef; Jahn, Dieter; Juillot, Pierre; Kaminski, Jochen; Karpinski, Waclaw; Kaussen, Gordon; Keutgen, Thomas; Klanner, Robert; Klein, Katja; König, Stefan; Kosbow, M; Krammer, Manfred; Ledermann, Bernhard; Lemaître, Vincent; De Lentdecker, Gilles; Linn, Alexander; Lounis, Abdenour; Lübelsmeyer, Klaus; Lumb, Nicholas; Maazouzi, Chaker; Mahmoud, Tariq; Michotte, Daniel; Militaru, Otilia; Mirabito, Laurent; Müller, Thomas; Neukermans, Lionel; Ollivetto, C; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pein, Uwe; Pernicka, Manfred; Perriès, Stephane; Piaseki, C; Pierschel, Gerhard; Piotrzkowski, Krzysztof; Poettgens, Michael; Pooth, Oliver; Rouby, Xavier; Sabellek, Andreas; Schael, Stefan; Schirm, Norbert; Schleper, Peter; Schmitz, Stefan Antonius; Schultz von Dratzig, Arndt; Siedling, Rolf; Simonis, Hans-Jürgen; Stahl, Achim; Steck, Pia; Steinbruck, G; Stoye, Markus; Strub, Roger; Tavernier, Stefaan; Teyssier, Daniel; Theel, Andreas; Trocmé, Benjamin; Udo, Fred; Van der Donckt, M; Van der Velde, C; Van Hove, Pierre; Vanlaer, Pascal; Van Lancker, Luc; Van Staa, Rolf; Vanzetto, Sylvain; Weber, Markus; Weiler, Thomas; Weseler, Siegfried; Wickens, John; Wittmer, Bruno; Wlochal, Michael; De Wolf, Eddi A; Zhukov, Valery; Zoeller, Marc Henning

    2009-01-01

    The silicon strip tracker of the CMS experiment has been completed and inserted into the CMS detector in late 2007. The largest sub-system of the tracker is its end cap system, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted into the TEC support structures. Each end cap consists of 144 petals, and the insertion of these petals into the end cap structure is referred to as TEC integration. The two end caps were integrated independently in Aachen (TEC+) and at CERN (TEC--). This note deals with the integration of TEC+, describing procedures for end cap integration and for quality control during testing of integrated sections of the end cap and presenting results from the testing.

  18. Quality assurance and irradiation studies on CMS silicon strip sensors

    CERN Document Server

    Furgeri, Alexander

    The high luminosity at the Large Hadron Collider at the European Particle Physics Laboratory CERN in Geneva causes a harsh radiation environment for the detectors. The most inner layers of the tracker are irradiated to an equivalent fluence of 1.6e14 1MeV-neutrons per cmˆ2. The radiation causes damage in the silicon lattice of the sensors. This increases the leakage current and changes the full depletion voltage. Both of these parameters are after irradiation neither stable with time nor with temperatures above 0oC. This thesis presents the changes of the leakage currents, the full depletion voltages, and all strip parameters of the sensors after proton and neutron irradiation. After irradiation annealing studies have been carried out. All observed effects are used to simulate the evolution of full depletion voltage for different annealing times and annealing temperatures in order to keep the power consumption as low as possible. From the observed radiation damage and annealing effects the sensors of the tra...

  19. Studies for the Commissioning of the CERN CMS Silicon Strip Tracker

    CERN Document Server

    Bloch, Christoph; Abbaneo, Duccio; Fabjan, Christian Wolfgang

    2008-01-01

    In 2008 the Large Hadron Collider (LHC) at CERN will start producing proton-proton collisions of unprecedented energy. One of its main experiments is the Compact Muon Solenoid (CMS), a general purpose detector, optimized for the search of the Higgs boson and super symmetric particles. The discovery potential of the CMS detector relies on a high precision tracking system, made of a pixel detector and the largest silicon strip Tracker ever built. In order to operate successfully a device as complex as the CMS silicon strip Tracker, and to fully exploit its potential, the properties of the hardware need to be characterized as precisely as possible, and the reconstruction software needs to be commissioned with physics signals. A number of issues were identified and studied to commission the detector, some of which concern the entire Tracker, while some are specific to the Tracker Outer Barrel (TOB): - the time evolution of the signals in the readout electronics need to be precisely measured and correctly simulate...

  20. Beam loss studies on silicon strip detector modules for the CMS experiment

    CERN Document Server

    Fahrer, Manuel

    2006-01-01

    The large beam energy of the LHC demands for a save beam abort system. Nevertheless, failures cannot be excluded with last assurance and are predicted to occur once per year. As the CMS experiment is placed in the neighboured LHC octant, it is affected by such events. The effect of an unsynchronized beam abort on the silicon strip modules of the CMS tracking detector has been investigated in this thesis by performing one accelerator and two lab experiments. The dynamical behaviour of operational parameters of modules and components has been recorded during simulated beam loss events to be able to disentangle the reasons of possible damages. The first study with high intensive proton bunches at the CERN PS ensured the robustness of the module design against beam losses. A further lab experiment with pulsed IR LEDs clarified the physical and electrical processes during such events. The silicon strip sensors on a module are protected against beam losses by a part of the module design that originally has not been...

  1. System tests with silicon strip module prototypes for the Phase-2-upgrade of the CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Preuten, Marius [I. Physikalisches Institut B, RWTH Aachen University (Germany)

    2016-07-01

    To prepare the CMS experiment for the High Luminosity LHC and its instantaneous luminosity of 5 . 10{sup 34} cm{sup -2}s{sup -1}, in the Long Shutdown 3 (around 2024) the CMS Silicon Tracker will be replaced. The Silicon Strip Modules for the new Tracker will host two vertically stacked sensors. The combination of hit information from both sensors will allow the estimation of the transverse momentum (p{sub T}) of charged particles in the module front-end. This can be used to identify hits from potential interesting high-p{sub T} tracks (above 2 GeV) for the first trigger level. The CMS Binary Chip (CBC) provides the analogue readout of two sensors and a digital section, into which the momentum discrimination is integrated. The modules will host a new DC-DC converter chain, which will allow individual powering of each module. First measurements with early prototypes on the interplay between DC-DC powering and the read-out functions of the module are presented in this talk.

  2. Integration of the End Cap TEC+ of the CMS Silicon Strip Tracker

    CERN Document Server

    Bremer, Richard; Feld, Lutz

    2008-01-01

    At the European Organization for Nuclear Research (CERN) ne ar Geneva the new proton-proton collider ring LHC and the experiments that will be operated a t this accelerator are currently being finalised. Among these experiments is the multi-purpose det ector CMS whose aim it is to discover and investigate new physical phenomena that might become ac cessible by virtue of the high center- of-mass energy and luminosity of the LHC. Two of the most inte nsively studied possibilities are the discovery of the Higgs Boson and of particles from the spectr um of supersymmetric extensions of the Standard Model. CMS is the first large experiment of high- energy particle physics whose inner tracking system is exclusively instrumented with silicon d etector modules. This tracker comprises 15 148 silicon strip modules enclosing the interaction poin t in 10–12 layers. The 1. Physikalisches Institut B of RWTH Aachen was deeply involved in the completi on of the end caps of the tracking system. The institute played a leading...

  3. Integration of the end cap TEC+ of the CMS silicon strip tracker

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, Richard

    2008-04-28

    CMS is the first large experiment of high-energy particle physics whose inner tracking system is exclusively instrumented with silicon detector modules. This tracker comprises 15 148 silicon strip modules enclosing the interaction point in 10-12 layers. The 1. Physikalisches Institut B of RWTH Aachen was deeply involved in the completion of the end caps of the tracking system. The institute played a leading role in the end cap design, produced virtually all support structures and several important electrical components, designed and built the laser alignment system of the tracker, performed system tests and finally integrated one of the two end caps in Aachen. This integration constitutes the central part of the present thesis work. The main focus was on the development of methods to recognise defects early in the integration process and to assert the detector's functionality. Characteristic quantities such as the detector noise or the optical gain of the readout chain were determined during integration as well as during a series of tests performed after transport of the end cap from Aachen to CERN. The procedures followed during the mechanical integration of the detector and during the commissioning of integrated sectors are explained, and the software packages developed for quality assurance are described. In addition, results of the detector readout are presented. During the integration phase, sub-structures of the end cap - named petals - were subjected to a reception test which has also been designed and operated as part of this thesis work. The test setup and software developed for the test are introduced and an account of the analysis of the recorded data is given. Before the end cap project entered the production phase, a final test beam experiment was performed in which the suitability of a system of two fully equipped petals for operation at the LHC was checked. The measured ratio of the signal induced in the silicon sensors by minimal ionising

  4. Integration of the end cap TEC+ of the CMS silicon strip tracker

    International Nuclear Information System (INIS)

    Bremer, Richard

    2008-01-01

    CMS is the first large experiment of high-energy particle physics whose inner tracking system is exclusively instrumented with silicon detector modules. This tracker comprises 15 148 silicon strip modules enclosing the interaction point in 10-12 layers. The 1. Physikalisches Institut B of RWTH Aachen was deeply involved in the completion of the end caps of the tracking system. The institute played a leading role in the end cap design, produced virtually all support structures and several important electrical components, designed and built the laser alignment system of the tracker, performed system tests and finally integrated one of the two end caps in Aachen. This integration constitutes the central part of the present thesis work. The main focus was on the development of methods to recognise defects early in the integration process and to assert the detector's functionality. Characteristic quantities such as the detector noise or the optical gain of the readout chain were determined during integration as well as during a series of tests performed after transport of the end cap from Aachen to CERN. The procedures followed during the mechanical integration of the detector and during the commissioning of integrated sectors are explained, and the software packages developed for quality assurance are described. In addition, results of the detector readout are presented. During the integration phase, sub-structures of the end cap - named petals - were subjected to a reception test which has also been designed and operated as part of this thesis work. The test setup and software developed for the test are introduced and an account of the analysis of the recorded data is given. Before the end cap project entered the production phase, a final test beam experiment was performed in which the suitability of a system of two fully equipped petals for operation at the LHC was checked. The measured ratio of the signal induced in the silicon sensors by minimal ionising particles

  5. Investigation of the charge collection for strongly irradiated silicon strip detectors of the CMS ECAL Preshower

    International Nuclear Information System (INIS)

    Bloch, Ph.; Peisert, A.; Chang, Y.H.; Chen, A.E.; Hou, S.; Lin, W.T.; Cheremukhin, A.E.; Golutvin, I.A.; Urkinbaev, A.R.; Zamyatin, N.I.; Loukas, D.

    2001-01-01

    Strongly irradiated (2.3·10 14 n/cm 2 ) silicon strip detectors of different size, thickness and different design options were tested in a muon beam at CERN in 1999. A charge collection efficiency in excess of 85% and a signal-to-noise ratio of about 6 are obtained in all cases at high enough bias voltage. Details of the charge collection in the interstrip and the guard ring region and cross-talk between strips were also studied. We find that the charge collection efficiency and the cross-talk between strips depend on the interstrip distance

  6. Alignment of the CMS Silicon Strip Tracker during stand-alone Commissioning

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruhwirth, R.; Hansel, S.; Hrubec, J.; Krammer, M.; Oberegger, M.; Pernicka, M.; Schmid, S.; Stark, R.; Steininger, H.; Uhl, D.; Waltenberger, W.; Widl, E.; Van Mechelen, P.; Cardaci, M.; Beaumont, W.; de Langhe, E.; de Wolf, E.A.; Delmeire, E.; Hashemi, M.; Bouhali, O.; Charaf, O.; Clerbaux, B.; Dewulf, J.-P.; Elgammal, S.; Hammad, G.; de Lentdecker, G.; Marage, P.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Adler, V.; Devroede, O.; De Weirdt, S.; D'Hondt, J.; Goorens, R.; Heyninck, J.; Maes, J.; Mozer, Matthias Ulrich; Tavernier, S.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.; Bonnet, J.-L.; Bruno, G.; De Callatay, B.; Florins, B.; Giammanco, A.; Gregoire, G.; Keutgen, Th.; Kcira, D.; Lemaitre, V.; Michotte, D.; Militaru, O.; Piotrzkowski, K.; Quertermont, L.; Roberfroid, V.; Rouby, X.; Teyssier, D.; daubie, E.; Anttila, E.; Czellar, S.; Engstrom, P.; Harkonen, J.; Karimaki, V.; Kostesmaa, J.; Kuronen, A.; Lampen, T.; Linden, T.; Luukka, P.-R.; Maenaa, T.; Michal, S.; Tuominen, E.; Tuominiemi, J.; Ageron, M.; Baulieu, G.; Bonnevaux, A.; Boudoul, G.; Chabanat, E.; Chabert, E.; Chierici, R.; Contardo, D.; Della Negra, R.; Dupasquier, T.; Gelin, G.; Giraud, N.; Guillot, G.; Estre, N.; Haroutunian, R.; Lumb, N.; Perries, S.; Schirra, F.; Trocme, B.; Vanzetto, S.; Agram, J.-L.; Blaes, R.; Drouhin, F.; Ernenwein, J.-P.; Fontaine, J.-C.; Berst, J.-D.; Brom, J.-M.; Didierjean, F.; Goerlach, U.; Graehling, P.; Gross, L.; Hosselet, J.; Juillot, P.; Lounis, A.; Maazouzi, C.; Olivetto, C.; Strub, R.; Van Hove, P.; Anagnostou, G.; Brauer, R.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Kukulies, C.; Olzem, J.; Ostapchuk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schwering, G.; Sprenger, D.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.; Beissel, F.; Bock, E.; Flugge, G.; Gillissen, C.; Hermanns, T.; Heydhausen, D.; Jahn, D.; Kaussen, G.; Linn, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Stahl, A.; Zoeller, M.H.; Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R.; Hauk, J.; Klanner, R.; Pein, U.; Schleper, P.; Steinbruck, G.; Blum, P.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Fahrer, M.; Frey, M.; Furgeri, A.; Hartmann, F.; Heier, S.; Hoffmann, K.-H.; Kaminski, J.; Ledermann, B.; Liamsuwan, T.; Muller, S.; Muller, Th.; Schilling, F.-P.; Simonis, H.-J.; Steck, P.; Zhukov, V.; Cariola, P.; De Robertis, G.; Ferorelli, R.; Fiore, L.; Preda, M.; Sala, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.; Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M.A.; Sparti, V.; Sutera, C.; Tricomi, A.; Tuve, C.; Brianzi, M.; Civinini, C.; Maletta, F.; Manolescu, F.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Broccolo, B.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Magini, N.; Parrini, G.; Scarlini, E.; Cerati, G.; Azzi, P.; Bacchetta, N.; Candelori, A.; Dorigo, T.; Kaminsky, A.; Karaevski, S.; Khomenkov, V.; Reznikov, S.; Tessaro, M.; Bisello, D.; De Mattia, M.; Giubilato, P.; Loreti, M.; Mattiazzo, S.; Nigro, M.; Paccagnella, A.; Pantano, D.; Pozzobon, N.; Tosi, M.; Bilei, G.M.; Checcucci, B.; Fano, L.; Servoli, L.; Ambroglini, F.; Babucci, E.; Benedetti, D.; Biasini, M.; Caponeri, B.; Covarelli, R.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Marcantonini, M.; Postolache, V.; Santocchia, A.; Spiga, D.; Bagliesi, G.; Balestri, G.; Berretta, L.; Bianucci, S.; Boccali, T.; Bosi, F.; Bracci, F.; Castaldi, R.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A.S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Lomtadze, T.; Lungu, G.A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Sentenac, D.; Serban, A.T.; Slav, A.; Soldani, A.; Spagnolo, P.; Tenchini, R.; Tolaini, S.; Venturi, A.; Verdini, P.G.; Vos, M.; Zaccarelli, L.; Avanzini, C.; Basti, A.; Benucci, L.; Bocci, A.; Cazzola, U.; Fiori, F.; Linari, S.; Massa, M.; Messineo, A.; Segneri, G.; Tonelli, G.; Azzurri, P.; Bernardini, J.; Borrello, L.; Calzolari, F.; Foa, L.; Gennai, S.; Ligabue, F.; Petrucciani, G.; Rizzi, A.; Yang, Z.; Benotto, F.; Demaria, N.; Dumitrache, F.; Farano, R.; Borgia, M.A.; Castello, R.; Costa, M.; Migliore, E.; Romero, A.; Abbaneo, D.; Abbas, M.; Ahmed, I.; Akhtar, I.; Albert, E.; Bloch, C.; Breuker, H.; Butt, S.; Buchmuller, O.; Cattai, A.; Delaere, C.; Delattre, M.; Edera, L.M.; Engstrom, P.; Eppard, M.; Gateau, M.; Gill, K.; Giolo-Nicollerat, A.-S.; Grabit, R.; Honma, A.; Huhtinen, M.; Kloukinas, K.; Kortesmaa, J.; Kottelat, L.J.; Kuronen, A.; Leonardo, N.; Ljuslin, C.; Mannelli, M.; Masetti, L.; Marchioro, A.; Mersi, S.; Michal, S.; Mirabito, L.; Muffat-Joly, J.; Onnela, A.; Paillard, C.; Pal, I.; Pernot, J.F.; Petagna, P.; Petit, P.; Piccut, C.; Pioppi, M.; Postema, H.; Ranieri, R.; Ricci, D.; Rolandi, G.; Ronga, F.; Sigaud, C.; Syed, A.; Siegrist, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vander Donckt, M.; Vasey, F.; Alagoz, E.; Amsler, Claude; Chiochia, V.; Regenfus, Christian; Robmann, P.; Rochet, J.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Wilke, L.; Church, I.; Cole, J.; Coughlan, J.; Gay, A.; Taghavi, S.; Tomalin, I.; Bainbridge, R.; Cripps, N.; Fulcher, J.; Hall, G.; Noy, M.; Pesaresi, M.; Radicci, V.; Raymond, D.M.; Sharp, P.; Stoye, M.; Wingham, M.; Zorba, O.; Goitom, I.; Hobson, P.R.; Reid, I.; Teodorescu, L.; Hanson, G.; Jeng, G.-Y.; Liu, H.; Pasztor, G.; Satpathy, A.; Stringer, R.; Mangano, B.; Affolder, K.; Affolder, T.; Allen, A.; Barge, D.; Burke, S.; Callahan, D.; Campagnari, C.; Crook, A.; D'Alfonso, M.; Dietch, J.; Garberson, Jeffrey Ford; Hale, D.; Incandela, H.; Incandela, J.; Jaditz, S.; Kalavase, P.; Kreyer, S.; Kyre, S.; Lamb, J.; Mc Guinnessr, C.; Mills, C.; Nguyen, H.; Nikolic, M.; Lowette, S.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rubinstein, N.; Sanhueza, S.; Shah, Y.; Simms, L.; Staszak, D.; Stoner, J.; Stuart, D.; Swain, S.; Vlimant, J.-R.; White, D.; Ulmer, K.A.; Wagner, S.R.; Bagby, L.; Bhat, P.C.; Burkett, K.; Cihangir, S.; Gutsche, O.; Jensen, H.; Johnson, M.; Luzhetskiy, N.; Mason, D.; Miao, T.; Moccia, S.; Noeding, C.; Ronzhin, A.; Skup, E.; Spalding, W.J.; Spiegel, L.; Tkaczyk, S.; Yumiceva, F.; Zatserklyaniy, A.; Zerev, E.; Anghel, I.; Bazterra, V.E.; Gerber, C.E.; Khalatian, S.; Shabalina, E.; Baringer, Philip S.; Bean, A.; Chen, J.; Hinchey, C.; Martin, C.; Moulik, T.; Robinson, R.; Gritsan, A.V.; Lae, C.K.; Tran, N.V.; Everaerts, P.; Hahn, K.A.; Harris, P.; Nahn, S.; Rudolph, M.; Sung, K.; Betchart, B.; Demina, R.; Gotra, Y.; Korjenevski, S.; Miner, D.; Orbaker, D.; Christofek, L.; Hooper, R.; Landsberg, G.; Nguyen, D.; Narain, M.; Speer, T.; Tsang, K.V.

    2009-01-01

    The results of the CMS tracker alignment analysis are presented using the data from cosmic tracks, optical survey information, and the laser alignment system at the Tracker Integration Facility at CERN. During several months of operation in the spring and summer of 2007, about five million cosmic track events were collected with a partially active CMS Tracker. This allowed us to perform first alignment of the active silicon modules with the cosmic tracks using three different statistical approaches; validate the survey and laser alignment system performance; and test the stability of Tracker structures under various stresses and temperatures ranging from +15C to -15C. Comparison with simulation shows that the achieved alignment precision in the barrel part of the tracker leads to residual distributions similar to those obtained with a random misalignment of 50 (80) microns in the outer (inner) part of the barrel.

  7. Development and implementation of quality control strategies for CMS silicon strip tracker modules

    CERN Document Server

    Dirkes, Guido

    The LHC will explore physics at the energy frontier and will address many open questions in particle physics, like the search for the Higgs boson or Supersymmetry. For both high resolution track and vertex reconstruction is vital. The CMS silicon tracker consists of 15232 detector modules. Production and assembly of these will span two and a half years period, during which the quality control chain has to ensure functionality and reliability of the modules produced. The CMS group in Karlsruhe will produce and qualify 1600 modules. Therefore automatic test systems are developed and test strategies are worked out. Already during the RnD phase, first prototype tests were performed and some weak points of the design were uncovered. Two test stations are built. One focuses on a fast functionality test, including an active thermal cycle. The other focuses on debugging and repair requirements, including additional test options with lasers, radioactive sources, probes and infrared LEDs. For quality control measuremen...

  8. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    CERN Document Server

    Masetti, Lorenzo; Fischer, Peter

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a significant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specific requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specific design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper configuration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations...

  9. Development and implementation of quality control strategies for CMS silicon strip tracker modules

    International Nuclear Information System (INIS)

    Dirkes, G.

    2003-01-01

    The CMS group in Karlsruhe is involved in the construction of the silicon trackers end-caps and will produce and qualify the 1 600 modules of ring 5. Therefore automatic test systems for module qualification are developed and test strategies are worked out. For the electrical tests a complete readout system is developed, based on readout modules available within the collaboration and extended by home build modules. These are based on a modular approach with less complex functional units attached to a motherboard and includes key functionalities like clock and trigger generation and their distribution, high and low voltage supply and test signal generation usable with lasers or infrared LEDs. The motherboard is connected to a standard PC, hosting a fast ADC, interface cards to the motherboard and the front-end electronics. Already during the R and D phase of this readout system, first prototype tests were performed and some weak points of the design were uncovered, resulting in changes of the electronics design of the front end hybrids. Two test stations are built. The first one focuses on a fast functionality test, which includes an active thermal cycle with readout at -10 C performed for each individual module. The other test station focuses on debugging and repair requirements. It disposes of sufficient space for a flexible use of the system, including the possibility of additional test options with lasers, radioactive sources, probes and LEDs. For quality control measurements at module level it turned out, that LEDs are of good use: Besides external signal generation by running them in a pulsed way, they can be used for constant illumination of sensors, inducing an artificial leakage current. This led to the discovery of gain losses of complete readout chips induced by shorted AC coupling capacitances of several readout channels, which are called pinholes. Therefore pinholes must be unbonded from the front end preamplifier, which requires faultless

  10. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC)

    International Nuclear Information System (INIS)

    Moreau, St.

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  11. Development and Evaluation of Test Stations for the Quality Assurance of the Silicon Micro-Strip Detector Modules for the CMS Experiment

    CERN Document Server

    Pöttgens, Michael

    2007-01-01

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m2, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control o...

  12. Development and evaluation of test stations for the quality assurance of the silicon micro-strip detector modules for the CMS experiment

    International Nuclear Information System (INIS)

    Poettgens, M.

    2007-01-01

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m 2 , the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control of the quality is done by the members of the 21 participating institutes. Since the access to the silicon micro-strip tracker will be very limited after the installation in the CMS detector the installed modules must be of high quality. For this reason the modules are thoroughly tested and the test results are uploaded to a central database. By the development of a read-out system and the corresponding software the III. Physikalisches Institut made an important contribution for the electrical and functional quality control of hybrids and modules. The read-out system provides all features for the operation and test of hybrids and modules and stands out due to high reliability and simple handling. Because a very user-friedly and highly automated software it became the official test tool and was integrated in various test stands. The test stands, in which the read-out system is integrated in, are described and the tests which are implemented in the corresponding

  13. Validation of Kalman Filter alignment algorithm with cosmic-ray data using a CMS silicon strip tracker endcap

    CERN Document Server

    Sprenger, D; Adolphi, R; Brauer, R; Feld, L; Klein, K; Ostaptchuk, A; Schael, S; Wittmer, B

    2010-01-01

    A Kalman Filter alignment algorithm has been applied to cosmic-ray data. We discuss the alignment algorithm and an experiment-independent implementation including outlier rejection and treatment of weakly determined parameters. Using this implementation, the algorithm has been applied to data recorded with one CMS silicon tracker endcap. Results are compared to both photogrammetry measurements and data obtained from a dedicated hardware alignment system, and good agreement is observed.

  14. Monitoring the CMS strip tracker readout system

    International Nuclear Information System (INIS)

    Mersi, S; Bainbridge, R; Cripps, N; Fulcher, J; Wingham, M; Baulieu, G; Bel, S; Delaere, C; Drouhin, F; Mirabito, L; Cole, J; Giassi, A; Gross, L; Hahn, K; Nikolic, M; Tkaczyk, S

    2008-01-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m 2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system

  15. The CMS all silicon Tracker simulation

    CERN Document Server

    Biasini, Maurizio

    2009-01-01

    The Compact Muon Solenoid (CMS) tracker detector is the world's largest silicon detector with about 201 m$^2$ of silicon strips detectors and 1 m$^2$ of silicon pixel detectors. It contains 66 millions pixels and 10 million individual sensing strips. The quality of the physics analysis is highly correlated with the precision of the Tracker detector simulation which is written on top of the GEANT4 and the CMS object-oriented framework. The hit position resolution in the Tracker detector depends on the ability to correctly model the CMS tracker geometry, the signal digitization and Lorentz drift, the calibration and inefficiency. In order to ensure high performance in track and vertex reconstruction, an accurate knowledge of the material budget is therefore necessary since the passive materials, involved in the readout, cooling or power systems, will create unwanted effects during the particle detection, such as multiple scattering, electron bremsstrahlung and photon conversion. In this paper, we present the CM...

  16. Development and evaluation of test stations for the quality assurance of the silicon micro-strip detector modules for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Poettgens, M.

    2007-11-22

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m{sup 2}, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control of the quality is done by the members of the 21 participating institutes. Since the access to the silicon micro-strip tracker will be very limited after the installation in the CMS detector the installed modules must be of high quality. For this reason the modules are thoroughly tested and the test results are uploaded to a central database. By the development of a read-out system and the corresponding software the III. Physikalisches Institut made an important contribution for the electrical and functional quality control of hybrids and modules. The read-out system provides all features for the operation and test of hybrids and modules and stands out due to high reliability and simple handling. Because a very user-friedly and highly automated software it became the official test tool and was integrated in various test stands. The test stands, in which the read-out system is integrated in, are described and the tests which are implemented in the

  17. Beam tests of lead tungstate crystal matrices and a silicon strip preshower detector for the CMS electromagnetic calorimeter

    CERN Document Server

    Auffray, Etiennette; Barney, D; Bassompierre, Gabriel; Benhammou, Ya; Blick, A M; Bloch, P; Bonamy, P; Bourotte, J; Buiron, L; Cavallari, F; Chipaux, Rémi; Cockerill, D J A; Dafinei, I; Davies, G; Depasse, P; Deiters, K; Diemoz, M; Dobrzynski, Ludwik; Donskov, S V; Mamouni, H E; Ercoli, C; Faure, J L; Felcini, Marta; Gautheron, F; Géléoc, M; Givernaud, Alain; Gninenko, S N; Godinovic, N; Graham, D J; Guillaud, J P; Guschin, E; Haguenauer, Maurice; Hillemanns, H; Hofer, H; Ille, B; Inyakin, A V; Jääskeläinen, S; Katchanov, V A; Kirn, T; Kloukinas, Kostas C; Korzhik, M V; Lassila-Perini, K M; Lebrun, P; Lecoq, P; Lecoeur, Gérard; Lecomte, P; Leonardi, E; Locci, E; Loos, R; Longo, E; MacKay, C K; Martin, E; Mendiburu, J P; Musienko, Yu V; Nédélec, P; Nessi-Tedaldi, F; Organtini, G; Paoletti, S; Pansart, J P; Peigneux, J P; Puljak, I; Qian, S; Reid, E; Renker, D; Rosowsky, A; Rosso, E; Rusack, R W; Rykaczewski, H; Schneegans, M; Seez, Christopher J; Semeniouk, I N; Shagin, P M; Sillou, D; Singovsky, A V; Sougonyaev, V; Soric, I; Verrecchia, P; Vialle, J P; Virdee, Tejinder S; Zhu, R Y

    1998-01-01

    Tests of lead tungstate crystal matrices carried out in high-energy electron beams in 1996, using new crystals, new APDs and an improved test set-up, confirm that an energy resolution of better than 0 .6% at 100 GeV can be obtained when the longitudinal uniformity of the struck crystal is adequate. Light loss measurements under low dose irradiation are reported. It is shown that there is no loss of energy resolution after irradiation and that the calibration change due to light loss can be tracked with a precision monitoring system. Finally, successuful tests with a preshower device, equipped wi th silicon strip detector readout, are described.

  18. CMS silicon tracker developments

    International Nuclear Information System (INIS)

    Civinini, C.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.D.R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2002-01-01

    The CMS Silicon tracker consists of 70 m 2 of microstrip sensors which design will be finalized at the end of 1999 on the basis of systematic studies of device characteristics as function of the most important parameters. A fundamental constraint comes from the fact that the detector has to be operated in a very hostile radiation environment with full efficiency. We present an overview of the current results and prospects for converging on a final set of parameters for the silicon tracker sensors

  19. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  20. The CMS silicon tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Leubelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B.Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Rizzo, F.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2000-01-01

    This paper describes the Silicon microstrip Tracker of the CMS experiment at LHC. It consists of a barrel part with 5 layers and two endcaps with 10 disks each. About 10 000 single-sided equivalent modules have to be built, each one carrying two daisy-chained silicon detectors and their front-end electronics. Back-to-back modules are used to read-out the radial coordinate. The tracker will be operated in an environment kept at a temperature of T=-10 deg. C to minimize the Si sensors radiation damage. Heavily irradiated detectors will be safely operated due to the high-voltage capability of the sensors. Full-size mechanical prototypes have been built to check the system aspects before starting the construction

  1. The CMS Silicon Tracker Alignment

    CERN Document Server

    Castello, R

    2008-01-01

    The alignment of the Strip and Pixel Tracker of the Compact Muon Solenoid experiment, with its large number of independent silicon sensors and its excellent spatial resolution, is a complex and challenging task. Besides high precision mounting, survey measurements and the Laser Alignment System, track-based alignment is needed to reach the envisaged precision.\\\\ Three different algorithms for track-based alignment were successfully tested on a sample of cosmic-ray data collected at the Tracker Integration Facility, where 15\\% of the Tracker was tested. These results, together with those coming from the CMS global run, will provide the basis for the full-scale alignment of the Tracker, which will be carried out with the first \\emph{p-p} collisions.

  2. Data acquisition software for the CMS strip tracker

    International Nuclear Information System (INIS)

    Bainbridge, R; Cripps, N; Fulcher, J; Radicci, V; Wingham, M; Baulieu, G; Bel, S; Delaere, C; Drouhin, F; Gill, K; Mirabito, L; Cole, J; Jesus, A C A; Giassi, A; Giordano, D; Gross, L; Hahn, K; Mersi, S; Nikolic, M; Tkaczyk, S

    2008-01-01

    The CMS silicon strip tracker, providing a sensitive area of approximately 200 m 2 and comprising 10 million readout channels, has recently been completed at the tracker integration facility at CERN. The strip tracker community is currently working to develop and integrate the online and offline software frameworks, known as XDAQ and CMSSW respectively, for the purposes of data acquisition and detector commissioning and monitoring. Recent developments have seen the integration of many new services and tools within the online data acquisition system, such as event building, online distributed analysis, an online monitoring framework, and data storage management. We review the various software components that comprise the strip tracker data acquisition system, the software architectures used for stand-alone and global data-taking modes. Our experiences in commissioning and operating one of the largest ever silicon micro-strip tracking systems are also reviewed

  3. Wedge silicon detectors for the inner trackering system of CMS

    International Nuclear Information System (INIS)

    Catacchini, E.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Meschini, M.; Parrini, G.; Pieri, M.; Wheadon, R.

    1997-01-01

    One ''wedge'' double sided silicon detector prototype for the CMS forward inner tracker has been tested both in laboratory and on a high energy particle beam. The results obtained indicate the most reliable solutions for the strip geometry of the junction side. Three different designs of ''wedge'' double sided detectors with different solutions for the ohmic side strip geometry are presented. (orig.)

  4. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC); Conception d'un algorithme de reconstruction de vertex pour les donnees de CMS. Etude de detecteurs gazeux (MSGC) et silicium a micropistes

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, St

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  5. Comparison of silicon strip tracker module size using large sensors from 6 inch wafers

    CERN Multimedia

    Honma, Alan

    1999-01-01

    Two large silicon strip sensor made from 6 inch wafers are placed next to each other to simulate the size of a CMS outer silicon tracker module. On the left is a prototype 2 sensor CMS inner endcap silicon tracker module made from 4 inch wafers.

  6. The CMS silicon tracker

    International Nuclear Information System (INIS)

    D'Alessandro, R.; Biggeri, U.; Bruzzi, M.; Catacchini, E.; Civinini, C.; Focardi, E.; Lenzi, M.; Loreti, M.; Meschini, M.; Parrini, G.; Pieri, M.; Albergo, S.; Boemi, D.; Potenza, R.; Tricomi, A.; Angarano, M.; Creanza, D.; Palma, M. de; Fiore, L.; Maggi, G.; My, S.; Raso, G.; Selvaggi, G.; Tempesta, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Candelori, A.; Castro, A.; Da Rold, M.; Giraldo, A.; Martignon, G.; Paccagnella, A.; Stavitsky, I.; Babucci, E.; Bartalini, P.; Bilei, G.M.; Checcucci, B.; Ciampolini, P.; Lariccia, P.; Mantovani, G.; Passeri, D.; Santocchia, A.; Servoli, L.; Wang, Y.; Bagliesi, G.; Basti, A.; Bosi, F.; Borello, L.; Bozzi, C.; Castaldi, R.; Dell'Orso, R.; Giassi, A.; Messineo, A.; Palla, F.; Raffaelli, F.; Sguazzoni, G.; Starodumov, A.; Tonelli, G.; Vannini, C.; Verdini, P.G.; Xie, Z.; Breuker, H.; Caner, A.; Elliott-Peisert, A.; Feld, L.; Glessing, B.; Hammerstrom, R.; Huhtinen, M.; Mannelli, M.; Marchioro, A.; Schmitt, B.; Stefanini, G.; Connotte, J.; Gu, W.H.; Luebelsmeyer, K.; Pandoulas, D.; Siedling, R.; Wittmer, B.; Della Marina, R.; Freudenreich, K.; Lustermann, W.; Viertel, G.; Eklund, C.; Karimaeki, V.; Skog, K.; French, M.; Hall, G.; Mc Evoy, B.; Raymond, M.; Hrubec, J.; Krammer, M.; Piperov, S.; Tuuva, T.; Watts, S.; Silvestris, L.

    1998-01-01

    The new silicon tracker layout (V4) is presented. The system aspects of the construction are discussed together with the expected tracking performance. Because of the high radiation environment in which the detectors will operate, particular care has been devoted to the study of the characteristics of heavily irradiated detectors. This includes studies on performance (charge collection, cluster size, resolution, efficiency) as a function of the bias voltage, integrated fluence, incidence angle and temperature. (author)

  7. The Control System for the CMS Strip Tracking Detector

    CERN Document Server

    Fahrer, Manuel; Chen, Jie; Dierlamm, Alexander; Frey, Martin; Masetti, Lorenzo; Militaru, Otilia; Shah, Yousaf; Stringer, Robert; Tsirou, Andromachi

    2008-01-01

    The Tracker of the CMS silicon strip tracking detector covers a surface of 206 m2. 9648128 channels are available on 75376 APV front-end chips on 15232 modules, built of 24328 silicon sensors. The power supply of the detector modules is split up in 1944 power supplies with two low voltage for front end power and two high voltage channels each for the bias voltage of the silicon sensors. In addition 356 low voltage channels are needed to power the control chain. The tracker will run at -20°C at low relative humidity for at least 10 years. The Tracker Control System handles all interdependencies of control, low and high voltages, as well as fast ramp downs in case of higher than allowed temperatures or currents in the detector and experimental cavern problems. This is ensured by evaluating $10^{4}$ power supply parameters, $10^{3}$ information from Tracker Safety System and $10^{5}$ information from the tracker front end.

  8. 3D silicon strip detectors

    International Nuclear Information System (INIS)

    Parzefall, Ulrich; Bates, Richard; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kuehn, Susanne; Lozano, Manuel; Pahn, Gregor; Parkes, Chris; Pellegrini, Giulio; Pennicard, David; Piemonte, Claudio; Ronchin, Sabina; Szumlak, Tomasz; Zoboli, Andrea; Zorzi, Nicola

    2009-01-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10 15 N eq /cm 2 , which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10 15 N eq /cm 2 . The tests were performed with three systems: a highly focused IR-laser with 5μm spot size to make position-resolved scans of the charge collection efficiency, an Sr 90 β-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the results obtained with 3D-STC-modules.

  9. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  10. Strip interpolation in silicon and germanium strip detectors

    International Nuclear Information System (INIS)

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM

  11. Charge Collection Efficiency Simulations of Irradiated Silicon Strip Detectors

    CERN Document Server

    Peltola, T.

    2014-01-01

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. Thus, to upgrade the tracker to required performance level, comprehensive measurements and simulations studies have already been carried out. Essential information of the performance of an irradiated silicon detector is obtained by monitoring its charge collection efficiency (CCE). From the evolution of CCE with fluence, it is possible to directly observe the effect of the radiation induced defects to the ability of the detector to collect charge carriers generated by traversing minimum ionizing particles (mip). In this paper the numerically simulated CCE and CCE loss between the strips of irradiated silicon strip detectors are presented. The simulations based on Synopsys Sentaurus TCAD framework were performed ...

  12. The charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Boehringer, T.; Hubbeling, L.; Weilhammer, P.; Kemmer, J.; Koetz, U.; Riebesell, M.; Belau, E.; Klanner, R.; Lutz, G.; Neugebauer, E.; Seebrunner, H.J.; Wylie, A.

    1983-02-01

    The charge collection in silicon detectors has been studied, by measuring the response to high-energy particles of a 20μm pitch strip detector as a function of applied voltage and magnetic field. The results are well described by a simple model. The model is used to predict the spatial resolution of silicon strip detectors and to propose a detector with optimized spatial resolution. (orig.)

  13. New results on silicon microstrip detectors of CMS tracker

    International Nuclear Information System (INIS)

    Demaria, N.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bolla, G.; Bosi, F.; Borrello, L.; Bortoletto, D.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; De Palma, M.; Dell'Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Favro, G.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Li Yahong; Watts, S.; Wittmer, B.

    2000-01-01

    Interstrip and backplane capacitances on silicon microstrip detectors with p + strip on n substrate of 320 μm thickness were measured for pitches between 60 and 240 μm and width over pitch ratios between 0.13 and 0.5. Parametrisations of capacitance w.r.t. pitch and width were compared with data. The detectors were measured before and after being irradiated to a fluence of 4x10 14 protons/cm 2 of 24 GeV/c momentum. The effect of the crystal orientation of the silicon has been found to have a relevant influence on the surface radiation damage, favouring the choice of a substrate. Working at high bias (up to 500 V in CMS) might be critical for the stability of detector, for a small width over pitch ratio. The influence found to enhance the stability

  14. EMC Diagnosis and Corrective Actions for Silicon Strip Tracker Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arteche, F.; /CERN /Imperial Coll., London; Rivetta, C.; /SLAC

    2006-06-06

    The tracker sub-system is one of the five sub-detectors of the Compact Muon Solenoid (CMS) experiment under construction at CERN for the Large Hadron Collider (LHC) accelerator. The tracker subdetector is designed to reconstruct tracks of charged sub-atomic particles generated after collisions. The tracker system processes analogue signals from 10 million channels distributed across 14000 silicon micro-strip detectors. It is designed to process signals of a few nA and digitize them at 40 MHz. The overall sub-detector is embedded in a high particle radiation environment and a magnetic field of 4 Tesla. The evaluation of the electromagnetic immunity of the system is very important to optimize the performance of the tracker sub-detector and the whole CMS experiment. This paper presents the EMC diagnosis of the CMS silicon tracker sub-detector. Immunity tests were performed using the final prototype of the Silicon Tracker End-Caps (TEC) system to estimate the sensitivity of the system to conducted noise, evaluate the weakest areas of the system and take corrective actions before the integration of the overall detector. This paper shows the results of one of those tests, that is the measurement and analysis of the immunity to CM external conducted noise perturbations.

  15. Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns.

  16. Infrared LED Array For Silicon Strip Detector Qualification

    CERN Document Server

    Dirkes, Guido; Hartmann, Frank; Heier, Stefan; Schwerdtfeger, Wolfgang; Waldschmitt, M; Weiler, K W; Weseler, Siegfried

    2003-01-01

    The enormous amount of silicon strip detector modules for the CMS tracker requires a test-sytem to allow qualification of each individual detector module and its front-end electronics within minutes. The objective is to test the detector with a physical signal. Signals are generated in the detector by illumination with lightpulses emitted by a LED at 950~nm and with a rise time of 10~ns. In order to avoid a detector moving, an array of 64 LEDs is used, overlaping the complete detector width. The total length of an array is 15~cm. The spot size of an individual LED is controlled by apertures to illuminate about 25 strips. Furthermore it is possible to simulate the high leakage current of irradiated sensors by constant illumination of the sensor. This provides an effective mean to identfy pinholes on a sensor.

  17. Readout architecture for the Pixel-Strip module of the CMS Outer Tracker Phase-2 upgrade

    CERN Document Server

    Caratelli, Alessandro; Jan Kaplon; Kloukinas, Konstantinos; Simone Scarfi

    2017-01-01

    The Outer Tracker upgrade of the Compact Muon Solenoid (CMS) experiment at CERN introduces new challenges for the front-end readout electronics. In particular, the capability of identifying particles with high transverse momentum using modules with double sensor layers requires high speed real time interconnects between readout ASICs. The Pixel-Strip module combines a pixelated silicon layer with a silicon-strip layer. Consequently, it needs two different readout ASICs, namely the Short Strip ASIC (SSA) for the strip sensor and the Macro Pixel ASIC (MPA) for the pixelated sensor. The architecture proposed in this paper allows for a total data flow between readout ASICs of $\\sim$100\\,Gbps and reduces the output data flow from 1.3\\,Tbps to 30\\,Gbps per module while limiting the total power density to below 100\\,mW/cm$^2$. In addition a system-level simulation framework of all the front-end readout ASICs is developed in order to verify the data processing algorithm and the hardware implementation allowing mult...

  18. Performance studies of the CMS Strip Tracker before installation

    CERN Document Server

    Adam, Wolfgang; Dragicevic, Marko; Friedl, Markus; Fruhwirth, R; Hansel, S; Hrubec, Josef; Krammer, Manfred; Oberegger, Margit; Pernicka, Manfred; Schmid, Siegfried; Stark, Roland; Steininger, Helmut; Uhl, Dieter; Waltenberger, Wolfgang; Widl, Edmund; Van Mechelen, Pierre; Cardaci, Marco; Beaumont, Willem; de Langhe, Eric; de Wolf, Eddi A; Delmeire, Evelyne; Hashemi, Majid; Bouhali, Othmane; Charaf, Otman; Clerbaux, Barbara; Dewulf, Jean-Paul; Elgammal, Sherif; Hammad, Gregory Habib; de Lentdecker, Gilles; Marage, Pierre Edouard; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Adler, Volker; Devroede, Olivier; De Weirdt, Stijn; D'Hondt, Jorgen; Goorens, Robert; Heyninck, Jan; Maes, Joris; Mozer, Matthias Ulrich; Tavernier, Stefaan; Van Lancker, Luc; Van Mulders, Petra; Villella, Ilaria; Wastiels, C; Bonnet, Jean-Luc; Bruno, Giacomo; De Callatay, Bernard; Florins, Benoit; Giammanco, Andrea; Gregoire, Ghislain; Keutgen, Thomas; Kcira, Dorian; Lemaitre, Vincent; Michotte, Daniel; Militaru, Otilia; Piotrzkowski, Krzysztof; Quertermont, L; Roberfroid, Vincent; Rouby, Xavier; Teyssier, Daniel; Daubie, Evelyne; Anttila, Erkki; Czellar, Sandor; Engstrom, Pauli; Harkonen, J; Karimaki, V; Kostesmaa, J; Kuronen, Auli; Lampen, Tapio; Linden, Tomas; Luukka, Panja-Riina; Maenpaa, T; Michal, Sebastien; Tuominen, Eija; Tuominiemi, Jorma; Ageron, Michel; Baulieu, Guillaume; Bonnevaux, Alain; Boudoul, Gaelle; Chabanat, Eric; Chabert, Eric Christian; Chierici, Roberto; Contardo, Didier; Della Negra, Rodolphe; Dupasquier, Thierry; Gelin, Georges; Giraud, Noël; Guillot, Gérard; Estre, Nicolas; Haroutunian, Roger; Lumb, Nicholas; Perries, Stephane; Schirra, Florent; Trocme, Benjamin; Vanzetto, Sylvain; Agram, Jean-Laurent; Blaes, Reiner; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Fontaine, Jean-Charles; Berst, Jean-Daniel; Brom, Jean-Marie; Didierjean, Francois; Goerlach, Ulrich; Graehling, Philippe; Gross, Laurent; Hosselet, J; Juillot, Pierre; Lounis, Abdenour; Maazouzi, Chaker; Olivetto, Christian; Strub, Roger; Van Hove, Pierre; Anagnostou, Georgios; Brauer, Richard; Esser, Hans; Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Kukulies, Christoph; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pierschel, Gerhard; Raupach, Frank; Schael, Stefan; Schwering, Georg; Sprenger, Daniel; Thomas, Maarten; Weber, Markus; Wittmer, Bruno; Wlochal, Michael; Beissel, Franz; Bock, E; Flugge, G; Gillissen, C; Hermanns, Thomas; Heydhausen, Dirk; Jahn, Dieter; Kaussen, Gordon; Linn, Alexander; Perchalla, Lars; Poettgens, Michael; Pooth, Oliver; Stahl, Achim; Zoeller, Marc Henning; Buhmann, Peter; Butz, Erik; Flucke, Gero; Hamdorf, Richard Helmut; Hauk, Johannes; Klanner, Robert; Pein, Uwe; Schleper, Peter; Steinbruck, G; Blum, P; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Fahrer, Manuel; Frey, Martin; Furgeri, Alexander; Hartmann, Frank; Heier, Stefan; Hoffmann, Karl-Heinz; Kaminski, Jochen; Ledermann, Bernhard; Liamsuwan, Thiansin; Muller, S; Muller, Th; Schilling, Frank-Peter; Simonis, Hans-Jürgen; Steck, Pia; Zhukov, Valery; Cariola, P; De Robertis, Giuseppe; Ferorelli, Raffaele; Fiore, Luigi; Preda, M; Sala, Giuliano; Silvestris, Lucia; Tempesta, Paolo; Zito, Giuseppe; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Giordano, Domenico; Maggi, Giorgio; Manna, Norman; My, Salvatore; Selvaggi, Giovanna; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Galanti, Mario; Giudice, Nunzio; Guardone, Nunzio; Noto, Francesco; Potenza, Renato; Saizu, Mirela Angela; Sparti, V; Sutera, Concetta; Tricomi, Alessia; Tuve, Cristina; Brianzi, Mirko; Civinini, Carlo; Maletta, Fernando; Manolescu, Florentina; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Broccolo, B; Ciulli, Vitaliano; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Genta, Chiara; Landi, Gregorio; Lenzi, Piergiulio; Macchiolo, Anna; Magini, Nicolo; Parrini, Giuliano; Scarlini, Enrico; Cerati, Giuseppe Benedetto; Azzi, Patrizia; Bacchetta, Nicola; Candelori, Andrea; Dorigo, Tommaso; Kaminsky, A; Karaevski, S; Khomenkov, Volodymyr; Reznikov, Sergey; Tessaro, Mario; Bisello, Dario; De Mattia, Marco; Giubilato, Piero; Loreti, Maurizio; Mattiazzo, Serena; Nigro, Massimo; Paccagnella, Alessandro; Pantano, Devis; Pozzobon, Nicola; Tosi, Mia; Bilei, Gian Mario; Checcucci, Bruno; Fano, Livio; Servoli, Leonello; Ambroglini, Filippo; Babucci, Ezio; Benedetti, Daniele; Biasini, Maurizio; Caponeri, Benedetta; Covarelli, Roberto; Giorgi, Marco; Lariccia, Paolo; Mantovani, Giancarlo; Marcantonini, Marta; Postolache, Vasile; Santocchia, Attilio; Spiga, Daniele; Bagliesi, Giuseppe; Balestri, Gabriele; Berretta, Luca; Bianucci, S; Boccali, Tommaso; Bosi, Filippo; Bracci, Fabrizio; Castaldi, Rino; Ceccanti, Marco; Cecchi, Roberto; Cerri, Claudio; Cucoanes, Andi Sebastian; Dell'Orso, Roberto; Dobur, Didar; Dutta, Suchandra; Giassi, Alessandro; Giusti, Simone; Kartashov, Dmitry; Kraan, Aafke; Lomtadze, Teimuraz; Lungu, George-Adrian; Magazzu, Guido; Mammini, Paolo; Mariani, Filippo; Martinelli, Giovanni; Moggi, Andrea; Palla, Fabrizio; Palmonari, Francesco; Petragnani, Giulio; Profeti, Alessandro; Raffaelli, Fabrizio; Rizzi, Domenico; Sanguinetti, Giulio; Sarkar, Subir; Sentenac, Daniel; Serban, Alin Titus; Slav, Adrian; Soldani, A; Spagnolo, Paolo; Tenchini, Roberto; Tolaini, Sergio; Venturi, Andrea; Verdini, Piero Giorgio; Vos, Marcel; Zaccarelli, Luciano; Avanzini, Carlo; Basti, Andrea; Benucci, Leonardo; Bocci, Andrea; Cazzola, Ugo; Fiori, Francesco; Linari, Stefano; Massa, Maurizio; Messineo, Alberto; Segneri, Gabriele; Tonelli, Guido; Azzurri, Paolo; Bernardini, Jacopo; Borrello, Laura; Calzolari, Federico; Foa, Lorenzo; Gennai, Simone; Ligabue, Franco; Petrucciani, Giovanni; Rizzi, Andrea; Yang, Zong-Chang; Benotto, Franco; Demaria, Natale; Dumitrache, Floarea; Farano, R; Borgia, Maria Assunta; Castello, Roberto; Costa, Marco; Migliore, Ernesto; Romero, Alessandra; Abbaneo, Duccio; Abbas, M; Ahmed, Ijaz; Akhtar, I; Albert, Eric; Bloch, Christoph; Breuker, Horst; Butt, Shahid Aleem; Buchmuller, Oliver; Cattai, Ariella; Delaere, Christophe; Delattre, Michel; Edera, Laura Maria; Engstrom, Pauli; Eppard, Michael; Gateau, Maryline; Gill, Karl; Giolo-Nicollerat, Anne-Sylvie; Grabit, Robert; Honma, Alan; Huhtinen, Mika; Kloukinas, Kostas; Kortesmaa, Jarmo; Kottelat, Luc-Joseph; Kuronen, Auli; Leonardo, Nuno; Ljuslin, Christer; Mannelli, Marcello; Masetti, Lorenzo; Marchioro, Alessandro; Mersi, Stefano; Michal, Sebastien; Mirabito, Laurent; Muffat-Joly, Jeannine; Onnela, Antti; Paillard, Christian; Pal, Imre; Pernot, Jean-Francois; Petagna, Paolo; Petit, Patrick; Piccut, C; Pioppi, Michele; Postema, Hans; Ranieri, Riccardo; Ricci, Daniel; Rolandi, Gigi; Ronga, Frederic Jean; Sigaud, Christophe; Syed, A; Siegrist, Patrice; Tropea, Paola; Troska, Jan; Tsirou, Andromachi; Vander Donckt, Muriel; Vasey, François; Alagoz, Enver; Amsler, Claude; Chiochia, Vincenzo; Regenfus, Christian; Robmann, Peter; Rochet, Jacky; Rommerskirchen, Tanja; Schmidt, Alexander; Steiner, Stefan; Wilke, Lotte; Church, Ivan; Cole, Joanne; Coughlan, John A; Gay, Arnaud; Taghavi, S; Tomalin, Ian R; Bainbridge, Robert; Cripps, Nicholas; Fulcher, Jonathan; Hall, Geoffrey; Noy, Matthew; Pesaresi, Mark; Radicci, Valeria; Raymond, David Mark; Sharp, Peter; Stoye, Markus; Wingham, Matthew; Zorba, Osman; Goitom, Israel; Hobson, Peter R; Reid, Ivan; Teodorescu, Liliana; Hanson, Gail; Jeng, Geng-Yuan; Liu, Haidong; Pasztor, Gabriella; Satpathy, Asish; Stringer, Robert; Mangano, Boris; Affolder, K; Affolder, T; Allen, Andrea; Barge, Derek; Burke, Samuel; Callahan, D; Campagnari, Claudio; Crook, A; D'Alfonso, Mariarosaria; Dietch, J; Garberson, Jeffrey; Hale, David; Incandela, H; Incandela, Joe; Jaditz, Stephen; Kalavase, Puneeth; Kreyer, Steven Lawrence; Kyre, Susanne; Lamb, James; Mc Guinness, C; Mills, C; Nguyen, Harold; Nikolic, Milan; Lowette, Steven; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rubinstein, Noah; Sanhueza, S; Shah, Yousaf Syed; Simms, L; Staszak, D; Stoner, J; Stuart, David; Swain, Sanjay Kumar; Vlimant, Jean-Roch; White, Dean; Ulmer, Keith; Wagner, Stephen Robert; Bagby, Linda; Bhat, Pushpalatha C; Burkett, Kevin; Cihangir, Selcuk; Gutsche, Oliver; Jensen, Hans; Johnson, Mark; Luzhetskiy, Nikolay; Mason, David; Miao, Ting; Moccia, Stefano; Noeding, Carsten; Ronzhin, Anatoly; Skup, Ewa; Spalding, William J; Spiegel, Leonard; Tkaczyk, Slawek; Yumiceva, Francisco; Zatserklyaniy, Andriy; Zerev, E; Anghel, Ioana Maria; Bazterra, Victor Eduardo; Gerber, Cecilia Elena; Khalatian, S; Shabalina, Elizaveta; Baringer, Philip; Bean, Alice; Chen, Jie; Hinchey, Carl Louis; Martin, Christophe; Moulik, Tania; Robinson, Richard; Gritsan, Andrei; Lae, Chung Khim; Tran, Nhan Viet; Everaerts, Pieter; Hahn, Kristan Allan; Harris, Philip; Nahn, Steve; Rudolph, Matthew; Sung, Kevin; Betchart, Burton; Demina, Regina; Gotra, Yury; Korjenevski, Sergey; Miner, Daniel Carl; Orbaker, Douglas; Christofek, Leonard; Hooper, Ryan; Landsberg, Greg; Nguyen, Duong; Narain, Meenakshi; Speer, Thomas; Tsang, Ka Vang

    2009-01-01

    In March 2007 the assembly of the Silicon Strip Tracker was completed at the Tracker Integration Facility at CERN. Nearly 15% of the detector was instrumented using cables, fiber optics, power supplies, and electronics intended for the operation at the LHC. A local chiller was used to circulate the coolant for low temperature operation. In order to understand the efficiency and alignment of the strip tracker modules, a cosmic ray trigger was implemented. From March through July 4.5 million triggers were recorded. This period, referred to as the Sector Test, provided practical experience with the operation of the Tracker, especially safety, data acquisition, power, and cooling systems. This paper describes the performance of the strip system during the Sector Test, which consisted of five distinct periods defined by the coolant temperature. Significant emphasis is placed on comparisons between the data and results from Monte Carlo studies.

  19. Charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.; Beuttenmuller, R.; Ludlam, T.; Hanson, A.L.; Jones, K.W.; Radeka, V.; Heijne, E.H.M.

    1982-11-01

    The use of position sensitive silicon detectors as very high resolution tracking devices in high energy physics experiments has been a subject of intense development over the past few years. Typical applications call for the detection of minimum ionizing particles with position measurement accuracy of 10 μm in each detector plane. The most straightforward detector geometry is that in which one of the collecting electrodes is subdivided into closely spaced strips, giving a high degree of segmentation in one coordinate. Each strip may be read out as a separate detection element, or, alternatively, resistive and/or capacitive coupling between adjacent strips may be exploited to interpolate the position via charge division measrurements. With readout techniques that couple several strips, the numer of readout channels can, in principle, be reduced by large factors without sacrificing the intrinsic position accuracy. The testing of individual strip properties and charge division between strips has been carried out with minimum ionizing particles or beams for the most part except in one case which used alphs particless scans. This paper describes the use of a highly collimated MeV proton beam for studies of the position sensing properties of representative one dimensional strip detectors

  20. Radiation hard silicon sensors for the CMS tracker upgrade

    CERN Document Server

    Pohlsen, Thomas

    2013-01-01

    At an instantaneous luminosity of $5 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of $3\\,000$ fb$^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation dose of the tracking systems will be severe, requiring new radiation hard sensors for the CMS tracker. The CMS tracker collaboration has initiated a large material investigation and irradiation campaign to identify the silicon material and design that fulfils all requirements for detectors for the HL-LHC. Focussing on the upgrade of the outer tracker region, pad sensors as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for the positions of detector layers in the future tracker. Different proton energies were used for irr...

  1. The Alignment of the CMS Silicon Tracker

    CERN Document Server

    Lampen, Pekka Tapio

    2013-01-01

    The CMS all-silicon tracker consists of 16588 modules, embedded in a solenoidal magnet providing a field of B = 3.8 T. The targeted performance requires that the alignment determines the module positions with a precision of a few micrometers. Ultimate local precision is reached by the determination of sensor curvatures, challenging the algorithms to determine about 200k parameters simultaneously, as is feasible with the Millepede II program. The main remaining challenge are global distortions that systematically bias the track parameters and thus physics measurements. They are controlled by adding further information into the alignment workflow, e.g. the mass of decaying resonances or track data taken with B = 0 T. To make use of the latter and also to integrate the determination of the Lorentz angle into the alignment procedure, the alignment framework has been extended to treat position sensitive calibration parameters. This is relevant since due to the increased LHC luminosity in 2012, the Lorentz angle ex...

  2. arXiv Mechanical stability of the CMS strip tracker measured with a laser alignment system

    CERN Document Server

    Sirunyan, Albert M; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Dvornikov, Oleg; Makarenko, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; Zykunov, Vladimir; Shumeiko, Nikolai; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Ruan, Manqi; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Tsiakkouri, Demetra; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Lomidze, David; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Pasztor, Gabriella; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Lacaprara, Stefano; Margoni, Martino; Maron, Gaetano; Meneguzzo, Anna Teresa; Michelotto, Michele; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Fallavollita, Francesco; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Seitz, Claudia; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Squires, Michael; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Weber, Matthias; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Apresyan, Artur; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Yujun; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Bein, Samuel; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Jung, Kurt; Sandoval Gonzalez, Irving Daniel; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Forthomme, Laurent; Kenny III, Raymond Patrick; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Kumar, Ajay; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Rupprecht, Nathaniel; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Shi, Xin; Sun, Jian; Wang, Fuqiang; Xie, Wei; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Belknap, Donald; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-04-21

    The CMS tracker consists of 206 m$^2$ of silicon strip sensors assembled on carbon fibre composite structures and is designed for operation in the temperature range from $-25$ to $+25^\\circ$C. The mechanical stability of tracker components during physics operation was monitored with a few $\\mu$m resolution using a dedicated laser alignment system as well as particle tracks from cosmic rays and hadron-hadron collisions. During the LHC operational period of 2011-2013 at stable temperatures, the components of the tracker were observed to experience relative movements of less than 30$ \\mu$m. In addition, temperature variations were found to cause displacements of tracker structures of about 2$\\mu$m/$^\\circ$C, which largely revert to their initial positions when the temperature is restored to its original value.

  3. The Argonne silicon strip-detector array

    Energy Technology Data Exchange (ETDEWEB)

    Wuosmaa, A H; Back, B B; Betts, R R; Freer, M; Gehring, J; Glagola, B G; Happ, Th; Henderson, D J; Wilt, P [Argonne National Lab., IL (United States); Bearden, I G [Purdue Univ., Lafayette, IN (United States). Dept. of Physics

    1992-08-01

    Many nuclear physics experiments require the ability to analyze events in which large numbers of charged particles are detected and identified simultaneously, with good resolution and high efficiency, either alone, or in coincidence with gamma rays. The authors have constructed a compact large-area detector array to measure these processes efficiently and with excellent energy resolution. The array consists of four double-sided silicon strip detectors, each 5x5 cm{sup 2} in area, with front and back sides divided into 16 strips. To exploit the capability of the device fully, a system to read each strip-detector segment has been designed and constructed, based around a custom-built multi-channel preamplifier. The remainder of the system consists of high-density CAMAC modules, including multi-channel discriminators, charge-sensing analog-to-digital converters, and time-to-digital converters. The array`s performance has been evaluated using alpha-particle sources, and in a number of experiments conducted at Argonne and elsewhere. Energy resolutions of {Delta}E {approx} 20-30 keV have been observed for 5 to 8 MeV alpha particles, as well as time resolutions {Delta}T {<=} 500 ps. 4 figs.

  4. Characterization of silicon sensor materials and designs for the CMS Tracker Upgrade

    CERN Document Server

    Dierlamm, Alexander Hermann

    2012-01-01

    During the high luminosity phase of the LHC (HL-LHC, starting around 2020) the inner tracking system of CMS will be exposed to harsher conditions than the current system was designed for. Therefore a new tracker is planned to cope with higher radiation levels and higher occupancies. Within the strip sensor developments of CMS a comparative survey of silicon materials and technologies is being performed in order to identify the baseline material for the future tracker. Hence, a variety of materials (float-zone, magnetic Czochralski and epitaxially grown silicon with thicknesses from 50$\\mu$m to 320$\\mu$m as p- and n-type) has been processed at one company (Hamamatsu Photonics K.K.), irradiated (proton, neutron and mixed irradiations up to 1.5e15n$_{eq}$/cm$^2$ and beyond) and tested under identical conditions. The wafer layout includes a variety of devices to investigate different aspects of sensor properties like simple diodes, test-structures, small strip sensors and a strip sensor array with varying strip p...

  5. Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

    CERN Document Server

    D'Alessandro, Raffaello

    2011-01-01

    CMS started a campaign to identify the future silicon sensor technology baseline for a new Tracker for the high-luminosity phase of LHC, coupled to a new effective way of providing tracking information to the experiment trigger. To this end a large variety of 6'' wafers was acquired in different thicknesses and technologies at HPK and new detector module designs were investigated. Detector thicknesses ranging from 50$\\mu$m to 300$\\mu$m are under investigation on float zone, magnetic Czochralski and epitaxial material both in n-in-p and p-in-n versions. P-stop and p-spray are explored as isolation technology for the n-in-p type sensors as well as the feasibility of double metal routing on 6'' wafers. Each wafer contains different structures to answer different questions, e.g. influence of geometry, Lorentz angle, radiation tolerance, annealing behaviour, validation of read-out schemes. Dedicated process test-structures, as well as diodes, mini-sensors, long and very short strip sensors and real pixel sensors ...

  6. Digital autoradiography using silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Overdick, M.

    1998-05-01

    Spatially resolving radiation detection systems operating in real time can be used to acquire autoradiographic images. An overview over alternatives to traditional autoradiography is given and the special features of these filmless methods are discussed. On this basis the design of a system for digital autoradiography using silicon strip detectors is presented. Special emphasis is put on the physical background of the detection process in the semiconductor and on the self-triggering read-out technique. The practical performance of the system is analyzed with respect to energy and spatial resolution. This analysis is complemented by case studies from cell biology (especially electrophoresis), botany and mineralogy. Also the results from a time-resolved autoradiographic experiment are presented. (orig.) 80 refs.

  7. Silicon strip detectors for the ATLAS upgrade

    CERN Document Server

    Gonzalez Sevilla, S; The ATLAS collaboration

    2011-01-01

    The Large Hadron Collider at CERN will extend its current physics program by increasing the peak luminosity by one order of magnitude. For ATLAS, one of the two general-purpose experiments of the LHC, an upgrade scenario will imply the complete replacement of its internal tracker due to the harsh conditions in terms of particle rates and radiation doses. New radiation-hard prototype n-in-p silicon sensors have been produced for the short-strip region of the future ATLAS tracker. The sensors have been irradiated up to the fluences expected in the high-luminous LHC collider. This paper summarizes recent results on the performance of the irradiated n-in-p detectors.

  8. The GLAST silicon-strip tracking system

    International Nuclear Information System (INIS)

    Johnson, Robert P.

    2000-01-01

    The GLAST instrument concept is a gamma-ray pair conversion telescope that uses silicon microstrip detector technology to track the electron-positron pairs resulting from gamma-ray conversions in thin lead foils. A cesium iodide calorimeter following the tracker is used to measure the gamma-ray energy. Silicon strip technology is mature and robust, with an excellent heritage in space science and particle physics. It has many characteristics important for optimal performance of a pair conversion telescope, including high efficiency in thin detector planes, low noise, and excellent resolution and two-track separation. The large size of GLAST and high channel count in the tracker puts demands on the readout technology to operate at very low power, yet with sufficiently low noise occupancy to allow self triggering. A prototype system employing custom-designed ASIC's has been built and tested that meets the design goal of approximately 200 W per channel power consumption with a noise occupancy of less than one hit per trigger per 10,000 channels. Detailed design of the full-scale tracker is well advanced, with non-flight prototypes built for all components, and a complete 50,000 channel engineering demonstration tower module is currently under construction and will be tested in particle beams in late 1999. The flight-instrument conceptual design is for a 4x4 array of tower modules with an aperture of 2.9 m2 and an effective area of greater than 8000 cm2

  9. The GLAST Silicon-Strip Tracking System

    International Nuclear Information System (INIS)

    Johnson, R

    2004-01-01

    The GLAST instrument concept is a gamma-ray pair conversion telescope that uses silicon microstrip detector technology to track the electron-positron pairs resulting from gamma ray conversions in thin lead foils. A cesium iodide calorimeter following the tracker is used to measure the gamma-ray energy. Silicon strip technology is mature and robust, with an excellent heritage in space science and particle physics. It has many characteristics important for optimal performance of a pair conversion telescope, including high efficiency in thin detector planes, low noise, and excellent resolution and two-track separation. The large size of GLAST and high channel count in the tracker puts demands on the readout technology to operate at very low power, yet with sufficiently low noise occupancy to allow self triggering. A prototype system employing custom-designed ASIC's has been built and tested that meets the design goal of approximately 200 (micro)W per channel power consumption with a noise occupancy of less than one hit per trigger per 10,000 channels. Detailed design of the full-scale tracker is well advanced, with non-flight prototypes built for all components, and a complete 50,000 channel engineering demonstration tower module is currently under construction and will be tested in particle beams in late 1999. The flight-instrument conceptual design is for a 4 x 4 array of tower modules with an aperture of 2.9 m 2 and an effective area of greater than 8000 cm 2

  10. Characterization of the CBC2 readout ASIC for the CMS strip-tracker high-luminosity upgrade

    International Nuclear Information System (INIS)

    Braga, D; Hall, G; Pesaresi, M; Raymond, M; Jones, L; Murray, P; Prydderch, M

    2014-01-01

    The CMS Binary Chip 2 (CBC2) is a full-scale prototype ASIC developed for the front-end readout of the high-luminosity upgrade of the CMS silicon strip tracker. The 254-channel, 130 nm CMOS ASIC is designed for the binary readout of double-layer modules, and features cluster-width discrimination and coincidence logic for detecting high-P T track candidates. The chip was delivered in January 2013 and has since been bump-bonded to a dual-chip hybrid and extensively tested. The CBC2 is fully functional and working to specification: we present the result of electrical characterization of the chip, including gain, noise, threshold scan and power consumption, together with the performance of the stub finding logic. Finally we will outline the plan for future developments towards the production version

  11. A New Segment Building Algorithm for the Cathode Strip Chambers in the CMS Experiment

    Directory of Open Access Journals (Sweden)

    Golutvin I.

    2016-01-01

    Full Text Available A new segment building algorithm for the Cathode Strip Chambers in the CMS experiment is presented. A detailed description of the new algorithm is given along with a comparison with the algorithm used in the CMS software. The new segment builder was tested with different Monte-Carlo data samples. The new algorithm is meant to be robust and effective for hard muons and the higher luminosity that is expected in the future at the LHC.

  12. Quality Tests of Double-Sided Silicon Strip Detectors

    CERN Document Server

    Cambon, T; CERN. Geneva; Fintz, P; Guillaume, G; Jundt, F; Kuhn, C; Lutz, Jean Robert; Pagès, P; Pozdniakov, S; Rami, F; Sparavec, K; Dulinski, W; Arnold, L

    1997-01-01

    The quality of the SiO2 insulator (AC coupling between metal and implanted strips) of double-sided Silicon strip detectors has been studied by using a probe station. Some tests performed on 23 wafers are described and the results are discussed. Remark This note seems to cause problems with ghostview but it can be printed without any problem.

  13. Fast timing readout for silicon strip detectors

    International Nuclear Information System (INIS)

    Jhingan, A.; Saneesh, N.; Kumar, M.

    2016-01-01

    The development and performance of a 16 channel hybrid fast timing amplifier (FTA), for extracting timing information from silicon strip detectors (SSD), is described. The FTA will be used in a time of flight (TOF) measurement, in which one SSD is used to obtain the ion velocity (A) as well as the energy information of a scattered particle. The TOF information with a thin transmission SSD, acting as ΔE detector (Z) in a detector telescope, will provide a unique detection system for the identification of reaction products in the slowed down beam campaign of low energy branch (LEB) at NUSTAR-FAIR. Such a system will also provide large solid angle coverage with ~ 100% detection efficiency, and adequate segmentation for angular information. A good timing resolution (≤ 100 ps) enables to have shorter flight paths, thus a closely packed 4π array should be feasible. Preamplifiers for energy readout in SSD are easily available. A major constraint with SSDs is the missing high density multichannel preamplifiers which can provide both fast timing as well as energy. Provision of both timing and energy processing, generally makes circuit bulky, with higher power consumption, which may not be suitable in SSD arrays. In case of DSSSD, the problem was overcome by using timing from one side and energy from the other side. A custom designed 16 channel FTA has been developed for DSSSD design W from Micron Semiconductors, UK

  14. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  15. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    INSPIRE-00335524; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichhorn, T.; Lalwani, K.; Messineo, A.; Printz, M.; Ranjan, K.

    2015-04-23

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. To upgrade the tracker to required performance level, extensive measurements and simulations studies have already been carried out. A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching with measurements of silicon strip detectors. However, the model does not provide expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's charge collec...

  16. Simulations of Inter-Strip Capacitance and Resistance for the Design of the CMS Tracker Upgrade

    CERN Document Server

    Eichhorn, Thomas; Ranjeet, Ranjeet; Eber, Robert; Lalwani, Kavita; Messineo, Alberto; Peltola, Timo Hannu Tapani; Printz, Martin; Ranjan, Kirti

    2014-01-01

    An upgrade of the LHC accelerator, the high luminosity phase of the LHC (HL-LHC), is foreseen for 2023. The tracking system of the CMS experiment at HL-LHC will face a more intense radiation environment than the present system was designed for. This requires an upgrade of the full tracker, which will be equipped with higher granularity as well as radiation harder sensors, which can withstand higher radiation levels and occupancies.\\\\ In order to address the problems caused by the intense radiation environment, extensive measurements and simulation studies have been initiated for investigating these different design and material options for Silicon micro-strip sensors.\\\\ The simulation studies are based on commercial packages (Silvaco and Synopsys TCAD) and aim to investigate sensor characteristics before and after irradiation for fluences up to $1.5 \\cdot 10^{15}\\,\\rm{n_{eq}/cm}^2$. A defect model was developed to implement the radiation damage and tuned to fit experimental measurements.\\\\ This paper cover...

  17. Experience with the silicon strip detector of ALICE

    NARCIS (Netherlands)

    Nooren, G.J.L.

    2009-01-01

    The Silicon Strip Detector (SSD) forms the two outermost layers of the ALICE Inner Track- ing System (ITS), connecting the TPC with the inner layers of the ITS. The SSD consists of 1698 double-sided silicon microstrip modules, 95 μm pitch, distributed in two cylindrical bar- rels, whose radii are

  18. Strip defect recognition in electrical tests of silicon microstrip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Valentan, Manfred, E-mail: valentan@mpp.mpg.de

    2017-02-11

    This contribution describes the measurement procedure and data analysis of AC-coupled double-sided silicon microstrip sensors with polysilicon resistor biasing. The most thorough test of a strip sensor is an electrical measurement of all strips of the sensor; the measured observables include e.g. the strip's current and the coupling capacitance. These measurements are performed to find defective strips, e.g. broken capacitors (pinholes) or implant shorts between two adjacent strips. When a strip has a defect, its observables will show a deviation from the “typical value”. To recognize and quantify certain defects, it is necessary to determine these typical values, i.e. the values the observables would have without the defect. As a novel approach, local least-median-of-squares linear fits are applied to determine these “would-be” values of the observables. A least-median-of-squares fit is robust against outliers, i.e. it ignores the observable values of defective strips. Knowing the typical values allows to recognize, distinguish and quantify a whole range of strip defects. This contribution explains how the various defects appear in the data and in which order the defects can be recognized. The method has been used to find strip defects on 30 double-sided trapezoidal microstrip sensors for the Belle II Silicon Vertex Detector, which have been measured at the Institute of High Energy Physics, Vienna (Austria).

  19. Efficiency measurements for 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich, E-mail: ulrich.parzefall@physik.uni-freiburg.d [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Dalla Betta, Gian-Franco [INFN Trento and Universita di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Koehler, Michael; Kuehn, Susanne; Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris; Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Zoboli, Andrea [INFN Trento and Universita di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2010-11-01

    Silicon strip detectors are widely used as part of the inner tracking layers in particle physics experiments. For applications at the luminosity upgrade of the Large Hadron Collider (LHC), the sLHC, silicon detectors with extreme radiation hardness are required. The 3D detector design, where electrodes are processed from underneath the strips into the silicon bulk material, provides a way to enhance the radiation tolerance of standard planar silicon strip detectors. Detectors with several innovative 3D designs that constitute a simpler and more cost-effective processing than the 3D design initially proposed were connected to read-out electronics from LHC experiments and subsequently tested. Results on the amount of charge collected, the noise and the uniformity of charge collection are given.

  20. Silicon sensors for the upgrades of the CMS pixel detector

    International Nuclear Information System (INIS)

    Centis Vignali, Matteo

    2015-12-01

    Hamburg will be 120 MHz/cm 2 . For this rate the modules' efficiency has been measured to be 99%. In view of the module production, the energy calibration procedure has been automated. The modules assigned to the Hamburg production center should be completed by the end of February 2016. For the phase II upgrade, thin silicon sensors with an active thickness of 100 μm irradiated with protons up to Φ eq =1.3.10 16 cm -2 have been characterized. The charge collection efficiency has been measured using pad diodes. Charge multiplication effects have been observed for both n- and p-bulk sensors. P-bulk strip sensors with an active thickness of 100 and 200 μm have been characterized with a beam test. The signal of these sensors lies between 4000 and 5000 e - after a fluence of 1.3.10 16 cm -2 . The 200 μm thick sensors require a higher bias voltage than the 100 μm thick sensors to reach this signal height. The threshold necessary to obtain 95% detection efficiency is found to be around 2000 e - for the 100 μm thick sensors.

  1. Beam Test Results for Single- and Double-Sided Silicon Detector Prototypes of the CMS Central Detector

    CERN Document Server

    Adriani, O

    1997-01-01

    We report the results of two beam tests performed in July and September 1995 at CERN using silicon microstrip detectors of various types: single sided, double sided with small angle stereo strips, double sided with orthogonal strips, double sided with pads. For the read-out electronics use was made of Preshape32, Premux128 and VA1 chips. The signal to noise ratio and the resolution of the detectors was studied for different incident angles of the incoming particles and for different values of the detector bias voltage. The goal of these tests was to check and improve the performances of the prototypes for the CMS Central Detector.

  2. Characterisation of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bergauer, T.; Brondolin, E. [Institut fuer Hochenergiephysik, Vienna (Austria); and others

    2017-08-15

    The high luminosity upgrade of the Large Hadron Collider, foreseen for 2026, necessitates the replacement of the CMS experiment's silicon tracker. The innermost layer of the new pixel detector will be exposed to severe radiation, corresponding to a 1 MeV neutron equivalent fluence of up to Φ{sub eq} = 2 x 10{sup 16} cm{sup -2}, and an ionising dose of ∼5 MGy after an integrated luminosity of 3000 fb{sup -1}. Thin, planar silicon sensors are good candidates for this application, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. In this paper, the results obtained from the characterisation of 100 and 200 μm thick p-bulk pad diodes and strip sensors irradiated up to fluences of Φ{sub eq} = 1.3 x 10{sup 16} cm{sup -2} are shown. (orig.)

  3. Beam test of CSES silicon strip detector module

    Science.gov (United States)

    Zhang, Da-Li; Lu, Hong; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, Zheng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun

    2017-05-01

    The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. A low-noise analog ASIC VA140 was used in this study for DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400-800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and intensity distribution of incident particles of the DSSD module are presented. Supported by the XXX Civil Space Programme

  4. Characterization of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Centis Vignali, Matteo; Garutti, Erika; Junkes, Alexandra; Steinbrueck, Georg [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Eckstein, Doris; Eichhorn, Thomas [Deutsches Elektronen Synchrotron (DESY) (Germany)

    2016-07-01

    The high-luminosity upgrade of the Large Hadron Collider, foreseen for 2025, necessitates the replacement of the tracker of the CMS experiment. The innermost layer of the new pixel detector will be exposed to severe radiation corresponding to a 1 MeV neutron equivalent fluence up to Φ{sub eq} = 2 . 10{sup 16} cm{sup -2} and an ionizing dose of ∼ 10 MGy after an integrated luminosity of 3000 fb{sup -1}. Silicon crystals grown with different methods and sensor designs are under investigation in order to optimize the sensors for such high fluences. Thin planar silicon sensors are good candidates to achieve this goal, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. Epitaxial pad diodes and strip sensors irradiated up to fluences of Φ{sub eq} = 1.3 . 10{sup 16} cm{sup -2} have been characterized in laboratory measurements and beam tests at the DESY II facility. The active thickness of the strip sensors and pad diodes is 100 μm. In addition, strip sensors produced using other growth techniques with a thickness of 200 μm have been studied. In this talk, the results obtained for p-bulk sensors are shown.

  5. Silicon strip detectors for the ATLAS HL-LHC upgrade

    CERN Document Server

    Gonzalez Sevilla, S; The ATLAS collaboration

    2011-01-01

    The LHC upgrade is foreseen to increase the ATLAS design luminosity by a factor ten, implying the need to build a new tracker suited to the harsh HL-LHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. We give an overview of the ATLAS tracker upgrade project, in particular focusing on the crucial innermost silicon strip layers. Results from a wide range of irradiated silicon detectors for the strip region of the future ATLAS tracker are presented. Layout concepts for lightweight yet mechanically very rigid detector modules with high service integration are shown.

  6. Distribution of electric field and charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Zinets, O.S.

    1995-01-01

    The distribution of electric field in silicon strip detectors is analyzed in the case of dull depletion as well as for partial depletion. Influence of inhomogeneous electric fields on the charge collection and performances of silicon strip detectors is discussed

  7. Silicon sensor prototypes for the Phase II upgrade of the CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, Thomas, E-mail: thomas.bergauer@oeaw.ac.at

    2016-09-21

    The High-Luminosity LHC (HL-LHC) has been identified as the highest priority program in High Energy Physics in the mid-term future. It will provide the experiments an additional integrated luminosity of about 2500 fb{sup −1} over 10 years of operation, starting in 2025. In order to meet the experimental challenges of unprecedented p–p luminosity, especially in terms of radiation levels and occupancy, the CMS collaboration will need to replace its entire strip tracker by a new one. In this paper the baseline layout option for this new Phase-II tracker is shown, together with two variants using a tilted barrel geometry or larger modules from 8-inch silicon wafers. Moreover, the two module concepts are discussed, which consist either of two strip sensors (2S) or of one strip and one pixel sensor (PS). These two designs allow p{sub T} discrimination at module level enabling the tracker to contribute to the L1 trigger decision. The paper presents testing results of the macro-pixel-light sensor for the PS module and shows the first electrical characterization of unirradiated, full-scale strip sensor prototypes for the 2S module concept, both on 6- and 8-inch wafers.

  8. Silicon μ-strip detectors with SVX chip readout

    International Nuclear Information System (INIS)

    Brueckner, W.; Dropmann, F.; Godbersen, M.; Konorov, I.; Koenigsmann, K.; Newsom, C.; Paul, S.; Povh, B.; Russ, J.; Timm, S.; Vorwalter, K.; Werding, R.

    1994-01-01

    A new silicon strip detector has been designed and constructed for a fixed target experiment at CERN. The system of about 30 000 channels is equipped with SVX chips and read out via a double buffer into Fastbus memory. Construction and performance during the actual data taking run are discussed. ((orig.))

  9. Beam tests of ATLAS SCT silicon strip detector modules

    Czech Academy of Sciences Publication Activity Database

    Campabadal, F.; Fleta, C.; Key, M.; Böhm, Jan; Mikeštíková, Marcela; Šťastný, Jan

    2005-01-01

    Roč. 538, - (2005), s. 384-407 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * silicon * micro-strip * beam * test Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.224, year: 2005

  10. The silicon strip detector at the Mark 2

    International Nuclear Information System (INIS)

    Jacobsen, R.; Golubev, V.; Lueth, V.; Barnett, B.; Dauncey, P.; Matthews, J.; Adolphsen, C.; Burchat, P.; Gratta, G.; King, M.; Labarga, L.; Litke, A.; Turala, M.; Zaccardelli, C.

    1990-04-01

    We have installed a Silicon Strip Vertex Detector in the Mark II detector at the Stanford Linear Collider. We report on the performance of the detector during a recent test run, including backgrounds, stability and charged particle tracking. 10 refs., 9 figs

  11. Development of the H1 backward silicon strip detector

    International Nuclear Information System (INIS)

    Eick, W.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Bullough, M.A.; Greenwood, N.M.; Lucas, A.D.; Newton, A.M.; Wilburn, C.D.; Horisberger, R.; Pitzl, D.; Haynes, W.J.; Noyes, G.

    1996-10-01

    The development and first results are described of a silicon strip detector telescope for the HERA experiment H1 designed to measure the polar angle of deep inelastic scattered electrons at small Bjorken x and low momentum transfers Q 2 . (orig.)

  12. Development of the H1 backward silicon strip detector

    International Nuclear Information System (INIS)

    Eick, W.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Bullough, M.A.; Greenwood, N.M.; Lucas, A.D.; Newton, A.M.; Wilburn, C.D.; Horisberger, R.; Pitzl, D.; Haynes, W.J.; Noyes, G.

    1997-01-01

    The development and first results are described of a silicon strip detector telescope for the HERA experiment H1 designed to measure the polar angle of deep inelastic scattered electrons at small Bjorken x and low momentum transfers Q 2 . (orig.)

  13. Testbeam evaluation of silicon strip modules for ATLAS Phase - II Strip Tracker Upgrade

    CERN Document Server

    Blue, Andrew; The ATLAS collaboration; Ai, Xiaocong; Allport, Phillip; Arling, Jan-Hendrik; Atkin, Ryan Justin; Bruni, Lucrezia Stella; Carli, Ina; Casse, Gianluigi; Chen, Liejian; Chisholm, Andrew; Cormier, Kyle James Read; Cunningham, William Reilly; Dervan, Paul; Diez Cornell, Sergio; Dolezal, Zdenek; Dopke, Jens; Dreyer, Etienne; Dreyling-Eschweiler, Jan Linus Roderik; Escobar, Carlos; Fabiani, Veronica; Fadeyev, Vitaliy; Fernandez Tejero, Javier; Fleta Corral, Maria Celeste; Gallop, Bruce; Garcia-Argos, Carlos; Greenall, Ashley; Gregor, Ingrid-Maria; Greig, Graham George; Guescini, Francesco; Hara, Kazuhiko; Hauser, Marc Manuel; Huang, Yanping; Hunter, Robert Francis Holub; Keller, John; Klein, Christoph; Kodys, Peter; Koffas, Thomas; Kotek, Zdenek; Kroll, Jiri; Kuehn, Susanne; Lee, Steven Juhyung; Liu, Yi; Lohwasser, Kristin; Meszarosova, Lucia; Mikestikova, Marcela; Mi\\~nano Moya, Mercedes; Mori, Riccardo; Moser, Brian; Nikolopoulos, Konstantinos; Peschke, Richard; Pezzullo, Giuseppe; Phillips, Peter William; Poley, Anne-luise; Queitsch-Maitland, Michaela; Ravotti, Federico; Rodriguez Rodriguez, Daniel

    2018-01-01

    The planned HL-LHC (High Luminosity LHC) is being designed to maximise the physics potential of the LHC with 10 years of operation at instantaneous luminosities of \\mbox{$7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$}. A consequence of this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron equivalences to over $1x10^{15}$ 1 MeV neutron equivalent per $cm^{2}$ in the ATLAS Strips system. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II test beam facility to investigate the detailed performance of a strip module with both 2.5cm and 5cm length strips before irradiation. The DURANTA telescope was used to obtain a pointing...

  14. A test-bench for measurement of electrical static parameters of strip silicon detectors

    International Nuclear Information System (INIS)

    Golutvin, I.A.; Dmitriev, A.Yu.; Elsha, V.V.

    2003-01-01

    An automated test-bench for electrical parameters input control of the strip silicon detectors, used in the End-Cap Preshower detector of the CMS experiment, is described. The test-bench application allows one to solve a problem of silicon detectors input control in conditions of mass production - 1800 detectors over 2 years. The test-bench software is realized in Delphi environment and contains a user-friendly operator interface for data processing and visualization as well as up-to-date facilities for MS-Windows used for the network database. High operating characteristics and reliability of the test-bench were confirmed while more than 800 detectors were tested. Some technical solutions applied to the test-bench could be useful for design and construction of automated facilities for electrical parameters measurements of the microstrip detectors input control. (author)

  15. A Test-Bench for Measurement of Electrical Static Parameters of Strip Silicon Detectors

    CERN Document Server

    Golutvin, I A; Danilevich, V G; Dmitriev, A Yu; Elsha, V V; Zamiatin, Y I; Zubarev, E V; Ziaziulia, F E; Kozus, V I; Lomako, V M; Stepankov, D V; Khomich, A P; Shumeiko, N M; Cheremuhin, A E

    2003-01-01

    An automated test-bench for electrical parameters input control of the strip silicon detectors, used in the End-Cap Preshower detector of the CMS experiment, is described. The test-bench application allows one to solve a problem of silicon detectors input control in conditions of mass production - 1800 detectors over 2 years. The test-bench software is realized in Delphi environment and contains a user-friendly operator interface for measurement data processing and visualization as well as up-to-date facilities for MS-Windows used for the network database. High operating characteristics and reliability of the test-bench were confirmed while more than 800 detectors were tested. Some technical solutions applied to the test-bench could be useful for design and construction of automated facilities for electrical parameters measurements of the microstrip detectors input control.

  16. Evaluation of silicon micro strip detectors with large read-out pitch

    International Nuclear Information System (INIS)

    Senyo, K.; Yamamura, K.; Tsuboyama, T.; Avrillon, S.; Asano, Y.; Bozek, A.; Natkaniec, Z.; Palka, H.; Rozanska, M.; Rybicki, K.

    1996-01-01

    For the development of the silicon micro-strip detector with the pitch of the readout strips as large as 250 μm on the ohmic side, we made samples with different structures. Charge collection was evaluated to optimize the width of implant strips, aluminum read-out strips, and/or the read-out scheme among strips. (orig.)

  17. Performance of the CMS Silicon Tracker at LHC

    CERN Document Server

    Benelli, Gabriele

    2011-01-01

    The CMS all-silicon Tracker, comprising 16588 modules covering an area of more than $200 \\mathrm{m}^2$, needs to be precisely calibrated and aligned in order to correctly interpret and reconstruct the events recorded from the detector, ensuring that the performance fully meets the physics research program of the CMS experiment. The performance have been carefully studied since the start of data taking: the noise of the detector, the data integrity, the S/N ratio, the hit resolution and efficiency have been all investigated with time. In 2010 it has been successfully aligned using tracks from cosmic rays and pp-collisions, following the time dependent movements of its innermost pixel layers. Ultimate local precision is now achieved by the determination of sensor curvatures, challenging the algorithms to determine about 200000 parameters. Remaining alignment uncertainties are dominated by systematic effects that are controlled by adding further information, such as constraints from resonance decays.

  18. Test beam results of the first CMS double-sided strip module prototypes using the CBC2 read-out chip

    Energy Technology Data Exchange (ETDEWEB)

    Harb, Ali, E-mail: ali.harb@desy.de; Mussgiller, Andreas; Hauk, Johannes

    2017-02-11

    The CMS Binary Chip (CBC) is a prototype version of the front-end read-out ASIC to be used in the silicon strip modules of the CMS outer tracking detector during the high luminosity phase of the LHC. The CBC is produced in 130 nm CMOS technology and bump-bonded to the hybrid of a double layer silicon strip module, the so-called 2S-p{sub T} module. It has 254 input channels and is designed to provide on-board trigger information to the first level trigger system of CMS, with the capability of cluster-width discrimination and high-p{sub T} track identification. In November 2013 the first 2S-p{sub T} module prototypes equipped with the CBC chips were put to test at the DESY-II test beam facility. Data were collected exploiting a beam of positrons with an energy ranging from 2 to 4 GeV. In this paper the test setup and the results are presented.

  19. Laboratory course on silicon strip detectors

    International Nuclear Information System (INIS)

    Montano, Luis M

    2005-01-01

    In this laboratory course we present an elementary introduction to the characteristics and applications of silicon detectors in High-Energy Physics, through performing some measurements which give an overview of the properties of these detectors as position resolution. The principles of operation are described in the activities the students have to develop together with some exercises to reinforce their knowledge on these devices

  20. MUST: A silicon strip detector array for radioactive beam experiments

    CERN Document Server

    Blumenfeld, Y; Sauvestre, J E; Maréchal, F; Ottini, S; Alamanos, N; Barbier, A; Beaumel, D; Bonnereau, B; Charlet, D; Clavelin, J F; Courtat, P; Delbourgo-Salvador, P; Douet, R; Engrand, M; Ethvignot, T; Gillibert, A; Khan, E; Lapoux, V; Lagoyannis, A; Lavergne, L; Lebon, S; Lelong, P; Lesage, A; Le Ven, V; Lhenry, I; Martin, J M; Musumarra, A; Pita, S; Petizon, L; Pollacco, E; Pouthas, J; Richard, A; Rougier, D; Santonocito, D; Scarpaci, J A; Sida, J L; Soulet, C; Stutzmann, J S; Suomijärvi, T; Szmigiel, M; Volkov, P; Voltolini, G

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm sup 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and a...

  1. Development of a new Silicon Tracker at CMS for Super-LHC

    CERN Document Server

    Pesaresi, Mark

    2010-01-01

    Tracking is an essential requirement for any high energy particle physics experiment. The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) employs an all silicon tracker, the largest of its kind, for the precise measurement of track momentum and vertex position. With approximately 10 million detector channels in the strip tracker alone, the analogue non-sparsified readout system has been designed to handle the large data volumes generated at the 100 kHz Level 1 (L1) trigger rate. Fluctuations in the event rate are controlled using buffers whose occupancies are constantly monitored to prevent overflows, otherwise causing loss of synchronisation and data. The status of the tracker is reported by the APV emulator (APVe), which has now been successfully commissioned within the silicon strip tracker readout system. The APVe plays a crucial role in the synchronisation of the tracker by deterministic calculation of the front end buffer occupancy and by monitoring the status of the Front End Dr...

  2. P-stop isolation study of irradiated n-in-p type silicon strip sensors for harsh radiation environment

    CERN Document Server

    AUTHOR|(CDS)2084505

    2015-01-01

    In order to determine the most radiation hard silicon sensors for the CMS Experiment after the Phase II Upgrade in 2023 a comprehensive study of silicon sensors after a fluence of up to $1.5\\times10^{15} n_{eq}/cm^{2}$ corresponding to $3000 fb^{-1}$ after the HL-LHC era has been carried out. The results led to the decision that the future Outer Tracker (20~cm${<}R{<}$110~cm) of CMS will consist of n-in-p type sensors. This technology is more radiation hard but also the manufacturing is more challenging compared to p-in-n type sensors due to additional process steps in order to suppress the accumulation of electrons between the readout strips. One possible isolation technique of adjacent strips is the p-stop structure which is a p-type material implantation with a certain pattern for each individual strip. However, electrical breakdown and charge collection studies indicate that the process parameters of the p-stop structure have to be carefully calibrated in order to achieve a sufficient strip isolatio...

  3. SVX3: A deadtimeless readout chip for silicon strip detectors

    International Nuclear Information System (INIS)

    Zimmerman, T.; Huffman, T.; Srage, J.; Stroehmer, R.; Yarema, R.; Garcia-Sciveras, M.; Luo, L.; Milgrome, O.

    1997-12-01

    A new silicon strip readout chip called the SVX3 has been designed for the 720,000 channel CDF silicon upgrade at Fermilab. SVX3 incorporates an integrator, analog delay pipeline, ADC, and data sparsification for each of 128 identical channels. Many of the operating parameters are programmable via a serial bit stream, which allows the chip to be used under a variety of conditions. Distinct features of SVX3 include use of a backside substrate contact for optimal ground referencing, and the capability of simultaneous signal acquisition and digital readout allowing deadtimeless operation in the Fermilab Tevatron

  4. A new semicustom integrated bipolar amplifier for silicon strip detectors

    International Nuclear Information System (INIS)

    Zimmerman, T.

    1989-01-01

    The QPA02 is a four channel DC coupled two stage transimpedance amplifier designed at Fermilab on a semicustom linear array (Quickchip 2S) manufactured by Tektronix. The chip was developed as a silicon strip amplifier but may have other applications as well. Each channel consists of a preamplifier and a second stage amplifier/sharper with differential output which can directly drive a transmission line (90 to 140 ohms). External bypass capacitors are the only discrete components required. QPA02 has been tested and demonstrated to be an effective silicon strip amplifier. Other applications may exist which can use this amplifier or a modified version of this amplifier. For example, another design is now in progress for a wire chamber amplifier, QPA03, to be reported later. Only a relatively small effort was required to modify the design and layout for this application. 11 figs

  5. Radiation damage status of the ATLAS silicon strip detectors (SCT)

    CERN Document Server

    Kondo, Takahiko; The ATLAS collaboration

    2017-01-01

    The Silicon microstrip detector system (SCT) of the ATLAS experiment at LHC has been working well for about 7 years since 2010. The innermost layer has already received a few times of 10**13 1-MeV neutron-equivalent fluences/cm2. The evolutions of the radiation damage effects on strip sensors such as leakage current and full depletion voltages will be presented.

  6. Expert System for the LHC CMS Cathode Strip Chambers (CSC) detector

    Energy Technology Data Exchange (ETDEWEB)

    Rapsevicius, Valdas, E-mail: valdas.rapsevicius@cern.ch [Fermi National Accelerator Laboratory, Batavia, IL (United States); Vilnius University, Didlaukio g. 47-325, LT-08303 Vilnius (Lithuania); Juska, Evaldas, E-mail: evaldas.juska@cern.ch [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2014-02-21

    Modern High Energy Physics experiments are of high demand for a generic and consolidated solution to integrate and process high frequency data streams by applying experts' knowledge and inventory configurations. In this paper we present the Expert System application that was built for the Compact Muon Solenoid (CMS) Cathode Strip Chambers (CSC) detector at the Large Hadron Collider (LHC) aiming to support the detector operations and to provide integrated monitoring. The main building blocks are the integration platform, rule-based complex event processing engine, ontology-based knowledge base, persistent storage and user interfaces for results and control.

  7. Low dose radiation damage effects in silicon strip detectors

    International Nuclear Information System (INIS)

    Wiącek, P.; Dąbrowski, W.

    2016-01-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  8. Low dose radiation damage effects in silicon strip detectors

    Science.gov (United States)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  9. Calibration, alignment and long-term performance of the CMS silicon tracking detector

    CERN Document Server

    Butz, Erik

    2009-01-01

    With an active area of more than 200 m2 , the CMS silicon strip detector is the largest silicon tracker ever built. It consists of more than 15,000 individual silicon modules which have to meet very high standards in terms of noise behavior and electronic crosstalk, as well as their exact positioning within the tracker. Furthermore, the modules will be exposed to a harsh radiation environment over the lifetime of the tracker. This thesis deals with several of the above-mentioned aspects. In the first part, individual modules are investigated using a testbeam. Some of the modules were irradiated up to an integrated dose which corresponds to the expected one over the life time of the tracker. These modules are investigated with respect to their signal- to-noise behavior, and their cross-talk. Several operational parameters are varied, such as the temperature and the bias voltage. It is shown that the modules behave as expected. The signal-to-noise ratio is well above the specifications and the cross-talk increa...

  10. MUST: A silicon strip detector array for radioactive beam experiments

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.; Marechal, F.; Ottini, S.; Alamanos, N.; Barbier, A.; Beaumel, D.; Bonnereau, B.; Charlet, D.; Clavelin, J.F.; Courtat, P.; Delbourgo-Salvador, P.; Douet, R.; Engrand, M.; Ethvignot, T.; Gillibert, A.; Khan, E.; Lapoux, V.; Lagoyannis, A.; Lavergne, L.; Lebon, S.; Lelong, P.; Lesage, A.; Le Ven, V.; Lhenry, I.; Martin, J.M.; Musumarra, A.; Pita, S.; Petizon, L.; Pollacco, E.; Pouthas, J.; Richard, A.; Rougier, D.; Santonocito, D.; Scarpaci, J.A.; Sida, J.L.; Soulet, C.; Stutzmann, J.S.; Suomijaervi, T.; Szmigiel, M.; Volkov, P.; Voltolini, G.

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and analog channels of the array in one crate placed adjacent to the reaction chamber and fully remote controlled, including pulse visualization on oscilloscopes. A stand alone data acquisition system devoted to the MUST array has been developed. Isotope identification of light charged particles over the full energy range has been achieved, and the capability of the system to measure angular distributions of states populated in inverse kinematics reactions has been demonstrated

  11. Planar silicon sensors for the CMS Tracker upgrade

    CERN Document Server

    Junkes, Alexandra

    2013-01-01

    The CMS tracker collaboration has initiated a large material investigation and irradiation campaign to identify the silicon material and design that fulfills all requirements for detectors for the high-luminosity phase of the Large Hadron Collider (HL-LHC).A variety of silicon p-in-n and n-in-p test-sensors made from Float Zone, Deep-Diffused FZ and Magnetic Czochralski materials were manufactured by one single industrial producer, thus guaranteeing similar conditions for the production and design of the test-structures. Properties of different silicon materials and design choices have been systematically studied and compared.The samples have been irradiated with 1 MeV neutrons and protons corresponding to maximal fluences as expected for the positions of detector layers in the future tracker. Irradiations with protons of different energies (23 MeV and 23 GeV) have been performed to evaluate the energy dependence of the defect generation in oxygen rich material. All materials have been characterized before an...

  12. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    CERN Document Server

    Strobbe, N

    2017-01-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  13. Field oxide radiation damage measurements in silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland); Singh, P; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-04-01

    Surface radiation damage in planar processed silicon detectors is caused by radiation generated holes being trapped in the silicon dioxide layers on the detector wafer. We have studied charge trapping in thick (field) oxide layers on detector wafers by irradiating FOXFET biased strip detectors and MOS test capacitors. Special emphasis was put on studying how a negative bias voltage across the oxide during irradiation affects hole trapping. In addition to FOXFET biased detectors, negatively biased field oxide layers may exist on the n-side of double-sided strip detectors with field plate based n-strip separation. The results indicate that charge trapping occurred both close to the Si-SiO[sub 2] interface and in the bulk of the oxide. The charge trapped in the bulk was found to modify the electric field in the oxide in a way that leads to saturation in the amount of charge trapped in the bulk when the flatband/threshold voltage shift equals the voltage applied over the oxide during irradiation. After irradiation only charge trapped close to the interface is annealed by electrons tunneling to the oxide from the n-type bulk. (orig.).

  14. Silicon Strip Detectors for the ATLAS sLHC Upgrade

    CERN Document Server

    Miñano, M; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. The left part of figure 1 shows the simulated layout for the ATLAS tracker upgrade to be installed in the volume taken up by the current ATLAS pixel, strip and transition radiation detectors. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The...

  15. Study of inter-strip gap effects and efficiency for full energy detection of double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Fisichella, M.; Forneris, J.; Grassi, L.

    2015-01-01

    We performed a characterization of Double Sided Silicon Strip Detectors (DSSSD) with the aim to carry out a systematic study of the inter-strip effects on the energy measurement of charged particles. The dependence of the DSSSD response on ion, energy and applied bias has been investigated. (author)

  16. Development and performance of double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Batignani, G.; Forti, F.; Moneta, L.; Triggiani, G.; Bosisio, L.; Focardi, E.; Giorgi, M.A.; Parrini, G.; Tonelli, G.

    1991-01-01

    Microstrip silicon detectors with orthogonal readout on opposite sides have been designed and fabricated. The active area of each device is 25 cm 2 and the strip pitch is 25 μm on the junction side and 50 μm on the opposite ohmic side. A space resolution of 15 μm on the junction side (100 μm readout pitch) and 24 μm on the ohmic side (200 μm readout pitch) has been measured. We also report on AC-coupling chips, designed and fabricated in order to allow AC connection of the strips to the amplifiers. These chips are 6.4x5.0 mm 2 and have 100 μm pitch. Both AC-couplers and detectors have been installed as part of the ALEPH minivertex. (orig.)

  17. New developments in double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Becker, H.; Boulos, T.; Cattaneo, P.; Dietl, H.; Hauff, D.; Holl, P.; Lange, E.; Lutz, G.; Moser, H.G.; Schwarz, A.S.; Settles, R.; Struder, L.; Kemmer, J.; Buttler, W.

    1990-01-01

    A new type of double sided silicon strip detector has been built and tested using highly density VLSI readout electronics connected to both sides. Capacitive coupling of the strips to the readout electronics has been achieved by integrating the capacitors into the detector design, which was made possible by introducing a new detector biasing concept. Schemes to simplify the technology of the fabrication of the detectors are discussed. The static performance properties of the devices as well as implications of the use of VLSI electronics in their readout are described. Prototype detectors of the described design equipped with high density readout electronics have been installed in the ALEPH detector at LEP. Test results on the performance are given

  18. Silicon strip detector system for Fermilab E706

    Energy Technology Data Exchange (ETDEWEB)

    Engels, E Jr; Mani, S; Plants, D; Shepard, P F; Wilkins, R [Pittsburgh Univ., PA (USA); Hossain, S [Northeastern Univ., Boston, MA (USA)

    1984-09-15

    Fermilab Experiment E706 is an experiment to study direct photon production in hadron-hadron collisions at the Fermilab Tevatron II. A part of the charged particle spectrometer is a silicon strip detector system used to determine the position of interaction vertices in the production target and to provide angular formation about the secondary hadrons produced in a collision. We present some design criteria, as well as the results of tests of a wafer similar to those to be used in the experiment.

  19. Beam tests of ATLAS SCT silicon strip detector modules

    CERN Document Server

    Campabadal, F; Key, M; Lozano, M; Martínez, C; Pellegrini, G; Rafí, J M; Ullán, M; Johansen, L; Pommeresche, B; Stugu, B; Ciocio, A; Fadeev, V; Gilchriese, M G D; Haber, C; Siegrist, J; Spieler, H; Vu, C; Bell, P J; Charlton, D G; Dowell, John D; Gallop, B J; Homer, R J; Jovanovic, P; Mahout, G; McMahon, T J; Wilson, J A; Barr, A J; Carter, J R; Fromant, B P; Goodrick, M J; Hill, J C; Lester, C G; Palmer, M J; Parker, M A; Robinson, D; Sabetfakhri, A; Shaw, R J; Anghinolfi, F; Chesi, Enrico Guido; Chouridou, S; Fortin, R; Grosse-Knetter, J; Gruwé, M; Ferrari, P; Jarron, P; Kaplon, J; MacPherson, A; Niinikoski, T O; Pernegger, H; Roe, S; Rudge, A; Ruggiero, G; Wallny, R; Weilhammer, P; Bialas, W; Dabrowski, W; Grybos, P; Koperny, S; Blocki, J; Brückman, P; Gadomski, S; Godlewski, J; Górnicki, E; Malecki, P; Moszczynski, A; Stanecka, E; Stodulski, M; Szczygiel, R; Turala, M; Wolter, M; Ahmad, A; Benes, J; Carpentieri, C; Feld, L; Ketterer, C; Ludwig, J; Meinhardt, J; Runge, K; Mikulec, B; Mangin-Brinet, M; D'Onofrio, M; Donega, M; Moêd, S; Sfyrla, A; Ferrère, D; Clark, A G; Perrin, E; Weber, M; Bates, R L; Cheplakov, A P; Saxon, D H; O'Shea, V; Smith, K M; Iwata, Y; Ohsugi, T; Kohriki, T; Kondo, T; Terada, S; Ujiie, N; Ikegami, Y; Unno, Y; Takashima, R; Brodbeck, T; Chilingarov, A G; Hughes, G; Ratoff, P; Sloan, T; Allport, P P; Casse, G L; Greenall, A; Jackson, J N; Jones, T J; King, B T; Maxfield, S J; Smith, N A; Sutcliffe, P; Vossebeld, Joost Herman; Beck, G A; Carter, A A; Lloyd, S L; Martin, A J; Morris, J; Morin, J; Nagai, K; Pritchard, T W; Anderson, B E; Butterworth, J M; Fraser, T J; Jones, T W; Lane, J B; Postranecky, M; Warren, M R M; Cindro, V; Kramberger, G; Mandic, I; Mikuz, M; Duerdoth, I P; Freestone, J; Foster, J M; Ibbotson, M; Loebinger, F K; Pater, J; Snow, S W; Thompson, R J; Atkinson, T M; Bright, G; Kazi, S; Lindsay, S; Moorhead, G F; Taylor, G N; Bachindgagyan, G; Baranova, N; Karmanov, D; Merkine, M; Andricek, L; Bethke, Siegfried; Kudlaty, J; Lutz, Gerhard; Moser, H G; Nisius, R; Richter, R; Schieck, J; Cornelissen, T; Gorfine, G W; Hartjes, F G; Hessey, N P; de Jong, P; Muijs, A J M; Peeters, S J M; Tomeda, Y; Tanaka, R; Nakano, I; Dorholt, O; Danielsen, K M; Huse, T; Sandaker, H; Stapnes, S; Bargassa, Pedrame; Reichold, A; Huffman, T; Nickerson, R B; Weidberg, A; Doucas, G; Hawes, B; Lau, W; Howell, D; Kundu, N; Wastie, R; Böhm, J; Mikestikova, M; Stastny, J; Broklová, Z; Broz, J; Dolezal, Z; Kodys, P; Kubík, P; Reznicek, P; Vorobel, V; Wilhelm, I; Chren, D; Horazdovsky, T; Linhart, V; Pospísil, S; Sinor, M; Solar, M; Sopko, B; Stekl, I; Ardashev, E N; Golovnya, S N; Gorokhov, S A; Kholodenko, A G; Rudenko, R E; Ryadovikov, V N; Vorobev, A P; Adkin, P J; Apsimon, R J; Batchelor, L E; Bizzell, J P; Booker, P; Davis, V R; Easton, J M; Fowler, C; Gibson, M D; Haywood, S J; MacWaters, C; Matheson, J P; Matson, R M; McMahon, S J; Morris, F S; Morrissey, M; Murray, W J; Phillips, P W; Tyndel, M; Villani, E G; Dorfan, D E; Grillo, A A; Rosenbaum, F; Sadrozinski, H F W; Seiden, A; Spencer, E; Wilder, M; Booth, P; Buttar, C M; Dawson, I; Dervan, P; Grigson, C; Harper, R; Moraes, A; Peak, L S; Varvell, K E; Chu Ming Lee; Hou Li Shing; Lee Shih Chang; Teng Ping Kun; Wan Chang Chun; Hara, K; Kato, Y; Kuwano, T; Minagawa, M; Sengoku, H; Bingefors, N; Brenner, R; Ekelöf, T J C; Eklund, L; Bernabeu, J; Civera, J V; Costa, M J; Fuster, J; García, C; García, J E; González-Sevilla, S; Lacasta, C; Llosa, G; Martí i García, S; Modesto, P; Sánchez, J; Sospedra, L; Vos, M; Fasching, D; González, S; Jared, R C; Charles, E

    2005-01-01

    The design and technology of the silicon strip detector modules for the Semiconductor Tracker (SCT) of the ATLAS experiment have been finalised in the last several years. Integral to this process has been the measurement and verification of the tracking performance of the different module types in test beams at the CERN SPS and the KEK PS. Tests have been performed to explore the module performance under various operating conditions including detector bias voltage, magnetic field, incidence angle, and state of irradiation up to 3 multiplied by 1014 protons per square centimetre. A particular emphasis has been the understanding of the operational consequences of the binary readout scheme.

  20. Assembly of an endcap of the ATLAS silicon strip detector at NIKHEF, Amsterdam.

    CERN Multimedia

    Ginter, P

    2005-01-01

    Assembly of an endcap of the ATLAS silicon strip detector (SCT) at NIKHEF, Amsterdam. Technicians are mounting the power distribution cables on the cylinder that houses nine disks with silicon sensors.

  1. Completion of cathode strip chamber (CSC) installation on the so-called YE+2 wheel of CMS on March 2005.

    CERN Multimedia

    Tejinder S. Virdee

    2005-01-01

    The pictures have been taken in the CMS construction hall in Cessy (neighbouring France), called SX5, in March 2005 and show the status of cathode strip chamber (CSC) assembly on the yoke disk YE+2. The chambers are labelled ME+3 and their installation has been completed on March 16th, 2005.

  2. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2007-07-01

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs.

  3. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    International Nuclear Information System (INIS)

    Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2007-01-01

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs

  4. Improvement in breakdown characteristics with multiguard structures in microstrip silicon detectors for CMS

    International Nuclear Information System (INIS)

    Bacchetta, N.; Bisello, D.; Candelori, A.; Rold, M. Da; Descovich, M.; Kaminski, A.; Messineo, A.; Rizzo, F.; Verzellesi, G.

    2001-01-01

    To obtain full charge collection the CMS silicon detectors should be able to operate at high bias voltage. We observed that multiguard structures enhance the breakdown performance of the devices on several tens of baby detectors designed for CMS. The beneficial effects of the multiguard structures still remains after the strong neutron irradiation performed to simulate the operation at the LHC

  5. Improvement in breakdown characteristics with multiguard structures in microstrip silicon detectors for CMS

    CERN Document Server

    Bacchetta, N; Candelori, A; Da Rold, M; Descovich, M; Kaminski, A; Messineo, A; Rizzo, F; Verzellesi, G

    2001-01-01

    To obtain full charge collection the CMS silicon detectors should be able to operate at high bias voltage. We observed that multiguard structures enhance the breakdown performance of the devices on several tens of baby detectors designed for CMS. The beneficial effects of the multiguard structures still remains after the strong neutron irradiation performed to simulate the operation at the LHC. (3 refs).

  6. Performance of the CAMEX64 silicon strip readout chip

    International Nuclear Information System (INIS)

    Yarema, R.J.

    1989-06-01

    The CAMEX64 is a 64 channel full custom CMOS chip designed specifically for the readout of silicon strip detectors. CAMEX which stands for CMOS Multichannel Analog MultiplEXer for Silicon Strip Detectors was designed by members of the Franhofer Institute for Microelectronic Circuits and Systems and the Max Planck Institute for Physics and Astrophysics. Each CAMEX channel has a switched capacitor charge sensitive amplifier with 4 sampling capacitors and a multiplexing scheme for reading out each of the channels on an analog bus. The device uses multiple sampling capacitors to filter and reduce input noise. Filtering is controlled through sampling techniques using external clocks. The device operates in a double correlated sampling mode and therefore cannot separate detector leakage current from a charge input. Normal operation of this device is similar to all other silicon readout chips designed and built thus far in that there is a data acquisition cycle during which charge is simultaneously accepted on all channels for a short period of time from a detector array, followed by a readout cycle where that charge or hit information is read out. This device works especially well for colliding beam experiments where the time of charge arrival is accurately known. However it can be used in fixed target or asynchronous mode where the time of charge arrival is not well known. In the asynchronous mode it appears that gain is somewhat dependent on the time interval required to decide whether or not to accept charge input information and thus the maximum signal to noise performance found with the synchronous mode may not be achieved in the asynchronous mode. 18 figs., 5 tabs

  7. Characterization of a dose verification system dedicated to radiotherapy treatments based on a silicon detector multi-strips

    International Nuclear Information System (INIS)

    Bocca, A.; Cortes Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Aranas, R.; Abou Haidar, Z.; Alvarez, M. A. G.; Quesada, J. M.; Vega-Leal, A. P.; Perez Neto, F. J.

    2011-01-01

    In this paper, we present the characterization of a silicon detector multi-strips (SSSSD: Single Sided Silicon Strip Detector), developed by the company Micron Semiconductors Ltd. for use as a verification system for radiotherapy treatments.

  8. CMS silicon tracker alignment strategy with the Millepede II algorithm

    International Nuclear Information System (INIS)

    Flucke, G; Schleper, P; Steinbrueck, G; Stoye, M

    2008-01-01

    The positions of the silicon modules of the CMS tracker will be known to O(100 μm) from survey measurements, mounting precision and the hardware alignment system. However, in order to fully exploit the capabilities of the tracker, these positions need to be known to a precision of a few μm. Only a track-based alignment procedure can reach this required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel χ 2 minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously and all correlations between their position parameters taken into account. Different simulated data, such as Z 0 decays and muons originated in air showers were used for the study. Additionally information about the mechanical structure of the tracker, and initial position uncertainties have been used as input for the alignment procedure. A proof of concept of this alignment strategy is demonstrated using simulated data

  9. Coordinate determination of high energy charged particles by silicon strip detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Zinets, O.S.

    2002-01-01

    The coordinate determination accuracy of minimum ionizing and short-range particles by silicon strip detectors has been considered. The charge collection on neighboring strips of the detector is studied and the influence of diffusion and the electric field distribution on the accuracy of the coordinate determination is analyzed. It has been shown that coordinates of both minimum ionizing and short-range particles can be determined with accuracy to a few microns using silicon strip detectors. 11 refs.; 8 figs

  10. A silicon strip detector dose magnifying glass for IMRT dosimetry

    International Nuclear Information System (INIS)

    Wong, J. H. D.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Khanna, S.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B.

    2010-01-01

    Purpose: Intensity modulated radiation therapy (IMRT) allows the delivery of escalated radiation dose to tumor while sparing adjacent critical organs. In doing so, IMRT plans tend to incorporate steep dose gradients at interfaces between the target and the organs at risk. Current quality assurance (QA) verification tools such as 2D diode arrays, are limited by their spatial resolution and conventional films are nonreal time. In this article, the authors describe a novel silicon strip detector (CMRP DMG) of high spatial resolution (200 μm) suitable for measuring the high dose gradients in an IMRT delivery. Methods: A full characterization of the detector was performed, including dose per pulse effect, percent depth dose comparison with Farmer ion chamber measurements, stem effect, dose linearity, uniformity, energy response, angular response, and penumbra measurements. They also present the application of the CMRP DMG in the dosimetric verification of a clinical IMRT plan. Results: The detector response changed by 23% for a 390-fold change in the dose per pulse. A correction function is derived to correct for this effect. The strip detector depth dose curve agrees with the Farmer ion chamber within 0.8%. The stem effect was negligible (0.2%). The dose linearity was excellent for the dose range of 3-300 cGy. A uniformity correction method is described to correct for variations in the individual detector pixel responses. The detector showed an over-response relative to tissue dose at lower photon energies with the maximum dose response at 75 kVp nominal photon energy. Penumbra studies using a Varian Clinac 21EX at 1.5 and 10.0 cm depths were measured to be 2.77 and 3.94 mm for the secondary collimators, 3.52 and 5.60 mm for the multileaf collimator rounded leaf ends, respectively. Point doses measured with the strip detector were compared to doses measured with EBT film and doses predicted by the Philips Pinnacle treatment planning system. The differences were 1.1%

  11. Developments toward a silicon strip tracker for the PANDA experiment

    International Nuclear Information System (INIS)

    Zaunick, Hans-Georg

    2013-01-01

    The PANDA detector at the future FAIR facility in Darmstadt will be a key experiment in the understanding of the strong interaction at medium energies where perturbative models fail to describe the quark-quark interaction. An important feature of the detector system is the ability to reconstruct secondary decay vertices of short-lived intermediate states by means of a powerful particle tracking system with the the Micro-Vertex Detector (MVD) as central element to perform high-resolution charmonium and open-charm spectroscopy. The MVD is conceived with pixel detectors in the inner parts and double-sided silicon strip detectors at the outer half in a very lightweight design. The PANDA detector system shall be operated in a self-triggering broadband acquisition mode. Implications on the read-out electronics and the construction of the front-end assemblies are analyzed and evaluation of prototype DSSD-detectors wrt. signal-to-noise ratio, noise figures, charge sharing behavior, spatial resolution and radiation degradation discussed. Methods of electrical sensor characterization with different measurement setups are investigated which may be useful for future large-scale QA procedures. A novel algorithm for recovering multiple degenerate cluster hit patterns of double-sided strip sensors is introduced and a possible architecture of a Module Data Concentrator ASIC (MDC) aggregating multiple front-end data streams conceived. A first integrative concept for the construction and assembly of DSSD modules for the barrel part of the MVD is introduced as a conclusion of the thesis. Furthermore, a detailed description of a simplified procedure for the calculation of displacement damage in compound materials is given as reference which was found useful for the retrieval of non-ionizing energy loss for materials other than silicon.

  12. Petalet prototype for the ATLAS silicon strip detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Sperlich, Dennis [Humboldt-Universitaet zu Berlin (Germany); Gregor, Ingrid-Maria; Bloch, Ingo; Keller, John Stakely; Lohwasser, Kristin; Poley, Louise; Zakharchuk, Nataliia; Diez Cornell, Sergio [DESY (Germany); Hauser, Marc Manuel; Mori, Riccardo; Kuehl, Susanne; Parzefall, Ulrich [Albert-Ludwigs Universitaet Freiburg (Germany)

    2015-07-01

    To achieve more precise measurements and to search new physics phenomena, the luminosity at the LHC is expected to be increased during a series of upgrades in the next years. The latest scheduled upgrade, called the High Luminosity LHC (HL-LHC) is proposed to provide instantaneous luminosity of 5 x 10{sup 34} cm{sup 2}s{sup -1}. The increased luminosity and the radiation damage will affect the current Inner Tracker. In order to cope with the higher radiation dose and occupancy, the ATLAS experiment plans to replace the current Inner Detector with a new all-silicon tracker consisting of ∝8 m{sup 2} pixel and ∝192 m{sup 2} strip detectors. In response to the needs, highly modular structures will be used for the strip system, called Staves for the barrel region and Petals for the end-caps region. A small-scaled prototype for the Petal, the Petalet, is built to study some specialties of this complex wedge-shaped structures. The Petalet consists of one large and two small sized sensors. This report focuses on the recent progress in the prototyping of the Petalet and their electrical performances.

  13. Position calibration of silicon strip detector using quasi-elastic scattering of 16O+197Au

    International Nuclear Information System (INIS)

    Yan Wenqi; Hu Hailong; Zhang Gaolong

    2013-01-01

    Background: Elastic scattering is induced by weakly unstable nuclei. Generally, a good angular resolution for angular distribution of elastic scattering is needed. The silicon strip detector is often used for this kind of experiment. Purpose: In order to use silicon strip detector to study the elastic scattering of weakly unbound nuclei, it is important to get the information of its position calibration. It is well known that the elastic scattering of stable nuclei has a good angular distribution and many experimental data have been obtained. Methods: So the scattering of stable nuclei can be used to calibrate the position information of silicon strip detector. In this experiment, the positions of silicon strip detectors are calibrated using 101 MeV and 59 MeV 16 O scattering on the 197 Au target. Results: The quasi-elastic peaks can be observed in the silicon strip detectors and the counts of quasi-elastic 16 O can be obtained. The solid angles of the silicon strip detectors are calibrated by using alpha source which has three alpha energy values. The angular distribution of quasi-elastic scattering of 16 O+ 197 Au is obtained at these two energy values. Conclusions: The experimental data of angular distribution are reasonable and fit for the principle of angular distribution of elastic scattering. It is concluded that in the experiment these silicon strip detectors can accurately give the position information and can be used for the elastic scattering experiment. (authors)

  14. Upgrade of the cathode strip chamber level 1 trigger optical links at CMS

    International Nuclear Information System (INIS)

    Ecklund, K; Liu, J; Matveev, M; Padley, P; Madorsky, A

    2012-01-01

    At the Large Hadron Collider (LHC) at CERN, the CMS experiment's Level 1 Trigger system for the endcap Cathode Strip Chambers (CSC) has 180 optical links to transmit Level 1 trigger primitives from 60 peripheral crates to the CSC Track Finder (CSCTF) which reconstructs muon candidates. Currently there is a limit of 3 trigger primitives per crate serving a cluster of 9 chambers. With the anticipated LHC luminosity increase up to 10 35 cm −2 s −1 at full energy of 7 TeV/beam the Muon Port Card (MPC), which transmits the primitives, the receiver in the CSCTF (Sector Processor) and the optical transmission system itself need to be upgraded. At the same time it is very desirable to preserve all the old optical links intact for compatibility with the present Track Finder during transition period. We present here the results of our efforts in the past two years to upgrade the MPC board, including the hardware developments, data transmission tests and latency measurements.

  15. Anode front-end electronics for the cathode strip chambers of the CMS Endcap Muon detector

    International Nuclear Information System (INIS)

    Ferguson, T.; Bondar, N.; Golyash, A.; Sedov, V.; Terentiev, N.; Vorobiev, I.

    2005-01-01

    The front-end electronics system for the anode signals of the CMS Endcap Muon cathode strip chambers has about 183,000 channels. The purposes of the anode front-end electronics are to acquire precise muon timing information for bunch crossing number identification at the Level-1 muon trigger system and to provide a coarse radial position of the muon track. Each anode channel consists of an input protection network, amplifier, shaper, constant-fraction discriminator, and a programmable delay. The essential parts of the electronics include a 16-channel amplifier-shaper-discriminator ASIC CMP16 and a 16-channel ASIC D16G providing programmable time delay. The ASIC CMP16 was optimized for the large cathode chamber size (up to 3x2.5 m 2 ) and for the large input capacitance (up to 200 pF). The ASIC combines low power consumption (30 mW/channel) with good time resolution (2-3 ns). The delay ASIC D16G makes possible the alignment of signals with an accuracy of 2.2 ns. This paper presents the anode front-end electronics structure and results of the preproduction and the mass production tests, including radiation resistance and reliability tests. The special set of test equipment, techniques, and corresponding software developed and used in the test procedures are also described

  16. Accelerated life test of an ONO stacked insulator film for a silicon micro-strip detector

    International Nuclear Information System (INIS)

    Okuno, Shoji; Ikeda, Hirokazu; Saitoh, Yutaka

    1996-01-01

    We have used to acquire the signal through an integrated capacitor for a silicon micro-strip detector. When we have been using a double-sided silicon micro-strip detector, we have required a long-term stability and a high feasibility for the integrated capacitor. An oxide-nitride-oxide (ONO) insulator film was theoretically expected to have a superior nature in terms of long term reliability. In order to test long term reliability for integrated capacitor of a silicon micro-strip detector, we made a multi-channel measuring system for capacitors

  17. Results from a beam test of silicon strip sensors manufactured by Infineon Technologies AG

    Energy Technology Data Exchange (ETDEWEB)

    Dragicevic, M., E-mail: marko.dragicevic@oeaw.ac.at [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Auzinger, G. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); CERN, Geneva (Switzerland); Bartl, U. [Infineon Technologies Austria AG, Villach (Austria); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Gamerith, S.; Hacker, J. [Infineon Technologies Austria AG, Villach (Austria); König, A. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Infineon Technologies Austria AG, Villach (Austria); Kröner, F.; Kucher, E.; Moser, J.; Neidhart, T. [Infineon Technologies Austria AG, Villach (Austria); Schulze, H.-J. [Infineon Technologies AG, Munich (Germany); Schustereder, W. [Infineon Technologies Austria AG, Villach (Austria); Treberspurg, W. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Wübben, T. [Infineon Technologies Austria AG, Villach (Austria)

    2014-11-21

    Most modern particle physics experiments use silicon based sensors for their tracking systems. These sensors are able to detect particles generated in high energy collisions with high spatial resolution and therefore allow the precise reconstruction of particle tracks. So far only a few vendors were capable of producing silicon strip sensors with the quality needed in particle physics experiments. Together with the European-based semiconductor manufacturer Infineon Technologies AG (Infineon) the Institute of High Energy Physics of the Austrian Academy of Sciences (HEPHY) developed planar silicon strip sensors in p-on-n technology. This work presents the first results from a beam test of strip sensors manufactured by Infineon.

  18. Test-beam evaluation of heavily irradiated silicon strip modules for ATLAS Phase-II Strip Tracker Upgrade

    CERN Document Server

    Blue, Andrew; The ATLAS collaboration

    2018-01-01

    The planned HL-LHC (High Luminosity LHC) is being designed to maximise the physics potential of the LHC with 10 years of operation at instantaneous luminosities of 7.5x1034cm−2s−1. A consequence of this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron equivalences to over 1x1015 1 MeV neutron equivalent per cm2 in the ATLAS Strips system. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II and CERN SPS test beam facilities to investigate the detailed performance of a strip module with both 2.5cm and 5cm length strips before and after irradiation with 8x1014neqcm−2 protons and a total ionising dose of 37.2MRad. The DURA...

  19. Performance tests of developed silicon strip detector by using a 150 GeV electron beam

    International Nuclear Information System (INIS)

    Hyun, Hyojung; Jung, Sunwoo; Kah, Dongha; Kang, Heedong; Kim, Hongjoo; Park, Hwanbae

    2008-01-01

    We manufactured and characterized a silicon micro-strip detector to be used in a beam tracker. A silicon detector features a DC-coupled silicon strip sensor with VA1 Prime2 analog readout chips. The silicon strip sensors have been fabricated on 5-in. wafers at Electronics and Telecommunications Research Institute (Daejeon, Korea). The silicon strip sensor is single-sided and has 32 channels with a 1 mm pitch, and its active area is 3.2 by 3.2 cm 2 with 380 μm thickness. The readout electronics consists of VA hybrid, VA Interface, and FlashADC and Control boards. Analog signals from the silicon strip sensor were being processed by the analog readout chips on the VA hybrid board. Analog signals were then changed into digital signals by a 12 bit 25 MHz FlashADC. The digital signals were read out by the Linux-operating PC through the FlashADC-USB2 interface. The DAQ system and analysis programs were written in the framework of ROOT package. The beam test with the silicon detector had been performed at CERN beam facility. We used a 150 GeV electron beam out of the SPS(Super Proton Synchrotron) H2 beam line. We present beam test setup and measurement result of signal-to-noise ratio of each strip channel. (author)

  20. First results from a silicon-strip detector with VLSI readout

    International Nuclear Information System (INIS)

    Anzivino, G.; Horisberger, R.; Hubbeling, L.; Hyams, B.; Parker, S.; Breakstone, A.; Litke, A.M.; Walker, J.T.; Bingefors, N.

    1986-01-01

    A 256-strip silicon detector with 25 μm strip pitch, connected to two 128-channel NMOS VLSI chips (Microplex), has been tested using straight-through tracks from a ruthenium beta source. The readout channels have a pitch of 47.5 μm. A single multiplexed output provides voltages proportional to the integrated charge from each strip. The most probable signal height from the beta traversals is approximately 14 times the rms noise in any single channel. (orig.)

  1. Studies of adhesives and metal contacts on silicon strip sensors for the ATLAS Inner Tracker

    OpenAIRE

    Poley, Anne-Luise

    2018-01-01

    This thesis presents studies investigating the use of adhesives on the active area of silicon strip sensors for the construction of silicon strip detector modules for the ATLAS Phase-II Upgrade. 60 ATLAS07 miniature sensors were tested using three UV cure glues in comparison with the current baseline glue (a non-conductive epoxy).The impact of irradiation on the chemical composition of all adhesives under investigation was studied using three standard methods for chemical analysis: quadrupole...

  2. Signal collection and position reconstruction of silicon strip detectors with 200 μm readout pitch

    International Nuclear Information System (INIS)

    Krammer, M.; Pernegger, H.

    1997-01-01

    Silicon strip detectors with large readout pitch and intermediate strips offer an interesting approach to reduce the number of readout channels in the tracking systems of future collider experiments without compromising too much on the spatial resolution. Various detector geometries with a readout pitch of 200 μm have been studied for their signal response and spatial resolution. (orig.)

  3. A Proposal to Upgrade the Silicon Strip Detector

    International Nuclear Information System (INIS)

    Matis, Howard; Michael, LeVine; Jonathan, Bouchet; Stephane, Bouvier; Artemios, Geromitsos; Gerard, Guilloux; Sonia, Kabana; Christophe, Renard; Howard, Matis; Jim, Thomas; Vi Nham, Tram

    2007-01-01

    The STAR Silicon Strip Detector (SSD) was built by a collaboration of Nantes, Strasbourg and Warsaw collaborators. It is a beautiful detector; it can provide 500 mu m scale pointing resolution at the vertex when working in combination with the TPC. It was first used in Run 4, when half the SSD was installed in an engineering run. The full detector was installed for Run 5 (the Cu-Cu run) and the operation and performance of the detector was very successful. However, in preparation for Run 6, two noisy ladders (out of 20) were replaced and this required that the SSD be removed from the STAR detector. The re-installation of the SSD was not fully successful and so for the next two Runs, 6 and 7, the SSD suffered a cooling system failure that allowed a large fraction of the ladders to overheat and become noisy, or fail. (The cause of the SSD cooling failure was rather trivial but the SSD could not be removed between Runs 6 and 7 due to the inability of the STAR detector to roll along its tracks at that time.)

  4. Position-sensitive silicon strip detector characterization using particle beams

    CERN Document Server

    Maenpaeae, Teppo

    2012-01-01

    Silicon strip detectors are fast, cost-effective and have an excellent spatial resolution.They are widely used in many high-energy physics experiments. Modern high energyphysics experiments impose harsh operation conditions on the detectors, e.g., of LHCexperiments. The high radiation doses cause the detectors to eventually fail as a resultof excessive radiation damage. This has led to a need to study radiation tolerance usingvarious techniques. At the same time, a need to operate sensors approaching the endtheir lifetimes has arisen.The goal of this work is to demonstrate that novel detectors can survive the environment that is foreseen for future high-energy physics experiments. To reach this goal,measurement apparatuses are built. The devices are then used to measure the propertiesof irradiated detectors. The measurement data are analyzed, and conclusions are drawn.Three measurement apparatuses built as a part of this work are described: two telescopes measuring the tracks of the beam of a particle acceler...

  5. Systematic characterization and quality assurance of silicon micro-strip sensors for the Silicon Tracking System of the CBM experiment

    Science.gov (United States)

    Ghosh, P.

    2014-07-01

    The Silicon Tracking System (STS) is the central detector of the Compressed Baryonic Matter (CBM) experiment at future Facility for Anti-proton and Ion Research (FAIR) at Darmstadt. The task of the STS is to reconstruct trajectories of charged particles originating at relatively high multiplicities from the high rate beam-target interactions. The tracker comprises of 300 μm thick silicon double-sided micro-strip sensors. These sensors should be radiation hard in order to reconstruct charged particles up to a maximum radiation dose of 1 × 1014neqcm-2. Systematic characterization allows us to investigate the sensor response and perform quality assurance (QA) tests. In this paper, systematic characterization of prototype double-sided silicon micro-strip sensors will be discussed. This procedure includes visual, passive electrical, and radiation hardness test. Presented results include tests on three different prototypes of silicon micro-strip sensors.

  6. Systematic characterization and quality assurance of silicon micro-strip sensors for the Silicon Tracking System of the CBM experiment

    International Nuclear Information System (INIS)

    Ghosh, P

    2014-01-01

    The Silicon Tracking System (STS) is the central detector of the Compressed Baryonic Matter (CBM) experiment at future Facility for Anti-proton and Ion Research (FAIR) at Darmstadt. The task of the STS is to reconstruct trajectories of charged particles originating at relatively high multiplicities from the high rate beam-target interactions. The tracker comprises of 300 μm thick silicon double-sided micro-strip sensors. These sensors should be radiation hard in order to reconstruct charged particles up to a maximum radiation dose of 1 × 10 14 n eq cm −2 . Systematic characterization allows us to investigate the sensor response and perform quality assurance (QA) tests. In this paper, systematic characterization of prototype double-sided silicon micro-strip sensors will be discussed. This procedure includes visual, passive electrical, and radiation hardness test. Presented results include tests on three different prototypes of silicon micro-strip sensors

  7. Irradiation study of different silicon materials for the CMS tracker upgrade

    International Nuclear Information System (INIS)

    Erfle, Joachim

    2014-05-01

    Around 2022, an upgrade of the LHC collider complex is planned to significantly increase the luminosity (the High Luminosity LHC, HL-LHC). This means that the experiments have to cope with a higher number of collisions per bunch crossing and survive in a radiation environment much harsher than that at the present LHC. Especially the tracking detectors have to be improved for the HL-LHC. The increased number of tracks requires an increase of the number of readout channels while the higher radiation makes new sensor materials necessary. Within CMS, a measurement campaign was initiated to study the performance of different silicon materials in a corresponding radiation environment. To simulate the expected radiation the samples were irradiated with neutrons and with protons with two different energies. Radiation damage can be divided in two categories. First, ionizing energy loss in the surface isolation layers of the sensor leads to a change of the concentration of charged states in the sensor surface and therefore alters the distribution of the electrical fields in the sensor. Second, non-ionizing energy loss in the bulk of the sensor material leads to a variety of defects in the silicon lattice. Electrically active defects can influence the material properties. The three properties under investigation are the reverse current, the full depletion voltage and the charge collection. While the reverse current and full depletion voltage influence the power dissipation and the noise of the detector, the charge collection directly influences the measurement. The material properties were studied using pad and strip sensor. The structures were electrically characterized before and after irradiation with different fluences of neutrons and protons, corresponding to the expected fluences at different radii of the outer tracker after 3000 fb -1 . The charge collection measurements were mainly performed using the ALiBaVa readout system and the charge was induced with

  8. Silicon Strip Detectors for ATLAS at the HL-LHC Upgrade

    CERN Document Server

    Hara, K; The ATLAS collaboration

    2012-01-01

    The present ATLAS silicon strip (SCT) and transition radiation (TRT) trackers will be replaced with new silicon strip detectors, as part of the Inner Tracker System (ITK), for the Phase-2 upgrade of the Large Hadron Collider, HL-LHC. We have carried out intensive R&D programs to establish radiation harder strip detectors that can survive in a radiation level up to 3000 fb-1 of integrated luminosity based on n+-on-p microstrip detector. We describe main specifications for this year’s sensor fabrication, followed by a description of possible module integration schema

  9. First thin AC-coupled silicon strip sensors on 8-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, T., E-mail: thomas.bergauer@oeaw.ac.at [Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien (Vienna) (Austria); Dragicevic, M.; König, A. [Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien (Vienna) (Austria); Hacker, J.; Bartl, U. [Infineon Technologies Austria AG, Siemensstrasse 2, 9500 Villach (Austria)

    2016-09-11

    The Institute of High Energy Physics (HEPHY) in Vienna and the semiconductor manufacturer Infineon Technologies Austria AG developed a production process for planar AC-coupled silicon strip sensors manufactured on 200 μm thick 8-inch p-type wafers. In late 2015, the first wafers were delivered featuring the world's largest AC-coupled silicon strip sensors. Detailed electrical measurements were carried out at HEPHY, where single strip and global parameters were measured. Mechanical studies were conducted and the long-term behavior was investigated using a climate chamber. Furthermore, the electrical properties of various test structures were investigated to validate the quality of the manufacturing process.

  10. Systematic irradiation studies and quality assurance of silicon strip sensors for the CBM Silicon Tracking System

    International Nuclear Information System (INIS)

    Larionov, Pavel

    2016-10-01

    The Compressed Baryonic Matter (CBM) experiment at the upcoming Facility for Antiproton and Ion Research (FAIR) is designed to investigate the phase diagram of strongly interacting matter at neutron star core densities under laboratory conditions. This work is a contribution to the development of the main tracking detector of the CBM experiment - the Silicon Tracking System (STS), designed to provide the tracking and the momentum information for charged particles in a high multiplicity environment. The STS will be composed of about 900 highly segmented double-sided silicon strip sensors and is expected to face a harsh radiation environment up to 1 x 10 14 cm -2 in 1 MeV neutron equivalent fluence after several years of operation. The two most limiting factors of the successful operation of the system are the radiation damage and the quality of produced silicon sensors. It is therefore of importance to ensure both the radiation tolerance of the STS sensors and their quality during the production phase. The first part of this work details the investigation of the radiation tolerance of the STS sensors. Series of irradiations of miniature sensors as well as full-size prototype sensors were performed with reactor neutrons and 23 MeV protons to a broad range of fluences, up to 2 x 10 14 n eq /cm 2 . The evolution of the main sensor characteristics (leakage current, full depletion voltage and charge collection) was extensively studied both as a function of accumulated fluence and time after irradiation. In particular, charge collection measurements of miniature sensors demonstrated the ability of the sensors to yield approx. 90% to 95% of the signal after irradiation up to the lifetime fluence, depending on the readout side. First results on the charge collection performance of irradiated full-size prototype sensors have been obtained, serving as an input data for further final signal-to-noise evaluation in the whole readout chain. Operational stability of these

  11. Systematic irradiation studies and quality assurance of silicon strip sensors for the CBM Silicon Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Larionov, Pavel

    2016-10-15

    The Compressed Baryonic Matter (CBM) experiment at the upcoming Facility for Antiproton and Ion Research (FAIR) is designed to investigate the phase diagram of strongly interacting matter at neutron star core densities under laboratory conditions. This work is a contribution to the development of the main tracking detector of the CBM experiment - the Silicon Tracking System (STS), designed to provide the tracking and the momentum information for charged particles in a high multiplicity environment. The STS will be composed of about 900 highly segmented double-sided silicon strip sensors and is expected to face a harsh radiation environment up to 1 x 10{sup 14} cm{sup -2} in 1 MeV neutron equivalent fluence after several years of operation. The two most limiting factors of the successful operation of the system are the radiation damage and the quality of produced silicon sensors. It is therefore of importance to ensure both the radiation tolerance of the STS sensors and their quality during the production phase. The first part of this work details the investigation of the radiation tolerance of the STS sensors. Series of irradiations of miniature sensors as well as full-size prototype sensors were performed with reactor neutrons and 23 MeV protons to a broad range of fluences, up to 2 x 10{sup 14} n{sub eq}/cm{sup 2}. The evolution of the main sensor characteristics (leakage current, full depletion voltage and charge collection) was extensively studied both as a function of accumulated fluence and time after irradiation. In particular, charge collection measurements of miniature sensors demonstrated the ability of the sensors to yield approx. 90% to 95% of the signal after irradiation up to the lifetime fluence, depending on the readout side. First results on the charge collection performance of irradiated full-size prototype sensors have been obtained, serving as an input data for further final signal-to-noise evaluation in the whole readout chain. Operational

  12. Proposed method of assembly for the BCD silicon strip vertex detector modules

    International Nuclear Information System (INIS)

    Lindenmeyer, C.

    1989-01-01

    The BCD Silicon strip Vertex Detector is constructed of 10 identical central region modules and 18 similar forward region modules. This memo describes a method of assembling these modules from individual silicon wafers. Each wafer is fitted with associated front end electronics and cables and has been tested to insure that only good wafers reach the final assembly stage. 5 figs

  13. The development of two ASIC's for a fast silicon strip detector readout system

    International Nuclear Information System (INIS)

    Christain, D.; Haldeman, M.; Yarema, R.; Zimmerman, T.; Newcomer, F.M.; VanBerg, R.

    1989-01-01

    A high speed, low noise readout system for silicon strip detectors is being developed for Fermilab E771, which will begin taking data in 1989. E771 is a fixed target experiment designed to study the production of B hadrons by an 800 GeV/c proton beam. The experimental apparatus consists of an open geometry magnetic spectrometer featuring good muon and electron identification and a 16000 channel silicon microstrip vertex detector. This paper reviews the design and prototyping of two application specific integrated circuits (ASIC's) an amplifier and a discriminator, which are being produced for the silicon strip detector readout system

  14. Combined effect of bulk and surface damage on strip insulation properties of proton irradiated n$^{+}$-p silicon strip sensors

    CERN Document Server

    Dalal, R; Ranjan, K; Moll, M; Elliott-Peisert, A

    2014-01-01

    Silicon sensors in next generation hadron colliders willface a tremendously harsh radiation environment. Requirement tostudy rarest reaction channels with statistical constraints hasresulted in a huge increment in radiation flux, resulting in bothsurface damage and bulk damage. For sensors which are used in acharged hadron environment, both of these degrading processes takeplace simultaneously. Recently it has been observed in protonirradiated n$^{+}$-p Si strip sensors that n$^{+}$ strips had a goodinter-strip insulation with low values of p-spray and p-stop dopingdensities which is contrary to the expected behaviour from thecurrent understanding of radiation damage. In this work a simulationmodel has been devised incorporating radiation damage to understandand provide a possible explanation to the observed behaviour ofirradiated sensors.

  15. Calibration, alignment and long-term performance of the CMS silicon tracking detector

    International Nuclear Information System (INIS)

    Butz, E.

    2009-03-01

    With an active area of more than 200 m 2 , the CMS silicon strip detector is the largest silicon tracker ever built. It consists of more than 15,000 individual silicon modules which have to meet very high standards in terms of noise behavior and electronic crosstalk, as well as their exact positioning within the tracker. Furthermore, the modules will be exposed to a harsh radiation environment over the lifetime of the tracker. This thesis deals with several of the above-mentioned aspects. In the first part, individual modules are investigated using a testbeam. Some of the modules were irradiated up to an integrated dose which corresponds to the expected one over the life time of the tracker. These modules are investigated with respect to their signal-to-noise behavior, and their cross-talk. Several operational parameters are varied, such as the temperature and the bias voltage. It is shown that the modules behave as expected. The signal-to-noise ratio is well above the specifications and the cross-talk increases only very moderately with irradiation. Furthermore, the spatial resolution of the modules is investigated. Different cluster algorithms are utilized and compared. It is shown that the spatial resolution is not much affected by irradiation and that the spatial resolution can be improved with respect to the current standard reconstruction. In the second part, larger structures of the silicon tracker are studied during the socalled ''tracker slice-test''. Two sectors from one of the tracker end caps are investigated. Special emphasis is given to the commissioning of the system and the monitoring of the various commissioning parameters. Furthermore, the noise of the system is investigated as a function of the ambient temperature and different powering schemes. It is shown that the noise of the system behaves as expected. The noise is stable within 2% for different powering schemes. Also possible failures of components are investigated and persistent defects are

  16. Calibration, alignment and long-term performance of the CMS silicon tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Butz, E.

    2009-03-15

    With an active area of more than 200 m{sup 2}, the CMS silicon strip detector is the largest silicon tracker ever built. It consists of more than 15,000 individual silicon modules which have to meet very high standards in terms of noise behavior and electronic crosstalk, as well as their exact positioning within the tracker. Furthermore, the modules will be exposed to a harsh radiation environment over the lifetime of the tracker. This thesis deals with several of the above-mentioned aspects. In the first part, individual modules are investigated using a testbeam. Some of the modules were irradiated up to an integrated dose which corresponds to the expected one over the life time of the tracker. These modules are investigated with respect to their signal-to-noise behavior, and their cross-talk. Several operational parameters are varied, such as the temperature and the bias voltage. It is shown that the modules behave as expected. The signal-to-noise ratio is well above the specifications and the cross-talk increases only very moderately with irradiation. Furthermore, the spatial resolution of the modules is investigated. Different cluster algorithms are utilized and compared. It is shown that the spatial resolution is not much affected by irradiation and that the spatial resolution can be improved with respect to the current standard reconstruction. In the second part, larger structures of the silicon tracker are studied during the socalled 'tracker slice-test'. Two sectors from one of the tracker end caps are investigated. Special emphasis is given to the commissioning of the system and the monitoring of the various commissioning parameters. Furthermore, the noise of the system is investigated as a function of the ambient temperature and different powering schemes. It is shown that the noise of the system behaves as expected. The noise is stable within 2% for different powering schemes. Also possible failures of components are investigated and persistent

  17. Silicon Sensors for the Upgrades of the CMS Pixel Detector

    CERN Document Server

    Centis Vignali, Matteo; Schleper, Peter

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accel- erator and its injection chain. Two major upgrades will take place in the next years. The rst upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2 10 34 cm-2 s-1 A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5 10 34 cm-2 s1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The rst upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout elec- tronics that allow ecient data taking up to a luminosity of 2 10 34 cm-2s-1,twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at dierent institutes. Ham...

  18. Crystalline Silicon Interconnected Strips (XIS). Introduction to a New, Integrated Device and Module Concept

    Energy Technology Data Exchange (ETDEWEB)

    Van Roosmalen, J.; Bronsveld, P.; Mewe, A.; Janssen, G.; Stodolny, M.; Cobussen-Pool, E.; Bennett, I.; Weeber, A.; Geerligs, B. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG, Petten (Netherlands)

    2012-06-15

    A new device concept for high efficiency, low cost, wafer based silicon solar cells is introduced. To significantly lower the costs of Si photovoltaics, high efficiencies and large reductions of metals and silicon costs are required. To enable this, the device architecture was adapted into low current devices by applying thin silicon strips, to which a special high efficiency back-contact heterojunction cell design was applied. Standard industrial production processes can be used for our fully integrated cell and module design, with a cost reduction potential below 0.5 euro/Wp. First devices have been realized demonstrating the principle of a series connected back contact hybrid silicon heterojunction module concept.

  19. Evaluation of FOXFET biased ac-coupled silicon strip detector prototypes for CDF SVX upgrade

    International Nuclear Information System (INIS)

    Laakso, M.

    1992-03-01

    Silicon microstrip detectors for high-precision charged particle position measurements have been used in nuclear and particle physics for years. The detectors have evolved from simple surface barrier strip detectors with metal strips to highly complicated double-sided AC-coupled junction detectors. The feature of AC-coupling the readout electrodes from the diode strips necessitates the manufacture of a separate biasing structure for the strips, which comprises a common bias line together with a means for preventing the signal from one strip from spreading to its neighbors through the bias line. The obvious solution to this is to bias the strips through individual high value resistors. These resistors can be integrated on the detector wafer by depositing a layer of resistive polycrystalline silicon and patterning it to form the individual resistors. To circumvent the extra processing step required for polysilicon resistor processing and the rather difficult tuning of the process to obtain uniform and high enough resistance values throughout the large detector area, alternative methods for strip biasing have been devised. These include the usage of electron accumulation layer resistance for N + - strips or the usage of the phenomenon known as the punch-through effect for P + - strips. In this paper we present measurement results about the operation and radiation resistance of detectors with a punch-through effect based biasing structure known as a Field OXide Field-Effect Transistor (FOXFET), and present a model describing the FOXFET behavior. The studied detectors were prototypes for detectors to be used in the CDF silicon vertex detector upgrade

  20. Evaluation of FOXFET biased ac-coupled silicon strip detector prototypes for CDF SVX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M. (Fermi National Accelerator Lab., Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland))

    1992-03-01

    Silicon microstrip detectors for high-precision charged particle position measurements have been used in nuclear and particle physics for years. The detectors have evolved from simple surface barrier strip detectors with metal strips to highly complicated double-sided AC-coupled junction detectors. The feature of AC-coupling the readout electrodes from the diode strips necessitates the manufacture of a separate biasing structure for the strips, which comprises a common bias line together with a means for preventing the signal from one strip from spreading to its neighbors through the bias line. The obvious solution to this is to bias the strips through individual high value resistors. These resistors can be integrated on the detector wafer by depositing a layer of resistive polycrystalline silicon and patterning it to form the individual resistors. To circumvent the extra processing step required for polysilicon resistor processing and the rather difficult tuning of the process to obtain uniform and high enough resistance values throughout the large detector area, alternative methods for strip biasing have been devised. These include the usage of electron accumulation layer resistance for N{sup +}{minus} strips or the usage of the phenomenon known as the punch-through effect for P{sup +}{minus} strips. In this paper we present measurement results about the operation and radiation resistance of detectors with a punch-through effect based biasing structure known as a Field OXide Field-Effect Transistor (FOXFET), and present a model describing the FOXFET behavior. The studied detectors were prototypes for detectors to be used in the CDF silicon vertex detector upgrade.

  1. Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper B.; Christensen, Erik N.

    2017-01-01

    We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerica......We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also...

  2. Operating characteristics of radiation-hardened silicon pixel detectors for the CMS experiment

    CERN Document Server

    Hyosung, Cho

    2002-01-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will have forward silicon pixel detectors as its innermost tracking device. The pixel devices will be exposed to the harsh radiation environment of the LHC. Prototype silicon pixel detectors have been designed to meet the specification of the CMS experiment. No guard ring is required on the n/sup +/ side, and guard rings on the p/sup +/ side are always kept active before and after type inversion. The whole n/sup +/ side is grounded and connected to readout chips, which greatly simplifies detector assembling and improves the stability of bump-bonded readout chips on the n/sup +/ side. Operating characteristics such as the leakage current, the full depletion voltage, and the potential distributions over guard rings were tested using standard techniques. The tests are discussed in this paper. (9 refs).

  3. Noise analysis due to strip resistance in the ATLAS SCT silicon strip module

    International Nuclear Information System (INIS)

    Kipnis, I.

    1996-08-01

    The module is made out of four 6 cm x 6 cm single sided Si microstrip detectors. Two detectors are butt glued to form a 12 cm long mechanical unit and strips of the two detectors are electrically connected to form 12 cm long strips. The butt gluing is followed by a back to back attachment. The module in this note is the Rφ module where the electronics is oriented parallel to the strip direction and bonded directly to the strips. This module concept provides the maximum signal-to-noise ratio, particularly when the front-end electronics is placed near the middle rather than at the end. From the noise analysis, it is concluded that the worst-case ΔENC (far-end injection) between end- and center-tapped modules will be 120 to 210 el. rms (9 to 15%) for a non-irradiated detector and 75 to 130 el. rms (5 to 9%) for an irradiated detector, for a metal strip resistance of 10 to 20 Ω/cm

  4. Calibration and alignment of the CMS silicon tracking detector

    International Nuclear Information System (INIS)

    Stoye, M.

    2007-07-01

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel χ 2 minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  5. Calibration and alignment of the CMS silicon tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Stoye, M.

    2007-07-15

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel {chi}{sup 2} minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  6. Influence for high intensity irradiation on characteristics of silicon strip-detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Pugatch, V.M.; Zinets, O.S.

    1995-01-01

    Full text: Silicon strip detectors (SSD) are widely used for the coordinate determination of short-range as well as minimum ionizing particles with high spatial resolution. Submicron position sensitivity of strip-detectors for short-range particles has been studied by means of two dimensional analyses of charges collected by neighboring strips as well as by measurement of charge collection times [1]. Silicon strip detectors was also used for testing high energy electron beam [2]. Under large fluences the radiation defects are stored and such characteristics of strip-detectors as an accuracy of the coordinate determination and the registration efficiency are significantly changed. Radiation defects lead to a decrease of the lifetime and mobility of charge carriers and therefore to changes of conditions for the charge collection in detectors. The inhomogeneity in spatial distribution if defects and electrical field plays an important role in the charge collection. In this report the role of the diffusion and drift in the charge collection in silicon strip-detectors under irradiation up to 10 Mrad has been studied. The electric field distribution and its dependence on the radiation dose in the detector have been calculated. It is shown that for particles incident between adjacent strips the coordinate determination precision depends strongly on the detector geometry and the electric field distribution, particularly in the vicinity of strips. Measuring simultaneously the collected charges and collection times on adjacent strips one can essentially improve reliability of the coordinate determination for short-range particles. Usually SSD are fabricated on n-type wafers. It is well known that under high intensity irradiation n-Si material converts into p-Si as far as p-type silicon is more radiative hard than n-type silicon [3] it is reasonable to fabricate SSD using high resistivity p-Si. Characteristics of SSD in basis n-and P-Si have been compared and higher

  7. Cross-talk studies on FPCB of double-sided silicon micro-strip detector

    International Nuclear Information System (INIS)

    Yang, Lei; Li, Zhankui; Li, Haixia; Wang, Pengfei; Wang, Zhusheng; Chen, Cuihong; Liu, Fengqiong; Li, Ronghua; Wang, Xiuhua; Li, Chunyan; Zu, Kailing

    2014-01-01

    Double-sided silicon micro-strip detector's parameters and a test method and the results of cross-talk of FPCB are given in this abstract. In addition, the value of our detector's readout signal has little relation to FPCB's cross-talk.

  8. Experimentally validated dispersion tailoring in a silicon strip waveguide with alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper Bjerge; Shi, Xiaodong

    2018-01-01

    We propose a silicon strip waveguide structure with alumina thin-film coating in-between the core and the cladding for group-velocity dispersion tailoring. By carefully designing the core dimension and the coating thickness, a spectrally-flattened near-zero anomalous group-velocity dispersion...

  9. A low power bipolar amplifier integrated circuit for the ZEUS silicon strip system

    Energy Technology Data Exchange (ETDEWEB)

    Barberis, E. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States)); Cartiglia, N. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States)); Dorfan, D.E. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States)); Spencer, E. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States))

    1993-05-01

    A fast low power bipolar chip consisting of 64 amplifier-comparators has been developed for use with silicon strip detectors for systems where high radiation levels and high occupancy considerations are important. The design is described and test results are presented. (orig.)

  10. Silicon Strip Detectors for ATLAS at the HL-LHC Upgrade

    CERN Document Server

    Hara, K; The ATLAS collaboration

    2012-01-01

    present ATLAS silicon strip tracker (SCT) and transition radiation tracker(TRT) are to be replaced with new silicon strip detectors as part of the Inner Tracker System (ITK) for the Phase-II upgrade of the Large Hadron Collider, HL-LHC. We have carried out intensive R&D programs based on n+-on-p microstrip detectors to fabricate improved radiation hard strip detectors that can survive the radiation levels corresponding to the integrated luminosity of up to 3000 fb−1. We describe the main specifications for this year’s sensor fabrication and the related R&D results, followed by a description of the candidate schema for module integration.

  11. The Strip Silicon Photo-Multiplier: An innovation for enhanced time and position measurement

    Energy Technology Data Exchange (ETDEWEB)

    Doroud, K., E-mail: Katayoun.Doroud@cern.ch [CERN, Geneva (Switzerland); Williams, M.C.S. [CERN, Geneva (Switzerland); INFN, Bologna (Italy); Yamamoto, K. [Solid State Division, Hamamatsu Photonics K.K., Hamamatsu (Japan)

    2017-05-01

    There is considerable R&D concerning precise time measurement from a variety of detectors, and in particular for the Silicon PhotoMultiplier (SiPM). In this paper we discuss a new geometry for the SiPM in the form of a strip. A strip can be read out at both end, with each end coupled to an individual TDC (time to digital converter). The time difference is related to the position of the firing SPAD along the length of the strip, while the average of the two times gives the time of the hit. Results from the testing of the first prototype Strip SiPMs are presented in this paper.

  12. Silicon Sensor Development for the CMS Tracker Upgrade

    CERN Document Server

    Auzinger, Georg; Elliott-Peisert, Anna

    The Large Hadron Collider at the European Council for Nuclear Research in Geneva is scheduled to undergo a major luminosity upgrade after its lifetime of ten years of operation around the year 2020, to maximize its scientific discovery potential. The total integrated luminosity will be increased by a factor of ten, which will dramatically change the conditions under which the four large detectors at the LHC will have to operate. The Compact Muon Solenoid, which has contributed to the recent discovery of a new, Higgs-like boson is one of them. Its innermost part -- the so-called tracker -- is a high-precision instrument that measures the created particles' trajectories by means of silicon detectors. With a total surface of more than 200 square-meters it is the largest device of its kind ever built. The increase in instantaneous luminosity in the upgraded LHC will lead to a dramatically increased track density at the interaction points of the colliding beams and thus also to a much more hostile radiation env...

  13. Fabrication of silicon strip detectors using a step-and-repeat lithography system

    International Nuclear Information System (INIS)

    Holland, S.

    1991-11-01

    In this work we describe the use of a step-and-repeat lithography system (stepper) for the fabrication of silicon strip detectors. Although the field size of the stepper is only 20 mm in diameter, we have fabricated much larger detectors by printing a repetitive strip detector pattern in a step-and-repeat fashion. The basic unit cell is 7 mm in length. The stepper employs a laser interferometer for stage placement, and the resulting high precision allows one to accurately place the repetitive patterns on the wafer. A small overlap between the patterns ensures a continuous strip. A detector consisting of 512 strips on a 50 μm pitch has been fabricated using this technique. The dimensions of the detector are 6.3 cm by 2.56 cm. Yields of over 99% have been achieved, where yield is defined as the percentage of strips with reverse leakage current below 1 nA. In addition to the inherent advantages of a step-and-repeat system, this technique offers great flexibility in the fabrication of large-area strip detectors since the length and width of the detector can be changed by simply reprogramming the stepper computer. Hence various geometry strip detectors can be fabricated with only one set of masks, as opposed to a separate set of masks for each geometry as would be required with a contact or proximity aligner

  14. Development of AC-coupled, poly-silicon biased, p-on-n silicon strip detectors in India for HEP experiments

    Science.gov (United States)

    Jain, Geetika; Dalal, Ranjeet; Bhardwaj, Ashutosh; Ranjan, Kirti; Dierlamm, Alexander; Hartmann, Frank; Eber, Robert; Demarteau, Marcel

    2018-02-01

    P-on-n silicon strip sensors having multiple guard-ring structures have been developed for High Energy Physics applications. The study constitutes the optimization of the sensor design, and fabrication of AC-coupled, poly-silicon biased sensors of strip width of 30 μm and strip pitch of 55 μm. The silicon wafers used for the fabrication are of 4 inch n-type, having an average resistivity of 2-5 k Ω cm, with a thickness of 300 μm. The electrical characterization of these detectors comprises of: (a) global measurements of total leakage current, and backplane capacitance; (b) strip and voltage scans of strip leakage current, poly-silicon resistance, interstrip capacitance, interstrip resistance, coupling capacitance, and dielectric current; and (c) charge collection measurements using ALiBaVa setup. The results of the same are reported here.

  15. Simultaneous alignment and Lorentz angle calibration in the CMS silicon tracker using Millepede II

    CERN Document Server

    Bartosik, Nazar

    2013-01-01

    The CMS silicon tracker consists of 25 684 sensors that provide measurements of trajectories of charged particles that are used by almost every physics analysis at CMS. In order to achieve high measurement precision, the positions and orientations of all sensors have to be determined very accurately. This is achieved by track-based alignment using the global fit approach of the Millepede II program. This approach is capable of determining about 200 000 parameters simultaneously.The alignment precision reached such a high level that even small calibration inaccuracies are noticeable. Therefore the alignment framework has been extended to treat position sensitive calibration parameters. Of special interest is the Lorentz angle which affects the hit positions due to the drift of the signal electrons in the magnetic field. We present the results from measurements of the Lorentz angle and its time dependence during full 2012 data taking period as well as general description of the alignment and calibration procedu...

  16. Initial beam test results from a silicon-strip detector with VLSI readout

    International Nuclear Information System (INIS)

    Adolphsen, C.; Litke, A.; Schwarz, A.

    1986-01-01

    Silicon detectors with 256 strips, having a pitch of 25 μm, and connected to two 128 channel NMOS VLSI chips each (Microplex), have been tested in relativistic charged particle beams at CERN and at the Stanford Linear Accelerator Center. The readout chips have an input channel pitch of 47.5 μm and a single multiplexed output which provides voltages proportional to the integrated charge from each strip. The most probable signal height from minimum ionizing tracks was 15 times the rms noise in any single channel. Two-track traversals with a separation of 100 μm were cleanly resolved

  17. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    Peltola, Timo Hannu Tapani

    2014-01-01

    A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching to measurements of silicon strip detectors. However, the model does not provide the expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's...

  18. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Ley, J.-L. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Abellan, C.; Cachemiche, J.-P. [Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille (France); Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Joly, B.; Lambert, D.; Lestand, L. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Létang, J.M. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Magne, M. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); and others

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm{sup 3}, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm{sup 3}, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  19. Effects of the interstrip gap on the efficiency and response of Double Sided Silicon Strip Detectors

    Directory of Open Access Journals (Sweden)

    Torresi D.

    2016-01-01

    Full Text Available In this work the effects of the segmentation of the electrodes of Double Sided Silicon Strip Detectors (DSSSDs are investigated. In order to characterize the response of the DSSSDs we perform a first experiment by using tandem beams of different energies directly sent on the detector and a second experiment by mean of a proton microbeam. Results show that the effective width of the inter-strip region and the efficiency for full energy detection, varies with both detected energy and bias voltage. The experimental results are qualitatively reproduced by a simplified model based on the Shockley-Ramo-Gunn framework.

  20. Measurement of the spatial resolution of wide-pitch silicon strip detectors with large incident angle

    International Nuclear Information System (INIS)

    Kawasaki, T.; Hazumi, M.; Nagashima, Y.

    1996-01-01

    As a part of R ampersand D for the BELLE experiment at KEK-B, we measured the spatial resolution of silicon strip detectors for particles with incident angles ranging from 0 degrees to 75 degrees. These detectors have strips with pitches of 50, 125 and 250 μm on the ohmic side. We have obtained the incident angle dependence which agreed well with a Monte Carlo simulation. The resolution was found to be 11 μm for normal incidence with a pitch of 50 μm, and 29 μm for incident angle of 75 degrees with a pitch of 250μm

  1. Threshold-dependence study for narrow-pitch-strip CMS endcap RPCs

    CERN Document Server

    Lee, Kyong Sei

    2016-01-01

    We report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for high-η RPC triggers in CMS. Prototype double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, have been constructed with 2-mm thick phenolic high-pressure-laminated (HPL) plates. Two different type front-end-electronics (FEE) were used for the digitization of the detector signals; charge-sensitive FEE for the operation of the current double-gap CMS RPCs and higher sensitive voltage-sensitive FEE dedicatedly developed for the fundamental study of RPCs. The prototype RPCs were measured for cosmic muons and gamma rays emitted from a 5.5 GBq 137Cs source. The gamma-signal rates induced in the double-gap and four-gap RPCs installed at a distance of 36 cm from the cesium source ranged from 0.6 to 1.5 kHz cm-2. The muon cluster sizes and the probabilities of occurring large multiplicity were sensitive to the choice of digitization threshold for both type RPCs while the efficiencies we...

  2. Development of microstructure and texture in strip casting grain oriented silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Xu, Yun-Bo, E-mail: yunbo_xu@126.com; Zhang, Yuan-Xiang; Fang, Feng; Lu, Xiang; Liu, Hai-Tao; Wang, Guo-Dong

    2015-04-01

    Grain oriented silicon steel was produced by strip casting and two-stage cold rolling processes. The development of microstructure and texture was investigated by using optical microscopy, X-ray diffraction and electron backscattered diffraction. It is shown that the microstructure and texture evolutions of strip casting grain oriented silicon steel are significantly distinct from those in the conventional processing route. The as-cast strip is composed of coarse solidification grains and characterized by pronounced 〈001〉//ND texture together with very weak Goss texture. The initial coarse microstructure enhances {111} shear bands formation during the first cold rolling and then leads to the homogeneously distributed Goss grains through the thickness of intermediate annealed sheet. After the secondary cold rolling and primary annealing, strong γ fiber texture with a peak at {111}〈112〉 dominates the primary recrystallization texture, which is beneficial to the abnormal growth of Goss grain during the subsequent high temperature annealing. Therefore, the secondary recrystallization of Goss orientation evolves completely after the high temperature annealing and the grain oriented silicon steel with a good magnetic properties (B{sub 8}=1.94 T, P{sub 1.7/50}=1.3 W/kg) can be prepared. - Highlights: • Grain oriented silicon steel was developed by a novel ultra-short process. • Many evenly distributed Goss “seeds” were originated from cold rolled shear bands. • More MnS inhibitors were obtained due to the rapid cooling of strip casing. • The magnetic induction of grain oriented silicon steel was significantly improved.

  3. The depletion properties of silicon microstrip detectors with variable strip pitch

    International Nuclear Information System (INIS)

    Krizmanic, J.F.

    1994-01-01

    We have investigated the depletion properties of trapezoidal shaped silicon microstrip detectors which have variable strip pitch. Four types of detectors were examined: three detectors have constant strip width and a fourth has a varying strip width. The detectors are single sided with readout performed via p + strips. The depletion properties of the devices were measured using two different methods. The first used capacitance versus voltage measurements, while the second used a 1060 nm wavelength laser coupled to a single mode fiber with a mode field diameter less than 10 μm. The small laser spot size allowed for the depletion depth to be measured in a localized area of the detector. The laser induced charge on an electrode was measured as a function of reverse bias voltage using a sensitive charge preamplifier. The depletion voltages of the detectors demonstrate a strong dependence upon the ratio of strip width to strip pitch. Moreover, these measurements show that a large value of this ratio yields a lower depletion voltage and vice versa. (orig.)

  4. Study of micro-strip gas ionisation chambers substrates for CMS experiment at LHC

    International Nuclear Information System (INIS)

    Pallares, A.

    1996-01-01

    High luminosity, expected interaction and dose rates of the future LHC collider require the development of micro-strips gas chambers. In addition to optimization of this new detector, this work is concerned with understanding of gain loss phenomena. Influence of the gas substrate is carefully analysed, as well as theoretical concepts concerning glasses and their behaviour under polarization and irradiation, and the consequence on detection operations.Electron spin resonance is used to study, in standard glass, creation of radiation induced defects which may be charged. (D.L.)

  5. Quality Assurance and Performance Tests of Silicon Detector Modules for the CMS/Tracker

    CERN Document Server

    Dragicevic, Marko

    2005-01-01

    After providing a short overview of the LHC accelerator, the CMS experiment and it’s various detector systems, we will have an in-depth look on silicon semiconductor particle detectors. Various important aspects like theoretical principles, radiation damage and actual design considerations are discussed and the quality assurance scheme for the sensor and module production is introduced. A strong emphasis is made on the ARC module teststand which was set up and operated be the author. Another important aspect in establishing a good quality assurance scheme is flexibility and keeping an eye on the unexpected. At one such occasion, the author had to gather custom made test equipment, to investigate certain effects in silicon sensors manufactured by ST Microelectronics. Conclusions from these measurement could only be drawn very cautiously, as the manufacturing process and many of its subtle changes, remained a well kept secret of the company. Nevertheless, the investigations proofed to be useful and ST Microel...

  6. Investigation of the impact of mechanical stress on the properties of silicon strip sensors

    CERN Document Server

    Affolder, Tony; The ATLAS collaboration

    2017-01-01

    The new ATLAS tracker for phase II will be composed of silicon pixel and strip sensor modules. The strip sensor module consists of silicon sensors, boards and readout chips. Adhesives are used to connect the modular components thermally and mechanically. It was shown that the silicon sensor is exposed to mechanical stress, due to temperature difference between construction and operation. Mechanical stress can damage the sensor and can change the electrical properties. The thermal induced tensile stress near to the surface of a silicon sensor in a module was simulated and the results are compared to a cooled module. A four point bending setup was used to measure the maximum tensile stress of silicon detectors and to verify the piezoresistive effects on two recent development sensor types used in ATLAS (ATLAS07 and ATLAS12). Changes in the interstrip, bulk and bias resistance and capacitance as well as the coupling capacitance and the implant resistance were measured. The Leakage current was observed to decreas...

  7. Studies of adhesives and metal contacts on silicon strip sensors for the ATLAS Inner Tracker

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407830; Moenig, Klaus

    2018-04-04

    This thesis presents studies investigating the use of adhesives on the active area of silicon strip sensors for the construction of silicon strip detector modules for the ATLAS Phase-II Upgrade. 60 ATLAS07 miniature sensors were tested using three UV cure glues in comparison with the current baseline glue (a non-conductive epoxy). The impact of irradiation on the chemical composition of all adhesives under investigation was studied using three standard methods for chemical analysis: quadrupole time-of-flight mass spectroscopy, gel permeability chromatography and gas chromatography combined with mass spectrometry (GC-MS). GC-MS analyses of glue sample extracts before and after irradiation showed molecule cross-linking and broken chemical bonds to different extents and allowed to quantify the radiation hardness of the adhesives under investigation. Probe station measurements were used to investigate electrical characteristics of sensors partially covered with adhesives in comparison with sensors without adhesiv...

  8. Degradation of charge sharing after neutron irradiation in strip silicon detectors with different geometries

    International Nuclear Information System (INIS)

    Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Huse, T.; Tsurin, I.; Wormald, M.

    2013-01-01

    The aim of the CERN/RD50 collaboration is the improvement of the radiation tolerance of semiconductor detectors for future experiments at high-luminosity colliders. In the RD50 framework, evidence of enhanced signal charge in severely irradiated silicon detectors (diodes, segmented planar and 3D devices) was found. The underlying mechanism was labelled charge multiplication. This has been one of the most exciting results from the research activity of RD50 because it could allow for a greatly extended radiation tolerance, if the mechanism is to be found controllable and tuneable. The charge multiplication mechanism is governed by impact ionisation from electrons drifting in high electric field. The electric field profile is influenced by the geometry of the implanted electrodes. In order to investigate the influence of the diode implantation geometry on charge multiplication, the RD50 collaboration has commissioned the production of miniature microstrip silicon sensors with various choices of strip pitch and strip width over pitch (w/p) ratios. Moreover, some of the sensors were produced interleaving readout strips with dummy intermediate ones in order to modify the electric field profile. These geometrical solutions can influence both charge multiplication and charge sharing between adjacent strips. The initial results of this study are here presented

  9. A fast ADC system for silicon μstrips readout

    International Nuclear Information System (INIS)

    Inzani, P.; Pedrini, D.; Sala, S.

    1986-01-01

    A new fast ADC module has been designed. It is part of a large readout system for a high resolution vertex detector consisting of 12 silicon microstrip planes with more than 8000 channels. The module employs a set of monolithic gated integrators on input (LeCroy MIQ 401) multiplexed on a single 8 bit FADC (Thompson EFX8308). A built-in preprocessing, performed through look up tables, accomplishes equalization and reduction of the data and makes high level trigger feasible. As an additional feature, fast histogramming of all the channels in parallel has been made possible with an internal memory. Special care has been paid to realize a low cost and low power consumption system

  10. ATLAS Tracker Upgrade: Silicon Strip Detectors and Modules for the sLHC

    International Nuclear Information System (INIS)

    Lefebvre, Michel; Minano Moya, Mercedes

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. (authors)

  11. ATLAS Tracker Upgrade: Silicon Strip Detectors for the sLHC

    CERN Document Server

    Koehler, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. A key issue ...

  12. ATLAS Tracker Upgrade: Silicon Strip Detectors and Modules for the SLHC

    CERN Document Server

    Minano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown.

  13. Atlas Tracker Upgrade: Silicon Strip Detectors and Modules for the SLHC

    CERN Document Server

    Minano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a significant factor, with the upgraded machine dubbed Super-LHC. The ATLAS experiment will require a new tracker for Super-LHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will imply a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown.

  14. Large-Area Silicon Detectors for the CMS High Granularity Calorimeter

    CERN Document Server

    Pree, Elias

    2017-01-01

    During the so-called Phase-2 Upgrade, the CMS experiment at CERN will undergo significant improvements to cope with the 10-fold luminosity increase of the High Luminosity LHC (HL-LHC) era. Especially the forward calorimetry will suffer from very high radiation levels and intensified pileup in the detectors. For this reason, the CMS collaboration is designing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The CE-E and a large fraction of CE-H will consist of a sandwich structure with silicon as active detector material. This paper presents an overview of the ongoing sensor development for the HGCAL and highlights important design features and measurement techniques. The design and layout of an 8-inch silicon sensor prototype is shown. The hexagonal sensors consist of 235 pads, each with an area of about \\mbox{1~cm$^{2}$}. Furthermore, Synopsys...

  15. Large-area hexagonal silicon detectors for the CMS High Granularity Calorimeter

    Science.gov (United States)

    Pree, E.

    2018-02-01

    During the so-called Phase-2 Upgrade, the CMS experiment at CERN will undergo significant improvements to cope with the 10-fold luminosity increase of the High Luminosity LHC (HL-LHC) era. Especially the forward calorimetry will suffer from very high radiation levels and intensified pileup in the detectors. For this reason, the CMS collaboration is designing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The CE-E and a large fraction of CE-H will consist of a sandwich structure with silicon as active detector material. This paper presents an overview of the ongoing sensor development for the HGCAL and highlights important design features and measurement techniques. The design and layout of an 8-inch silicon sensor prototype is shown. The hexagonal sensors consist of 235 pads, each with an area of about 1 cm2. Furthermore, Synopsys TCAD simulations regarding the high voltage stability of the sensors for different geometric parameters are performed. Finally, two different IV characterisation methods are compared on the same sensor.

  16. Studies on the application of silicon strip counters in the ELAN experiment

    International Nuclear Information System (INIS)

    Listl, R.

    1989-02-01

    In this thesis it had to be shown whether it is possible to perform at the external electron beam at ELSA with its high background particle identification and track reconstruction with a strip counter. In order to have an as good as possible separation between true and false events a coincidence apparture was constructed. Because the signals which the strip counter yields are very small, it had to be provided that all disturbing signals are suppressed. The evaluation shows that by means of the taken measures coincident events can be well separated from background events. In 60% of all events a unique assignment of the event to only one strip is possible. The random rate can be reduced by additional detectors and the by this possible track reconstruction. By improvement of the duty cycle here a further improvement should arise. It is thus possible to perform with a silicon strip counter measurements at the ELAN experiment. By this the possibility results to improve the start-position resolution, the start-angle measurement, and the momentum reconstruction by this, that now a point (track) near to the target can be obtained. If the strip counter is added to the trigger one has a quite strong suppression of the background. (orig./HSI) [de

  17. Study of the effects of neutron irradiation on silicon strip detectors

    International Nuclear Information System (INIS)

    Giubellino, P.; Panizza, G.; Hall, G.; Sotthibandhu, S.; Ziock, H.J.; Ferguson, P.; Sommer, W.F.; Edwards, M.; Cartiglia, N.; Hubbard, B.; Leslie, J.; Pitzl, D.; O'Shaughnessy, K.; Rowe, W.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.

    1992-01-01

    Silicon strip detectors and test structures were exposed to neutron fluences up to Φ=6.1x10 14 n/cm 2 , using the ISIS neutron source at the Rutherford Appleton Laboratory (UK). In this paper we report some of our results concerning the effects of displacement damage, with a comparison of devices made of silicon of different resistivity. The various samples exposed showed a very similar dependence of the leakage current on the fluence received. We studied the change of effective doping concentration, and observed a behaviour suggesting the onset of type inversion at a fluence of ∝2.0x10 13 n/cm 2 , a value which depends on the initial doping concentration. The linear increase of the depletion voltage for fluences higher than the inversion point could eventually determine the maximum fluence tolerable by silicon detectors. (orig.)

  18. Study of the effects of neutron irradiation on silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Giubellino, P.; Panizza, G. (INFN Torino (Italy)); Hall, G.; Sotthibandhu, S. (Imperial Coll., London (United Kingdom)); Ziock, H.J.; Ferguson, P.; Sommer, W.F. (Los Alamos National Lab., NM (United States)); Edwards, M. (Rutherford Appleton Lab., Chilton (United Kingdom)); Cartiglia, N.; Hubbard, B.; Leslie, J.; Pitzl, D.; O' Shaughnessy, K.; Rowe, W.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. (Santa Cruz Inst. for Particle Physics, Univ. California, CA (United States))

    1992-05-01

    Silicon strip detectors and test structures were exposed to neutron fluences up to {Phi}=6.1x10{sup 14} n/cm{sup 2}, using the ISIS neutron source at the Rutherford Appleton Laboratory (UK). In this paper we report some of our results concerning the effects of displacement damage, with a comparison of devices made of silicon of different resistivity. The various samples exposed showed a very similar dependence of the leakage current on the fluence received. We studied the change of effective doping concentration, and observed a behaviour suggesting the onset of type inversion at a fluence of {proportional to}2.0x10{sup 13} n/cm{sup 2}, a value which depends on the initial doping concentration. The linear increase of the depletion voltage for fluences higher than the inversion point could eventually determine the maximum fluence tolerable by silicon detectors. (orig.).

  19. Performance Test Results of a Single-sided Silicon Strip Detector with a Radioactive Source and a Proton Beam

    International Nuclear Information System (INIS)

    Ki, Y. I.; Kah, D. H.; Son, D. H.; Kang, H. D.; Kim, H. J.; Kim, H. O.; Bae, J. B.; Ryu, S.; Park, H.; Kim, K. R.

    2007-01-01

    Due to high intrinsic precision and high speed properties of a silicon material, the silicon detector has been used in various applications such as medical imaging detector, radiation detector, positioning detectors in space science and experimental particle physics. High technology, modern equipment, and deep expertise are required to design and fabricate good quality of silicon sensors. Only few facilities in the world can develop silicon sensors which meet requirements of sensor performances. That is one of main reasons that the silicon sensor is so expensive and it takes time to purchase the silicon sensor once it is ordered. We designed and fabricated AC-coupled single-sided silicon strip sensors and developed front-end electronics and DAQ system to read out sensor signals. The silicon strip sensors were fabricated on a 5-in. n-type silicon wafer which has an orientation, high resistivity (>5 kΩ · cm) and a thickness of 380 μm. We measured the signal-to-noise ratio (SNR) of each channel by using a radioactive source and a 45 MeV proton beam from the MC-50 cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS) in Seoul. We present the measurement results of the SNRs of the silicon strip sensor with a proton beam and radioactive sources

  20. Radiation Damage Effects and Performance of Silicon Strip Detectors using LHC Readout Electronics

    CERN Document Server

    AUTHOR|(CDS)2067734

    1998-01-01

    Future high energy physics experiments as the ATLAS experiment at CERN, will use silicon strip detectors for fast and high precision tracking information. The high hadron fluences in these experiments cause permanent damage in the silicon.Additional energy levels are introduced in the bandgap thus changing the electrical properties such as leakage current and full depletion voltage V_fd .Very high leakage currents are observed after irradiation and lead to higher electronic noise and thus decrease the spatial resolution.V_fd increases to a few hundred volts after irradiation and eventually beyond the point of stable operating voltages. Prototype detectors with either p-implanted strips (p-in-n) and n-implanted strip detectors (n-in-n) were irradiated to the maximum expected fluence in ATLAS.The irradiation and the following study of the current and V_fd were carried out under ATLAS operational conditions.The evolution of V_fd after irradiation is compared to models based on diode irradiations.The qualitative ...

  1. A readout system for position sensitive measurements of X-ray using silicon strip detectors

    CERN Document Server

    Dabrowski, W; Grybos, P; Idzik, M; Kudlaty, J

    2000-01-01

    In this paper we describe the development of a readout system for X-ray measurements using silicon strip detectors. The limitation concerning the inherent spatial resolution of silicon strip detectors has been evaluated by Monte Carlo simulation and the results are discussed. The developed readout system is based on the binary readout architecture and consists of two ASICs: RX32 front-end chip comprising 32 channels of preamplifiers, shapers and discriminators, and COUNT32 counter chip comprising 32 20-bit asynchronous counters and the readout logic. This work focuses on the design and performance of the front-end chip. The RX32 chip has been optimised for a low detector capacitance, in the range of 1-3 pF, and high counting rate applications. It can be used with DC coupled detectors allowing the leakage current up to a few nA per strip. For the prototype chip manufactured in a CMOS process all basic parameters have been evaluated by electronic measurements. The noise below 140 el rms has been achieved for a ...

  2. Technology Development on P-type Silicon Strip Detectors for Proton Beam Dosimetry

    International Nuclear Information System (INIS)

    Aouadi, K.; Bouterfa, M.; Delamare, R.; Flandre, D.; Bertrand, D.; Henry, F.

    2013-06-01

    In this paper, we present a technology for the fabrication of n-in-p silicon strip detectors, which is based on the use of Al 2 O 3 oxide compared to p-spray insulation scheme. This technology has been developed using the best technological parameters deduced from simulations, particularly for the p-spray implantation parameters. Different wafers were processed towards the fabrication of the radiation detectors with p-spray insulation and Al 2 O 3 . The evaluation of the prototype detectors has been carried out by performing the electrical characterization of the devices through the measurement of current-voltage and capacitance-voltage characteristics, as well as the measurement of detection response under radiation. The results of electrical measurements indicate that detectors fabricated with Al 2 O 3 exhibit a dark current several times lower than p-spray detectors and show an excellent electrical insulation between strips with a higher inter-strip resistance. Response of Al 2 O 3 strip detector under radiation has been found better. The resulting improved output signal dynamic range finally makes the use of Al 2 O 3 more attractive. (authors)

  3. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    CERN Document Server

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of the ITS use double-sided silicon strip detectors. This thesis focuses on testing of these detectors and performance studies of the detector module prototypes at the beam test. Silicon strip detector layers will require about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bond...

  4. Signals from fluorescent materials on the surface of silicon micro-strip sensors

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2017-01-01

    For the High-Luminosity Upgrade of the Large Hadron Collider at CERN, the ATLAS Inner Detector will be replaced with a new, all-silicon tracker. In order to minimise the amount of material in the detector, circuit boards with readout electronics will be glued on to the active area of the sensor. Several adhesives investigated to be used for the construction of detector modules were found to become fluorescent when exposed to UV light. These adhesives could become a light source in the high-radiation environment of the ATLAS detector. The effect of fluorescent material covering the sensor surface in a high- radiation environment has been studied for a silicon micro-strip sensor using a micro-focused X-ray beam. By pointing the beam both inside the sensor and parallel to the sensor surface, the sensor responses from direct hits and fluorescence can be compared with high precision. This contribution presents a setup to study the susceptibility of silicon strip sensors to light contamination from fluorescent mate...

  5. ATLAS Tracker Upgrade: Silicon Strip Detectors for the sLHC

    CERN Document Server

    Koehler, M; The ATLAS collaboration

    2010-01-01

    To extend the physics potential of the Large Hadron Colider (LHC) at CERN, upgrades of the accelerator complex and the detectors towards the Super-LHC (sLHC) are foreseen. The upgrades, separated in Phase-1 and Phase-2, aim at increasing the luminosity while leaving the energy of the colliding particles (7 TeV per proton beam) unchanged. After the Phase-2 upgrade the instantaneous luminosity will be a factor of 5-10 higher than the design luminosity of the LHC. Due to the increased track rate and extreme radiation levels for the tracking detectors, upgrades of the detectors are necessary. At ATLAS, one of the two general purpose detectors at the LHC, the current inner detector will be replaced by an all-silicon tracker. This article describes the plans for the Phase-2 upgrade of the silicon strip detector of ATLAS. Radiation hard n-in-p silicon detectors with shorter strips than currently installed in ATLAS are planned. Results of measurements with these sensors and plans for module designs will be discussed.

  6. A Forward Silicon Strip System for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Wonsak, S; The ATLAS collaboration

    2012-01-01

    The LHC is successfully accumulating luminosity at a centre-of-mass energy of 8 TeV this year. At the same time, plans are rapidly progressing for a series of upgrades, culminating roughly eight years from now in the High Luminosity LHC (HL-LHC) project. The HL-LHC is expected to deliver approximately five times the LHC nominal instantaneous luminosity, resulting in a total integrated luminosity of around 3000 fb-1 by 2030. The ATLAS experiment has a rather well advanced plan to build and install a completely new Inner Tracker (IT) system entirely based on silicon detectors by 2020. This new IT will be made from several pixel and strip layers. The silicon strip detector system will consist of single-sided p-type detectors with five barrel layers and six endcap (EC) disks on each forward side. Each disk will consist of 32 trapezoidal objects dubbed “petals”, with all services (cooling, read-out, command lines, LV and HV power) integrated into the petal. Each petal will contain 18 silicon sensors grouped in...

  7. Pre- and post-irradiation performance of FBK 3D silicon pixel detectors for CMS

    International Nuclear Information System (INIS)

    Krzywda, A.; Alagoz, E.; Bubna, M.; Obertino, M.; Solano, A.; Arndt, K.; Uplegger, L.; Betta, G.F. Dalla; Boscardin, M.; Ngadiuba, J.; Rivera, R.; Menasce, D.; Moroni, L.; Terzo, S.; Bortoletto, D.; Prosser, A.; Adreson, J.; Kwan, S.; Osipenkov, I.; Bolla, G.

    2014-01-01

    In preparation for the tenfold luminosity upgrade of the Large Hadron Collider (the HL-LHC) around 2020, three-dimensional (3D) silicon pixel sensors are being developed as a radiation-hard candidate to replace the planar ones currently being used in the CMS pixel detector. This study examines an early batch of FBK sensors (named ATLAS08) of three 3D pixel geometries: 1E, 2E, and 4E, which respectively contain one, two, and four readout electrodes for each pixel, passing completely through the bulk. We present electrical characteristics and beam test performance results for each detector before and after irradiation. The maximum fluence applied is 3.5×10 15 n eq /cm 2

  8. The Detector Control Unit An ASIC for the monitoring of the CMS silicon tracker

    CERN Document Server

    Magazzù, G; Moreira, P

    2004-01-01

    The Detector Control Unit (DCU) is an ASIC developed as the central building block of a monitoring system for the CMS Tracker. Leakage currents in the Silicon detectors, power supply voltages of the readout electronics and local temperatures will be monitored in order to guarantee safe operating conditions during the 10-years lifetime in the LHC environment. All these measurements can be performed by an A/D converter preceded by an analog multiplexer and properly interfaced to the central control system. The requirements in terms of radiation tolerance, low-power dissipation and integration with the rest of the system led to the design of a custom integrated circuit. Its structure and characteristics are described in this paper. (6 refs).

  9. Test of the CMS microstrip silicon tracker readout and control system

    CERN Document Server

    Zghiche, A

    2001-01-01

    The Microstrip Silicon tracker of the CMS detector is designed to provide robust particle tracking and vertex reconstruction within a strong magnetic field in the high luminosity environment of the LHC. The Tracker readout system employs Front-End Driver cards to digitize and buffer the analogue data arriving via optical links from on detector pipeline chips. The control chain of the front-end electronic is built to operate via optical fibers in order to shield the communications from the outside noise. Components close to the final design have been assembled to be tested in the X5 beam area at CERN where a dedicated 25 ns temporal structure beam has been made available by the SPS. This paper describes the hardware and the software developed for readout and control of data acquired by the front-end electronics operating at 40 MHz, Some preliminary results of the tests performed in the 25 ns beam are also given. (8 refs).

  10. Performance of CMS TOB Silicon Detector Modules on a Double Sided Prototype ROD

    CERN Document Server

    Valls, Juan

    2004-01-01

    In this paper we summarize results of the performance of CMS TOB silicon detector modules mounted on the first assembled double-sided rod at CERN. Results are given in terms of noise, noise occupancies, signal to noise ratios and signal efficiencies. The noise figures from the rod optical setup are compared to the single module setup with electrical read out. Both test setups show a small or negligible common mode noise picked up by the modules. Similar noise results are obtained in both setups after full calibration gain values are applied. We measure total noise values of ~1600 electrons in peak mode and ~2600 electrons in deconvolution mode. Signal to noise ratios of the order of 15 (25) for deconvolution (peak) operation modes are found. The noise occupancies on the modules have important implications for the zero suppression algorithms which the CMS Tracker FEDs will use to reduce t he data volume flowing to the DAQ. The detector signal efficiencies and noise occupancies are also shown as a function of t...

  11. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Mori, R., E-mail: riccardo.mori@physik.uni-freiburg.de [Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Arratia-Munoz, M.I.; Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ullan, M.; Fleta, C.; Fernandez-Tejero, J. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Gregor, I.M.; Lohwasser, K. [DESY, Notkestrasse 85, 22607 Hambrug (Germany); and others

    2016-09-21

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  12. A high rate, low noise, x-ray silicon strip detector system

    International Nuclear Information System (INIS)

    Ludewigt, B.; Jaklevic, J.; Kipnis, I.; Rossington, C.; Spieler, H.

    1993-11-01

    An x-ray detector system, based on a silicon strip detector wire-bonded to a low noise charge-senstive amplifier integrated circuit, has been developed for synchrotron radiation experiments which require very high count rates and good energy resolution. Noise measurements and x-ray spectra were taken using a 6 mm long, 55 μm pitch strip detector in conjunction with a prototype 16-channel charge-sensitive preamplifier, both fabricated using standard 1.2 μm CMOS technology. The detector system currently achieves an energy resolution of 350 eV FWHM at 5.9 key, 2 μs peaking time, when cooled to -5 degree C

  13. Developing silicon strip detectors with a large-scale commercial foundry

    Energy Technology Data Exchange (ETDEWEB)

    König, A., E-mail: axel.koenig@oeaw.ac.at [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Bartl, U. [Infineon Technologies Austria AG, Villach (Austria); Bergauer, T.; Dragicevic, M. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Hacker, J. [Infineon Technologies Austria AG, Villach (Austria); Treberspurg, W. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria)

    2016-07-11

    Since 2009 the Institute of High Energy Physics (HEPHY) in Vienna is developing a production process for planar silicon strip sensors on 6-in. wafers together with the semiconductor manufacturer Infineon Technologies. Four runs with several batches of wafers, each comprising six different sensors, were manufactured and characterized. A brief summary of the recently completed 6-in. campaign is given. Milestones in sensor development as well as techniques to improve the sensor quality are discussed. Particular emphasis is placed on a failure causing areas of defective strips which accompanied the whole campaign. Beam tests at different irradiation facilities were conducted to validate the key capability of particle detection. Another major aspect is to prove the radiation hardness of sensors produced by Infineon. Therefore, neutron irradiation studies were performed.

  14. Large tuning of birefringence in two strip silicon waveguides via optomechanical motion.

    Science.gov (United States)

    Ma, Jing; Povinelli, Michelle L

    2009-09-28

    We present an optomechanical method to tune phase and group birefringence in parallel silicon strip waveguides. We first calculate the deformation of suspended, parallel strip waveguides due to optical forces. We optimize the frequency and polarization of the pump light to obtain a 9 nm deformation for an optical power of 20 mW. Widely tunable phase and group birefringence can be achieved by varying the pump power, with maximum values of 0.026 and 0.13, respectively. The giant phase birefringence allows linear to circular polarization conversion within 30 microm for a pump power of 67 mW. The group birefringence gives a tunable differential group delay of 6fs between orthogonal polarizations. We also evaluate the tuning performance of waveguides with different cross sections.

  15. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sevilla, S., E-mail: Sergio.Gonzalez.Sevilla@cern.ch [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Barbier, G. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Anghinolfi, F. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Cadoux, F.; Clark, A. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Dabrowski, W.; Dwuznik, M. [AGH University of Sceince and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Ferrere, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Garcia, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Ikegami, Y. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hara, K. [University of Tsukuba, School of Pure and Applied Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Jakobs, K. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Kaplon, J. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Koriki, T. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Lacasta, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); La Marra, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Marti i Garcia, S. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Parzefall, U. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Pohl, M. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Terada, S. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2011-04-21

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10{sup 34} cm{sup -2} s{sup -1}. It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown.

  16. Gamma Large Area Silicon Telescope (GLAST): Applying silicon strip detector technology to the detection of gamma rays in space

    International Nuclear Information System (INIS)

    Atwood, W.B.

    1993-06-01

    The recent discoveries and excitement generated by space satellite experiment EGRET (presently operating on Compton Gamma Ray Observatory -- CGRO) have prompted an investigation into modern detector technologies for the next generation space based gamma ray telescopes. The GLAST proposal is based on silicon strip detectors as the open-quotes technology of choiceclose quotes for space application: no consumables, no gas volume, robust (versus fragile), long lived, and self triggerable. The GLAST detector basically has two components: a tracking module preceding a calorimeter. The tracking module has planes of crossed strip (x,y) 300 μm pitch silicon detectors coupled to a thin radiator to measure the coordinates of converted electron-positron pairs. The gap between the layers (∼5 cm) provides a lever arm for track fitting resulting in an angular resolution of <0.1 degree at high energy. The status of this R ampersand D effort is discussed including details on triggering the instrument, the organization of the detector electronics and readout, and work on computer simulations to model this instrument

  17. A Low Mass On-Chip Readout Scheme for Double-Sided Silicon Strip Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Irmler, C., E-mail: christian.irmler@oeaw.ac.at [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Bergauer, T.; Frankenberger, A.; Friedl, M.; Gfall, I. [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); Kah, D.H.; Kang, K.H. [Kyungpook National University, Department of Physics, 1370 Sankyuk Dong, Buk Gu, Daegu 702-701 (Korea, Republic of); Rao, K.K. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Kato, E. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Mohanty, G.B. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Negishi, K. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Onuki, Y.; Shimizu, N. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsuboyama, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Valentan, M. [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2013-12-21

    B-factories like the KEKB in Tsukuba, Japan, operate at relatively low energies and thus require detectors with very low material budget in order to minimize multiple scattering. On the other hand, front-end chips with short shaping time like the APV25 have to be placed as close to the sensor strips as possible to reduce the capacitive load, which mainly determines the noise figure. In order to achieve both – minimal material budget and low noise – we developed a readout scheme for double-sided silicon detectors, where the APV25 chips are placed on a flexible circuit, which is glued onto the top side of the sensor. The bottom-side strips are connected by two flexible circuits, which are bent around the edge of the sensor. This so-called “Origami” design will be utilized to build the Silicon Vertex Detector of the Belle II experiment, which will consist of four layers made from ladders with up to five double-sided silicon strip sensors in a row. Each ladder will be supported by two ribs made of a carbon fiber and Airex foam core sandwich. The heat dissipated by the front-end chips will be removed by a highly efficient two-phase CO{sub 2} system. Thanks to the Origami concept, all APV25 chips are aligned in a row and thus can be cooled by a single thin cooling pipe per ladder. We present the concept and the assembly procedure of the Origami chip-on-sensor modules.

  18. A Low Mass On-Chip Readout Scheme for Double-Sided Silicon Strip Detectors

    International Nuclear Information System (INIS)

    Irmler, C.; Bergauer, T.; Frankenberger, A.; Friedl, M.; Gfall, I.; Higuchi, T.; Ishikawa, A.; Joo, C.; Kah, D.H.; Kang, K.H.; Rao, K.K.; Kato, E.; Mohanty, G.B.; Negishi, K.; Onuki, Y.; Shimizu, N.; Tsuboyama, T.; Valentan, M.

    2013-01-01

    B-factories like the KEKB in Tsukuba, Japan, operate at relatively low energies and thus require detectors with very low material budget in order to minimize multiple scattering. On the other hand, front-end chips with short shaping time like the APV25 have to be placed as close to the sensor strips as possible to reduce the capacitive load, which mainly determines the noise figure. In order to achieve both – minimal material budget and low noise – we developed a readout scheme for double-sided silicon detectors, where the APV25 chips are placed on a flexible circuit, which is glued onto the top side of the sensor. The bottom-side strips are connected by two flexible circuits, which are bent around the edge of the sensor. This so-called “Origami” design will be utilized to build the Silicon Vertex Detector of the Belle II experiment, which will consist of four layers made from ladders with up to five double-sided silicon strip sensors in a row. Each ladder will be supported by two ribs made of a carbon fiber and Airex foam core sandwich. The heat dissipated by the front-end chips will be removed by a highly efficient two-phase CO 2 system. Thanks to the Origami concept, all APV25 chips are aligned in a row and thus can be cooled by a single thin cooling pipe per ladder. We present the concept and the assembly procedure of the Origami chip-on-sensor modules

  19. A programmable electronic Microplex Driver Unit for readout of silicon strip detectors

    International Nuclear Information System (INIS)

    Bairstow, R.

    1990-08-01

    The unit provides the necessary signals to drive arrays of Microplex devices used to readout silicon strip Vertex detectors as used in DELPHI and OPAL at CERN. The unit has a CAMAC interface allowing operation of the unit by computer in a Remote-control mode. The computer can control all the essential parameters of the drive signals, together with the operational characteristics of the system. Alternatively, the unit can be used in a stand-alone Local-control mode. In this case the front panel controls and displays enable the user to set up the unit. (author)

  20. A double sided silicon strip detector as a DRAGON end detector

    CERN Document Server

    Wrede, C; Rogers, J G; D'Auria, J M

    2003-01-01

    The new DRAGON facility (detector of recoils and gammas of nuclear reactions), located at the TRlUMF-ISAC Radioactive Beams facility in Vancouver, Canada is now operational. This facility is used to study radiative proton capture reactions in inverse kinematics (heavy ion beam onto a light gaseous target) with both stable beams and radioactive beams of mass A=13-26 in the energy range 0.15-1.5 MeV/u. A double sided silicon strip detector (DSSSD) has been used to detect recoil ions. Tests have been performed to determine the performance of this DSSSD.

  1. The SVX3D integrated circuit for dead-timeless silicon strip readout

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M. E-mail: mgs@lbl.gov; Milgrome, O.; Zimmerman, T.; Volobouev, I.; Ely, R.P.; Connolly, A.; Fish, D.; Affolder, T.; Sill, A

    1999-10-01

    The revision D of the SVX3 readout IC has been fabricated in the Honeywell radiation-hard 0.8 {mu}m bulk CMOS process, for instrumenting 712,704 silicon strips in the upgrade to the Collider Detector at Fermilab. This final revision incorporates new features and changes to the original architecture that were added to meet the goal of dead-timeless operation. This paper describes the features central to dead-timeless operation, and presents test data for un-irradiated and irradiated SVX3D chips. (author)

  2. A CMOS 130nm Evaluation digitzer chip for silicon strips readout

    CERN Document Server

    Da Silva, W; Dhellot, M; Fougeron, D; Genat, J F; Hermel, R; Huppert, J f; Kapusta, F; Lebbolo, H; Pham, T H; Rossel, F; Savoy-navarro, A; Sefri, R; Vilalte

    2007-01-01

    A CMOS 130nm evaluation chip intended to read Silicon strip detectors at the ILC has been designed and successfully tested. Optimized for a detector capacitance of 10 pF, it includes four channels of charge integration, pulse shaping, a 16-deep analogue sampler triggered on input analogue sums, and parallel analogue to digital conversion. Tests results of the full chain are reported, demonstrating the behaviour and performance of the full sampling process and analogue to digital conversion. Each channel dissipates less than one milli-Watt static power.

  3. Macro Pixel ASIC (MPA): The readout ASIC for the pixel-strip (PS) module of the CMS outer tracker at HL-LHC

    CERN Document Server

    Ceresa, Davide; Kloukinas, Konstantinos; Jan Kaplon; Bialas, Wojciech; Re, Valerio; Traversi, Gianluca; Gaioni, Luigi; Ratti, Lodovico

    2014-01-01

    The CMS tracker at HL-LHC is required to provide prompt information on particles with high transverse momentum to the central Level\\,1 trigger. For this purpose, the innermost part of the outer tracker is based on a combination of a pixelated sensor with a short strip sensor, the so-called Pixel-Strip module (PS). The readout of these sensors is carried out by distinct ASICs, the Strip Sensor ASIC (SSA), for the strip layer, and the Macro Pixel ASIC (MPA) for the pixel layer. The processing of the data directly on the front-end module represents a design challenge due to the large data volume (30720\\,pixels and 1920\\,strips per module) and the limited power budget. This is the reason why several studies have been carried out to find the best compromise between ASICs performance and power consumption. This paper describes the current status of the MPA ASIC development where the logic for generating prompt information on particles with high transverse momentum is implemented. An overview of the readout method i...

  4. Operation and Performance of the CMS Outer Tracker

    CERN Document Server

    Butz, Erik Manuel

    2017-01-01

    The CMS Silicon Strip Tracker with its more than 15000 silicon modules and 200\\,m$^2$ of active silicon area has been running together with the other subsystems of CMS for several years. We present the performance of the detector in the LHC Run 2 data taking. Results for signal-to-noise, hit efficiency and single hit resolution will be presented. We review the behavior of the system when running at beyond-design instantaneous luminosity and describe challenges observed under these conditions. The evolution of detector parameters under the influence of radiation damage will be presented and compared to simulations.

  5. Detector and Front-end electronics for ALICE and STAR silicon strip layers

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Higueret, S; Jundt, F; Kühn, C E; Lutz, Jean Robert; Suire, C; Tarchini, A; Berst, D; Blondé, J P; Clauss, G; Colledani, C; Deptuch, G; Dulinski, W; Hu, Y; Hébrard, L; Kucewicz, W; Boucham, A; Bouvier, S; Ravel, O; Retière, F

    1998-01-01

    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented.

  6. Study of 236U/238U ratio at CIRCE using a 16-strip silicon detector with a TOF system

    Science.gov (United States)

    De Cesare, M.; De Cesare, N.; D'Onofrio, A.; Gialanella, L.; Terrasi, F.

    2015-04-01

    Accelerator Mass Spectrometry (AMS) is presently the most sensitive technique for the measurement of long-lived actinides, e.g. 236U and xPu isotopes. A new actinide AMS system, based on a 3-MV pelletron tandem accelerator, is operated at the Center for Isotopic Research on Cultural and Environmental Heritage (CIRCE) in Caserta, Italy. In this paper we report on the procedure adopted to increase the 236U abundance sensitivity as low as possible. The energy and position determinations of the 236U ions, using a 16-strip silicon detector have been obtained. A 236U/238U isotopic ratio background level of about 2.9×10-11 was obtained, summing over all the strips, using a Time of Flight-Energy (TOF-E) system with a 16-strip silicon detector (4.9×10-12 just with one strip).

  7. Study of 236U/238U ratio at CIRCE using a 16-strip silicon detector with a TOF system

    Directory of Open Access Journals (Sweden)

    De Cesare M.

    2015-01-01

    Full Text Available Accelerator Mass Spectrometry (AMS is presently the most sensitive technique for the measurement of long-lived actinides, e.g. 236U and xPu isotopes. A new actinide AMS system, based on a 3-MV pelletron tandem accelerator, is operated at the Center for Isotopic Research on Cultural and Environmental Heritage (CIRCE in Caserta, Italy. In this paper we report on the procedure adopted to increase the 236U abundance sensitivity as low as possible. The energy and position determinations of the 236U ions, using a 16-strip silicon detector have been obtained. A 236U/238U isotopic ratio background level of about 2.9×10−11 was obtained, summing over all the strips, using a Time of Flight-Energy (TOF-E system with a 16-strip silicon detector (4.9×10−12 just with one strip.

  8. Tracking performance with cosmic rays in CMS

    International Nuclear Information System (INIS)

    Cerati, G.B.

    2009-01-01

    The CMS Tracker is the biggest all-silicon detector in the world and is designed to be extremely efficient and accurate even in a very hostile environment such as the one close to the CMS collision point. It consists of an inner pixel detector, made of three barrel layers (48M pixels) and four forward disks (16M pixels), and an outer micro-strip detector, divided in two barrel sub-detectors, TIB and TOB, and two endcap sub-detectors, TID and TEC, for a total of 9.6M strips. The commissioning of the CMS Tracker detector has been initially carried out at the Tracker Integration Facility at CERN (TIF), where cosmic ray data were collected for the strip detector only, and is still ongoing at the CMS site (LHC Point 5). Here the Strip and Pixel detectors have been installed in the experiment and are taking part to the cosmic global-runs. After an overview of the tracking algorithms for cosmic-ray data reconstruction, the resulting tracking performance on cosmic data both at TIF and at P5 are presented. The excellent performance proves that the CMS Tracker is ready for the first collisions foreseen for 2009.

  9. The PASTA chip for the silicon micro strip sensor of the PANDA MVD

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, Alberto; Brinkmann, Kai-Thomas; Di Pietro, Valentino; Quagli, Tommaso; Schnell, Robert; Zaunick, Hans-Georg [II. Physikalisches Institut, Justus-Liebig-Universitaet, Giessen (Germany); Ritman, James; Stockmanns, Tobias; Zambanini, Andre [Forschungszentrum Juelich (Germany); Rivetti, Angelo; Rolo, Manuel [INFN Sezione di Torino (Italy); Collaboration: PANDA-Collaboration

    2016-07-01

    In the Micro Vertex Detector, which is the innermost detector of PANDA, there are two different types of sensors: hybrid pixel and double sided micro strips. My work is focused on the development of the ASIC readout for the strips, which in the PANDA experiment must cope with a hit rate up to 50 kHz per channel. The energy loss measurement of the particles crossing the silicon sensor is obtained by implementing the Time over Threshold technique. The first PASTA (PANDA Strip ASIC) prototype is based on a Time to Digital Converter with an analog clock interpolator which combines good time resolution with a low power consumption. A full size chip was developed in a 0.11μ m CMOS technology and delivered in Autumn 2015. It features 64 channels with both analog and digital parts, a digital global controller, LVDS drivers and integrated bias. In the presentation, an overview of PASTA and the results of the first tests is presented.

  10. Optimizing the quality of silicon strip sensors produced by Infineon Technologies Austria AG

    International Nuclear Information System (INIS)

    Treberspurg, W; Bergauer, T; Dragicevic, M; König, A; Bartl, U; Hacker, J; Wübben, T

    2014-01-01

    The tracking systems of most modern particle physics experiments are realized by silicon based sensors. The size of such systems has continuously increased and nowadays a sensitive area of several 100 m 2 has to be covered. This large amount of sensors might exceed the production capabilities of existing companies and institutes. Therefore the Institute of High Energy Physics of the Austrian Academy of Sciences (HEPHY) and the European semiconductor manufacturer Infineon Technologies Austria AG developed together a production process for p-on-n strip sensors. Although the first prototype run has shown a promising quality, it has been observed that weak strips exist, which are mainly located at distinctive areas on each wafer. At these areas the affected parameters are correlated to each other. A similar behaviour could be reproduced with a smaller second batch, whose sensors have been used for further analysis and advanced measurements. This paper sums up the characteristic behaviour of the specific effect and presents different possibilities how to cure the sensors. The systematic accumulation of weak strips can be traced back to a specific operation during the fabrication process. All data strongly indicate that the effect is caused by local charging effects on an isolating layer

  11. Transparent silicon strip sensors for the optical alignment of particle detector systems

    International Nuclear Information System (INIS)

    Blum, W.; Kroha, H.; Widmann, P.

    1995-05-01

    Modern large-area precision tracking detectors require increasing accuracy for the alignment of their components. A novel multi-point laser alignment system has been developed for such applications. The position of detector components with respect to reference laser beams is monitored by semi-transparent optical position sensors which work on the principle of silicon strip photodiodes. Two types of custom designed transparent strip sensors, based on crystalline and on amorphous silicon as active material, have been studied. The sensors are optimised for the typical diameters of collimated laser beams of 3-5 mm over distances of 10-20 m. They provide very high position resolution, on the order of 1 μm, uniformly over a wide measurement range of several centimeters. The preparation of the sensor surfaces requires special attention in order to achieve high light transmittance and minimum distortion of the traversing laser beams. At selected wavelengths, produced by laser diodes, transmission rates above 90% have been achieved. This allows to position more than 30 sensors along one laser beam. The sensors will be equipped with custom designed integrated readout electronics. (orig.)

  12. Impact of low-dose electron irradiation on n+p silicon strip sensors

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruehwirth, R.; Hoch, M.; Hrubec, J.; Krammer, M.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Luyckx, S.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Grebenyuk, A.; Lenzi, Th.; Leonard, A.; Maerschalk, Th.; Mohammadi, A.; Pernie, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; D'Hondt, J.; Daci, N.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Mulders, P.; Van Onsem, G.; Van Parijs, I.; Strom, D.A.; Basegmez, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; De Callatay, B.; Delaere, C.; Pree, T.Du; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Michotte, D.; Nuttens, C.; Perrini, L.; Pagano, D.; Quertenmont, L.; Selvaggi, M.; Marono, M.Vidal; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G.H.; Harkonen, J.; Lampen, T.; Luukka, P.R.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Tuuva, T.; Beaulieu, G.; Boudoul, G.; Combaret, C.; Contardo, D.; Gallbit, G.; Lumb, N.; Mathez, H.; Mirabito, L.; Perries, S.; Sabes, D.; Vander Donckt, M.; Verdier, P.; Viret, S.; Zoccarato, Y.; Agram, J.L.; Conte, E.; Fontaine, J.Ch.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.M.; Chabert, E.; Charles, L.; Goetzmann, Ch.; Gross, L.; Hosselet, J.; Mathieu, C.; Richer, M.; Skovpen, K.; Autermann, C.; Edelhoff, M.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schwering, G.; Wittmer, B.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Geisler, M.; Pooth, O.; Stahl, A.; Bartosik, N.; Behr, J.; Burgmeier, A.; Calligaris, L.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Fluke, G.; Garcia, J.Garay; Gizhko, A.; Hansen, K.; Harb, A.; Hauk, J.; Kalogeropoulos, A.; Kleinwort, C.; Korol, I.; Lange, W.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Schroeder, M.; Seitz, C.; Spannagel, S.; Zuber, A.; Biskop, H.; Blobel, V.; Buhmann, P.; Centis-Vignali, M.; Draeger, A.R.; Erfle, J.; Garutti, E.; Haller, J.; Henkel, Ch.; Hoffmann, M.; Junkes, A.; Klanner, R.; Lapsien, T.; Mattig, S.; Matysek, M.; Perieanu, A.; Poehlsen, J.; Poehlsen, T.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schuwalow, S.; Schwandt, J.; Sola, V.; Steinbruck, G.; Vormwald, B.; Wellhausen, J.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Eber, R.; Freund, B.; Hartmann, F.; Hauth, Th.; Heindl, S.; Hoffmann, K.H.; Husemann, U.; Kornmeyer, A.; Mallows, S.; Muller, Th.; Nuernberg, A.; Printz, M.; Simonis, H.J.; Steck, P.; Weber, M.; Weiler, Th.; Bhardwaj, A.; Kumar, A.; Ranjan, K.; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Creanza, D.; De Palma, M.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Di Mattia, A.; Potenza, R.; Saizu, M.A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Civinini, C.; Gallo, E.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Ciulli, V.; D'Alessandro, R.; Gonzi, S.; Gori, V.; Focardi, E.; Lenzi, P.; Scarlini, E.; Tropiano, A.; Viliani, L.; Ferro, F.; Robutti, E.; Lo Vetere, M.; Gennai, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.; Dinardo, M.; Fiorendi, S.; Manzoni, R.A.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Dorigo, T.; Giubilato, P.; Pozzobon, N.; Tosi, M.; Zucchetta, A.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Bilei, G.M.; Bissi, L.; Checcucci, B.; Magalotti, D.; Menichelli, M.; Saha, A.; Servoli, L.; Storchi, L.; Biasini, M.; Conti, E.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Salvatore, M.; Santocchia, A.; Solestizi, L.A.; Spiezia, A.; Demaria, N.; Rivetti, A.; Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Migliore, E.; Monteil, E.; Musich, M.; Pacher, L.; Ravera, F.; Romero, A.; Solano, A.; Trapani, P.; Jaramillo Echeverria, R.; Fernandez, M.; Gomez, G.; Moya, D.; F. Gonzalez Sanchez, J.; Munoz Sanchez, F.J.; Vila, I.; Virto, A.L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Breuker, H.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Alfonso, M.; D'Auria, A.; Detraz, S.; De Visscher, S.; Deyrail, D.; Faccio, F.; Felici, D.; Frank, N.; Gill, K.; Giordano, D.; Harris, P.; Honma, A.; Kaplon, J.; Kornmayer, A.; Kortelainen, M.; Kottelat, L.; Kovacs, M.; Mannelli, M.; Marchioro, A.; Marconi, S.; Martina, S.; Mersi, S.; Michelis, S.; Moll, M.; Onnela, A.; Pakulski, T.; Pavis, S.; Peisert, A.; Pernot, J.F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Rzonca, M.; Stoye, M.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; Bani, L.; di Calafiori, D.; Casal, B.; Djambazov, L.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Hits, D.; Horisberger, U.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Perrozzi, L.; Roeser, U.; Rossini, M.; Starodumov, A.; Takahashi, M.; Wallny, R.; Amsler, C.; Bosiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.H.; Dietz, C.; Grundler, U.; Hou, W.S.; Lu, R.S.; Moya, M.; Wilken, R.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; El Nasr-Storey, S.Seif; Cole, J.; Hobson, P.; Leggat, D.; Reid, I.D.; Teodorescu, L.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; Magnan, A.M.; Pesaresi, M.; Raymond, D.M.; Uchida, K.; Coughlan, J.A.; Harder, K.; Ilic, J.; Tomalin, I.R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Malberti, M.; Olmedo, M.; Cerati, G.; Sharma, V.; Vartak, A.; Yagil, A.; Della Porta, G.Zevi; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; McColl, N.; Mullin, S.; White, D.; Cumalat, J.P.; Ford, W.T.; Gaz, A.; Krohn, M.; Stenson, K.; Wagner, S.R.; Baldin, B.; Bolla, G.; Burkett, K.; Butler, J.; Cheung, H.; Chramowicz, J.; Christian, D.; Cooper, W.E.; Deptuch, G.; Derylo, G.; Gingu, C.; Gruenendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Jung, A.; Joshi, U.; Kahlid, F.; Lei, C.M.; Lipton, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Yin, H.; Adams, M.R.; Berry, D.R.; Evdokimov, A.; Evdokimov, O.; Gerber, C.E.; Hofman, D.J.; Kapustka, B.K.; O'Brien, C.; Sandoval Gonzalez, D.I.; Trauger, H.; Turner, P.; Parashar, N.; Stupak, J., III; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D.H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Majumder, D.; Noonan, D.; Sanders, S.; Stringer, R.; Ivanov, A.; Makouski, M.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J.G.; Cremaldi, L.M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Bose, S.; Claes, D.R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Meier, F.; Monroy, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Duggan, D.; Halkiadakis, E.; Lath, A.; Park, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Mendez, H.; Ramirez Vargas, J.E.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Kaufman, G.; Mirman, N.; Ryd, A.; Salvati, E.; Skinnari, L.; Thom, J.; Thompson, J.; Tucker, J.; Winstrom, L.; Akgun, B.; Ecklund, K.M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K.A.; Delannoy, A.G.; D'Angelo, P.; Johns, W.

    2015-01-01

    The response of n+p silicon strip sensors to electrons from a Sr-90 source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics K.K. on 200 micrometer thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 micrometer, and both p-stop and p-spray isolation of the n+ strips were studied. The electrons from the Sr-90 source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate in the SiO2 at the maximum was about 50 Gy/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80{\\deg}C and annealing times of 18 hours, showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positi...

  13. Output factor determination for dose measurements in axial and perpendicular planes using a silicon strip detector

    Science.gov (United States)

    Abou-Haïdar, Z.; Bocci, A.; Alvarez, M. A. G.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Ovejero, M. C.; Quesada, J. M.; Arráns, R.; Prieto, M. Ruiz; Vega-Leal, A. Pérez; Nieto, F. J. Pérez

    2012-04-01

    In this work we present the output factor measurements of a clinical linear accelerator using a silicon strip detector coupled to a new system for complex radiation therapy treatment verification. The objective of these measurements is to validate the system we built for treatment verification. The measurements were performed at the Virgin Macarena University Hospital in Seville. Irradiations were carried out with a Siemens ONCOR™ linac used to deliver radiotherapy treatment for cancer patients. The linac was operating in 6 MV photon mode; the different sizes of the fields were defined with the collimation system provided within the accelerator head. The output factor was measured with the silicon strip detector in two different layouts using two phantoms. In the first, the active area of the detector was placed perpendicular to the beam axis. In the second, the innovation consisted of a cylindrical phantom where the detector was placed in an axial plane with respect to the beam. The measured data were compared with data given by a commercial treatment planning system. Results were shown to be in a very good agreement between the compared set of data.

  14. Silicon strip detector for a novel 2D dosimetric method for radiotherapy treatment verification

    Science.gov (United States)

    Bocci, A.; Cortés-Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Arráns, R.; Alvarez, M. A. G.; Abou-Haïdar, Z.; Quesada, J. M.; Pérez Vega-Leal, A.; Pérez Nieto, F. J.

    2012-05-01

    The aim of this work is to characterize a silicon strip detector and its associated data acquisition system, based on discrete electronics, to obtain in a near future absorbed dose maps in axial planes for complex radiotherapy treatments, using a novel technique. The experimental setup is based on two phantom prototypes: the first one is a polyethylene slab phantom used to characterize the detector in terms of linearity, percent depth dose, reproducibility, uniformity and penumbra. The second one is a cylindrical phantom, specifically designed and built to recreate conditions close to those normally found in clinical environments, for treatment planning assessment. This system has been used to study the dosimetric response of the detector, in the axial plane of the phantom, as a function of its angle with respect to the irradiation beam. A software has been developed to operate the rotation of this phantom and to acquire signals from the silicon strip detector. As an innovation, the detector was positioned inside the cylindrical phantom parallel to the beam axis. Irradiation experiments were carried out with a Siemens PRIMUS linac operating in the 6 MV photon mode at the Virgen Macarena Hospital. Monte Carlo simulations were performed using Geant4 toolkit and results were compared to Treatment Planning System (TPS) calculations for the absorbed dose-to-water case. Geant4 simulations were used to estimate the sensitivity of the detector in different experimental configurations, in relation to the absorbed dose in each strip. A final calibration of the detector in this clinical setup was obtained by comparing experimental data with TPS calculations.

  15. Impact of low-dose electron irradiation on n{sup +}p silicon strip sensors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-12-11

    The response of n{sup +}p silicon strip sensors to electrons from a {sup 90}Sr source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics on 200 μm thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 μm, and both p-stop and p-spray isolation of the n{sup +} strips were studied. The electrons from the {sup 90}Sr source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate in the SiO{sub 2} at the maximum was about 50 Gy(SiO{sub 2})/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80 °C and annealing times of 18 h showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positive oxide-charge density due to the ionization of the SiO{sub 2} by the radiation from the β source. TCAD simulations of the electric field in the sensor for different oxide-charge densities and different boundary conditions at the sensor surface support this explanation. The relevance of the measurements for the design of n{sup +}p strip sensors is discussed.

  16. A silicon strip detector used as a high rate focal plane sensor for electrons in a magnetic spectrometer

    CERN Document Server

    Miyoshi, T; Fujii, Y; Hashimoto, O; Hungerford, E V; Sato, Y; Sarsour, M; Takahashi, T; Tang, L; Ukai, M; Yamaguchi, H

    2003-01-01

    A silicon strip detector was developed as a focal plane sensor for a 300 MeV electron spectrometer and operated in a high rate environment. The detector with 500 mu m pitch provided good position resolution for electrons crossing the focal plane of the magnetic spectrometer system which was mounted in Hall C of the Thomas Jefferson National Accelerator Facility. The design of the silicon strip detector and the performance under high counting rate (<=2.0x10 sup 8 s sup - sup 1 for approx 1000 SSD channels) and high dose are discussed.

  17. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    Directory of Open Access Journals (Sweden)

    Thi Dep Ha

    2016-04-01

    Full Text Available Phononic crystals (PnCs and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1 a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2 influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  18. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Thi Dep, E-mail: hathidep@yahoo.com [School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China); Faculty of Electronic Technology, Industrial University of Ho Chi Minh City, Hochiminh City (Viet Nam); Bao, JingFu, E-mail: baojingfu@uestc.edu.cn [School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China)

    2016-04-15

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  19. CMS Tracker Model

    CERN Multimedia

    Model of the tracking detector for the CMS experiment at the LHC. This object is a mock-up of an early design of the CMS Tracker mechanics. It is a segment of a “Wheel” to support Micro-Strip Gas Chamber (MSGC) detector modules on the outer layers and silicon-strip detector modules in the innermost layers. The particularity of that design is that modules are organised in spirals, along which power and optical cables and cooling pipes were planned to be routed. Some of such spirals are illustrated in the mock-up by the colors of the modules. With the detector development it became, however, evident that the silicon detectors would need to be operated in LHC experiments in cold temperatures, while the MSGC could stay in normal room-temperature. That split in two temperatures lead to separating those two detector types by a thermal barrier and therefore jeopardizing the idea of using common, vertical Wheels with services arranged along spirals.

  20. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector.

    Science.gov (United States)

    Ovejero, M C; Pérez Vega-Leal, A; Gallardo, M I; Espino, J M; Selva, A; Cortés-Giraldo, M A; Arráns, R

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  1. Silicon Strip detectors for the ATLAS End-Cap Tracker at the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00232570

    Inside physics programme of the LHC different experiment upgrades are foreseen. After the phase-II upgrade of the ATLAS detector the luminosity will be increased up to 5-7.5x10E34 cm-2s-1. This will mean a considerable increase in the radiation levels, above 10E16 neq/cm2 in the inner regions. This thesis is focused on the development of silicon microstrip detectors enough radiation hard to cope with the particle fluence expected at the ATLAS detector during HL-LHC experiment. In particular on the electrical characterization of silicon sensors for the ATLAS End-Caps. Different mechanical and thermal tests are shown using a Petal core as well as the electrical characterization of the silicon sensors that will be used with the Petal structure. Charge collection efficiency studies are carried out on sensors with different irradiation fluences using the ALiBaVa system and two kinds of strips connection are also analized (DC and AC ganging) with a laser system. The Petalet project is presented and the electrical c...

  2. Radiation hardness and precision timing study of silicon detectors for the CMS High Granularity Calorimeter (HGC)

    Energy Technology Data Exchange (ETDEWEB)

    Currás, Esteban, E-mail: ecurrasr@cern.ch [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Fernández, Marcos [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Gallrapp, Christian [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Gray, Lindsey [Fermilab, Wilson Street and Kirk Road, Batavia, IL 60510-5011, Illinois (United States); Mannelli, Marcello [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Meridiani, Paolo [Istituto Nazionale Di Fisica Nucleare – Sezione di Roma, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Moll, Michael [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Nourbakhsh, Shervin [University of Minnesota, Minneapolis, MN 55455 (United States); Scharf, Christian [Hamburg University, Notkestraße 85, 22607 Hamburg (Germany); Silva, Pedro [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Steinbrueck, Georg [Hamburg University, Notkestraße 85, 22607 Hamburg (Germany); Fatis, Tommaso Tabarelli de [Istituto Nazionale di Fisica Nucleare – Sezione di Milano-Bicocca Piazza della Scienza 3, 20126 Milano (Italy); Vila, Iván [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain)

    2017-02-11

    The high luminosity upgraded LHC or Phase-II is expected to increase the instantaneous luminosity by a factor of 10 beyond the LHC's design value, expecting to deliver 250 fb{sup −1} per year for a further 10 years of operation. Under these conditions the performance degradation due to integrated radiation dose will need to be addressed. The CMS collaboration is planning to upgrade the forward calorimeters. The replacement is called the High Granularity Calorimeter (HGC) and it will be realized as a sampling calorimeter with layers of silicon detectors interleaved. The sensors will be realized as pad detectors with sizes of less that ∼1.0 cm{sup 2} and an active thickness between 100 and 300 μm depending on the position, respectively, the expected radiation levels. For an integrated luminosity of 3000 fb{sup −1}, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences up to 10{sup 16} neq/cm{sup 2}. A radiation tolerance study after neutron irradiation of 300, 200, and 100 μm n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6×10{sup 16} neq/cm{sup 2} is presented. The properties of these diodes studied before and after irradiation were leakage current, capacitance, charge collection efficiency, annealing effects and timing capability. The results of these measurements validate these sensors as candidates for the HGC system.

  3. Radiation hardness and precision timing study of Silicon detectors for the CMS High Granularity Calorimeter (HGC)

    CERN Document Server

    Curras, E; Gallrapp, C; Gray, L; Mannelli, M; Meridiani, P; Moll, M; Nourbakhsh, S; Scharf, C; Silva, P; Steinbrueck, G; Tabarelli de Fatis, T; Vila, I

    2017-01-01

    The high luminosity upgraded LHC or Phase-II is expected to increase the instantaneous luminosity by a factor of 10 beyond the LHC's design value, expecting to deliver 250 fb^−1 per year for a further 10 years of operation. Under these conditions the performance degradation due to integrated radiation dose will need to be addressed. The CMS collaboration is planning to upgrade the forward calorimeters. The replacement is called the High Granularity Calorimeter (HGC) and it will be realized as a sampling calorimeter with layers of silicon detectors interleaved. The sensors will be realized as pad detectors with sizes of less that ∼1.0 cm^2 and an active thickness between 100 and 300 μm depending on the position, respectively, the expected radiation levels. For an integrated luminosity of 3000 fb^−1, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences up to 10^16 neq/cm^2. A radiation tolerance study after neutron irradiation of 300, 200, and 100 μ...

  4. Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGCAL)

    CERN Document Server

    Curras Rivera, Esteban

    2016-01-01

    The high luminosity LHC (HL-LHC or Phase-II) is expected to increase the instantaneous luminosity of the LHC by a factor of about five, delivering about 250 fba-1 per year between 2025 and 2035. Under these conditions the performance degradation of detectors due to integrated radiation dose/fluence will need to be addressed. The CMS collaboration is planning to upgrade many components, including the forward calorimeters. The replacement for the existing endcap preshower, electromagnetic and hadronic calorimeters is called the High Granularity Calorimeter (HGCAL) and it will be realized as a sampling calorimeter, including 30 layers of silicon detectors totalling 600m^2. The sensors will be realized as pad detectors with cell sizes of between 0.5-1.0 cm^2 and an active thickness between 100 um and 300 um depending on their location in the endcaps the thinner sensors will be used in the highest radiation environment. For an integrated luminosity of 3000 fba-1, the electromagnetic calorimetry will sustain integ...

  5. The Development of silicon detectors for the CMS experiment and future experiments

    CERN Document Server

    Son, Seunghee

    A hybrid pixel detector will be installed as the inner most layer of the tracking system of the CMS experiment, currently under construction at the Large Hardron Collider (LHC) at CERN (Geneva, Switzerland) to provide high resolution tracking and vertex identification. Due to the severe radiation environment of the LHC, the performance of the sensors must be carefully evaluated up to a fluence of 6 × 1014 1-MeV equivalent neutrons per square centimeter. The sensors were fabricated "n on n", which means highly segmented n+ implants with 150 × 100 μm2 pitch are in n-type bulk material and p+ implants are used to isolate pixels. The electrical properties of these sensors has been studied. Studies of charge collection efficiency were carried out with a 1064 nm wavelength laser. Comparisons of charge collection efficiency among different sensor designs is presented. In addition, present and future possibilities for the production of thin silicon detectors are discussed. The electrical characteristics and the pe...

  6. Irradiation study of different silicon materials for the CMS tracker upgrade

    CERN Document Server

    Erfle, Joachim; Hansen, Wolfgang; Garutti, Erika

    Around 2022, an upgrade of the LHC collider complex is planned to significantly increase the luminosity (the High Luminosity LHC, HL-LHC). This means that the experiments have to cope with a higher number of collisions per bunch crossing and survive in a radiation environment much harsher than that at the present LHC. Especially the tracking detectors have to be improved for the HL-LHC. The increased number of tracks requires an increase of the number of readout channels while the higher radiation makes new sensor materials necessary. Within CMS, a measurement campaign was initiated to study the performance of different silicon materials in a corresponding radiation environment. To simulate the expected radiation the samples were irradiated with neutrons and with protons with two different energies. Radiation damage can be divided in two categories. First, ionizing energy loss in the surface isolation layers of the sensor leads to a change of the concentration of charged states in the sensor surface and there...

  7. A digital X-ray imaging system based on silicon strip detectors working in edge-on configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bolanos, L. [CEADEN, Calle 30 502 e/ 5ta y 7ma Avenida, Playa, Ciudad Habana (Cuba); Boscardin, M. [IRST, Fondazione Bruno Kessler, Via Sommarive 18, Povo, 38100 Trento (Italy); Cabal, A.E. [CEADEN, Calle 30 502 e/ 5ta y 7ma Avenida, Playa, Ciudad Habana (Cuba); Diaz, M. [InSTEC, Ave. Salvador Allende esq. Luaces, Quinta de los Molinos, Ciudad Habana (Cuba); Grybos, P.; Maj, P. [Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Measurement and Instrumentation, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Prino, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Ramello, L. [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale, Via T. Michel 11, 15100 Alessandria (Italy)], E-mail: luciano.ramello@mfn.unipmn.it; Szczygiel, R. [Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Measurement and Instrumentation, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2009-09-21

    We present the energy resolution and imaging performance of a digital X-ray imaging system based on a 512-strip silicon strip detector (SSD) working in the edge-on configuration. The SSDs tested in the system are 300 {mu}m thick with 1 or 2-cm-long strips and 100 {mu}m pitch. To ensure a very small dead area of the SSD working in edge-on configuration, the detector is cut perpendicular to the strips at a distance of only 20 {mu}m from the end of the strips. The 512-strip silicon detector is read out by eight 64-channel integrated circuits called DEDIX [Grybos et al., IEEE Trans. Nucl. Sci. NS-54 (2007) 1207]. The DEDIX IC operates in a single photon counting mode with two independent amplitude discriminators per channel. The readout electronic channel connected to a detector with effective input capacitance of about 2 pF has an average equivalent noise charge (ENC) of about 163 el. rms and is able to count 1 Mcps of average rate of input pulses. The system consisting of 512 channels has an excellent channel-to-channel uniformity-the effective threshold spread calculated to the charge-sensitive amplifier inputs is 12 el. rms (at one sigma level). With this system a few test images of a phantom have been taken in the 10-30 keV energy range.

  8. Construction and calibration of the laser alignment system for the CMS tracker

    OpenAIRE

    Adolphi, Roman

    2006-01-01

    The CMS detector (Compact Muon Solenoid) is under construction at one of the four proton-proton interaction points of the LHC (Large Hadron Collider) at CERN, the European Organization for Nuclear Research (Geneva, Switzerland). The inner tracking system of the CMS experiment consisting of silicon detectors will have a diameter of 2.4 meter and a length of 5.4 meter representing the largest silicon tracker ever. About 15000 silicon strip modules create an active silicon area of 200 square met...

  9. Build-up of the silicon micro-strip detector array in ETF of HIRFL-CSR

    International Nuclear Information System (INIS)

    Wang Pengfei; Li Zhankui; Li Haixia

    2014-01-01

    Silicon micro-strip detectors have been widely used in the world-famous nuclear physics laboratories due to their better position resolution and energy resolution. Double-sided silicon micro-strip detectors with a position resolution of 0.5 mm × 0.5 mm, have been fabricated in the IMP (Institute of Modern Physics, CAS) by using microelectronics technology. These detectors have been used in the ETF (External Target Facility) of HIRFL-CSR, as ΔE detectors of the ΔE-E telescope system and the track detectors. With the help of flexibility printed circuit board (FPCB) and the integrated ASIC chips, a compact multi-channel front-end electronic board has been designed to fulfill the acquisition of the energy and position information of the Silicon micro-strip detectors. It is described in this paper that the build-up of the Silicon micro-strip detector array in ETF of HIRFL-CSR, the determination of the energy resolution of the detector units, and the energy resolution of approximately 1% obtained for 5∼9 MeV α particles in vacuum. (authors)

  10. Size of silicon strip sensor from 6 inch wafer (right) compared to that from a 4 inch wafer (left).

    CERN Multimedia

    Honma, Alan

    1999-01-01

    Silicon strip sensors made from 6 inch wafers will allow for much larger surface area coverage at a reduced cost per unit surface area. A prototype sensor of size 8cm x 11cm made by Hamamatsu from a 6 inch wafer is shown next to a traditional 6cm x 6cm sensor from a 4 inch wafer.

  11. Prototyping of petalets for the Phase-II upgrade of the silicon strip tracking detector of the ATLAS experiment

    Science.gov (United States)

    Kuehn, S.; Benítez, V.; Fernández-Tejero, J.; Fleta, C.; Lozano, M.; Ullán, M.; Lacker, H.; Rehnisch, L.; Sperlich, D.; Ariza, D.; Bloch, I.; Díez, S.; Gregor, I.; Keller, J.; Lohwasser, K.; Poley, L.; Prahl, V.; Zakharchuk, N.; Hauser, M.; Jakobs, K.; Mahboubi, K.; Mori, R.; Parzefall, U.; Bernabéu, J.; Lacasta, C.; Marco-Hernandez, R.; Rodriguez Rodriguez, D.; Santoyo, D.; Solaz Contell, C.; Soldevila Serrano, U.; Affolder, T.; Greenall, A.; Gallop, B.; Phillips, P. W.; Cindro, V.

    2018-03-01

    In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.

  12. Electromagnetic noise studies in a silicon strip detector, used as part of a luminosity monitor at LEP

    Science.gov (United States)

    Ødegaard, Trygve; Tafjord, Harald; Buran, Torleiv

    1995-02-01

    As part of the luminosity monitor, SAT, in the DELPHI [1] experiment at CERN's Large Electron Positron collider, a tracking detector constructed from silicon strip detector elements was installed in front of an electromagnetic calorimeter. The luminosity was measured by counting the number of Bhabha events at the interaction point of the electron and the positron beans. The tracking detector reconstructs from the interaction point and the calorimeter measures the corresponding particles' energies. The SAT Tracker [2] consists of 504 silicon strip detectors. The strips are DC-coupled to CMOS VLSI-chips, baptized Balder [3,4]. The chip performs amplification, zero-suppression, digitalisation, and multiplexing. The requirements of good space resolution and high efficiency put strong requirements on noise control. A short description of the geometry and the relevant circuit layout is given. We describe the efforts made to minimise the electromagnetic noise in the detector and present some numbers of the noise level using various techniques.

  13. Status of the silicon strip high-rate FASTBUS readout system

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, H.; Barsotti, E.; Bowden, M.; Christian, D.; Chramowicz, J.; Fachin, M.; Haldeman, M.; Hoff, J.; Holmes, S.; Rotolo, C.; Romero, A.; Slimmer, D.; Swoboda, C.; Trendler, R.; Urish, J.; Yarema, R.; Zimmerman, T.; Zimmermann, S.; Kowald, W.; MacManus, A.; Recagni, M.; Segal, J.; Spentzouris, P.

    1991-11-01

    Our new readout system was developed in collaboration with, and largely to the specification of, the E771 experimenters. E771 is a fixed target experiment designed to study the production of B hadrons by an 800 GeV/c proton beam. The experiment will operate at rates of up to 200 million beam protons per second and 10 million interactions per second. The experimental apparatus will consist of an open geometry magnetic spectrometer featuring good muon and electron identification (much of which was used in E705), and a compact 16000 channel Silicon Strip Detector. In order to satisfy the experimenter's desire to instrument 16000 SSD elements in a package only 5 cm wide, 5 cm high, and 21 cm deep, and in order to meet the performance specifications, we have made extensive use of Application Specific Integrated Circuits'' (ASIC's).

  14. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  15. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  16. Status of the silicon strip high-rate FASTBUS readout system

    International Nuclear Information System (INIS)

    Gonzalez, H.; Barsotti, E.; Bowden, M.; Christian, D.; Chramowicz, J.; Fachin, M.; Haldeman, M.; Hoff, J.; Holmes, S.; Rotolo, C.; Romero, A.; Slimmer, D.; Swoboda, C.; Trendler, R.; Urish, J.; Yarema, R.; Zimmerman, T.; Zimmermann, S.; Kowald, W.; MacManus, A.; Recagni, M.; Segal, J.; Spentzouris, P.

    1991-11-01

    Our new readout system was developed in collaboration with, and largely to the specification of, the E771 experimenters. E771 is a fixed target experiment designed to study the production of B hadrons by an 800 GeV/c proton beam. The experiment will operate at rates of up to 200 million beam protons per second and 10 million interactions per second. The experimental apparatus will consist of an open geometry magnetic spectrometer featuring good muon and electron identification (much of which was used in E705), and a compact 16000 channel Silicon Strip Detector. In order to satisfy the experimenter's desire to instrument 16000 SSD elements in a package only 5 cm wide, 5 cm high, and 21 cm deep, and in order to meet the performance specifications, we have made extensive use of ''Application Specific Integrated Circuits'' (ASIC's)

  17. Edge-TCT for the investigation of radiation damaged silicon strip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Feindt, Finn

    2017-02-15

    The edge Transient Current Technique (TCT) is a method for the investigation of silicon sensors. This method requires infrared light from a sub-ns pulsed laser to be focused to a μm-size spot and scanned across the polished cut edge of a sensor. Electron-hole pairs are generated along the light beam in the sensor. These charge carriers drift in the electric field and induce transient currents on the sensor electrodes. The current transients are analyzed as a function of the applied voltage, temperature, absorbed dose and position of the laser-light focus, in order to determine the the drift velocities, electric field and the charge collection in the strip sensor. In the scope of this work, a new edge-TCT setup is commissioned, a procedure for the polishing of the cut edge is implemented and a method to position the focus of the laser light with respect to the sensor is developed. First edge-TCT measurements are performed on non-irradiated, 285 μm thick n-type strip sensors, and the pulse shape and charge collection is studied under different conditions. Furthermore, the prompt current of the transients is extracted, which is the first step towards the determination of the electric field. A new method to measure the attenuation of light in silicon is tested on a non-irradiated sensor and on sensors irradiated with up to a 1 MeV neutron equivalent fluence of 1.14 x 10{sup 15} cm{sup -2}, using laser light with a wavelength of 1052 nm.

  18. Edge-TCT for the investigation of radiation damaged silicon strip sensors

    International Nuclear Information System (INIS)

    Feindt, Finn

    2017-02-01

    The edge Transient Current Technique (TCT) is a method for the investigation of silicon sensors. This method requires infrared light from a sub-ns pulsed laser to be focused to a μm-size spot and scanned across the polished cut edge of a sensor. Electron-hole pairs are generated along the light beam in the sensor. These charge carriers drift in the electric field and induce transient currents on the sensor electrodes. The current transients are analyzed as a function of the applied voltage, temperature, absorbed dose and position of the laser-light focus, in order to determine the the drift velocities, electric field and the charge collection in the strip sensor. In the scope of this work, a new edge-TCT setup is commissioned, a procedure for the polishing of the cut edge is implemented and a method to position the focus of the laser light with respect to the sensor is developed. First edge-TCT measurements are performed on non-irradiated, 285 μm thick n-type strip sensors, and the pulse shape and charge collection is studied under different conditions. Furthermore, the prompt current of the transients is extracted, which is the first step towards the determination of the electric field. A new method to measure the attenuation of light in silicon is tested on a non-irradiated sensor and on sensors irradiated with up to a 1 MeV neutron equivalent fluence of 1.14 x 10"1"5 cm"-"2, using laser light with a wavelength of 1052 nm.

  19. The PASTA chip - A free-running readout ASIC for silicon strip sensors in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Goerres, Andre; Stockmanns, Tobias; Ritman, James [Institut fuer Kernphysik, Forschungszentrum Juelich, Juelich (Germany); Rivetti, Angelo [INFN Sezione di Torino, Torino (Italy); Collaboration: PANDA-Collaboration

    2014-07-01

    The PANDA experiment is a multi purpose detector, investigating hadron physics in the charm quark mass regime. It is one of the main experiments at the future FAIR accelerator facility, using pp annihilations from a 1.5-15 GeV/c anti-proton beam. Because of the broad physics spectrum and the similarity of event and background signals, PANDA does not rely on a hardware-level trigger decision. The innermost of PANDA's sub-systems is the Micro Vertex Detector (MVD), consisting of silicon pixel and strip sensors. The latter will be read out by a specialized, free-running readout front-end called PANDA Strip ASIC (PASTA). It has to face a high event rate of up to 40 kHz/ch in an radiation-intense environment. To fulfill the MVD's requirements, it has to give accurate timing information to incoming events (<10 ns) and determine the collected charge with an 8-bit precision. The design has to meet cooling and placing restrictions, leading to a very low power consumption (<4 mW/ch) and limited dimensions. Therefore, a simple, time-based readout approach is chosen. In this talk, the conceptual design of the front-end is presented.

  20. The PASTA chip. A free-running readout ASIC for silicon strip sensors in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Goerres, Andre; Stockmanns, Tobias; Ritman, James [Forschungszentrum Juelich GmbH, Juelich (Germany); Rivetti, Angelo [INFN Sezione di Torino, Torino (Italy); Collaboration: PANDA-Collaboration

    2015-07-01

    The PANDA experiment is a multi purpose detector, investigating hadron physics in the charm quark mass regime. It is one of the main experiments at the future FAIR accelerator facility, using anti pp annihilations from a 1.5-15 GeV/c anti-proton beam. Because of the broad physics spectrum and the similarity of event and background signals, PANDA does an event selection based on the complete raw data of the detector. The innermost of PANDA's sub-systems is the Micro Vertex Detector (MVD), consisting of silicon pixel and strip sensors. The latter will be read out by a specialized, free-running readout front-end called PANDA Strip ASIC (PASTA). It has to face a high event rate of up to 40 kHz/ch in an radiation-intense environment. To fulfill the MVD's requirements, it has to give accurate timing information to incoming events (<10 ns) and determine the collected charge with an 8-bit precision. All this has to be done with a very low power design (<4 mW/ch) on a small footprint with less than 21 mm{sup 2} and 60 μm input pitch for 64 channels per chip. Therefore, a simple, time-based readout approach with two independent thresholds is chosen. In this talk, the conceptual design of the full front-end and some aspects of the digital part are presented.

  1. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    CERN Document Server

    Gonzalez-Sevilla, S; Parzefall, U; Clark, A; Ikegami, Y; Hara, K; Garcia, C; Jakobs, K; Dwuznik, M; Terada, S; Barbier, G; Koriki, T; Lacasta, C; Unno, Y; Anghinolfi, F; Cadoux, F; Garcia, S M I; Ferrere, D; La Marra, D; Pohl, M; Dabrowski, W; Kaplon, J

    2011-01-01

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10(34)cm(-2)s(-1). It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown. (C) 2010 Elsevier B.V. All rights reserved.

  2. Track reconstruction in CMS high luminosity environment

    CERN Document Server

    AUTHOR|(CDS)2067159

    2016-01-01

    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  3. Track reconstruction in CMS high luminosity environment

    CERN Document Server

    Goetzmann, Christophe

    2014-01-01

    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  4. CMS Tracker Alignment Performance Results Summer 2016

    CERN Document Server

    CMS Collaboration

    2016-01-01

    The tracking system of the CMS detector provides excellent resolution for charged particle tracks and an efficient way of tagging jets. In order to reconstruct good quality tracks, the position and orientation of each silicon pixel and strip modules need to be determined with a precision of several micrometers. The performance of the CMS tracker alignment in 2016 using cosmic-ray data recorded at 0 T magnetic field and proton-proton collision data recorded at 3.8 T magnetic field has been studied. The data-driven validation of the results are presented. The time-dependent movement of the pixel detector's large-scale structure is demonstrated.

  5. Ion-implanted capacitively coupled silicon strip detectors with integrated polysilicon bias resistors processed on a 100 mm wafer

    International Nuclear Information System (INIS)

    Hietanen, I.; Lindgren, J.; Orava, R.; Tuuva, T.; Voutilainen, M.; Brenner, R.; Andersson, M.; Leinonen, K.; Ronkainen, H.

    1991-01-01

    Double-sided silicon strip detectors with integrated coupling capacitors and polysilicon resistors have been processed on a 100 mm wafer. A detector with an active area of 19x19 mm 2 was connected to LSI readout electronics and tested. The strip pitch of the detector is 25 μm on the p-side and 50 μm on the n-side. The readout pitch is 50 μm on both sides. The number of readout strips is 774 and the total number of strips is 1161. On the p-side a signal-to-noise of 35 has been measured using a 90 Sr β-source. The n-side has been studied using a laser. (orig.)

  6. CMS tracker observes muons

    CERN Multimedia

    2006-01-01

    A computer image of a cosmic ray traversing the many layers of the TEC+ silicon sensors. The first cosmic muon tracks have been observed in one of the CMS tracker endcaps. On 14 March, a sector on one of the two large tracker endcaps underwent a cosmic muon run. Since then, thousands of tracks have been recorded. These data will be used not only to study the tracking, but also to exercise various track alignment algorithms The endcap tested, called the TEC+, is under construction at RWTH Aachen in Germany. The endcaps have a modular design, with silicon strip modules mounted onto wedge-shaped carbon fibre support plates, so-called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an endcap is populated with 18 petals and called a sector. The next major step is a test of the first sector at CMS operating conditions, with the silicon modules at a temperature below -10°C. Afterwards, the remaining seven sectors have to be integrated. In autumn 2006, TEC+ wil...

  7. CMS tracker slides into centre stage

    CERN Document Server

    2006-01-01

    As preparations for the magnet test and cosmic challenge get underway, a prototype tracker has been carefully inserted into the centre of CMS. The tracker, in its special platform, is slowly inserted into the centre of CMS. The CMS prototype tracker to be used for the magnet test and cosmic challenge coming up this summer has the same dimensions -2.5 m in diameter and 6 m in length- as the real one and tooling exactly like it. However, the support tube is only about 1% equipped, with 2 m2 of silicon detectors installed out of the total 200 m2. This is already more than any LEP experiment ever used and indicates the great care needed to be taken by engineers and technicians as these fragile detectors were installed and transported to Point 5. Sixteen thousand silicon detectors with a total of about 10 million strips will make up the full tracker. So far, 140 modules with about 100 000 strips have been implanted into the prototype tracker. These silicon strips will provide precision tracking for cosmic muon...

  8. Signals from fluorescent materials on the surface of silicon micro-strip sensors

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2018-01-01

    For the High-Luminosity Upgrade of the Large Hadron Collider at CERN, the ATLAS Inner Detector will be replaced with a new, all-silicon tracker (ITk). In order to minimise the amount of material in the ITk, circuit boards with readout electronics will be glued onto the active area of the sensor. Several adhesives, investigated to be used for the construction of detector modules, were found to become fluorescent when exposed to UV light. These adhesives could become a light source in the high-radiation environment of the ATLAS detector. The effect of fluorescent material covering the sensor surface in a high-radiation environment has been studied for a silicon micro-strip sensor using a micro-focused X-ray beam. By positioning the beam parallel to the sensor surfave and pointing it both inside the sensor and above the sensor surface inside the deposited glue, the sensor responses from direct hits and fluorescence can be compared with high precision. This contribution presents a setup to study the susceptibilit...

  9. Test beam demonstration of silicon microstrip modules with transverse momentum discrimination for the future CMS tracking detector

    Science.gov (United States)

    Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Postiau, N.; Randle-Conde, A.; Seva, T.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Wang, Q.; Yang, Y.; Zenoni, F.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Cabrera Jamoulle, J.; De Favereau De Jeneret, J.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Dutta, S.; Chowdhury, S. Roy; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.-H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Lu, R.-S.; Moya, M.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Braga, D.; Coughlan, J. A.; Harder, K.; Jones, L.; Ilic, J.; Murray, P.; Prydderch, M.; Tomalin, I. R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Patel, R.; Perloff, A.; Ulmer, K. A.; Delannoy, A. G.; D'Angelo, P.; Johns, W.

    2018-03-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2026 onwards. It includes an outer tracker based on dedicated modules that will reconstruct short track segments, called stubs, using spatially coincident clusters in two closely spaced silicon sensor layers. These modules allow the rejection of low transverse momentum track hits and reduce the data volume before transmission to the first level trigger. The inclusion of tracking information in the trigger decision is essential to limit the first level trigger accept rate. A customized front-end readout chip, the CMS Binary Chip (CBC), containing stub finding logic has been designed for this purpose. A prototype module, equipped with the CBC chip, has been constructed and operated for the first time in a 4 GeemVem/emc positron beam at DESY. The behaviour of the stub finding was studied for different angles of beam incidence on a module, which allows an estimate of the sensitivity to transverse momentum within the future CMS detector. A sharp transverse momentum threshold around 2 emVem/emc was demonstrated, which meets the requirement to reject a large fraction of low momentum tracks present in the LHC environment on-detector. This is the first realistic demonstration of a silicon tracking module that is able to select data, based on the particle's transverse momentum, for use in a first level trigger at the LHC . The results from this test are described here.

  10. Development of a multi-channel front-end electronics module based on ASIC for silicon strip array detectors

    International Nuclear Information System (INIS)

    Zhao Xingwen; Yan Duo; Su Hong; Qian Yi; Kong Jie; Zhang Xueheng; Li Zhankui; Li Haixia

    2014-01-01

    The silicon strip array detector is one of external target facility subsystems in the Cooling Storage Ring on the Heavy Ion Research Facility at Lanzhou (HIRFL-CSR). Using the ASICs, the front-end electronics module has been developed for the silicon strip array detectors and can implement measurement of energy of 96 channels. The performance of the front-end electronics module has been tested. The energy linearity of the front-end electronics module is better than 0.3% for the dynamic range of 0.1∼0.7 V. The energy resolution is better than 0.45%. The maximum channel crosstalk is better than 10%. The channel consistency is better than 1.3%. After continuously working for 24 h at room temperature, the maximum drift of the zero-peak is 1.48 mV. (authors)

  11. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    Science.gov (United States)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  12. A novel ultra-low carbon grain oriented silicon steel produced by twin-roll strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang, E-mail: wy069024019@163.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhang, Yuan-Xiang; Lu, Xiang; Fang, Feng; Xu, Yun-Bo; Cao, Guang-Ming; Li, Cheng-Gang [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States); Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China)

    2016-12-01

    A novel ultra-low carbon grain oriented silicon steel was successfully produced by strip casting and two-stage cold rolling method. The microstructure, texture and precipitate evolution under different first cold rolling reduction were investigated. It was shown that the as-cast strip was mainly composed of equiaxed grains and characterized by very weak Goss texture ({110}<001>) and λ-fiber (<001>//ND). The coarse sulfides of size ~100 nm were precipitated at grain boundaries during strip casting, while nitrides remained in solution in the as-cast strip and the fine AlN particles of size ~20–50 nm, which were used as grain growth inhibitors, were formed in intermediate annealed sheet after first cold rolling. In addition, the suitable Goss nuclei for secondary recrystallization were also formed during intermediate annealing, which is totally different from the conventional process that the Goss nuclei originated in the subsurface layer of the hot rolled sheet. Furthermore, the number of AlN inhibitors and the intensity of desirable Goss texture increased with increasing first cold rolling reduction. After secondary recrystallization annealing, very large grains of size ~10–40 mm were formed and the final magnetic induction, B{sub 8}, was as high as 1.9 T. - Highlights: • A novel chemical composition base on strip casting silicon steel was proposed. • The ultra-low carbon design could shorten the processing routes. • The novel composition and processes were beneficial to obtain more inhibitors. • The magnetic induction of grain oriented silicon steel was significantly improved.

  13. Design and performance of the ABCD3TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker

    Czech Academy of Sciences Publication Activity Database

    Campabadal, F.; Fleta, C.; Key, M.; Böhm, Jan; Mikeštíková, Marcela; Šťastný, Jan

    2005-01-01

    Roč. 552, - (2005), s. 292-328 ISSN 0168-9002 R&D Projects: GA MŠk 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : front-end electronics * binary readout * silicon strip detectors * application specific integrated circuits * quality assurance Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.224, year: 2005

  14. Characterization and calibration of radiation-damaged double-sided silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, L. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Vogt, A., E-mail: andreas.vogt@ikp.uni-koeln.de [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Reiter, P.; Birkenbach, B.; Hirsch, R.; Arnswald, K.; Hess, H.; Seidlitz, M.; Steinbach, T.; Warr, N.; Wolf, K. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Stahl, C.; Pietralla, N. [Institut für Kernphysik, Technische Universität Darmstadt, D-64291 Darmstadt (Germany); Limböck, T.; Meerholz, K. [Physikalische Chemie, Universität zu Köln, D-50939 Köln (Germany); Lutter, R. [Maier-Leibnitz-Laboratorium, Ludwig-Maximilians-Universität München, D-85748 Garching (Germany)

    2017-05-21

    Double-sided silicon strip detectors (DSSSD) are commonly used for event-by-event identification of charged particles as well as the reconstruction of particle trajectories in nuclear physics experiments with stable and radioactive beams. Intersecting areas of both p- and n-doped front- and back-side segments form individual virtual pixel segments allowing for a high detector granularity. DSSSDs are employed in demanding experimental environments and have to withstand high count rates of impinging nuclei. The illumination of the detector is often not homogeneous. Consequently, radiation damage of the detector is distributed non-uniformly. Position-dependent incomplete charge collection due to radiation damage limits the performance and lifetime of the detectors, the response of different channels may vary drastically. Position-resolved charge-collection losses between front- and back-side segments are investigated in an in-beam experiment and by performing radioactive source measurements. A novel position-resolved calibration method based on mutual consistency of p-side and n-side charges yields a significant enhancement of the energy resolution and the performance of radiation-damaged parts of the detector.

  15. Fast CMOS binary front-end for silicon strip detectors at LHC experiments

    CERN Document Server

    Kaplon, Jan

    2004-01-01

    We present the design and the test results of a front-end circuit developed in a 0.25 mu m CMOS technology. The aim of this work is to study the performance of a deep submicron process in applications for fast binary front-end for silicon strip detectors. The channel comprises a fast transimpedance preamplifier working with an active feedback loop, two stages of the amplifier-integrator circuits providing 22 ns peaking time and two-stage differential discriminator. Particular effort has been made to minimize the current and the power consumption of the preamplifier, while keeping the required noise and timing performance. For a detector capacitance of 20 pF noise below 1500 e/sup -/ ENC has been achieved for 300 mu A bias current in the input transistor, which is comparable with levels achieved in the past for a front-end using bipolar input transistor. The total supply current of the front-end is 600 mu A and the power dissipation is 1.5 mW per channel. The offset spread of the comparator is below 3 mV rms.

  16. Lithium analysis using a double-sided silicon strip detector at LIBAF

    Science.gov (United States)

    De La Rosa, Nathaly; Kristiansson, Per; Nilsson, E. J. Charlotta; Ros, Linus; Elfman, Mikael; Pallon, Jan

    2017-08-01

    Quantification and mapping possibilities of lithium in geological material, by Nuclear Reaction Analysis (NRA), was evaluated at the Lund Ion Beam Analysis Facility (LIBAF). LiF and two Standard Reference Materials, (SRM 610 and SRM 612) were used in the investigation. The main part of the data was obtained at the beam energy 635 keV studying the high Q-value reaction 7Li(p, α)4He, but reaction yield and detection limits were also briefly investigated as a function of the energy. A double-sided silicon strip detector (DSSSD) was used to detect the α -particles emitted in the reaction in the backward direction. The combination of the high Q-value, a reasonably good cross-section and the possibility to use a high beam current have been demonstrated to allow for measurement of concentrations down below 50 ppm. Proton energies below 800 keV were demonstrated to be appropriate energies for extracting lithium in combination with boron analysis.

  17. Development of double-sided silicon strip detectors (DSSD) for a Compton telescope

    International Nuclear Information System (INIS)

    Takeda, Shin'ichiro; Watanabe, Shin; Tanaka, Takaaki; Nakazawa, Kazuhiro; Takahashi, Tadayuki; Fukazawa, Yasushi; Yasuda, Hajimu; Tajima, Hiroyasu; Kuroda, Yoshikatsu; Onishi, Mitsunobu; Genba, Kei

    2007-01-01

    The low noise double-sided silicon strip detector (DSSD) technology is used to construct a next generation Compton telescope which is required to have both high-energy resolution and high-Compton reconstruction efficiency. In this paper, we present the result of a newly designed stacked DSSD module with high-energy resolution in highly packed mechanical structure. The system is designed to obtain good P-side and N-side noise performance by means of DC-coupled read-out. Since there are no decoupling capacitors in front-end electronics before the read-out ASICs, a high density stacked module with a pitch of 2 mm can be constructed. By using a prototype with four-layer of DSSDs with an area of 2.56cmx2.56cm, we have succeeded to operate the system. The energy resolution at 59.5 keV is measured to be 1.6 keV (FWHM) for the P-side and 2.8 keV (FWHM) for the N-side, respectively. In addition to the DSSD used in the prototype, a 4 cm wide DSSD with a thickness of 300μm is also developed. With this device, an energy resolution of 1.5 keV (FWHM) was obtained. A method to model the detector energy response to properly handle split events is also discussed

  18. One dimensional detector for X-ray diffraction with superior energy resolution based on silicon strip detector technology

    International Nuclear Information System (INIS)

    Dąbrowski, W; Fiutowski, T; Wiącek, P; Fink, J; Krane, H-G

    2012-01-01

    1-D position sensitive X-ray detectors based on silicon strip detector technology have become standard instruments in X-ray diffraction and are available from several vendors. As these devices have been proven to be very useful and efficient further improvement of their performance is investigated. The silicon strip detectors in X-ray diffraction are primarily used as counting devices and the requirements concerning the spatial resolution, dynamic range and count rate capability are of primary importance. However, there are several experimental issues in which a good energy resolution is important. The energy resolution of silicon strip detectors is limited by the charge sharing effects in the sensor as well as by noise of the front-end electronics. The charge sharing effects in the sensor and various aspects of the electronics, including the baseline fluctuations, which affect the energy resolution, have been analyzed in detail and a new readout concept has been developed. A front-end ASIC with a novel scheme of baseline restoration and novel interstrip logic circuitry has been designed. The interstrip logic is used to reject the events resulting in significant charge sharing between neighboring strips. At the expense of rejecting small fraction of photons entering the detector one can obtain single strip energy spectra almost free of charge sharing effects. In the paper we present the design considerations and measured performance of the detector being developed. The electronic noise of the system at room temperature is typically of the order of 70 el rms for 17 mm long silicon strips and a peaking time of about 1 μs. The energy resolution of 600 eV FWHM has been achieved including the non-reducible charge sharing effects and the electronic noise. This energy resolution is sufficient to address a common problem in X-ray diffraction, i.e. electronic suppression of the fluorescence radiation from samples containing iron or cobalt while irradiated with 8.04 ke

  19. Electromagnetic noise studies in a silicon strip detector, used as part of a luminosity monitor at LEP

    International Nuclear Information System (INIS)

    Oedegaard, T.; Tafjord, H.; Buran, T.

    1994-12-01

    As part of the luminosity monitor SAT in the DELPHI experiment at CERN's Large Electron Positron collider, a tracking detector constructed from silicon strip detector elements was installed in front of an electromagnetic calorimeter. The luminosity was measured by counting the number of Bhabha events at the interaction point of the electron and the positron beams. The tracking detector reconstructs tracks from the interaction point and the calorimeter measures the corresponding particles' energies.The SAT Tracker consists of 504 silicon strip detectors. The strips are DC-coupled to CMOS VLSI-chips, baptized Balder. The chip performs amplification, zero-suppression, digitalisation, and multiplexing. The requirements of good space resolution and high efficiency put strong requirements on noise control. A short description of the geometry and the relevant circuit layout is given. The authors describe the efforts made to minimise the electromagnetic noise in the detector and present some numbers of the noise level using various techniques. 11 refs., 5 figs., 4 tabs

  20. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    Science.gov (United States)

    Bates, R.; Blue, A.; Christophersen, M.; Eklund, L.; Ely, S.; Fadeyev, V.; Gimenez, E.; Kachkanov, V.; Kalliopuska, J.; Macchiolo, A.; Maneuski, D.; Phlips, B. F.; Sadrozinski, H. F.-W.; Stewart, G.; Tartoni, N.; Zain, R. M.

    2013-01-01

    Reduced edge or ``edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 μm FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 μm thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 μm thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 μm active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.

  1. Development of a Test System for the Quality Assurance of Silicon Microstrip Detectors for the Inner Tracking System of the CMS Experiment

    CERN Document Server

    Axer, Markus

    2003-01-01

    The inner tracking system of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) which is being built at the European Laboratory for Particle Physics CERN (Geneva, Switzerland) will be equipped with two different technologies of silicon detectors. While the innermost tracker will be composed of silicon pixel detectors, silicon microstrip detectors are envisaged for the outer tracker architecture. The silicon microstrip tracker will house about 15,000 single detector modules each composed of a set of silicon sensors, the readout electronics (front end hybrid), and a support frame. It will provide a total active area of 198 m2 and ten million analogue channels read out at the collider frequency of 40 MHz. This large number of modules to be produced and integrated into the tracking system is an unprecedented challenge involving industrial companies and various research institutes from many different countries. This thesis deals with the physics of silicon sensors and the preparation of ...

  2. Numerical Simulation of a Novel Sensing Approach Based on Abnormal Blocking by Periodic Grating Strips near the Silicon Wire Waveguide

    Directory of Open Access Journals (Sweden)

    Andrei Tsarev

    2018-05-01

    Full Text Available This paper discusses the physical nature and the numerical modeling of a novel approach of periodic structures for applications as photonic sensors. The sensing is based on the high sensitivity to the cover index change of the notch wavelength. This sensitivity is due to the effect of abnormal blocking of the guided wave propagating along the silicon wire with periodic strips overhead it through the silica buffer. The structure sensing is numerically modeled by 2D and 3D finite difference time domain (FDTD method, taking into account the waveguide dispersion. The modeling of the long structures (more than 1000 strips is accomplished by the 2D method of lines (MoL with a maximal implementation of the analytical feature of the method. It is proved that the effect of abnormal blocking could be used for the construction of novel types of optical sensors.

  3. Noise characterization of silicon strip detectors-comparison of sensors with and without integrated jfet source-follower.

    CERN Document Server

    Giacomini, Gabriele

    Noise is often the main factor limiting the performance of detector systems. In this work a detailed study of the noise contributions in different types of silicon microstrip sensors is carried on. We investigate three sensors with double-sided readout fabricated by different suppliers for the ALICE experiment at the CERN LHC, in addition to detectors including an integrated JFET Source-Follower as a first signal conditioning stage. The latter have been designed as an attempt at improving the performance when very long strips, obtained by gangling together several sensors, are required. After a description of the strip sensors and of their operation, the “static” characterization measurements performed on them (current and capacitance versus voltage and/or frequency) are illustrated and interpreted. Numerical device simulation has been employed as an aid in interpreting some of the measurement results. The commonly used models for expressing the noise of the detector-amplifier system in terms of its relev...

  4. CMS Status

    International Nuclear Information System (INIS)

    Dobrzynski, L.

    2007-01-01

    The status of the construction and installation of CMS detector is reviewed. The 4T magnet is cold since end of February 2006. Its commissioning up to the nominal field started in July 2006 allowing a Cosmic Challenge in which elements of the final detector are involved. All big mechanical pieces equipped with muons chambers have been assembled in the surface hall SX5. Since mid July the detector is closed with commissioned HCAL, two ECAL supermodules and representative elements of the silicon tracker. The trigger system as well as the DAQ are tested. After the achievement of the physics TDR, CMS is now ready for the promising signal hunting. (author)

  5. Hadron-therapy beam monitoring: Towards a new generation of ultra-thin p-type silicon strip detectors

    International Nuclear Information System (INIS)

    Bouterfa, M.; Aouadi, K.; Bertrand, D.; Olbrechts, B.; Delamare, R.; Raskin, J. P.; Gil, E. C.; Flandre, D.

    2011-01-01

    Hadron-therapy has gained increasing interest for cancer treatment especially within the last decade. System commissioning and quality assurance procedures impose to monitor the particle beam using 2D dose measurements. Nowadays, several monitoring systems exist for hadron-therapy but all show a relatively high influence on the beam properties: indeed, most devices consist of several layers of materials that degrade the beam through scattering and energy losses. For precise treatment purposes, ultra-thin silicon strip detectors are investigated in order to reduce this beam scattering. We assess the beam size increase provoked by the Multiple Coulomb Scattering when passing through Si, to derive a target thickness. Monte-Carlo based simulations show a characteristic scattering opening angle lower than 1 mrad for thicknesses below 20 μm. We then evaluated the fabrication process feasibility. We successfully thinned down silicon wafers to thicknesses lower than 10 μm over areas of several cm 2 . Strip detectors are presently being processed and they will tentatively be thinned down to 20 μm. Moreover, two-dimensional TCAD simulations were carried out to investigate the beam detector performances on p-type Si substrates. Additionally, thick and thin substrates have been compared thanks to electrical simulations. Reducing the pitch between the strips increases breakdown voltage, whereas leakage current is quite insensitive to strips geometrical configuration. The samples are to be characterized as soon as possible in one of the IBA hadron-therapy facilities. For hadron-therapy, this would represent a considerable step forward in terms of treatment precision. (authors)

  6. An algorithm for calculating the Lorentz angle in silicon detectors [online

    OpenAIRE

    Bartsch, Valeria; De Boer, Willem; Bol, Johannes; Dierlamm, Alexander; Grigoriev, Eugene; Hauler, Florian; Heising, Stephan; Jungermann, Levin

    2001-01-01

    The CMS (Compact Muon Solenoid) detector will use silicon sensors in the harsh radiation environment of the LHC (Large Hadron Collider) and high magnetic fields. The drift direction of the charge carriers is aected by the Lorentz force due to the high magnetic field. Also the resulting radiation damage changes the properties of the drift. The CMS silicon strip detector is read out on the p-side of the sensors, where holes are coll...

  7. Characterisation of Irradiated Thin Silicon Sensors for the CMS Phase II Pixel Upgrade

    CERN Document Server

    Centis Vignali, Matteo; Eichhorn, Thomas; Garutti, Erika; Junkes, Alexandra; Steinbrueck, Georg; bigskip; Institut fur Experimentalphysik; Luruper Chaussee; Hamburg; Deutsches Elektronen-Synchrotron Notkestra; e; Hamburg

    2016-01-01

    In this paper, the results obtained from the characterisation of 100 and 200\\,$\\mu$m thick p-bulk pad diodes and strip sensors irradiated up to fluences of $\\Phi_{eq} = 1.3 \\times 10^{16}$ cm$^{-2}$ are shown.

  8. Track based alignment of the CMS silicon tracker and its implication on physics performance

    International Nuclear Information System (INIS)

    Draeger, Jula

    2011-08-01

    In order to fully exploit the discovery potential of the CMS detector for new physics beyond the Standard Model at the high luminosity and centre-of-mass energy provided by the Large Hadron Collider, a careful calibration of the detector and profound understanding of its impact on physics performance are necessary to provide realistic uncertainties for the measurements of physics processes. This thesis describes the track-based alignment of the inner tracking system of CMS with the Millepede II algorithm. Using the combined information of tracks from cosmic rays and collisions taken in 2010, a remarkable local alignment precision has been reached that meets the design specification for most regions of the detector and takes into account instabilities of the detector geometry over time. In addition, the impact of the alignment of b tagging or the Z boson resonance are investigated. The latter is studied to investigate the impact of correlated detector distortions which hardly influence the overall solution of the minimisation problem but introduce biases in the track parameters and thus the derived physics quantities. The determination and constraint of these weak modes present the future challenge of the alignment task at CMS. (orig.)

  9. Track based alignment of the CMS silicon tracker and its implication on physics performance

    Energy Technology Data Exchange (ETDEWEB)

    Draeger, Jula

    2011-08-15

    In order to fully exploit the discovery potential of the CMS detector for new physics beyond the Standard Model at the high luminosity and centre-of-mass energy provided by the Large Hadron Collider, a careful calibration of the detector and profound understanding of its impact on physics performance are necessary to provide realistic uncertainties for the measurements of physics processes. This thesis describes the track-based alignment of the inner tracking system of CMS with the Millepede II algorithm. Using the combined information of tracks from cosmic rays and collisions taken in 2010, a remarkable local alignment precision has been reached that meets the design specification for most regions of the detector and takes into account instabilities of the detector geometry over time. In addition, the impact of the alignment of b tagging or the Z boson resonance are investigated. The latter is studied to investigate the impact of correlated detector distortions which hardly influence the overall solution of the minimisation problem but introduce biases in the track parameters and thus the derived physics quantities. The determination and constraint of these weak modes present the future challenge of the alignment task at CMS. (orig.)

  10. The CMS tracker operation and performance at the Magnet Test and Cosmic Challenge

    International Nuclear Information System (INIS)

    Adam, W; Bergauer, T; Dragicevic, M; Friedl, M; Fruehwirth, R; Haensel, S; Hrubec, J; Krammer, M; Pernicka, M; Waltenberger, W; Widl, E; Mechelen, P Van; Cardaci, M; Beaumont, W; Langhe, E de; Wolf, E A de; Delmeire, E; Bouhali, O; Charaf, O; Clerbaux, B

    2008-01-01

    During summer 2006 a fraction of the CMS silicon strip tracker was operated in a comprehensive slice test called the Magnet Test and Cosmic Challenge (MTCC). At the MTCC, cosmic rays detected in the muon chambers were used to trigger the readout of all CMS sub-detectors in the general data acquisition system and in the presence of the 4 T magnetic field produced by the CMS superconducting solenoid. This document describes the operation of the Tracker hardware and software prior, during and after data taking. The performance of the detector as resulting from the MTCC data analysis is also presented

  11. Investigations into the impact of bond pads and p-stop implants on the detection efficiency of silicon micro-strip sensors

    International Nuclear Information System (INIS)

    Poley, Luise; Lohwasser, Kristin; Blue, Andrew

    2016-11-01

    The High Luminosity Upgrade of the LHC will require the replacement of the Inner Detector of ATLAS with the Inner Tracker (ITk) in order to cope with higher radiation levels and higher track densities. Prototype silicon strip detector modules are currently developed and their performance is studied in both particle test beams and X-ray beams. In previous test beam studies of prototype modules, silicon sensor strips were found to respond in regions varying from the strip pitch of 74.5 μm. The variations have been linked to local features of the sensor architecture. This paper presents results of detailed sensor measurements in both X-ray and particle beams investigating the impact of sensor features (metal pads and p-stops) on the responding area of a sensor strip.

  12. Investigations into the impact of bond pads and p-stop implants on the detection efficiency of silicon micro-strip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Poley, Luise; Lohwasser, Kristin [DESY, Hamburg (Germany); Blue, Andrew [Glasgow Univ. (United Kingdom). SUPA School of Physics and Astronomy; and others

    2016-11-15

    The High Luminosity Upgrade of the LHC will require the replacement of the Inner Detector of ATLAS with the Inner Tracker (ITk) in order to cope with higher radiation levels and higher track densities. Prototype silicon strip detector modules are currently developed and their performance is studied in both particle test beams and X-ray beams. In previous test beam studies of prototype modules, silicon sensor strips were found to respond in regions varying from the strip pitch of 74.5 μm. The variations have been linked to local features of the sensor architecture. This paper presents results of detailed sensor measurements in both X-ray and particle beams investigating the impact of sensor features (metal pads and p-stops) on the responding area of a sensor strip.

  13. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    OpenAIRE

    Poley, Luise; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid-Maria; Jones, Tim; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2015-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy gl...

  14. Overview of CMS robotic silicon module assembly hardware based on Aerotech Gantry Positioning system.

    CERN Multimedia

    Honma, Alan

    1999-01-01

    The goal of the robotic silicon module assembly pilot project is to fully automate the gluing and pick and placement of silicon sensors and front-end hybrid onto a carbon-fibre frame. The basis for thesystem is the Aerotech Gantry Positioning System (AGS10000) machineshown in the centre of the picture. To the left is the PC which contains the controller card and runs the user interface. To the rightis the rack of associated electronics which interfaces with the CERNbuilt tooling and vacuum chuck system.

  15. Experimental and simulation study of irradiated silicon pad detectors for the CMS High Granularity Calorimeter

    CERN Document Server

    Peltola, Timo Hannu Tapani

    2017-01-01

    The foreseen upgrade of the LHC to its high luminosity phase (HL-LHC), will maximize the physics potential of the facility. The upgrade is expected to increase the instantaneous luminosity by a factor of 5 and deliver an integrated luminosity of 3000 fb$^{-1}$ after 10 years of operation. As a result of the corresponding increase in radiation and pileup, the electromagnetic calorimetry in the CMS endcaps will sustain maximum integrated doses of 1.5 MGy and neutron fluences above 10$^{16}$ n$_{\\mathrm{eq}}$/cm$^2$, necessitating their replacement for HL-LHC operation. The CMS collaboration has decided to replace the existing endcap electromagnetic and hadronic calorimeters by a High Granularity Calorimeter (HGCAL) that will provide unprecedented information on electromagnetic and hadronic showers in the very high pileup of the HL-LHC. The HGCAL will be realized as a sampling calorimeter with 52 layers of active material. The electromagnetic section and the high-radiation region of the hadronic section will use...

  16. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    Science.gov (United States)

    Poley, L.; Blue, A.; Bates, R.; Bloch, I.; Díez, S.; Fernandez-Tejero, J.; Fleta, C.; Gallop, B.; Greenall, A.; Gregor, I.-M.; Hara, K.; Ikegami, Y.; Lacasta, C.; Lohwasser, K.; Maneuski, D.; Nagorski, S.; Pape, I.; Phillips, P. W.; Sperlich, D.; Sawhney, K.; Soldevila, U.; Ullan, M.; Unno, Y.; Warren, M.

    2016-07-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6·1034 cm-2s-1. A consequence of this increased luminosity is the expected radiation damage at 3000 fb-1 after ten years of operation, requiring the tracking detectors to withstand fluences to over 1·1016 1 MeV neq/cm2. In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.

  17. Construction and beam-tests of silicon-tungsten and scintillator-SiPM modules for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Chang, Yung-wei

    2018-01-01

    A High Granularity Calorimeter (HGCAL) is being designed to replace the existing endcap calorimeters in CMS for the HL-LHC era. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments, with silicon sensors being chosen for the high-pseudorapidity regions due to their radiation tolerance. The remainder of the HGCAL, in the lower radiation environment, will use plastic scintillator with on-tile SiPM readout. Prototype hexagonal silicon modules, featuring a new Skiroc2-CMS front-end chip, together with a modified version of the scintillator-SiPM CALICE AHCAL, have been built and tested in beams at CERN in 2017. In this poster, we present measurements of noise, calibration, shower shapes and performance with electrons, pions and muons.

  18. Low-level determination of silicon in steels by anodic stripping voltammetry on a hanging mercury drop electrode.

    Science.gov (United States)

    Rahier, A H; Lunardi, S; Nicolle, F; George, S M

    2010-10-15

    The sensitive differential pulse anodic stripping voltammetry (DPASV) proposed originally by Ishiyama et al. (2001) has been revised and improved to allow the accurate measurement of silicon on a hanging mercury drop electrode (HMDE) instead of a glassy carbon electrode. We assessed the rate of formation of the partially reduced β-silicododecamolybdate and found that metallic mercury promotes the reaction in the presence of a large concentration of Fe(3+). The scope of the method has been broadened by carrying out the measurements in the presence of a constant amount of Fe(3+). The limit of detection (LOD) of the method described in the present paper is 100 μg Sig(-1) of steel, with a relative precision ranging from 5% to 12%. It can be further enhanced to 700 ng Sig(-1) of steel provided the weight of the sample, the dilution factors, the duration of the electrolysis and the ballast of iron are adequately revised. The tolerance to several interfering species has been examined, especially regarding Al(3+), Cr(3+) and Cr VI species. The method was validated using four low-alloy ferritic steels certified by the National Institute of Standards and Technology (NIST). Its application to nickel base alloys as well as to less complicated matrixes is straightforward. It has also been successfully applied to the determination of free silicon into silicon carbide nano-powder. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Practical measurement of silicon in low alloy steels by differential pulse stripping voltammetry

    International Nuclear Information System (INIS)

    Rahier, A.; Lunardi, S.; Triki, C.

    2005-01-01

    A sensitive differential pulse anodic stripping voltammetry has been adapted to allow the determination of Si in low-alloy steels using a hanging mercury drop electrode. The method has been qualified using certified ASTM standards and is now running in routine. The present report describes the experimental details, thereby allowing the reader to carry out the measurements precisely. (author)

  20. Lorentz angle measurements as part of the sensor R\\&D for the CMS Tracker upgrade

    CERN Document Server

    Nurnberg, Andreas Matthias

    2012-01-01

    $200 m^2$ silicon strip tracker was designed to withstand the radiation of 10 years of LHC operation. The foreseen high luminosity upgrade of the LHC imposes even higher demands on the radiation tolerance and thus requires the construction of a new tracking detector. To determine the properties of different silicon materials and production processes, a campaign has been started by the CMS Tracker Collaboration to identify the most promising candidate material for the new CMS tracker. The silicon sensors of the CMS tracker are operated in a 3.8 T magnetic field. Charges created by traversing ionizing particles inside the active sensor volume are deflected by the Lorentz force. The Lorentz angle, under which the charge drifts through the sensor, is strongly dependent on the mobility, which in turn depends on the electric field and may depend on the radiation damage created by the particles produced by the LHC. Studying this is ...

  1. Charge-partitioning study of a wide-pitch silicon micro-strip detector with a 64-channel CMOS preamplifier array

    International Nuclear Information System (INIS)

    Ikeda, H.; Tsuboyama, T.; Okuno, S.; Saitoh, Y.; Akamine, T.; Satoh, K.; Inoue, M.; Yamanaka, J.; Mandai, M.; Takeuchi, H.; Kitta, T.; Miyahara, S.; Kamiya, M.

    1996-01-01

    The wider pitch readout operation of a 50 μm-pitch double-sided silicon micro-strip detector has been studied specifically concerning its ohmic side. Every second readout and ganged configuration was examined by employing a newly developed 64-channel preamplifier array. The observed charge responses for collimated IR light were compared with a numerical model. (orig.)

  2. Detecting single-electron events in TEM using low-cost electronics and a silicon strip sensor.

    Science.gov (United States)

    Gontard, Lionel C; Moldovan, Grigore; Carmona-Galán, Ricardo; Lin, Chao; Kirkland, Angus I

    2014-04-01

    There is great interest in developing novel position-sensitive direct detectors for transmission electron microscopy (TEM) that do not rely in the conversion of electrons into photons. Direct imaging improves contrast and efficiency and allows the operation of the microscope at lower energies and at lower doses without loss in resolution, which is especially important for studying soft materials and biological samples. We investigate the feasibility of employing a silicon strip detector as an imaging detector for TEM. This device, routinely used in high-energy particle physics, can detect small variations in electric current associated with the impact of a single charged particle. The main advantages of using this type of sensor for direct imaging in TEM are its intrinsic radiation hardness and large detection area. Here, we detail design, simulation, fabrication and tests in a TEM of the front-end electronics developed using low-cost discrete components and discuss the limitations and applications of this technology for TEM.

  3. Radiation Hard GaNFET High Voltage Multiplexing (HV Mux) for the ATLAS Upgrade Silicon Strip Tracker

    CERN Document Server

    Lynn, David; The ATLAS collaboration

    2017-01-01

    The outer radii of the inner tracker (ITk) for the Phase-II Upgrade of the ATLAS experiment will consist of groups of silicon strip sensors mounted on common support structures. Lack of space creates a need to remotely disable a failing sensor from the common HV bus. We have developed circuitry consisting of a GaNFET transistor and a HV Multiplier circuit to disable a failed sensor. We will present two variants of the HV Mux circuitry and show irradiation results on individual components with an emphasis on the GaNFET results. We will also discuss the reliability of the HV Mux circuitry and show plans to ensure reliability during production.

  4. CMS Tracker Alignment Performance Results 2016

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The tracking system of the CMS detector provides excellent resolution for charged particle tracks and an efficient way of tagging jets. In order to reconstruct good quality tracks, the position and orientation of each silicon pixel and strip module needs to be determined with a precision of several micrometers. The presented alignment results are derived following a global (Millepede-II) and a local (HipPy) fit approach. The performance of the CMS tracker alignment in 2016 using cosmic-ray data and the complete set of proton-proton collision data recorded at 3.8 T magnetic field has been studied. The data-driven validation of the results are shown. The time-dependent movement of the pixel detector's large-scale structure is demonstrated.

  5. Operation and radiation resistance of a FOXFET biasing structure for silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinski (Finland); Singh, P; Engels, E Jr; Shepard, J; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-03-01

    AC-coupled strip detectors biased with a FOXFET transistor structure have been studied. Measurement results for the basic operational characteristics of the FOXFET are presented together with a brief description of the physics underlying its operation. Radiation effects were studied using photons from a [sup 137]Cs source. Changes in the FOXFET characteristics as a function of radiation dose up to 1 Mrad are reported. Results about the effect of radiation on the noise from a FOXFET biased detector are discribed. (orig.).

  6. Operation and radiation resistance of a FOXFET biasing structure for silicon strip detectors

    International Nuclear Information System (INIS)

    Laakso, M.; Helsinki Univ.; Singh, P.; Engels, E. Jr.; Shepard, P.

    1992-02-01

    AC-coupled strip detectors biased with a FOXFET transistor structure have been studied. Measurement results for the basic operational characteristics of the FOXFET are presented together with a brief description of the physics underlying its operation. Radiation effects were studied using photons from a 137 Cs source. Changes in the FOXFET characteristics as a function of radiation dose up to 1 MRad are reported. Results about the effect of radiation on the noise from a FOXFET biased detector are described. 13 refs

  7. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    NARCIS (Netherlands)

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of

  8. The silicon strips Inner Tracker (ITk) of the ATLAS Phase-II upgrade detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220523; The ATLAS collaboration

    2018-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The inner detector of the current detector will be replaced by the Inner Tracker (ITk). It consists of an innermost pixel detector and an outer strips tracker. This contribution focuses on the strips tracker. The basic detection unit of the ...

  9. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    Science.gov (United States)

    Sokolov, Oleksiy

    2006-04-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5˜TeV per nucleon. Particle tracking around the interaction region at radii rrequire about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bonding operation, the component testing is done to reject the non-functional or poorly performing chips and hybrids. The LabView-controlled test station for this operation has been built at Utrecht University and was successfully used for mass production acceptance tests of chips and hybrids at three production labs. The functionality of the chip registers, bonding quality and analogue functionality of the chips and hybrids are addressed in the test. The test routines were optimized to minimize the testing time to make sure that testing is not a bottleneck of the mass production. For testing of complete modules the laser scanning station with 1060 nm diode laser has been assembled at Utrecht University. The testing method relies of the fact that a response of the detector module to a short collimated laser beam pulse resembles a response to a minimum ionizing particle. A small beam spot size (˜7 μm ) allows to deposit the charge in a narrow region and measure the response of individual detector channels. First several module prototypes have been studied with this setup, the strip gain and charge sharing function have been measured, the later is compared with the model predictions. It was also shown that for a laser beam of a high monochromaticity, interference in the sensor bulk significantly modulates

  10. Studying signal collection in the punch-through protection area of a silicon micro-strip sensor using a micro-focused X-ray beam

    CERN Document Server

    Poley, Anne-luise; The ATLAS collaboration

    2018-01-01

    For the Phase-II Upgrade of the ATLAS detector, a new, all-silicon tracker will be constructed in order to cope with the increased track density and radiation level of the High-Luminosity Large Hadron Collider. While silicon strip sensors are designed to minimise the fraction of dead material and maximise the active area of a sensor, concessions must be made to the requirements of operating a sensor in a particle physics detector. Sensor geometry features like the punch-through protection deviate from the standard sensor architecture and thereby affect the charge collection in that area. In order to study the signal collection of silicon strip sensors over their punch-through-protection area, ATLAS silicon strip sensors were scanned with a micro-focused X-ray beam at the Diamond Light Source. Due to the highly focused X-ray beam ($\\unit[2\\times3]{\\upmu\\text{m}}^2$) and the short average path length of an electron after interaction with an X-ray photon ($\\unit[\\leq2]{\\upmu\\text{m}}$), local signal collection i...

  11. Characterisation of micro-strip and pixel silicon detectors before and after hadron irradiation

    CERN Document Server

    Allport, P.P

    2012-01-01

    The use of segmented silicon detectors for tracking and vertexing in particle physics has grown substantially since their introduction in 1980. It is now anticipated that roughly 50,000 six inch wafers of high resistivity silicon will need to be processed into sensors to be deployed in the upgraded experiments in the future high luminosity LHC (HL-LHC) at CERN. These detectors will also face an extremely severe radiation environment, varying with distance from the interaction point. The volume of required sensors is large and their delivery is required during a relatively short time, demanding a high throughput from the chosen suppliers. The current situation internationally, in this highly specialist market, means that security of supply for large orders can therefore be an issue and bringing additional potential vendors into the field can only be an advantage. Semiconductor companies that could include planar sensors suitable for particle physics in their product lines will, however, need to prove their pro...

  12. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.L. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain); Martel, I. [Dpto de Física Aplicada, Universidad de Huelva (Spain); CERN, ISOLDE, CH 1211 Geneva, 23 (Switzerland); Jiménez, R. [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Galán, J., E-mail: jgalan@diesia.uhu.es [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Salmerón, P. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain)

    2016-09-11

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from {sup 12}C up to {sup 84}Kr, yielding higher discrimination rates than any other previously reported.

  13. A simple pulse shape discrimination technique applied to a silicon strip detector

    International Nuclear Information System (INIS)

    Figuera, P.; Lu, J.; Amorini, F.; Cardella, G.; DiPietro, A.; Papa, M.; Musumarra, A.; Pappalardo, G.; Rizzo, F.; Tudisco, S.

    2001-01-01

    Full text: Since the early sixties, it has been known that the shape of signals from solid state detectors can be used for particle identification. Recently, this idea has been revised in a group of papers where it has been shown that the shape of current signals from solid state detectors is mainly governed by the combination of plasma erosion time and charge carrier collection time effects. We will present the results of a systematic study on a pulse shape identification method which, contrary to the techniques proposed, is based on the use of the same electronic chain normally used in the conventional time of flight technique. The method is based on the use of charge preamplifiers, low polarization voltages (i.e. just above full depletion ones), rear side injection of the incident particles, and on a proper setting of the constant fraction discriminators which enhances the dependence of the timing output on the rise time of the input signals (which depends on the charge and energy of the incident ions). The method has been applied to an annular Si strip detector with an inner radius of about 16 mm and an outer radius of about 88 mm. The detector, manufactured by Eurisys Measures (Type Ips.73.74.300.N9), is 300 microns thick and consists of 8 independent sectors each divided into 9 circular strips. On beam tests have been performed at the cyclotron of the Laboratori Nazionali del Sud in Catania using a 25.7 MeV/nucleon 58 Ni beam impinging on a 51 V and 45 Sc composite target. Excellent charge identification from H up to the Ni projectile has been observed and typical charge identification thresholds are: ∼ 1.7 MeV/nucleon for Z ≅ 6, ∼ 3.0 MeV/nucleon for Z ≅ 11, and ∼ 5.5 MeV/nucleon for Z ≅ 20. Isotope identification up to A ≅ 13 has been observed with an energy threshold of about 6 MeV/nucleon. The identification quality has been studied as a function of the constant fraction settings. The method has been applied to all the 72 independent strips

  14. First cosmic rays seen in the CMS Tracker Endcap

    CERN Multimedia

    Lutz Feld, RWTH Aachen

    2006-01-01

    On March 14, 2006, first cosmic muon tracks have been measured in the Tracker EndCap TEC+ of the CMS silicon strip tracker. The end caps have silicon strip modules mounted onto wedge-shaped carbon fiber support plates called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an end cap (called sector) is populated with 18 petals. The TEC+ endcap is currently being integrated at RWTH Aachen. 400 silicon modules with a total of 241664 channels, corresponding to one eighth of the endcap, are read-out simultaneously by final power supply and DAQ components. On the left is the TEC+ in Aachen, whilst on the right is a computer image of a cosmic ray traversing the many layers of silicon sensors. To understand the response to real particles, basic functionality testing was followed by a cosmic muon run. A total of 400 silicon strip modules are read out with a channel inefficiency of below 1% and a common mode noise of only 25% of the intrinsic noise.

  15. Spectral CT of the extremities with a silicon strip photon counting detector

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized regularization.

  16. SiliPET: An ultra high resolution design of a small animal PET scanner based on double sided silicon strip detector stacks

    International Nuclear Information System (INIS)

    Zavattini, G.; Cesca, N.; Di Domenico, G.; Moretti, E.; Sabba, N.

    2006-01-01

    We investigated the capabilities of a small animal PET scanner, named SiliPET, based on four stacks of double sided silicon strips detectors. Each stack consists of 40 silicon detectors with dimension 60x60x1mm 3 . These are arranged to form a box 5x5x6cm 3 with minor sides opened; the box represents the maximal FOV of the scanner. The performance parameters of SiliPET scanner have been estimated, giving an intrinsic spatial resolution of 0.52mm and a sensitivity of 5.1% at the center of the system

  17. The use of a silicon strip detector dose magnifying glass in stereotactic radiotherapy QA and dosimetry

    International Nuclear Information System (INIS)

    Wong, J. H. D.; Knittel, T.; Downes, S.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Perevertaylo, V. L.; Metcalfe, P.; Jackson, M.; Rosenfeld, A. B.

    2011-01-01

    Purpose: Stereotactic radiosurgery/therapy (SRS/SRT) is the use of radiation ablation in place of conventional surgical excision to remove or create fibrous tissue in small target volumes. The target of the SRT/SRS treatment is often located in close proximity to critical organs, hence the requirement of high geometric precision including a tight margin on the planning target volume and a sharp dose fall off. One of the major problems with quality assurance (QA) of SRT/SRS is the availability of suitable detectors with the required spatial resolution. The authors present a novel detector that they refer to as the dose magnifying glass (DMG), which has a high spatial resolution (0.2 mm) and is capable of meeting the stringent requirements of QA and dosimetry in SRS/SRT therapy. Methods: The DMG is an array of 128 phosphor implanted n + strips on a p-type Si wafer. The sensitive area defined by a single n + strip is 20x2000 μm 2 . The Si wafer is 375 μm thick. It is mounted on a 0.12 mm thick Kapton substrate. The authors studied the dose per pulse (dpp) and angular response of the detector in a custom-made SRS phantom. The DMG was used to determine the centers of rotation and positioning errors for the linear accelerator's gantry, couch, and collimator rotations. They also used the DMG to measure the profiles and the total scatter factor (S cp ) of the SRS cones. Comparisons were made with the EBT2 film and standard S cp values. The DMG was also used for dosimetric verification of a typical SRS treatment with various noncoplanar fields and arc treatments when applied to the phantom. Results: The dose per pulse dependency of the DMG was found to be cp agrees very well with the standard data with an average difference of 1.2±1.1%. Comparison of the relative intensity profiles of the DMG and EBT2 measurements for a simulated SRS treatment shows a maximum difference of 2.5%. Conclusions: The DMG was investigated for dose per pulse and angular dependency. Its

  18. The use of a silicon strip detector dose magnifying glass in stereotactic radiotherapy QA and dosimetry.

    Science.gov (United States)

    Wong, J H D; Knittel, T; Downes, S; Carolan, M; Lerch, M L F; Petasecca, M; Perevertaylo, V L; Metcalfe, P; Jackson, M; Rosenfeld, A B

    2011-03-01

    Stereotactic radiosurgery/therapy (SRS/SRT) is the use of radiation ablation in place of conventional surgical excision to remove or create fibrous tissue in small target volumes. The target of the SRT/SRS treatment is often located in close proximity to critical organs, hence the requirement of high geometric precision including a tight margin on the planning target volume and a sharp dose fall off. One of the major problems with quality assurance (QA) of SRT/SRS is the availability of suitable detectors with the required spatial resolution. The authors present a novel detector that they refer to as the dose magnifying glass (DMG), which has a high spatial resolution (0.2 mm) and is capable of meeting the stringent requirements of QA and dosimetry in SRS/SRT therapy. The DMG is an array of 128 phosphor implanted n+ strips on a p-type Si wafer. The sensitive area defined by a single n+ strip is 20 x 2000 microm2. The Si wafer is 375 microm thick. It is mounted on a 0.12 mm thick Kapton substrate. The authors studied the dose per pulse (dpp) and angular response of the detector in a custom-made SRS phantom. The DMG was used to determine the centers of rotation and positioning errors for the linear accelerator's gantry, couch, and collimator rotations. They also used the DMG to measure the profiles and the total scatter factor (S(cp)) of the SRS cones. Comparisons were made with the EBT2 film and standard S(cp) values. The DMG was also used for dosimetric verification of a typical SRS treatment with various noncoplanar fields and arc treatments when applied to the phantom. The dose per pulse dependency of the DMG was found to be DMG and EBT2 measurements for a simulated SRS treatment shows a maximum difference of 2.5%. The DMG was investigated for dose per pulse and angular dependency. Its application to SRS/SRT delivery verification was demonstrated. The DMG with its high spatial resolution and real time capability allows measurement of dose profiles for cone

  19. Evaluation of the bulk and strip characteristics of large area n-in-p silicon sensors intended for a very high radiation environment

    Czech Academy of Sciences Publication Activity Database

    Böhm, Jan; Mikeštíková, Marcela; Affolder, A.A.; Allport, P.P.; Bates, R.; Betancourt, C.; Brown, H.; Buttar, C.; Carter, J. R.; Casse, G.

    2011-01-01

    Roč. 636, č. 1 (2011), "S104"-"S110" ISSN 0168-9002 R&D Projects: GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : silicon * micro-strip * ATLAS ID upgrade * SLHC * leakage current * depletion voltage * electrical characteristics * coupling capacitance Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.207, year: 2011 http://dx.doi.org/10.1016/j.nima.2010.04.093

  20. Front-side biasing of n-in-p silicon strip detectors

    CERN Document Server

    Baselga Bacardit, Marta; Dierlamm, Alexander Hermann; Dragicevic, Marko Gerhart; Konig, Axel; Pree, Elias; Metzler, Marius

    2018-01-01

    Front-side biasing is an alternative method to bias a silicon sensor. Instead of directly applying high voltage to the back-side, one can exploit the conductive properties of the edge region to bias a detector exclusively via top-side connections. This option can be beneficial for the detector design and might help to facilitate the assembly process of modules. The effective bias voltage is affected by the resistance of the edge region and the sensor current. The measurements of n-in-p sensors performed to qualify this concept have shown that the voltage drop emerging from this resistance is negligible before irradiation. After irradiation, however, the resistivity of the edge region increases with fluence and saturates in the region of 10$^{7}\\,\\Omega$ at a fluence of 1$\\,\\cdot\\,10^{15}\\,$n$_{\\textrm{eq}}$cm$^{-2}$. The measurements are complemented by TCAD simulations and interpretations of the observed effects.

  1. A Silicon Strip Detector for the Phase II High Luminosity Upgrade of the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    INSPIRE-00425747; McMahon, Stephen J

    2015-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider (LHC) that detects proton-proton collisions at a centre of mass energy of 14 TeV. The Semiconductor Tracker is part of the Inner Detector, implemented using silicon microstrip detectors with binary read-out, providing momentum measurement of charged particles with excellent resolution. The operation of the LHC and the ATLAS experiment started in 2010, with ten years of operation expected until major upgrades are needed in the accelerator and the experiments. The ATLAS tracker will need to be completely replaced due to the radiation damage and occupancy of some detector elements and the data links at high luminosities. These upgrades after the first ten years of operation are named the Phase-II Upgrade and involve a re-design of the LHC, resulting in the High Luminosity Large Hadron Collider (HL-LHC). This thesis presents the work carried out in the testing of the ATLAS Phase-II Upgrade electronic systems in the future strips tracker a...

  2. Mechanical studies towards a silicon micro-strip super module for the ATLAS inner detector upgrade at the high luminosity LHC

    International Nuclear Information System (INIS)

    Barbier, G; Cadoux, F; Clark, A; Favre, Y; Ferrere, D; Gonzalez-Sevilla, S; Iacobucci, G; Marra, D La; Perrin, E; Seez, W; Endo, M; Hanagaki, K; Hara, K; Ikegami, Y; Nakamura, K; Takubo, Y; Terada, S; Jinnouchi, O; Nishimura, R; Takashima, R

    2014-01-01

    It is expected that after several years of data-taking, the Large Hadron Collider (LHC) physics programme will be extended to the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 10 34  cm −2  s −1 . For the general-purpose ATLAS experiment at the LHC, a complete replacement of its internal tracking detector will be necessary, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module (SM) is an integration concept proposed for the barrel strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules (DSM) are assembled into a low-mass local support (LS) structure. Mechanical aspects of the proposed LS structure are described

  3. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pradeep [Goethe University, Frankfurt am Main (Germany); GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt (Germany); Eschke, Juergen [GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt (Germany); Facility for Anti-proton and Ion Research, GmbH, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The Silicon Tracking System (STS) of the CBM experiment at FAIR is composed of 8 tracking stations comprising of 1292 double-sided silicon micro-strip sensors. A Laser Test System (LTS) has been developed for the quality assurance of prototype sensors. The aim is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. Several prototype sensors with strip pitch of 50 and 58 μm have been tested, as well as a prototype module with realistic mechanical arrangement of sensor and read-out cables. The LTS is designed to measure sensor response in an automatized procedure across the sensor with focused laser beam (spot-size ∼ 12 μm, wavelength = 1060 nm). The pulse with duration (∼ 10 ns) and power (∼ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Results from laser scans of prototype sensors and detector module are reported.

  4. Electrical measurements of silicon sensors for the upgrade of the CMS detector; Vermessung von Siliziumsensoren fuer das Upgrade des CMS-Detektors

    Energy Technology Data Exchange (ETDEWEB)

    Stegler, Martin

    2013-05-15

    Because of the upgrade in the LHC (2020-2022), in which the luminosity is increased to above 5.10{sup 34} cm{sup -2}s{sup -1}, in the CMS tracker a much higher radiation exposure than hitherto is to be expected. Therefore radiation-hardened sensors are required. For this reason in the framework of the Hamamatsu-Photonics-KK campaign among others Mpix sensors are studied. Furthermore they are tested concerning their material properties by characterizing befor and after the irradiation. Also the optimal geometry is searched for. This thesis studies two substrate types of the same thickness with two isolating mechanisms. Thereby also the influence of the geometry and different bias structures is regarded in order to draw conclusions on the radiation hardness.

  5. A silicon strip detector array for energy verification and quality assurance in heavy ion therapy.

    Science.gov (United States)

    Debrot, Emily; Newall, Matthew; Guatelli, Susanna; Petasecca, Marco; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2018-02-01

    The measurement of depth dose profiles for range and energy verification of heavy ion beams is an important aspect of quality assurance procedures for heavy ion therapy facilities. The steep dose gradients in the Bragg peak region of these profiles require the use of detectors with high spatial resolution. The aim of this work is to characterize a one dimensional monolithic silicon detector array called the "serial Dose Magnifying Glass" (sDMG) as an independent ion beam energy and range verification system used for quality assurance conducted for ion beams used in heavy ion therapy. The sDMG detector consists of two linear arrays of 128 silicon sensitive volumes each with an effective size of 2mm × 50μm × 100μm fabricated on a p-type substrate at a pitch of 200 μm along a single axis of detection. The detector was characterized for beam energy and range verification by measuring the response of the detector when irradiated with a 290 MeV/u 12 C ion broad beam incident along the single axis of the detector embedded in a PMMA phantom. The energy of the 12 C ion beam incident on the detector and the residual energy of an ion beam incident on the phantom was determined from the measured Bragg peak position in the sDMG. Ad hoc Monte Carlo simulations of the experimental setup were also performed to give further insight into the detector response. The relative response profiles along the single axis measured with the sDMG detector were found to have good agreement between experiment and simulation with the position of the Bragg peak determined to fall within 0.2 mm or 1.1% of the range in the detector for the two cases. The energy of the beam incident on the detector was found to vary less than 1% between experiment and simulation. The beam energy incident on the phantom was determined to be (280.9 ± 0.8) MeV/u from the experimental and (280.9 ± 0.2) MeV/u from the simulated profiles. These values coincide with the expected energy of 281 MeV/u. The sDMG detector

  6. arXiv Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    INSPIRE-00664095

    2018-02-26

    As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5–1.0 cm2 interspersed with absorbers. Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end ASIC (designed by the CALICE collaboration for ILC). In 2017, the setup has been extended with CALICE's AHCAL prototype, a scinitillator based sampling calorimeter, and it was further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end ASIC was used for the first time. We highlight final results from our studies in 2016, including ...

  7. Development and Evaluation of a Test System for the Quality Assurance during the Mass Production of Silicon Microstrip Detector Modules for the CMS Experiment

    CERN Document Server

    Franke, Torsten

    2005-01-01

    The Compact Muon Solenoid (CMS) is one of four large-scale experiments that is going to be installed at the Large Hadron Collider (LHC) at the European Laboratory for Particle Physics (CERN). For CMS an inner tracking system entirely equipped with silicon microstrip detectors was chosen. With an active area of about 198 m2 it will be the largest tracking device of the world that was ever constructed using silicon sensors. The basic components in the construction of the tracking system are approximately 16,000 so-called modules, which are pre-assembled units consisting of the sensors, the readout electronics and a support structure. The module production is carried out by a cooperation of number of institutes and industrial companies. To ensure the operation of the modules within the harsh radiation environment extensive tests have to be performed on all components. An important contribution to the quality assurance of the modules is made by a test system of which all components were developed in Aachen. In ad...

  8. Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Quast, Thorben

    2017-01-01

    As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5 - 1.0 cm$^2$ interspersed with absorbers.Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end chip (designed for the CALICE experiment for ILC). This year, the setup is extended with CALICE's AHCAL prototype and it is further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end chip is used for the first time.We present final results from our studies in 2016, including noise performance, calibration with MIPs, energy and p...

  9. Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    Science.gov (United States)

    Quast, Thorben

    2018-02-01

    As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-1.0 cm2 interspersed with absorbers. Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end ASIC (designed by the CALICE collaboration for ILC). In 2017, the setup has been extended with CALICE's AHCAL prototype, a scinitillator based sampling calorimeter, and it was further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end ASIC was used for the first time. We highlight final results from our studies in 2016, including position resolution as well as precision timing-measurements. Furthermore, the extended setup in 2017 is discussed and first results from beam tests with electrons and pions are shown.

  10. Design, fabrication and characterization of multi-guard-ring furnished p+n-n+ silicon strip detectors for future HEP experiments

    Science.gov (United States)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-07-01

    Si detectors, in various configurations (strips and pixels), have been playing a key role in High Energy Physics (HEP) experiments due to their excellent vertexing and high precision tracking information. In future HEP experiments like upgrade of the Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC), CERN and the proposed International Linear Collider (ILC), the Si tracking detectors will be operated in a very harsh radiation environment, which leads to both surface and bulk damage in Si detectors which in turn changes their electrical properties, i.e. change in the full depletion voltage, increase in the leakage current and decrease in the charge collection efficiency. In order to achieve the long term durability of Si-detectors in future HEP experiments, it is required to operate these detectors at very high reverse biases, beyond the full depletion voltage, thus requiring higher detector breakdown voltage. Delhi University (DU) is involved in the design, fabrication and characterization of multi-guard-ring furnished ac-coupled, single sided, p+n-n+ Si strip detectors for future HEP experiments. The design has been optimized using a two-dimensional numerical device simulation program (TCAD-Silvaco). The Si strip detectors are fabricated with eight-layers mask process using the planar fabrication technology by Bharat Electronic Lab (BEL), India. Further an electrical characterization set-up is established at DU to ensure the quality performance of fabricated Si strip detectors and test structures. In this work measurement results on non irradiated Si Strip detectors and test structures with multi-guard-rings using Current Voltage (IV) and Capacitance Voltage (CV) characterization set-ups are discussed. The effect of various design parameters, for example guard-ring spacing, number of guard-rings and metal overhang on breakdown voltage of test structures have been studied.

  11. CMS Factsheet

    CERN Multimedia

    Lapka, Marzena; Rao, Achintya

    2016-01-01

    CMS Factsheets: containing facts about the CMS collaboration and detector. Printed copies of the English version are available from the CMS Secretariat. Responsible for translations: English only - E.Gibney (updated 2015)

  12. Evaluation of the data of the HERA-B vertex detector with regards to the physical properties of the applied silicon strip counters

    International Nuclear Information System (INIS)

    Wagner, W.

    1999-01-01

    The HERA-B experiment at the DESY laboratory in Hamburg is dedicated to measuring CP-violation in the decays of neutral B-mesons. The primary purpose of the experiment in the measurement of the CP-asymmetry in the decay channel B 0 → J/ψK S 0 . In order to identify the B-mesons and to determine the time-dependent asymmetry, the decay length anti Δ anti l of the B-mesons must be measured to an accuracy of σ Δl ≤ 500 μm. To achieve this aim, HERA-B has a vertex detector which is based on double-sided silicon strip detectors mounted in a Roman pot system. One important specification of the vertex detector is to allow independent tracking with an efficiency above 95%. Therefore, it is required to select hits on the strip detectors with an efficiency above 99% and optimize the suppression of noise. This thesis describes a detailed investigation of the behaviour of the silicon strip detectors used in the vertex detector. The first part presents measurements performed in the laboratory using a tunable infrared dye laser to simulate the passage of charged particles through the detector. This includes measurements of the charge division between adjacent readout strips and mapping of the detector depletion. The results of the measurements agree excellently with the predictions from a detailed model calculation carried out in this thesis. The second part of the thesis the analysis of data recorded with the HERA-B vertex detector during the commissioning run of spring 1999. The analysis focusses on the investigation of cluster shapes and cluster sizes. In particular, the dependence of these distributions from the selection cuts is analyzed. Additionally, the differences between the two detector designs used, p-spray and p-stop detectors with intermediate strip or without respectively, are worked out. The measured distributions agree very well with the predictions from a model calculation taking all relevant detector parameters into account. The results of the data

  13. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS inner detector

    International Nuclear Information System (INIS)

    Poley, Luise; Bloch, Ingo; Edwards, Sam

    2016-04-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.

  14. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS inner detector

    Energy Technology Data Exchange (ETDEWEB)

    Poley, Luise [DESY, Zeuthen (Germany); Humboldt Univ. Berlin (Germany); Bloch, Ingo [DESY, Zeuthen (Germany); Edwards, Sam [Birmingham Univ. (United Kingdom); and others

    2016-04-15

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.

  15. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Ghosh, P.

    2015-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of 1292 double sided silicon micro-strip sensors. For the quality assurance of produced prototype sensors a laser test system (LTS) has been developed. The aim of the LTS is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the LTS so far have 256 strips with a pitch of 50 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm , wavelength = 1060 nm). The pulse with duration (≈ 10 ns) and power (≈ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Laser scans different prototype sensors is reported

  16. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    CERN Document Server

    INSPIRE-00407830; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid M.; Jones, T; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2016-05-24

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigatio...

  17. SiliPET: An ultra-high resolution design of a small animal PET scanner based on stacks of double-sided silicon strip detector

    International Nuclear Information System (INIS)

    Di Domenico, Giovanni; Zavattini, Guido; Cesca, Nicola; Auricchio, Natalia; Andritschke, Robert; Schopper, Florian; Kanbach, Gottfried

    2007-01-01

    We investigated with Monte Carlo simulations, using the EGSNrcMP code, the capabilities of a small animal PET scanner based on four stacks of double-sided silicon strip detectors. Each stack consists of 40 silicon detectors with dimension of 60x60x1 mm 3 and 128 orthogonal strips on each side. Two coordinates of the interaction are given by the strips, whereas the third coordinate is given by the detector number in the stack. The stacks are arranged to form a box of 5x5x6 cm 3 with minor sides opened; the box represents the minimal FOV of the scanner. The performance parameters of the SiliPET scanner have been estimated giving a (positron range limited) spatial resolution of 0.52 mm FWHM, and an absolute sensitivity of 5.1% at the center of system. Preliminary results of a proof of principle measurement done with the MEGA advanced Compton imager using a ∼1 mm diameter 22 Na source, showed a focal ray tracing FWHM of 1 mm

  18. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    Science.gov (United States)

    Poley, L.; Bloch, I.; Edwards, S.; Friedrich, C.; Gregor, I.-M.; Jones, T.; Lacker, H.; Pyatt, S.; Rehnisch, L.; Sperlich, D.; Wilson, J.

    2016-05-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.

  19. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    International Nuclear Information System (INIS)

    Poley, L.; Bloch, I.; Friedrich, C.; Gregor, I.-M.; Edwards, S.; Pyatt, S.; Wilson, J.; Jones, T.; Lacker, H.; Rehnisch, L.; Sperlich, D.

    2016-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.

  20. A time-based front-end ASIC for the silicon micro strip sensors of the P-bar ANDA Micro Vertex Detector

    International Nuclear Information System (INIS)

    Pietro, V. Di; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Stockmanns, T.; Zambanini, A.; Rivetti, A.; Rolo, M.D.

    2016-01-01

    The P-bar ANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA ( P-bar ANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels

  1. A time-based front-end ASIC for the silicon micro strip sensors of the bar PANDA Micro Vertex Detector

    Science.gov (United States)

    Di Pietro, V.; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Zambanini, A.

    2016-03-01

    The bar PANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA (bar PANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels.

  2. Development of Silicon Sensor Characterization System for Future High Energy Physics Experiments

    OpenAIRE

    Preeti kumari; Kavita Lalwani; Ranjeet Dalal; Geetika Jain; Ashutosh Bhardwaj; Kirti Ranjan

    2015-01-01

    The Compact Muon Solenoid (CMS) is one of the general purpose experiments at the Large Hadron Collider (LHC), CERN and has its Tracker built of all silicon strip and pixel sensors. Si sensors are expected to play extremely important role in the upgrades of the existing Tracker for future high luminosity environment and will also be used in future lepton colliders. However, properties of the silicon sensors have to be carefully understood before they can be put in the extremely high luminos...

  3. Design,construction and commissioning of a cylinder of double-sided silicon micro-strips detectors for the Star experiment at RHIC

    International Nuclear Information System (INIS)

    Guedon, M.

    2005-05-01

    This study has been performed in the frame of quark gluon plasma physics research in the STAR experiment at RHIC. It deals with the design, the construction and the commissioning of a barrel of silicon-strip detectors (SSD). Added to the Silicon Vertex Tracker (SVT) of the STAR detector, it extends the capabilities of track reconstruction for charged particles emitted in ultra-relativistic heavy-ion collisions. It also contributes to the general study of the quark-gluon plasma production undertaken at STAR. The SSD is a cylinder of 1 m long and of 23 cm radius, and it is composed of 320 compact identical modules. Each module includes one double-sided silicon micro-strip detector, 12 readout chips ALICE 128C, 12 TAB ribbons, 2 COSTAR control chips and 2 hybrids supporting all the components. The document explains why the SSD is an important and relevant element, and justifies the technological choices as well as their validation by in-beam characterization. All component functionalities, characteristics and test procedures are presented. The data and test results are stored in a database for tracing purpose. Component and module production is described. Two parallel studies have been performed, analysed and described. One on the temperature dependence of the module performances and the other one on the optimal adjustments of the analogue blocks inside the ALICE 128C chip. The SSD installation on the RHIC site as well as the commissioning are presented together with the first data takings. (author)

  4. Silicon Detectors-Tools for Discovery in Particle Physics

    International Nuclear Information System (INIS)

    Krammer, Manfred

    2009-01-01

    Since the first application of Silicon strip detectors in high energy physics in the early 1980ies these detectors have enabled the experiments to perform new challenging measurements. With these devices it became possible to determine the decay lengths of heavy quarks, for example in the fixed target experiment NA11 at CERN. In this experiment Silicon tracking detectors were used for the identification of particles containing a c-quark. Later on, the experiments at the Large Electron Positron collider at CERN used already larger and sophisticated assemblies of Silicon detectors to identify and study particles containing the b-quark. A very important contribution to the discovery of the last of the six quarks, the top quark, has been made by even larger Silicon vertex detectors inside the experiments CDF and D0 at Fermilab. Nowadays a mature detector technology, the use of Silicon detectors is no longer restricted to the vertex regions of collider experiments. The two multipurpose experiments ATLAS and CMS at the Large Hadron Collider at CERN contain large tracking detectors made of Silicon. The largest is the CMS Inner Tracker consisting of 200 m 2 of Silicon sensor area. These detectors will be very important for a possible discovery of the Higgs boson or of Super Symmetric particles. This paper explains the first applications of Silicon sensors in particle physics and describes the continuous development of this technology up to the construction of the state of the art Silicon detector of CMS.

  5. Study of micro-strip gas ionisation chambers substrates for CMS experiment at LHC; Etude de substrats pour chambres gazeuses a micropistes dans le cadre de l`experience CMS au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pallares, A.

    1996-06-14

    High luminosity, expected interaction and dose rates of the future LHC collider require the development of micro-strips gas chambers. In addition to optimization of this new detector, this work is concerned with understanding of gain loss phenomena. Influence of the gas substrate is carefully analysed, as well as theoretical concepts concerning glasses and their behaviour under polarization and irradiation, and the consequence on detection operations.Electron spin resonance is used to study, in standard glass, creation of radiation induced defects which may be charged. (D.L.). 14 refs.

  6. Influence of cold rolling direction on texture, inhibitor and magnetic properties in strip-cast grain-oriented 3% silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F., E-mail: fangfengdbdx@163.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Lu, X.; Zhang, Y.X.; Wang, Y.; Jiao, H.T.; Cao, G.M.; Yuan, G.; Xu, Y.B. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, EL Paso, TX 79968 (United States); Wang, G.D. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    An unconventional cold rolling scheme (inclined rolling at 0°, 30°, 45°, 90° during second-stage cold rolling process) was adopted to process grain-oriented silicon steel based on strip casting process. The influences of inclination angles on microstructure, texture, inhibitor and magnetic properties were studied by a combination of EBSD, XRD and TEM. It was found that the α-fiber texture was weakened and γ-fiber was strengthened in cold rolled sheet with increase in inclination angle. The primary recrystallization sheet exhibited more homogeneous microstructure with relatively strong γ-fiber, medium α-fiber texture, weak λ-fiber texture and Goss component at high inclination angles. Fine and homogeneous inhibitors were obtained after primary annealing with increase in inclination angle from 0° to 90° because of more uniform deformation after inclined rolling. The grain-oriented silicon steel experienced completely secondary recrystallization at various inclination angles after final annealing process, with superior magnetic properties at 0° and 90°. Furthermore, Goss nuclei capable of final secondary recrystallization in strip casting process newly formed both in-grain shear bands and grain boundaries region during second-stage cold rolling and subsequent annealing process, which is different from the well-accepted results that Goss texture originated from the subsurface layer of the hot rolled sheet or during intermediate annealing process. In addition, the Goss texture that nucleated in-grain shear bands was weaker but more accurate as compared to that in grain boundaries region. - Highlights: • Inclined cold rolling was adopted to process strip-cast grain-oriented silicon steel. • Influence of inclination angles on texture, inhibitor and magnetic properties was studied. • The initial texture was changed with respect to the inclination angle. • Homogeneous inhibitors were obtained after primary annealing at various inclination angles.

  7. High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Erik Nicolai; Christensen, Jesper Bjerge

    2017-01-01

    We demonstrate a very high coincidence-to-accidental ratio of 673 using continuous-wave photon-pair generation in a silicon strip waveguide through spontaneous four-wave mixing. This result is obtained by employing on-chip photonic-crystal-based grating couplers for both low-loss fiber......-to-chip coupling and on-chip suppression of generated spontaneous Raman scattering noise. We measure a minimum heralded second-order correlation of g(H)((2)) (0) = 0.12, demonstrating that our source operates in the single- photon regime with low noise. (C) 2017 The Japan Society of Applied Physics...

  8. CMS Collaboration

    International Nuclear Information System (INIS)

    Faridah Mohammad Idris; Wan Ahmad Tajuddin Wan Abdullah; Zainol Abidin Ibrahim

    2013-01-01

    Full-text: CMS Collaboration is an international scientific collaboration located at European Organization for Nuclear Research (CERN), Switzerland, dedicated in carried out research on experimental particle physics. Consisting of 179 institutions from 41 countries from all around the word, CMS Collaboration host a general purpose detector for example the Compact Muon Solenoid (CMS) for members in CMS Collaboration to conduct experiment from the collision of two proton beams accelerated to a speed of 8 TeV in the LHC ring. In this paper, we described how the CMS detector is used by the scientist in CMS Collaboration to reconstruct the most basic building of matter. (author)

  9. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    CERN Document Server

    INSPIRE-00407830; Blue, Andrew; Bates, Richard; Bloch, Ingo; Diez, Sergio; Fernandez-Tejero, Javier; Fleta, Celeste; Gallop, Bruce; Greenall, Ashley; Gregor, Ingrid-Maria; Hara, Kazuhiko; Ikegami, Yoichi; Lacasta, Carlos; Lohwasser, Kristin; Maneuski, Dzmitry; Nagorski, Sebastian; Pape, Ian; Phillips, Peter W.; Sperlich, Dennis; Sawhney, Kawal; Soldevila, Urmila; Ullan, Miguel; Unno, Yoshinobu; Warren, Matt

    2016-07-29

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity, totalling 1x10^35 cm^-2 s^-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at 3000 fb^-1, requiring the tracking detectors to withstand hadron equivalences to over 1x10^16 1 MeV neutrons per cm^2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 micron FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 micron thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 micron thick full size radial (Endcap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout...

  10. Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hong-Yu; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; Wang, Guo-Dong

    2017-03-15

    A 0.1 mm-thick grain-oriented silicon steel sheet was successfully produced using strip casting and three-stage cold rolling method. The microstructure, texture and inhibitor evolution during the processing was briefly analyzed. It was found that Goss texture was absent in the hot rolled sheet because of the lack of shear deformation. After normalizing, a large number of dispersed MnS precipitates with the size range of 15–90 nm were produced. During first cold rolling, dense shear bands were generated in the deformed ferrite grains, resulting in the intense Goss texture after first intermediate annealing. The microstructure was further refined and homogenized during the subsequent cold rolling and annealing processes. After primary recrystallization annealing, a homogeneous microstructure consisting of fine and equiaxed grains was produced while the associated texture was characterized by a strong γ-fiber texture. Finally, a complete secondary recrystallization microstructure consisting of entirely large Goss grains was produced. The magnetic induction B{sub 8} and iron loss P{sub 10/400} was 1.79 T and 6.9 W/kg, respectively. - Highlights: • Ultra-thin grain-oriented silicon steel was produced by strip casting process. • Microstructure, texture and inhibitor evolution was briefly investigated. • Goss texture was absent in primary recrystallization annealed sheet. • MnS precipitates with a size range of 15–90 nm formed after normalizing. • A complete secondary recrystallization microstructure was produced.

  11. Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Romeo, Francesco

    2017-01-01

    The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and pileup environment at the High Luminosity-LHC. The HGCAL is realized as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5 - 1.0 square centimetres interspersed with absorbers. Prototype modules, based on hexagonal silicon pad sensors, with 128 channels, have been constructed and tested in beams at FNAL and at CERN. The modules include many of the features required for this challenging detector, including a PCB glued directly to the sensor, using through-hole wire-bonding for signal readout and ~5mm spacing between layers - including the front-end electronics and all services. Tests in 2016 have used an existing front-end chip - Skiroc2 (designed for the CALICE experiment for ILC). We present results from first tests of these modules both in the laboratory and ...

  12. CMS Statistics

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Center for Strategic Planning produces an annual CMS Statistics reference booklet that provides a quick reference for summary information about health...

  13. A silicon photo-multiplier signal readout using strip-line and waveform sampling for Positron Emission Tomography

    Science.gov (United States)

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Kao, C.-M.

    2016-09-01

    A strip-line and waveform sampling based readout is a signal multiplexing method that can efficiently reduce the readout channels while fully exploiting the fast time characteristics of photo-detectors such as the SiPM. We have applied this readout method for SiPM-based time-of-flight (TOF) positron emission tomography (PET) detectors. We have prototyped strip-line boards in which 8 SiPMs (pitch 5.2 mm) are connected by using a single strip-line, and the signals appearing at the ends of the strip-line are acquired by using the DRS4 waveform sampler at a nominal sampling frequency of 1-5 GS/s. Experimental tests using laser and LYSO scintillator are carried out to assess the performance of the strip-line board. Each SiPM position, which is inferred from the arrival time difference of the two signals at the ends of the strip-line, is well identified with 2.6 mm FWHM resolution when the SiPMs are coupled to LYSO crystals and irradiated by a 22Na source. The average energy and coincidence time resolution corresponding to 511 keV photons are measured to be ∼32% and ∼510 ps FWHM, respectively, at a 5.0 GS/s DRS4 sampling rate. The results show that the sampling rate can be lowered to 1.5 GS/s without performance degradation. These encouraging initial test results indicate that the strip-line and waveform sampling readout method is applicable for SiPM-based TOF PET development.

  14. Sensor R&D for the CMS Tracker Upgrade for the HL-LHC

    CERN Document Server

    Behnamian, Hadi

    2014-01-01

    At an instantaneous luminosity of $5\\times 10^{34} cm^{-2} s^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of 3000 $fb^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation environment of the tracking system will be severe, requiring new radiation hard sensors for the CMS tracker. The CMS tracker collaboration has almost completed a large material investigation and irradiation campaign to identify the silicon material and design that fulfills all requirements of a new tracking detector at HL-LHC. Focusing on the upgrade of the outer tracker region, pad diodes as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for various positions in the future tracker. The measurements performed on the structures inc...

  15. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ General - CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. LHC Symposiums Management - CB - MB - FB - FMC Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2006 Annual reviews are posted.   CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat a...

  16. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ General - CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. LHC Symposiums Management - CB - MB - FB - FMC Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2006 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the natu...

  17. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ General - CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. LHC Symposiums Management - CB - MB - FB - FMC Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2006 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the natur...

  18. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ Management- CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. Management - CB - MB - FB Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2007 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the nature of employment and ...

  19. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ Management- CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. Management - CB - MB - FB Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2007 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the nature of em¬pl...

  20. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ General - CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. LHC Symposiums Management - CB - MB - FB - FMC Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2006 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the na...

  1. Alignment of the CMS Tracker: Latest results from LHC Run-II

    CERN Document Server

    Mittag, Gregor

    2017-01-01

    The all-silicon design of the tracking system of the CMS experiment provides excellent measurements of charged-particle tracks and an efficient tagging of jets. Conditions of the CMS tracker changed repeatedly during the 2015/2016 shutdown and the 2016 data-taking period. Still the true position and orientation of each of the 15 148 silicon strip and 1440 silicon pixel modules need to be known with high precision for all intervals. The alignment constants also need to be promptly re-adjusted each time the state of the CMS magnet is changed between 0T and 3.8 T. Latest Run-II results of the CMS tracker alignment and resolution performance are presented, which are obtained using several millions of reconstructed tracks from collision and cosmic-ray data of 2016. The geometries and the resulting performance of physics observables are carefully validated. In addition to the offline alignment, an online procedure has been put in place which continuously monitors movements of the pixel high-level structures and tri...

  2. CMS 2006 - CMS France days

    International Nuclear Information System (INIS)

    Huss, D.; Dobrzynski, L.; Virdee, J.; Boudoule, G.; Fontaine, J.C.; Faure, J.L.; Paganini, P.; Mathez, H.; Gross, L.; Charlot, C.; Trunov, A.; Patois, Y.; Busson, P.; Maire, M.; Berthon, U.; Todorov, T.; Beaudette, F.; Sirois, Y.; Baffioni, S.; Beauceron, S.; Delmeire, E.; Agram, J.L.; Goerlach, U.; Mangeol, D.; Salerno, R.; Bloch, D.; Lassila-Perini, K.; Blaha, J.; Drobychev, G.; Gras, P.; Hagenauer, M.; Denegri, D.; Lounis, A.; Faccio, F.; Lecoq, J.

    2006-01-01

    These CMS talks give the opportunity for all the teams working on the CMS (Compact Muon Spectrometer) project to present the status of their works and to exchange ideas. 5 sessions have been organized: 1) CMS status and perspectives, 2) contributions of the different laboratories, 3) software and computation, 4) physics with CMS (particularly the search for the Higgs boson), and 5) electronic needs. This document gathers the slides of the presentations

  3. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the ICMS Web site. The following items can be found on: http://cms.cern.ch/iCMS Management – CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. Management – CB – MB – FB Agendas and minutes are accessible to CMS members through Indico. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2008 Annual Reviews are posted in Indico. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral student upon completion of their theses.  Therefore it is requested that Ph.D students inform the CMS Secretariat about the nature of employment and name of their first employer. The Notes, Conference Reports and Theses published si...

  4. micro strip gas chamber

    CERN Multimedia

    1998-01-01

    About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.

  5. CMS Connect

    Science.gov (United States)

    Balcas, J.; Bockelman, B.; Gardner, R., Jr.; Hurtado Anampa, K.; Jayatilaka, B.; Aftab Khan, F.; Lannon, K.; Larson, K.; Letts, J.; Marra Da Silva, J.; Mascheroni, M.; Mason, D.; Perez-Calero Yzquierdo, A.; Tiradani, A.

    2017-10-01

    The CMS experiment collects and analyzes large amounts of data coming from high energy particle collisions produced by the Large Hadron Collider (LHC) at CERN. This involves a huge amount of real and simulated data processing that needs to be handled in batch-oriented platforms. The CMS Global Pool of computing resources provide +100K dedicated CPU cores and another 50K to 100K CPU cores from opportunistic resources for these kind of tasks and even though production and event processing analysis workflows are already managed by existing tools, there is still a lack of support to submit final stage condor-like analysis jobs familiar to Tier-3 or local Computing Facilities users into these distributed resources in an integrated (with other CMS services) and friendly way. CMS Connect is a set of computing tools and services designed to augment existing services in the CMS Physics community focusing on these kind of condor analysis jobs. It is based on the CI-Connect platform developed by the Open Science Grid and uses the CMS GlideInWMS infrastructure to transparently plug CMS global grid resources into a virtual pool accessed via a single submission machine. This paper describes the specific developments and deployment of CMS Connect beyond the CI-Connect platform in order to integrate the service with CMS specific needs, including specific Site submission, accounting of jobs and automated reporting to standard CMS monitoring resources in an effortless way to their users.

  6. Noise evaluation of silicon strip super-module with ABCN250 readout chips for the ATLAS detector upgrade at the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Todome, K., E-mail: todome@hep.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Jinnouchi, O. [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Clark, A.; Barbier, G.; Cadoux, F.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Iacobucci, G.; La Marra, D.; Perrin, E.; Weber, M. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y. [Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Takashima, R. [Department of Science Education, Kyoto University of Education, Kyoto 612-8522 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Tojo, J. [Department of Physics, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Kono, T. [Ochadai Academic Production, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); and others

    2016-09-21

    Toward High Luminosity LHC (HL-LHC), the whole ATLAS inner tracker will be replaced, including the semiconductor tracker (SCT) which is the silicon micro strip detector for tracking charged particles. In development of the SCT, integration of the detector is the important issue. One of the concepts of integration is the “super-module” in which individual modules are assembled to produce the SCT ladder. A super-module prototype has been developed to demonstrate its functionality. One of the concerns in integrating the super-modules is the electrical coupling between each module, because it may increase intrinsic noise of the system. To investigate the electrical performance of the prototype, the new Data Acquisition (DAQ) system has been developed by using SEABAS. The electric performance of the super-module prototype, especially the input noise and random noise hit rate, was investigated by using SEABAS system.

  7. Fast-timing Capabilities of Silicon Sensors for the CMS High-Granularity Calorimeter at the High-Luminosity LHC

    Science.gov (United States)

    Akchurin, Nural; CMS Collaboration

    2017-11-01

    We report on the signal timing capabilities of thin silicon sensors when traversed by multiple simultaneous minimum ionizing particles (MIP). Three different planar sensors, 133, 211, and 285 μm thick in depletion thickness, have been exposed to high energy muons and electrons at CERN. We describe signal shape and timing resolution measurements as well as the response of these devices as a function of the multiplicity of MIPs. We compare these measurements to simulations where possible. We achieve better than 20 ps timing resolution for signals larger than a few tens of MIPs.

  8. First results from a beam test of a high-granularity silicon-based calorimeter for CMS at HL-LHC

    CERN Document Server

    Chatterjee, Rajdeep Mohan

    2016-01-01

    A prototype of the electromagnetic calorimeter for the CMS High Granularity Calorimeter that is being designed for the High Luminosity LHC (HL-LHC) was tested in a test beam at the Fermilab Test Beam Facility (FTBF). The detector consisted of 16 sampling layers of silicon sensors interspersed withtungsten plates for a total thickness of 15.3 X$_{0}$. Each of the hexagonal sensors were sub-divided into 128 cells, predominantly hexagonal in shape, of area ~1.1 cm$^2$. The analog signal from the 2048 cells was readout using the 64-channel SKIROC2 ASIC, developed by the LLR OMEGA group for the CALICE collaboration. Data were collected with a custom data acquisition system developed for these tests. The detector was calibrated using signals obtained with 120 GeV protons.We report here the design of the prototype detector and the results obtained from analyzing the data collected in July 2016, with electron beams at energies ranging from 4 to 32 GeV.

  9. The ATLAS ITk strip detector. Status of R&D

    Energy Technology Data Exchange (ETDEWEB)

    García Argos, Carlos, E-mail: carlos.garcia.argos@cern.ch

    2017-02-11

    While the LHC at CERN is ramping up luminosity after the discovery of the Higgs Boson in the ATLAS and CMS experiments in 2012, upgrades to the LHC and experiments are planned. The major upgrade is foreseen for 2024, with a roughly tenfold increase in luminosity, resulting in corresponding increases in particle rates and radiation doses. In ATLAS the entire Inner Detector will be replaced for Phase-II running with an all-silicon system. This paper concentrates on the strip part. Its layout foresees low-mass and modular yet highly integrated double-sided structures for the barrel and forward region. The design features conceptually simple modules made from electronic hybrids glued directly onto the silicon. Modules will then be assembled on both sides of large carbon-core structures with integrated cooling and electrical services.

  10. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  11. Collected charge and Lorentz angle measurement on non-irradiated ATLAS silicon micro-strip sensors for the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Eda

    2017-02-15

    In this thesis, the collected charge and the Lorentz angle on non-irradiated and the irradiated miniature of the current test silicon micro-strip sensors (ATLAS12) of the future ATLAS inner tracker are measured. The samples are irradiated up to 5 x 10{sup 15} 1 MeV n{sub eq}/cm{sup 2} and some of them also measured after short-term annealing (80 min at 60 C). The measurements are performed at the DESY II test beam, which provides the advantage of tracking to suppress noise hits. The collected charge is measured at various bias voltages for each sample. The results are compared with the measurements performed using a Sr{sup 90} radioactive source. It is shown that the measurements with beam and radioactive source are consistent with each other, and the advantage of tracking at the beam measurements provides the measurement of collected charge on highly irradiated sensors at lower bias voltages. The Lorentz angle is measured for each sample at different magnetic field strengths between 0 T and 1 T, the results are extrapolated to 2 T, which is the magnetic field in the inner tracker of the ATLAS detector. Most of the measurements are performed at -500 V bias voltage, which is the planned operation bias voltage of the future strip tracker. Some samples are also measured at different bias voltages to observe the effect of bias voltage on the Lorentz angle. The signal reconstruction of the strip sensors are performed using the lowest possible signal-to-noise thresholds. For non-irradiated samples, the measured Lorentz angle agrees with the prediction of the BFK model. On the irradiated samples, the results suggest that the Lorentz angle decreases with increasing bias voltage due to the increasing electric field in the sensor. The Lorentz angle decreases with increasing irradiation level; however, if the sample is under-depleted, the effect of electric field dominates and the Lorentz angle increases. Once the irradiation level becomes too high, hence the collected charge

  12. Construction of the CMS Tracker End-Caps and an Impact Study on Defects

    CERN Document Server

    Linn, Alexander

    2008-01-01

    The CMS experiment at the LHC accelerator at the research center CERN close to Geneva will study proton proton collisions at up to now unprecedented centre of mass energies from the year 2008 on. To discover theoretically predicted elementary particles, CMS was equipped with the largest silicon tracker so far with a sensitive area of 198m2. Partitioned into more than 15.000 silicon strip modules, the construction and test of the tracker was a huge challenge for the involved institutes. The III. Physikalisches Institut B of the RWTH Aachen had a leading role in the construction and test of substructures, so called petals, for the end caps of the tracker. The petals were assembled in a clean room and underwent first basic tests to ensure the general operationability of each component. Failures detected during the assembly are described and improvements of the silicon strip modules are discussed. After the assembly the petals underwent a cold test for several days. For the first time all readout components of th...

  13. A pixel segmented silicon strip detector for ultra fast shaping at low noise and low power consumption

    International Nuclear Information System (INIS)

    Misiakos, K.; Kavadias, S.

    1996-01-01

    A new radiation imaging device is proposed based on strips segmented into small pixels. Every pixel contains a submicron transistor that is normally biased in weak inversion. The ionization charge, upon collection by the pixel, changes the bias of the transistor to strong inversion and supplies a current up to several tens of a microA. This is a consequence of the small pixel capacitance (12 fF). The drains and sources of the transistors on the same row and column are shorted to bus lines that effectively become the Y and X coordinates. These bus lines are connected to the off chip ICON amplifiers to provide a 10 ns peaking time at a noise of about 150 electrons and 1 nW power consumption, for a 10x10 cm 2 detector and a MIP excitation. The noise performance is dominated by the ICON transistors. The cross talk between adjacent strips can be kept at a few percentage points provided a low transistor bias current is used

  14. Overview of the CMS Pixel Detector

    CERN Document Server

    Cerati, Giuseppe B

    2008-01-01

    The Compact Muon Solenoid Experiment (CMS) will start taking data at the Large Hadron Collider (LHC) in 2009. It will investigate the proton-proton collisions at $14~TeV$. A robust tracking combined with a precise vertex reconstruction is crucial to address the physics challenge of proton collisions at this energy. To this extent an all-silicon tracking system with very fine granularity has been built and now is in the final commissioning phase. It represents the largest silicon tracking detector ever built. The system is composed by an outer part, made of micro-strip detectors, and an inner one, made of pixel detectors. The pixel detector consists of three pixel barrel layers and two forward disks at each side of the interaction region. Each pixel sensor, both for the barrel and forward detectors, has $100 \\times 150$ $\\mu m^2$ cells for a total of 66 million pixels covering a total area of about $1~m^2$. The pixel detector will play a crucial role in the pattern recognition and the track reconstruction both...

  15. Construction and Calibration of the Laser Alignment System for the CMS Tracker

    CERN Document Server

    Adolphi, Roman

    2006-01-01

    The CMS detector (Compact Muon Solenoid) is under construction at one of the four proton-proton interaction points of the LHC (Large Hadron Collider) at CERN, the European Organization for Nuclear Research (Geneva, Switzerland). The inner tracking system of the CMS experiment consisting of silicon detectors will have a diameter of 2.4 m and a length of 5.4 m representing the largest silicon tracker ever. About 15000 silicon strip modules create an active silicon area of 200 m2 to detect charged particles from proton collisions. They are placed on a rigid carbon fibre structure, providing stability within the working conditions of a 4 T solenoid magnetic field at −10oC. Knowledge of the position of the silicon detectors at the level of 100 μm is needed for an efficient pattern recognition of charged particle tracks. Metrology methods are used to survey tracker subdetectors and the integrated Laser Alignment System (LAS) provides absolute positioning of support structure elements to better than 100 μm. Rela...

  16. The CMS Outer Tracker for HL-LHC

    CERN Document Server

    Dierlamm, Alexander Hermann

    2018-01-01

    The LHC is planning an upgrade program, which will bring the luminosity to about $5-7\\times10^{34}$~cm$^{-2}$s$^{-1}$ in 2026, with a goal of an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker is already running beyond design specifications and will not be able to cope with the HL-LHC radiation conditions. CMS will need a completely new Tracker in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Outer Tracker system is designed to provide robust tracking as well as Level-1 trigger capabilities using closely spaced modules composed of silicon macro-pixel and/or strip sensors. Research and development activities are ongoing to explore options and develop module components and designs for the HL-LHC environment. The design choices for the CMS Outer Tracker Upgrade are discussed along with some highlig...

  17. First half of CMS inner tracker barrel

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first half of the CMS inner tracker barrel is seen in this image consisting of three layers of silicon modules which will be placed at the centre of the CMS experiment at the LHC in CERN. Laying close to the interaction point of the 14 TeV proton-proton collisions, the silicon used here must be able to survive high doses of radiation and a 4 T magnetic field without damage.

  18. Processing of n{sup +}/p{sup −}/p{sup +} strip detectors with atomic layer deposition (ALD) grown Al{sub 2}O{sub 3} field insulator on magnetic Czochralski silicon (MCz-si) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, J., E-mail: jaakko.harkonen@helsinki.fi [Helsinki Institute of Physics (Finland); Tuovinen, E. [Helsinki Institute of Physics (Finland); VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T. [Helsinki Institute of Physics (Finland); Junkes, A. [Institute for Experimental Physics, University of Hamburg (Germany); Wu, X. [VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Picosun Oy, Tietotie 3, FI-02150 Espoo Finland (Finland); Li, Z. [School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2016-08-21

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n{sup +} segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO{sub 2} interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al{sub 2}O{sub 3}) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current–voltage and capacitance−voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×10{sup 15} n{sub eq}/cm{sup 2} proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  19. CMS AWARDS

    CERN Multimedia

    Steven Lowette

    Working under great time pressure towards a common goal in gradual steps can sometimes cause us to forget to take a step back, and celebrate what marvels have been achieved. A general need was felt within CMS to expand the recognition for our young scientists that made outstanding, well recognized and creative contributions to CMS, which served to significantly advance the performance of CMS as a complete and powerful experiment. Therefore, the Collaboration Board endorsed in March 2009 a proposal from the CB Chair and Advisory Group to award each year the newly created "CMS Achievement Award" to fourteen graduate students and postdocs that made exceptional contributions to the Tracker, ECAL, HCAL and Muon subdetectors as well as the TriDAS project, the Commissioning of CMS and the Offline Software and Computing projects. It was also agreed that there was a need to go back in time, and retroactively attribute awards for the years 2007 and 2008 when CMS went from a bare cavern to a detect...

  20. Implementation of on-line data reduction algorithms in the CMS Endcap Preshower Data Concentrator Cards

    CERN Document Server

    Barney, D; Kokkas, P; Manthos, N; Sidiropoulos, G; Reynaud, S; Vichoudis, P

    2007-01-01

    The CMS Endcap Preshower (ES) sub-detector comprises 4288 silicon sensors, each containing 32 strips. The data are transferred from the detector to the counting room via 1208 optical fibres running at 800Mbps. Each fibre carries data from two, three or four sensors. For the readout of the Preshower, a VME-based system, the Endcap Preshower Data Concentrator Card (ES-DCC), is currently under development. The main objective of each readout board is to acquire on-detector data from up to 36 optical links, perform on-line data reduction via zero suppression and pass the concentrated data to the CMS event builder. This document presents the conceptual design of the Reduction Algorithms as well as their implementation in the ES-DCC FPGAs. These algorithms, as implemented in the ES-DCC, result in a data-reduction factor of 20.

  1. Implementation of On-Line Data Reduction Algorithms in the CMS Endcap Preshower Data Concentrator Card

    CERN Document Server

    Barney, David; Kokkas, Panagiotis; Manthos, Nikolaos; Reynaud, Serge; Sidiropoulos, Georgios; Vichoudis, Paschalis

    2006-01-01

    The CMS Endcap Preshower (ES) sub-detector comprises 4288 silicon sensors, each containing 32 strips. The data are transferred from the detector to the counting room via 1208 optical fibres running at 800Mbps. Each fibre carries data from 2, 3 or 4 sensors. For the readout of the Preshower, a VME-based system - the Endcap Preshower Data Concentrator Card (ES-DCC) is currently under development. The main objective of each readout board is to acquire on-detector data from up to 36 optical links, perform on-line data reduction (zero suppression) and pass the concentrated data to the CMS event builder. This document presents the conceptual design of the Reduction Algorithms as well as their implementation into the ES-DCC FPGAs. The algorithms implemented into the ES-DCC resulted in a reduction factor of ~20.

  2. Differential top-quark-pair cross sections in pp collisions at √(s)=7 TeV with CMS and charge multiplication in highly irradiated silicon sensors

    International Nuclear Information System (INIS)

    Lange, Joern

    2013-09-01

    Modern particle-physics experiments like the ones at the Large Hadron Collider (LHC) are global and interdisciplinary endeavours comprising a variety of different fields. In this work, two different aspects are dealt with: on the one hand a top-quark physics analysis and on the other hand research and development towards radiation-hard silicon tracking detectors. The high centre-of-mass energy and luminosity at the LHC allow for a detailed investigation of top-quark-pair (t anti t) pro duction properties. Normalised differential t anti t cross sections (1)/(σ) (dσ t anti t )/(dX) are measured as a function of nine different kinematic variables X of the t anti t system, the top quarks and their decay products (b jets and leptons). The analysis is performed using data of proton-proton collisions at √(s) = 7 TeV recorded by the CMS experiment in 2011, corresponding to an integrated luminosity of 5 fb -1 . A high-purity sample of t anti t events is selected according to the topology of the lepton+jets decay channel. Lepton-selection and trigger efficiencies are determined with data-driven methods. The top-quark four-vectors are reconstructed using a constrained kinematic fit. The reconstructed distributions are corrected for background and detector effects using a regularised unfolding technique. By normalising the differential cross sections with the in-situ measured total cross section, correlated systematic uncertainties are reduced, achieving a precision of typically 4-11%. The results are compared to standard-model predictions from Monte-Carlo event generators and approximate next-to-next-to-leading-order (NNLO) perturbative QCD calculations. A good agreement is observed. A high-luminosity upgrade of the LHC (HL-LHC) is envisaged for 2022, which implies increased radiation levels for the silicon tracking detectors. The innermost pixel layer is expected to be exposed to a 1-MeV-neutron-equivalent fluence in the order of 10 16 cm -2 . The novel effect of

  3. Differential top-quark-pair cross sections in pp collisions at {radical}(s)=7 TeV with CMS and charge multiplication in highly irradiated silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Joern

    2013-09-15

    Modern particle-physics experiments like the ones at the Large Hadron Collider (LHC) are global and interdisciplinary endeavours comprising a variety of different fields. In this work, two different aspects are dealt with: on the one hand a top-quark physics analysis and on the other hand research and development towards radiation-hard silicon tracking detectors. The high centre-of-mass energy and luminosity at the LHC allow for a detailed investigation of top-quark-pair (t anti t) pro duction properties. Normalised differential t anti t cross sections (1)/({sigma}) (d{sigma}{sub t} {sub anti} {sub t})/(dX) are measured as a function of nine different kinematic variables X of the t anti t system, the top quarks and their decay products (b jets and leptons). The analysis is performed using data of proton-proton collisions at {radical}(s) = 7 TeV recorded by the CMS experiment in 2011, corresponding to an integrated luminosity of 5 fb{sup -1}. A high-purity sample of t anti t events is selected according to the topology of the lepton+jets decay channel. Lepton-selection and trigger efficiencies are determined with data-driven methods. The top-quark four-vectors are reconstructed using a constrained kinematic fit. The reconstructed distributions are corrected for background and detector effects using a regularised unfolding technique. By normalising the differential cross sections with the in-situ measured total cross section, correlated systematic uncertainties are reduced, achieving a precision of typically 4-11%. The results are compared to standard-model predictions from Monte-Carlo event generators and approximate next-to-next-to-leading-order (NNLO) perturbative QCD calculations. A good agreement is observed. A high-luminosity upgrade of the LHC (HL-LHC) is envisaged for 2022, which implies increased radiation levels for the silicon tracking detectors. The innermost pixel layer is expected to be exposed to a 1-MeV-neutron-equivalent fluence in the order of 10

  4. First charge collection and position-precision data on the medium-resistivity silicon strip detectors before and after neutron irradiation up to 2x10 sup 1 sup 4 n/cm sup 2

    CERN Document Server

    Li Zheng; Eremin, V; Li, C J; Verbitskaya, E

    1999-01-01

    Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm sup 2 areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k OMEGA cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2x10 sup 1 sup 4 n/cm sup 2) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k OMEGA cm (300 mu m thick) can be fully depleted before and after an irradiation of 2x10 sup 1 sup 4 n/cm sup 2. For a 500 mu m pitch strip detector made of 2.7 k OMEGA cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7x10 sup 1 sup 3 n/cm sup 2 irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We als...

  5. Highlights from CMS

    CERN Document Server

    Autermann, Christian

    2018-01-01

    This article summarizes the latest highlights from the CMS experiment as presented at the Lepton Photon conference 2017 in Guangzhou, China. A selection of the latest physics results, the latest detector upgrades, and the current detector status are discussed. CMS has analyzed the full dataset of proton-proton collision data delivered by the LHC in 2016 at a center-of-mass energy of $13$\\,TeV corresponding to an integrated luminosity of $40$\\,fb$^{-1}$. The leap in center-of-mass energy and in luminosity with respect to the $7$ and $8$\\,TeV runs enabled interesting and relevant new physics results. A new silicon pixel tracking detector was installed during the LHC shutdown 2016/17 and has successfully started operation.

  6. A Silicon Hadron Calorimeter Module Operated in a Strong Magnetic Field with VLSI Readout for LHC

    CERN Multimedia

    2002-01-01

    % RD35 \\\\ \\\\ On the basis of a cost optimized Silicon production technology we proposed to build a hadron calorimeter active plane. \\\\ \\\\The production of detectors is closely followed and final quality control is performed according to specifications. \\\\ \\\\The technology designed for the cheap pad detector production is applied for the coarse strip detector manufacturing. These strip detectors will be used in the preshower of the electromagnetic calorimeter of CMS. \\footnote{Research & Prod. Assoc. ELMA, RSFSR} \\footnote{Byelorussian State Univ. Minsk} \\footnote{Research & Prod. Comp. SIAPS, RSFSR} \\footnote{Joffe Physical-Technical Inst. RSFSR} \\footnote{Ansaldo Richerche spa, Genoa} \\footnote{SGS-THOMSON, Castelletto, Milan}

  7. Exploring the quality of latest sensor prototypes for the CMS Tracker Phase II Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    König, A., E-mail: axel.koenig@oeaw.ac.at

    2017-02-11

    The luminosity of the LHC will be increased by a factor of five to seven after the third long shutdown (LS3) scheduled in the mid of the next decade. The significant increase in luminosity along with the limitations of the current Tracker require a complete renewal of the CMS Outer Tracker, the Tracker Phase-2 Upgrade, during the LS3. New types of modules called PS and 2S modules are foreseen offering enhanced functionality and radiation hardness. Milestones in sensor R&D for the 2S modules as well as first characterization results are presented. AC-coupled silicon strip sensors of two vendors, produced on 6-inch as well as on 8-inch wafers, are considered which both are in n-on-p technology. Global as well as single strip parameters were measured providing insights into the quality of the sensors.

  8. Evolution of silicon sensor technology in particle physics

    CERN Document Server

    Hartmann, Frank

    2017-01-01

    This informative monograph describes the technological evolution of silicon detectors and their impact on high energy particle physics. The author here marshals his own first-hand experience in the development and also the realization of the DELPHI, CDF II and the CMS tracking detector. The basic principles of small strip- and pixel-detectors are presented and also the final large-scale applications. The Evolution of Silicon Detector Technology acquaints readers with the manifold challenges involving the design of sensors and pushing this technology to the limits. The expert will find critical information that is so far only available in various slide presentation scattered over the world wide web. This practical introduction of silicon sensor technology and its day to day life in the lab also offers many examples to illustrate problems and their solutions over several detector generations. The new edition gives a detailed overview of the silicon sensor technology used at the LHC, from basic principles to act...

  9. CMS overview

    CERN Document Server

    AUTHOR|(CDS)2071615

    2016-01-01

    Most recent CMS data related to the high-density QCD are presented for pp and PbPb collisions at 2.76 TeV and pPb collisions at 5.02 TeV. The PbPb collision is essential to understand collective behavior and the final-state effects for the detailed characteristics of hot, dense partonic matter, whereas the pPb collision provides the critical information on the initial-state effects including the modification of the parton distribution function in cold nuclei. This paper highlights some of recent heavy-ion related results from CMS.

  10. The silicon sensors for the Inner Tracker of the Compact Muon Solenoid Experiment

    International Nuclear Information System (INIS)

    Krammer, M.

    2003-01-01

    Full text: The Inner Tracker of the Compact Muon Solenoid Experiment, at present under construction, will consist of more than 24000 silicon strip sensors arranged in 10 central concentric layers and 2 X 9 discs at both ends. The total sensitive silicon area will exceed 200 m 2 . The silicon sensors are produced in various thicknesses and geometries. Each sensor has 512 or 768 implanted strips which will allow to measure the position of traversing high energy charged particles. This paper a short overview of the CMS tracker system. Subsequently the design of the silicon sensors is explained with special emphasis on the radiation hardness and on the high voltage stability of the sensors. Two companies share the production of these sensors. The quality of the sensors is extensively checked by several laboratories associated with CMS. Important electrical parameters are measured on the sensors themselves. In addition, dedicated test structures were designed by CMS which allow the monitoring of many parameters sensitive to the production process. By May 2003 about 3000 sensors were delivered and a large fraction of these sensors and tests structures was measured. A summary of these measurements will be given and the main results will be discussed

  11. CMS computing on grid

    International Nuclear Information System (INIS)

    Guan Wen; Sun Gongxing

    2007-01-01

    CMS has adopted a distributed system of services which implement CMS application view on top of Grid services. An overview of CMS services will be covered. Emphasis is on CMS data management and workload Management. (authors)

  12. Silicon tracker end cap of the CMS experiment at LHC and study of the discovery potential for resonances decaying in top quark pairs; Integration d'un bouchon du trajectographe au silicium de l'experience CMS au LHC et etude du potentiel de decouverte de resonances se desintegrant en paires de quarks top

    Energy Technology Data Exchange (ETDEWEB)

    Chabert, E

    2008-10-15

    The first part of this thesis is dedicated to the integration of one silicon tracker end cap of the CMS experiment. The procedures implemented and the tests that led to the qualification of the detection system are presented in this document. The first chapter is an introduction to the LHC and to the CMS experiment. The second chapter is dedicated to the CMS tracker, that is a detector made up of silicon micro-stripe whose purpose is to reconstruct the tracks of charged-particles, to measure their momentum, to reconstruct vertex and to contribute to the tagging of heavy flavour quarks. The third chapter presents the integration of one of the tracker end caps. The second part of this thesis is dedicated to the search for new physics in the top quark sector. One of the most promising channel is to look for a resonance in the invariant mass distribution of top quark pairs. The fourth chapter is a theoretical introduction to this work, the standard model is introduced and the top quarks physics as well as tt-bar resonances are highlighted. The fifth chapter describes the tools used to analyse data, all the data come from simulations. The search for tt-bar resonances is presented in the last chapter. This search involves a method to select right events, a strategy to reduce background noise and a method for the reconstruction of the events. A kinematical adjustment is made to identify the right combinations of jets and to improve the experimental resolution on the invariant mass. The full simulation analysis in the 'lepton + jets' channel shows that at the TeV scale, processes from a few hundred fb to one pb could be observed in the early years of data taking.

  13. CMS Awards

    CERN Multimedia

    2004-01-01

    Ali Mohammad Rafiee receives the CMS Gold Award from Michel Della Negra of CMS. As part of the fifth annual CMS Awards, Iranian contractor HEPCO, located in Arak, an industrial town 200 km west of Tehran, received their Gold Award in a ceremony held on 14 June 2004 (the other award winners were reported in bulletin 13/2004). The Awards are given each year to a small number of the approximately one thousand contractors working on the CMS project. Gold Awards are given for outstanding technical achievement in work carried out for the detector. HEPCO received the Award for the excellent quality of their work in constructing two 25 tonne support tables, two 75 tonne shields (FCS) and eight supporting brackets to lower the HF into the cavern. Welds and machining obtained tolerances that were very difficult in structures of that size. Mr. A. M. Rafiee, the General Manager of the company, acknowledged the benefits of this collaboration, and thanked the efforts and skills of the many staff involved.

  14. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  15. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    Science.gov (United States)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.; CMS Collaboration

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  16. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    International Nuclear Information System (INIS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F.R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-01-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  17. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jain, G., E-mail: geetikajain.hep@gmail.com [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Bhardwaj, A.; Dalal, R. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Eber, R. [Institute fur Experimentelle Kernphysik (Germany); Eichorn, T. [Deutsches Elektronen Synchrotron (Germany); Fernandez, M. [Instituto de Fisica de Cantabria (Spain); Lalwani, K. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Messineo, A. [Universita di Pisa & INFN sez. di Pisa (Italy); Palomo, F.R. [Escuela Superior de Ingenieros, Universidad de Sevilla (Spain); Peltola, T. [Helsinki Institute of Physics (Finland); Printz, M. [Institute fur Experimentelle Kernphysik (Germany); Ranjan, K. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Villa, I. [Instituto de Fisica de Cantabria (Spain); Hidalgo, S. [Instituto de Microelectronica de Barcelona, Centro Nacional de Microelectronica (Spain)

    2016-07-11

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  18. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    Science.gov (United States)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  19. The silicon sensor for the compact muon solenoid tracker. Control of the fabrication process

    International Nuclear Information System (INIS)

    Manolescu, Florentina; Mihul, Alexandru; Macchiolo, Anna

    2005-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments at the Large Hadron Collider (LHC) under construction at CERN. The inner tracking system of this experiment consists of the world largest Silicon Strip Tracker (SST). In total, 24,244 silicon sensors are implemented covering an area of 206 m 2 . To construct this large system and to ensure its functionality for the full lifetime of ten years under the hard LHC condition, a detailed quality assurance program has been developed. This paper describes the strategy of the Process Qualification Control to monitor the stability of the fabrication process throughout the production phase and the results obtained are shown. (authors)

  20. A silicon tracker for Christmas

    CERN Multimedia

    2008-01-01

    The CMS experiment installed the world’s largest silicon tracker just before Christmas. Marcello Mannelli: physicist and deputy CMS project leader, and Alan Honma, physicist, compare two generations of tracker: OPAL for the LEP (at the front) and CMS for the LHC (behind). There is quite a difference between 1m2 and 205m2.. CMS received an early Christmas present on 18 December when the silicon tracker was installed in the heart of the CMS magnet. The CMS tracker team couldn’t have hoped for a better present. Carefully wrapped in shiny plastic, the world’s largest silicon tracker arrived at Cessy ready for installation inside the CMS magnet on 18 December. This rounded off the year for CMS with a major event, the crowning touch to ten years of work on the project by over five hundred scientists and engineers. "Building a scientific instrument of this size and complexity is a huge technical a...

  1. Design,construction and commissioning of a cylinder of double-sided silicon micro-strips detectors for the Star experiment at RHIC; Developpement et mise en oeuvre de detecteurs silicium a micropistes pour l'experience star

    Energy Technology Data Exchange (ETDEWEB)

    Guedon, M

    2005-05-15

    This study has been performed in the frame of quark gluon plasma physics research in the STAR experiment at RHIC. It deals with the design, the construction and the commissioning of a barrel of silicon-strip detectors (SSD). Added to the Silicon Vertex Tracker (SVT) of the STAR detector, it extends the capabilities of track reconstruction for charged particles emitted in ultra-relativistic heavy-ion collisions. It also contributes to the general study of the quark-gluon plasma production undertaken at STAR. The SSD is a cylinder of 1 m long and of 23 cm radius, and it is composed of 320 compact identical modules. Each module includes one double-sided silicon micro-strip detector, 12 readout chips ALICE 128C, 12 TAB ribbons, 2 COSTAR control chips and 2 hybrids supporting all the components. The document explains why the SSD is an important and relevant element, and justifies the technological choices as well as their validation by in-beam characterization. All component functionalities, characteristics and test procedures are presented. The data and test results are stored in a database for tracing purpose. Component and module production is described. Two parallel studies have been performed, analysed and described. One on the temperature dependence of the module performances and the other one on the optimal adjustments of the analogue blocks inside the ALICE 128C chip. The SSD installation on the RHIC site as well as the commissioning are presented together with the first data takings. (author)

  2. Design,construction and commissioning of a cylinder of double-sided silicon micro-strips detectors for the Star experiment at RHIC; Developpement et mise en oeuvre de detecteurs silicium a micropistes pour l'experience star

    Energy Technology Data Exchange (ETDEWEB)

    Guedon, M

    2005-05-15

    This study has been performed in the frame of quark gluon plasma physics research in the STAR experiment at RHIC. It deals with the design, the construction and the commissioning of a barrel of silicon-strip detectors (SSD). Added to the Silicon Vertex Tracker (SVT) of the STAR detector, it extends the capabilities of track reconstruction for charged particles emitted in ultra-relativistic heavy-ion collisions. It also contributes to the general study of the quark-gluon plasma production undertaken at STAR. The SSD is a cylinder of 1 m long and of 23 cm radius, and it is composed of 320 compact identical modules. Each module includes one double-sided silicon micro-strip detector, 12 readout chips ALICE 128C, 12 TAB ribbons, 2 COSTAR control chips and 2 hybrids supporting all the components. The document explains why the SSD is an important and relevant element, and justifies the technological choices as well as their validation by in-beam characterization. All component functionalities, characteristics and test procedures are presented. The data and test results are stored in a database for tracing purpose. Component and module production is described. Two parallel studies have been performed, analysed and described. One on the temperature dependence of the module performances and the other one on the optimal adjustments of the analogue blocks inside the ALICE 128C chip. The SSD installation on the RHIC site as well as the commissioning are presented together with the first data takings. (author)

  3. T-CAD analysis of electric fields in n-in-p silicon strip detectors in dependence on the p-stop pattern and doping concentration

    CERN Document Server

    Printz, Martin

    2015-01-01

    However, n-in-p detectors necessarily need an isolation layer of the n+ strips due to an accumula- tion layer of electrons caused by positive charge in the SiO$_2$ at the sensor surface. An additional implantation of acceptors like boron between the n+ strips cuts the co...

  4. High Energy Physics Research with the CMS Experiment at CERN

    International Nuclear Information System (INIS)

    Hanson, Gail G.

    2013-01-01

    The highlight of our last budget period, June 1, 2010, to May 31, 2013, was the discovery of the Higgs boson by the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC), announced on July 4, 2012, and for which Francois Englert and Peter Higgs were awarded the 2013 Nobel Prize in Physics on October 8, 2013. The Higgs boson was postulated in 1964 to explain how elementary particles obtain mass and was the missing piece of the Standard Model. However, the Standard Model does not describe everything that we know. There are many unanswered questions, such as how can the Higgs boson have the mass that we have observed, are there more Higgs bosons, why is there more matter than antimatter, and what is the invisible dark matter, which constitutes about 85% of the matter in the universe. Our group played a significant role in the discovery of the Higgs boson and in subsequent analyses. We also carried out searches for new physics, in ways that could help elucidate some of the remaining questions. Our role in the CMS detector focused on the Tracker, a silicon strip outer tracker and pixel inner tracker.

  5. First charge collection and position-precision data on the medium-resistivity silicon strip detectors before and after neutron irradiation up to 2x1014 n/cm2

    International Nuclear Information System (INIS)

    Li Zheng; Dezillie, B.; Eremin, V.; Li, C.J.; Verbitskaya, E.

    1999-01-01

    Test strip detectors of 125 μm, 500 μm, and 1 mm pitches with about 1 cm 2 areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 kΩ cm). Detectors of 500 μm pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2x10 14 n/cm 2 ) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 kΩ cm (300 μm thick) can be fully depleted before and after an irradiation of 2x10 14 n/cm 2 . For a 500 μm pitch strip detector made of 2.7 kΩ cm tested with an 1030 nm laser light with 200 μm spot size, the position reconstruction error is about 14 μm before irradiation, and 17 μm after about 1.7x10 13 n/cm 2 irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 μm absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction

  6. CMS Wallet Card

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Wallet Card is a quick reference statistical summary on annual CMS program and financial data. The CMS Wallet Card is available for each year from 2004...

  7. CMS Fast Facts

    Data.gov (United States)

    U.S. Department of Health & Human Services — CMS has developed a new quick reference statistical summary on annual CMS program and financial data. CMS Fast Facts includes summary information on total program...

  8. Development of radiation-hard n-in-p type silicon detectors and studies on modules with transverse momentum discrimination for the CMS detector at the LHC

    CERN Document Server

    Printz, Martin; de Boer, Wim

    In der vorliegenden Dissertation werden sowohl die strahlenhärte von Silizium-Teilchendetektoren als auch die Triggerfunktionalität der zukünftigen Module für den CMS Detektor am CERN untersucht. Hierzu wurden Sensoren sowohl vor als auch nach Bestrahlung qualifiziert und mit T-CAD Simulationen verglichen. Darüberhinaus wurde ein Prototyp Triggermodul konstruiert und die Performance validiert.

  9. \\title{Development of Radiation Damage Models for Irradiated Silicon Sensors Using TCAD Tools}

    CERN Document Server

    Bhardwaj, Ashutosh; Lalwani, Kavita; Ranjan, Kirti; Printz, Martin; Ranjeet, Ranjeet; Eber, Robert; Eichhorn, Thomas; Peltola, Timo Hannu Tapani

    2014-01-01

    Abstract. During the high luminosity upgrade of the LHC (HL-LHC) the CMS tracking system will face a more intense radiation environment than the present system was designed for. In order to design radiation tolerant silicon sensors for the future CMS tracker upgrade it is fundamental to complement the measurement with device simulation. This will help in both the understanding of the device performance and in the optimization of the design parameters. One of the important ingredients of the device simulation is to develop a radiation damage model incorporating both bulk and surface damage. In this paper we will discuss the development of a radiation damage model by using commercial TCAD packages (Silvaco and Synopsys), which successfully reproduce the recent measurements like leakage current, depletion voltage, interstrip capacitance and interstrip resistance, and provides an insight into the performance of irradiated silicon strip sensors.

  10. A VME-based readout system for the CMS Preshower sub-detector

    CERN Document Server

    Antchev, G; Bialas, W; Da Silva, J C; Kokkas, P; Manthos, N; Reynaud, S; Sidiropoulos, G; Snoeys, W; Vichoudis, P

    2007-01-01

    The CMS preshower is a fine grain detector that comprises 4288 silicon sensors, each containing 32 strips. The raw data are transferred from the detector to the counting room via 1208 optical fibres. Each fibre carries a 600-byte data packet per event. The maximum average level-1 trigger rate of 100 kHz results in a total data flow of ~72 GB/s from the preshower. For the readout of the preshower, 56 links to the CMS DAQ have been reserved, each having a bandwidth of 200 MB/s (2 kB/event). The total available downstream bandwidth of GB/s necessitates a reduction in the data volume by a factor of at least 7. A modular VME-based system is currently under development. The main objective of each VME board in this system is to acquire on-detector data from at least 22 optical links, perform on-line data reduction and pass the concentrated data to the CMS DAQ. The principle modules that the system is based on are being developed in collaboration with the TOTEM experiment.

  11. Comparative study of mean value of 111 and mean value of 100 crystals and capacitance measurements on Si strip detectors in CSM

    International Nuclear Information System (INIS)

    Albergo, S.

    1999-01-01

    For the construction of the silicon microstrip detectors for the tracker of CMS experiment, two different substrate choices were investigated. A high-resistivity substrate with mean value of 111 crystal orientation and a low-resistivity one with mean value of 100 Dirac ket vector crystal orientation. The interstrip and backplane capacitances were measured before and after the exposure to radiation in a range of strip pitches from 60 μm to 240 μm and for values of the width-pitch ratio between 0.1 and 0.5

  12. Performance of new radiation tolerant thin n-in-p Silicon pixel sensors for the CMS experiment at High Luminosity LHC

    CERN Document Server

    Dalla Betta, G.F; Darbo, G; Dinardo, Mauro; Giacomini, G; Menasce, Dario; Meschini, Marco; Messineo, Alberto; Moroni, Luigi; Rivera, Ryan Allen; Ronchin, S; Uplegger, Lorenzo; Viliani, Lorenzo; Zoi, Irene; Zuolo, Davide

    2017-01-01

    The High Luminosity upgrade of the CERN-LHC (HL-LHC) demands for a new high-radiation tolerant solid-state pixel sensor capable of surviving fluencies up to a few 10$^{16}$ particles/cm$^2$ at $\\sim$3 cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity in collaboration with Fondazione Bruno Kessler-FBK, is aiming at the development of thin n-in-p type pixel sensors for the HL-LHC. The R and D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100~$\\mu {\\rm m}$ and 130~$\\mu {\\rm m}$ active thickness for planars, and 130~$\\mu {\\rm m}$ for 3D sensors, the thinnest ones ever produced so far. First prototypes of hybrid modules bump-bonded to the present CMS readout chip have been tested in beam tests. Preliminary results on their performance before and after irradiation are presented.

  13. \\title{MARS15 Simulation Studies in the CMS Detector of Some LHC Beam Accident Scenarios}

    CERN Document Server

    Bhat, Pushpalatha C; Striganov, S.I; Singh, Amandeep

    2009-01-01

    \\begin{abstract} The CMS tracker, made of silicon strips and pixels and silicon-based electronics, is vulnerable to effects of radiation exposure during the LHC operation. Of much concern is the potential for damage from a high instantaneous dose to the pixel detectors and electronics located only a few centimeters from the beam in the event of a fast accidental beam loss. One of the worst case scenarios for such a beam loss is an unintended firing of an abort kicker module, referred to as the kicker pre-fire. MARS15 simulation studies of radiation loads in CMS for the kicker pre-fire scenario are described in this paper. It is found that, in a kicker pre-fire accident, in a time span of about 100 ns, the innermost pixel layer may see a radiation dose of about 0.02 Gy \\-- equivalent to a fluence of $\\sim 6\\times 10^{7}$ MIPs/$cm^2$. No discernible damage to the pixel detectors or the electronics were seen at these levels of fluence in recent beam tests. We note that the dose is about 1000 times smaller t...

  14. The CMS Tracker Upgrade for HL-LHC\\\\ Sensor R$\\&$D

    CERN Document Server

    Naseri, Mohsen

    2014-01-01

    At an instantaneous luminosity of 5~$\\times10^{34}~cm^{-2}~s^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of 3000~fb$^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation environment of the tracking system will be severe, requiring new radiation hard sensors for the CMS tracker. Focusing on the upgrade of the outer tracker region, the CMS tracker collaboration has almost completed a large material investigation and irradiation campaign to identify the silicon material and design that fulfils all requirements of a new tracking detector at HL-LHC. Focusing on the upgrade of the outer tracker region, pad diodes as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for various positions in the future track...

  15. Wire Bonding on 2S Modules of the Phase-2 CMS Detector

    CERN Document Server

    AUTHOR|(CDS)2226525; Pooth, Oliver

    The LHC will be upgraded to the HL-LHC in the Long Shutdown 3 starting 2024. This upgrade will increase the collision rate and the overall number of colliding particles requiring high precision particle detectors which are able to cope with much higher radiation doses and numbers of particle interactions per bunch crossing. To fulfill these technical requirements the CMS detector will be upgraded in the so-called Phase-2 Upgrade. Among others the silicon tracking system will be completely replaced by a new system providing a higher acceptance, an improved granularity and the feature to include its tracking information into the level-1 trigger. The new outer-tracker will consist of so called 2S modules consisting of two strip sensors and PS modules with a macro-pixel sensor and a strip sensor. The electrical connection between the strip sensors and the front-end electronics is realized by thin aluminum wire bonds. In this thesis the process of wire bonding is introduced and its implementation in the 2S module ...

  16. Building CMS Pixel Barrel Detectur Modules

    CERN Document Server

    König, S; Horisberger, R.; Meier, B.; Rohe, T.; Streuli, S.; Weber, R.; Kastli, H.Chr.; Erdmann, W.

    2007-01-01

    For the barrel part of the CMS pixel tracker about 800 silicon pixel detector modules are required. The modules are bump bonded, assembled and tested at the Paul Scherrer Institute. This article describes the experience acquired during the assembly of the first ~200 modules.

  17. Moment of truth for CMS

    CERN Multimedia

    2006-01-01

    One of the first events reconstructed in the Muon Drift Tubes, the Hadron Calorimeter and elements of the Silicon Tracker (TK) at 3 Tesla. The atmosphere in the CMS control rooms was electric. Everbody was at the helm for the first full-scale testing of the experiment. This was a crunch moment for the entire collaboration. On Tuesday, 22 August the magnet attained almost its nominal power of 4 Tesla! At the same moment, in a tiny improvised control room, the physicists were keyed up to test the entire detector system for the first time. The first cosmic ray tracks appeared on their screens in the week of 15 August. The tests are set to continue for several weeks more until the first CMS components are lowered into their final positions in the cavern.

  18. Tau Identification at CMS in Run II

    CERN Document Server

    Ojalvo, Isabel

    2016-01-01

    During LHC Long Shutdown 1 necessary upgrades to the CMS detector were made. CMS also took the opportunity to improve further particle reconstruction. A number of improvements were made to the Hadronic Tau reconstruction and Identification algorithms. In particular, electromag- netic strip reconstruction of the Hadron plus Strips (HPS) algorithm was improved to better model signal of pi0 from tau decays. This modification improves energy response and removes the tau footprint from isolation area. In addition to this, improvement to discriminators combining iso- lation and tau life time variables, and anti-electron in MultiVariate Analysis technique was also developed. The results of these improvements are presented and validation of Tau Identification using a variety of techniques is shown.

  19. Stripping Voltammetry

    Science.gov (United States)

    Lovrić, Milivoj

    Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact

  20. Production chain of CMS pixel modules

    CERN Multimedia

    2006-01-01

    The pictures show the production chain of pixel modules for the CMS detector. Fig.1: overview of the assembly procedure. Fig.2: bump bonding with ReadOut Chip (ROC) connected to the sensor. Fig.3: glueing a raw module onto the baseplate strips. Fig.4: glueing of the High Density Interconnect (HDI) onto a raw module. Fig.5: pull test after heat reflow. Fig.6: wafer sensor processing, Indium evaporation.

  1. Combustion performance of porous silicon-based energetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Benjamin Aaron [Los Alamos National Laboratory; Son, Steve F [Los Alamos National Laboratory; Asay, Blaine W [Los Alamos National Laboratory; Cho, Kevin Y [PURDUE UNIV

    2009-01-01

    The combustion performance of oxidizer filled porous silicon(PSi) was studied. PSi samples with diameters of 2.54 cm were fabricated by electrochemical etching. The % porosity of the samples ranged from 55 to 82%. The samples were cut into 3-5 mm strips and filled with the oxidizers NaClO{sub 4} x 1H{sub 2}O, Ca(ClO{sub 4}){sub 2} x 4H{sub 2}O, S and perfluoropolyether (PFPE). The filled PSi was then burned by igniting the sample with a hot NiChrome{trademark} wire. The burns were recorded using high speed photography from which bring rates were calculated. That burning rates showed a strong dependency on quality of the oxidizer loading. The % porosity did not appear to have a direct affect on the burning rates for those studied. PSi loaded with NaClO{sub 4} x 1H{sub 2}O produced burning rates that ranged from 216-349 cm/s. PSi loaded with Ca(ClO{sub 4}){sub x}x 4 H{sub 2}O had burning rates of 154-285 cm/s. An S filled PSi sample burned a rate of 16 to 290 cm/s, and perfluoropolyether loaded PSi burned at a rate of 1.4 cm/s.

  2. Differential Top-Quark-Pair Cross Sections in pp Collisions at $\\sqrt{s} = 7$~TeV with CMS and Charge Multiplication in Highly-Irradiated Silicon Sensors

    CERN Document Server

    Lange, Jörn Christian; Klanner, Robert

    2013-01-01

    Modern particle-physics exp eriments like the ones at the Large Hadron Collider (LHC) are global and interdisciplinary endeavours comprising a variety of dierent elds. In this work, two dierent asp ects are dealt with: on the one hand a top-quark physics analysis and on the other hand research and development towards radiation- hard silicon tracking detectors. The high centre-of-mass energy and luminosity at the LHC allow for a detailed investigation of top-quark-pair ( t t ) pro duction prop erties. Normalised dierential t t cross sections 1 d t t dX are measured as a function of nine dierent kinematic variables X of the t t system, the top quarks and their decay pro ducts (b jets and leptons). The analysis is p erformed using data of proton-proton collisions at p s = 7 TeV recorded by the CMS exp eriment in 2011, corresp onding to an integrated luminosity of 5 fb 1 . A high-purity sample of t t events is selected according to the top ology of the lep- ton+jets decay channel. Lepton-selection and trigger eci...

  3. CMS brochure (English version)

    CERN Document Server

    Marcastel, Fabienne

    2014-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which has started up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  4. CMS Program Statistics

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Office of Enterprise Data and Analytics has developed CMS Program Statistics, which includes detailed summary statistics on national health care, Medicare...

  5. CMS Drug Spending

    Data.gov (United States)

    U.S. Department of Health & Human Services — CMS has released several information products that provide spending information for prescription drugs in the Medicare and Medicaid programs. The CMS Drug Spending...

  6. CMS Brochure (german version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  7. CMS brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  8. CMS Records Schedule

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Records Schedule provides disposition authorizations approved by the National Archives and Records Administration (NARA) for CMS program-related records...

  9. CMS-Wave

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward...marching, finite-difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction... CMS -Wave can be used in either on a half- or full-plane mode, with primary waves propagating from the seaward boundary toward shore. It can

  10. CMS 2006 - CMS France days; CMS 2006 les journees CMS FRANCE

    Energy Technology Data Exchange (ETDEWEB)

    Huss, D.; Dobrzynski, L.; Virdee, J.; Boudoule, G.; Fontaine, J.C.; Faure, J.L.; Paganini, P.; Mathez, H.; Gross, L.; Charlot, C.; Trunov, A.; Patois, Y.; Busson, P.; Maire, M.; Berthon, U.; Todorov, T.; Beaudette, F.; Sirois, Y.; Baffioni, S.; Beauceron, S.; Delmeire, E.; Agram, J.L.; Goerlach, U.; Mangeol, D.; Salerno, R.; Bloch, D.; Lassila-Perini, K.; Blaha, J.; Drobychev, G.; Gras, P.; Hagenauer, M.; Denegri, D.; Lounis, A.; Faccio, F.; Lecoq, J

    2006-07-01

    These CMS talks give the opportunity for all the teams working on the CMS (Compact Muon Spectrometer) project to present the status of their works and to exchange ideas. 5 sessions have been organized: 1) CMS status and perspectives, 2) contributions of the different laboratories, 3) software and computation, 4) physics with CMS (particularly the search for the Higgs boson), and 5) electronic needs. This document gathers the slides of the presentations.

  11. CMS Central Hadron Calorimeter

    OpenAIRE

    Budd, Howard S.

    2001-01-01

    We present a description of the CMS central hadron calorimeter. We describe the production of the 1996 CMS hadron testbeam module. We show the results of the quality control tests of the testbeam module. We present some results of the 1995 CMS hadron testbeam.

  12. CMS Comic Book Brochure

    CERN Document Server

    2006-01-01

    To raise students' awareness of what the CMS detector is, how it was constructed and what it hopes to find. Titled "CMS Particle Hunter," this colorful comic book style brochure explains to young budding scientists and science enthusiasts in colorful animation how the CMS detector was made, its main parts, and what scientists hope to find using this complex tool.

  13. LYCORIS - A Large Area Strip Telescope

    CERN Document Server

    Krämer, U; Stanitzki, M; Wu, M

    2018-01-01

    The LYCORIS Large Area Silicon Strip Telescope for the DESY II Test Beam Facility is presented. The DESY II Test Beam Facility provides elec- tron and positron beams for beam tests of up to 6 GeV. A new telescope with a large 10 × 20 cm2 coverage area based on a 25 μm pitch strip sensor is to be installed within the PCMAG 1 T solenoid. The current state of the system is presented.

  14. CMS Centre at CERN

    CERN Multimedia

    2007-01-01

    A new "CMS Centre" is being established on the CERN Meyrin site by the CMS collaboration. It will be a focal point for communications, where physicists will work together on data quality monitoring, detector calibration, offline analysis of physics events, and CMS computing operations. Construction of the CMS Centre begins in the historic Proton Synchrotron (PS) control room. The historic Proton Synchrotron (PS) control room, Opened by Niels Bohr in 1960, will be reused by CMS to built its control centre. TThe LHC@FNAL Centre, in operation at Fermilab in the US, will work very closely with the CMS Centre, as well as the CERN Control Centre. (Photo Fermilab)The historic Proton Synchrotron (PS) control room is about to start a new life. Opened by Niels Bohr in 1960, the room will be reused by CMS to built its control centre. When finished, it will resemble the CERN Contro...

  15. Construction and calibration of the laser alignment system for the CMS tracker

    International Nuclear Information System (INIS)

    Adolphi, R.

    2006-01-01

    A robust and reliable optical system able to measure and control the large CMS tracker geometry with high accuracy has been developed and validated. The construction and integration of the LAS fulfilling the requirements, as well as its calibration and performance are described in this thesis. The working principle is based on the partial transparency of silicon for light wavelengths in the near infrared region. The absorbed part of the laser beam generates a signal in the corresponding silicon strip module serving to reconstruct its position. The transmitted part reaches the subsequent module layer generating an optical link between the two layers. Investigation of the light generation and distribution led to a definition of the optical components and their optimization for Laser Alignment purposes. Laser diodes have been qualified as light sources and singlemode optical fibres, terminated by special connectors, distribute the light to the CMS tracker detector. The beamsplitting device, a key component of the LAS light distribution inside the CMS tracker, has been studied in detail. The challenge of splitting one collimated beam into two back-to-back beams inside a small available volume has been solved by using the polarization principle. Special test setups were developed to determine the collinearity of the two outgoing beams with a precision better than 50 μrad and it has been shown that their relative orientation remains constant under working conditions. The interface between the tracker and the LAS is given by the silicon sensors which are responsible both for particle detection and for the determination of the position of the laser spot. An anti-reflex-coating has been applied on the backside of all alignment sensors to improve their optical properties without deterioration of their tracking performance. A test setup has been developed to simultaneously study the transmission and reflection properties of the alignment sensors. The working principle of the

  16. Construction and calibration of the laser alignment system for the CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Adolphi, R.

    2006-11-28

    A robust and reliable optical system able to measure and control the large CMS tracker geometry with high accuracy has been developed and validated. The construction and integration of the LAS fulfilling the requirements, as well as its calibration and performance are described in this thesis. The working principle is based on the partial transparency of silicon for light wavelengths in the near infrared region. The absorbed part of the laser beam generates a signal in the corresponding silicon strip module serving to reconstruct its position. The transmitted part reaches the subsequent module layer generating an optical link between the two layers. Investigation of the light generation and distribution led to a definition of the optical components and their optimization for Laser Alignment purposes. Laser diodes have been qualified as light sources and singlemode optical fibres, terminated by special connectors, distribute the light to the CMS tracker detector. The beamsplitting device, a key component of the LAS light distribution inside the CMS tracker, has been studied in detail. The challenge of splitting one collimated beam into two back-to-back beams inside a small available volume has been solved by using the polarization principle. Special test setups were developed to determine the collinearity of the two outgoing beams with a precision better than 50 {mu}rad and it has been shown that their relative orientation remains constant under working conditions. The interface between the tracker and the LAS is given by the silicon sensors which are responsible both for particle detection and for the determination of the position of the laser spot. An anti-reflex-coating has been applied on the backside of all alignment sensors to improve their optical properties without deterioration of their tracking performance. A test setup has been developed to simultaneously study the transmission and reflection properties of the alignment sensors. The working principle of

  17. CMS offline web tools

    International Nuclear Information System (INIS)

    Metson, S; Newbold, D; Belforte, S; Kavka, C; Bockelman, B; Dziedziniewicz, K; Egeland, R; Elmer, P; Eulisse, G; Tuura, L; Evans, D; Fanfani, A; Feichtinger, D; Kuznetsov, V; Lingen, F van; Wakefield, S

    2008-01-01

    We describe a relatively new effort within CMS to converge on a set of web based tools, using state of the art industry techniques, to engage with the CMS offline computing system. CMS collaborators require tools to monitor various components of the computing system and interact with the system itself. The current state of the various CMS web tools is described along side current planned developments. The CMS collaboration comprises of nearly 3000 people from all over the world. As well as its collaborators, its computing resources are spread all over globe and are accessed via the LHC grid to run analysis, large scale production and data transfer tasks. Due to the distributed nature of collaborators effective provision of collaborative tools is essential to maximise physics exploitation of the CMS experiment, especially when the size of the CMS data set is considered. CMS has chosen to provide such tools over the world wide web as a top level service, enabling all members of the collaboration to interact with the various offline computing components. Traditionally web interfaces have been added in HEP experiments as an afterthought. In the CMS offline we have decided to put web interfaces, and the development of a common CMS web framework, on an equal footing with the rest of the offline development. Tools exist within CMS to transfer and catalogue data (PhEDEx and DBS/DLS), run Monte Carlo production (ProdAgent) and submit analysis (CRAB). Effective human interfaces to these systems are required for users with different agendas and practical knowledge of the systems to effectively use the CMS computing system. The CMS web tools project aims to provide a consistent interface to all these tools

  18. CMS offline web tools

    Energy Technology Data Exchange (ETDEWEB)

    Metson, S; Newbold, D [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Belforte, S; Kavka, C [INFN, Sezione di Trieste (Italy); Bockelman, B [University of Nebraska Lincoln, Lincoln, NE (United States); Dziedziniewicz, K [CERN, Geneva (Switzerland); Egeland, R [University of Minnesota Twin Cities, Minneapolis, MN (United States); Elmer, P [Princeton (United States); Eulisse, G; Tuura, L [Northeastern University, Boston, MA (United States); Evans, D [Fermilab MS234, Batavia, IL (United States); Fanfani, A [Universita degli Studi di Bologna (Italy); Feichtinger, D [PSI, Villigen (Switzerland); Kuznetsov, V [Cornell University, Ithaca, NY (United States); Lingen, F van [California Institute of Technology, Pasedena, CA (United States); Wakefield, S [Blackett Laboratory, Imperial College, London (United Kingdom)

    2008-07-15

    We describe a relatively new effort within CMS to converge on a set of web based tools, using state of the art industry techniques, to engage with the CMS offline computing system. CMS collaborators require tools to monitor various components of the computing system and interact with the system itself. The current state of the various CMS web tools is described along side current planned developments. The CMS collaboration comprises of nearly 3000 people from all over the world. As well as its collaborators, its computing resources are spread all over globe and are accessed via the LHC grid to run analysis, large scale production and data transfer tasks. Due to the distributed nature of collaborators effective provision of collaborative tools is essential to maximise physics exploitation of the CMS experiment, especially when the size of the CMS data set is considered. CMS has chosen to provide such tools over the world wide web as a top level service, enabling all members of the collaboration to interact with the various offline computing components. Traditionally web interfaces have been added in HEP experiments as an afterthought. In the CMS offline we have decided to put web interfaces, and the development of a common CMS web framework, on an equal footing with the rest of the offline development. Tools exist within CMS to transfer and catalogue data (PhEDEx and DBS/DLS), run Monte Carlo production (ProdAgent) and submit analysis (CRAB). Effective human interfaces to these systems are required for users with different agendas and practical knowledge of the systems to effectively use the CMS computing system. The CMS web tools project aims to provide a consistent interface to all these tools.

  19. Progress on CMS detector lowering

    CERN Multimedia

    2006-01-01

    It was an amazing engineering challenge - the lowering of the first hugeendcap disc (YE+3) of the CMS detector slowly and carefully 100 metres underground. The spectacular descent took place on 30 November and was documented by a film crew from Reuters news group. The uniquely shaped slice is 16 m high, about 50 cm thick, and weighs 400 tonnes. It is one of 15 sections that make up the complete CMS detector. The solid steel structure of the disc forms part of the magnet return yoke and is equipped on both sides with muon chambers. A special gantry crane lowered the element, with just 20 cm of leeway between the edges of the detector and the walls of the shaft! On 12 December, a further section of the detector (YE+2) containing the cathode strip chamber made the 10-hour journey underground. This piece is 16 m high and weighs 880 tonnes. There are now four sections of the detector in the experimental cavern, with a further 11 to follow. The endcap disc YE+3 (seen in the foreground) begins its journey down the ...

  20. CMS MANANGEMENT MEETINGS

    CERN Multimedia

    Management Board Agendas and minutes of meetings of the Management Board are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=223 Collaboration Board Agendas and minutes of meetings of the Collaboration Board are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=174 LHCC: Feedback from the CMS Referees, LHCC 97 February 25, 2009. The CMS LHCC referees met with representatives of CMS on 17-2-09, to review progress since the last November minireview. The main topics included shutdown construction, maintenance and repairs; status of the preshower detector; commissioning and physics analysis results from cosmic ray running and CSA08; preparations for physics, off line analysis, computing, and data distribution. TOTEM management and the TOTEM referees then joined us for a joint session to examine the readiness of the TOTEM detector. Detector construction, maintenance, and repairs. The referees congratulate CMS Management and the Detector Groups for the...

  1. First Implementation of a Two-Stage DC-DC Conversion Powering Scheme for the CMS Phase-2 Outer Tracker

    CERN Document Server

    Feld, Lutz Werner; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Pauls, Alexander Josef; Preuten, Marius; Rauch, Max Philip; Wangelik, Frederik; Wlochal, Michael

    2017-01-01

    The 2S silicon strip modules for the CMS Phase-2 tracker upgrade will require two operating voltages. These will be provided via a two-step DC-DC conversion powering scheme, in which one DC-DC converter delivers 2.5\\,V while the second DC-DC converter receives 2.5\\,V at its input and converts it to 1.2\\,V. The DC-DC converters will be mounted on a flex PCB, the service hybrid, together with an opto-electrical converter module (VTRx+) and a serializer (LP-GBT). The service hybrid will be mounted directly on the 2S module. A prototype service hybrid has been developed and its performance has been evaluated, including radiative and conductive noise emissions, and efficiency. In addition system tests with a prototype module have been performed. In this report the service hybrid will be described and the test results will be summarized.

  2. International Masterclass at CMS

    CERN Multimedia

    Lapka, M

    2012-01-01

    The CMS collaboration welcomed a class of French high school students to the CERN facility in Meyrin, Switzerland on the 12 of March, 2012. Students spent the day meeting with physicists, hearing talks, asking questions, and participating in a hands-on exercise using real data collected by the CMS experiment on the Large Hadron Colider. Talks and other resources are available here: http://ippog-dev.web.cern.ch/resources/2012/ippog-international-masterclass-2012-cms

  3. Development of Silicon Detectors for the High Luminosity LHC

    International Nuclear Information System (INIS)

    Eichhorn, Thomas Valentin

    2015-07-01

    The Large Hadron Collider (LHC) at CERN will be upgraded to a High Luminosity LHC in the year 2022, increasing the instantaneous luminosity by a factor of five. This will have major impacts on the experiments at the LHC, such as the Compact Muon Solenoid (CMS) experiment, and especially for their inner silicon tracking systems. Among other things, the silicon sensors used therein will be exposed to unprecedented levels of radiation damage, necessitating a replacement of the entire tracking detector. In order to maintain the excellent current performance, a new tracking detector has to be equipped with sensors of increased radiation hardness and higher granularity. The CMS experiment is undertaking an extensive R and D campaign in the search for the future silicon sensor technology baseline to be used in this upgrade. This thesis presents two methods suitable for use in this search: finite element TCAD simulations and test beam measurements. The simulations are focussed on the interstrip capacitance between sensor strips and are compared to measurements before and after the inclusion of radiation damage effects. A geometrical representation of the strip sensors used in the campaign has been found, establishing the predictive power of simulations. The test beam measurements make use of the high-precision pixel telescopes available at the DESY-II test beam facility. The performance of these telescopes has been assessed and their achievable pointing resolution has been found to be below 2 μm. Thin, epitaxial silicon is a candidate material for usage in radiation hard sensors for the future CMS tracking detector. Sample strip sensors of this material have been irradiated to fluences of up to 1.3 x 10 16 n eq /cm 2 with 800 MeV or 23 GeV protons. Test beam measurements with 5 GeV electrons have been performed to investigate the radiation hardness of epitaxial sensors using the pixel beam telescopes. The epitaxial device under test (DUT) has been integrated into the

  4. Sensors for the CMS High Granularity Calorimeter

    CERN Document Server

    Maier, Andreas Alexander

    2017-01-01

    The CMS experiment is currently developing high granularity calorimeter endcapsfor its HL-LHC upgrade. The design foresees silicon sensors as the active material for the high radiation region close to the beampipe. Regions of lower radiation are additionally equipped with plastic scintillator tiles. This technology is similar to the calorimeter prototypes developed in the framework of the Linear Collider by the CALICE collaboration. The current status of the silicon sensor development is presented. Results of single diode measurements are shown as well as tests of full 6-inch hexagonal sensor wafers. A short summary of test beam results concludes the article.

  5. Auger Physicists visit CMS

    CERN Multimedia

    Hoch, Michael

    2012-01-01

    Visit at CERN P5 CMS in the experimental cavern Alan Watson, Auger Spokesperson Emeritus, University of Leeds; Jim Cronin, Nobel Laureate, Auger Spokesperson Emeritus, University of Chicago; Jim Virdee, CMS Former Spokesperson, Imperial College; Jim Matthews, Auger Co-Spokesperson, Louisiana State University

  6. CMS MANAGEMENT MEETINGS

    CERN Multimedia

    2010-01-01

    The Agendas and Minutes of the Management Board meetings are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=223 The Agendas and Minutes of the Collaboration Board meetings are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=174

  7. CMS MANAGEMENT MEETINGS

    CERN Multimedia

    The Agendas and Minutes of the Management Board meetings are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=223  The Agendas and Minutes of the Collaboration Board meetings are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=174 

  8. Analysis of petal longterm test data for the CMS-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Heydhausen, Dirk

    2008-12-15

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) in Geneva will start end of 2008. One of the experiments at the LHC is the multipurpose detector CMS (Compact Muon Solenoid). A key part of the CMS detector is the tracking system, that is composed of a silicon pixel detector forming the innermost part, surrounded by silicon strip sensors. Currently, it is the largest silicon detector in the world with an active area of 198 m{sup 2}. The strip tracker itself consists of four subdetectors. One of these are the tracker end caps (TEC) with an active area of 82 m{sup 2}. Besides this large aperture, their position in the forward region plays a key role for physics analysis due to the fact that many of the interesting events are expected to be boosted in the forward region (pp collider). This area splits up into 10,288 sensors with 3,988,765 channels in total. In several steps the modules constructed and tested before being mounted onto the final substructures (petals). An important longterm test has been performed which qualifies the petals to be installed into the detector. The focus of the present work is in the longterm test. The test procedure is described. A method for identification and classification of defect channels is presented. This method has been developed based on the test results of a previous test ('ARC-test'), which has examined each module before the assembly onto the petals. A cross-check has been performed to compare the results with data from a subsequent test ('sector-test'), that is performed after the petals have been integrated into the TEC. A good agreement shows the consistency of the presented results. With the help of this method a channel defect rate of approximately 0.09% can be measured. Further defects like 'dead' components became visible after integration of the petals into the TEC and raised this number up to 0.33% defect and non-recoverable channels. (orig.)

  9. Analysis of petal longterm test data for the CMS-experiment

    International Nuclear Information System (INIS)

    Heydhausen, Dirk

    2008-01-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) in Geneva will start end of 2008. One of the experiments at the LHC is the multipurpose detector CMS (Compact Muon Solenoid). A key part of the CMS detector is the tracking system, that is composed of a silicon pixel detector forming the innermost part, surrounded by silicon strip sensors. Currently, it is the largest silicon detector in the world with an active area of 198 m 2 . The strip tracker itself consists of four subdetectors. One of these are the tracker end caps (TEC) with an active area of 82 m 2 . Besides this large aperture, their position in the forward region plays a key role for physics analysis due to the fact that many of the interesting events are expected to be boosted in the forward region (pp collider). This area splits up into 10,288 sensors with 3,988,765 channels in total. In several steps the modules constructed and tested before being mounted onto the final substructures (petals). An important longterm test has been performed which qualifies the petals to be installed into the detector. The focus of the present work is in the longterm test. The test procedure is described. A method for identification and classification of defect channels is presented. This method has been developed based on the test results of a previous test ('ARC-test'), which has examined each module before the assembly onto the petals. A cross-check has been performed to compare the results with data from a subsequent test ('sector-test'), that is performed after the petals have been integrated into the TEC. A good agreement shows the consistency of the presented results. With the help of this method a channel defect rate of approximately 0.09% can be measured. Further defects like 'dead' components became visible after integration of the petals into the TEC and raised this number up to 0.33% defect and non-recoverable channels. (orig.)

  10. CMS Experiment Data Processing at RDMS CMS Tier 2 Centers

    CERN Document Server

    Gavrilov, V; Korenkov, V; Tikhonenko, E; Shmatov, S; Zhiltsov, V; Ilyin, V; Kodolova, O; Levchuk, L

    2012-01-01

    Russia and Dubna Member States (RDMS) CMS collaboration was founded in the year 1994 [1]. The RDMS CMS takes an active part in the Compact Muon Solenoid (CMS) Collaboration [2] at the Large Hadron Collider (LHC) [3] at CERN [4]. RDMS CMS Collaboration joins more than twenty institutes from Russia and Joint Institute for Nuclear Research (JINR) member states. RDMS scientists, engineers and technicians were actively participating in design, construction and commissioning of all CMS sub-detectors in forward regions. RDMS CMS physics program has been developed taking into account the essential role of these sub-detectors for the corresponding physical channels. RDMS scientists made large contribution for preparation of study QCD, Electroweak, Exotics, Heavy Ion and other physics at CMS. The overview of RDMS CMS physics tasks and RDMS CMS computing activities are presented in [5-11]. RDMS CMS computing support should satisfy the LHC data processing and analysis requirements at the running phase of the CMS experime...

  11. The 'KATOD-1' strip readout ASIC for cathode strip chamber

    International Nuclear Information System (INIS)

    Golutvin, I.A.; Gorbunov, N.V.; Karzhavin, V.Yu.; Khabarov, V.S.; Movchan, S.A.; Smolin, D.A.; Dvornikov, O.V.; Shumejko, N.M.; Chekhovskij, V.A.

    2001-01-01

    The 'KATOD-1', a 16-channels readout ASIC, has been designed to perform tests of P3 and P4 full-scale prototypes of the cathode strip chamber for the ME1/1 forward muon station of the Compact Muon Solenoid (CMS) experiment. The ASIC channel consists of two charge-sensitive preamplifiers, a three-stage shaper with cancellation, and an output driver. The ASIC is instrumented with control of gain, in the range of (-4.2 : +5.0) mV/fC, and control of output pulse-shape. The equivalent input noise is equal to 2400 e with the slope of 12 e/pF for detector capacity up to 200 pF. The peaking time is 100 ns for the chamber signal. The ASIC has been produced by a microwave Bi-jFET technology

  12. The "KATOD-1" Strip Readout ASIC for Cathode Strip Chamber

    CERN Document Server

    Golutvin, I A; Karjavin, V Yu; Khabarov, V S; Movchan, S A; Smolin, D A; Dvornikov, O V; Shumeiko, N M; Tchekhovski, V A

    2001-01-01

    The "KATOD-1", a 16-channels readout ASIC, has been designed to perform tests of P3 and P4 full-scale prototypes of the cathode strip chamber for the ME1/1 forward muon station of the Compact Muon Solenoid (CMS) experiment. The ASIC channel consists of two charge-sensitive preamplifiers, a three-stage shaper with tail cancellation, and an output driver. The ASIC is instrumented with control of gain, in the range of (-4.2\\div +5.0) mV/fC, and control of output pulse-shape. The equivalent input noise is equal to 2400 e with the slope of 12 e/pF for detector capacity up to 200 pF. The peaking time is 100 ns for the chamber signal. The ASIC has been produced by a microwave Bi-jFET technology.

  13. CMS MANAGEMENT MEETINGS

    CERN Multimedia

    Management Board Agendas and minutes of meetings of the Management Board are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=223 Collaboration Board Agendas and minutes of meetings of the Collaboration Board are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=174 LHCC: Feedback from the CMS Referees, LHCC 97 February 25, 2009. The CMS LHCC referees met with representatives of CMS on 17-2-09, to review progress since the last November minireview. The main topics included  shutdown construction, maintenance and repairs;  status of the preshower detector; commissioning and physics analysis results from cosmic ray running and CSA08;   preparations for physics, off line analysis, computing, and data distribution. TOTEM management and the TOTEM referees then joined us for a joint session to examine the readiness of the TOTEM detector. Detector construction, maintenance, and repairs. The referees congratulate C...

  14. CMS MANAGEMENT MEETINGS

    CERN Multimedia

    Jim Virdee

    Management Board Agendas and minutes of meetings of the Management Board are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=223 Collaboration Board Agendas and minutes of meetings of the Collaboration Board are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=174 LHCC: Feedback from the CMS Referees, LHCC 97 February 25, 2009. The CMS LHCC referees met with representatives of CMS on 17-2-09, to review progress since the last November minireview. The main topics included  shutdown construction, maintenance and repairs;  status of the preshower detector; commissioning and physics analysis results from cosmic ray running and CSA08;   preparations for physics, off line analysis, computing, and data distribution. TOTEM management and the TOTEM referees then joined us for a joint session to examine the readiness of the TOTEM detector. Detector construction, maintenance, and repairs. The referees congratula...

  15. Simulation of the CMS Resistive Plate Chambers

    CERN Document Server

    Hadjiiska, R; Pavlov, B; Petkov, P; Dimitrov, A; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Lellouch, J; Marinov, A; Ocampo, A; Strobbe, N; Thyssen, F; Tytgat, M; Verwilligen, P; Yazgan, E; Zaganidis, N; Aleksandrov, A; Genchev, V; Iaydjiev, P; Rodozov, M; Shopova, M; Sultanov, G; Ban, Y; Cai, J; Xue, Z; Ge, Y; Li, Q; Qian, S; Avila, C; Chaparro, L F; Gomez, J P; Moreno, B Gomez; Oliveros, A F Osorio; Sanabria, J C; Assran, Y; Sharma, A; Abbrescia, M; Colaleo, A; Pugliese, G; Loddo, F; Calabria, C; Maggi, M; Benussi, L; Bianco, S; Colafranceschi, S; Piccolo, D; Carrillo, C; Iorio, O; Buontempo, S; Paolucci, P; Vitulo, P; Berzano, U; Gabusi, M; Kang, M; Lee, K S; Park, S K; Shin, S; Kim, M S; Seo, H; Goh, J; Choi, Y; Shoaib, M

    2013-01-01

    The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to the formation of the trigger decision and reconstruction of the muon trajectory parameters. Simulation of the RPC response is a crucial part of the entire CMS Monte Carlo software and directly influences the final physical results. An algorithm based on the parametrization of RPC efficiency, noise, cluster size and timing for every strip has been developed. Experimental data obtained from cosmic and proton-proton collisions at $\\sqrt{s}=7$ TeV have been used for determination of the parameters. A dedicated validation procedure has been developed. A good agreement between the simulated and experimental data has been achieved.

  16. A novel powering scheme based on DC-DC conversion for the luminosity upgrades of the CMS tracking system at CERN

    International Nuclear Information System (INIS)

    Sammet, Jan

    2014-01-01

    The instantaneous luminosity of the LHC is expected to reach 2 x 10 34 s -1 cm -2 and 5 x 10 34 s -1 cm -2 around the years 2019 and 2024, respectively. After the second upgrade the LHC will be referred to as the High Luminosity LHC (HL-LHC). In order to benefit from the higher luminosities, CMS foresees to upgrade its pixel detector during an extended winter shutdown of the LHC at the end of 2016 and the beginning of 2017. During a long shutdown of the LHC over the years 2022 and 2023, it is foreseen to install a completely new tracking system in CMS. Both upgrades are expected to result in the need to provide more electric current to the detector. However, power losses in cables already contribute 50% to the power consumption of the present tracker and rise with the current squared. Since no more space is available for cables, and thicker cables within the tracking volume spoil the material budget of the detector, new powering schemes are considered mandatory. CMS foresees the use of radiation tolerant DC-DC converters on the front-end to reduce power losses on cables. This thesis describes the new powering scheme of the CMS pixel detector and discusses the options with respect to a new strip tracker. A radiation and magnetic field tolerant DC-DC converter prototype, the PIXV8A, is introduced and the research that led to its development is summarised. The PIXV8A has been developed for the application in the pixel upgrade and is also a first approach for a DC-DC converter for the later upgrade of the CMS tracking system. The PIXV8A makes use of the AMIS4 chip, which has been proven to stay operational for total ionising doses of up to 1 MGy and fluences of up to 10 15 n eq /cm 2 . With an input voltage of 10 V, the PIXV8A converter provides an efficiency of about 80% for output voltages of 2.5 V and 3.0 V. Within this thesis the robustness of the novel powering scheme and the qualification of the PIXV8A are demonstrated in several tests, including system test

  17. The CMS tracker control system

    International Nuclear Information System (INIS)

    Dierlamm, A; Dirkes, G H; Fahrer, M; Frey, M; Hartmann, F; Masetti, L; Militaru, O; Shah, S Y; Stringer, R; Tsirou, A

    2008-01-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 10 4 power supply parameters, about 10 3 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 10 5 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC e