WorldWideScience

Sample records for cml cell lines

  1. Acadesine kills chronic myelogenous leukemia (CML cells through PKC-dependent induction of autophagic cell death.

    Directory of Open Access Journals (Sweden)

    Guillaume Robert

    Full Text Available CML is an hematopoietic stem cell disease characterized by the t(9;22 (q34;q11 translocation encoding the oncoprotein p210BCR-ABL. The effect of acadesine (AICAR, 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside a compound with known antileukemic effect on B cell chronic lymphoblastic leukemia (B-CLL was investigated in different CML cell lines. Acadesine triggered loss of cell metabolism in K562, LAMA-84 and JURL-MK1 and was also effective in killing imatinib-resistant K562 cells and Ba/F3 cells carrying the T315I-BCR-ABL mutation. The anti-leukemic effect of acadesine did not involve apoptosis but required rather induction of autophagic cell death. AMPK knock-down by Sh-RNA failed to prevent the effect of acadesine, indicating an AMPK-independent mechanism. The effect of acadesine was abrogated by GF109203X and Ro-32-0432, both inhibitor of classical and new PKCs and accordingly, acadesine triggered relocation and activation of several PKC isoforms in K562 cells. In addition, this compound exhibited a potent anti-leukemic effect in clonogenic assays of CML cells in methyl cellulose and in a xenograft model of K562 cells in nude mice. In conclusion, our work identifies an original and unexpected mechanism by which acadesine triggers autophagic cell death through PKC activation. Therefore, in addition to its promising effects in B-CLL, acadesine might also be beneficial for Imatinib-resistant CML patients.

  2. CML/CD36 accelerates atherosclerotic progression via inhibiting foam cell migration.

    Science.gov (United States)

    Xu, Suining; Li, Lihua; Yan, Jinchuan; Ye, Fei; Shao, Chen; Sun, Zhen; Bao, Zhengyang; Dai, Zhiyin; Zhu, Jie; Jing, Lele; Wang, Zhongqun

    2018-01-01

    Among the various complications of type 2 diabetes mellitus, atherosclerosis causes the highest disability and morbidity. A multitude of macrophage-derived foam cells are retained in atherosclerotic plaques resulting not only from recruitment of monocytes into lesions but also from a reduced rate of macrophage migration from lesions. Nε-carboxymethyl-Lysine (CML), an advanced glycation end product, is responsible for most complications of diabetes. This study was designed to investigate the mechanism of CML/CD36 accelerating atherosclerotic progression via inhibiting foam cell migration. In vivo study and in vitro study were performed. For the in vivo investigation, CML/CD36 accelerated atherosclerotic progression via promoting the accumulation of macrophage-derived foam cells in aorta and inhibited macrophage-derived foam cells in aorta migrating to the para-aorta lymph node of diabetic apoE -/- mice. For the in vitro investigation, CML/CD36 inhibited RAW264.7-derived foam cell migration through NOX-derived ROS, FAK phosphorylation, Arp2/3 complex activation and F-actin polymerization. Thus, we concluded that CML/CD36 inhibited foam cells of plaque migrating to para-aorta lymph nodes, accelerating atherosclerotic progression. The corresponding mechanism may be via free cholesterol, ROS generation, p-FAK, Arp2/3, F-actin polymerization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation

    Directory of Open Access Journals (Sweden)

    Giallongo Cesarina

    2013-02-01

    Full Text Available Abstract Background SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. Methods We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM, in vitro, using ATP-lite and cell cycle analysis. Results Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. Conclusion Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML.

  4. SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation

    International Nuclear Information System (INIS)

    Giallongo, Cesarina; Palumbo, Giuseppe A; Di Raimondo, Francesco; La Cava, Piera; Tibullo, Daniele; Barbagallo, Ignazio; Parrinello, Nunziatina; Cupri, Alessandra; Stagno, Fabio; Consoli, Carla; Chiarenza, Annalisa

    2013-01-01

    SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML) patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM), in vitro, using ATP-lite and cell cycle analysis. Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML

  5. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    International Nuclear Information System (INIS)

    Zhou Hongsheng; Zhang Donghua; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-01-01

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs

  6. Do endothelial cells belong to the primitive stem leukemic clone in CML? Role of extracellular vesicles.

    Science.gov (United States)

    Ramos, Teresa L; Sánchez-Abarca, Luis Ignacio; López-Ruano, Guillermo; Muntión, Sandra; Preciado, Silvia; Hernández-Ruano, Montserrat; Rosado, Belén; de las Heras, Natalia; Chillón, M Carmen; Hernández-Hernández, Ángel; González, Marcos; Sánchez-Guijo, Fermín; Del Cañizo, Consuelo

    2015-08-01

    The expression of BCR-ABL in hematopoietic stem cells is a well-defined primary event in chronic myeloid leukemia (CML). Some reports have described the presence of BCR-ABL on endothelial cells from CML patients, suggesting the origin of the disease in a primitive hemangioblastic cell. On the other hand, extracellular vesicles (EVs) released by CML leukemic cells are involved in the angiogenesis modulation process. In the current work we hypothesized that EVs released from BCR-ABL(+) cells may carry inside the oncogene that can be transferred to endothelial cells leading to the expression of both BCR-ABL transcript and the oncoprotein. EVs from K562 cells and plasma of newly diagnosed CML patients were isolated by ultracentrifugation. RT-PCR analysis detected the presence of BCR-ABL RNA in the EVs isolated from both K562 cells and plasma of CML patients. The incorporation of these EVs into endothelial cells was demonstrated by flow cytometry and fluorescence microscopy showed that after 24h of incubation most EVs were incorporated. BCR-ABL transcripts were detected in all experiments on endothelial cells incubated with EVs from both sources. The presence of BCR-ABL on endothelial cells incubated with Philadelphia(+) EVs was also confirmed by Western blot assays. In summary, endothelial cells acquire BCR-ABL RNA and the oncoprotein after incubation with EVs released from Ph(+) positive cells (either from K562 cells or from plasma of newly diagnosed CML patients). This results challenge the hypothesis that endothelial cells may be part of the Philadelphia(+) clone in CML. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Synergistic apoptosis of CML cells by buthionine sulfoximine and hydroxychavicol correlates with activation of AIF and GSH-ROS-JNK-ERK-iNOS pathway.

    Directory of Open Access Journals (Sweden)

    Avik Acharya Chowdhury

    Full Text Available BACKGROUND: Hydroxychavicol (HCH, a constituent of Piper betle leaf has been reported to exert anti-leukemic activity through induction of reactive oxygen species (ROS. The aim of the study is to optimize the oxidative stress -induced chronic myeloid leukemic (CML cell death by combining glutathione synthesis inhibitor, buthionine sulfoximine (BSO with HCH and studying the underlying mechanism. MATERIALS AND METHODS: Anti-proliferative activity of BSO and HCH alone or in combination against a number of leukemic (K562, KCL22, KU812, U937, Molt4, non-leukemic (A549, MIA-PaCa2, PC-3, HepG2 cancer cell lines and normal cell lines (NIH3T3, Vero was measured by MTT assay. Apoptotic activity in CML cell line K562 was detected by flow cytometry (FCM after staining with annexin V-FITC/propidium iodide (PI, detection of reduced mitochondrial membrane potential after staining with JC-1, cleavage of caspase- 3 and poly (ADP-ribose polymerase proteins by western blot analysis and translocation of apoptosis inducing factor (AIF by confocal microscopy. Intracellular reduced glutathione (GSH was measured by colorimetric assay using GSH assay kit. 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA and 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM were used as probes to measure intracellular increase in ROS and nitric oxide (NO levels respectively. Multiple techniques like siRNA transfection and pharmacological inhibition were used to understand the mechanisms of action. RESULTS: Non-apoptotic concentrations of BSO significantly potentiated HCH-induced apoptosis in K562 cells. BSO potentiated apoptosis-inducing activity of HCH in CML cells by caspase-dependent as well as caspase-independent but apoptosis inducing factor (AIF-dependent manner. Enhanced depletion of intracellular GSH induced by combined treatment correlated with induction of ROS. Activation of ROS- dependent JNK played a crucial role in ERK1/2 activation which subsequently induced the

  8. HLA-DRB1*16-restricted recognition of myeloid cells, including CD34+ CML progenitor cells

    NARCIS (Netherlands)

    Ebeling, Saskia B.; Ivanov, Roman; Hol, Samantha; Aarts, Tineke I.; Hagenbeek, Anton; Verdonck, Leo F.; Petersen, Eefke J.

    2003-01-01

    The therapeutic effect of a human leucocyte antigen (HLA)-identical allogeneic stem cell transplantation (allo-SCT) for the treatment of haematological malignancies is mediated partly by the allogeneic T cells that are administered together with the stem cell graft. Chronic myeloid leukaemia (CML)

  9. Disrupting BCR-ABL in Combination with Secondary Leukemia-Specific Pathways in CML Cells Leads to Enhanced Apoptosis and Decreased Proliferation

    OpenAIRE

    Woessner, David W.; Lim, Carol S.

    2012-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by expression of the fusion gene BCR-ABL following a chromosomal translocation in the hematopoietic stem cell.1 Therapeutic management of CML uses tyrosine kinase inhibitors (TKIs), which blocks ABL-signaling and effectively kill peripheral cells with BCR-ABL. However, TKIs are not curative, and chronic use of is required in order to treat CML. The primary failure for TKIs is through development of a resistant population d...

  10. Human AQP5 plays a role in the progression of chronic myelogenous leukemia (CML.

    Directory of Open Access Journals (Sweden)

    Young Kwang Chae

    2008-07-01

    Full Text Available Aquaporins (AQPs have previously been associated with increased expression in solid tumors. However, its expression in hematologic malignancies including CML has not been described yet. Here, we report the expression of AQP5 in CML cells by RT-PCR and immunohistochemistry. While normal bone marrow biopsy samples (n = 5 showed no expression of AQP5, 32% of CML patient samples (n = 41 demonstrated AQP5 expression. In addition, AQP5 expression level increased with the emergence of imatinib mesylate resistance in paired samples (p = 0.047. We have found that the overexpression of AQP5 in K562 cells resulted in increased cell proliferation. In addition, small interfering RNA (siRNA targeting AQP5 reduced the cell proliferation rate in both K562 and LAMA84 CML cells. Moreover, by immunoblotting and flow cytometry, we show that phosphorylation of BCR-ABL1 is increased in AQP5-overexpressing CML cells and decreased in AQP5 siRNA-treated CML cells. Interestingly, caspase9 activity increased in AQP5 siRNA-treated cells. Finally, FISH showed no evidence of AQP5 gene amplification in CML from bone marrow. In summary, we report for the first time that AQP5 is overexpressed in CML cells and plays a role in promoting cell proliferation and inhibiting apoptosis. Furthermore, our findings may provide the basis for a novel CML therapy targeting AQP5.

  11. A power-efficient switchable CML driver at 10 Gbps

    Science.gov (United States)

    Peipei, Chen; Lei, Li; Huihua, Liu

    2016-02-01

    High static power limits the application of conventional current-mode logic(CML). This paper presents a power-efficient switchable CML driver, which achieves a significant current saving by 75% compared with conventional ones. Implemented in the 130 nm CMOS technology process, the proposed CML driver just occupies an area about 0.003 mm2 and provides a robust differential signal of 1600 mV for 10 Gbps optical line terminal (OLT) with a total current of 10 mA. The peak-to-peak jitter is about 4 ps (0.04TUI) and the offset voltage is 347.2 mV @ 1600 mVPP.

  12. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance.

    Science.gov (United States)

    Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu

    2012-01-01

    Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. © 2011 Japanese Cancer Association.

  13. A power-efficient switchable CML driver at 10 Gbps

    International Nuclear Information System (INIS)

    Chen Peipei; Li Lei; Liu Huihua

    2016-01-01

    High static power limits the application of conventional current-mode logic(CML). This paper presents a power-efficient switchable CML driver, which achieves a significant current saving by 75% compared with conventional ones. Implemented in the 130 nm CMOS technology process, the proposed CML driver just occupies an area about 0.003 mm 2 and provides a robust differential signal of 1600 mV for 10 Gbps optical line terminal (OLT) with a total current of 10 mA. The peak-to-peak jitter is about 4 ps (0.04T UI ) and the offset voltage is 347.2 mV @ 1600 mV PP . (paper)

  14. Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1.

    Science.gov (United States)

    Li, Fengyin; He, Bing; Ma, Xiaoke; Yu, Shuyang; Bhave, Rupali R; Lentz, Steven R; Tan, Kai; Guzman, Monica L; Zhao, Chen; Xue, Hai-Hui

    2017-09-07

    Effective treatment of chronic myelogenous leukemia (CML) largely depends on the eradication of CML leukemic stem cells (LSCs). We recently showed that CML LSCs depend on Tcf1 and Lef1 factors for self-renewal. Using a connectivity map, we identified prostaglandin E1 (PGE1) as a small molecule that partly elicited the gene expression changes in LSCs caused by Tcf1/Lef1 deficiency. Although it has little impact on normal hematopoiesis, we found that PGE1 treatment impaired the persistence and activity of LSCs in a pre-clinical murine CML model and a xenograft model of transplanted CML patient CD34 + stem/progenitor cells. Mechanistically, PGE1 acted on the EP4 receptor and repressed Fosb and Fos AP-1 factors in a β-catenin-independent manner. Misoprostol, an FDA-approved EP4 agonist, conferred similar protection against CML. These findings suggest that activation of this PGE1-EP4 pathway specifically targets CML LSCs and that the combination of PGE1/misoprostol with conventional tyrosine-kinase inhibitors could provide effective therapy for CML. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses.

    Science.gov (United States)

    Zhu, Xiaoyang; Perez, Manon; Aldon, Didier; Galaud, Jean-Philippe

    2017-05-04

    In their natural environment, plants have to continuously face constraints such as biotic and abiotic stresses. To achieve their life cycle, plants have to perceive and interpret the nature, but also the strength of environmental stimuli to activate appropriate physiological responses. Nowadays, it is well established that signaling pathways are crucial steps in the implementation of rapid and efficient plant responses such as genetic reprogramming. It is also reported that rapid raises in calcium (Ca 2+ ) levels within plant cells participate in these early signaling steps and are essential to coordinate adaptive responses. However, to be informative, calcium increases need to be decoded and relayed by calcium-binding proteins also referred as calcium sensors to carry-out the appropriate responses. In a recent study, we showed that CML8, an Arabidopsis calcium sensor belonging to the calmodulin-like (CML) protein family, promotes plant immunity against the phytopathogenic bacteria Pseudomonas syringae pv tomato (strain DC3000). Interestingly, other CML proteins such as CML9 were also reported to contribute to plant immunity using the same pathosystem. In this addendum, we propose to discuss about the specific contribution of these 2 CMLs in stress responses.

  16. Disrupting BCR-ABL in combination with secondary leukemia-specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation.

    Science.gov (United States)

    Woessner, David W; Lim, Carol S

    2013-01-07

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by expression of the fusion gene BCR-ABL following a chromosomal translocation in the hematopoietic stem cell. Therapeutic management of CML uses tyrosine kinase inhibitors (TKIs), which block ABL-signaling and effectively kill peripheral cells with BCR-ABL. However, TKIs are not curative, and chronic use is required in order to treat CML. The primary failure for TKIs is through the development of a resistant population due to mutations in the TKI binding regions. This led us to develop the mutant coiled-coil, CC(mut2), an alternative method for BCR-ABL signaling inhibition by targeting the N-terminal oligomerization domain of BCR, necessary for ABL activation. In this article, we explore additional pathways that are important for leukemic stem cell survival in K562 cells. Using a candidate-based approach, we test the combination of CC(mut2) and inhibitors of unique secondary pathways in leukemic cells. Transformative potential was reduced following silencing of the leukemic stem cell factor Alox5 by RNA interference. Furthermore, blockade of the oncogenic protein MUC-1 by the novel peptide GO-201 yielded reductions in proliferation and increased cell death. Finally, we found that inhibiting macroautophagy using chloroquine in addition to blocking BCR-ABL signaling with the CC(mut2) was most effective in limiting cell survival and proliferation. This study has elucidated possible combination therapies for CML using novel blockade of BCR-ABL and secondary leukemia-specific pathways.

  17. The Culture Repopulation Ability (CRA) Assay and Incubation in Low Oxygen to Test Antileukemic Drugs on Imatinib-Resistant CML Stem-Like Cells.

    Science.gov (United States)

    Cheloni, Giulia; Tanturli, Michele

    2016-01-01

    Chronic myeloid leukemia (CML) is a stem cell-driven disorder caused by the BCR/Abl oncoprotein, a constitutively active tyrosine kinase (TK). Chronic-phase CML patients are treated with impressive efficacy with TK inhibitors (TKi) such as imatinib mesylate (IM). However, rather than definitively curing CML, TKi induces a state of minimal residual disease, due to the persistence of leukemia stem cells (LSC) which are insensitive to this class of drugs. LSC persistence may be due to different reasons, including the suppression of BCR/Abl oncoprotein. It has been shown that this suppression follows incubation in low oxygen under appropriate culture conditions and incubation times.Here we describe the culture repopulation ability (CRA) assay, a non-clonogenic assay capable - together with incubation in low oxygen - to reveal in vitro stem cells endowed with marrow repopulation ability (MRA) in vivo. The CRA assay can be used, before moving to animal tests, as a simple and reliable method for the prescreening of drugs potentially active on CML and other leukemias with respect to their activity on the more immature leukemia cell subsets.

  18. Management of CML in the Pediatric Age Group: Imatinib Mesylate or SCT.

    Science.gov (United States)

    El-Alfy, Mohsen S; Al-Haddad, Alaa M; Hamed, Ahmed A

    2010-12-01

    Management of CML has changed markedly since the introduction of tyrosine kinase inhibitors (TKIs). However stem cell transplantation (SCT) remains a valid therapeutic modality especially in developing countries due to its relatively lower cost. We aim to compare between imatinib mesylate and SCT as regard outcome in CML in the pediatric age group. Forty-eight patients with newly diagnosed CML in the chronic phase, aged 3 to 18 years were enrolled in this prospective study. Patients without a matched donor (Group I; N=30) were assigned to receive imatinib mesylate at a dose of 340mg÷m2÷day, while patients with a fully matched related donor (Group II; N=18), were offered SCT. Response (hematologic, cytogenetic and molecular), side effects and survival were analyzed. Complete hematologic response was obtained in 97% of the patients in group I and 94% in group II. Major cytogenetic response (CyR) was obtained in 80% of patients in group I and 100% in group II. Complete CyR was 57% in group I and 64% in group II. Major molecular response (MMR) was 36% in group I and 50% in group II with no significant difference between both groups. Six years overall survival (OS) was 87% in the 1st group and 61% in the 2nd group (pSCT group (55% had GVHD and 78% had infection). Imatinib mesylate has a superior OS and EFS than SCT in children. It is generally safe and well tolerated. Imatinib mesylate should be the 1st line treatment of pediatric patients with CML in the chronic phase. CML- Imatinib- SCT- Pediatrics.

  19. Variable behavior of iPSCs derived from CML patients for response to TKI and hematopoietic differentiation.

    Directory of Open Access Journals (Sweden)

    Aurélie Bedel

    Full Text Available Chronic myeloid leukemia disease (CML found effective therapy by treating patients with tyrosine kinase inhibitors (TKI, which suppress the BCR-ABL1 oncogene activity. However, the majority of patients achieving remission with TKI still have molecular evidences of disease persistence. Various mechanisms have been proposed to explain the disease persistence and recurrence. One of the hypotheses is that the primitive leukemic stem cells (LSCs can survive in the presence of TKI. Understanding the mechanisms leading to TKI resistance of the LSCs in CML is a critical issue but is limited by availability of cells from patients. We generated induced pluripotent stem cells (iPSCs derived from CD34⁺ blood cells isolated from CML patients (CML-iPSCs as a model for studying LSCs survival in the presence of TKI and the mechanisms supporting TKI resistance. Interestingly, CML-iPSCs resisted to TKI treatment and their survival did not depend on BCR-ABL1, as for primitive LSCs. Induction of hematopoietic differentiation of CML-iPSC clones was reduced compared to normal clones. Hematopoietic progenitors obtained from iPSCs partially recovered TKI sensitivity. Notably, different CML-iPSCs obtained from the same CML patients were heterogeneous, in terms of BCR-ABL1 level and proliferation. Thus, several clones of CML-iPSCs are a powerful model to decipher all the mechanisms leading to LSC survival following TKI therapy and are a promising tool for testing new therapeutic agents.

  20. Expression, purification and preliminary diffraction studies of CmlS

    International Nuclear Information System (INIS)

    Latimer, Ryan; Podzelinska, Kateryna; Soares, Alexei; Bhattacharya, Anupam; Vining, Leo C.; Jia, Zongchao; Zechel, David L.

    2009-01-01

    CmlS from S. venezuelae is a flavin-dependent halogenase that is involved in the biosynthesis of the widely used antibiotic chloramphenicol. Here, the crystallization of CmlS and analysis of the initial diffraction data are reported. CmlS, a flavin-dependent halogenase (FDH) present in the chloramphenicol-biosynthetic pathway in Streptomyces venezuelae, directs the dichlorination of an acetyl group. The reaction mechanism of CmlS is of considerable interest as it will help to explain how the FDH family can halogenate a wide range of substrates through a common mechanism. The protein has been recombinantly expressed in Escherichia coli and purified to homogeneity. The hanging-drop vapour-diffusion method was used to produce crystals that were suitable for X-ray diffraction. Data were collected to 2.0 Å resolution. The crystal belonged to space group C2, with unit-cell parameters a = 208.1, b = 57.7, c = 59.9 Å, β = 97.5°

  1. DRUG THERAPY IN THE PROGRESSED CML PATIENT WITH MULTI-TKI FAILURE

    Directory of Open Access Journals (Sweden)

    Ibrahim C. Haznedaroglu

    2015-02-01

    Full Text Available The aim of this paper is to outline pharmacotherapy of the ‘third-line management of CML’ (progressive disease course after sequential TKI drugs. Current management of CML with multi-TKI failure is reviewed. TKI (bosutinib, ponatinib, dasatinib, nilotinib and non-TKI (omacetaxine mepussecinate, IFN or PEG-IFN drugs are available. The literature search was made in PubMed with particular focus on the clinical trials, recommendations, guidelines and expert opinions, as well as international recommendations. Progressing CML disease with multi-TKI failure should be treated with alloSCT based on the availability of the donor and EBMT transplant risk scores. The TKI and non-TKI drugs shall be used to get best promising (hematological, cytogenetic, molecular response. During the CP-CML phase of multi-TKI failure, 2nd generation TKIs (nilotinib or dasatinib are used if they remained. Bosutinib and ponatinib (3rd generation TKIs can be administered in triple-TKI failed (imatinib and nilotinib and dasatinib patients. The presence of T315I mutation at any phase requires ponatinib or omacetaxine mepussecinate therapy before allografting. During the AP/BC-CML phase of multi-TKI failure, the most powerful TKI available (ponatinib or dasatinib if remained together with chemotherapy should be given before alloSCT. Monitoring of CML disease and drug off-target risks (particularly vascular thrombotic events are vital.

  2. Overexpression of Hiwi Inhibits the Growth and Migration of Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Wang, Yalin; Jiang, Yan; Ma, Ning; Sang, Bailu; Hu, Xiaolin; Cong, Xiaofeng; Liu, Ziling

    2015-09-01

    Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by dysregulated growth and proliferation of hematopoietic stem/progenitor cells in bone marrow and excessive expansion of hematopoietic compartments in peripheral blood. Expression deletion of Hiwi, a human Piwi homolog, has been reported to be implicated in leukemogenesis. We here explored Hiwi's role in CML pathogenesis by determining how and whether its forced overexpression could affect CML cell growth and migration. The present results showed that lentivirus-mediated overexpression of Hiwi significantly suppressed cell proliferation and induced obvious apoptosis in K562 cells, a CML line cell line. Tumors in BALB/c nude mice generated by the K562 cells expressing Hiwi were much smaller than those formed by the control cells. Like in vitro, Hiwi upregulation induced cell apoptosis in the tumor tissues in vivo. Additionally, Hiwi elevation suppressed K562 cell migration and inhibited the activity and expression of matrix metalloproteinase-2 and -9. In summary, our study demonstrates that Hiwi overexpression inhibits CML cell growth and migration, providing insights into its role in CML pathogenesis.

  3. Chromosome abnormalities in the acute phase of CML

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J D

    1978-01-01

    Additional chromosome changes are superimposed on the Ph/sup 1/ positive cell line in approximately 80% of patients in the acute phase of chronic myelogenous leukemia (CML). These changes may precede the onset of blast crisis by several months. They are nonrandom and frequently involve an extra No. 8, an isochromosome for the long arm of No. 17, an extra No. 19, and a second Ph/sup 1/ chromosome. Since such changes may occur in combination, modal numbers frequently range between 47 and 57 chromosomes. Although present evidence suggests that abnormal clones originate, or at least proliferate, in the spleen, similar changes have been observed in patients who underwent splenectomy during the chronic phase of their disease. The question of particular clinical-chromosomal correlations has been discussed in only one study. It appeared that patients whose karyotype did not change might have a longer median survival than those whose karyotype showed additional abnormalities. Tests for levels of terminal deoxynucleotidyl transferase (TDT) and response to anti-acute lymphoblastic leukemia (ALL) serum suggest that some, but not all patients react as do patients with ALL. Those who are similar to ALL have high levels of TDT and are anti-ALL serum-positive; the others have low levels of TDT and are anti-ALL serum-negative. In the future, correlations of these more sophisticated tests with the blast morphology, clinical course, and karyotype pattern should provide significant new insights into the acute phase of CML.

  4. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL.

    Science.gov (United States)

    Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia

    2016-06-22

    Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML.

  5. Human monoclonal antibodies reactive with human myelomonocytic leukemia cells.

    Science.gov (United States)

    Posner, M R; Santos, D J; Elboim, H S; Tumber, M B; Frackelton, A R

    1989-04-01

    Peripheral blood mononuclear cells from a patient with chronic myelogenous leukemia (CML), in remission, were depleted of CD8-positive T-cells and cultured with Epstein-Barr virus. Four of 20 cultures (20%) secreted human IgG antibodies selectively reactive with the cell surfaces of certain human leukemia cell lines. Three polyclonal, Epstein-Barr virus-transformed, B-cell lines were expanded and fused with the human-mouse myeloma analogue HMMA2.11TG/O. Antibody from secreting clones HL 1.2 (IgG1), HL 2.1 (IgG3), and HL 3.1 (IgG1) have been characterized. All three react with HL-60 (promyelocytic), RWLeu4 (CML promyelocytic), and U937 (monocytic), but not with KG-1 (myeloblastic) or K562 (CML erythroid). There is no reactivity with T-cell lines, Burkitt's cell lines, pre-B-leukemia cell lines, or an undifferentiated CML cell line, BV173. Leukemic cells from two of seven patients with acute myelogenous leukemia and one of five with acute lymphocytic leukemia react with all three antibodies. Normal lymphocytes, monocytes, polymorphonuclear cells, red blood cells, bone marrow cells, and platelets do not react. Samples from patients with other diverse hematopoietic malignancies showed no reactivity. Immunoprecipitations suggest that the reactive antigen(s) is a lactoperoxidase iodinatable series of cell surface proteins with molecular weights of 42,000-54,000 and a noniodinatable protein with a molecular weight of 82,000. Based on these data these human monoclonal antibodies appear to react with myelomonocytic leukemic cells and may detect a leukemia-specific antigen or a highly restricted differentiation antigen.

  6. Combined Treatment with Low Concentrations of Decitabine and SAHA Causes Cell Death in Leukemic Cell Lines but Not in Normal Peripheral Blood Lymphocytes

    Directory of Open Access Journals (Sweden)

    Barbora Brodská

    2013-01-01

    Full Text Available Epigenetic therapy reverting aberrant acetylation or methylation offers the possibility to target preferentially tumor cells and to preserve normal cells. Combination epigenetic therapy may further improve the effect of individual drugs. We investigated combined action of demethylating agent decitabine and histone deacetylase inhibitor SAHA (Vorinostat on different leukemic cell lines in comparison with peripheral blood lymphocytes. Large decrease of viability, as well as huge p21WAF1 induction, reactive oxygen species formation, and apoptotic features due to combined decitabine and SAHA action were detected in leukemic cell lines irrespective of their p53 status, while essentially no effect was observed in response to the combined drug action in normal peripheral blood lymphocytes of healthy donors. p53-dependent apoptotic pathway was demonstrated to participate in the wtp53 CML-T1 leukemic cell line response, while significant influence of reactive oxygen species on viability decrease has been detected in p53-null HL-60 cell line.

  7. Chronic myelogenous leukemia (CML)

    Science.gov (United States)

    CML; Chronic myeloid leukemia; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... nuclear disaster. It takes many years to develop leukemia from radiation exposure. Most people treated for cancer ...

  8. A study on stability and medical implications for a complex delay model for CML with cell competition and treatment.

    Science.gov (United States)

    Rădulescu, I R; Cândea, D; Halanay, A

    2014-12-21

    We study a mathematical model describing the dynamics of leukemic and normal cell populations (stem-like and differentiated) in chronic myeloid leukemia (CML). This model is a system of four delay differential equations incorporating three types of cell division. The competition between normal and leukemic stem cell populations for the common microenvironment is taken into consideration. The stability of one steady state is investigated. The results are discussed via their medical interpretation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Intracellular Retention of ABL Kinase Inhibitors Determines Commitment to Apoptosis in CML Cells

    Science.gov (United States)

    Dziadosz, Marek; Schnöder, Tina; Heidel, Florian; Schemionek, Mirle; Melo, Junia V.; Kindler, Thomas; Müller-Tidow, Carsten; Koschmieder, Steffen; Fischer, Thomas

    2012-01-01

    Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by high-dose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs. PMID:22815843

  10. SL-401 and SL-501, Targeted Therapeutics Directed at the Interleukin-3 Receptor, Inhibit the Growth of Leukaemic Cells and Stem Cells in Advanced Phase Chronic Myeloid Leukaemia

    Science.gov (United States)

    Frolova, Olga; Benito, Juliana; Brooks, Chris; Wang, Rui-Yu; Korchin, Borys; Rowinsky, Eric K.; Cortes, Jorge; Kantarjian, Hagop; Andreeff, Michael; Frankel, Arthur E.; Konopleva, Marina

    2014-01-01

    SUMMARY While imatinib and other tyrosine kinase inhibitors (TKIs) are highly efficacious in the treatment of chronic myeloid leukaemia (CML), some patients become refractory to these therapies. After confirming that interleukin-3 receptor (IL3R, CD123) is highly expressed on CD34+/CD38− BCR-ABL1+ CML stem cells, we investigated whether targeting IL3R with diphtheria toxin (DT)-IL3 fusion proteins SL-401 (DT388-IL3) and SL-501 (DT388-IL3[K116W]) could eradicate these stem cells. SL-401 and SL-501 inhibited cell growth and induced apoptosis in the KBM5 cell line and its TKI-resistant KBM5-STI subline. Combinations of imatinib with these agents increased apoptosis in KBM5 and in primary CML cells. In six primary CML samples, including CML cells harbouring the ABL1 T315I mutation, SL-401 and SL-501 decreased the absolute numbers of viable CD34+/CD38−/CD123+ CML progenitor cells by inducing apoptosis. IL3-targeting agents reduced clonogenic growth and diminished the fraction of primitive long-term culture-initiating cells in samples from patients with advanced phase CML that were resistant to TKIs or harboured an ABL1 mutation. Survival was also extended in a mouse model of primary TKI-resistant CML blast crisis. These data suggest that the DT-IL3 fusion proteins, SL-401 and SL-501, deplete CML stem cells and may increase the effectiveness of current CML treatment, which principally targets tumour bulk. PMID:24942980

  11. Design and prototyping of real-time systems using CSP and CML

    DEFF Research Database (Denmark)

    Rischel, Hans; Sun, Hong Yan

    1997-01-01

    A procedure for systematic design of event based systems is introduced by means of the Production Cell case study. The design is documented by CSP style processes, which allow both verification using formal techniques and also validation of a rapid prototype in the functional language CML...

  12. Hoxa9 and Hoxa10 induce CML myeloid blast crisis development through activation of Myb expression.

    Science.gov (United States)

    Negi, Vijay; Vishwakarma, Bandana A; Chu, Su; Oakley, Kevin; Han, Yufen; Bhatia, Ravi; Du, Yang

    2017-11-17

    Mechanisms underlying the progression of Chronic Myeloid Leukemia (CML) from chronic phase to myeloid blast crisis are poorly understood. Our previous studies have suggested that overexpression of SETBP1 can drive this progression by conferring unlimited self-renewal capability to granulocyte macrophage progenitors (GMPs). Here we show that overexpression of Hoxa9 or Hoxa10 , both transcriptional targets of Setbp1 , is also sufficient to induce self-renewal of primary myeloid progenitors, causing their immortalization in culture. More importantly, both are able to cooperate with BCR/ABL to consistently induce transformation of mouse GMPs and development of aggressive leukemias resembling CML myeloid blast crisis, suggesting that either gene can drive CML progression by promoting the self-renewal of GMPs. We further identify Myb as a common critical target for Hoxa9 and Hoxa10 in inducing self-renewal of myeloid progenitors as Myb knockdown significantly reduced colony-forming potential of myeloid progenitors immortalized by the expression of either gene. Interestingly, Myb is also capable of immortalizing primary myeloid progenitors in culture and cooperating with BCR/ABL to induce leukemic transformation of mouse GMPs. Significantly increased levels of MYB transcript also were detected in all human CML blast crisis samples examined over chronic phase samples, further suggesting the possibility that MYB overexpression may play a prevalent role in driving human CML myeloid blast crisis development. In summary, our results identify overexpression of HOXA9 , HOXA10 , and MYB as critical drivers of CML progression, and suggest MYB as a key therapeutic target for inhibiting the self-renewal of leukemia-initiating cells in CML myeloid blast crisis patients.

  13. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  14. HLA restriction of non-HLA-A, -B, -C and -D cell mediated lympholysis (CML)

    International Nuclear Information System (INIS)

    Goulmy, E.; Termijtelen, A.; Bradley, B.A.; Rood, J.J. van

    1976-01-01

    The aim of our study was to define target determinations other than those coded for by the classical HLA-A, -B, -C or -D loci which were responsible for killing in CML. In one of the families studied, strong evidence was found for the existence of a determinant coded for within the HLA region. CML was restricted to targets carrying the classical HLA-Bw35 and Cw4 determinants but the targets were neither HLA-Bw35 nor Cw4 themselves. We therefore concluded that this new HLA determinant was either the product of a new locus closely associated with HLA-B or that it was a product of the classical HLA-B locus which has not been recognized by serology. (author)

  15. Identifying and validating a combined mRNA and microRNA signature in response to imatinib treatment in a chronic myeloid leukemia cell line.

    Directory of Open Access Journals (Sweden)

    Steven Bhutra

    Full Text Available Imatinib, a targeted tyrosine kinase inhibitor, is the gold standard for managing chronic myeloid leukemia (CML. Despite its wide application, imatinib resistance occurs in 20-30% of individuals with CML. Multiple potential biomarkers have been identified to predict imatinib response; however, the majority of them remain externally uncorroborated. In this study, we set out to systematically identify gene/microRNA (miRNA whose expression changes are related to imatinib response. Through a Gene Expression Omnibus search, we identified two genome-wide expression datasets that contain expression changes in response to imatinib treatment in a CML cell line (K562: one for mRNA and the other for miRNA. Significantly differentially expressed transcripts/miRNAs post imatinib treatment were identified from both datasets. Three additional filtering criteria were applied 1 miRbase/miRanda predictive algorithm; 2 opposite direction of imatinib effect for genes and miRNAs; and 3 literature support. These criteria narrowed our candidate gene-miRNA to a single pair: IL8 and miR-493-5p. Using PCR we confirmed the significant up-regulation and down-regulation of miR-493-5p and IL8 by imatinib treatment, respectively in K562 cells. In addition, IL8 expression was significantly down-regulated in K562 cells 24 hours after miR-493-5p mimic transfection (p = 0.002. Furthermore, we demonstrated significant cellular growth inhibition after IL8 inhibition through either gene silencing or by over-expression of miR-493-5p (p = 0.0005 and p = 0.001 respectively. The IL8 inhibition also further sensitized K562 cells to imatinib cytotoxicity (p < 0.0001. Our study combined expression changes in transcriptome and miRNA after imatinib exposure to identify a potential gene-miRNA pair that is a critical target in imatinib response. Experimental validation supports the relationships between IL8 and miR-493-5p and between this gene-miRNA pair and imatinib sensitivity in a CML cell

  16. Evaluation of multielements in human serum of patients with chronic myelogenous leukemia (CML) using SRTXRF

    International Nuclear Information System (INIS)

    Leitao, Catarine Canellas Gondim

    2005-04-01

    In this work, trace elements were analyzed in serum of patients with chronic myelogenous leukemia (CML) by Total Reflection X-Ray Fluorescence using synchrotron radiation (SRTXRF). Chronic myelogenous leukemia (CML) affects the myeloid cells in the blood and affects 1 to 2 people per 100,000 and accounts for 7-20% cases of leukemia. Sixty patients with CML and sixty healthy volunteers (control group) were studied. Blood was collected into vacutainers without additives. Directly after collection, each blood sample was centrifuged at 3000 rev/min for 10 min in order to separate blood cells and suspended particles from blood serum. Sera were transferred into polyethylene tubes and stored in a freezer at 253 K. A 500 m u L serum quantity was spiked with Ga (50 m u L ) as internal standard. 10 m u L aliquots were pipetted on Perspex sample carrier. After deposition, the samples were left to dry under an infrared lamp. The measurements were performed at the X-Ray Fluorescence Beamline at Brazilian National Synchrotron Light Laboratory (LNLS), using a polychromatic beam. Standard solutions with gallium as internal standard were prepared for calibration system. It was possible to determine the concentrations of the following elements: P, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Br and Rb. Starting from the ANOVA test was observed that the elements P, S, Ca, Cr, Mn, Fe, Cu and Rb presented real significant differences (α = 0.05) between groups (healthy subjects and CML patients) and Sex (males and females). (author)

  17. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants.

    Science.gov (United States)

    Hehlmann, R; Lauseker, M; Saußele, S; Pfirrmann, M; Krause, S; Kolb, H J; Neubauer, A; Hossfeld, D K; Nerl, C; Gratwohl, A; Baerlocher, G M; Heim, D; Brümmendorf, T H; Fabarius, A; Haferlach, C; Schlegelberger, B; Müller, M C; Jeromin, S; Proetel, U; Kohlbrenner, K; Voskanyan, A; Rinaldetti, S; Seifarth, W; Spieß, B; Balleisen, L; Goebeler, M C; Hänel, M; Ho, A; Dengler, J; Falge, C; Kanz, L; Kremers, S; Burchert, A; Kneba, M; Stegelmann, F; Köhne, C A; Lindemann, H W; Waller, C F; Pfreundschuh, M; Spiekermann, K; Berdel, W E; Müller, L; Edinger, M; Mayer, J; Beelen, D W; Bentz, M; Link, H; Hertenstein, B; Fuchs, R; Wernli, M; Schlegel, F; Schlag, R; de Wit, M; Trümper, L; Hebart, H; Hahn, M; Thomalla, J; Scheid, C; Schafhausen, P; Verbeek, W; Eckart, M J; Gassmann, W; Pezzutto, A; Schenk, M; Brossart, P; Geer, T; Bildat, S; Schäfer, E; Hochhaus, A; Hasford, J

    2017-11-01

    Chronic myeloid leukemia (CML)-study IV was designed to explore whether treatment with imatinib (IM) at 400 mg/day (n=400) could be optimized by doubling the dose (n=420), adding interferon (IFN) (n=430) or cytarabine (n=158) or using IM after IFN-failure (n=128). From July 2002 to March 2012, 1551 newly diagnosed patients in chronic phase were randomized into a 5-arm study. The study was powered to detect a survival difference of 5% at 5 years. After a median observation time of 9.5 years, 10-year overall survival was 82%, 10-year progression-free survival was 80% and 10-year relative survival was 92%. Survival between IM400 mg and any experimental arm was not different. In a multivariate analysis, risk group, major-route chromosomal aberrations, comorbidities, smoking and treatment center (academic vs other) influenced survival significantly, but not any form of treatment optimization. Patients reaching the molecular response milestones at 3, 6 and 12 months had a significant survival advantage. For responders, monotherapy with IM400 mg provides a close to normal life expectancy independent of the time to response. Survival is more determined by patients' and disease factors than by initial treatment selection. Although improvements are also needed for refractory disease, more life-time can currently be gained by carefully addressing non-CML determinants of survival.

  18. Identification of multiple ear-colonizing insect and disease resistance in CIMMYT maize inbred lines with varying levels of silk maysin.

    Science.gov (United States)

    Ni, Xinzhi; Krakowsky, Matthew D; Buntin, G David; Rector, Brian G; Guo, Baozhu; Snook, Maurice E

    2008-08-01

    Ninety four corn inbred lines selected from International Center for the Improvement of Maize and Wheat (CIMMYT) in Mexico were evaluated for levels of silk maysin in 2001 and 2002. Damage by major ear-feeding insects [i.e., corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae); maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae); brown stink bug, Euschistus servus (Say); southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae)], and common smut [Ustilago maydis DC (Corda)] infection on these inbred lines were evaluated in 2005 and 2006 under subtropical conditions at Tifton, GA. Ten inbred lines possessing good agronomic traits were also resistant to the corn earworm. The correlation between ear-feeding insect damage or smut infection and three phenotypic traits (silk maysin level, husk extension, and husk tightness of corn ears) was also examined. Corn earworm and stink bug damage was negatively correlated to husk extension, but not to either silk maysin levels or husk tightness. In combination with the best agronomic trait ratings that show the least corn earworm and stink bug damage, lowest smut infection rate, and good insect-resistant phenotypic traits (i.e., high maysin and good husk coverage and husk tightness), 10 best inbred lines (CML90, CML92, CML94, CML99, CML104, CML108, CML114, CML128, CML137, and CML373) were identified from the 94 lines examined. These selected inbred lines will be used for further examination of their resistance mechanisms and development of new corn germplasm that confers multiple ear-colonizing pest resistance.

  19. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with imatinib mesylate against chronic myelogenous leukemia cell lines

    Directory of Open Access Journals (Sweden)

    Xin P

    2017-04-01

    Full Text Available Pengliang Xin, Chuntuan Li, Yan Zheng, Qunyi Peng, Huifang Xiao, Yuanling Huang, Xiongpeng Zhu Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China Background: Phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR pathway is a therapy target of cancer. We aimed to confirm the effect of dual PI3K/mTOR inhibitor NVP-BEZ235 on proliferation, apoptosis, and autophagy of chronic myelogenous leukemia (CML cells and sensitivity of tyrosine kinase inhibitor in vitro.Methods: Two human CML cell lines, K562 and KBM7R (T315I mutant strain, were used. The proliferation of CML cells was detected by MTS (Owen’s reagent assay. Cell cycle and apoptosis assay were examined by flow cytometric analysis. The phosphorylation levels and the expression levels were both evaluated by Western blot analysis. NVP-BEZ235 in combination with imatinib was also used to reveal the effect on proliferation and apoptosis.Results: NVP-BEZ235 significantly inhibited the proliferation in a time- and dose-dependent manner, and the half-maximal inhibitory concentration values of NVP-BEZ235 inhibiting the proliferation of K562 and KBM7R were 0.37±0.21 and 0.43±0.27 µmol/L, respectively, after 48 h. Cell apoptosis assay showed that NVP-BEZ235 significantly increased the late apoptotic cells. Cell cycle analysis indicated that the cells were mostly arrested in G1/G0 phase after treatment by NVP-BEZ235. In addition, results also found that, after treatment by NVP-BEZ235, phosphorylation levels of Akt kinase and S6K kinase significantly reduced, and the expression levels of cleaved caspase-3 significantly increased; meanwhile, the expression levels of caspase-3, B-cell lymphoma-2, cyclin D1, and cyclin D2 significantly decreased, and the ratio of LC3II/LC3I was significantly increased with increased LC3II expression level. Moreover, imatinib in combination with NVP-BEZ235

  20. Turkish Chronic Myeloid Leukemia Study: Retrospective Sectional Analysis of CML Patients

    Directory of Open Access Journals (Sweden)

    Fahri Şahin

    2013-12-01

    Full Text Available OBJECTIVE: here have been tremendous changes in treatment and follow-up of patients with chronic myeloid leukemia (CML in the last decade. Especially, regular publication and updating of NCCN and ELN guidelines have provided enermous rationale and base for close monitorization of patients with CML. But, it is stil needed to have registry results retrospectively to evaluate daily CML practices. METHODS: In this article, we have evaluated 1133 patients’ results with CML in terms of demographical features, disease status, response, resistance and use of second-generation TKIs. RESULTS: The response rate has been found relatively high in comparison with previously published articles, and we detected that there was a lack of appropriate and adequate molecular response assessment. CONCLUSION: We concluded that we need to improve registry systems and increase the availability of molecular response assessment to provide high-quality patient care.

  1. Two cases of chronic myelogenous leukemia (CML) treated with Iminitab (Glivec) in different phases

    International Nuclear Information System (INIS)

    Davoli, R.; Ciarlo, S.; Acosta, I.; Perez, S.; Lagorio, S.; Pratti, A.A.

    2003-01-01

    Full text: IMINITAB, inhibitor of cytoplasmic transduction signs, and hindering neoplastic cells growth, is a new therapeutic agent for chronic myelogenous leukemia (CML). It is a tyrosine kinase bcrabl inhibitor, inhibiting also the c-kit receptor protein in gastrointestinal neoplasia and small cells lung cancer. The aim of the present work was to evaluate the effect of this agent in CML patients in two different time-periods, namely the chronic phase and the acute one. We hereby present two patients: 1) a 48 years old patient with radioactive contamination history, and 2) a 19 years old patient. In both cases diagnosis was confirmed by BM and BM biopsy, neutrophile alkaline phosphatase, and Ph chromosome t(9;22) (q34;q11). There were non-compatible BM donors available. Both patients were treated with hydroxyurea, hydroxyurea plus interferon, and one of them adding ARAC. Since there was no favorable response an Iminitab course was started. Patient (2) with blastic crisis remitted for 12 month until subsequent relapse and death. Patient (1) treated during chronic phase is still in remission. Neither of them attained negative Ph chromosome. Up to now, current reports show a high percentage of relapse in patients treated during the acute phase, while the chronic ones present a smaller number of relapses. It is to be noted the importance of the follow up during the chronic phase, due to the short time drug utilization in our country (May 2001). Good tolerance and sustained remission in CML patients allows being optimistic regarding this therapeutic agent. (author)

  2. The antioxidative effect of bread crust in a mouse macrophage reporter cell line.

    Science.gov (United States)

    Pötzsch, Sandy; Dalgalarrondo, Michele; Bakan, Benedicte; Marion, Didier; Somoza, Veronika; Stangl, Gabriele; Silber, Rolf-Edgar; Simm, Andreas; Navarrete Santos, Alexander

    2014-10-01

    Free radicals and oxidative stress are important factors in the biology of aging and responsible for the development of age-related diseases. One way to reduce the formation of free radicals is to boost the antioxidative system by nutrition. Heat treatment of food promote the Maillard reaction which is responsible for their characteristic color and taste. During the Maillard reaction reducing sugars react with proteins in a non-enzymatic way leading to the formation of advanced glycation end products (AGEs). As an AGE-rich source our group used bread crust (BCE) to investigate the effect of AGEs on the antioxidant defense. It is well known that the NF-kB pathway is activated by treatment of cells with AGEs. Therefore for stimulation with the BCE we used the macrophage reporter cell line RAW/NF-kB/SEAPorter™. Amino acid analysis and LC-MS/MS by Orbitrap Velo was used to determine the bioactive compounds in the soluble BCE. The radical scavenging effect was conducted by the DPPH-assay. BCE induced the NF-kB pathway in RAW/NF-kB/SEAPorter™ cells and also showed a concentration-dependent antioxidative capacity by the DPPH-assay. With the LC/MS and amino acid analyses, we identified the presence of gliadin in BCE confirmed by using specific gliadin antibodies. By immunoprecipitation (IP) with an antibody against γ-gliadin and western blot probing against the AGE carboxymethyllysine (CML) the presence of AGE-gliadin in BCE was confirmed. Stimulation of the RAW/NF-kB/SEAPorter™ cells with the γ-gliadin depleted fractions did not activate the NF-kB pathway. CML-modified gliadin in the BCE is a bioactive compound of the bread crust which is responsible for the antioxidative capacity and for the induction of the NF-kB pathway in mouse macrophages. Copyright © 2014. Published by Elsevier Inc.

  3. Tyrosine kinase inhibitors therapy related neutropenia and thrombocythopenia correction in CML patients

    Directory of Open Access Journals (Sweden)

    V. A. Shuvaev

    2014-07-01

    Full Text Available At present, introduction of target therapy to chronic myelogenous leukemia (CML treatment made CML not life-limiting disorder. The main condition of treatment efficacy is its continuity. The most common causes of dose reduction and CML therapy interruption is hematologic toxicities such as neutropenia and thrombocytopenia. The adverse events correction in these circumstances is vital. Recommendations for neutropenia and thrombocytopenia correction are proposed in this article. The basement and results of the use of granulocyte colony stimulating factor (G-CSF and thrombopoietine receptor agonist for hematologic toxicities correction with clinical case are presented.

  4. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis.

    Science.gov (United States)

    Midhat, Ubaid; Ting, Michael K Y; Teresinski, Howard J; Snedden, Wayne A

    2018-03-01

    We show that the calcium sensor, CML39, is important in various developmental processes from seeds to mature plants. This study bridges previous work on CML39 as a stress-induced gene and highlights the importance of calcium signalling in plant development. In addition to the evolutionarily-conserved Ca 2+ sensor, calmodulin (CaM), plants possess a large family of CaM-related proteins (CMLs). Using a cml39 loss-of-function mutant, we investigated the roles of CML39 in Arabidopsis and discovered a range of phenotypes across developmental stages and in different tissues. In mature plants, loss of CML39 results in shorter siliques, reduced seed number per silique, and reduced number of ovules per pistil. We also observed changes in seed development, germination, and seed coat properties in cml39 mutants in comparison to wild-type plants. Using radicle emergence as a measure of germination, cml39 mutants showed more rapid germination than wild-type plants. In marked contrast to wild-type seeds, the germination of developing, immature cml39 seeds was not sensitive to cold-stratification. In addition, germination of cml39 seeds was less sensitive than wild-type to inhibition by ABA or by treatments that impaired gibberellic acid biosynthesis. Tetrazolium red staining indicated that the seed-coat permeability of cml39 seeds is greater than that of wild-type seeds. RNA sequencing analysis of cml39 seedlings suggests that changes in chromatin modification may underlie some of the phenotypes associated with cml39 mutants, consistent with previous reports that orthologs of CML39 participate in gene silencing. Aberrant ectopic expression of transcripts for seed storage proteins in 7-day old cml39 seedlings was observed, suggesting mis-regulation of early developmental programs. Collectively, our data support a model where CML39 serves as an important Ca 2+ sensor during ovule and seed development, as well as during germination and seedling establishment.

  5. Droplet Digital PCR for BCR/ABL(P210) Detecting of CML: A High Sensitive Method of the Minimal Residual Disease& Disease Progression.

    Science.gov (United States)

    Wang, Wen-Jun; Zheng, Chao-Feng; Liu, Zhuang; Tan, Yan-Hong; Chen, Xiu-Hua; Zhao, Bin-Liang; Li, Guo-Xia; Xu, Zhi-Fang; Ren, Fang-Gang; Zhang, Yao-Fang; Chang, Jian-Mei; Wang, Hong-Wei

    2018-04-25

    The present study intended to establish a droplet digital PCR (dd-PCR) for monitoring minimal residual disease (MRD) in patients with BCR/ABL (P210)-positive CML, thereby achieving deep-level monitoring of tumor load and determining the efficacy for guided clinically individualized treatment. Using dd-PCR and RT-qPCR, two cell suspensions were obtained from K562 cells and normal peripheral blood mononuclear cells by gradient dilution and were measured at the cellular level. At peripheral blood(PB) level, 61 cases with CML-chronic phase (CML-CP) were obtained after tyrosine kinase inhibitors (TKIs) treatment and regular follow-ups. By RT-qPCR, BCR/ABL (P210) fusion gene was undetectable in PB after three successive analyses, which were performed once every three months. At the same time, dd-PCR was performed simultaneously with the last equal amount of cDNA. Ten CML patients with MR4.5 were followed up by the two methods. At the cellular level, consistency of results of dd-PCR and RT-qPCR reached R 2 ≥0.99, with conversion equation of Y=33.148X 1.222 (Y: dd-PCR results; X: RT-qPCR results). In the dd-PCR test, 11 of the 61 CML patients (18.03%) tested positive and showed statistically significant difference (PPCR 3 months earlier than by RT-qPCR. In contrast with RT-qPCR, dd-PCR is more sensitive, thus enabling accurate conversion of dd-PCR results into internationally standard RT-qPCR results by conversion equation, to achieve a deeper molecular biology-based stratification of BCR/ABL(P210) MRD. It has some reference value to monitor disease progression in clinic. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Role of STAT3 in Transformation and Drug Resistance in CML

    International Nuclear Information System (INIS)

    Nair, Rajesh R.; Tolentino, Joel H.; Hazlehurst, Lori A.

    2012-01-01

    Chronic myeloid leukemia (CML) is initially driven by the bcr–abl fusion oncoprotein. The identification of bcr–abl led to the discovery and rapid translation into the clinic of bcr–abl kinase inhibitors. Although, bcr–abl inhibitors are efficacious, experimental evidence indicates that targeting bcr–abl is not sufficient for elimination of minimal residual disease found within the bone marrow (BM). Experimental evidence indicates that the failure to eliminate the leukemic stem cell contributes to persistent minimal residual disease. Thus curative strategies will likely need to focus on strategies where bcr–abl inhibitors are given in combination with agents that specifically target the leukemic stem cell or the leukemic stem cell niche. One potential target to be exploited is the Janus kinase (JAK)/signal transducers and activators of transcription 3 (STAT3) pathway. Recently using STAT3 conditional knock-out mice it was shown that STAT3 is critical for initiating the disease. Interestingly, in the absence of treatment, STAT3 was not shown to be required for maintenance of the disease, suggesting that STAT3 is required only in the tumor initiating stem cell population (Hoelbl et al., 2010). In the context of the BM microenvironment, STAT3 is activated in a bcr–abl independent manner by the cytokine milieu. Activation of JAK/STAT3 was shown to contribute to cell survival even in the event of complete inhibition of bcr–abl activity within the BM compartment. Taken together, these studies suggest that JAK/STAT3 is an attractive therapeutic target for developing strategies for targeting the JAK–STAT3 pathway in combination with bcr–abl kinase inhibitors and may represent a viable strategy for eliminating or reducing minimal residual disease located in the BM in CML.

  7. Role of STAT3 in Transformation and Drug Resistance in CML

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Rajesh R.; Tolentino, Joel H.; Hazlehurst, Lori A., E-mail: lori.hazlehurst@moffitt.org [Molecular Oncology Program, H. Lee Moffitt Cancer Center, Tampa, FL (United States)

    2012-04-10

    Chronic myeloid leukemia (CML) is initially driven by the bcr–abl fusion oncoprotein. The identification of bcr–abl led to the discovery and rapid translation into the clinic of bcr–abl kinase inhibitors. Although, bcr–abl inhibitors are efficacious, experimental evidence indicates that targeting bcr–abl is not sufficient for elimination of minimal residual disease found within the bone marrow (BM). Experimental evidence indicates that the failure to eliminate the leukemic stem cell contributes to persistent minimal residual disease. Thus curative strategies will likely need to focus on strategies where bcr–abl inhibitors are given in combination with agents that specifically target the leukemic stem cell or the leukemic stem cell niche. One potential target to be exploited is the Janus kinase (JAK)/signal transducers and activators of transcription 3 (STAT3) pathway. Recently using STAT3 conditional knock-out mice it was shown that STAT3 is critical for initiating the disease. Interestingly, in the absence of treatment, STAT3 was not shown to be required for maintenance of the disease, suggesting that STAT3 is required only in the tumor initiating stem cell population (Hoelbl et al., 2010). In the context of the BM microenvironment, STAT3 is activated in a bcr–abl independent manner by the cytokine milieu. Activation of JAK/STAT3 was shown to contribute to cell survival even in the event of complete inhibition of bcr–abl activity within the BM compartment. Taken together, these studies suggest that JAK/STAT3 is an attractive therapeutic target for developing strategies for targeting the JAK–STAT3 pathway in combination with bcr–abl kinase inhibitors and may represent a viable strategy for eliminating or reducing minimal residual disease located in the BM in CML.

  8. Appearance and Disappearance of Chronic Myeloid Leukemia (CML) in Patient with Chronic Lymphocytic Leukemia (CLL).

    Science.gov (United States)

    Payandeh, Mehrdad; Sadeghi, Edris; Khodarahmi, Reza; Sadeghi, Masoud

    2014-10-01

    Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are the most common leukemias of the elderly (>43 year). However, the sequential occurrence of CML followed by CLL in the same patient is extremely rare. In our report, a 52-year-old female was diagnosed with CLL (type of bone marrow (BM) infiltration was nodular and interstitial) and was treated with chlorambucil. 64 months after the diagnosis of CLL, she developed CML. She was treated with imatinib (400mg/day). After a few months, signs of CML were disappeared and CLL became dominant. This is first reported case.

  9. Imatinib-loaded polyelectrolyte microcapsules for sustained targeting of BCR-ABL+ leukemia stem cells.

    Science.gov (United States)

    Palamà, Ilaria E; Leporatti, Stefano; de Luca, Emanuela; Di Renzo, Nicola; Maffia, Michele; Gambacorti-Passerini, Carlo; Rinaldi, Ross; Gigli, Giuseppe; Cingolani, Roberto; Coluccia, Addolorata M L

    2010-04-01

    The lack of sensitivity of chronic myeloid leukemia (CML) stem cells to imatinib mesylate (IM) commonly leads to drug dose escalation or early disease relapses when therapy is stopped. Here, we report that packaging of IM into a biodegradable carrier based on polyelectrolyte microcapsules increases drug retention and antitumor activity in CML stem cells, also improving the ex vivo purging of malignant progenitors from patient autografts. Microparticles/capsules were obtained by layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolyte multilayers on removable calcium carbonate (CaCO(3)) templates and loaded with or without IM. A leukemic cell line (KU812) and CD34(+) cells freshly isolated from healthy donors or CML patients were tested. Polyelectrolyte microcapsules (PMCs) with an average diameter of 3 microm, fluorescently labelled multilayers sensitive to the action of intracellular proteases and 95-99% encapsulation efficiency of IM, were prepared. Cell uptake efficiency of such biodegradable carriers was quantified in KU812, leukemic and normal CD34(+) stem cells (range: 70-85%), and empty PMCs did not impact cell viability. IM-loaded PMCs selectively targeted CML cells, by promoting apoptosis at doses that exert only cytostatic effects by IM alone. More importantly, residual CML cells from patient leukapheresis products were reduced or eliminated more efficiently by using IM-loaded PMCs compared with freely soluble IM, with a purging efficiency of several logs. No adverse effects on normal CD34(+) stem-cell survival and their clonogenic potential was noticed in long-term cultures of hematopoietic progenitors in vitro. This pilot study provides the proof-of-principle for the clinical application of biodegradable IM-loaded PMC as feasible, safe and effective ex vivo purging agents to target CML stem cells, in order to improve transplant outcome of resistant/relapsed patients or reduce IM dose escalation.

  10. Frequency of BCR-ABL Transcript Types in Syrian CML Patients

    Directory of Open Access Journals (Sweden)

    Sulaf Farhat-Maghribi

    2016-01-01

    Full Text Available Background. In Syria, CML patients are started on tyrosine kinase inhibitors (TKIs and monitored until complete molecular response is achieved. BCR-ABL mRNA transcript type is not routinely identified, contrary to the recommendations. In this study we aimed to identify the frequency of different BCR-ABL transcripts in Syrian CML patients and highlight their significance on monitoring and treatment protocols. Methods. CML patients positive for BCR-ABL transcripts by quantitative RT-PCR were enrolled. BCR-ABL transcript types were investigated using a home-made PCR method that was adapted from published protocols and optimized. The transcript types were then confirmed using a commercially available research kit. Results. Twenty-four transcripts were found in 21 patients. The most common was b2a2, followed by b3a2, b3a3, and e1a3 present solely in 12 (57.1%, 3 (14.3%, 2 (9.5%, and 1 (4.8%, respectively. Three samples (14.3% contained dual transcripts. While b3a2 transcript was apparently associated with warning molecular response to imatinib treatment, b2a2, b3a3, and e1a3 transcripts collectively proved otherwise (P=0.047. Conclusion. It might be advisable to identify the BCR-ABL transcript type in CML patients at diagnosis, using an empirically verified method, in order to link the detected transcript with the clinical findings, possible resistance to treatment, and appropriate monitoring methods.

  11. The semantics of Chemical Markup Language (CML): dictionaries and conventions

    Science.gov (United States)

    2011-01-01

    The semantic architecture of CML consists of conventions, dictionaries and units. The conventions conform to a top-level specification and each convention can constrain compliant documents through machine-processing (validation). Dictionaries conform to a dictionary specification which also imposes machine validation on the dictionaries. Each dictionary can also be used to validate data in a CML document, and provide human-readable descriptions. An additional set of conventions and dictionaries are used to support scientific units. All conventions, dictionaries and dictionary elements are identifiable and addressable through unique URIs. PMID:21999509

  12. The semantics of Chemical Markup Language (CML): dictionaries and conventions.

    Science.gov (United States)

    Murray-Rust, Peter; Townsend, Joe A; Adams, Sam E; Phadungsukanan, Weerapong; Thomas, Jens

    2011-10-14

    The semantic architecture of CML consists of conventions, dictionaries and units. The conventions conform to a top-level specification and each convention can constrain compliant documents through machine-processing (validation). Dictionaries conform to a dictionary specification which also imposes machine validation on the dictionaries. Each dictionary can also be used to validate data in a CML document, and provide human-readable descriptions. An additional set of conventions and dictionaries are used to support scientific units. All conventions, dictionaries and dictionary elements are identifiable and addressable through unique URIs.

  13. Novel Acylguanidine Derivatives Targeting Smoothened Induce Antiproliferative and Pro-Apoptotic Effects in Chronic Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Alessandra Chiarenza

    Full Text Available The most relevant therapeutic approaches to treat CML rely on the administration of tyrosine kinase inhibitors (TKIs like Imatinib, which are able to counteract the activity of Bcr-Abl protein increasing patient's life expectancy and survival. Unfortunately, there are some issues TKIs are not able to address; first of all TKIs are not so effective in increasing survival of patients in blast crisis, second they are not able to eradicate leukemic stem cells (LSC which represent the major cause of disease relapse, and third patients often develop resistance to TKIs due to mutations in the drug binding site. For all these reasons it's of primary interest to find alternative strategies to treat CML. Literature shows that Hedgehog signaling pathway is involved in LSC maintenance, and pharmacological inhibition of Smoothened (SMO, one of the key molecules of the pathway, has been demonstrated to reduce Bcr-Abl positive bone marrow cells and LSC. Consequently, targeting SMO could be a promising way to develop a new treatment strategy for CML overcoming the limitations of current therapies. In our work we have tested some compounds able to inhibit SMO, and among them MRT92 appears to be a very potent SMO antagonist. We found that almost all our compounds were able to reduce Gli1 protein levels in K-562 and in KU-812 CML cell lines. Furthermore, they were also able to increase Gli1 and SMO RNA levels, and to reduce cell proliferation and induce apoptosis/autophagy in both the tested cell lines. Finally, we demonstrated that our compounds were able to modulate the expression of some miRNAs related to Hedgehog pathway such as miR-324-5p and miR-326. Being Hedgehog pathway deeply implicated in the mechanisms of CML we may conclude that it could be a good therapeutic target for CML and our compounds seem to be promising antagonists of such pathway.

  14. Appearance and Disappearance of Chronic Myeloid Leukemia (CML) in Patient with Chronic Lymphocytic Leukemia (CLL)

    OpenAIRE

    Payandeh, Mehrdad; Sadeghi, Edris; Khodarahmi, Reza; Sadeghi, Masoud

    2014-01-01

    Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are the most common leukemias of the elderly (>43 year). However, the sequential occurrence of CML followed by CLL in the same patient is extremely rare. In our report, a 52-year-old female was diagnosed with CLL (type of bone marrow (BM) infiltration was nodular and interstitial) and was treated with chlorambucil. 64 months after the diagnosis of CLL, she developed CML. She was treated with imatinib (400mg/day). After a fe...

  15. Disease-related mortality exceeds treatment-related mortality in patients with chronic myeloid leukemia on second-line or later therapy.

    Science.gov (United States)

    Pearson, Edward; McGarry, Lisa; Gala, Smeet; Nieset, Christopher; Nanavaty, Merena; Mwamburi, Mkaya; Levy, Yair

    2016-04-01

    Treatment of newly-diagnosed patients with chronic-phase chronic myeloid leukemia (CP-CML) with tyrosine kinase inhibitors (TKIs) results in near-normal life expectancy. However, CP-CML patients resistant to initial TKIs face a poorer prognosis and significantly higher CML-related mortality. We conducted a systematic literature review to evaluate the specific causes of deaths (diseases progression versus drug-related) in CP-CML patients receiving second- or third-line therapy. We identified eight studies based on our criteria that reported causes of death. Overall, 5% of second-line and 10% of third-line patients died during the study follow-up period. For second-line, (7 studies, n=1926), mortality was attributed to disease progression for 41% of deaths, 2% to treatment-related causes, 3% were treatment-unrelated, and 50% were unspecified adverse events (AEs), not likely related to study drug. In third-line, (2 studies, n=144), 71% deaths were attributed to disease progression, 7% treatment-related AEs, 14% treatment-unrelated and 7% unspecified AEs. Annual death rates for second- and third-line therapy were significantly higher than for general population in similar age group. Our findings suggest death attributed to disease progression is approximately 10 times that due to treatment-related AEs in patients with CP-CML receiving second- or third-line therapy. Therefore, the potential benefits of effective treatment for these patients with the currently available TKIs outweigh the risks of treatment-induced AEs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Chronic Myelogenous Leukemia Cells Contribute to the Stromal Myofibroblasts in Leukemic NOD/SCID Mouse In Vivo

    Directory of Open Access Journals (Sweden)

    Ryosuke Shirasaki

    2012-01-01

    Full Text Available We recently reported that chronic myelogenous leukemia (CML cells converted into myofibroblasts to create a microenvironment for proliferation of CML cells in vitro. To analyze a biological contribution of CML-derived myofibroblasts in vivo, we observed the characters of leukemic nonobese diabetes/severe combined immunodeficiency (NOD/SCID mouse. Bone marrow nonadherent mononuclear cells as well as human CD45-positive cells obtained from CML patients were injected to the irradiated NOD/SCID mice. When the chimeric BCR-ABL transcript was demonstrated in blood, human CML cells were detected in NOD/SCID murine bone marrow. And CML-derived myofibroblasts composed with the bone marrow-stroma, which produced significant amounts of human vascular endothelial growth factor A. When the parental CML cells were cultured with myofibroblasts separated from CML cell-engrafted NOD/SCID murine bone marrow, CML cells proliferated significantly. These observations indicate that CML cells make an adequate microenvironment for their own proliferation in vivo.

  17. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    Science.gov (United States)

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  18. Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells

    International Nuclear Information System (INIS)

    Askmyr, M; Ågerstam, H; Lilljebjörn, H; Hansen, N; Karlsson, C; Palffy, S von; Landberg, N; Högberg, C; Lassen, C; Rissler, M; Richter, J; Ehinger, M; Järås, M; Fioretos, T

    2014-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34 + cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML

  19. Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-κB signaling and depleting Bcr-Abl

    Science.gov (United States)

    2010-01-01

    Background Chronic myelogenous leukemia (CML) is characterized by the chimeric tyrosine kinase Bcr-Abl. Bcr-Abl-T315I is the notorious point mutation that causes resistance to imatinib and the second generation tyrosine kinase inhibitors, leading to poor prognosis. CML blasts have constitutive p65 (RelA NF-κB) transcriptional activity, and NF-κB may be a potential target for molecular therapies in CML that may also be effective against CML cells with Bcr-Abl-T315I. Results In this report, we discovered that pristimerin, a quinonemethide triterpenoid isolated from Celastraceae and Hippocrateaceae, inhibited growth and induced apoptosis in CML cells, including the cells harboring Bcr-Abl-T315I mutation. Additionally, pristimerin inhibited the growth of imatinib-resistant Bcr-Abl-T315I xenografts in nude mice. Pristimerin blocked the TNFα-induced IκBα phosphorylation, translocation of p65, and expression of NF-κB-regulated genes. Pristimerin inhibited two steps in NF-κB signaling: TAK1→IKK and IKK→IκBα. Pristimerin potently inhibited two pairs of CML cell lines (KBM5 versus KBM5-T315I, 32D-Bcr-Abl versus 32D-Bcr-Abl-T315I) and primary cells from a CML patient with acquired resistance to imatinib. The mRNA and protein levels of Bcr-Abl in imatinib-sensitive (KBM5) or imatinib-resistant (KBM5-T315I) CML cells were reduced after pristimerin treatment. Further, inactivation of Bcr-Abl by imatinib pretreatment did not abrogate the TNFα-induced NF-κB activation while silencing p65 by siRNA did not affect the levels of Bcr-Abl, both results together indicating that NF-κB inactivation and Bcr-Abl inhibition may be parallel independent pathways. Conclusion To our knowledge, this is the first report to show that pristimerin is effective in vitro and in vivo against CML cells, including those with the T315I mutation. The mechanisms may involve inhibition of NF-κB and Bcr-Abl. We concluded that pristimerin could be a lead compound for further drug development to

  20. Diagnosis and Treatment of Chronic Myeloid Leukemia (CML) in 2015

    Science.gov (United States)

    Thompson, Philip A; Kantarjian, Hagop; Cortes, Jorge E

    2017-01-01

    Few neoplastic diseases have undergone a transformation in a relatively short period of time like chronic myeloid leukemia (CML) has in the last few years. In 1960, CML was the first cancer where a unique chromosomal abnormality, “a minute chromosome”,1 was identified and a pathophysiologic correlation suggested. Landmark work followed, recognizing the underlying translocation between chromosomes 9 and 22 that gave rise to this abnormality2 and shortly afterward, the specific genes involved3,4 and the pathophysiologic implications of this novel rearrangement.5–7 Fast-forward a few years, this knowledge has given us the most remarkable example of a specific therapy targeting the dysregulated kinase activity represented by this molecular change. The broad use of tyrosine kinase inhibitors has resulted in an improvement in the overall survival to the point where the life expectancy of patients today is nearly equal to that of the general population.8 Still, there are challenges and unanswered questions that define the reasons why the progress still escapes many patients, and the details that separate patients from ultimate “cure”. In this manuscript we review our current understanding of CML in 2015, present recommendations for optimal management, and discuss the unanswered questions and what could be done to answer them in the near future. PMID:26434969

  1. The HDAC inhibitor SB939 overcomes resistance to BCR-ABL kinase Inhibitors conferred by the BIM deletion polymorphism in chronic myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Muhammad Rauzan

    Full Text Available Chronic myeloid leukemia (CML treatment has been improved by tyrosine kinase inhibitors (TKIs such as imatinib mesylate (IM but various factors can cause TKI resistance in patients with CML. One factor which contributes to TKI resistance is a germline intronic deletion polymorphism in the BCL2-like 11 (BIM gene which impairs the expression of pro-apoptotic splice isoforms of BIM. SB939 (pracinostat is a hydroxamic acid based HDAC inhibitor with favorable pharmacokinetic, physicochemical and pharmaceutical properties, and we investigated if this drug could overcome BIM deletion polymorphism-induced TKI resistance. We found that SB939 corrects BIM pre-mRNA splicing in CML cells with the BIM deletion polymorphism, and induces apoptotic cell death in CML cell lines and primary cells with the BIM deletion polymorphism. More importantly, SB939 both decreases the viability of CML cell lines and primary CML progenitors with the BIM deletion and restores TKI-sensitivity. Our results demonstrate that SB939 overcomes BIM deletion polymorphism-induced TKI resistance, and suggest that SB939 may be useful in treating CML patients with BIM deletion-associated TKI resistance.

  2. Dipeptide species regulate p38MAPK–Smad3 signalling to maintain chronic myelogenous leukaemia stem cells

    Science.gov (United States)

    Naka, Kazuhito; Jomen, Yoshie; Ishihara, Kaori; Kim, Junil; Ishimoto, Takahiro; Bae, Eun-Jin; Mohney, Robert P.; Stirdivant, Steven M.; Oshima, Hiroko; Oshima, Masanobu; Kim, Dong-Wook; Nakauchi, Hiromitsu; Takihara, Yoshihiro; Kato, Yukio; Ooshima, Akira; Kim, Seong-Jin

    2015-01-01

    Understanding the specific survival of the rare chronic myelogenous leukaemia (CML) stem cell population could provide a target for therapeutics aimed at eradicating these cells. However, little is known about how survival signalling is regulated in CML stem cells. In this study, we survey global metabolic differences between murine normal haematopoietic stem cells (HSCs) and CML stem cells using metabolomics techniques. Strikingly, we show that CML stem cells accumulate significantly higher levels of certain dipeptide species than normal HSCs. Once internalized, these dipeptide species activate amino-acid signalling via a pathway involving p38MAPK and the stemness transcription factor Smad3, which promotes CML stem cell maintenance. Importantly, pharmacological inhibition of dipeptide uptake inhibits CML stem cell activity in vivo. Our results demonstrate that dipeptide species support CML stem cell maintenance by activating p38MAPK–Smad3 signalling in vivo, and thus point towards a potential therapeutic target for CML treatment. PMID:26289811

  3. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique...... cancer cell lines (p immortalized cell line (p

  4. Inhibition of Siah2 Ubiquitin Ligase by Vitamin K3 Attenuates Chronic Myeloid Leukemia Chemo-Resistance in Hypoxic Microenvironment.

    Science.gov (United States)

    Huang, Jixian; Lu, Ziyuan; Xiao, Yajuan; He, Bolin; Pan, Chengyun; Zhou, Xuan; Xu, Na; Liu, Xiaoli

    2018-02-05

    BACKGROUND A hypoxic microenvironment is associated with resistance to tyrosine kinase inhibitors (TKIs) and a poor prognosis in chronic myeloid leukemia (CML). The E3 ubiquitin ligase Siah2 plays a vital role in the regulation of hypoxia response, as well as in leukemogenesis. However, the role of Siah2 in CML resistance is unclear, and it is unknown whether vitaminK3 (a Siah2 inhibitor) can improve the chemo-sensitivity of CML cells in a hypoxic microenvironment. MATERIAL AND METHODS The expression of Siah2 was detected in CML patients (CML-CP and CML-BC), K562 cells, and K562-imatinib-resistant cells (K562-R cells). We measured the expression of PHD3, HIF-1α, and VEGF in both cell lines under normoxia and hypoxic conditions, and the degree of leukemic sensitivity to imatinib and VitaminK3 were evaluated. RESULTS Siah2 was overexpressed in CML-BC patients (n=9) as compared to CML-CP patients (n=13). Similarly, K562-imatinib-resistant cells (K562-R cells) showed a significantly higher expression of Siah2 as compared to K562 cells in a hypoxic microenvironment. Compared to normoxia, under hypoxic conditions, both cell lines had lower PHD3, higher HIF-1α, and higher VEGF expression. Additionally, Vitamin K3 (an inhibitor of Siah2) reversed these changes and promoted a higher degree of leukemic sensitivity to imatinib. CONCLUSIONS Our findings indicate that the Siah2-PHD3- HIF-1α-VEGF axis is an important hypoxic signaling pathway in a leukemic microenvironment. An inhibitor of Siah2, combined with TKIs, might be a promising therapy for relapsing and refractory CML patients.

  5. Further phenotypic characterization of the primitive lineage− CD34+CD38−CD90+CD45RA− hematopoietic stem cell/progenitor cell sub-population isolated from cord blood, mobilized peripheral blood and patients with chronic myelogenous leukemia

    International Nuclear Information System (INIS)

    Wisniewski, D; Affer, M; Willshire, J; Clarkson, B

    2011-01-01

    The most primitive hematopoietic stem cell (HSC)/progenitor cell (PC) population reported to date is characterized as being Lin−CD34+CD38−CD90+CD45R. We have a long-standing interest in comparing the characteristics of hematopoietic progenitor cell populations enriched from normal subjects and patients with chronic myelogenous leukemia (CML). In order to investigate further purification of HSCs and for potential targetable differences between the very primitive normal and CML stem/PCs, we have phenotypically compared the normal and CML Lin−CD34+CD38−CD90+CD45RA− HSC/PC populations. The additional antigens analyzed were HLA-DR, the receptor tyrosine kinases c-kit and Tie2, the interleukin-3 cytokine receptor, CD33 and the activation antigen CD69, the latter of which was recently reported to be selectively elevated in cell lines expressing the Bcr-Abl tyrosine kinase. Notably, we found a strikingly low percentage of cells from the HSC/PC sub-population isolated from CML patients that were found to express the c-kit receptor (<1%) compared with the percentages of HSC/PCs expressing the c-kitR isolated from umbilical cord blood (50%) and mobilized peripheral blood (10%). Surprisingly, Tie2 receptor expression within the HSC/PC subset was extremely low from both normal and CML samples. Using in vivo transplantation studies, we provide evidence that HLA-DR, c-kitR, Tie2 and IL-3R may not be suitable markers for further partitioning of HSCs from the Lin−CD34+CD38−CD90+CD45RA− sub-population

  6. Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML in human brain: relation to vascular dementia

    Directory of Open Access Journals (Sweden)

    Williams Jonathan

    2007-10-01

    Full Text Available Abstract Background Advanced glycation end-products (AGEs and their receptor (RAGE occur in dementia of the Alzheimer's type and diabetic microvascular disease. Accumulation of AGEs relates to risk factors for vascular dementia with ageing, including hypertension and diabetes. Cognitive dysfunction in vascular dementia may relate to microvascular disease resembling that in diabetes. We tested if, among people with cerebrovascular disease, (1 those with dementia have higher levels of neuronal and vascular AGEs and (2 if cognitive dysfunction depends on neuronal and/or vascular AGE levels. Methods Brain Sections from 25 cases of the OPTIMA (Oxford Project to Investigate Memory and Ageing cohort, with varying degrees of cerebrovascular pathology and cognitive dysfunction (but only minimal Alzheimer type pathology were immunostained for Nε-(carboxymethyl-lysine (CML, the most abundant AGE. The level of staining in vessels and neurons in the cortex, white matter and basal ganglia was compared to neuropsychological and other clinical measures. Results The probability of cortical neurons staining positive for CML was higher in cases with worse cognition (p = 0.01 or a history of hypertension (p = 0.028. Additionally, vascular CML staining related to cognitive impairment (p = 0.02 and a history of diabetes (p = 0.007. Neuronal CML staining in the basal ganglia related to a history of hypertension (p = 0.002. Conclusion CML staining in cortical neurons and cerebral vessels is related to the severity of cognitive impairment in people with cerebrovascular disease and only minimal Alzheimer pathology. These findings support the possibility that cerebral accumulation of AGEs may contribute to dementia in people with cerebrovascular disease.

  7. Coupled map lattice (CML) approach to power reactor dynamics (I) - preservation of normality

    International Nuclear Information System (INIS)

    Konno, H.

    1996-01-01

    An application of coupled map lattice (CML) model for simulating power fluctuations in nuclear power reactors is presented. (1) Preservation of Gaussianity in the point model is studied in a chaotic force driven Langevin equation in conjunction with the Gaussian-white noise driven Langevin equation. (2) Preservation of Guassianity is also studied in the space-dependent model with the use of a CML model near the onset of the Hopf bifurcation point. It is shown that the spatial dimensionality decreases as the maximum eigenvalue of the system increases. The result is consistent with the observation of neutron fluctuation in a BWR. (author)

  8. Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Castelo-Branco, Morgana TL; Pizzatti, Luciana; Abdelhay, Eliana

    2012-01-01

    The advanced phases of chronic myeloid leukemia (CML) are known to be more resistant to therapy. This resistance has been associated with the overexpression of ABCB1, which gives rise to the multidrug resistance (MDR) phenomenon. MDR is characterized by resistance to nonrelated drugs, and P-glycoprotein (encoded by ABCB1) has been implicated as the major cause of its emergence. Wnt signaling has been demonstrated to be important in several aspects of CML. Recently, Wnt signaling was linked to ABCB1 regulation through its canonical pathway, which is mediated by β-catenin, in other types of cancer. In this study, we investigated the involvement of the Wnt/β-catenin pathway in the regulation of ABCB1 transcription in CML, as the basal promoter of ABCB1 has several β-catenin binding sites. β-catenin is the mediator of canonical Wnt signaling, which is important for CML progression. In this work we used the K562 cell line and its derived MDR-resistant cell line Lucena (K562/VCR) as CML study models. Real time PCR (RT-qPCR), electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), flow cytometry (FACS), western blot, immunofluorescence, RNA knockdown (siRNA) and Luciferase reporter approaches were used. β-catenin was present in the protein complex on the basal promoter of ABCB1 in both cell lines in vitro, but its binding was more pronounced in the resistant cell line in vivo. Lucena cells also exhibited higher β-catenin levels compared to its parental cell line. Wnt1 and β-catenin depletion and overexpression of nuclear β-catenin, together with TCF binding sites activation demonstrated that ABCB1 is positively regulated by the canonical pathway of Wnt signaling. These results suggest, for the first time, that the Wnt/β-catenin pathway regulates ABCB1 in CML

  9. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    Haekkinen, A.M.; Laasonen, A.; Linnainmaa, K.; Mattson, K.; Pyrhoenen, S.

    1996-01-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (D MID ) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  10. Radiosensitivity of mesothelioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, A.M. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland); Laasonen, A. [Dept. of Pathology, Central Hospital of Etelae-Pohjanmaa, Seinaejoki (Finland); Linnainmaa, K. [Dept. of Industrial Hygiene and Toxicology, Inst. of Occupational Health, Helsinki (Finland); Mattson, K. [Dept. Pulmonary Medicine, Univ. Central Hospital, Helsinki (Finland); Pyrhoenen, S. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland)

    1996-10-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters {alpha} and {beta} of the linear quadratic model (LQ-model) and mean inactivation dose (D{sub MID}) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean {alpha} value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The {alpha}/{beta} ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.).

  11. Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR-ABL hybrid oncogene in a human chronic myeloid leukemia cell line

    Science.gov (United States)

    Yang, Chengbin; Panwar, Nishtha; Wang, Yucheng; Zhang, Butian; Liu, Maixian; Toh, Huiting; Yoon, Ho Sup; Tjin, Swee Chuan; Chong, Peter Han Joo; Law, Wing-Cheung; Chen, Chih-Kuang; Yong, Ken-Tye

    2016-04-01

    First-line therapy of chronic myelogenous leukemia (CML) has always involved the use of BCR-ABL tyrosine-kinase inhibitors which is associated with an abnormal chromosome called Philadelphia chromosome. Although the overall survival rate has been improved by the current therapeutic regime, the presence of resistance has resulted in limited efficacy. In this study, an RNA interference (RNAi)-based therapeutic regime is proposed with the aim to knockdown the BCR-ABL hybrid oncogene using small interfering RNA (siRNA). The siRNA transfection rates have usually been limited due to the declining contact probability among polyplexes and the non-adherent nature of leukemic cells. Our work aims at addressing this limitation by using a biodegradable charged polyester-based vector (BCPV) as a nanocarrier for the delivery of BCR-ABL-specific siRNA to the suspension culture of a K562 CML cell line. BCR-ABL siRNAs were encapsulated in the BCPVs by electrostatic force. Cell internalization was facilitated by the BCPV and assessed by confocal microscopy and flow cytometry. The regulation of the BCR-ABL level in K562 cells as a result of RNAi was analyzed by real-time polymerase chain reaction (RT-PCR). We observed that BCPV was able to form stable nanoplexes with siRNA molecules, even in the presence of fetal bovine serum (FBS), and successfully assisted in vitro siRNA transfection in the non-adherent K562 cells. As a consequence of downregulation of BCR-ABL, BCPV-siRNA nanoplexes inhibited cell proliferation and promoted cell apoptosis. All results were compared with a commercial transfection reagent, Lipofectamine2000™, which served as a positive control. More importantly, this class of non-viral vector exhibits biodegradable features and negligible cytotoxicity, thus providing a versatile platform to deliver siRNA to non-adherent leukemia cells with high transfection efficiency by effectively overcoming extra- and intra-cellular barriers. Due to the excellent in vitro

  12. The semantics of Chemical Markup Language (CML for computational chemistry : CompChem

    Directory of Open Access Journals (Sweden)

    Phadungsukanan Weerapong

    2012-08-01

    Full Text Available Abstract This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  13. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.

    Science.gov (United States)

    Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter

    2012-08-07

    : This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  14. Review of clinical, cytogenetic, and molecular aspects of Ph-negative CML

    NARCIS (Netherlands)

    D. van der Plas (D.); G.C. Grosveld (Gerard); A. Hagemeijer (Anne)

    1991-01-01

    markdownabstractAbstract Between 1985 and 1989, many cases of Philadelphia (Ph) chromosome negative chronic myelogenous leukemia (CML) were reported. For this review, the following selection criteria were used: the original articles on Ph-negative cases should provide clinical, hematologic,

  15. Emerging Therapeutic Strategies for Targeting Chronic Myeloid Leukemia Stem Cells

    Directory of Open Access Journals (Sweden)

    Ahmad Hamad

    2013-01-01

    Full Text Available Chronic myeloid leukemia (CML is a clonal myeloproliferative disorder. Current targeted therapies designed to inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein have made a significant breakthrough in the treatment of CML patients. However, CML remains a chronic disease that a patient must manage for life. Although tyrosine kinase inhibitors (TKI therapy has completely transformed the prognosis of CML, it has made the therapeutic management more complex. The interruption of TKI treatment results in early disease progression because it does not eliminate quiescent CML stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML to achieve a permanent cure, and to allow TKI interruption. This review summarizes recent research done on alternative targeted therapies with a particular focus on some important signaling pathways (such as Alox5, Hedgehog, Wnt/b-catenin, autophagy, and PML that have the potential to target CML stem cells and potentially provide cure for CML.

  16. Naturally occurring CD4+ CD25+ FOXP3+ T-regulatory cells are increased in chronic myeloid leukemia patients not in complete cytogenetic remission and can be immunosuppressive.

    Science.gov (United States)

    Rojas, Jose M; Wang, Lihui; Owen, Sally; Knight, Katy; Watmough, Sarah J; Clark, Richard E

    2010-12-01

    Clinical presentation of chronic myeloid leukemia (CML) requires not only the deregulated tyrosine kinase BCR-ABL, but also the failure of an immune response against BCR-ABL-expressing cells. T-cell responses against BCR-ABL and other antigens are well-described, but their relevance to the in vivo control of CML is unclear. The suppressive role of naturally occurring T regulatory (T-reg) cells in antitumor immunity is well-established, although little is known about their role in modulating the T-cell response to BCR-ABL. Naturally occurring T-reg cells were characterized and quantified by flow cytometry in 39 CML patients and 10 healthy donors. Their function was studied by observing their effect on responses to purified protein derivative, a recall antigen, and on the response of an autologous T-cell line recognizing BCR-ABL. T-reg cells were CD4(+), CD25(+), FOXP3(+), CD127(low), and CD62L(high). T-reg numbers in patients in complete cytogenetic remission were significantly lower than in patients not in complete cytogenetic remission (p T-reg cell depletion using anti-CD25 selection enhanced proliferative responses to purified protein derivative. Furthermore, the interferon-γ and/or granzyme-B production of effector cells specific for viral peptides or a BCR-ABL HLA-A3-restricted peptide was inhibited when autologous T-reg cells were present. Taken together, these data suggest a role for T-reg cells in limiting immune responses in CML patients and this may include immune responses to BCR-ABL. The increased frequency of T-reg cells in patients with high levels of BCR-ABL transcripts indicates that an immune mechanism may be important in the control of CML. Copyright © 2010 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  17. Mesenchymal Stem Cells (MSC Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC in Chronic Myeloid Leukemia Patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available It is well known that mesenchymal stem cells (MSC have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML. Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  18. Mesenchymal Stem Cells (MSC) Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC) in Chronic Myeloid Leukemia Patients.

    Science.gov (United States)

    Giallongo, Cesarina; Romano, Alessandra; Parrinello, Nunziatina Laura; La Cava, Piera; Brundo, Maria Violetta; Bramanti, Vincenzo; Stagno, Fabio; Vigneri, Paolo; Chiarenza, Annalisa; Palumbo, Giuseppe Alberto; Tibullo, Daniele; Di Raimondo, Francesco

    2016-01-01

    It is well known that mesenchymal stem cells (MSC) have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML). Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC) is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC) from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD) and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  19. Combined Targeting of BCL-2 and BCR-ABL Tyrosine Kinase Eradicates Chronic Myeloid Leukemia Stem Cells

    Science.gov (United States)

    Mak, Po Yee; Mu, Hong; Zhou, Hongsheng; Mak, Duncan H.; Schober, Wendy; Leverson, Joel D.; Zhang, Bin; Bhatia, Ravi; Huang, Xuelin; Cortes, Jorge; Kantarjian, Hagop; Konopleva, Marina

    2016-01-01

    BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin−Sca-1+cKit+ cells of inducible CML in mice as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin−Sca-1+cKit+ cell numbers and long-term stem cell frequency, and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34+CD38−, CD34+CD38+, and quiescent stem/progenitor CD34+ cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic phase and BC CML. PMID:27605552

  20. Characterization of miRNomes in Acute and Chronic Myeloid

    Directory of Open Access Journals (Sweden)

    Qian Xiong

    2014-04-01

    Full Text Available Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA (miRNA expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia (AML cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia (CML cell line, K562, via massively parallel signature sequencing. mRNA expression profiles of these cell lines that were established previously in our lab facilitated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppressors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expression patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phagocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress differentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias.

  1. WATER QUALITY AND TREATMENT CONSIDERATIONS FOR CEMENT-LINED AND A-C PIPE

    Science.gov (United States)

    Both cement mortar lined (CML) and asbestos-cement pipes (A-C) are widely used in many water systems. Cement linings are also commonly applied in-situ after pipe cleaning, usually to prevent the recurrence of red water or tuberculation problems. Unfortunately, little consideratio...

  2. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking.

    Science.gov (United States)

    Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A

    2017-06-01

    Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.

  3. Circulating endothelial cells are increased in chronic myeloid leukemia blast crisis

    Directory of Open Access Journals (Sweden)

    C.R.T. Godoy

    2015-06-01

    Full Text Available We measured circulating endothelial precursor cells (EPCs, activated circulating endothelial cells (aCECs, and mature circulating endothelial cells (mCECs using four-color multiparametric flow cytometry in the peripheral blood of 84 chronic myeloid leukemia (CML patients and 65 healthy controls; and vascular endothelial growth factor (VEGF by quantitative real-time PCR in 50 CML patients and 32 healthy controls. Because of an increase in mCECs, the median percentage of CECs in CML blast crisis (0.0146% was significantly higher than in healthy subjects (0.0059%, P0.05. In addition, VEGF gene expression was significantly higher in all phases of CML: 0.245 in blast crisis, 0.320 in the active phase, and 0.330 in chronic phase patients than it was in healthy subjects (0.145. In conclusion, CML in blast crisis had increased levels of CECs and VEGF gene expression, which may serve as markers of disease progression and may become targets for the management of CML.

  4. Evaluation of multielements in human serum of patients with chronic myelogenous leukemia (CML) using SRTXRF; Avaliacao multielementar em soro humano de individuos portadores de leucemia mieloide cronica (LMC) usando SRTXRF

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Catarine Canellas Gondim

    2005-04-15

    In this work, trace elements were analyzed in serum of patients with chronic myelogenous leukemia (CML) by Total Reflection X-Ray Fluorescence using synchrotron radiation (SRTXRF). Chronic myelogenous leukemia (CML) affects the myeloid cells in the blood and affects 1 to 2 people per 100,000 and accounts for 7-20% cases of leukemia. Sixty patients with CML and sixty healthy volunteers (control group) were studied. Blood was collected into vacutainers without additives. Directly after collection, each blood sample was centrifuged at 3000 rev/min for 10 min in order to separate blood cells and suspended particles from blood serum. Sera were transferred into polyethylene tubes and stored in a freezer at 253 K. A 500 {sup m}u{sup L} serum quantity was spiked with Ga (50 {sup m}u{sup L} ) as internal standard. 10 {sup m}u{sup L} aliquots were pipetted on Perspex sample carrier. After deposition, the samples were left to dry under an infrared lamp. The measurements were performed at the X-Ray Fluorescence Beamline at Brazilian National Synchrotron Light Laboratory (LNLS), using a polychromatic beam. Standard solutions with gallium as internal standard were prepared for calibration system. It was possible to determine the concentrations of the following elements: P, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Br and Rb. Starting from the ANOVA test was observed that the elements P, S, Ca, Cr, Mn, Fe, Cu and Rb presented real significant differences ({alpha} = 0.05) between groups (healthy subjects and CML patients) and Sex (males and females). (author)

  5. “Preleukemic or smoldering” chronic myelogenous leukemia (CML:BCR-ABL1 positive: A brief case report

    Directory of Open Access Journals (Sweden)

    John M. Bennett

    2015-01-01

    The most common feature of CML is an elevated WBC count, usually above 25×103/µL, and frequently above 100×103/µL. We report a case of confirmed Ph+CML with a normal CBC detected because of the presence of rare myelocytes and 2% basophils [Fig. 1]. Previous leukocyte counts for the preceding eight years were normal with the exception of one done four months prior to his presentation that showed an abnormal differential with 1% basophils, 2% metamyelocytes and 2% myelocytes.

  6. Radiation sensitivity of Merkel cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W. [Queensland Institute of Medical Research (Australia)] [and others

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  7. Radiation sensitivity of Merkell cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Leonard, J. Helen; Ramsay, Jonathan R.; Kearsley, John H.; Birrell, Geoff W.

    1995-01-01

    Purpose: Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Methods and Materials: Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after γ irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. Results: We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to γ irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Conclusion: Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution

  8. Chloramphenicol Biosynthesis: The Structure of CmlS, a Flavin-Dependent Halogenase Shwing a Covalent Flavin-Aspartate Bond

    International Nuclear Information System (INIS)

    Podzelinska, K.; Latimer, R.; Bhattacharya, A.; Vining, L.; Zechel, D.; Jia, Z.

    2010-01-01

    Chloramphenicol is a halogenated natural product bearing an unusual dichloroacetyl moiety that is critical for its antibiotic activity. The operon for chloramphenicol biosynthesis in Streptomyces venezuelae encodes the chloramphenicol halogenase CmlS, which belongs to the large and diverse family of flavin-dependent halogenases (FDH's). CmlS was previously shown to be essential for the formation of the dichloroacetyl group. Here we report the X-ray crystal structure of CmlS determined at 2.2 (angstrom) resolution, revealing a flavin monooxygenase domain shared by all FDHs, but also a unique 'winged-helix' C-terminal domain that creates a T-shaped tunnel leading to the halogenation active site. Intriguingly, the C-terminal tail of this domain blocks access to the halogenation active site, suggesting a structurally dynamic role during catalysis. The halogenation active site is notably nonpolar and shares nearly identical residues with Chondromyces crocatus tyrosyl halogenase (CndH), including the conserved Lys (K71) that forms the reactive chloramine intermediate. The exception is Y350, which could be used to stabilize enolate formation during substrate halogenation. The strictly conserved residue E44, located near the isoalloxazine ring of the bound flavin adenine dinucleotide (FAD) cofactor, is optimally positioned to function as a remote general acid, through a water-mediated proton relay, which could accelerate the reaction of the chloramine intermediate during substrate halogenation, or the oxidation of chloride by the FAD(C4α)-OOH intermediate. Strikingly, the 8α carbon of the FAD cofactor is observed to be covalently attached to D277 of CmlS, a residue that is highly conserved in the FDH family. In addition to representing a new type of flavin modification, this has intriguing implications for the mechanism of FDHs. Based on the crystal structure and in analogy to known halogenases, we propose a reaction mechanism for CmlS.

  9. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  10. Time-series analysis in imatinib-resistant chronic myeloid leukemia K562-cells under different drug treatments.

    Science.gov (United States)

    Zhao, Yan-Hong; Zhang, Xue-Fang; Zhao, Yan-Qiu; Bai, Fan; Qin, Fan; Sun, Jing; Dong, Ying

    2017-08-01

    Chronic myeloid leukemia (CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed to compare the differences in expression patterns and functions of time-series genes in imatinib-resistant CML cells under different drug treatments. GSE24946 was downloaded from the GEO database, which included 17 samples of K562-r cells with (n=12) or without drug administration (n=5). Three drug treatment groups were considered for this study: arsenic trioxide (ATO), AMN107, and ATO+AMN107. Each group had one sample at each time point (3, 12, 24, and 48 h). Time-series genes with a ratio of standard deviation/average (coefficient of variation) >0.15 were screened, and their expression patterns were revealed based on Short Time-series Expression Miner (STEM). Then, the functional enrichment analysis of time-series genes in each group was performed using DAVID, and the genes enriched in the top ten functional categories were extracted to detect their expression patterns. Different time-series genes were identified in the three groups, and most of them were enriched in the ribosome and oxidative phosphorylation pathways. Time-series genes in the three treatment groups had different expression patterns and functions. Time-series genes in the ATO group (e.g. CCNA2 and DAB2) were significantly associated with cell adhesion, those in the AMN107 group were related to cellular carbohydrate metabolic process, while those in the ATO+AMN107 group (e.g. AP2M1) were significantly related to cell proliferation and antigen processing. In imatinib-resistant CML cells, ATO could influence genes related to cell adhesion, AMN107 might affect genes involved in cellular carbohydrate metabolism, and the combination therapy might regulate genes involved in cell proliferation.

  11. A Preliminary Study of the Suitability of Archival Bone Marrow and Peripheral Blood Smears for Diagnosis of CML Using FISH

    Directory of Open Access Journals (Sweden)

    Alice Charwudzi

    2014-01-01

    Full Text Available Background. FISH is a molecular cytogenetic technique enabling rapid detection of genetic abnormalities. Facilities that can run fresh/wet samples for molecular diagnosis and monitoring of neoplastic disorders are not readily available in Ghana and other neighbouring countries. This study aims to demonstrate that interphase FISH can successfully be applied to archival methanol-fixed bone marrow and peripheral blood smear slides transported to a more equipped facility for molecular diagnosis of CML. Methods. Interphase FISH was performed on 22 archival methanol-fixed marrow (BM and 3 peripheral blood (PB smear slides obtained at diagnosis. The BM smears included 20 CML and 2 CMML cases diagnosed by morphology; the 3 PB smears were from 3 of the CML patients at the time of diagnosis. Six cases had known BCR-ABL fusion results at diagnosis by RQ-PCR. Full blood count reports at diagnosis were also retrieved. Result. 19 (95% of the CML marrow smears demonstrated the BCR-ABL translocation. There was a significant correlation between the BCR-ABL transcript detected at diagnosis by RQ-PCR and that retrospectively detected by FISH from the aged BM smears at diagnosis (r=0.870; P=0.035. Conclusion. Archival methanol-fixed marrow and peripheral blood smears can be used to detect the BCR-ABL transcript for CML diagnosis.

  12. The Efficacy of Reduced-dose Dasatinib as a Subsequent Therapy in Patients with Chronic Myeloid Leukemia in the Chronic Phase: The LD-CML Study of the Kanto CML Study Group

    Science.gov (United States)

    Iriyama, Noriyoshi; Ohashi, Kazuteru; Hashino, Satoshi; Kimura, Shinya; Nakaseko, Chiaki; Takano, Hina; Hino, Masayuki; Uchiyama, Michihiro; Morita, Satoshi; Sakamoto, Junichi; Sakamaki, Hisashi; Inokuchi, Koiti

    2017-01-01

    Objective The aim of this study was to prospectively investigate the efficacy and safety profiles of low-dose dasatinib therapy (50 mg once daily). Methods Patients with chronic myeloid leukemia in the chronic phase (CML-CP) who were being treated with low-dose imatinib (≤200 mg/day), but were resistant to this agent were enrolled in the current study (referred to as the LD-CML study). Results There subjects included 9 patients (4 men and 5 women); all were treated with dasatinib at a dose of 50 mg once daily. Among 8 patients who had not experienced major molecular response (MMR; BCR-ABL1 transcript ≤0.1% according to International Scale [IS]) at study enrollment, 5 attained MMR by 12 months. In particular, 3 of 9 patients demonstrated a deep molecular response (DMR; IS ≤0.0069%) by 18 months. Five patients developed lymphocytosis accompanied by cytotoxic lymphocyte predominance. There was no mortality or disease progression, and all continue to receive dasatinib therapy at 18 months with only 2 patients requiring dose reduction. Toxicities were mild-to-moderate, and pleural effusion was observed in 1 patient (grade 1). Conclusion Low-dose dasatinib can attain MMR and DMR without severe toxicity in patients with CML-CP who are unable to achieve MMR with low-dose imatinib. Switching to low-dose dasatinib should therefore be considered for patients in this setting, especially if they are otherwise considering a cessation of treatment. PMID:29033428

  13. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  14. Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-indicator 99. Does it matter which one you choose

    DEFF Research Database (Denmark)

    Dreyer, Louise Camilla; Niemann, Anne Louise; Hauschild, Michael Zwicky

    2003-01-01

    ?’ To investigate this issue, a comparison is performed of three frequently applied life cycle impact assessment methods. Methods. The three life cycle impact assessment methods EDIP97 (1), CML2001 (2) and Eco-indicator 99 (3) are compared on their performance through application to the same life cycle inventory...... of the EDIP97 and CML2001 output, differences up to two orders of magnitude are found for some of the indicator results for the impact categories describing toxicity to humans and ecosystems, and there is little similarity in the patterns of major contributors among the two methods. For human toxicity the CML......2001 score is dominated by contribution from metals while the EDIP97 score is caused by a solvent and nitrogen oxides. For aquatic ecotoxicity, metals are the main contributors for both methods but while it is vanadium for CML2001, it is strontium for EDIP97. After normalisation, the differences...

  15. 3CML: a software application for quality control of multi leaf collimators; 3CML: una aplicacion informatica para el control de calidad de colimadores multilaminas

    Energy Technology Data Exchange (ETDEWEB)

    Miras, H.; Perez, M. A.; Macias, J.; Moreno, J. C.; Campo, J. L.; Ortiz, M.; Arrans, R.; Ortiz, A.; Terron, J. A.; Fernandez, D.

    2011-07-01

    The treatments of intensity modulated radiotherapy (IMRT) require a deep knowledge of the accuracy, precision and reproducibility of positioning of the plates that make up the multi leaf collimator (MLC). We have developed a computer application, 3CML, to analyze an image corresponding to a pattern of separate bands irradiation to determine the deviations of the positioning of the blades on the nominal values.

  16. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy.

    Science.gov (United States)

    Schmidt, M; Hochhaus, A; König-Merediz, S A; Brendel, C; Proba, J; Hoppe, G J; Wittig, B; Ehninger, G; Hehlmann, R; Neubauer, A

    2000-10-01

    Mice experiments have established an important role for interferon regulatory factor (IRF) family members in hematopoiesis. We wanted to study the expression of interferon regulatory factor 4 (IRF4) in various hematologic disorders, especially chronic myeloid leukemia (CML), and its association with response to interferon alfa (IFN-alpha) treatment in CML. Blood samples from various hematopoietic cell lines, different leukemia patients (70 CML, 29 acute myeloid leukemia [AML], 10 chronic myelomonocytic leukemia [CMMoL], 10 acute lymphoblastic leukemia, and 10 chronic lymphoid leukemia patients), and 33 healthy volunteers were monitored for IRF4 expression by reverse transcriptase polymerase chain reaction. Then, with a focus on CML, the IRF4 level was determined in sorted cell subpopulations from CML patients and healthy volunteers and in in vitro-stimulated CML cells. Furthermore, IRF4 expression was compared in the CML samples taken before IFN-alpha therapy and in 47 additional CML samples taken during IFN-alpha therapy. IRF4 expression was then correlated with cytogenetic response to IFN-alpha. IRF4 expression was significantly impaired in CML, AML, and CMMoL samples. The downregulation of IRF4 in CML samples was predominantly found in T cells. In CML patients during IFN-alpha therapy, a significant increase in IRF4 levels was detected, and this was also observed in sorted T cells from CML patients. The increase seen during IFN-alpha therapy was not due to different blood counts. In regard to the cytogenetic response with IFN-alpha, a good response was associated with high IRF4 expression. IRF4 expression is downregulated in T cells of CML patients, and its increase is associated with a good response to IFN-alpha therapy. These data suggest IRF4 expression as a useful marker to monitor, if not predict, response to IFN-alpha in CML.

  17. Evaluation of monocyte-derived dendritic cells, T regulatory and Th17 cells in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors.

    Science.gov (United States)

    Hus, Iwona; Tabarkiewicz, Jacek; Lewandowska, Magdalena; Wasiak, Magdalena; Wdowiak, Paulina; Kusz, Maria; Legieć, Monika; Dmoszyńska, Anna; Roliński, Jacek

    2011-01-01

    Immunotherapy with dendritic cells (DC) may constitute a new and advantageous option for patients with chronic myeloid leukemia (CML) who respond to therapy with tyrosine kinase inhibitors (TKI), but do not reach complete cytogenetic or molecular remission. In this study, we evaluated the immunophenotype of DC generated from monocytes (Mo-DC) of patients with CML and the influence of TKI therapy on the results of CML-DC generation. We also measured the percentages of T regulatory cells (Tregs) as well as Th17 cells in 19 untreated patients suffering from CML, and in 28 CML patients treated with TKI. We found that DC can be reliably generated from the peripheral blood CD14+ cells of untreated CML patients. But we observed a persistent expression of CD14 monocyte marker on DC from CML patients, together with lower percentages of Mo-DC with expression of CD1a (p = 0.002), CD80 (p = 0.0005), CD83 (p = 0.0004), and CD209 (p = 0.02) compared to healthy donors. There was an adverse correlation between WBC count and the percentage of Mo-DC with co-expression of CD80 and CD86 (R = -0.63; p = 0.03). In patients treated with TKI, we observed higher efficacy of DC generation in seven-day cultures, compared to untreated patients. Expression of CD209 on DC was higher in patients treated with TKI (0.02). The duration of TKI therapy correlated adversely with MFI for CD1a (R = -0.49; p = 0.006) and positively with MFI for CD83 (R = 0.63; p = 0.01). Percentages of CD4+CD25highFoxP3+ cells (p = 0.0002) and Th17 cells (p = 0.02) were significantly higher in untreated CML patients compared to healthy controls. There was a significant correlation between the percentage of Treg cells and the percentage of peripheral blood basophiles (R = 0.821; p = 0.02). There were no changes in Tregs or Th17 cell percentages in CML patients after six months of TKI therapy. However, the expression of intracellular IL-17 in Th17 cells correlated negatively with the time of TKI therapy in the whole group

  18. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    Science.gov (United States)

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  19. Estimation of the target stem-cell population size in chronic myeloid leukemogenesis

    International Nuclear Information System (INIS)

    Radivoyevitch, T.; Ramsey, M.J.; Tucker, J.D.

    1999-01-01

    Estimation of the number of hematopoietic stem cells capable of causing chronic myeloid leukemia (CML) is relevant to the development of biologically based risk models of radiation-induced CML. Through a comparison of the age structure of CML incidence data from the Surveillance, Epidemiology, and End Results (SEER) Program and the age structure of chromosomal translocations found in healthy subjects, the number of CML target stem cells is estimated for individuals above 20 years of age. The estimation involves three steps. First, CML incidence among adults is fit to an exponentially increasing function of age. Next, assuming a relatively short waiting time distribution between BCR-ABL induction and the appearance of CML, an exponential age function with rate constants fixed to the values found for CML is fitted to the translocation data. Finally, assuming that translocations are equally likely to occur between any two points in the genome, the parameter estimates found in the first two steps are used to estimate the number of target stem cells for CML. The population-averaged estimates of this number are found to be 1.86 x 10 8 for men and 1.21 x 10 8 for women; the 95% confidence intervals of these estimates are (1.34 x 10 8 , 2.50 x 10 8 ) and (0.84 x 10 8 , 1.83 x 10 8 ), respectively. (orig.)

  20. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Meifang; Ai, Hongmei; Li, Tao [Department of Laboratory Medicine, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China); Rajoria, Pasupati; Shahu, Prakash [Department of Clinical Medicine, Medical School of Yangtze University, Jingzhou (China); Li, Xiansong, E-mail: lixiansongjz@hotmail.com [Department of Neurosurgery, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China)

    2016-04-15

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34{sup +} stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreases Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34{sup +} cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34{sup +} stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34{sup +} stem/progenitors.

  1. Myeloid derived suppressor cells (MDSCs are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs in chronic myeloid leukemia patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available Tumor immune tolerance can derive from the recruitment of suppressor cell population, including myeloid derived suppressor cells (MDSCs, able to inhibit T cells activity. We identified a significantly expanded MDSCs population in chronic myeloid leukemia (CML patients at diagnosis that decreased to normal levels after imatinib therapy. In addition, expression of arginase 1 (Arg1 that depletes microenvironment of arginine, an essential aminoacid for T cell function, resulted in an increase in patients at diagnosis. Purified CML CD11b+CD33+CD14-HLADR- cells markedly suppressed normal donor T cell proliferation in vitro. Comparing CML Gr-MDSCs to autologous polymorphonuclear leukocytes (PMNs we observed a higher Arg1 expression and activity in PMNs, together with an inhibitory effect on T cells in vitro. Our data indicate that CML cells create an immuno-tolerant environment associated to MDSCs expansion with immunosuppressive capacity mediated by Arg1. In addition, we demonstrated for the first time also an immunosuppressive activity of CML PMNs, suggesting a strong potential immune escape mechanism created by CML cells, which control the anti-tumor reactive T cells. MDSCs should be monitored in imatinib discontinuation trials to understand their importance in relapsing patients.

  2. Chronic Myeloid Leukemia Blood Inflicted Injury in Cord Derived Wharton's Jelly Mesenchymal Stem Cells

    International Nuclear Information System (INIS)

    Wajid, N.; Ali, M.; Javed, S.; Ali, F.; Anwar, S. S.

    2016-01-01

    Objective: To determine the effects of blood from CML patients on human umbilical cord derived Wharton's jelly mesenchymal stem cells (WJMSCs) for evaluation of their therapeutic potential. Study Design: An experimental study. Place and Duration of Study: Centre for Research in Molecular Medicine, University of Lahore, from September 2013 to December 2014. Methodology: Possible behavior of WJMSCs in CML patients was assessed by culturing these cells in their plasma. WJMSCs at passage 3 were cultured in plasma isolated from 9 CML patients as well as 9 normal subjects. Effects on cell viability, proliferation, LDH release, paracrine factors (p38 and p53) and oxidative stress were evaluated. Result: WJMSCs cultured in plasma of CML patients showed decreased viability, slow proliferation, high LDH release, high expression of p38 and p53 and a high oxidative stress compared to normal subjects. Conclusion: Stressed environment of CML patients' blood/plasma induced injury to WJMSCs as well as reduced their viability. Effectiveness of these cells for therapeutics of CML is, therefore, likely to be reduced. (author)

  3. Cyclopiamines C and D: Epoxide Spiroindolinone Alkaloids from Penicillium sp. CML 3020

    DEFF Research Database (Denmark)

    Kildgaard, Sara; de Medeiros, Lívia S; Phillips, Emma

    2018-01-01

    Cyclopiamines C (1) and D (2) were isolated from the extract of Penicillium sp. CML 3020, a fungus sourced from an Atlantic Forest soil sample. Their structures and relative configuration were determined by 1D and 2D NMR, HRMS, and UV/vis data analysis. Cyclopiamines C and D belong to a small...

  4. Evaluation of monocyte-derived dendritic cells, T regulatory and Th17 cells in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Jacek Roliński

    2011-04-01

    Full Text Available Immunotherapy with dendritic cells (DC may constitute a new and advantageous option for patients with chronic myeloid leukemia (CML who respond to therapy with tyrosine kinase inhibitors (TKI, but do not reach complete cytogenetic or molecular remission. In this study, we evaluated the immunophenotype of DC generated from monocytes (Mo-DC of patients with CML and the influence of TKI therapy on the results of CML-DC generation. We also measured the percentages of T regulatory cells (Tregs as well as Th17 cells in 19 untreated patients suffering from CML, and in 28 CML patients treated with TKI. We found that DC can be reliably generated from the peripheral blood CD14+ cells of untreated CML patients. But we observed a persistent expression of CD14 monocyte marker on DC from CML patients, together with lower percentages of Mo-DC with expression of CD1a (p = 0.002, CD80 (p = 0.0005, CD83 (p = 0.0004, and CD209 (p = 0.02 compared to healthy donors. There was an adverse correlation between WBC count and the percentage of Mo-DC with co-expression of CD80 and CD86 (R = –0.63; p = 0.03. In patients treated with TKI, we observed higher efficacy of DC generation in seven-day cultures, compared to untreated patients. Expression of CD209 on DC was higher in patients treated with TKI (0.02. The duration of TKI therapy correlated adversely with MFI for CD1a (R = –0.49; p = 0.006 and positively with MFI for CD83 (R = 0.63; p = 0.01. Percentages of CD4+CD25highFoxP3+ cells (p = 0.0002 and Th17 cells (p = 0.02 were significantly higher in untreated CML patients compared to healthy controls. There was a significant correlation between the percentage of Treg cells and the percentage of peripheral blood basophiles (R = 0.821; p = 0.02. There were no changes in Tregs or Th17 cell percentages in CML patients after six months of TKI therapy. However, the expression of intracellular IL-17 in Th17 cells correlated negatively with the time of TKI therapy in the

  5. Prognostic value of regulatory T cells in newly diagnosed chronic myeloid leukemia patients.

    Science.gov (United States)

    Zahran, Asmaa M; Badrawy, Hosny; Ibrahim, Abeer

    2014-08-01

    Chronic myeloid leukemia (CML) is a clonal disease, characterized by a reciprocal t(9, 22) that results in a chimeric BCR/ABL fusion gene. Regulatory T cells (Tregs) constitute the main cell population that enables cancer cells to evade immune surveillance. The purpose of our study was to investigate the level of Tregs in newly diagnosed CML patients and to correlate it with the patients' clinical, laboratory and molecular data. We also aimed to assess the effect of treatment using tyrosine kinase inhibitor (TKI) on Treg levels. Tregs were characterized and quantified by flow cytometry in 63 newly diagnosed CML patients and 40 healthy controls. TKI was used in 45 patients with chronic phase CML, and the response to therapy was correlated with baseline Treg levels. The percentages of Tregs were significantly increased in CML patients compared to the controls. Treg numbers were significantly lower in patients with chronic phase CML versus the accelerated and blast phases, and were significantly lower in patients with complete molecular remission (CMR) compared to those patients without CMR. Tregs may play a role in the maintenance of CML. Moreover, the decrease of their levels in patients with CMR suggests that Tregs might have a clinical value in evaluating the effects of therapy.

  6. Regulatory effects of sestrin 3 (SESN3 in BCR-ABL expressing cells.

    Directory of Open Access Journals (Sweden)

    Eliza Vakana

    Full Text Available Chronic myeloid leukemia (CML and Ph+ acute lymphoblastic leukemia (ALL are characterized by the presence of the BCR-ABL oncoprotein, which leads to activation of a plethora of pro-mitogenic and pro-survival pathways, including the mTOR signaling cascade. We provide evidence that in BCR-ABL expressing cells, treatment with tyrosine kinase inhibitors (TKIs results in upregulation of mRNA levels and protein expression of sestrin3 (SESN3, a unique cellular inhibitor of mTOR complex 1 (mTORC1. Such upregulation appears to be mediated by regulatory effects on mTOR, as catalytic inhibition of the mTOR kinase also induces SESN3. Catalytic mTOR inhibition also results in upregulation of SESN3 expression in cells harboring the TKI-insensitive T315I-BCR-ABL mutant, which is resistant to imatinib mesylate. Overexpression of SESN3 results in inhibitory effects on different Ph+ leukemic cell lines including KT-1-derived leukemic precursors, indicating that SESN3 mediates anti-leukemic responses in Ph+ cells. Altogether, our findings suggest the existence of a novel mechanism for the generation of antileukemic responses in CML cells, involving upregulation of SESN3 expression.

  7. Lineage-specific function of Engrailed-2 in the progression of chronic myelogenous leukemia to T-cell blast crisis.

    Science.gov (United States)

    Abollo-Jiménez, Fernando; Campos-Sánchez, Elena; Toboso-Navasa, Amparo; Vicente-Dueñas, Carolina; González-Herrero, Inés; Alonso-Escudero, Esther; González, Marcos; Segura, Víctor; Blanco, Oscar; Martínez-Climent, José Angel; Sánchez-García, Isidro; Cobaleda, César

    2014-01-01

    In hematopoietic malignancies, oncogenic alterations interfere with cellular differentiation and lead to tumoral development. Identification of the proteins regulating differentiation is essential to understand how they are altered in malignancies. Chronic myelogenous leukemia (CML) is a biphasic disease initiated by an alteration taking place in hematopoietic stem cells. CML progresses to a blast crisis (BC) due to a secondary differentiation block in any of the hematopoietic lineages. However, the molecular mechanisms of CML evolution to T-cell BC remain unclear. Here, we have profiled the changes in DNA methylation patterns in human samples from BC-CML, in order to identify genes whose expression is epigenetically silenced during progression to T-cell lineage-specific BC. We have found that the CpG-island of the ENGRAILED-2 (EN2) gene becomes methylated in this progression. Afterwards, we demonstrate that En2 is expressed during T-cell development in mice and humans. Finally, we further show that genetic deletion of En2 in a CML transgenic mouse model induces a T-cell lineage BC that recapitulates human disease. These results identify En2 as a new regulator of T-cell differentiation whose disruption induces a malignant T-cell fate in CML progression, and validate the strategy used to identify new developmental regulators of hematopoiesis.

  8. International development of an EORTC questionnaire for assessing health-related quality of life in chronic myeloid leukemia patients : The EORTC QLQ-CML24

    NARCIS (Netherlands)

    Efficace, Fabio; Baccarani, Michele; Breccia, Massimo; Saussele, Susanne; Abel, Gregory; Caocci, Giovanni; Guilhot, Francois; Cocks, Kim; Naeem, Adel; Sprangers, Mirjam; Oerlemans, Simone; Chie, Weichu; Castagnetti, Fausto; Bombaci, Felice; Sharf, Giora; Cardoni, Annarita; Noens, Lucien; Pallua, Stephan; Salvucci, Marzia; Nicolatou-Galitis, Ourania; Rosti, Gianantonio; Mandelli, Franco

    Background Health-related quality of life (HRQOL) is a key aspect for chronic myeloid leukemia (CML) patients. The aim of this study was to develop a disease-specific HRQOL questionnaire for patients with CML to supplement the European Organization for Research and Treatment of Cancer (EORTC)-QLQ

  9. International development of an EORTC questionnaire for assessing health-related quality of life in chronic myeloid leukemia patients: the EORTC QLQ-CML24

    NARCIS (Netherlands)

    Efficace, Fabio; Baccarani, Michele; Breccia, Massimo; Saussele, Susanne; Abel, Gregory; Caocci, Giovanni; Guilhot, Francois; Cocks, Kim; Naeem, Adel; Sprangers, Mirjam; Oerlemans, Simone; Chie, Weichu; Castagnetti, Fausto; Bombaci, Felice; Sharf, Giora; Cardoni, Annarita; Noens, Lucien; Pallua, Stephan; Salvucci, Marzia; Nicolatou-Galitis, Ourania; Rosti, Gianantonio; Mandelli, Franco

    2014-01-01

    Background Health-related quality of life (HRQOL) is a key aspect for chronic myeloid leukemia (CML) patients. The aim of this study was to develop a disease-specific HRQOL questionnaire for patients with CML to supplement the European Organization for Research and Treatment of Cancer (EORTC)-QLQ

  10. Advanced glycation end product Nε-carboxymethyllysine induces endothelial cell injury: the involvement of SHP-1-regulated VEGFR-2 dephosphorylation.

    Science.gov (United States)

    Liu, Shing Hwa; Sheu, Wayne Huey Herng; Lee, Maw Rong; Lee, Wen Jane; Yi, Yu Chiao; Yang, Tzung Jie; Jen, Jen Fon; Pan, Hung Chuan; Shen, Chin Chang; Chen, Wen Bao; Tien, Hsing Ru; Sheu, Meei Ling

    2013-06-01

    N(ε)-carboxymethyllysine (CML), a major advanced glycation end product, plays a crucial role in diabetes-induced vascular injury. The roles of protein tyrosine phosphatases and vascular endothelial growth factor (VEGF) receptors in CML-related endothelial cell injury are still unclear. Human umbilical vein endothelial cells (HUVECs) are a commonly used human EC type. Here, we tested the hypothesis that NADPH oxidase/reactive oxygen species (ROS)-mediated SH2 domain-containing tyrosine phosphatase-1 (SHP-1) activation by CML inhibits the VEGF receptor-2 (VEGFR-2, KDR/Flk-1) activation, resulting in HUVEC injury. CML significantly inhibited cell proliferation and induced apoptosis and reduced VEGFR-2 activation in parallel with the increased SHP-1 protein expression and activity in HUVECs. Adding recombinant VEGF increased forward biological effects, which were attenuated by CML. The effects of CML on HUVECs were abolished by SHP-1 siRNA transfection. Exposure of HUVECs to CML also remarkably escalated the integration of SHP-1 with VEGFR-2. Consistently, SHP-1 siRNA transfection and pharmacological inhibitors could block this interaction and elevating [(3)H]thymidine incorporation. CML also markedly activated the NADPH oxidase and ROS production. The CML-increased SHP-1 activity in HUVECs was effectively attenuated by antioxidants. Moreover, the immunohistochemical staining of SHP-1 and CML was increased, but phospho-VEGFR-2 staining was decreased in the aortic endothelium of streptozotocin-induced and high-fat diet-induced diabetic mice. We conclude that a pathway of tyrosine phosphatase SHP-1-regulated VEGFR-2 dephosphorylation through NADPH oxidase-derived ROS is involved in the CML-triggered endothelial cell dysfunction/injury. These findings suggest new insights into the development of therapeutic approaches to reduce diabetic vascular complications. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Hansen, Nils Gunder

    2010-01-01

    Chronic myeloid leukemia (CML) is genetically characterized by the Philadelphia (Ph) chromosome, formed through a reciprocal translocation between chromosomes 9 and 22 and giving rise to the constitutively active tyrosine kinase P210 BCR/ABL1. Therapeutic strategies aiming for a cure of CML...... will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test...

  12. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling.

    Science.gov (United States)

    Adan, Aysun; Baran, Yusuf

    2016-05-01

    Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.

  13. Growth of chronic myeloid leukemia cells is inhibited by infection with Ad-SH2-HA adenovirus that disrupts Grb2-Bcr-Abl complexes.

    Science.gov (United States)

    Peng, Zhi; Luo, Hong-Wei; Yuan, Ying; Shi, Jing; Huang, Shi-Feng; Li, Chun-Li; Cao, Wei-Xi; Huang, Zong-Gan; Feng, Wen-Li

    2011-05-01

    The persistence of Bcr-Abl-positive cells in patients on imatinib therapy indicates that inhibition of the Bcr-Abl kinase activity alone might not be sufficient to eradicate the leukemia cells. Many downstream effectors of Bcr-Abl have been described, including activation of both the Grb2-SoS-Ras-MAPK and Grb2-Gab2-PI3K-Akt pathways. The Bcr-Abl-Grb2 interaction, which is mediated by the direct interaction of the Grb2 SH2 domain with the phospho-Bcr-Abl Y177, is required for activation of these signaling pathways. Therefore, disrupting their interaction represents a potential therapeutic strategy for inhibiting the oncogenic downstream signals of Bcr-Abl. Adenovirus Ad-SH2-HA expressing the Grb2 SH2 domain was constructed and applied in this study. As expected, Ad-SH2-HA efficiently infected CML cells and functioned by binding to the phospho-Bcr-Abl Y177 site, competitively disrupting the Grb2 SH2-phospho-Bcr-Abl Y177 complex. They induced potent anti-proliferation and apoptosis-inducing effects in CML cell lines. Moreover, the Ras, MAPK and Akt activities were significantly reduced in the Ad-SH2-HA treated cells. These were not observed with the point-mutated control adenovirus Ad-Sm-HA with abolished phospho-Bcr-Abl Y177 binding sites. These data indicate that, in addition to the direct targeting of Bcr-Abl, selective inhibition of its downstream signaling pathways may be a therapeutic option for CML, and the Ad-SH2-HA-mediated killing strategy could be explored as a promising anti-leukemia agent in CML.

  14. Arabidopsis calmodulin-like protein CML36 is a calcium (Ca2+) sensor that interacts with the plasma membrane Ca2+-ATPase isoform ACA8 and stimulates its activity.

    Science.gov (United States)

    Astegno, Alessandra; Bonza, Maria Cristina; Vallone, Rosario; La Verde, Valentina; D'Onofrio, Mariapina; Luoni, Laura; Molesini, Barbara; Dominici, Paola

    2017-09-08

    Calmodulin-like (CML) proteins are major EF-hand-containing, calcium (Ca 2+ )-binding proteins with crucial roles in plant development and in coordinating plant stress tolerance. Given their abundance in plants, the properties of Ca 2+ sensors and identification of novel target proteins of CMLs deserve special attention. To this end, we recombinantly produced and biochemically characterized CML36 from Arabidopsis thaliana We analyzed Ca 2+ and Mg 2+ binding to the individual EF-hands, observed metal-induced conformational changes, and identified a physiologically relevant target. CML36 possesses two high-affinity Ca 2+ /Mg 2+ mixed binding sites and two low-affinity Ca 2+ -specific sites. Binding of Ca 2+ induced an increase in the α-helical content and a conformational change that lead to the exposure of hydrophobic regions responsible for target protein recognition. Cation binding, either Ca 2+ or Mg 2+ , stabilized the secondary and tertiary structures of CML36, guiding a large structural transition from a molten globule apo-state to a compact holoconformation. Importantly, through in vitro binding and activity assays, we showed that CML36 interacts directly with the regulative N terminus of the Arabidopsis plasma membrane Ca 2+ -ATPase isoform 8 (ACA8) and that this interaction stimulates ACA8 activity. Gene expression analysis revealed that CML36 and ACA8 are co-expressed mainly in inflorescences. Collectively, our results support a role for CML36 as a Ca 2+ sensor that binds to and modulates ACA8, uncovering a possible involvement of the CML protein family in the modulation of plant-autoinhibited Ca 2+ pumps. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    OpenAIRE

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting f...

  16. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Hansen, Nils Gunder

    2010-01-01

    stem cells could be prospectively separated. In addition, by generating an anti-IL1RAP antibody, we provide proof of concept that IL1RAP can be used as a target on CML CD34(+)CD38(-) cells to induce antibody-dependent cell-mediated cytotoxicity. This study thus identifies IL1RAP as a unique cell...... will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test...... whether IL1RAP expression distinguishes normal (Ph(-)) and leukemic (Ph(+)) cells within the CML CD34(+)CD38(-) cell compartment, we established a unique protocol for conducting FISH on small numbers of sorted cells. By using this method, we sorted cells directly into drops on slides to investigate...

  17. Distinct Dasatinib-Induced Mechanisms of Apoptotic Response and Exosome Release in Imatinib-Resistant Human Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2016-04-01

    Full Text Available Although dasatinib is effective in most imatinib mesylate (IMT-resistant chronic myeloid leukemia (CML patients, the underlying mechanism of its effectiveness in eliminating imatinib-resistant cells is only partially understood. This study investigated the effects of dasatinib on signaling mechanisms driving-resistance in imatinib-resistant CML cell line K562 (K562RIMT. Compared with K562 control cells, exsomal release, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/ mammalian target of rapamycin (mTOR signaling and autophagic activity were increased significantly in K562RIMT cells and mTOR-independent beclin-1/Vps34 signaling was shown to be involved in exosomal release in these cells. We found that Notch1 activation-mediated reduction of phosphatase and tensin homolog (PTEN was responsible for the increased Akt/mTOR activities in K562RIMT cells and treatment with Notch1 γ-secretase inhibitor prevented activation of Akt/mTOR. In addition, suppression of mTOR activity by rapamycin decreased the level of activity of p70S6K, induced upregulation of p53 and caspase 3, and led to increase of apoptosis in K562RIMT cells. Inhibition of autophagy by spautin-1 or beclin-1 knockdown decreased exosomal release, but did not affect apoptosis in K562RIMT cells. In summary, in K562RIMT cells dasatinib promoted apoptosis through downregulation of Akt/mTOR activities, while preventing exosomal release and inhibiting autophagy by downregulating expression of beclin-1 and Vps34. Our findings reveal distinct dasatinib-induced mechanisms of apoptotic response and exosomal release in imatinib-resistant CML cells.

  18. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response.

    Science.gov (United States)

    Behzad, Masumeh Maleki; Shahrabi, Saeid; Jaseb, Kaveh; Bertacchini, Jessika; Ketabchi, Neda; Saki, Najmaldin

    2018-01-31

    Chronic myeloid leukemia (CML) is a hematopoietic stem cell malignancy characterized by the expression of the BCR-ABL1 fusion gene with different chimeric transcripts. Despite the crucial impact of constitutively active tyrosine kinase in CML pathogenesis, aberrant DNA methylation of certain genes plays an important role in disease progression and the development of drug resistance. This article reviews recent findings relevant to the effect of DNA methylation pattern of regulatory genes on various cellular activities such as cell proliferation and survival, as well as cell-signaling molecules in CML. These data might contribute to defining the role of aberrant DNA methylation in disease initiation and progression. However, further studies are needed on the validation of specific aberrant methylation markers regarding the prognosis and prediction of response among the CML patients.

  19. RhoA: A therapeutic target for chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Molli Poonam R

    2012-03-01

    Full Text Available Abstract Background Chronic Myeloid Leukemia (CML is a malignant pluripotent stem cells disorder of myeloid cells. In CML patients, polymorphonuclear leukocytes (PMNL the terminally differentiated cells of myeloid series exhibit defects in several actin dependent functions such as adhesion, motility, chemotaxis, agglutination, phagocytosis and microbicidal activities. A definite and global abnormality was observed in stimulation of actin polymerization in CML PMNL. Signalling molecules ras and rhoGTPases regulate spatial and temporal polymerization of actin and thus, a broad range of physiological processes. Therefore, status of these GTPases as well as actin was studied in resting and fMLP stimulated normal and CML PMNL. Methods To study expression of GTPases and actin, Western blotting and flow cytometry analysis were done, while spatial expression and colocalization of these proteins were studied by using laser confocal microscopy. To study effect of inhibitors on cell proliferation CCK-8 assay was done. Significance of differences in expression of proteins within the samples and between normal and CML was tested by using Wilcoxon signed rank test and Mann-Whitney test, respectively. Bivariate and partial correlation analyses were done to study relationship between all the parameters. Results In CML PMNL, actin expression and its architecture were altered and stimulation of actin polymerization was absent. Differences were also observed in expression, organization or stimulation of all the three GTPases in normal and CML PMNL. In normal PMNL, ras was the critical GTPase regulating expression of rhoGTPases and actin and actin polymerization. But in CML PMNL, rhoA took a central place. In accordance with these, treatment with rho/ROCK pathway inhibitors resulted in specific growth inhibition of CML cell lines. Conclusions RhoA has emerged as the key molecule responsible for functional defects in CML PMNL and therefore can be used as a

  20. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    Science.gov (United States)

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  1. 3CML: a software application for quality control of multi leaf collimators

    International Nuclear Information System (INIS)

    Miras, H.; Perez, M. A.; Macias, J.; Moreno, J. C.; Campo, J. L.; Ortiz, M.; Arrans, R.; Ortiz, A.; Terron, J. A.; Fernandez, D.

    2011-01-01

    The treatments of intensity modulated radiotherapy (IMRT) require a deep knowledge of the accuracy, precision and reproducibility of positioning of the plates that make up the multi leaf collimator (MLC). We have developed a computer application, 3CML, to analyze an image corresponding to a pattern of separate bands irradiation to determine the deviations of the positioning of the blades on the nominal values.

  2. Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release.

    Directory of Open Access Journals (Sweden)

    Yuki Ishii

    Full Text Available Knockout serum replacement (KOSR is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells by stimulating pro-apoptotic BIM and inhibiting anti-apoptotic BCL2, BCLxL and MCL1. We found that KOSR protects CML cells from killing by BCR-ABL inhibitors--imatinib, dasatinib and nilotinib. The protective effect of KOSR is reversible and not due to the selective outgrowth of drug-resistant clones. In KOSR-protected CML cells, imatinib still inhibited the BCR-ABL tyrosine kinase, reduced the phosphorylation of STAT, ERK and AKT, down-regulated BCL2, BCLxL, MCL1 and up-regulated BIM. However, these pro-apoptotic alterations failed to cause cytochrome c release from the mitochondria. With mitochondria isolated from KOSR-cultured CML cells, we showed that addition of recombinant BIM protein also failed to cause cytochrome c release. Besides the kinase inhibitors, KOSR could protect cells from menadione, an inducer of oxidative stress, but it did not protect cells from DNA damaging agents. Switching from serum to KOSR caused a transient increase in reactive oxygen species and AKT phosphorylation in CML cells that were protected by KOSR but not in those that were not protected by this nutrient supplement. Treatment of KOSR-cultured cells with the PH-domain inhibitor MK2206 blocked AKT phosphorylation, abrogated the formation of BIM-resistant mitochondria and stimulated cell death. These results show that KOSR has cell-context dependent pro-survival activity that is linked to AKT activation and the inhibition of BIM-induced cytochrome c release from the mitochondria.

  3. Sequential Use of Second-Generation Tyrosine Kinase Inhibitor Treatment and Intensive Chemotherapy Induced Long-Term Complete Molecular Response in Imatinib-Resistant CML Patient Presenting as a Myeloid Blast Crisis

    Directory of Open Access Journals (Sweden)

    Masaaki Tsuji

    2017-01-01

    Full Text Available Myeloid blast crisis of chronic myeloid leukemia (CML-MBC is rarely seen at presentation and has a poor prognosis. There is no standard therapy for CML-MBC. It is often difficult to distinguish CML-MBC from acute myeloid leukemia expressing the Philadelphia chromosome (Ph+ AML. We present a case in which CML-MBC was seen at the initial presentation in a 75-year-old male. He was treated with conventional AML-directed chemotherapy followed by imatinib mesylate monotherapy, which failed to induce response. However, he achieved long-term complete molecular response after combination therapy involving dasatinib, a second-generation tyrosine kinase inhibitor, and conventional chemotherapy.

  4. The Cellosaurus, a Cell-Line Knowledge Resource

    Science.gov (United States)

    Bairoch, Amos

    2018-01-01

    The Cellosaurus is a knowledge resource on cell lines. It aims to describe all cell lines used in biomedical research. Its scope encompasses both vertebrates and invertebrates. Currently, information for >100,000 cell lines is provided. For each cell line, it provides a wealth of information, cross-references, and literature citations. The Cellosaurus is available on the ExPASy server (https://web.expasy.org/cellosaurus/) and can be downloaded in a variety of formats. Among its many uses, the Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences. PMID:29805321

  5. Evolution of BCR/ABL gene mutation in CML is time dependent and dependent on the pressure exerted by tyrosine kinase inhibitor.

    Directory of Open Access Journals (Sweden)

    Shantashri Vaidya

    Full Text Available BACKGROUND: Mutations in the ABL kinase domain and SH3-SH2 domain of the BCR/ABL gene and amplification of the Philadelphia chromosome are the two important BCR/ABL dependent mechanisms of imatinib resistance. Here, we intended to study the role played by TKI, imatinib, in selection of gene mutations and development of chromosomal abnormalities in Indian CML patients. METHODS: Direct sequencing methodology was employed to detect mutations and conventional cytogenetics was done to identify Philadelphia duplication. RESULTS: Among the different mechanisms of imatinib resistance, kinase domain mutations (39% of the BCR/ABL gene were seen to be more prevalent, followed by mutations in the SH3-SH2 domain (4% and then BCR/ABL amplification with the least frequency (1%. The median duration of occurrence of mutation was significantly shorter for patients with front line imatinib than those pre-treated with hydroxyurea. Patients with high Sokal score (p = 0.003 showed significantly higher incidence of mutations, as compared to patients with low/intermediate score. Impact of mutations on the clinical outcome in AP and BC was observed to be insignificant. Of the 94 imatinib resistant patients, only 1 patient exhibited duplication of Philadelphia chromosome, suggesting a less frequent occurrence of this abnormality in Indian CML patients. CONCLUSION: Close monitoring at regular intervals and proper analysis of the disease resistance would facilitate early detection of resistance and thus aid in the selection of the most appropriate therapy.

  6. Monitoring cell line identity in collections of human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Raquel Sarafian

    2018-04-01

    Full Text Available The ability to reprogram somatic cells into induced pluripotent stem cells (hiPSCs has led to the generation of large collections of cell lines from thousands of individuals with specific phenotypes, many of which will be shared among different research groups as invaluable tools for biomedical research. As hiPSC-based research involves extensive culture of many cell lines, the issue periodic cell line identification is particularly important to ensure that cell line identity remains accurate. Here we analyzed the different commercially available genotyping methods considering ease of in-house genotyping, cost and informativeness, and applied one of them in our workflow for hiPSC generation. We show that the chosen STR method was able to establish a unique DNA profile for each of the 35 individuals/hiPSC lines at the examined sites, as well as identify two discrepancies resulting from inadvertently exchanged samples. Our results highlight the importance of hiPSC line genotyping by an in-house method that allows periodic cell line identification and demonstrate that STR is a useful approach to supplement less frequent karyotyping and epigenetic evaluations. Keywords: Induced pluripotent stem cells, Genotyping, Cell line identification, Short tandem repeats, Quality control

  7. Establishment of cell lines with rat spermatogonial stem cell characteristics

    NARCIS (Netherlands)

    van Pelt, Ans M. M.; Roepers-Gajadien, Hermien L.; Gademan, Iris S.; Creemers, Laura B.; de Rooij, Dirk G.; van Dissel-Emiliani, Federica M. F.

    2002-01-01

    Spermatogonial cell lines were established by transfecting a mixed population of purified rat A(s) (stem cells), A(pr) and A(al) spermatogonia with SV40 large T antigen. Two cell lines were characterized and found to express Hsp90alpha and oct-4, specific markers for germ cells and A spermatogonia,

  8. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  9. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  10. Characterization of stem-like cells in a new astroblastoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Coban, Esra Aydemir; Kasikci, Ezgi [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Karatas, Omer Faruk [Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum (Turkey); Suakar, Oznur; Kuskucu, Aysegul [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey); Altunbek, Mine [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Türe, Uğur [Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul (Turkey); Sahin, Fikrettin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Bayrak, Omer Faruk, E-mail: ofbayrak@yeditepe.edu.tr [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey)

    2017-03-15

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.

  11. In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides

    Science.gov (United States)

    The sensory, biological, chemical, and immunological characteristics of foods can be modified non-enzymatically during processing. Notably, these modifications may modulate the allergenic potency of food allergens, such as the Ara h 1 peanut allergen. Carboxymethyl-lysine (CML) modification is a p...

  12. Characterization of the CDR3 structure of the Vβ21 T cell clone in patients with P210(BCR-ABL)-positive chronic myeloid leukemia and B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Zha, Xianfeng; Chen, Shaohua; Yang, Lijian; Li, Bo; Chen, Yu; Yan, Xiaojuan; Li, Yangqiu

    2011-10-01

    The clonally expanded T cells identified in most cancer patients that respond to tumor-associated antigen such as P210(BCR-ABL) protein have definite, specific antitumor cytotoxicity. T cell receptor (TCR) Vβ CDR3 repertoire diversity was analyzed in patients with chronic myeloid leukemia (CML) and BCR-ABL(+) B-cell acute lymphoblastic leukemia (B-ALL) by GeneScan. A high frequency of oligoclonal expansion of the TCR Vβ21 subfamily was observed in the peripheral blood of CML and B-ALL patients. These clonally expanded Vβ21 T cells were correlated with the pathophysiologic process of CML. A conserved amino acid motif (SLxxV) was observed within the CDR3 region in only 3 patients with CML. Preferential usage of the Jβ segments was also observed in a minority of patients. The 3-dimensional structures of the CDR3 region containing the same motif or using the same Jβ segment displayed low similarity; on the contrary, the conformation of the CDR3 region containing no conserved motif in some T cell clones was highly similar. In conclusion, our findings indicate a high frequency of TCR Vβ21 subfamily expansion in p210(BCR-ABL)-positive CML and B-ALL patients. The characterization of the CDR3 structure was complex. Regrettably, at this time it was not possible to confirm that the Vβ21 T cell clones were derived from the stimulation of p210(BCR-ABL) protein. Copyright © 2011 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  13. Cell fusion induced by ionizing radiation in various cell lines

    International Nuclear Information System (INIS)

    Khair, M.B.

    1994-07-01

    Cell fusion induced by ionizing radiation has been studied in rat's hepatocytes in vivo and in different cell lines in vitro. These cell lines were: Hela cells, V-79 fibroblasts, human and rat lymphocytes. For irradiation, 0.85 MeV fission neutrons and 14 MeV fast neutrons were used. Cell analyses were performed by fluorescent dyes using immunofluorescent microscope and flow cytometre. Our results in vivo showed that, regardless the dose-rate, a dose of 1 Gy approximately was enough to induce a significant level of cell fusion depending on neutron energy and the age of rats. The level of cell fusion was also significant in Hela cells at a dose of 0.5 Gy. Similar effect, but to a lesser extent, was observed in V-79 cells. Whereas, in lymphocytes insignificant cell fusion was noticed. The varying levels of cell-fusion in different cell lines could be attributed to the type of cells and mutual contact between cells. Furthermore irradiation did not show any influence on cell division ability in both hepatocytes and Hela cells and that fused cells were also able to divide forming a new generation of cells. (author). 36 refs., 8 figs., 10 tabs

  14. Feeder-cell-independent culture of the pig-embryonic-stem-cell-derived exocrine pancreatic cell line, PICM-31

    Science.gov (United States)

    The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...

  15. Application of DNA fingerprints for cell-line individualization.

    Science.gov (United States)

    Gilbert, D A; Reid, Y A; Gail, M H; Pee, D; White, C; Hay, R J; O'Brien, S J

    1990-09-01

    DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they differ. The average percent difference (APD) among pairwise combinations from the population of 33 unrelated cell lines was 76.9%, compared with the APD in band sharing among cell lines derived from the same individual (less than or equal to 1.2%). Included in this survey were nine additional cell lines previously implicated as HeLa cell derivatives, and these lines were clearly confirmed as such by DNA fingerprints (APD less than or equal to 0.6%). On the basis of fragment frequencies in the tested cell line population, a simple genetic model was developed to estimate the frequencies of each DNA fingerprint in the population. The median incidence was 2.9 X 10(-17), and the range was 2.4 X 10(-21) to 6.6 X 10(-15). This value approximates the probability that a second cell line selected at random from unrelated individuals will match a given DNA fingerprint. Related calculations address the chance that any two DNA fingerprints would be identical among a large group of cell lines. This estimate is still very slight; for example, the chance of two or more common DNA fingerprints among 1 million distinct individuals is less than .001. The procedure provides a straightforward, easily interpreted, and statistically robust method for identification and individualization of human cells.

  16. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  17. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    and laboratories, but also between lineages of the same cell line. To minimise the occurrence of false negatives in a cell culture based surveillance system, we have investigated methods, to select cell lineages that are relatively superior in their susceptibility to a panel of virus isolates. The procedures...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...... sensitivity for surveillance purposes within a cell line and between laboratories.In terms of economic and practical considerations as well as attempting to approach a realistic test system, we suggest the optimal procedure for susceptibility testing of fish cell lines for virus isolation to be a combination...

  18. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y. [Royal Postgraduate Medical School, London (United Kingdom)

    1995-10-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author).

  19. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    International Nuclear Information System (INIS)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y.

    1995-01-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author)

  20. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Qin, J.-Z.; Xin, H. [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States); Nickoloff, B.J., E-mail: bnickol@lumc.edu [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States)

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  1. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    Science.gov (United States)

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    International Nuclear Information System (INIS)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-01-01

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  3. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Foster, H; Tutton, P J

    1988-09-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells.

  4. The novel anticancer agent JNJ-26854165 is active in chronic myeloid leukemic cells with unmutated BCR/ABL and T315I mutant BCR/ABL through promoting proteosomal degradation of BCR/ABL proteins.

    Science.gov (United States)

    You, Liangshun; Liu, Hui; Huang, Jian; Xie, Wanzhuo; Wei, Jueying; Ye, Xiujin; Qian, Wenbin

    2017-01-31

    Chronic myeloid leukemia (CML) is a clonal malignant disease caused by the expression of BCR/ABL. MDM2 (human homolog of the murine double minute-2) inhibitors such as Nutlin-3 have been shown to induce apoptosis in a p53-dependent manner in CML cells and sensitize cells to Imatinib. Here, we demonstrate that JNJ-26854165, an inhibitor of MDM2, inhibits proliferation and triggers cell death in a p53-independent manner in various BCR/ABL-expressing cells, which include primary leukemic cells from patients with CML blast crisis and cells expressing the Imatinib-resistant T315I BCR/ABL mutant. The response to JNJ-26854165 is associated with the downregulation of BCR/ABL dependently of proteosome activation. Moreover, in all tested CML cells, with the exception of T315I mutation cells, combining JNJ-26854165 and tyrosine kinase inhibitor (TKI) Imatinib or PD180970 leads to a synergistic effect. In conclusion, our results suggest that JNJ-26854165, used either alone or in combination with TKIs, represents a promising novel targeted approach to overcome TKI resistance and improve patient outcome in CML.

  5. Long-term safety and efficacy of dasatinib in the treatment of chronic-phase chronic myeloid leukemia patients resistant or intolerant to imatinib

    Directory of Open Access Journals (Sweden)

    Shoumariyeh K

    2014-09-01

    Full Text Available Khalid Shoumariyeh, Nikolas von BubnoffDepartment of Hematology, Oncology and Stem Cell Transplantation, University Hospital Freiburg, Freiburg, Germany Abstract: Treatment of chronic myeloid leukemia (CML has undergone dramatic changes in the last decade. Dissecting the molecular pathways that lead to the development of this disease resulted in the development of targeted therapy against the molecular driver of CML, namely the aberrantly activated tyrosine kinase BCR-ABL1. By introducing the tyrosine kinase inhibitor imatinib to the treatment repertoire, the natural course of the disease has been dramatically altered and overall survival of patients with CML prolonged substantially. Nevertheless, a significant number of patients are primarily resistant, acquire resistance during the course of their disease, or do not tolerate the intake of imatinib due to adverse effects. Second-generation tyrosine kinase inhibitors were developed in an attempt to overcome these problems. Dasatinib is a potent oral kinase inhibitor that was originally developed as an Src-kinase inhibitor but exhibited promising potency against BCR-ABL1 as well. Phase I and II trials demonstrated efficacy in patients failing imatinib, and thus dasatanib was approved in 2006 for the treatment of imatinib-resistant or -intolerant patients with chronic-phase CML harboring the BCR-ABL1 fusion protein. It has since shown promising efficacy and good overall tolerability in subsequent clinical trials, including the Phase III first-line DASISION trial that led to the extension of its approval for first-line treatment of chronic-phase CML. The following review summarizes the available data on the long-term efficacy and safety of dasatinib as a second-line therapy in chronic-phase CML. Keywords: BCR-ABL1, TKI, CML-CP, second-line treatment

  6. Structure optimization of cathode microporous layer for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Liu, Guicheng; Ding, Xianan; Zhou, Hongwei; Chen, Ming; Wang, Manxiang; Zhao, Zhenxuan; Yin, Zhuang; Wang, Xindong

    2015-01-01

    Highlights: • Pore-forming technology was introduced to optimize microporous layer microstructure. • The water removal and gas mass transfer property of diffusion layer were improved. • The optimum DMFC performance reached 292 mW cm −2 at 80 °C. - Abstract: To obtain the cathode microporous layer (CML) with high mass transfer performance and high electronic conductivity, a pore-forming technology was introduced to optimize CML microstructure for direct methanol fuel cells. In this paper, the effects of carbon material type, carbon material loading and pore-forming agent loading in CML on fuel cell performance were discussed systematically. The results indicated that the optimized CML consisted of carbon nanotubes and ammonium oxalate with the loading of 1.5 and 3.5 mg cm −2 respectively. The fuel cell performance was improved by 30.3%, from 224 to 292 mW cm −2 at 80 °C under 0.3 MPa O 2 . Carbon nanotube was found to be the most suitable carbon material for the CML due to its great specific surface area and small particle size, resulting in increasing the number of the hydrophobic sites and the contact area between the support and the catalyst layer. The carbon material and pore-forming agent loading directly influenced the pore distribution and the contact resistance of membrane electrode assembly. The water removal capacity and the gas mass transfer property of diffusion layer were improved by optimizing the amount of micropore and macropore structures

  7. BCR-ABL1 mutation development during first-line treatment with dasatinib or imatinib for chronic myeloid leukemia in chronic phase.

    Science.gov (United States)

    Hughes, T P; Saglio, G; Quintás-Cardama, A; Mauro, M J; Kim, D-W; Lipton, J H; Bradley-Garelik, M B; Ukropec, J; Hochhaus, A

    2015-09-01

    BCR-ABL1 mutations are a common, well-characterized mechanism of resistance to imatinib as first-line treatment of chronic myeloid leukemia in chronic phase (CML-CP). Less is known about mutation development during first-line treatment with dasatinib and nilotinib, despite increased use because of higher response rates compared with imatinib. Retrospective analyses were conducted to characterize mutation development in patients with newly diagnosed CML-CP treated with dasatinib (n=259) or imatinib (n=260) in DASISION (Dasatinib versus Imatinib Study in Treatment-Naive CML-CP), with 3-year minimum follow-up. Mutation screening, including patients who discontinued treatment and patients who had a clinically relevant on-treatment event (no confirmed complete cytogenetic response (cCCyR) and no major molecular response (MMR) within 12 months; fivefold increase in BCR-ABL1 with loss of MMR; loss of CCyR), yielded a small number of patients with mutations (dasatinib, n=17; imatinib, n=18). Dasatinib patients had a narrower spectrum of mutations (4 vs 12 sites for dasatinib vs imatinib), fewer phosphate-binding loop mutations (1 vs 9 mutations), fewer multiple mutations (1 vs 6 patients) and greater occurrence of T315I (11 vs 0 patients). This trial was registered at www.clinicaltrials.gov as NCT00481247.

  8. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  9. Change of cell cycle arrest of tumor cell lines after 60Co γ-irradiation

    International Nuclear Information System (INIS)

    Tang Yi; Liu Wenli; Zhou Jianfeng; Gao Qinglei; Wu Jianhong

    2003-01-01

    Objective: To observe the cell cycle arrest changes in peripheral blood mononuclear cells (PBMNCs) of normal persons and several kinds of tumor cell lines after 60 Co γ-irradiation. Methods: PBMNCs of normal persons, HL-60, K562, SiHA and 113 tumor cell lines were irradiated with 60 Co γ-rays at the absorbed doses of 6, 10,15 Gy. Cell cycles changes were checked 6, 12, 24, 48 and 60 h after the irradiation. Results: A stasis state was observed in normal person PBMNCs, 95 percents of which were in G 1 phase, and they still remained stasis after the irradiation. Except the 113 cell line manifesting G 1 phase arrest, all other tumor cell lines showed G 2 /M phase arrest after irradiation. The radiation sensitivity of HL-60 was higher than that of SiHA cell line. Conclusion: Different cell lines have different cell cycle arrest reaction to radiation and their radiation sensitivity are also different

  10. Update on Mechanisms of Renal Tubule Injury Caused by Advanced Glycation End Products

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2016-01-01

    Full Text Available Diabetic nephropathy (DN caused by advanced glycation end products (AGEs may be associated with lipid accumulation in the kidneys. This study was designed to investigate whether Nε-(carboxymethyl lysine (CML, a member of the AGEs family increases lipid accumulation in a human renal tubular epithelial cell line (HK-2 via increasing cholesterol synthesis and uptake and reducing cholesterol efflux through endoplasmic reticulum stress (ERS. Our results showed that CML disrupts cholesterol metabolism in HK-2 cells by activating sterol regulatory element-binding protein 2 (SREBP-2 and liver X receptor (LXR, followed by an increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR mediated cholesterol synthesis and low density lipoprotein receptor (LDLr mediated cholesterol uptake and a reduction in ATP-binding cassette transporter A1 (ABCA1 mediated cholesterol efflux, ultimately causing lipid accumulation in HK-2 cells. All of these responses could be suppressed by an ERS inhibitor, which suggests that CML causes lipid accumulation in renal tubule cells through ERS and that the inhibition of ERS is a potential novel approach to treating CML-induced renal tubular foam cell formation.

  11. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    Science.gov (United States)

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  12. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  13. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    Science.gov (United States)

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  15. THP-1 cell line: an in vitro cell model for immune modulation approach.

    Science.gov (United States)

    Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J

    2014-11-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. Copyright © 2013. Published by Elsevier B.V.

  16. The Role of Mitochondrial DNA Damage and Repair in the Resistance of BCR/ABL-Expressing Cells to Tyrosine Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2013-08-01

    Full Text Available Chronic myeloid leukemia (CML is a hematological malignancy that arises from the transformation of stem hematopoietic cells by the fusion oncogene BCR/ABL and subsequent clonal expansion of BCR/ABL-positive progenitor leukemic cells. The BCR/ABL protein displays a constitutively increased tyrosine kinase activity that alters many regulatory pathways, leading to uncontrolled growth, impaired differentiation and increased resistance to apoptosis featured by leukemic cells. Current CML therapy is based on tyrosine kinase inhibitors (TKIs, primarily imatinib, which induce apoptosis in leukemic cells. However, some patients show primary resistance to TKIs while others develop it in the course of therapy. In both cases, resistance may be underlined by perturbations in apoptotic signaling in leukemic cells. As mitochondria may play an important role in such signaling, alteration in mitochondrial metabolism may change resistance to pro-apoptotic action of TKIs in BCR/ABL-positive cells. Because BCR/ABL may induce reactive oxygen species and unfaithful DNA repair, it may affect the stability of mitochondrial DNA, influencing mitochondrial apoptotic signaling and in this way change the sensitivity of CML cells to TKIs. Moreover, cancer cells, including BCR/ABL-positive cells, show an increased level of glucose metabolism, resulting from the shift from oxidative phosphorylation to glycolysis to supply ATP for extensive proliferation. Enhanced level of glycolysis may be associated with TKI resistance and requires change in the expression of several genes regulated mostly by hypoxia-inducible factor-1α, HIF-1α. Such regulation may be associated with the impaired mitochondrial respiratory system in CML cells. In summary, mitochondria and mitochondria-associated molecules and pathways may be attractive targets to overcome TKI resistance in CML.

  17. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  18. Radiation response of haematopoietic cell lines of human origin

    International Nuclear Information System (INIS)

    Lehnert, S.; Rybka, W.B.; Suissa, S.; Giambattisto, D.

    1986-01-01

    Six human haematopoietic cell lines, five of leukaemic origin, including cells with myeloid, lymphoid and undifferentiated phenotype have been studied with respect to radiation response. The intrinsic radio-sensitivity of the cells varied widely, the D 0 s ranging from 0.53 to 1.39 Gy. Five of the cell lines showed some capacity to accumulate sublethal damage; in three of these, enhanced survival was demonstrated in split-dose experiments. One cell line (HL-60) was anomalous in that although little accumulation of sublethal damage was demonstrable, survival was enhanced by fractionation of the dose. Five of the six cell lines studied were of leukaemic origin. The results support the belief that, in contrast to the almost constant radiosensitivity of normal haematopoietic cell progenitors, leukaemic cell progenitors may show a wide range of radiosensitivities. (author)

  19. Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: Utility and pitfalls

    Directory of Open Access Journals (Sweden)

    Ashley R.P. Hinson

    2013-07-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis.

  20. Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls

    Science.gov (United States)

    Hinson, Ashley R. P.; Jones, Rosanne; Crose, Lisa E. S.; Belyea, Brian C.; Barr, Frederic G.; Linardic, Corinne M.

    2013-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis. PMID:23882450

  1. Radiation sensitivity of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Carmichael, J.; Degraff, W.G.; Gamson, J.; Russo, G.; Mitchell, J.B.; Gazdar, A.F.; Minna, J.D.; Levitt, M.L.

    1989-01-01

    X-Ray survival curves were determined using a panel of 17 human lung cancer cell lines, with emphasis on non-small cell lung cancer (NSCLC). In contrast to classic small cell lung cancer (SCLC) cell lines, NSCLC cell lines were generally less sensitive to radiation as evidenced by higher radiation survival curve extrapolation numbers, surviving fraction values following a 2Gy dose (SF2) and the mean inactivation dose values (D) values. The spectrum of in vitro radiation responses observed was similar to that expected in clinical practice, although mesothelioma was unexpectedly sensitive in vitro. Differences in radiosensitivity were best distinguished by comparison of SF2 values. Some NSCLC lines were relatively sensitive, and in view of this demonstrable variability in radiation sensitivity, the SF2 value may be useful for in vitro predictive assay testing of clinical specimens. (author)

  2. Generation of genome-modified Drosophila cell lines using SwAP.

    Science.gov (United States)

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

  3. Peptidomic analysis of human cell lines

    Science.gov (United States)

    Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.

    2011-01-01

    Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEK293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the P1 position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells. PMID:21204522

  4. The transcriptional diversity of 25 Drosophila cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Cherbas, Lucy [Indiana Univ., Bloomington, IN (United States); Willingham, Aarron [Affymetrix Inc., Santa Clara, CA (United States); Zhang, Dayu [Indiana Univ., Bloomington, IN (United States); Yang, Li [University of Connecticut Health Center, Farmington, Connecticut (United States); Zou, Yi [Indiana Univ., Bloomington, IN (United States); Eads, Brian D. [Indiana Univ., Bloomington, IN (United States); Carlson, Joseph W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Landolin, Jane M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kapranov, Philipp [Affymetrix Inc., Santa Clara, CA (United States); Dumais, Jacqueline [Affymetrix Inc., Santa Clara, CA (United States); Samsonova, Anastasia [Harvard Medical School, Boston, MA (United States); Choi, Jeong-Hyeon [Indiana Univ., Bloomington, IN (United States); Roberts, Johnny [Indiana Univ., Bloomington, IN (United States); Davis, Carrie A. [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Tang, Haixu [Indiana Univ., Bloomington, IN (United States); van Baren, Marijke J. [Washington Univ., St. Louis, MO (United States); Ghosh, Srinka [Affymetrix Inc., Santa Clara, CA (United States); Dobin, Alexander [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Bell, Kim [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Lin, Wei [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Langton, Laura [Washington Univ., St. Louis, MO (United States); Duff, Michael O. [University of Connecticut Health Center, Farmington, Connecticut (United States); Tenney, Aaron E. [Washington Univ., St. Louis, MO (United States); Zaleski, Chris [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Brent, Michael R. [Washington Univ., St. Louis, MO (United States); Hoskins, Roger A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kaufman, Thomas C. [Indiana University, Bloomington, Indiana (United States); Andrews, Justen [Indiana University, Bloomington, Indiana (United States); Graveley, Brenton R. [University of Connecticut Health Center, Farmington, Connecticut (United States); Perrimon, Norbert [Harvard Medical School, Boston, MA (United States); Howard Hughes Medical Institute, Boston, MA (United States); Celniker, Susan E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gingeras, Thomas R. [Affymetrix Inc., Santa Clara, CA (United States); Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Cherbas, Peter [Indiana Univ., Bloomington, IN (United States)

    2010-12-22

    Drosophila melanogaster cell lines are important resources for cell biologists. In this article, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. We report the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25

  5. Radotinib Induces Apoptosis of CD11b+ Cells Differentiated from Acute Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI, is approved for the second-line treatment of chronic myeloid leukemia (CML in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA. We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (ΔΨm in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics.

  6. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...... (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 mu M were...... incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size...

  7. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma.

    Science.gov (United States)

    Drexler, H G; Matsuo, Y

    2000-05-01

    Malignancies involving natural killer (NK) cells are rare disorders. The complexity of NK cell-involving disorders has only recently been appreciated. Modern classifications discern immature (precursor) from mature NK cell leukemias-lymphomas. Continuous NK leukemia-lymphoma cell lines represent important model systems to study these neoplasms. While there are a number of putative NK cell lines which are, however, either not characterized, not immortalized, non-malignant, non-NK, or plain false cell lines, six bona fide malignant NK cell lines have been established and are sufficiently well characterized: HANK1, KHYG-1, NK-92, NKL, NK-YS and YT. Except for YT which was derived from a not further defined acute lymphoblastic lymphoma, these cell lines were established from patients with various NK cell malignancies. Five of the six cell lines are constitutively interleukin-2-dependent. Their immunoprofile is remarkably similar: CD1-, CD2+, surface CD3 (but cytoplasmic CD3epsilon+), CD4-, CD5-, CD7+, CD8-, CD16-, CD56+, CD57-, TCRalphabeta-, TCRgammadelta-, negative for B cell and myelomonocytic markers. The immunoglobulin heavy chain and T cell receptor genes are all in germline configuration. All six lines show complex chromosomal alterations, with both numerical and structural aberrations, attesting to their malignant and monoclonal nature. Functionally, these cells which contain azurophilic granules in their cytoplasm are nearly universally positive in NK activity assays. Three of five cell lines are Epstein-Barr virus-positive (type II latency). The composite data on these six cell lines allow for the operational definition of a typical malignant NK cell line profile. NK leukemia-lymphoma cell lines will prove invaluable for studies of normal and malignant NK cell biology.

  8. Menadione inhibits MIBG uptake in two neuroendocrine cell lines

    NARCIS (Netherlands)

    Cornelissen, J.; Tytgat, G. A.; van den Brug, M.; van Kuilenburg, A. B.; Voûte, P. A.; van Gennip, A. H.

    1997-01-01

    In this paper we report on our studies of the effect of menadione on the uptake of MIBG in the neuroendocrine cell lines PC12 and SK-N-SH. Menadione inhibits the uptake of MIBG in both cell lines in a dose-dependent manner. Inhibition of MIBG uptake is most pronounced in the PC12 cell line.

  9. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Ismail Noorliza M

    2010-09-01

    Full Text Available Abstract Background The treatment of oral squamous cell carcinomas (OSCC and human osteosarcoma (HOS includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang on OSCC and HOS cell lines. Methods Several concentrations of Tualang honey (1% - 20% were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Results Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50 for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Conclusion Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.

  10. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  11. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    International Nuclear Information System (INIS)

    Medina, D.; Oborn, C.J.; Li, M.L.; Bissell, M.J.

    1987-01-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of β-casein mRNA in the presence or absence of prolactin. The inducibility of β-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types

  12. 9-β-arabinofuranosyladenine preferentially sensitizes radioresistant squamous cell carcinoma cell lines to x-rays

    International Nuclear Information System (INIS)

    Heaton, D.

    1992-06-01

    The effect of 9-β-arabinofuranosyladenine (ara-A) on sensitivity to the deleterious effects of x-rays was studied in six squamous cell carcinoma cell lines. Three lines were relatively radioresistant, having D 0 values of 2.31 to 2.89 Gy, and the other three lines were relatively radiosensitive, having D 0 values of between 1.07 and 1.45 Gy. Ara-A (50 or 500 μM) was added to cultures 30 min prior to irradiation and removed 30 min after irradiation, and sensitivity was measured in terms of cell survival. The radiosensitizing effect of ara-A was very dependent on the inherent radiosensitivity of the tumor cell line. Fifty micromolar concentrations of ara-A sensitized only the two most radioresistant lines, SCC-12B.2 and JSQ-3. Five hundred micromolar concentrations of ara-A sensitized the more sensitive cell lines, SQ-20B and SQ-9G, but failed to have any effect on the radiation response of the two most sensitive cell lines, SQ-38 and SCC-61. Concentrations of ara-A as low as 10 μM were equally efficient in inhibiting DNA synthesis in all six cell lines. These results suggest that the target for the radiosensitizing effect of ara-A is probably related to the factor controlling the inherent radiosensitivity of human tumor cells. Therefore, ara-A might be useful in overcoming radiation resistance in vivo

  13. 9-{beta}-arabinofuranosyladenine preferentially sensitizes radioresistant squamous cell carcinoma cell lines to x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, D. [Rush Univ. Medical Center, Chicago, IL (United States). Therapeutic Radiology; Mustafi, R. [Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology; Schwartz, J.L. [Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology]|[Argonne National Lab., IL (United States)

    1992-06-01

    The effect of 9-{beta}-arabinofuranosyladenine (ara-A) on sensitivity to the deleterious effects of x-rays was studied in six squamous cell carcinoma cell lines. Three lines were relatively radioresistant, having D{sub 0} values of 2.31 to 2.89 Gy, and the other three lines were relatively radiosensitive, having D{sub 0} values of between 1.07 and 1.45 Gy. Ara-A (50 or 500 {mu}M) was added to cultures 30 min prior to irradiation and removed 30 min after irradiation, and sensitivity was measured in terms of cell survival. The radiosensitizing effect of ara-A was very dependent on the inherent radiosensitivity of the tumor cell line. Fifty micromolar concentrations of ara-A sensitized only the two most radioresistant lines, SCC-12B.2 and JSQ-3. Five hundred micromolar concentrations of ara-A sensitized the more sensitive cell lines, SQ-20B and SQ-9G, but failed to have any effect on the radiation response of the two most sensitive cell lines, SQ-38 and SCC-61. Concentrations of ara-A as low as 10 {mu}M were equally efficient in inhibiting DNA synthesis in all six cell lines. These results suggest that the target for the radiosensitizing effect of ara-A is probably related to the factor controlling the inherent radiosensitivity of human tumor cells. Therefore, ara-A might be useful in overcoming radiation resistance in vivo.

  14. In vitro culture of human osteosarcoma cell lines: a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum.

    Science.gov (United States)

    Bruserud, Oystein; Tronstad, Karl Johan; Berge, Rolf

    2005-06-01

    Experimental in vitro models including well-characterised cell lines can be used to identify possible new therapeutic targets for the treatment of osteosarcoma. Culture media including inactivated serum is often recommended for in vitro culture of osteosarcoma cells, but the serum component then represents a nonstandardised parameter including a wide range of unidentified mediators. To improve the standardisation we have investigated whether serum-free culture media can be used in experimental in vitro studies of osteosarcoma cell lines. The seven osteosarcoma cell lines Cal72, SJSA-1, Saos-2, SK-ES-1, U2OS, 143.98.2, and KHOS-32IH were cultured in vitro in various serum-free media and media supplemented with 10% heat-inactivated fetal calf serum (FCS). Although proliferation often was relatively low in serum-free media (X-vivo 10, X-vivo 15, X-vivo 20, Stem Span SFEM), some cell lines (Cal72, KHOS-32IH, Saos-2) showed proliferation comparable with the recommended FCS-containing media even when using serum-free conditions. The optimal serum-free medium then varied between cell lines. We also compared 6 different FCS-containing media (including Stem Span with 10% FCS) and the optimal FCS-containing medium varied between cell lines. However, all cell lines proliferated well in Stem Span with FCS, and this medium was regarded as optimal for four of the lines. FCS could not be replaced by fatty acids or low density lipoprotein when testing the Stem Span medium. The release of a wide range of soluble mediators showed only minor differences when using serum-free and FCS-containing media (including Stem Span with and without FCS), and serum-free Stem Span could also be used for in vitro studies of mitogen-stimulated T cell activation in the presence of accessory osteosarcoma cells. The use of Stem Span with 10% FCS allowed the release of a wide range of chemokines by osteosarcoma cell lines (Cal72, SJSA-1), and the chemokine release profile was very similar to the

  15. Clonogenic cell line survival of a human liver cancer cell line SMMC-7721 after carbon ion irradiation with different LET

    International Nuclear Information System (INIS)

    Lei Suwen; Su Xu; Wang Jifang; Li Wenjian

    2003-01-01

    Objective: To investigate the survival fraction of a human liver cancer cell line SMMC-7721 following irradiation with carbon ions with different LET. Methods: cells of the human liver cancer cell line SMMC-7721 were irradiated with carbon ions (LET=30 and 70 keV/μm). The survival fraction was determined with clonogenic assay after 9 days incubation in a 5% CO 2 incubator at 37 degree C. Results: When the survival fractions of 70 keV/μm were D s = 0.1 and D s=0.01 absorption dose were 2.94 and 5.88 Gy respectively, and those of 30 keV/μm were 4.00 and 8.00 Gy respectively. Conclusion: For the SMMC-7721 cell line, 70 keV/μm is more effective for cell killing than 30 keV/μm

  16. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    Science.gov (United States)

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. An InGaAs/InP 40 GHz CML static frequency divider

    International Nuclear Information System (INIS)

    Su Yongbo; Jin Zhi; Cheng Wei; Ge Ji; Wang Xiantai; Chen Gaopeng; Liu Xinyu; Xu Anhuai; Qi Ming

    2011-01-01

    Static frequency dividers are widely used as a circuit performance benchmark or figure-of-merit indicator to gauge a particular device technology's ability to implement high speed digital and integrated high performance mixed-signal circuits. We report a 2 : 1 static frequency divider in InGaAs/InP heterojunction bipolar transistor technology. This is the first InP based digital integrated circuit ever reported on the mainland of China. The divider is implemented in differential current mode logic (CML) with 30 transistors. The circuit operated at a peak clock frequency of 40 GHz and dissipated 650 mW from a single -5 V supply. (semiconductor integrated circuits)

  18. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M

    1998-01-01

    receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot...... analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16......-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition...

  19. Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines.

    Science.gov (United States)

    Ma, Hailun; Galvin, Teresa A; Glasner, Dustin R; Shaheduzzaman, Syed; Khan, Arifa S

    2014-06-01

    The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell

  20. Isolation of two chloroethylnitrosourea-sensitive Chinese hamster cell lines

    International Nuclear Information System (INIS)

    Hata, H.; Numata, M.; Tohda, H.; Yasui, A.; Oikawa, A.

    1991-01-01

    1-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-3-(2-chloroethyl)-3- nitrosourea hydrochloride (ACNU), a cancer chemotherapeutic bifunctional alkylating agent, causes chloroethylation of DNA and subsequent DNA strand cross-linking through an ethylene bridge. We isolated and characterized two ACNU-sensitive mutants from mutagenized Chinese hamster ovary cells and found them to be new drug-sensitive recessive Chinese hamster mutants. Both mutants were sensitive to various monofunctional alkylating agents in a way similar to that of the parental cell lines CHO9. One mutant (UVS1) was cross-sensitive to UV and complemented the UV sensitivity of all Chinese hamster cell lines of 7 established complementation groups. Since UV-induced unscheduled DNA synthesis was very low, a new locus related to excision repair is thought to be defective in this cell line. Another ACNU-sensitive mutant, CNU1, was slightly more sensitive to UV than the parent cell line. CNU1 was cross-sensitive to 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea and slightly more sensitive to mitomycin C. No increased accumulation of ACNU and a low level of UV-induced unscheduled DNA synthesis in this cell as compared with the parental cell line suggest that there is abnormality in a repair response of this mutant cell to some types of DNA cross-links

  1. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  2. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  3. Molecular characterization of breast cancer cell lines through multiple omic approaches.

    Science.gov (United States)

    Smith, Shari E; Mellor, Paul; Ward, Alison K; Kendall, Stephanie; McDonald, Megan; Vizeacoumar, Frederick S; Vizeacoumar, Franco J; Napper, Scott; Anderson, Deborah H

    2017-06-05

    Breast cancer cell lines are frequently used as model systems to study the cellular properties and biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell line was generated. We determined key protein expression data using immunoblot analyses. In addition, two analyses on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these cells. These analyses were performed using a commercial PathScan array and a novel and more extensive phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways. Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft models of breast cancer. The cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined. This provided further clarity for which cell lines were particularly deregulated

  4. Assessment of citalopram and escitalopram on neuroblastoma cell lines: Cell toxicity and gene modulation

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram. PMID:28467792

  5. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation.

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-06-27

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram.

  6. Contribution of Protein Tyrosine Phosphateses to the Ontogeny and Progression of Chronic Myeloid Leukemia

    National Research Council Canada - National Science Library

    Tremblay, Michel

    2006-01-01

    ...). Inappropriate STAT1 and STAT5 activation have been observed in the Philadelphia chromosome-positive CML cell lines K562 and BV17, yet low levels of JAK1 tyrosine phosphorylation were observed...

  7. Establishment and conventional cytogenetic characterization of three gastric cancer cell lines.

    Science.gov (United States)

    Leal, Mariana Ferreira; Martins do Nascimento, José Luiz; da Silva, Carla Elvira Araújo; Vita Lamarão, Maria Fernanda; Calcagno, Danielle Queiroz; Khayat, André Salim; Assumpção, Paulo Pimentel; Cabral, Isabel Rosa; de Arruda Cardoso Smith, Marília; Burbano, Rommel Rodríguez

    2009-11-01

    Gastric cancer is the fourth most frequent type of cancer and the second most frequent cause of cancer mortality worldwide. Only a modest number of gastric carcinoma cell lines have been isolated thus far. Here we describe the establishment and cytogenetic characterization of three new gastric cancer cell lines obtained from primary gastric adenocarcinoma (ACP02 and ACP03) and cancerous ascitic fluid (AGP01) of individuals from northern Brazil. ACP02, ACP03, and AGP01 cell lines are presently in the 60th passage. The cell lines grew in a disorganized single layer with some agglomerations and heterogeneous divisions (bipolar and multipolar). All cell lines exhibited a composite karyotype with several clonal chromosome alterations. Trisomy 8 was the most frequent alteration. Chromosome 8 aneusomy was confirmed by fluorescence in situ hybridization. All cell lines also exhibited trisomy 7 and deletion of chromosome arm 17p. These results suggest that, although frequent chromosome alterations are commonly observed due to culture process, the ACP02, ACP03, and AGP01 cell lines and primary gastric cancer from individuals of northern Brazil share genetic alterations, supporting use of these cell lines as a model of gastric carcinogenesis in this population.

  8. DNA fingerprinting of the NCI-60 cell line panel.

    Science.gov (United States)

    Lorenzi, Philip L; Reinhold, William C; Varma, Sudhir; Hutchinson, Amy A; Pommier, Yves; Chanock, Stephen J; Weinstein, John N

    2009-04-01

    The National Cancer Institute's NCI-60 cell line panel, the most extensively characterized set of cells in existence and a public resource, is frequently used as a screening tool for drug discovery. Because many laboratories around the world rely on data from the NCI-60 cells, confirmation of their genetic identities represents an essential step in validating results from them. Given the consequences of cell line contamination or misidentification, quality control measures should routinely include DNA fingerprinting. We have, therefore, used standard DNA microsatellite short tandem repeats to profile the NCI-60, and the resulting DNA fingerprints are provided here as a reference. Consistent with previous reports, the fingerprints suggest that several NCI-60 lines have common origins: the melanoma lines MDA-MB-435, MDA-N, and M14; the central nervous system lines U251 and SNB-19; the ovarian lines OVCAR-8 and OVCAR-8/ADR (also called NCI/ADR); and the prostate lines DU-145, DU-145 (ATCC), and RC0.1. Those lines also show that the ability to connect two fingerprints to the same origin is not affected by stable transfection or by the development of multidrug resistance. As expected, DNA fingerprints were not able to distinguish different tissues-of-origin. The fingerprints serve principally as a barcodes.

  9. Reduced intensity conditioning is superior to nonmyeloablative conditioning for older chronic myelogenous leukemia patients undergoing hematopoietic cell transplant during the tyrosine kinase inhibitor era

    DEFF Research Database (Denmark)

    Warlick, Erica; Ahn, Kwang Woo; Pedersen, Tanya L

    2012-01-01

    Tyrosine kinase inhibitors (TKIs) and reduced intensity conditioning (RIC)/nonmyeloablative (NMA) conditioning hematopoietic cell transplants (HCTs) have changed the therapeutic strategy for chronic myelogenous leukemia (CML) patients. We analyzed post-HCT outcomes of 306 CML patients reported to...

  10. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    Science.gov (United States)

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  11. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  12. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

    Science.gov (United States)

    Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C

    2012-04-01

    Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was

  13. Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis mossambicus) Cell Lines

    Science.gov (United States)

    Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371

  14. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Science.gov (United States)

    Hamilton, Gerhard

    2014-01-01

    Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4) inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC) cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS) and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose)-Polymerase 1 (PARP1) inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS. PMID:24608973

  15. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  16. Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines.

    Directory of Open Access Journals (Sweden)

    Kazuya Takahashi

    Full Text Available Prognosis of childhood acute lymphoblastic leukemia (ALL has been dramatically improved. However, prognosis of the cases refractory to primary therapy is still poor. Recent phase 2 study on the efficacy of combination chemotherapy with bortezomib (BTZ, a proteasome inhibitor, for refractory childhood ALL demonstrated favorable clinical outcomes. However, septic death was observed in over 10% of patients, indicating the necessity of biomarkers that could predict BTZ sensitivity. We investigated in vitro BTZ sensitivity in a large panel of ALL cell lines that acted as a model system for refractory ALL, and found that Philadelphia chromosome-positive (Ph+ ALL, IKZF1 deletion, and biallelic loss of CDKN2A were associated with favorable response. Even in Ph-negative ALL cell lines, IKZF1 deletion and bilallelic loss of CDKN2A were independently associated with higher BTZ sensitivity. BTZ showed only marginal cross-resistance to four representative chemotherapeutic agents (vincristine, dexamethasone, l-asparaginase, and daunorubicin in B-cell precursor-ALL cell lines. To improve the efficacy and safety of proteasome inhibitor combination chemotherapy, we also analyzed the anti-leukemic activity of carfilzomib (CFZ, a second-generation proteasome inhibitor, as a substitute for BTZ. CFZ showed significantly higher activity than BTZ in the majority of ALL cell lines except for the P-glycoprotein-positive t(17;19 ALL cell lines, and IKZF1 deletion was also associated with a favorable response to CFZ treatment. P-glycoprotein inhibitors effectively restored the sensitivity to CFZ, but not BTZ, in P-glycoprotein-positive t(17;19 ALL cell lines. P-glycoprotein overexpressing ALL cell line showed a CFZ-specific resistance, while knockout of P-glycoprotein by genome editing with a CRISPR/Cas9 system sensitized P-glycoprotein-positive t(17;19 ALL cell line to CFZ. These observations suggested that IKZF1 deletion could be a useful biomarker to predict good

  17. Cellular radiosensitivity of small-cell lung cancer cell lines

    International Nuclear Information System (INIS)

    Krarup, Marianne; Poulsen, Hans Skovgaard; Spang-Thomsen, Mogens

    1997-01-01

    Purpose: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based on the construction of continuous exponential growth curves. Methods and Materials: Fifteen SCLC cell lines were studied, applying a slightly modified clonogenic assay and a growth extrapolation method. A dose-survival curve was obtained for each experiment and used for calculating several survival parameters. The multitarget single hit model was applied to calculate the cellular radiosensitivity (D 0 ), the capacity for sublethal damage repair (D q ), and the extrapolation number (n). Values for α and β were determined from best-fit curves according to the linear-quadratic model and these values were applied to calculate the surviving fraction after 2-Gy irradiation (SF 2 ). Results: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines studied were radiobiologically heterogeneous with no discrete features of the examined parameters including the repair capacity. Conclusion: The results indicate that SCLC tumors per se are not generally candidates for hyperfractionated radiotherapy

  18. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and ... The morphology of the HepG2 cell nucleus was investigated by Hoechst 33342, ..... Gong F, Liang Y, Xie P, Chau F. Information theory.

  19. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  20. An Exercise in Extrapolation: Clinical Management of Atypical CML, MDS/MPN-Unclassifiable, and MDS/MPN-RS-T.

    Science.gov (United States)

    Talati, Chetasi; Padron, Eric

    2016-12-01

    According to the recently published 2016 World Health Organization (WHO) classification of myeloid malignancies, myelodysplastic/myeloproliferative neoplasms (MDS/MPN) include atypical chronic myeloid leukemia (aCML), MDS/MPN-unclassifiable (MDS/MPN-U), chronic myelomonocytic leukemia (CMML), juvenile myelomonocytic leukemia (JMML), and MDS/MPN ring sideroblasts with thrombocytosis (MDS/MPN-RS-T). MDS/MPN-RS-T was previously a provisional category known as refractory anemia with ring sideroblasts with thrombocytosis (RARS-T) which has now attained a distinct designation in the 2016 WHO classification. In this review, we focus on biology and management of aCML, MDS/MPN-U, and MDS/MPN-RS-T. There is considerable overlap between these entities which we attempt to further elucidate in this review. We also discuss recent advances in the field of molecular landscape that further defines and characterizes this heterogeneous group of disorders. The paucity of clinical trials available secondary to unclear pathogenesis and rarity of these diseases makes the management of these entities clinically challenging. This review summarizes some of the current knowledge of the molecular pathogenesis and suggested treatment guidelines based on the available data.

  1. Cell lines derived from the squash bug, Anasa tristis (Coreidae: Hemiptera).

    Science.gov (United States)

    Goodman, Cynthia L; Ringbauer, Joseph A; Li, Yao-Fa; Lincoln, Tamra Reall; Stanley, David

    2017-05-01

    The squash bug, Anasa tristis, is a pest of cucurbits that exerts direct damage on crops and is a vector of plant pathogens. We established cell lines from this insect to serve as tools for basic biology, including virology and immunology, as well as applied studies, such as insecticide development programs. We initiated 15 cell cultures, using nine media or combinations of media. The media yielding the best results were a modification of Kimura's medium and a combination of two commercially available cell culture media (EX-CELL 420 and L15). We designated the two cell lines as BCIRL-AtE-CLG11 and BCIRL-AtE-CLG15. From the AtE-CLG15 line, we isolated two sub-lines, A and B. Of these, the most consistently replicating line was AtE-CLG15A. We determined the doubling time of this line (190 h) and its mean cell diameter (14.5 ± 0.7 μm). We characterized the AtE-CLG15A line using DAF-PCR. The BCIRL-AtE-CLG15A cell line is now available for researchers world-wide.

  2. Regulatory T Cells and Host Anti-CML Responses

    National Research Council Canada - National Science Library

    Wong, Jr, K. K

    2008-01-01

    CD4+CD25+FoxP-3+ regulatory T-cells (Tregs) suppress immune responses to "self" antigens, but also have been shown to suppress host anti-tumor responses in several human malignancies, including breast, gastrointestinal, and ovarian cancer...

  3. Bifenthrin activates homotypic aggregation in human T-cell lines.

    Science.gov (United States)

    Hoffman, Nataly; Tran, Van; Daniyan, Anthony; Ojugbele, Olutosin; Pryor, Stephen C; Bonventre, Josephine A; Flynn, Katherine; Weeks, Benjamin S

    2006-03-01

    Here, we addressed the concern that, despite the lack of overt toxicity, exposure to low levels of the common household pyrethroid pesticide, bifenthrin, could cause harm to the immune system. To do this, we measure the effect of bifenthrin on phytohemagglutinin (PHA) activation of homotypic aggregation in human T-cell lines. The human CD4+ H9, and Jurkat cell lines and the human promonocyte U937 cell line, were exposed to varying concentrations of bifenthrin. Cell viability was determined using the AlmarBlue Toxicity Assay. Concentrations of bifenthrin which did not reduce cell viability were determined and these concentrations were tested for the effect of bifenthrin on PHA-mediated homotypic aggregation. Blocking antibodies to ICAM and LFA-1 were used to disrupt aggregation and a nonspecific IgG was used as a control. Bifenthrin was found to be nontoxic at concentrations ranging from 10(-4) to 10(-13) M. Bifenthrin did not inhibit PHA induced cell aggregation in all cell lines tested. However, at 10(-4) M, bifenthrin to form aggregates stimulated homotypic aggregation in the H9 and Jurkat T-cell lines. The bifenthrin-induced aggregate formation, like that seen with PHA, was blocked by treating the cells with antibodies to either LFA-1 or ICAM. The results here show that bifenthrin activates T-cell function by stimulating ICAM/LFA-1 mediated homotypic aggregation. This data suggests that exposure to bifenthrin, even at "acceptable" limits, can increase the risk for and frequency of inflammatory responses and diseases such as asthma.

  4. Establishment, immortalisation and characterisation of pteropid bat cell lines.

    Directory of Open Access Journals (Sweden)

    Gary Crameri

    Full Text Available BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.

  5. [The molecular-cytogenetic characterization and tyrosine kinase inhibitors efficacy in newly diagnosed chronic phase CML patients with variant Philadelphia chromosomes].

    Science.gov (United States)

    Zhao, J J; Zhang, Y L; Zhang, S J; Zhou, J; Yu, F K; Zu, Y L; Zhao, H F; Li, Z; Song, Y P

    2018-03-14

    Objective: To investigate the molecular-cytogenetic characterization and impact on tyrosine kinase inhibitors (TKIs) therapy in chronic phase of chronic myeloid leukemia (CML-CP) patients with variant Ph chromosome (vPh). Methods: The clinical data of 32 patients with vPh chromosomes were collected and compared with 703 patients with typical Ph chromosome in newly diagnosed CML-CP who were on first-line imatinib (IM) and with BCR-ABL transcript of P210. Results: There was no significant difference in demographic and hematological characteristics between vPh and classic Ph patients. 3(9.4%) of the 32 vPh cases were simple variant translocations. Among the remaining 29 cases with complex variant translocations, 28 cases (87.5%) involved 3 chromosomes, and only 1 (3.1%) involved 4 chromosomes. Except for 8, 15, 18, X, and Y chromosomes, the other chromosomes were involved. The frequency of chromosome 12q(15.5%) and 1p (12.1%) were higher involved. The most common FISH signal pattern was 2G2R1Y (74.1%), followed by 1G1R2F (14.8%), 2G1R1Y (3.7%), 1G2R1Y (3.7%), 1G1R1Y (3.7%). The comparison of complete cytogenetic response (CCyR) ( P =0.269), major molecular response (MMR) ( P =0.391) were carried out between simple and complex mechanisms, without difference. Compared with the classic Ph, the patients with vPh had higher IM primary resistance rate ( χ 2 =3.978, P =0.046), especially primary hematological resistance ( χ 2 =7.870, P =0.005), but the difference of CCyR ( χ 2 =0.192, P =0.661), MMR ( χ 2 =0.822, P =0.365), EFS ( χ 2 =0.509, P =0.476), OS ( χ 2 =3.485, P =0.062) were not statistically significant, and multivariate analysis showed that the presence of vPh did not affect OS ( RR =0.692, 95% CI 0.393-1.765, P =0.658)、EFS ( RR =0.893, 95% CI 0.347-2.132, P =0.126) and PFS ( RR =1.176, 95% CI 0.643-2.682, P =0.703). Conclusion: CML-CP patients with vPh and classic Ph had similar demographic and hematological characteristics. Except for 22q11, 9q34, the

  6. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines.

    Science.gov (United States)

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2017-03-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However, 12 of the 80 cell lines (15%) were found to differ from registered information. Of them, 4 cell lines originated from the same mouse, which had been generated through mating between two different inbred strains. The genotype of the mouse sample had not been examined after the backcross, leading to strain misidentification in those cell lines. Although 8 other cell lines had been established as sublines of a BALB/c cell line, their SSLP profiles are similar to a Swiss cell line. This affects differences in genotypes between inbred and outbred strains. Because the use of inbred samples and interbreeding between strains are not involved in human materials, our results suggest that the cause and influence of misidentification in mouse cell lines are different from those in human.

  7. Clinical roundtable monograph: Unmet needs in the management of chronic myelogenous leukemia.

    Science.gov (United States)

    Jabbour, Elias J; Bixby, Dale; Akard, Luke P

    2012-12-01

    Approximately 5,000 cases of chronic myelogenous leukemia (CML) are diagnosed each year in the United States. The introduction of tyrosine kinase inhibitors (TKIs) has dramatically improved survival time for many CML patients. Current first-line treatment options include imatinib and the second-generation agents nilotinib and dasatinib. Second- and third-line agents include nilotinib, dasatinib, bosutinib, and the new agent ponatinib. Despite the effectiveness of TKIs, some patients develop resistance or intolerance to these agents. A number of mutations of the BCR-ABL gene have been identified and are associated with TKI resistance. Patients may benefit from switching to a second-line TKI, undergoing hematopoietic stem cell transplant, or receiving newly emerging agents. Although early response is associated with improved patient outcome, clinicians lack tests that can determine which patients will benefit from which therapies. To ensure adequate response, patients should be monitored by both polymerase chain reaction and cytogenetic analysis of the bone marrow. This roundtable monograph reviews key unmet needs in patients with CML related to disease management and treatment options.

  8. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.

    Science.gov (United States)

    Furusawa, Tadashi; Ohkoshi, Katsuhiro; Kimura, Koji; Matsuyama, Shuichi; Akagi, Satoshi; Kaneda, Masahiro; Ikeda, Mitsumi; Hosoe, Misa; Kizaki, Keiichiro; Tokunaga, Tomoyuki

    2013-08-01

    Bovine embryonic stem (ES) cells have the potential to provide significant benefits in a range of agricultural and biomedical applications. Here, we employed a combination of conventional methods using glycogen synthase kinase 3 and mitogen-activated protein kinase inhibitors to establish ES cell lines from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) bovine embryos. Five male cell lines were established from IVF embryos, and two female and three male cell lines from SCNT blastocysts; we named these lines bovine ES cell-like cells (bESLCs). The lines exhibited dome-shaped colonies, stained positively for alkaline phosphatase, and expressed pluripotent stem cell markers such as POU5F1, SOX2, and SSEA-1. The expression levels of these markers, especially for NANOG, varied among the cell lines. A DNA methylation assay showed the POU5F1 promoter region was hypomethylated compared to fibroblast cells. An in vitro differentiation assay showed that endoderm and ectoderm marker genes, but not mesoderm markers, were upregulated in differentiating bESLCs. To examine bESLCs in later embryonic stages, we created 22 chimeric blastocysts with a male bESLC line carrying a GFP marker gene and transferred these to a recipient cow. Four chimeric embryos were subsequently retrieved on Day 13 and retransferred to two recipient cows. One living fetus was obtained at Day 62. GFP signals were not identified in fetal cells by fluorescence microscopy; however, genomic PCR analysis detected the GFP gene in major organs. Clusters of GFP-positive cells were observed in amniotic membranes, suggesting that bESLCs can be categorized as a novel type of ICM-derived cells that can potentially differentiate into epiblast and hypoblast lineages.

  9. LET effects on normal and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Geard, C.R.; Travisano, M.

    1986-01-01

    Charged particles in the track segment mode were produced by the RARAF Van de Graaff accelerator and used to irradiate two CHO cell lines, a radiosensitive hypermutable line EM9 and its normal parent AA8. Asynchronous cells were irradiated attached to 6 micrometer thick Mylar with protons, deuterons and helium-3 particles at LETs ranging from 10 to 150 keV per micrometer. A 50 kVp x-ray tube integrated into the track segment facility provided a low LET comparison. Following irradiation cells were monitored for clonogenicity, and in a separate series of experiments frequencies of sister chromatid exchanges. Up to 9 experiments were carried out at each LET, with a total of 8 radiations of different LETs being compared. The optimally effective LET for cell survival was between 80 and 120 keV per micrometer, with the 150 keV per micrometer particles indicating energy wastage. The differential between the normal and radiosensitive cell lines was maintained at all LETs

  10. Radiation of different human melanoma cell lines increased expression of RHOB. Level of this tumor suppressor gene in different cell lines

    International Nuclear Information System (INIS)

    Notcovich, C.; Molinari, B.; Duran, H.; Delgado González, D.; Sánchez Crespo, R.

    2013-01-01

    Previous results of our group show that a correlation exists between intrinsic radiosensitivity of human melanoma cells and cell death by apoptosis. RhoB is a small GTPase that regulates cytoskeletal organization. Besides, is related to the process of apoptosis in cells exposed to DNA damage as radiation. Also, RhoB levels decrease in a wide variety of tumors with the tumor stage, being considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. The aim of this study was to analyze the expression of RhoB in different human melanoma cell lines in relation to melanocytes, and evaluate the effect of gamma radiation on the expression of RhoB. We used the A375, SB2 and Meljcell lines, and the derived from melanocytes Pig1. It was found for all three tumor lines RhoB expression levels significantly lower than those of Pig1 (p <0.05), as assessed by semiquantitative RT-PCR . When tumor cells were irradiated to a dose of 2Gyinduction was observed at 3 hours RhoB irradiation. RhoB expression increased in all lines relative to non-irradiated control, showing a greater induction ( p< 0.05) for the more radiosensitive line SB2, consistent with apoptosis in response to radiation. The results allow for the first time in melanoma demonstrate that RhoB, as well as in other tumor types, has a lower expression in tumor cells than their normal counterparts. Moreover, induction in the expression of RhoB in irradiated cells may be associated with the process of radiation-induced apoptosis. The modulation of RhoB could be a new tool to sensitize radioresistant melanoma. (author)

  11. Induction of apoptosis by opium in some tumor cell lines.

    Science.gov (United States)

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  12. Radiosensitivity evaluation of Human tumor cell lines by single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Zhang Yipei; Cao Jia; Wang Yan; Du Liqing; Li Jin; Wang Qin; Fan Feiyue; Liu Qiang

    2011-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using single cell gel electrophoresis (SCGE). Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction (SF) and DNA damage were detected by MTT assay, nested PCR technique and comet assay respectively. Results: MTT assay: The SF of HepG 2 and EC-9706 after irradiated by 2, 4 and 8 Gy was lower significantly than that of MCF-7, which showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. But there was no statistical difference of SF between HepG 2 and EC-9706. SCGE: The difference of radiosensitivity among these three tumor cell lines was significant after 8 Gy γ-ray irradiation. Conclusion: The multi-utilization of many biological parameter is hopeful to evaluate the radiosensitivity of tumor cells more objectively and exactly. (authors)

  13. Sensory hair cell regeneration in the zebrafish lateral line.

    Science.gov (United States)

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  14. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    Science.gov (United States)

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  15. Comparison of thermoradiosensitization in two human melanoma cell lines and one fibroblast cell line by concurrent mild hyperthermia and low-dose-rate irradiation

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Bussey, A.; Heller, D.P.; Ng, C.E.

    1994-01-01

    Two human melanoma cell lines, one radioresistant (Sk-MEL-3) and one radiosensitive (HT-144), and a normal human fibroblast line (AG1522) were evaluated for thermoradiosensitization of low-dose-rate irradiation by concurrent mild hyperthermia (39-41 degrees C). None of the cell lines expressed chronic thermotolerance during heating at 39-41 degrees C. The SK-MEL-3 cells were the most heat sensitive, while AG1522 and HT-144 cells had the same sensitivity at 39 and 40 degrees C but HT-144 cells were more sensitive at 41 degrees C. All cell lines expressed thermal enhancement of radiosensitivity with heating during irradiation which increased with heating temperature. The SK-MEL-3 cells, which were the most resistant to radiation and demonstrated the greatest repair of sublethal damage (SLD) during low-dose-rate irradiation, had the greatest thermal enhancement of radiosensitivity, while the HT144 cells, which were the most sensitive and expressed little repair of SLD during low-dose-rate irradiation, had the smallest thermal enhancement of radiosensitivity. These data show that concurrent mild hyperthermia during low-dose-rate irradiation may be most efficacious in radiation-resistant tumor cells which express resistance through an enhanced capacity for repair of SLD. 24 refs., 5 figs., 1 tab

  16. Expression of myc family oncoproteins in small-cell lung-cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Vindeløv, L L; Spang-Thomsen, M

    1993-01-01

    A number of genes have altered activity in small-cell lung cancer (SCLC), but especially genes of the myc family (c-myc, L-myc and N-myc) are expressed at high levels in SCLC. Most studies have explored expression at the mRNA level, whereas studies of myc family oncoprotein expression are sparse....... WE examined the expression of myc proto-oncogenes at the mRNA and protein level in 23 cell lines or xenografts. In the cell lines, the doubling time and the cell-cycle distribution, as determined by flow-cytometric DNA analysis, were examined to establish whether the level of myc......-myc. In general, the level of expression of c-myc and N-myc was similar at the mRNA and the protein level. Expression of c-myc was positively correlated with the proliferative index (sum of S and G2+M phases) of cell lines, but not with the population doubling time. In general, L-myc-expressing cell lines had...

  17. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency.

    Science.gov (United States)

    de Sá Rodrigues, L C; Holmes, K E; Thompson, V; Newton, M A; Stein, T J

    2017-03-01

    An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells. © 2015 John Wiley & Sons Ltd.

  18. Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Li, Qianyin; Huang, Zhenglan; Gao, Miao; Cao, Weixi; Xiao, Qin; Luo, Hongwei; Feng, Wenli

    2017-03-02

    The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML). The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein) and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR) mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag), HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag) and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells) apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI)-resistance.

  19. Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Qianyin Li

    2017-03-01

    Full Text Available The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML. The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag, HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK and signal transducer and activator of transcription 5 (STAT5 pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI-resistance.

  20. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Gerhard Hamilton

    2014-03-01

    Full Text Available Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4 inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose-Polymerase 1 (PARP1 inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS.

  2. Electrophysiological Characteristics of Embryonic Stem Cell-Derived Cardiomyocytes are Cell Line-Dependent

    Directory of Open Access Journals (Sweden)

    Tobias Hannes

    2015-01-01

    Full Text Available Background: Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs of different murine ESC lines. Methods: Two wild-type (D3 and R1 and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7 were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC promoter. Action potentials (APs were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Results: Spontaneous AP frequency and AP duration (APD as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Conclusion: Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully.

  3. Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines

    International Nuclear Information System (INIS)

    Schröpfer, Andrea; Kammerer, Ulrike; Kapp, Michaela; Dietl, Johannes; Feix, Sonja; Anacker, Jelena

    2010-01-01

    Matrix metalloproteinases (MMPs) are involved in the degradation of protein components of the extracellular matrix and thus play an important role in tumor invasion and metastasis. Their expression is related to the progression of gynecological cancers (e.g. endometrial, cervical or ovarian carcinoma). In this study we investigated the expression pattern of the 23 MMPs, currently known in humans, in different gynecological cancer cell lines. In total, cell lines from three endometrium carcinomas (Ishikawa, HEC-1-A, AN3 CA), three cervical carcinomas (HeLa, Caski, SiHa), three chorioncarcinomas (JEG, JAR, BeWo), two ovarian cancers (BG-1, OAW-42) and one teratocarcinoma (PA-1) were examined. The expression of MMPs was analyzed by RT-PCR, Western blot and gelatin zymography. We demonstrated that the cell lines examined can constitutively express a wide variety of MMPs on mRNA and protein level. While MMP-2, -11, -14 and -24 were widely expressed, no expression was seen for MMP-12, -16, -20, -25, -26, -27 in any of the cell lines. A broad range of 16 MMPs could be found in the PA1 cells and thus this cell line could be used as a positive control for general MMP experiments. While the three cervical cancer cell lines expressed 10-14 different MMPs, the median expression in endometrial and choriocarcinoma cells was 7 different enzymes. The two investigated ovarian cancer cell lines showed a distinctive difference in the number of expressed MMPs (2 vs. 10). Ishikawa, Caski, OAW-42 and BeWo cell lines could be the best choice for all future experiments on MMP regulation and their role in endometrial, cervical, ovarian or choriocarcinoma development, whereas the teratocarcinoma cell line PA1 could be used as a positive control for general MMP experiments

  4. Cell line development for biomanufacturing processes: recent advances and an outlook.

    Science.gov (United States)

    Le, Huong; Vishwanathan, Nandita; Jacob, Nitya M; Gadgil, Mugdha; Hu, Wei-Shou

    2015-08-01

    At the core of a biomanufacturing process for recombinant proteins is the production cell line. It influences the productivity and product quality. Its characteristics also dictate process development, as the process is optimized to complement the producing cell to achieve the target productivity and quality. Advances in the past decade, from vector design to cell line screening, have greatly expanded our capability to attain producing cell lines with certain desired traits. Increasing availability of genomic and transcriptomic resources for industrially important cell lines coupled with advances in genome editing technology have opened new avenues for cell line development. These developments are poised to help biosimilar manufacturing, which requires targeting pre-defined product quality attributes, e.g., glycoform, to match the innovator's range. This review summarizes recent advances and discusses future possibilities in this area.

  5. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  6. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia

    Directory of Open Access Journals (Sweden)

    Chen YJ

    2016-07-01

    Full Text Available Yu-Jen Chen,1–4 Li-Wen Fang,5 Wen-Chi Su,6,7 Wen-Yi Hsu,1 Kai-Chien Yang,1 Huey-Lan Huang8 1Department of Medical Research, 2Department of Radiation Oncology, Mackay Memorial Hospital, 3Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, 4Institute of Pharmacology, Taipei Medical University, Taipei, 5Department of Nutrition, I-Shou University, Kaohsiung, 6Research Center for Emerging Viruses, China Medical University Hospital, 7Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 8Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Republic of China Abstract: Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML, chronic myeloid leukemia (CML, and acute lymphoblastic leukemia (ALL cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of

  7. Monocytic myeloid-derived suppressor cells as prognostic factor in chronic myeloid leukaemia patients treated with dasatinib.

    Science.gov (United States)

    Giallongo, Cesarina; Parrinello, Nunziatina L; La Cava, Piera; Camiolo, Giuseppina; Romano, Alessandra; Scalia, Marina; Stagno, Fabio; Palumbo, Giuseppe A; Avola, Roberto; Li Volti, Giovanni; Tibullo, Daniele; Di Raimondo, Francesco

    2018-02-01

    Myeloid suppressor cells are a heterogeneous group of myeloid cells that are increased in patients with chronic myeloid leukaemia (CML) inducing T cell tolerance. In this study, we found that therapy with tyrosine kinase inhibitors (TKI) decreased the percentage of granulocytic MDSC, but only patients treated with dasatinib showed a significant reduction in the monocytic subset (M-MDSC). Moreover, a positive correlation was observed between number of persistent M-MDSC and the value of major molecular response in dasatinib-treated patients. Serum and exosomes from patients with CML induced conversion of monocytes from healthy volunteers into immunosuppressive M-MDSC, suggesting a bidirectional crosstalk between CML cells and MDSC. Overall, we identified M-MDSC as prognostic factors in patients treated with dasatinib. It might be of interest to understand whether MDSC may be a candidate predictive markers of relapse risk following TKI discontinuation, suggesting their potential significance as practice of precision medicine. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Generation, isolation, and maintenance of rodent mast cells and mast cell lines

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Swindle, Emily J; Iwaki, Shoko

    2006-01-01

    Antigen-mediated mast cell activation, with subsequent mediator release, is a major initiator of the inflammatory allergic response associated with such conditions as asthma. A comprehensive understanding of the principles involved in this process therefore is key to the development of novel...... therapies for the treatment of these disease states. In vitro models of mast cell function have allowed significant progress to be made in the recognition of the fundamental principles of mast cell activation via the high-affinity IgE receptor (FcvarepsilonRI) and, more recently, other receptors expressed...... on mast cells. In addition to human mast cells, the major cell culture systems employed to investigate these responses are rat and mouse peritoneal mast cells, mouse bone-marrow-derived mast cells, the rat basophilic leukemia cell line RBL-2H3, and the mouse MC/9 mast cell line. In this unit, we describe...

  9. Single-cell printing to form three-dimensional lines of olfactory ensheathing cells

    International Nuclear Information System (INIS)

    Othon, Christina M; Ringeisen, Bradley R; Wu Xingjia; Anders, Juanita J

    2008-01-01

    Biological laser printing (BioLP(TM)) is a unique tool capable of printing high resolution two- and three-dimensional patterns of living mammalian cells, with greater than 95% viability. These results have been extended to primary cultured olfactory ensheathing cells (OECs), harvested from adult Sprague-Dawley rats. OECs have been found to provide stimulating environments for neurite outgrowth in spinal cord injury models. BioLP is unique in that small load volumes (∼μLs) are required to achieve printing, enabling low numbers of OECs to be harvested, concentrated and printed. BioLP was used to form several 8 mm lines of OECs throughout a multilayer hydrogel scaffold. The line width was as low as 20 μm, with most lines comprising aligned single cells. Fluorescent confocal microscopy was used to determine the functionality of the printed OECs, to monitor interactions between printed OECs, and to determine the extent of cell migration throughout the 3D scaffold. High-resolution printing of low cell count, harvested OECs is an important advancement for in vitro study of cell interactions and functionality. In addition, these cell-printed scaffolds may provide an alternative for spinal cord repair studies, as the single-cell patterns formed here are on relevant size scales for neurite outgrowth

  10. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  11. [Effects of ezrin silencing on pancreatic cancer cell line Panc-1].

    Science.gov (United States)

    Meng, Yun-xiao; Yu, Shuang-ni; Lu, Zhao-hui; Chen, Jie

    2012-12-01

    To explore the effects of ezrin silencing on pancreatic cancer cell line Panc-1. Pancreatic cancer cell line Panc-1 was transfected with ezrin silencing plasmid. The proliferation and the cell cycle status were determined by CCK-8 assay and flow cytometry analysis, respectively. Cellular membrane protrusions/microvilli formation were visualized by scanning election microscopy. Colony formation assay was used to determine the cell anchor-independent growth ability in vitro. Trans-filter migration and invasion assays were performed with 8 µm pore inserts in a 24-well BioCoat chamber with/without Matrigel. Ezrin silencing decreased cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion, but had no effects on cell proliferation in vitro and cell cycle, in pancreatic cancer cell line Panc-1. Ezrin expression affects the cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion in pancreatic cancer cell line Panc-1.

  12. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.

    Directory of Open Access Journals (Sweden)

    Ryo Kurita

    Full Text Available Transfusion of red blood cells (RBCs is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs.

  13. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell......Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  14. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines.

    Directory of Open Access Journals (Sweden)

    Andreas Krieg

    Full Text Available Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN according to their proliferation index into G1- or G2-neuroendocrine tumors (NET and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC. Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1 or lymph node metastases (NEC-DUE2 from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.

  15. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines

    OpenAIRE

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2016-01-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However,...

  16. Detection of immunotoxicity using T-cell based cytokine reporter cell lines ('Cell Chip')

    International Nuclear Information System (INIS)

    Ringerike, Tove; Ulleraas, Erik; Voelker, Rene; Verlaan, Bert; Eikeset, Aase; Trzaska, Dominika; Adamczewska, Violetta; Olszewski, Maciej; Walczak-Drzewiecka, Aurelia; Arkusz, Joanna; Loveren, Henk van; Nilsson, Gunnar; Lovik, Martinus; Dastych, Jaroslaw; Vandebriel, Rob J.

    2005-01-01

    Safety assessment of chemicals and drugs is an important regulatory issue. The evaluation of potential adverse effects of compounds on the immune system depends today on animal experiments. An increasing demand, however, exists for in vitro alternatives. Cytokine measurement is a promising tool to evaluate chemical exposure effects on the immune system. Fortunately, this type of measurement can be performed in conjunction with in vitro exposure models. We have taken these considerations as the starting point to develop an in vitro method to efficiently screen compounds for potential immunotoxicity. The T-cell lymphoma cell line EL-4 was transfected with the regulatory sequences of interleukin (IL)-2, IL-4, IL-10, interferon (IFN)-γ or actin fused to the gene for enhanced green fluorescent protein (EGFP) in either a stabile or a destabilised form. Consequently, changes in fluorescence intensity represent changes in cytokine expression with one cell line per cytokine. We used this prototype 'Cell Chip' to test, by means of flow cytometry, the immunomodulatory potential of 13 substances and were able to detect changes in cytokine expression in 12 cases (successful for cyclosporine, rapamycin, pentamidine, thalidomide, bis(tri-n-butyltin)oxide, house dust mite allergen (Der p I), 1-chloro-2,4-dinitrobenzene, benzocaine, tolylene 2,4-diisocyanate, potassium tetrachloroplatinate, sodium dodecyl sulphate and mercuric chloride; unsuccessful for penicillin G). In conclusion, this approach seems promising for in vitro screening for potential immunotoxicity, especially when additional cell lines besides T-cells are included

  17. Establishment and characterization of a novel osteosarcoma cell line: CHOS.

    Science.gov (United States)

    Liu, Yunlu; Feng, Xiaobo; Zhang, Yukun; Jiang, Hongyan; Cai, Xianyi; Yan, Xinxin; Huang, Zengfa; Mo, Fengbo; Yang, Wen; Yang, Cao; Yang, Shuhua; Liu, Xianzhe

    2016-12-01

    Osteosarcoma has a well-recognized bimodal distribution, with the first peak in adolescence and another in the elderly age-group. The elderly patients have different clinical features and a poorer prognosis as compared to adolescents. To better understand the biological features of osteosarcoma in the elderly population, we established a new human osteosarcoma cell line from a 58-year-old man with primary chondroblastic osteosarcoma. After 6 months of continuous culture in vitro for over 50 passages, an immortalized cell line CHOS was established. The cell line was well-characterized by cytogenetic, biomarker, functional, and histological analyses. The CHOS cells exhibited a spindle-shaped morphology and a doubling time of 36 h. Cytogenetic analysis of CHOS cells revealed the loss of chromosome Y and the gain of chromosome 12. Quantitative real-time polymerase chain reaction (RT-PCR), Western blotting and/or immunofluorescence revealed the expression of chondroblastic, mesenchymal and tumor metastasis markers in the CHOS cells. Compared with the osteosarcoma cell line, the CHOS cells were found to be more sensitive to cisplatin and doxorubicin, but were resistant to methotrexate. The cell line was highly tumorigenic and maintained the histological characteristics and invasive nature of the original tumor. Furthermore, on immunohistochemical analysis, the xenografts and metastases were found to co-express collagen II, aggrecan, vimentin and S100A4 that resembled the original tumor cells. Our results indicate, the potential of CHOS cell line to serve as a useful tool for further studies on the molecular biology of osteosarcoma, especially in the elderly patients. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2116-2125, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Comparative performance of fetal goat tongue cell line ZZ-R 127 and fetal porcine kidney cell line LFBK-αvβ6 for Foot-and-mouth disease virus isolation.

    Science.gov (United States)

    Fukai, Katsuhiko; Morioka, Kazuki; Yamada, Manabu; Nishi, Tatsuya; Yoshida, Kazuo; Kitano, Rie; Yamazoe, Reiko; Kanno, Toru

    2015-07-01

    The fetal goat tongue cell line ZZ-R 127 and the fetal porcine kidney cell line LFBK-α(v)β(6) have been reported to have high sensitivity to various Foot-and-mouth disease virus (FMDV) strains. The suitability of ZZ-R 127 cells for FMDV isolation not only from epithelial suspensions but also from other clinical samples has already been confirmed in a previous study. However, to our knowledge, the suitability of LFBK-α(v)β(6) cells has not been evaluated using clinical samples other than epithelial materials. In addition, both cell lines have never been compared, in terms of use for FMDV isolation, under the same conditions. Therefore, in the current study, the virus isolation rates of both cell lines were compared using clinical samples collected from animals infected experimentally with FMDV. Viruses were successfully isolated from clinical samples other than epithelial suspensions for both cell lines. The virus isolation rates for the 2 cell lines were not significantly different. The Cohen kappa coefficients between the virus isolation results for both cell lines were significantly high. Taken together, these results confirmed the suitability of LFBK-α(v)β(6) cells for FMDV isolation from clinical samples other than epithelial suspensions. The levels of susceptibility of both cell lines to FMDV isolation were also confirmed to be almost the same. © 2015 The Author(s).

  19. Establishment of a novel human medulloblastoma cell line characterized by highly aggressive stem-like cells.

    Science.gov (United States)

    Silva, Patrícia Benites Gonçalves da; Rodini, Carolina Oliveira; Kaid, Carolini; Nakahata, Adriana Miti; Pereira, Márcia Cristina Leite; Matushita, Hamilton; Costa, Silvia Souza da; Okamoto, Oswaldo Keith

    2016-08-01

    Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment.

  20. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Zhang, Ping; Zhang, Zhiyuan; Zhou, Xiaojian; Qiu, Weiliu; Chen, Fangan; Chen, Wantao

    2006-01-01

    Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in cisplatin resistance

  1. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2006-09-01

    Full Text Available Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Results Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. Conclusion The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis

  2. Mouse DRG Cell Line with Properties of Nociceptors.

    Science.gov (United States)

    Doran, Ciara; Chetrit, Jonathan; Holley, Matthew C; Grundy, David; Nassar, Mohammed A

    2015-01-01

    In vitro cell lines from DRG neurons aid drug discovery because they can be used for early stage, high-throughput screens for drugs targeting pain pathways, with minimal dependence on animals. We have established a conditionally immortal DRG cell line from the Immortomouse. Using immunocytochemistry, RT-PCR and calcium microfluorimetry, we demonstrate that the cell line MED17.11 expresses markers of cells committed to the sensory neuron lineage. Within a few hours under differentiating conditions, MED17.11 cells extend processes and following seven days of differentiation, express markers of more mature DRG neurons, such as NaV1.7 and Piezo2. However, at least at this time-point, the nociceptive marker NaV1.8 is not expressed, but the cells respond to compounds known to excite nociceptors, including the TRPV1 agonist capsaicin, the purinergic receptor agonist ATP and the voltage gated sodium channel agonist, veratridine. Robust calcium transients are observed in the presence of the inflammatory mediators bradykinin, histamine and norepinephrine. MED17.11 cells have the potential to replace or reduce the use of primary DRG culture in sensory, pain and developmental research by providing a simple model to study acute nociception, neurite outgrowth and the developmental specification of DRG neurons.

  3. Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    International Nuclear Information System (INIS)

    Chromik, Ansgar M; Weyhe, Dirk; Mittelkötter, Ulrich; Uhl, Waldemar; Hahn, Stephan A; Daigeler, Adrien; Flier, Annegret; Bulut, Daniel; May, Christina; Harati, Kamran; Roschinsky, Jan; Sülberg, Dominique

    2010-01-01

    The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 μM, 250 μM and 1000 μM). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1). This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis

  4. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D.

    1991-01-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  5. Radiation response of mouse lymphoid and myeloid cell lines. Pt. 1

    International Nuclear Information System (INIS)

    Radford, I.R.

    1994-01-01

    The sensitivity of 10 mouse lymphoid or myeloid cell lines to γ-ray- and DNA-associated 125 I-decay-induced clonogenic cell killing have been compared with their rate of loss of viability (membrane integrity) and with their putative cell type of origin. The increased sensitivity of haematopoietic cell lines to killing by DNA dsb may be related to their mode of death (apoptosis versus necrosis). Mode of cell death may thus be an important factor in determining the 'inherent radiosensitivity' of normal cells/tissues. Haematopoietic cell lines that undergo rapid interphase apoptotic death showed extreme sensitivity to DNA dsb. (author)

  6. Modelling cell population growth with applications to cancer therapy in human tumour cell lines.

    Science.gov (United States)

    Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N

    2004-01-01

    In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.

  7. DNA fingerprinting of glioma cell lines and considerations on similarity measurements.

    Science.gov (United States)

    Bady, Pierre; Diserens, Annie-Claire; Castella, Vincent; Kalt, Stefanie; Heinimann, Karl; Hamou, Marie-France; Delorenzi, Mauro; Hegi, Monika E

    2012-06-01

    Glioma cell lines are an important tool for research in basic and translational neuro-oncology. Documentation of their genetic identity has become a requirement for scientific journals and grant applications to exclude cross-contamination and misidentification that lead to misinterpretation of results. Here, we report the standard 16 marker short tandem repeat (STR) DNA fingerprints for a panel of 39 widely used glioma cell lines as reference. Comparison of the fingerprints among themselves and with the large DSMZ database comprising 9 marker STRs for 2278 cell lines uncovered 3 misidentified cell lines and confirmed previously known cross-contaminations. Furthermore, 2 glioma cell lines exhibited identity scores of 0.8, which is proposed as the cutoff for detecting cross-contamination. Additional characteristics, comprising lack of a B-raf mutation in one line and a similarity score of 1 with the original tumor tissue in the other, excluded a cross-contamination. Subsequent simulation procedures suggested that, when using DNA fingerprints comprising only 9 STR markers, the commonly used similarity score of 0.8 is not sufficiently stringent to unambiguously differentiate the origin. DNA fingerprints are confounded by frequent genetic alterations in cancer cell lines, particularly loss of heterozygosity, that reduce the informativeness of STR markers and, thereby, the overall power for distinction. The similarity score depends on the number of markers measured; thus, more markers or additional cell line characteristics, such as information on specific mutations, may be necessary to clarify the origin.

  8. [The characters and specific features of new human embryonic stem cells lines].

    Science.gov (United States)

    Krylova, T A; Kol'tsova, A M; Zenin, V V; Gordeeva, O F; Musorina, A S; Goriachaia, T S; Shlykova, S A; Kamenetskaia, Iu K; Pinaev, G P; Polianskaia, G G

    2009-01-01

    Four continuous human embryonic stem cell lines (SC1, SC2, SC3 and SC4), derived from the blastocysts has been described. The cell lines were cultivated on mitotically inactivated human feeder cells. The cell lines SC1 and SC2 have passed through 150 population doublings and the cell lines SC3 and SC4 -- near 120 populations doublings, which exceeds Hayflick limit sufficiently. These cell lines maintain high activity of alkaline phosphatase, expression of transcription factor OCT-4 and cell surface antigens (SSEA-4, TRA-1-60 and TRA-1-81), confirming their ESC status and human specificity. Immunofluorescent detection of antigens, characteristic of ectoderm, endoderm and mesoderm confirms the ability of these cells to retain their pluripotency under in vitro condition. PCR analysis revealed expression of six genes specific for pluripotent cells (OCT-4, NANOG, DPPA3/STELLA, TDGF/CRIPTO and LEFTYA). Correlation between the level of proliferative activity and the character of DNA-bound fluorescent staining was found. Fluorescent dyes, Hoechst 33342 and PI, produced diffuse staining of the nuclei in slowly proliferating cells of the SC1 and SC2 lines. In contrast, in actively proliferating cells of the SC3 and SC4 lines, the clear staining of the nuclei was observed. Upon changing the cultivation condition, proliferative activity of SC3 and SC4 lines decreased and became similar to that of SC1 and SC2 lines. The character of the fluorescent staining of all these lines was also shown to be similar. These results show that quality of the fluorescent staining with Hoechst 33342 and PI reflects the level of proliferation. Possible causes and mechanisms of this feature of human ESC are discussed.

  9. Effect of sirolimus on urinary bladder cancer T24 cell line

    Directory of Open Access Journals (Sweden)

    Oliveira Paula A

    2009-01-01

    Full Text Available Abstract Background Sirolimus is recently reported to have antitumour effects on a large variety of cancers. The present study was performed to investigate sirolimus's ability to inhibit growth in T24 bladder cancer cells. Methods T24 bladder cancer cells were treated with various concentrations of sirolimus. MTT assay was used to evaluate the proliferation inhibitory effect on T24 cell line. The viability of T24 cell line was determined by Trypan blue exclusion analysis. Results Sirolimus inhibits the growth of bladder carcinoma cells and decreases their viability. Significant correlations were found between cell proliferation and sirolimus concentration (r = 0.830; p Conclusion Sirolimus has an anti-proliferation effect on the T24 bladder carcinoma cell line. The information from our results is useful for a better understanding sirolimus's anti-proliferative activity in the T24 bladder cancer cell line.

  10. An experimental study on the low-dose radiosensitivity of tumor cell lines

    International Nuclear Information System (INIS)

    Kim, Min Sook; Koh, Kwang Joon

    1994-01-01

    The purpose of this study was to aid in the radiation therapy of head and neck cancer patients. For this study, radiation survival curves were generated for B16, MG-63 and YAC-1 cell lines using semiautomated MTT assay and Dye Exclusion Assay. Irradiation of 2, 4, 6, 8, 10 Gy were delivered at room temperature at a dose rate of 210.2 cGy/min using 60 COγ-ray irradiator ALDORADO 8. The viable cells were determined for each radiation dose and compared to control values. The obtained results were as follows: 1. The was significantly different absorbance at 10 Gy on B16 cell line in MTT assay (P<0.05). 2. There was significantly different absorbance at 4, 6, 8, 10 Gy on MG-63 cell line in MTT assay (P<0.05). 3. YAC-1 cell line was more sensitive than B16 or MG-63 cell line to all doses of radiation (P<0.05). 4. There was significantly different absorbance among all tumor cell lines except between B16 and MG-63 cell line at 2 Gy in MTT assay (P<0.05). 5. Good correlation was obtained between MTT assay and DEA (P<0.05). The efficient of correlation of B16, MG-63 and YAC-1 cell line was 0.845-0.824 and 0.906, respectively.

  11. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  12. Establishment of optimized MDCK cell lines for reliable efflux transport studies.

    Science.gov (United States)

    Gartzke, Dominik; Fricker, Gert

    2014-04-01

    Madin-Darby canine kidney (MDCK) cells transfected with human MDR1 gene (MDCK-MDR1) encoding for P-glycoprotein (hPgp, ABCB1) are widely used for transport studies to identify drug candidates as substrates of this efflux protein. Therefore, it is necessary to rely on constant and comparable expression levels of Pgp to avoid false negative or positive results. We generated a cell line with homogenously high and stable expression of hPgp through sorting single clones from a MDCK-MDR1 cell pool using fluorescence-activated cell sorting (FACS). To obtain control cell lines for evaluation of cross-interactions with endogenous canine Pgp (cPgp) wild-type cells were sorted with a low expression pattern of cPgp in comparison with the MDCK-MDR1. Expression of other transporters was also characterized in both cell lines by quantitative real-time PCR and Western blot. Pgp function was investigated applying the Calcein-AM assay as well as bidirectional transport assays using (3) H-Digoxin, (3) H-Vinblastine, and (3) H-Quinidine as substrates. Generated MDCK-MDR1 cell lines showed high expression of hPgp. Control MDCK-WT cells were optimized in showing a comparable expression level of cPgp in comparison with MDCK-MDR1 cell lines. Generated cell lines showed higher and more selective Pgp transport compared with parental cells. Therefore, they provide a significant improvement in the performance of efflux studies yielding more reliable results. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Development and characterization of a cell line WAF from freshwater shark Wallago attu.

    Science.gov (United States)

    Dubey, Akhilesh; Goswami, Mukunda; Yadav, Kamalendra; Sharma, Bhagwati S

    2014-02-01

    A new epithelial cell line, WAF was developed from caudal fin of freshwater shark, Wallago attu. The cell line was optimally maintained at 28 °C in Leibovitz-15 (L-15) medium supplemented with 20 % fetal bovine serum. The cell line was characterized by various cytogenetic and molecular markers. The cytogenetic analysis revealed a diploid count of 86 chromosomes at different passages. The origin of the cell lines was confirmed by the amplification of 547 and 654 bp sequences of 16S rRNA and cytochrome oxidase subunit I genes of mitochondrial DNA, respectively. WAF cells were characterized for their growth characteristics at different temperature and serum concentration. Epithelial morphology of the cell line was confirmed using immunocytochemistry. Further cell plating efficiency, transfection efficiency and viability of cryopreserved WAF cells was also determined. Cytotoxicity and genotoxicity assessment of cadmium salts on WAF cells by MTT, NR and comet assay illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The cell line will be further useful for studying oxidative stress markers against aquatic pollutants.

  14. Isolation and characterization of a radiosensitive Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Fuller, L.F.

    1987-01-01

    A x-ray sensitive Chinese hamster ovary cell line was isolated using a semi-automated procedure in which mutagenized CHO cells were allowed to form colonies on top of agar, x-irradiated, then photographed at two later times. Comparison of the photographs allowed the identification of colonies which displayed significant growth arrest. One of the colonies identified in this manner produced a stable, radiosensitive line. This cell line is normal in x-ray induced inhibition of DNA synthesis, and single- and double-strand break repair, and is moderately sensitive to ethyl methane sulfonate and UV light. The sensitive line performs only half as much x-ray-induced repair replication as the parental line and this deficiency is believed to be the primary cause of its radiosensitivity. The sensitive line produces significantly higher numbers of x-ray-induced chromosome and chromatid aberrations including chromatid aberrations following exposure during the G 1 phase of the cell cycle. The line is hypomutable compared to the parental line with x-ray exposure inducing only one-third as many 6-thioguanine resistant colonies

  15. CT study of the ethmoid labyrinth: technique of examination and normal anatomy

    International Nuclear Information System (INIS)

    Duvoisin, B.; Schnyder, P.; Chapuis, L.; Agrifoglio, A.; Krayenbuehl, M.

    1990-01-01

    These recent years, conservative endoscopic surgical treatments for inflammatory ethmoid disease have gained popularity and prompted a need for an optimal preoperative radiologic study. For this purpose, the routinely used axial and coronal CT slices are not sufficient. In our Center, the ethmoid labyrinth is studied with planes determined by the axis of drainage of all ethmoid cells. This axis corresponds to the axis of the nasofrontal duct, which is approximately angulated 50 sup(0) cephalad relative to the canto-meatal line (CML). We perform routinely CT sections in the planes CML sup(+) and CML -40 (which are respectively parallel and perpendicular to the nasofrontal duct axis). The normal anatomy of the ethmoid labyrinth is illustrated by sequential CT slices in these two planes. (author)

  16. A novel RNA sequencing data analysis method for cell line authentication.

    Directory of Open Access Journals (Sweden)

    Erik Fasterius

    Full Text Available We have developed a novel analysis method that can interrogate the authenticity of biological samples used for generation of transcriptome profiles in public data repositories. The method uses RNA sequencing information to reveal mutations in expressed transcripts and subsequently confirms the identity of analysed cells by comparison with publicly available cell-specific mutational profiles. Cell lines constitute key model systems widely used within cancer research, but their identity needs to be confirmed in order to minimise the influence of cell contaminations and genetic drift on the analysis. Using both public and novel data, we demonstrate the use of RNA-sequencing data analysis for cell line authentication by examining the validity of COLO205, DLD1, HCT15, HCT116, HKE3, HT29 and RKO colorectal cancer cell lines. We successfully authenticate the studied cell lines and validate previous reports indicating that DLD1 and HCT15 are synonymous. We also show that the analysed HKE3 cells harbour an unexpected KRAS-G13D mutation and confirm that this cell line is a genuine KRAS dosage mutant, rather than a true isogenic derivative of HCT116 expressing only the wild type KRAS. This authentication method could be used to revisit the numerous cell line based RNA sequencing experiments available in public data repositories, analyse new experiments where whole genome sequencing is not available, as well as facilitate comparisons of data from different experiments, platforms and laboratories.

  17. Application of DNA fingerprints for cell-line individualization.

    OpenAIRE

    Gilbert, D A; Reid, Y A; Gail, M H; Pee, D; White, C; Hay, R J; O'Brien, S J

    1990-01-01

    DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they d...

  18. Development of imatinib and dasatinib resistance: dynamics of expression of drug transporters ABCB1, ABCC1, ABCG2, MVP, and SLC22A1.

    Science.gov (United States)

    Gromicho, Marta; Dinis, Joana; Magalhães, Marta; Fernandes, Alexandra R; Tavares, Purificação; Laires, António; Rueff, José; Rodrigues, António Sebastião

    2011-10-01

    About 20% of patients with chronic myeloid leukemia (CML) do not respond to treatment with imatinib either initially or because of acquired resistance. To study the development of CML drug resistance, an in vitro experimental system comprising cell lines with different resistance levels was established by exposing K562 cells to increasing concentrations of imatinib and dasatinib anticancer agents. The mRNA levels of BCR- ABL1 and of genes involved in drug transport or redistribution (ABCB1, ABCC1, ABCC3, ABCG2, MVP, and SLC22A1) were measured and the ABL1 kinase domain sequenced. Results excluded BCR- ABL1 overexpression and mutations as relevant resistance mechanisms. Most studied transporters were overexpressed in the majority of resistant cell lines. Their expression pattern was dynamic: varying with resistance level and chronic drug exposure. Studied efflux transporters may have an important role at the initial stages of resistance, but after prolonged exposure and for higher doses of drugs other mechanisms might take place.

  19. Hematopoietic Cancer Cell Lines Can Support Replication of Sabin Poliovirus Type 1

    Science.gov (United States)

    van Eikenhorst, Gerco; de Gruijl, Tanja D.; van der Pol, Leo A.; Bakker, Wilfried A. M.

    2015-01-01

    Viral vaccines can be produced in adherent or in suspension cells. The objective of this work was to screen human suspension cell lines for the capacity to support viral replication. As the first step, it was investigated whether poliovirus can replicate in such cell lines. Sabin poliovirus type 1 was serially passaged on five human cell lines, HL60, K562, KG1, THP-1, and U937. Sabin type 1 was capable of efficiently replicating in three cell lines (K562, KG1, and U937), yielding high viral titers after replication. Expression of CD155, the poliovirus receptor, did not explain susceptibility to replication, since all cell lines expressed CD155. Furthermore, we showed that passaged virus replicated more efficiently than parental virus in KG1 cells, yielding higher virus titers in the supernatant early after infection. Infection of cell lines at an MOI of 0.01 resulted in high viral titers in the supernatant at day 4. Infection of K562 with passaged Sabin type 1 in a bioreactor system yielded high viral titers in the supernatant. Altogether, these data suggest that K562, KG1, and U937 cell lines are useful for propagation of poliovirus. PMID:25815312

  20. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    Science.gov (United States)

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.

  1. CD25 targeted therapy of chemotherapy resistant leukemic stem cells using DR5 specific TRAIL peptide

    Directory of Open Access Journals (Sweden)

    Jayaprakasam Madhumathi

    2017-03-01

    Full Text Available Chemotherapy resistant leukemic stem cells (LSCs are being targeted as a modern therapeutic approach to prevent disease relapse. LSCs isolated from methotrexate resistant side population (SP of leukemic cell lines HL60 and MOLT4 exhibited high levels of CD25 and TRAIL R2/DR5 which are potential targets. Recombinant immunotoxin conjugating IL2α with TRAIL peptide mimetic was constructed for DR5 receptor specific targeting of LSCs and were tested in total cell population and LSCs. IL2-TRAIL peptide induced apoptosis in drug resistant SP cells from cell lines and showed potent cytotoxicity in PBMCs derived from leukemic patients with an efficacy of 81.25% in AML and 100% in CML, ALL and CLL. IL2-TRAIL peptide showed cytotoxicity in relapsed patient samples and was more effective than TRAIL or IL2-TRAIL proteins. Additionally, DR5 specific IL2-TRAIL peptide was effective in targeting and killing LSCs purified from cell lines [IC50: 952 nM in HL60, 714 nM in MOLT4] and relapsed patient blood samples with higher efficacy (85% than IL2-TRAIL protein (46%. Hence, CD25 and DR5 specific targeting by IL2-TRAIL peptide may be an effective strategy for targeting drug resistant leukemic cells and LSCs.

  2. Regulation of hTERT by BCR-ABL at multiple levels in K562 cells

    International Nuclear Information System (INIS)

    Chai, Juin Hsien; Zhang, Yong; Tan, Wei Han; Chng, Wee Joo; Li, Baojie; Wang, Xueying

    2011-01-01

    The cytogenetic characteristic of Chronic Myeloid Leukemia (CML) is the formation of the Philadelphia chromosome gene product, BCR-ABL. Given that BCR-ABL is the specific target of Gleevec in CML treatment, we investigated the regulation of the catalytic component of telomerase, hTERT, by BCR-ABL at multiple levels in K562 cells. Molecular techniques such as over expression, knockdown, real-time PCR, immunoprecipitation, western blotting, reporter assay, confocal microscopy, telomerase assays and microarray were used to suggest that hTERT expression and activity is modulated by BCR-ABL at multiple levels. Our results suggest that BCR-ABL plays an important role in regulating hTERT in K562 (BCR-ABL positive human leukemia) cells. When Gleevec inhibited the tyrosine kinase activity of BCR-ABL, phosphorylation of hTERT was downregulated, therefore suggesting a positive correlation between BCR-ABL and hTERT. Gleevec treatment inhibited hTERT at mRNA level and significantly reduced telomerase activity (TA) in K562 cells, but not in HL60 or Jurkat cells (BCR-ABL negative cells). We also demonstrated that the transcription factor STAT5a plays a critical role in hTERT gene regulation in K562 cells. Knockdown of STAT5a, but not STAT5b, resulted in a marked downregulation of hTERT mRNA level, TA and hTERT protein level in K562 cells. Furthermore, translocation of hTERT from nucleoli to nucleoplasm was observed in K562 cells induced by Gleevec. Our data reveal that BCR-ABL can regulate TA at multiple levels, including transcription, post-translational level, and proper localization. Thus, suppression of cell growth and induction of apoptosis by Gleevec treatment may be partially due to TA inhibition. Additionally, we have identified STAT5a as critical mediator of the hTERT gene expression in BCR-ABL positive CML cells, suggesting that targeting STAT5a may be a promising therapeutic strategy for BCR-ABL positive CML patients

  3. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  4. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  5. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    DEFF Research Database (Denmark)

    Jakobsen, Jannik E; Li, Juan; Moldt, Brian

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based do......We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon...

  6. Radiation response of mouse lymphoid and myeloid cell lines. Pt. 3

    International Nuclear Information System (INIS)

    Radford, I.R.; Murphy, T.K.

    1994-01-01

    The authors have examined the timing of γ-irradiation-induced death in relation to cell cycle progression using a panel of mouse lymphoid or myeloid cell lines. Death was found to occur immediately after irradiation ('rapid interphase' death), or after arrest in G 2 phase ('delayed interphase' death), or following one or more mitoses ('mitotic/delayed mitotic' death). In part II of this series of papers the authors demonstrated the occurrence of radiation-induced apoptosis in all these cell lines. Several of the cell lines showed different timing of death dependent upon the radiation dose used. These differences in the timing of radiation-induced death are shown to be useful indicators of the relative radiosensitivity of haematopoietic cell lines. (author)

  7. Antiproliferative activity of flavonoids on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-05-01

    Twenty-seven Citrus flavonoids were examined for their antiproliferative activities against several tumor and normal human cell lines. As a result, 7 flavonoids were judged to be active against the tumor cell lines, while they had weak antiproliferative activity against the normal human cell lines. The rank order of potency was luteolin, natsudaidain, quercetin, tangeretin, eriodictyol, nobiletin, and 3,3',4',5,6,7,8-heptamethoxyflavone. The structure-activity relationship established from comparison among these flavones and flavanones showed that the ortho-catechol moiety in ring B and a C2-C3 double bond were important for the antiproliferative activity. As to polymethoxylated flavones, C-3 hydroxyl and C-8 methoxyl groups were essential for high activity.

  8. Interaction between x-irradiated plateau-phase bone marrow stromal cell lines and co-cultivated factor-dependent cell lines leading to leukemogenesis in vitro

    International Nuclear Information System (INIS)

    Naparstek, E.; Anklesaria, P.; FitzGerald, T.J.; Sakakeeny, M.A.; Greenberger, J.S.

    1987-01-01

    Plateau-phase mouse clonal bone marrow stromal cell lines D2XRII and C3H cl 11 produce decreasing levels of M-CSF (CSF-1), a specific macrophage progenitor cell humoral regulator, following X-irradiation in vitro. The decrease did not go below 40% of control levels, even after irradiation doses of 50,000 rad (500 Gy). In contrast, a distinct humoral regulator stimulating growth of GM-CSF/IL-3 factor-dependent (FD) hematopoietic progenitor cell lines was detected following radiation to doses above 2000 rad. This humoral factor was not detectable in conditioned medium from irradiated cells, weakly detected using factor-dependent target cell populations in agar overlay, and was prominently detected by liquid co-cultivation of factor-dependent cells with irradiated stromal cell cultures. Subclonal lines of FD cells, derived after co-cultivation revealed karyotypic abnormalities and induced myeloblastic tumors in syngeneic mice. Five-eight weeks co-cultivation was required for induction of factor independence and malignancy and was associated with dense cell to cell contact between FD cells and stromal cells demonstrated by light and electron microscopy. Increases in hematopoietic to stromal cell surface area, total number of adherent cells per flask, total non-adherent cell colonies per flask, and cumulative non-adherent cell production were observed after irradiation. The present data may prove very relevant to an understanding of the cell to cell interactions during X-irradiation-induced leukemia

  9. Expression and function of β-adrenergic receptors in human hematopoietic cell lines

    International Nuclear Information System (INIS)

    Maeki, T.; Andersson, L.C.; Kontula, K.K.

    1992-01-01

    We investigated the expression and functional characteristics of β-adrenoceptors in a panel of 10 phenotypically different human hematopoietic cell lines. A binding assay with [ 125 I]iodocyanopindolol as the ligand revealed that cell lines of myelomonocytic or histiocytic derivation (HL-60, ML-2, RC-2A, U-937) expressed high numbers of β-adrenoceptors. An intermediate density of receptors was found in a non-T, non-B cell leukemia line (Nall-1), whereas T-cell (JM, CCRF-CEM), B-cell (Raji) or erythroleukemic cell lines (K-562, HEL) displayed minimala or undetectable binding of the radioligand. Isoprenaline-stimulated cAMP production by the cells correlated to their extent of β-adrenoceptor expression. Southern blot hybridization analysis of genomic DNA from the cell lines with a 32 P-labelled β 2 -adrenoceptor cDNA probe revealed no evidence for major rearrangement or amplification of the receptor gene. Incubation with isoprenaline in vitro suppressed the proliferation of the receptor-rich RC-2A cells but did not affect the growth rate of the receptor-deficient K-562 cells. Treatment with propranolol slightly enhanced the proliferation of the RC-2A cells but did not markedly alter the growth rate of two other cell lines, regardless of their β-adrenoceptor status. These findings indicate a regulatory influence by the sympathoadrenergic system on selected cells of the myelomonocytic lineage. (au)

  10. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  11. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    OpenAIRE

    Zhang Ping; Zhang Zhiyuan; Zhou Xiaojian; Qiu Weiliu; Chen Fangan; Chen Wantao

    2006-01-01

    Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differe...

  12. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Science.gov (United States)

    Xiao, Yang; Kwong, Mandy; Daemen, Anneleen; Belvin, Marcia; Liang, Xiaorong; Hatzivassiliou, Georgia; O'Brien, Thomas

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD) is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM) to nicotinamide mononucleotide (NMN), the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334), one that shows intermediate sensitivity (NCI-H441), and one that is insensitive (LC-KJ). Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP) and had lower reactive oxygen species (ROS) levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  13. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    Full Text Available Nicotinamide adenine dinucleotide (NAD is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM to nicotinamide mononucleotide (NMN, the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334, one that shows intermediate sensitivity (NCI-H441, and one that is insensitive (LC-KJ. Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP and had lower reactive oxygen species (ROS levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  14. Establishment of cell lines from adult T-cell leukemia cells dependent on negatively charged polymers.

    Science.gov (United States)

    Kagami, Yoshitoyo; Uchiyama, Susumu; Kato, Harumi; Okada, Yasutaka; Seto, Masao; Kinoshita, Tomohiro

    2017-07-05

    Growing adult T-cell leukemia/lymphoma (ATLL) cells in vitro is difficult. Here, we examined the effects of static electricity in the culture medium on the proliferation of ATLL cells. Six out of 10 ATLL cells did not proliferate in vitro and thus had to be cultured in a medium containing negatively charged polymers. In the presence of poly-γ-glutamic acid (PGA) or chondroitin sulfate (CDR), cell lines (HKOX3-PGA, HKOX3-CDR) were established from the same single ATLL case using interleukin (IL)-2, IL-4, and feeder cells expressing OX40L (OX40L + HK). Dextran sulfate inhibited growth in both HKOX3 cell lines. Both PGA and OX40L + HK were indispensable for HKOX3-PGA growth, but HKOX3-CDR could proliferate in the presence of CDR or OX40L + HK alone. Thus, the specific action of each negatively charged polymer promoted the growth of specific ATLL cells in vitro.

  15. Nanotopography induced contact guidance of the F11 cell line during neuronal differentiation: a neuronal model cell line for tissue scaffold development

    International Nuclear Information System (INIS)

    Wieringa, Paul; Micera, Silvestro; Tonazzini, Ilaria; Cecchini, Marco

    2012-01-01

    The F11 hybridoma, a dorsal root ganglion-derived cell line, was used to investigate the response of nociceptive sensory neurons to nanotopographical guidance cues. This established this cell line as a model of peripheral sensory neuron growth for tissue scaffold design. Cells were seeded on substrates of cyclic olefin copolymer (COC) films imprinted via nanoimprint lithography (NIL) with a grating pattern of nano-scale grooves and ridges. Different ridge widths were employed to alter the focal adhesion formation, thereby changing the cell/substrate interaction. Differentiation was stimulated with forskolin in culture medium consisting of either 1 or 10% fetal bovine serum (FBS). Per medium condition, similar neurite alignment was achieved over the four day period, with the 1% serum condition exhibiting longer, more aligned neurites. Immunostaining for focal adhesions found the 1% FBS condition to also have fewer, less developed focal adhesions. The robust response of the F11 to guidance cues further builds on the utility of this cell line as a sensory neuron model, representing a useful tool to explore the design of regenerative guidance tissue scaffolds. (paper)

  16. Culture of human cell lines by a pathogen-inactivated human platelet lysate.

    Science.gov (United States)

    Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L

    2016-08-01

    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.

  17. A comparative study of the FcepsilonRI molecule on human mast cell and basophil cell lines

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Dissing, S; Skov, P S

    2005-01-01

    Mast cells and basophils express the high-affinity IgE receptor FcepsilonRI. We have analysed the human mast cell line LAD2 and four subclones of the basophil cell line KU812 in order to reveal possible differences concerning the FcepsilonRI surface regulation, anti-IgE-triggered activation......, FcepsilonRIalpha protein stability and the mRNA level of FcepsilonRIalpha-, beta- and the truncated beta-chain (beta(T)), and thereby determine the utility of these cell lines in investigations of the FcepsilonRI biology....

  18. Isolation, Characterization, and Establishment of Spontaneously Immortalized Cell Line HRPE-2S With Stem Cell Properties.

    Science.gov (United States)

    Shams Najafabadi, Hoda; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Ranaei Pirmardan, Ehsan; Masoumi, Maryam

    2017-10-01

    The retinal pigment epithelium is a monolayer of highly specialized pigmented cells located between the neural retina and the Bruch's membrane of the choroid. RPE cells play a crucial role in the maintenance and function of the underlying photoreceptors. This study introduces a spontaneously arising human retinal pigment epithelial cell line, HRPE-2S, which was isolated from primary RPE cell culture of 2 days old male donor. We characterized morphology and functional properties of the new cell line. The immortalized cell line was maintained in culture for more than 70 passages and 240 divisions. The average doubling time of the cells was approximately 22 h and got freezed at 26th passage. The cell line expressed RPE-specific markers RPE65 and cell junction protein ZO1 as an epithelial cell marker. It also expressed CHX10, PAX6, Nestin, SOX2 as stem and retinal progenitor cell markers. Ki67 as a marker of cell proliferation was expressed in all HRPE-2S cells. It represented typical epithelial cobblestone morphology and did not phenotypically change through several passages. Stem cell-like aggregations (neurospheres) were observed in SEM microscopy. The cells represented high mitotic index. They could be viable under hypoxic conditions and serum deprivation. According to functional studies, the cell line exhibited stem cell-like behaviors with particular emphasis on its self-renewal capacity. LDH isoenzymes expression pattern confirmed the same cellular source for both of the HRPE-2S cells and primary RPE cells. Characteristics of HRPE-2S cells promise it as an in vitro model for RPE stem cell-based researches. J. Cell. Physiol. 232: 2626-2640, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines.

    Science.gov (United States)

    Rops, Angelique L; van der Vlag, Johan; Jacobs, Cor W; Dijkman, Henry B; Lensen, Joost F; Wijnhoven, Tessa J; van den Heuvel, Lambert P; van Kuppevelt, Toin H; Berden, Jo H

    2004-12-01

    The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology. Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C. Glomerular endothelial cells were isolated from glomerular outgrowth by magnetic beads loaded with CD31, CD105, GSL I-B4, and ULEX. Clonal cell lines were characterized by immunofluorescence staining with antibodies/lectins specific for markers of endothelial cells, podocytes, and mesangial cells. Putative glomerular endothelial cell lines were analyzed for (1) cytokine-induced expression of adhesion molecules; (2) tube formation on Matrigel coating; and (3) the presence of fenestrae. As judged by immunostaining for Wilms tumor-1, smooth muscle actin (SMA), podocalyxin, and von Willebrand factor (vWF), we obtained putative endothelial, podocyte and mesangial cell lines. The mouse glomerular endothelial cell clone #1 (mGEnC-1) was positive for vWF, podocalyxin, CD31, CD105, VE-cadherin, GSL I-B4, and ULEX, internalized acetylated-low-density lipoprotein (LDL), and showed increased expression of adhesion molecules after activation with proinflammatory cytokines. Furthermore, mGEnC-1 formed tubes and contained nondiaphragmed fenestrae. The mGEnC-1 represents a conditionally immortalized cell line with various characteristics of differentiated glomerular endothelial cells when cultured at 37 degrees C. Most important, mGEnC-1 contains nondiaphragmed fenestrae, which is a unique feature of glomerular endothelial cells.

  20. Spontaneous lung metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice.

    Science.gov (United States)

    Knips, Jill; Czech-Sioli, Manja; Spohn, Michael; Heiland, Max; Moll, Ingrid; Grundhoff, Adam; Schumacher, Udo; Fischer, Nicole

    2017-07-01

    Merkel cell carcinoma (MCC) is an aggressive skin cancer entity that frequently leads to rapid death due to its high propensity to metastasize. The etiology of most MCC cases is linked to Merkel cell polyomavirus (MCPyV), a virus which is monoclonally integrated in up to 95% of tumors. While there are presently no animal models to study the role of authentic MCPyV infection on transformation, tumorigenesis or metastasis formation, xenograft mouse models employing engrafted MCC-derived cell lines (MCCL) represent a promising approach to study certain aspects of MCC pathogenesis. Here, the two MCPyV-positive MCC cell lines WaGa and MKL-1 were subcutaneously engrafted in scid mice. Engraftment of both MCC cell lines resulted in the appearance of circulating tumor cells and metastasis formation, with WaGa-engrafted mice showing a significantly shorter survival time as well as increased numbers of spontaneous lung metastases compared to MKL-1 mice. Interestingly, explanted tumors compared to parental cell lines exhibit an upregulation of MCPyV sT-Antigen expression in all tumors, with WaGa tumors showing significantly higher sT-Antigen expression than MKL-1 tumors. RNA-Seq analysis of explanted tumors and parental cell lines furthermore revealed that in the more aggressive WaGa tumors, genes involved in inflammatory response, growth factor activity and Wnt signalling pathway are significantly upregulated, suggesting that sT-Antigen is the driver of the observed differences in metastasis formation. © 2017 UICC.

  1. SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute lymphoblastic leukemia-derived cell lines

    Directory of Open Access Journals (Sweden)

    Zaborski Margarete

    2009-01-01

    Full Text Available Abstract Background SET-NUP214 fusion resulting from a recurrent cryptic deletion, del(9(q34.11q34.13 has recently been described in T-cell acute lymphoblastic leukemia (T-ALL and in one case of acute myeloid leukemia (AML. The fusion protein appears to promote elevated expression of HOXA cluster genes in T-ALL and may contribute to the pathogenesis of the disease. We screened a panel of ALL and AML cell lines for SET-NUP214 expression to find model systems that might help to elucidate the cellular function of this fusion gene. Results Of 141 human leukemia/lymphoma cell lines tested, only the T-ALL cell line LOUCY and the AML cell line MEGAL expressed the SET(TAF-Iβ-NUP214 fusion gene transcript. RT-PCR analysis specifically recognizing the alternative first exons of the two TAF-I isoforms revealed that the cell lines also expressed TAF-Iα-NUP214 mRNA. Results of fluorescence in situ hybridization (FISH and array-based copy number analysis were both consistent with del(9(q34.11q34.13 as described. Quantitative genomic PCR also confirmed loss of genomic material between SET and NUP214 in both cell lines. Genomic sequencing localized the breakpoints of the SET gene to regions downstream of the stop codon and to NUP214 intron 17/18 in both LOUCY and MEGAL cells. Both cell lines expressed the 140 kDa SET-NUP214 fusion protein. Conclusion Cell lines LOUCY and MEGAL express the recently described SET-NUP214 fusion gene. Of special note is that the formation of the SET exon 7/NUP214 exon 18 gene transcript requires alternative splicing as the SET breakpoint is located downstream of the stop codon in exon 8. The cell lines are promising model systems for SET-NUP214 studies and should facilitate investigating cellular functions of the the SET-NUP214 protein.

  2. Advances in Mammalian Cell Line Development Technologies for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Say Kong Ng

    2013-04-01

    Full Text Available From 2006 to 2011, an average of 15 novel recombinant protein therapeutics have been approved by US Food and Drug Administration (FDA annually. In addition, the expiration of blockbuster biologics has also spurred the emergence of biosimilars. The increasing numbers of innovator biologic products and biosimilars have thus fuelled the demand of production cell lines with high productivity. Currently, mammalian cell line development technologies used by most biopharmaceutical companies are based on either the methotrexate (MTX amplification technology or the glutamine synthetase (GS system. With both systems, the cell clones obtained are highly heterogeneous, as a result of random genome integration by the gene of interest and the gene amplification process. Consequently, large numbers of cell clones have to be screened to identify rare stable high producer cell clones. As such, the cell line development process typically requires 6 to 12 months and is a time, capital and labour intensive process. This article reviews established advances in protein expression and clone screening which are the core technologies in mammalian cell line development. Advancements in these component technologies are vital to improve the speed and efficiency of generating robust and highly productive cell line for large scale production of protein therapeutics.

  3. A bovine cell line that can be infected by natural sheep scrapie prions.

    Directory of Open Access Journals (Sweden)

    Anja M Oelschlegel

    Full Text Available Cell culture systems represent a crucial part in basic prion research; yet, cell lines that are susceptible to prions, especially to field isolated prions that were not adapted to rodents, are very rare. The purpose of this study was to identify and characterize a cell line that was susceptible to ruminant-derived prions and to establish a stable prion infection within it. Based on species and tissue of origin as well as PrP expression rate, we pre-selected a total of 33 cell lines that were then challenged with natural and with mouse propagated BSE or scrapie inocula. Here, we report the successful infection of a non-transgenic bovine cell line, a sub-line of the bovine kidney cell line MDBK, with natural sheep scrapie prions. This cell line retained the scrapie infection for more than 200 passages. Selective cloning resulted in cell populations with increased accumulation of PrPres, although this treatment was not mandatory for retaining the infection. The infection remained stable, even under suboptimal culture conditions. The resulting infectivity of the cells was confirmed by mouse bioassay (Tgbov mice, Tgshp mice. We believe that PES cells used together with other prion permissive cell lines will prove a valuable tool for ongoing efforts to understand and defeat prions and prion diseases.

  4. Presence of dopamine D-2 receptors in human tumoral cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Sokoloff, P.; Riou, J.F.; Martres, M.P.; Schwartz, J.C. (Centre Paul Broca, Paris (France))

    1989-07-31

    ({sup 125}I) Iodosulpride binding was examined on eight human cell lines derived from lung, breast and digestive tract carcinomas, neuroblastomas and leukemia. Specific binding was detected in five of these cell lines. In the richest cell line N417, derived from small cell lung carcinoma, ({sup 125}I) iodosulpride bound with a high affinity (Kd = 1.3 nM) to an apparently homogeneous population of binding site (Bmax = 1,606 sites per cell). These sites displayed a typical D-2 specificity, established with several dopaminergic agonists and antagonists selective of either D-1 or D-2 receptor subtypes. In addition, dopamine, apomorphine and RU 24926 distinguished high- and low-affinity sites, suggesting that the binding sites are associated with a G-protein. The biological significance and the possible diagnostic implication of the presence of D-2 receptors on these cell lines are discussed.

  5. Methylation Status of miR-182 Promoter in Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yongwen LI

    2015-05-01

    Full Text Available Background and objective It has been proven that the abnormal expression of miR-182 was related to the occurrence and development of tumors. The aim of this study is to explore the relationship between the methylation of miR-182 promoter and its expression in lung cancer cell lines. Methods Real-time quantitative PCR and methylation-specific PCR were used to detect the expression level of miR-182 and its promoter methylation status in five lung cancer cell lines (A549, L9981, NL9980, 95C and 95D. DNA sequencing was used to confirm the methylation results. Results The level of miR-182 expression significantly differs among these lung cancer cell lines. The highly metastatic human lung cancer cell lines, namely, A549 and L9981, demonstrate a relatively lower expression level of miR-182 compared with the lowly metastatic human lung cancer cell line 95C. Methylation-specific PCR and DNA sequencing assay results indicate that these lung cancer cell lines present different levels of miR-182 promoter methylation, and the highest methylation level is observed in A549 cells. Furthermore, the expression of miR-182 in these cell lines significantly increases when treated with 10 μM 5’-Aza-dC. Conclusion DNA methylation occurs in the miR-182 promoter region in lung cancer cell lines. This methylation can regulate the expression level of miR-182. Further study must be conducted to explore the function of miR-182 promoter methylation in lung cancer occurrence and development.

  6. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis).

    Science.gov (United States)

    Jager, Martine J; Magner, J Antonio Bermudez; Ksander, Bruce R; Dubovy, Sander R

    2016-08-01

    To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines.

  7. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  8. Single-dose and fractionated irradiation of four human lung cancer cell lines in vitro

    International Nuclear Information System (INIS)

    Brodin, O.; Lennartsson, L.; Nilsson, S.

    1991-01-01

    Four established human lung cancer cell lines were exposed to single-dose irradiation. The survival curves of 2 small cell lung carcinomas (SCLC) were characterized by a limited capacity for repair with small and moderate shoulders with extrapolation numbers (n) of 1.05 and 1.60 respectively. Two non-small cell lung carcinoma (NSCLC) cell lines, one squamous cell (SQCLC) and one large cell (LCLC) had large shoulders with n-values of 73 and 15 respectively. The radiosensitivity when measured as D 0 did not, however, differ as much from cell line to cell line, with values from 1.22 to 1.65. The surviving fraction after 2 Gy (SF2) was 0.24 and 0.42 respectively in the SCLC cell lines and 0.90 and 0.88 respectively in the NSCLC cell lines. Fractionated irradiation delivered according to 3 different schedules was also investigated. All the schedules delivered a total dose of 10 Gy in 5 days and were applied in 1, 2 and 5 Gy dose fractions respectively. Survival followed the pattern found after single-dose irradiation; it was lowest in the SCLC cell line with the lowest SF and highest in the two NSCLC cell lines. In the SCLC cell lines all schedules were approximately equally efficient. In the LCLC and in the SQCLC cell lines, the 5 Gy schedule killed more cells than the 1 and 2 Gy schedules. The results indicate that the size of the shoulder of the survival curve is essential when choosing the most tumoricidal fractionation schedule. (orig.)

  9. Enhancement of Radiation Response in Osteosarcoma and Rhabomyosarcoma Cell Lines by Histone Deacetylase Inhibition

    International Nuclear Information System (INIS)

    Blattmann, Claudia; Oertel, Susanne; Ehemann, Volker

    2010-01-01

    Purpose: Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. Methods and Materials: Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. Results: SAHA induced an inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). Conclusion: Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.

  10. Inhibition of Zoledronic Acid on Cell Proliferation and Invasion of Lung Cancer Cell Line 95D

    Directory of Open Access Journals (Sweden)

    Mingming LI

    2009-03-01

    Full Text Available Background and objective Abnormal proliferation and metastasis is the basic characteristic of malignant tumors. The aim of this work is to explore the effects of zoledronic acid on cell proliferation and invasion in lung cancer cell line 95D. Methods The effect of zoledrnic acid (ZOL on proliferation of lung cancer cell line 95D was detected by MTT. The expression of proliferation and invasion-relation genes and proteins were detected by Western blot, RT-PCR and immunofluorescence. Changes of invasion of lung cancer cell numbers were measured by polycarbonates coated with Matrigel. Results ZOL could inhibit the proliferation of lung cancer cell line 95D in vitro in a time-dependant and a dose-dependant manner. With time extending after ZOL treated, the mRNA expresion of VEGF, MMP9, MMP2 and protein expression of VEGF, MMP9, ERK1/ ERK2 were decreased. The results of Tanswell invasion showed the numbers of invasive cells were significantly reduced in 95D cells treated with ZOL 4 d and 6 d later. Conclusion ZOL could inhibit cell proliferation and invasion of lung cancer cell line 95D.

  11. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    De Siervi, Adriana; Vazquez, Elba S; Rezaval, Carolina; Rossetti, María V; Batlle, Alcira M del [Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Argentine National Research Council (CONICET), Department of Biological Chemistry, FCEN, University of Buenos Aires (Argentina)

    2002-01-01

    Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations.

  12. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    del Batlle Alcira M

    2002-03-01

    Full Text Available Abstract Background Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA and porphobilinogen (PBG. ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. Results We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations.

  13. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    International Nuclear Information System (INIS)

    De Siervi, Adriana; Vazquez, Elba S; Rezaval, Carolina; Rossetti, María V; Batlle, Alcira M del

    2002-01-01

    Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations

  14. Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration

    International Nuclear Information System (INIS)

    Guelden, Michael; Moerchel, Sabine; Seibert, Hasso

    2005-01-01

    Comparisons of acute toxic concentrations of chemicals to fish in vivo and cytotoxic concentrations to fish cell lines in vitro reveal rather good correlations of the toxic potencies in vitro and in vivo, but a clearly lower sensitivity of the fish cells. To examine whether the low sensitivity is specific for fish cells, cytotoxic potencies of reference chemicals from the Multicenter Evaluation of In Vitro Cytotoxicity program (MEIC) reported for the fish cell lines R1 and RTG-2 were compared with those obtained with the mouse Balb/c 3T3 cell line. Cytotoxic potencies (EC 50 values) for MEIC reference chemicals were determined with exponentially growing Balb/c 3T3 cells using three different test protocols. To assess both endpoints, cell proliferation and cell survival, EC 50 values were measured for the decrease in final cell protein after 24 and 72 h of exposure and for the reduction of cell protein increase during 24 h of exposure. EC 50 values obtained with the fish cell lines R1 and RTG-2 using cell survival as endpoint were taken from the MEIC data base. The comparison of cytotoxic potencies shows that, in general, the fish cell lines and the mammalian cell line are almost equally sensitive towards the cytotoxic action of chemicals. The mammalian cell line assay, however, becomes considerably more sensitive, by factors of 3.4-8.5, than the fish cell line assays, if cell growth instead of cell survival is used as endpoint. It is concluded, that cell proliferation might be a better endpoint than cell survival and that mammalian cell lines might be suited to assess fish acute toxicity

  15. Chemo-radioresistance of small cell lung cancer cell lines derived from untreated primary tumors obtained by diagnostic bronchofiberscopy

    International Nuclear Information System (INIS)

    Tanio, Yoshiro; Watanabe, Masatoshi; Inoue, Tamotsu

    1990-01-01

    New cell lines of small cell lung cancer (SCLC) were established from specimens of untreated primary tumors biopsied by diagnostic bronchofiberscopy. The advantage of this method was ease of obtaining specimens from lung tumors. Establishment of cell lines was successful with 4 of 13 specimens (30%). Clinical responses of the tumors showed considerable variation, but were well correlated with the in vitro sensitivity of the respective cell lines to chemotherapeutic drugs and irradiation. One of the cell lines was resistant to all drugs tested and irradiation, while another was sensitive to all of them. Although the acquired resistance of SCLC is the biggest problem in treatment, the natural resistance to therapy is another significant problem. Either acquired or natural, resistance mechanisms of SCLC may be elucidated by the use of such cell lines derived from untreated tumors. This method and these SCLC cell lines are expected to be useful for the serial study of biologic and genetic changes of untreated and pre-treated tumors, or primary and secondary tumors. (author)

  16. CD40 expression in Wehi-164 cell line.

    Science.gov (United States)

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-07-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body's defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system.

  17. The effect of resveratrol in combination with irradiation and chemotherapy. Study using Merkel cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Heiduschka, G.; Lill, C.; Brunner, M.; Thurnher, D.; Seemann, R.; Schmid, R.; Houben, R.; Bigenzahn, J.

    2014-01-01

    Merkel cell carcinoma (MCC) is a rare, but highly malignant tumor of the skin. In case of systemic disease, possible therapeutic options include irradiation or chemotherapy. The aim of this study was to evaluate whether the flavonoid resveratrol enhances the effect of radiotherapy or chemotherapy in MCC cell lines. The two MCC cell lines MCC13 and MCC26 were treated with increasing doses of resveratrol. Combination experiments were conducted with cisplatin and etoposide. Colony forming assays were performed after sequential irradiation with 1, 2, 3, 4, 6, and 8 Gy and apoptosis was assessed with flow cytometry. Expression of cancer drug targets was analyzed by real-time PCR array. Resveratrol is cytotoxic in MCC cell lines. Cell growth is inhibited by induction of apoptosis. The combination with cisplatin and etoposide resulted in a partially synergistic inhibition of cell proliferation. Resveratrol and irradiation led to a synergistic reduction in colony formation compared to irradiation alone. Evaluation of gene expression did not show significant difference between the cell lines. Due to its radiosensitizing effect, resveratrol seems to be a promising agent in combination with radiation therapy. The amount of chemosensitizing depends on the cell lines tested. (orig.) [de

  18. Heterogeneity of osteosarcoma cell lines led to variable responses in reprogramming.

    Science.gov (United States)

    Choong, Pei Feng; Teh, Hui Xin; Teoh, Hoon Koon; Ong, Han Kiat; Choo, Kong Bung; Sugii, Shigeki; Cheong, Soon Keng; Kamarul, Tunku

    2014-01-01

    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.

  19. Heterogeneity of Osteosarcoma Cell Lines Led to Variable Responses in Reprogramming

    Science.gov (United States)

    Choong, Pei Feng; Teh, Hui Xin; Teoh, Hoon Koon; Ong, Han Kiat; Choo, Kong Bung; Sugii, Shigeki; Cheong, Soon Keng; Kamarul, Tunku

    2014-01-01

    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture. PMID:25170299

  20. Sensitive detection of pre-existing BCR-ABL kinase domain mutations in CD34+ cells of newly diagnosed chronic-phase chronic myeloid leukemia patients is associated with imatinib resistance: implications in the post-imatinib era.

    Directory of Open Access Journals (Sweden)

    Zafar Iqbal

    Full Text Available BACKGROUND: BCR-ABL kinase domain mutations are infrequently detected in newly diagnosed chronic-phase chronic myeloid leukemia (CML patients. Recent studies indicate the presence of pre-existing BCR-ABL mutations in a higher percentage of CML patients when CD34+ stem/progenitor cells are investigated using sensitive techniques, and these mutations are associated with imatinib resistance and disease progression. However, such studies were limited to smaller number of patients. METHODS: We investigated BCR-ABL kinase domain mutations in CD34+ cells from 100 chronic-phase CML patients by multiplex allele-specific PCR and sequencing at diagnosis. Mutations were re-investigated upon manifestation of imatinib resistance using allele-specific PCR and direct sequencing of BCR-ABL kinase domain. RESULTS: Pre-existing BCR-ABL mutations were detected in 32/100 patients and included F311L, M351T, and T315I. After a median follow-up of 30 months (range 8-48, all patients with pre-existing BCR-ABL mutations exhibited imatinib resistance. Of the 68 patients without pre-existing BCR-ABL mutations, 24 developed imatinib resistance; allele-specific PCR and BCR-ABL kinase domain sequencing detected mutations in 22 of these patients. All 32 patients with pre-existing BCR-ABL mutations had the same mutations after manifestation of imatinib-resistance. In imatinib-resistant patients without pre-existing BCR-ABL mutations, we detected F311L, M351T, Y253F, and T315I mutations. All imatinib-resistant patients except T315I and Y253F mutations responded to imatinib dose escalation. CONCLUSION: Pre-existing BCR-ABL mutations can be detected in a substantial number of chronic-phase CML patients by sensitive allele-specific PCR technique using CD34+ cells. These mutations are associated with imatinib resistance if affecting drug binding directly or indirectly. After the recent approval of nilotinib, dasatinib, bosutinib and ponatinib for treatment of chronic myeloid

  1. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y; Ito, C; Furukawa, H

    2001-01-01

    33 coumarins, mainly the simple isopentenylated coumarins and derived pyrano- and furanocoumarins, were examined for their antiproliferative activity towards several cancer and normal human cell lines. The pyrano- and furanocoumarins showed strong activity against the cancer cell lines, whereas they had weak antiproliferative activity against the normal human cell lines. The decreasing rank order of potency was osthenone (10), clausarin (25), clausenidin (26), dentatin (24), nordentatin (23), imperatorin (29), seselin (27), xanthyletin (21), suberosin (17), phebalosin (8) and osthol (12). The structure-activity relationship established from the results revealed that the 1,1-dimethylallyl and isopentenyl groups have an important role for antiproliferative activity.

  2. Induction of expression of two phenotypic markers of pulmonary type II cells in a cultured cell line

    International Nuclear Information System (INIS)

    Henderson, R.F.; Waide, J.J.; Scott, G.G.

    1994-01-01

    The functions of pulmonary type II cells, such as synthesis of pulmonary surfactant and metabolism of inhaled xenobiotics, can be studied in primary isolates of lung cells. However, isolated type II cells, when cultured, quickly lose the phenotypic expressions characteristics of type II cells, including surfactant lipid and protein synthesis and alkaline phosphatase (AP) activity. A cultured cell line that maintained expression of type II cell markers of differentiation would be advantageous for the study of such functions as surfactant synthesis and secretion. Such a cell line would allow generation of a large number of homogeneous cells for study. The purpose of the current study was to induce markers of differentiated type II cells in a cultured cell line to facilitate studies of factors that control surfactant synthesis and secretion

  3. Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines.

    Science.gov (United States)

    Matak, Damian; Brodaczewska, Klaudia K; Lipiec, Monika; Szymanski, Łukasz; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Renal cell carcinoma (RCC) is the most lethal of the common urologic malignancies, comprising 3% of all human neoplasms, and the incidence of kidney cancer is rising annually. We need new approaches to target tumor cells that are resistant to current therapies and that give rise to recurrence and treatment failure. In this study, we focused on low oxygen tension and three-dimensional (3D) cell culture incorporation to develop a new RCC growth model. We used the hanging drop and colony formation methods, which are common in 3D culture, as well as a unique methylcellulose (MC) method. For the experiments, we used human primary RCC cell lines, metastatic RCC cell lines, human kidney cancer stem cells, and human healthy epithelial cells. In the hanging drop assay, we verified the potential of various cell lines to create solid aggregates in hypoxic and normoxic conditions. With the semi-soft agar method, we also determined the ability of various cell lines to create colonies under different oxygen conditions. Different cell behavior observed in the MC method versus the hanging drop and colony formation assays suggests that these three assays may be useful to test various cell properties. However, MC seems to be a particularly valuable alternative for 3D cell culture, as its higher efficiency of aggregate formation and serum independency are of interest in different areas of cancer biology.

  4. [Establishment and characterization of a cell line derived from human ovarian mucinous cystadenocarcinoma].

    Science.gov (United States)

    Wan, Q; Xu, D; Li, Z

    2001-07-01

    To establish a cell line of human ovarian cancer, and study its characterization. The cell line was established by the cultivation of subsides walls, and kept by freezing. The morphology was observed by microscope and electromicroscope. The authors studied its growth and propagation, the agglutination test of phytohemagglutinin (PHA), the chromosome analysis, heterotransplanting, immuno-histochemistry staining, the analysis of hormone, the pollution examination and the test of sensitivity to virus etc. A new human ovarian carcinoma cell line, designated ovarian mucinous cystadenocarcinoma 685 (OMC685), was established from mucinous cystadenocarcinoma. This cell line had subcultured to 91 generations, and some had been frozen for 8 years and revived, still grew well. This cell line possessed the feature of glandular epithelium cancer cell. The cells grew exuberantly, and the agglutinating test of PHA was positive. Karyotype was subtriploid with distortion. Heterotransplantations, alcian blue periobic acid-schiff (AbPAS), mucicarmine, alcian blue stainings, estradiol (E2) and progesterone were all positive. Without being polluted, it was sensitive to polivirus-I, adenovirus 7 and measles virus. OMC685 is a distinct human ovarian tumous cell line.

  5. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar, E-mail: sekarashok@gmail.com

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.

  6. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    International Nuclear Information System (INIS)

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar

    2015-01-01

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER + and ER − breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen

  7. Glycoproteins and sialyl transferase of human B lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Lui, S.W.L.; Ng, M.H.

    1980-01-01

    We used two radiolabeling methods to study glycoproteins on the surface of lymphoblastoid cells. One of the methods affects tritiation of residues which are oxidized with galactose oxidase and the other causes tritiation of neuraminic acid residues. This approach was shown to allow a better resolution of cell surface glycoproteins than if either method were used alone. Glycoproteins of B 1 - 19 cells which harbor the Epstein-Barr virus genomes were compared with those of its parental cell line, BJAB, which does not harbor the viral genomes. These studies did not reveal a unique viral protein. A 28,000 mol. wt. glycoprotein was found to be the most prominent neuraminic acidlabeled product of B 1 - 19 cells and also of the two other cell lines, Raji and Ly38, which harbor the EBV genomes. A similar molecular weight species from BJAB cells identified by galactose oxidase labeling might be deficient in neuraminic acid residues as it was poorly labeled by the periodate oxidation method. The neuraminic acid content and level of sialyl transferase of BJAB cells were found to be lower than those of the other cell lines studied. (auth.)

  8. Selection of radioresistant cells by vitamin A deficiency in a small cell lung cancer cell line

    International Nuclear Information System (INIS)

    Terasaki, Takeo; Shimosato, Yukio; Wada, Makio; Yokota, Jun; Terada, Masaaki

    1990-01-01

    Radiation sensitivity of a human small cell lung cancer cell line, Lu-134-B cells, cultured in serum-supplemented medium and of cells transferred to and cultured in delipidized serum-supplemented (vitamin A-deficient) medium was studied. The cells cultured in serum-supplemented medium showed the phenotype of classic small cell lung cancer sensitive to radiation, while cells transferred to delipidized serum-supplemented medium showed partial squamous cell differentiation and became resistant to radiation. These results suggest that some small cell lung cancer cells in vitro change their morphology and radiosensitivity depending on the culture conditions. The change in radiosensitivity was reproducible, and was not reversible by culture of the radioresistant cells in delipidized serum-supplemented medium with addition of retinoic acid (vitamin A-sufficient medium) for two months, although squamous cells disappeared. Acquisition of radioresistancy was considered to occur as the result of clonal selective growth in delipidized medium of a minor cell population in the original cell culture, based on a study of chromosome number. It was also found that there was no association of myc-family oncogenes with the changes of radiosensitivity in this cell line. (author)

  9. In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in non‑small cell lung cancer cell lines.

    Science.gov (United States)

    Wang, Min-Cong; Liang, Xuan; Liu, Zhi-Yan; Cui, Jie; Liu, Ying; Jing, Li; Jiang, Li-Li; Ma, Jie-Qun; Han, Li-Li; Guo, Qian-Qian; Yang, Cheng-Cheng; Wang, Jing; Wu, Tao; Nan, Ke-Jun; Yao, Yu

    2015-01-01

    The concurrent administration of chemotherapy and epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) has previously produced a negative interaction and failed to confer a survival benefit to non‑small cell lung cancer (NSCLC) patients compared with first‑line cytotoxic chemotherapy. The present study aimed to investigate the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib in NSCLC cell lines and clarify the underlying mechanisms. HCC827, H1975, H1299 and A549 human NSCLC cell lines with wild‑type and mutant EGFR genes were used as in vitro models to define the differential effects of various schedules of cisplatin/paclitaxel with icotinib treatments on cell growth, proliferation, cell cycle distribution, apoptosis, and EGFR signaling pathway. Sequence‑dependent antiproliferative effects differed among the four NSCLC cell lines, and were not associated with EGFR mutation, constitutive expression levels of EGFR or downstream signaling molecules. The antiproliferative effect of cisplatin plus paclitaxel followed by icotinib was superior to that of cisplatin or paclitaxel followed by icotinib in the HCC827, H1975, H1299 and A549 cell lines, and induced more cell apoptosis and G0/G1 phase arrest. Cisplatin and paclitaxel significantly increased the expression of EGFR phosphorylation in the HCC827 cell line. However, only paclitaxel increased the expression of EGFR phosphorylation in the H1975 cell line. Cisplatin/paclitaxel followed by icotinib influenced the expression of p‑EGFR and p‑AKT, although the expression of p‑ERK1/2 remained unchanged. The results suggest that the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib differed among the NSCLC cell lines. The results also provide molecular evidence to support clinical treatment strategies for NSCLC patients.

  10. BETULINIC ACID WAS MORE CYTOTOXIC TOWARDS THE HUMAN BREAST CANCER CELL LINE MDA-MB-231 THAN THE HUMAN PROMYELOCYTIC LEUKAEMIA CELL LINE HL-60

    Directory of Open Access Journals (Sweden)

    LATIFAH SAIFUL YAZAN

    2009-01-01

    Full Text Available Betulinic acid (BA is a pentacyclic triterpene found in several botanical sources that has been shown to cause apoptosis in a number of cell lines. This study was undertaken to determine the in vitro cytotoxic properties of BA towards the human mammary carcinoma cell line MDA-MB-231 and the human promyelocytic leukaemia cell line HL-60 and the mode of the induced cell death. The cytotoxicity and mode of cell death of BA were determined using the MTT assay and DNAfragmentation analysis, respectively. In our study, the compound was found to be cytotoxic to MDA-MB-231 and HL-60 cells with IC50 values of 58 μg/mL and 134 μg/mL, respectively. Cells treated with high concentrations of BA exhibited features characteristic of apoptosis such as blebbing, shrinking and a number of small cytoplasm body masses when viewed under an inverted light microscope after 24 h. The incidence of apoptosis in MDA-MB-231 was further confirmed bythe DNA fragmentation analysis, with the formation of DNA fragments of oligonucleosomal size (180-200 base pairs, giving a ladder-like pattern on agarose gel electrophoresis. BA was more cytotoxic towards MDA-MB-231 than HL-60 cells, and induced apoptosis in MDA-MB-231 cells.

  11. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  12. Guidelines for the use of cell lines in biomedical research.

    Science.gov (United States)

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-09-09

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise.

  13. Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor.

    Directory of Open Access Journals (Sweden)

    Simon Heidegger

    Full Text Available Mycoplasma are a frequent and occult contaminant of cell cultures, whereby these prokaryotic organisms can modify many aspects of cell physiology, rendering experiments that are conducted with such contaminated cells problematic. Chronic Mycoplasma contamination in human monocytic cells lines has been associated with suppressed Toll-like receptor (TLR function. In contrast, we show here that components derived from a Mycoplasma hyorhinis-infected cell line can activate innate immunity in non-infected primary immune cells. Release of pro-inflammatory cytokines such as IL-6 by dendritic cells in response to Mycoplasma hyorhinis-infected cell components was critically dependent on the adapter protein MyD88 but only partially on TLR2. Unlike canonical TLR2 signaling that is triggered in response to the detection of Mycoplasma infection, innate immune activation by components of Mycoplasma-infected cells was inhibited by chloroquine treatment and sensitive to protease treatment. We further show that in plasmacytoid dendritic cells, soluble factors from Mycoplasma hyorhinis-infected cells induce the production of large amounts of IFN-α. We conclude that Mycoplasma hyorhinis-infected cell lines release protein factors that can potently activate co-cultured innate immune cells via a previously unrecognized mechanism, thus limiting the validity of such co-culture experiments.

  14. Effects of hypoxia on human cancer cell line chemosensitivity

    Science.gov (United States)

    2013-01-01

    Background Environment inside even a small tumor is characterized by total (anoxia) or partial oxygen deprivation, (hypoxia). It has been shown that radiotherapy and some conventional chemotherapies may be less effective in hypoxia, and therefore it is important to investigate how different drugs act in different microenvironments. In this study we perform a large screening of the effects of 19 clinically used or experimental chemotherapeutic drugs on five different cell lines in conditions of normoxia, hypoxia and anoxia. Methods A panel of 19 commercially available drugs: 5-fluorouracil, acriflavine, bortezomib, cisplatin, digitoxin, digoxin, docetaxel, doxorubicin, etoposide, gemcitabine, irinotecan, melphalan, mitomycin c, rapamycin, sorafenib, thalidomide, tirapazamine, topotecan and vincristine were tested for cytotoxic activity on the cancer cell lines A2780 (ovarian), ACHN (renal), MCF-7 (breast), H69 (SCLC) and U-937 (lymphoma). Parallel aliquots of the cells were grown at different oxygen pressures and after 72 hours of drug exposure viability was measured with the fluorometric microculture cytotoxicity assay (FMCA). Results Sorafenib, irinotecan and docetaxel were in general more effective in an oxygenated environment, while cisplatin, mitomycin c and tirapazamine were more effective in a low oxygen environment. Surprisingly, hypoxia in H69 and MCF-7 cells mostly rendered higher drug sensitivity. In contrast ACHN appeared more sensitive to hypoxia, giving slower proliferating cells, and consequently, was more resistant to most drugs. Conclusions A panel of standard cytotoxic agents was tested against five different human cancer cell lines cultivated at normoxic, hypoxic and anoxic conditions. Results show that impaired chemosensitivity is not universal, in contrast different cell lines behave different and some drugs appear even less effective in normoxia than hypoxia. PMID:23829203

  15. Center for Media Literacy Unveils the CML Medialit Kit[TM]: A Free Educational Framework that Helps Students Challenge and Understand Media

    Science.gov (United States)

    Social Studies, 2004

    2004-01-01

    Five key questions form the basis of the new CML MediaLit Kit, an educational framework and curriculum guide developed by the Center for Media Literacy. Adaptable to all grades, the key questions help children and young people evaluate the thousands of media messages that bombard them daily. More than two years in development and available for…

  16. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    Science.gov (United States)

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  17. DNA methylation profiles of ovarian epithelial carcinoma tumors and cell lines.

    Directory of Open Access Journals (Sweden)

    Sahar Houshdaran

    2010-02-01

    Full Text Available Epithelial ovarian carcinoma is a significant cause of cancer mortality in women worldwide and in the United States. Epithelial ovarian cancer comprises several histological subtypes, each with distinct clinical and molecular characteristics. The natural history of this heterogeneous disease, including the cell types of origin, is poorly understood. This study applied recently developed methods for high-throughput DNA methylation profiling to characterize ovarian cancer cell lines and tumors, including representatives of three major histologies.We obtained DNA methylation profiles of 1,505 CpG sites (808 genes in 27 primary epithelial ovarian tumors and 15 ovarian cancer cell lines. We found that the DNA methylation profiles of ovarian cancer cell lines were markedly different from those of primary ovarian tumors. Aggregate DNA methylation levels of the assayed CpG sites tended to be higher in ovarian cancer cell lines relative to ovarian tumors. Within the primary tumors, those of the same histological type were more alike in their methylation profiles than those of different subtypes. Supervised analyses identified 90 CpG sites (68 genes that exhibited 'subtype-specific' DNA methylation patterns (FDR<1% among the tumors. In ovarian cancer cell lines, we estimated that for at least 27% of analyzed autosomal CpG sites, increases in methylation were accompanied by decreases in transcription of the associated gene.The significant difference in DNA methylation profiles between ovarian cancer cell lines and tumors underscores the need to be cautious in using cell lines as tumor models for molecular studies of ovarian cancer and other cancers. Similarly, the distinct methylation profiles of the different histological types of ovarian tumors reinforces the need to treat the different histologies of ovarian cancer as different diseases, both clinically and in biomarker studies. These data provide a useful resource for future studies, including those of

  18. Investigating the role of caveolin-2 in prostate cancer cell line

    Directory of Open Access Journals (Sweden)

    Jin-Yih Low

    2017-02-01

    Full Text Available Prostate cancer is a worldwide problem. While the role of caveolin-1 has been extensively studied, little is known about the role of caveolin-2 (CAV2 in prostate cancer. Up-regulation of CAV2 in androgen independent PC3 cells compared to normal prostate cell line and androgen dependent prostate cancer cell lines has been observed. Recent studies suggest that up-regulation of CAV2 plays an important role in androgen independent prostate cancer. This study investigates whether CAV2 is important in mediating the aggressive phenotypes seen in androgen independent prostate cancer cells. The androgen independent prostate cancer cell line, PC3 was used that has been shown to express CAV2, and CAV2 knock down was performed using siRNA system. Changes to cell number, migration and invasion were assessed after knocking down CAV2. Our results showed that down-regulating CAV2 resulted in reduced cell numbers, migration and invasion in PC3 cells. This preliminary study suggests that CAV2 may act to promote malignant behavior in an androgen independent prostate cancer cell line. Further studies are required to fully elucidate the role of CAV2 in androgen independent prostate cancer.

  19. Radiosensitivity of prostatic cell lines: bicalutamide effect (Casodex), micro-RNAs actions

    International Nuclear Information System (INIS)

    Quero, J.L.

    2011-10-01

    The first aim of our study was to evaluate the effect of the association between bicalutamide, an androgen receptor inhibitor, and ionizing radiation in three prostate cancer cell lines. The second aim was to examine a possible correlation between the expression of miR-210 or miR-373, the tolerance to hypoxia tolerance and the responses to radiation.We found that bicalutamide produced cytostatic and cytotoxic effects in the androgen receptor- positive LNCaP cell line. The androgen receptor-negative DU145 and PC3 cell lines were more resistant to bicalutamide. However, these cell lines were affected by high bicalutamide concentration with the same endpoints as for LNCaP cells. The inhibition of proliferation by bicalutamide was associated with G1 cell cycle phase arrest, increased expression of p27KIP1 protein, and decreased expression of HER2 protein. Last but not least, bicalutamide elicited a marked radioprotective effect in LNCaP cells when associated with concomitant irradiation. This result suggests that bicalutamide and radiotherapy should not be delivered in close temporal proximity, especially in case of hypo-fractionated radiotherapy protocols.Hypoxia is a well known radioresistance factor in tumors and is associated with a bad prognosis in prostate cancer. In this study, we found that hypoxia promotes the expression of HIF-1α, CA9, VEGF and miR-210 but not miR-373 in prostate cancer cell lines irrespective of their androgen receptor status.Our findings suggest that miR-210 expression is correlated with resistance to hypoxia and could be used as a prognostic marker in prostate cancer. Conversely, miR-210 inhibition did not impact the radiation susceptibility of PC3 prostate cancer cell line under hypoxia. (author)

  20. Establishment and characterization of 7 novel hepatocellular carcinoma cell lines from patient-derived tumor xenografts.

    Directory of Open Access Journals (Sweden)

    Hong Xin

    Full Text Available Hepatocellular carcinoma (HCC is a common cancer with poor prognosis worldwide and the molecular mechanism is not well understood. This study aimed to establish a collection of human HCC cell lines from patient-derived xenograft (PDX models. From the 20 surgical HCC sample collections, 7 tumors were successfully developed in immunodeficient mice and further established 7 novel HCC cell lines (LIXC002, LIXC003, LIXC004, LIXC006, LIXC011, LIXC012 and CPL0903 by primary culture. The characterization of cell lines was defined by morphology, growth kinetics, cell cycle, chromosome analysis, short tandem repeat (STR analysis, molecular profile, and tumorigenicity. Additionally, response to clinical chemotherapeutics was validated both in vitro and in vivo. STR analysis indicated that all cell lines were unique cells different from known cell lines and free of contamination by bacteria or mycoplasma. The other findings were quite heterogeneous between individual lines. Chromosome aberration could be found in all cell lines. Alpha-fetoprotein was overexpressed only in 3 out of 7 cell lines. 4 cell lines expressed high level of vimentin. Ki67 was strongly stained in all cell lines. mRNA level of retinoic acid induced protein 3 (RAI3 was decreased in all cell lines. The 7 novel cell lines showed variable sensitivity to 8 tested compounds. LIXC011 and CPL0903 possessed multiple drug resistance property. Sorafenib inhibited xenograft tumor growth of LIXC006, but not of LIXC012. Our results indicated that the 7 novel cell lines with low passage maintaining their clinical and pathological characters could be good tools for further exploring the molecular mechanism of HCC and anti-cancer drug screening.

  1. The status of intercellular junctions in established lens epithelial cell lines.

    Science.gov (United States)

    Dave, Alpana; Craig, Jamie E; Sharma, Shiwani

    2012-01-01

    Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT-PCR), and localization was determined by immunofluorescence labeling. Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that

  2. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  3. HEK293T cell lines defective for O-linked glycosylation.

    Directory of Open Access Journals (Sweden)

    James M Termini

    Full Text Available Here we describe derivatives of the HEK293T cell line that are defective in their ability to generate mucin-type O-linked glycosylation. Using CRISPR/Cas9 and a single-cell GFP-sorting procedure, the UDP-galactose-4-epimerase (GALE, galactokinase 1 (GALK1, and galactokinase 2 (GALK2 genes were knocked out individually and in combinations with greater than 90% of recovered clones having the desired mutations. Although HEK293T cells are tetraploid, we found this approach to be an efficient method to target and disrupt all 4 copies of the target gene. Deficient glycosylation in the GALE knockout cell line could be rescued by the addition of galactose and N-acetylgalactosamine (GalNAc to the cell culture media. However, when key enzymes of the galactose/GalNAc salvage pathways were disrupted in tandem (GALE+GALK1 or GALE+GALK2, O-glycosylation was eliminated and could not be rescued by the addition of either galactose plus GalNAc or UDP-galactose plus UDP-GalNAc. GALK1 and GALK2 are key enzymes of the galactose/GalNAc salvage pathways. Mass spectrometry was performed on whole cell lysate of the knockout cell lines to verify the glycosylation phenotype. As expected, the GALE knockout was almost completely devoid of all O-glycosylation, with minimal glycosylation as a result of functional salvage pathways. However, the GALE+GALK1 and GALE+GALK2 knockout lines were devoid of all O-glycans. Mass spectrometry analysis revealed that the disruption of GALE, GALK1, and GALE+GALK2 had little effect on the N-glycome. But when GALE was knocked out in tandem with GALK1, N-glycans were exclusively of the high mannose type. Due to the well-characterized nature of these five knockout cell lines, they will likely prove useful for a wide variety of applications.

  4. Antiproliferative Evaluation of Isofuranodiene on Breast and Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Michela Buccioni

    2014-01-01

    Full Text Available The anticancer activity of isofuranodiene, extracted from Smyrnium olusatrum, was evaluated in human breast adenocarcinomas MDA-MB 231 and BT 474, and Caucasian prostate adenocarcinoma PC 3 cell lines by MTS assay. MTS assay showed a dose-dependent growth inhibition in the tumor cell lines after isofuranodiene treatment. The best antiproliferative activity of the isofuranodiene was found on PC 3 cells with an IC50 value of 29 μM, which was slightly less than the inhibition against the two breast adenocarcinoma cell lines with IC50 values of 59 and 55 μM on MDA-MB 231 and BT 474, respectively. Hoechst 33258 assay was performed in order to study the growth inhibition mechanism in prostate cancer cell line; the results indicate that isofuranodiene induces apoptosis. Overall, the understudy compound has a good anticancer activity especially towards the PC 3. On the contrary, it is less active on Chinese hamster ovary cells (CHO and human embryonic kidney (HEK 293 appearing as a good candidate as a potential natural anticancer drug with low side effects.

  5. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines

    International Nuclear Information System (INIS)

    Bodvarsdottir, Sigridur K.; Steinarsdottir, Margret; Bjarnason, Hordur; Eyfjord, Jorunn E.

    2012-01-01

    In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and γ-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.

  6. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsdottir, Sigridur K., E-mail: skb@hi.is [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland); Steinarsdottir, Margret [Chromosome Laboratory, Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik (Iceland); Bjarnason, Hordur; Eyfjord, Jorunn E. [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland)

    2012-01-03

    In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and {gamma}-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.

  7. Frequency and distribution of Notch mutations in tumor cell lines

    International Nuclear Information System (INIS)

    Mutvei, Anders Peter; Fredlund, Erik; Lendahl, Urban

    2015-01-01

    Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context. The online version of this article (doi:10.1186/s12885-015-1278-x) contains supplementary material, which is available to authorized users

  8. Recommendation of short tandem repeat profiling for authenticating human cell lines, stem cells, and tissues.

    Science.gov (United States)

    Barallon, Rita; Bauer, Steven R; Butler, John; Capes-Davis, Amanda; Dirks, Wilhelm G; Elmore, Eugene; Furtado, Manohar; Kline, Margaret C; Kohara, Arihiro; Los, Georgyi V; MacLeod, Roderick A F; Masters, John R W; Nardone, Mark; Nardone, Roland M; Nims, Raymond W; Price, Paul J; Reid, Yvonne A; Shewale, Jaiprakash; Sykes, Gregory; Steuer, Anton F; Storts, Douglas R; Thomson, Jim; Taraporewala, Zenobia; Alston-Roberts, Christine; Kerrigan, Liz

    2010-10-01

    Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues.

  9. Recommendation of short tandem repeat profiling for authenticating human cell lines, stem cells, and tissues

    Science.gov (United States)

    Barallon, Rita; Bauer, Steven R.; Butler, John; Capes-Davis, Amanda; Dirks, Wilhelm G.; Furtado, Manohar; Kline, Margaret C.; Kohara, Arihiro; Los, Georgyi V.; MacLeod, Roderick A. F.; Masters, John R. W.; Nardone, Mark; Nardone, Roland M.; Nims, Raymond W.; Price, Paul J.; Reid, Yvonne A.; Shewale, Jaiprakash; Sykes, Gregory; Steuer, Anton F.; Storts, Douglas R.; Thomson, Jim; Taraporewala, Zenobia; Alston-Roberts, Christine; Kerrigan, Liz

    2010-01-01

    Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues. PMID:20614197

  10. 'Fluorescent Cell Chip' for immunotoxicity testing: Development of the c-fos expression reporter cell lines

    International Nuclear Information System (INIS)

    Trzaska, Dominika; Zembek, Patrycja; Olszewski, Maciej; Adamczewska, Violetta; Ulleras, Erik; Dastych, JarosIaw

    2005-01-01

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals

  11. Comparison of the effect of interferon on two human hepatoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M; Schoub, B D; Lyons, S F; Chiu, M N [University of the Witwatersrand, Johannesburg (South Africa). Dept. of Virology

    1985-06-01

    Two human hepatoma cell lines, the PLC/PRF/5 and the Mahlavu cells, which differ in their production of the hepatitis B surface antigen (HBsAg), responded differently to interferon (IFN). After IFN treatment both cell lines were able to inhibit Sindbis virus replication. Oligo A synthetase (E enzyme) could be activated in the PLC/PRF/5 cells although they were not sensitive to exogenous 2 - 5 oligoadenylic acid (2 - 5 A). In contrast, the Mahlavu cells were sensitive to exogenous 2 - 5 A, but unable to activate the E enzyme. Both cell lines were unable to stimulate phosphorylation of the exogenous initiator factor eIF-2.

  12. Ethanolic Extract Cytotoxic Effect of Zingiber Afficinale in Breast Cancer (MCF7 Cell Line

    Directory of Open Access Journals (Sweden)

    J Tavakkol Afshari

    2010-07-01

    Full Text Available Introduction & Objective: Biological activities of Zingiber afficieale plants have been reported as possessing anticancer, antibacterial, anti ulcer, antifungal, and insecticidal properties. However, its antitumor effects haven't been studied in cancer cell lines. The aim of this study was to investigate the antitumor effect of zingiber afficieale on breast cancer cell lines. Materials & Methods: This experimental study was conducted in 2010 at Mashhad University of medical Sciences. Breast cancer cell line (MCF7 and normal connective tissue cell line (L929 were cultured in DMEM medium. Ethanolic extract of Zingiber afficinale was prepared and cell lines were treated with different concentration of extract (5000 to 78 µg. Cell viability was measured by MTT assay after 24, 48, and 72 hours. The collected data were statistically analyzed by SPSS software. Results: The effects of Zingiber afficinale on cell viability were observed after 48 hours on cell lines. Ginger doses in 2500 µg concentration inhibited 50% of cell growth (IC50 in cell lines after 48 hours. Conclusion: Our study revealed that fresh ginger extract has cytotoxic effects on tumor cells, but it doesn’t have any cytotoxic effect on normal cells. It seems that ginger could be considered as a promising chemotherapeutic agent in cancer treatment.

  13. RBE of neutrons for induction of cell reproductive death and chromosome aberrations in three cell lines

    International Nuclear Information System (INIS)

    Zoetelief, J.; Kuijpers, W.C.; Baten-Wittwer, A.; Barendsen, G.W.

    1983-01-01

    The authors have compared the RBE values for induction of dicentrics and centric rings with those for cell inactivation and with the mean or effective quality factors (Q) recommended for radiation protection. The induction of cell reproductive death and chromosome aberrations has been investigated in plateau phase cultures of established lines of a rat rhabdomyosarcoma, a rat ureter carcinoma and Chinese hamster cells for single doses of 300 kV X-rays and 0.5, 4.2 and 15 MeV neutrons. The different cell lines show considerable variations in sensitivity and the RBE values obtained are presented in tabular form. The mean RBE values for the rat rhabdomyosarcoma cells are lower than those for the other two relatively resistant cell lines. Those for the Chinese hamster cells extrapolated to levels according to low doses of X-rays are in good agreement with the quoted Q values. (Auth./C.F.)

  14. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  15. Hypoxic cell turnover in different solid tumor lines

    International Nuclear Information System (INIS)

    Ljungkvist, Anna S.E.; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-01-01

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h

  16. 2-Hydroxypropyl-β-Cyclodextrin Acts as a Novel Anticancer Agent.

    Directory of Open Access Journals (Sweden)

    Masako Yokoo

    Full Text Available 2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML, acute lymphoblastic leukemia and chronic myeloid leukemia (CML. HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors, and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics.

  17. Propagation of Asian isolates of canine distemper virus (CDV in hamster cell lines

    Directory of Open Access Journals (Sweden)

    Yamaguchi Ryoji

    2009-10-01

    Full Text Available Abstract Backgrounds The aim of this study was to confirm the propagation of various canine distemper viruses (CDV in hamster cell lines of HmLu and BHK, since only a little is known about the possibility of propagation of CDV in rodent cells irrespective of their epidemiological importance. Methods The growth of CDV in hamster cell lines was monitored by titration using Vero.dogSLAMtag (Vero-DST cells that had been proven to be susceptible to almost all field isolates of CDV, with the preparations of cell-free and cell-associated virus from the cultures infected with recent Asian isolates of CDV (13 strains and by observing the development of cytopathic effect (CPE in infected cultures of hamster cell lines. Results Eleven of 13 strains grew in HmLu cells, and 12 of 13 strains grew in BHK cells with apparent CPE of cell fusion in the late stage of infection. Two strains and a strain of Asia 1 group could not grow in HmLu cells and BHK cells, respectively. Conclusion The present study demonstrates at the first time that hamster cell lines can propagate the majority of Asian field isolates of CDV. The usage of two hamster cell lines suggested to be useful to characterize the field isolates biologically.

  18. Purinergic receptors and calcium signalling in human pancreatic duct cell lines

    DEFF Research Database (Denmark)

    Hansen, Mette R; Krabbe, Simon; Novak, Ivana

    2008-01-01

    pancreatic duct cell lines PANC-1 and CFPAC-1. Expression of P2 receptors was examined using RT-PCR and immunocytochemistry. Both cell lines, and also Capan-1 cells, express RNA transcripts for the following receptors: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11-14 and P2X1, P2X2, P2X4, P2X5, P2X6 and P2X7. Using Fura-2...... and single-cell imaging we tested effects of various nucleotide analogues on intracellular Ca(2+) signals in PANC-1 and CFPAC-1 cells. The cell lines responded to all nucleotides with the following efficiency: UTP >or= ATP = ATPgammaS > BzATP. ATP, UTP and ATPgammaS elicited oscillatory responses. Bz...

  19. Novel human multiple myeloma cell line UHKT-893

    Czech Academy of Sciences Publication Activity Database

    Uherková, L.; Vančurová, I.; Vyhlídalová, I.; Pleschnerová, M.; Špička, I.; Mihalová, R.; Březinová, J.; Hodný, Zdeněk; Čermáková, K.; Polanská, V.; Marinov, I.; Jedelský, P.L.; Kuželová, K.; Stöckbauer, P.

    2013-01-01

    Roč. 37, č. 3 (2013), s. 320-326 ISSN 0145-2126 Institutional support: RVO:68378050 Keywords : human myeloma cell line * human multiple myeloma * plasma cell * IL-6 dependence * immunoglobulin * free light chain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.692, year: 2013

  20. Sulforaphane Analogues with Heterocyclic Moieties: Syntheses and Inhibitory Activities against Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ye-Hui Shi

    2016-04-01

    Full Text Available Recent studies have shown that sulforaphane (SFN selectively inhibits the growth of ALDH+ breast cancer stem-like cells.Herein, a series of SFN analogues were synthesized and evaluated against breast cancer cell lines MCF-7 and SUM-159, and the leukemia stem cell-like cell line KG-1a. These SFN analogues were characterized by the replacement of the methyl group with heterocyclic moieties, and the replacement of the sulfoxide group with sulfide or sulfone. A growth inhibitory assay indicated that the tetrazole analogs 3d, 8d and 9d were significantly more potent than SFN against the three cancer cell lines. Compound 14c, the water soluble derivative of tetrazole sulfide 3d, demonstrated higher potency against KG-1a cell line than 3d. SFN, 3d and 14c significantly induced the activation of caspase-3, and reduced the ALDH+ subpopulation in the SUM159 cell line, while the marketed drug doxrubicin(DOX increased the ALDH+ subpopulation.

  1. The Bcr-Abl kinase inhibitor INNO-406 induces autophagy and different modes of cell death execution in Bcr-Abl-positive leukemias.

    Science.gov (United States)

    Kamitsuji, Y; Kuroda, J; Kimura, S; Toyokuni, S; Watanabe, K; Ashihara, E; Tanaka, H; Yui, Y; Watanabe, M; Matsubara, H; Mizushima, Y; Hiraumi, Y; Kawata, E; Yoshikawa, T; Maekawa, T; Nakahata, T; Adachi, S

    2008-11-01

    Bcr-Abl tyrosine kinase (TK) inhibitors are promising therapeutic agents for Bcr-Abl-positive (Bcr-Abl(+)) leukemias. Although they are known to promote caspase-mediated apoptosis, it remains unclear whether caspase-independent cell death-inducing mechanisms are also triggered. Here we demonstrated that INNO-406, a second-generation Bcr-Abl TK inhibitor, induces programmed cell death (PCD) in chronic myelogenous leukemia (CML) cell lines through both caspase-mediated and caspase-independent pathways. The latter pathways include caspase-independent apoptosis (CIA) and necrosis-like cell death (CIND), and the cell lines varied regarding which mechanism was elicited upon INNO-406 treatment. We also observed that the propensity toward CIA or CIND in cells was strongly associated with cellular dependency on apoptosome-mediated caspase activity. Cells that undergo CIND have a high apoptosome activity potential whereas cells that undergo CIA tend to have a lower potential. Moreover, we found that INNO-406 promotes autophagy. When autophagy was inhibited with chloroquine or gene knockdown of beclin1 by shRNA, INNO-406-induced cell death was enhanced, which indicates that the autophagic response of the tumor cells is protective. These findings suggest new insights into the biology and therapy of Bcr-Abl(+) leukemias.

  2. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E

    1992-01-01

    characterised, the cadherin family and the Ig superfamily member, neural cell adhesion molecule (NCAM). We investigated expression of these two adhesion molecule families in small cell lung cancer (SCLC) cell lines and xenografts by immunoblotting. Nineteen tumours established from 15 patients with SCLC were......Tumour cell adhesion, detachment and aggregation seem to play an important part in tumour invasion and metastasis, and numerous cell adhesion molecules are expressed by tumour cells. Several families of cell-cell adhesion molecules have been described, of which two groups are particularly well...... embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  3. Establishment and culture optimization of a new type of pituitary immortalized cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kokubu, Yuko [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Asashima, Makoto [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Life Science Center of TARA, The University of Tsukuba, Ibaraki-ken 305-8577 (Japan); Kurisaki, Akira, E-mail: akikuri@hotmail.com [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562 (Japan)

    2015-08-07

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells under sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. - Highlights: • Mouse pituitary cell lines were immortalized by introducing TERT, E6, and E7. • The immortalized cell lines mainly expressed thyroid stimulating hormone beta. • The cell lines responded to PKA or PKC pathway activators, and induced Tshb.

  4. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong [Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Siddiqui, Rafat A., E-mail: rsiddiqu@iuhealth.org [Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Biology, Indiana University-Purdue University, Indianapolis, IN (United States); Department of Medicine, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-07-29

    Highlights: {yields} 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. {yields} DIP-DHA resulted in increased activation of caspase-3, and caspase-7. {yields} DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  5. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    International Nuclear Information System (INIS)

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong; Siddiqui, Rafat A.

    2011-01-01

    Highlights: → 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. → DIP-DHA resulted in increased activation of caspase-3, and caspase-7. → DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  6. In vitro Rb-1 gene transfer to retinoblastoma cell lines

    International Nuclear Information System (INIS)

    Choi, Sang Wook; Ham, Yong Hoh; Kim, Mee Heui

    1994-04-01

    After transfection of Rb-vector to packaging cell line (CRIP) by Ca-P precipitation method, we could select nineteen colonies of G-418 resistant clone by ring cloning. Each colony was transduced to NIH3T3 cells to select the one which produces high titer virus. After NIH3T3 cells transduction, we could get 28 colony counts for the high, 127 for the middle, and 6 for the low viral titer. With the supernatant of the high viral titer colony (CRIPRb 2-5). We transduct retinoblastoma cell lines. 5 figs, 11 refs. (Author)

  7. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  8. The antiproliferative effect of acridone alkaloids on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M; Takemura, Y; Ju-ichi, M; Ito, C; Furukawa, H

    1999-04-01

    Fifteen acridone alkaloids were examined for their antiproliferative activity toward monolayers and suspension of several types of cancer and normal human cell lines. As a result, atalaphyllidine (9), 5-hydroxy-N-methylseverifoline (11), atalaphyllinine (12), and des-N-methylnoracronycine (13) showed potent antiproliferative activity against tumor cell lines, whereas they have weak cytotoxicity on normal human cell lines. The structure-activity relationship established from the results revealed that a secondary amine, hydroxyl groups at C-1 and C-5, and a prenyl group at C-2 played an important role for antiproliferative activities of the tetracyclic acridones.

  9. Differential biological effects of iodoacetate in mammalian cell lines; radio sensitization and radio protection

    International Nuclear Information System (INIS)

    Yadav, Usha; Anjaria, K.B.; Desai, Utkarsha N.; Chaurasia, Rajesh K.; Shirsath, K.B.; Bhat, Nagesh N.; Balakrishnan, Sreedevi; Sapra, B.K.; Nairy, Rajesha

    2014-01-01

    There are several studies where it has been shown that Iodoacetate (IA) possesses in vivo anti-tumor activity. The fact that it is a model glycolytic inhibitor makes it more interesting. As seen in recent trends, glycolytic inhibitors are emerging as new strategy for cancer therapeutic research taking advantage of glycolytic phenotype of cancerous tissues. IA has been reported to have radioprotective effects in yeast cells and human lymphocytes. Biological effects of IA in response to radiation in mammalian cell lines are not well documented. We screened IA for cytotoxicity using clonogenic assay at different concentrations ranging from 0.1 to 2.5 μg/ml using three different mammalian cell lines; A-549 (human lung carcinoma cell line), MCF-7 (human mammary cancer cell line) and a noncancerous CHO (Chinese hamster ovary cell line). For studying radioprotective/radio sensitizing efficacy, cells were exposed to 4 Gy of 60 Co-γ radiation using a teletherapy source at a dose rate of 1 Gy/min, following which IA post-treatment was carried out. Clonogenic and micronucleus assay were performed to assess radioprotection/sensitization. The results indicated that IA was highly cytotoxic in cancerous cell lines A-549 (IC 50 =1.25 μg/ml) and MCF-7 (IC 50 = 1.9 μg/ml). In contrast, it was totally non-toxic in non-cancerous cell line, viz. CHO, in the same concentration range. In addition, IA exhibited radio protective effect in CHO cell line, whereas in other two cancer cell lines, viz. A-549 and MCF-7, radio sensitizing effect was seen as judged by induction of cell killing and micronuclei. In conclusion, lA, a model glycolytic inhibitor, was found to be selectively cytotoxic in cancer cells as compared to normal cells. Further, it reduced radiation induced damage (micronuclei and cell killing) in normal cells but increased it in cancer cells indicating its potential use in cancer therapy. (author)

  10. Cell lines radiosensitization of thyroid cancer by histone deacetylase inhibitors

    International Nuclear Information System (INIS)

    Perona, M; Dagrosa, M A; Rossich, L; Casal, M; Pisarev, M A; Thomasz, L; Juvenal G J

    2012-01-01

    Introduction: Thyroid cancer is the most common endocrine neoplasia. Surgical resection and radioactive iodine is an effective treatment for well-differentiated tumors. Histone deacetylase inhibitors (HDAC-I) are agents that cause hyperacetylation of histone proteins and as a consequence remodeling of chromatin structure. They can induce growth arrest, differentiation and apoptotic cell death in different tumor cells. The use of HDAC-I agents could be of utility to enhance the response to external radiation therapy of those thyroid cancers that are refractory to most conventional therapeutic treatments. Objective: To study the effect of HDAC-I as radiosensitizers for the treatment of thyroid cancer and their ability to induce differentiation of thyroid cancer cells. Materials and methods: The human thyroid follicular (WRO) and papillary (TPC-1) carcinoma cell lines were seeded and incubated with increasing doses (0, 0.3, 0.5, 1 and 1.5 mM) of the HDAC-I sodium butirate (NaB) and valproic acid (VA) to evaluate cell proliferation and iodide uptake. Cells were irradiated with a 60 Co γ-ray source (1 ± 5% Gy/min) and postirradiation survival was quantified with the colony formation assay. Survival fraction at 2 Gy (SF2) was calculated for each cell line. Cell cycle and cell death were evaluated at a dose of 3 Gy. Iodide uptake, PCR analysis and transient transfection studies were performed. Results: Cell proliferation was not significantly suppressed after 24 hours of incubation with both drugs at all assayed doses. Iodide uptake was not modified after incubation with HDAC-I of both cell lines. SF2 was reduced from 68 ± 1.6 % in the control WRO cells to 42 ± 3.8 % (P<0.001) in NaB-treated cells. In TPC-1 SF2 was reduced from 32 ± 1.1 % in the control cells to 24 ± 0.8 % (P<0.01). In VA-treated cells SF2 was reduced from 69 ± 0.02 % in control WRO cells to 56 ± 0.01 % (P<0.01) and from 31 ± 2 % in control TPC-1 cells to 11 ± 1 % (P<0.01). There was an arrest

  11. Two-dimensional analysis of metabolically and cell surface radiolabeled proteins of some human lymphoid and myeloid leukemia cell lines. II. Glycosylated and phosphorylated proteins

    Energy Technology Data Exchange (ETDEWEB)

    Chorvath, B; Duraj, J; Sedlak, J; Pleskova, I

    1986-01-01

    Cell surface glycoproteins, radiolabelled by the sodium metaperiodate/tritiated borohydride technique, and cell phosphoproteins, metabolically radiolabelled with /sup 32/P-orthophosphate were analyzed by two-dimensional electrophoretic analysis in some myeloid and lymphoid leukemia cell lines. Some markedly expressed major glycoproteins were predominant in some of the cell lines (such as 95k and 100k glycoproteins with marked charge heterogeneity in non-T, non-B acute lymphoblastic leukemia cell lines NALM 6 and NALM 16), but markedly quantitatively reduced in other examined cell lines, such as lymphoblastoid cell line UHKT 34/2. /sup 32/P-orthophosphate radiolabelled phosphoprotein two-dimensional patterns of the examined lymphoid leukemia cell lines were essentially similar, with some minor differences, in examined lymphoid and myeloid leukemia cell lines, such as marked expression of a series of large phosphoproteins in the molecular weight range 80-100k in lymphoid cell lines and almost complete absence of these phosphoproteins on the examined myeloid leukemia cell lines. Another configuration of acidic phosphoproteins (30-35k) exhibited individual cell line variability and differences between both individual myeloid leukemia cell lines and between the lymphoid and myeloid cell lines examined. (author) 2 figs., 15 refs.

  12. A stromal myoid cell line provokes thymic erythropoiesis between ...

    African Journals Online (AJOL)

    Background: The thymus provides an optimal cellular and humoral microenvironment for cell line committed differentiation of haematopoietic stem cells. The immigration process requires the secretion of at least one peptide called thymotaxine by cells of the reticulo-epithelial (RE) network of the thymic stromal cellular ...

  13. Characterization and drug resistance patterns of Ewing's sarcoma family tumor cell lines.

    Directory of Open Access Journals (Sweden)

    William A May

    Full Text Available Despite intensive treatment with chemotherapy, radiotherapy and surgery, over 70% of patients with metastatic Ewing's Sarcoma Family of Tumors (EFT will die of their disease. We hypothesize that properly characterized laboratory models reflecting the drug resistance of clinical tumors will facilitate the application of new therapeutic agents to EFT. To determine resistance patterns, we studied newly established EFT cell lines derived from different points in therapy: two established at diagnosis (CHLA-9, CHLA-32, two after chemotherapy and progressive disease (CHLA-10, CHLA-25, and two at relapse after myeloablative therapy and autologous bone marrow transplantation (post-ABMT (CHLA-258, COG-E-352. The new lines were compared to widely studied EFT lines TC-71, TC-32, SK-N-MC, and A-673. These lines were extensively characterized with regard to identity (short tandem repeat (STR analysis, p53, p16/14 status, and EWS/ETS breakpoint and target gene expression profile. The DIMSCAN cytotoxicity assay was used to assess in vitro drug sensitivity to standard chemotherapy agents. No association was found between drug resistance and the expression of EWS/ETS regulated genes in the EFT cell lines. No consistent association was observed between drug sensitivity and p53 functionality or between drug sensitivity and p16/14 functionality across the cell lines. Exposure to chemotherapy prior to cell line initiation correlated with drug resistance of EFT cell lines in 5/8 tested agents at clinically achievable concentrations (CAC or the lower tested concentration (LTC: (cyclophosphamide (as 4-HC and doxorubicin at CAC, etoposide, irinotecan (as SN-38 and melphalan at LTC; P<0.1 for one agent, and P<0.05 for four agents. This panel of well-characterized drug-sensitive and drug-resistant cell lines will facilitate in vitro preclinical testing of new agents for EFT.

  14. B-Cell Chronic Lymphocytic Leukemia with 11q22.3 Rearrangement in Patient with Chronic Myeloid Leukemia Treated with Imatinib

    Directory of Open Access Journals (Sweden)

    Krzysztof Lewandowski

    2016-01-01

    Full Text Available The coexistence of two diseases chronic myeloid leukemia (CML and B-cell chronic lymphocytic leukemia (B-CLL is a rare phenomenon. Both neoplastic disorders have several common epidemiological denominators (they occur more often in men over 50 years of age but different origin and long term prognosis. In this paper we described the clinical and pathological findings in patient with CML in major molecular response who developed B-CLL with 11q22.3 rearrangement and Coombs positive hemolytic anemia during the imatinib treatment. Due to the presence of the symptoms of autoimmune hemolytic anemia and optimal CML response to the imatinib treatment, the decision about combined therapy with prednisone and imatinib was made. During the follow-up, the normalization of complete blood count and resolution of peripheral lymphadenopathy were noted. The hematologic response of B-CLL was diagnosed. The repeated FISH analysis of cultured peripheral blood lymphocytes showed 2% of cells carrying 11q22.3 rearrangement. At the same time, molecular monitoring confirmed the deep molecular response of CML. The effectiveness of such combination in the described case raises the question about the best therapeutic option in such situation, especially in patients with good imatinib tolerance and optimal response.

  15. Caffeine markedly sensitizes human mesothelioma cell lines to pemetrexed

    Science.gov (United States)

    Min, Sang Hee; Goldman, I. David; Zhao, Rongbao

    2013-01-01

    Pemetrexed is a new generation antifolate approved for the treatment of mesothelioma and non-small cell lung cancer. Caffeine is known to augment radiation or chemotherapeutic drug-induced cell killing. The current study addresses the impact of caffeine on the activity of pemetrexed in mesothelioma cell lines. Caffeine enhanced pemetrexed activity in all four mesothelioma cell lines tested (H2052, H2373, H28 and MSTO-211H). Caffeine sensitized H2052 cells in a dose- and schedule-dependent manner, and was associated with a markedly decreased clonogenic survival. Caffeine sensitization occurred only in cells subjected to pulse, but not continuous, exposure to pemetrexed. Similar pemetrexed sensitization was also observed with the clinically better tolerated caffeine analog, theobromine. Pemetrexed sensitization by caffeine was associated with an increase in pemetrexed-induced phosphorylation of ataxia-telangiectasia-mutated (ATM) and Chk1. These data indicate that caffeine and its analog, theobromine, may be a useful approach to enhance pemetrexed-based chemotherapy. PMID:17594092

  16. Fingerprinting of cell lines by directed amplification of minisatellite-region DNA (DAMD

    Directory of Open Access Journals (Sweden)

    Silva L.M.

    2001-01-01

    Full Text Available The development of in vitro propagation of cells has been an extraordinary technical advance for several biological studies. The correct identification of the cell line used, however, is crucial, as a mistaken identity or the presence of another contaminating cell may lead to invalid and/or erroneous conclusions. We report here the application of a DNA fingerprinting procedure (directed amplification of minisatellite-region DNA, developed by Heath et al. [Nucleic Acids Research (1993 21: 5782-5785], to the characterization of cell lines. Genomic DNA of cells in culture was extracted and amplified by PCR in the presence of VNTR core sequences, and the amplicons were separated by agarose gel electrophoresis. After image capture with a digital camera, the banding profiles obtained were analyzed using a software (AnaGel specially developed for the storage and analysis of electrophoretic fingerprints. The fingerprints are useful for construction of a data base for identification of cell lines by comparison to reference profiles as well as comparison of similar lines from different sources and periodic follow-up of cells in culture.

  17. A human beta cell line with drug inducible excision of immortalizing transgenes

    Science.gov (United States)

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  18. Derivation of Huntington Disease affected Genea046 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea046 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying HTT gene CAG expansion of 45 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 85% of cells expressed Nanog, 92% Oct4, 75% Tra1–60 and 99% SSEA4 and demonstrated Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and visible contamination.

  19. Establishment and characterization of a novel head and neck squamous cell carcinoma cell line USC-HN1.

    Science.gov (United States)

    Liebertz, Daniel J; Lechner, Melissa G; Masood, Rizwan; Sinha, Uttam K; Han, Jing; Puri, Raj K; Correa, Adrian J; Epstein, Alan L

    2010-02-22

    Head and neck squamous cell carcinoma (HNSCC) is an aggressive and lethal malignancy. Publically available cell lines are mostly of lingual origin, or have not been carefully characterized. Detailed characterization of novel HNSCC cell lines is needed in order to provide researchers a concrete keystone on which to build their investigations. The USC-HN1 cell line was established from a primary maxillary HNSCC biopsy explant in tissue culture. The immortalized cells were then further characterized by heterotransplantation in Nude mice; immunohistochemical staining for relevant HNSCC biomarkers; flow cytometry for surface markers; cytogenetic karyotypic analysis; human papillomavirus and Epstein-Barr virus screening; qRT-PCR for oncogene and cytokine analysis; investigation of activated, cleaved Notch1 levels; and detailed 35,000 gene microarray analysis. Characterization experiments confirmed the human HNSCC origin of USC-HN1, including a phenotype similar to the original tumor. Viral screening revealed no HPV or EBV infection, while western blotting displayed significant upregulation of activated, cleaved Notch1. USC-HN1, a novel immortalized cell line has been derived from a maxillary HNSCC. Characterization studies have shown that the cell line is of HNSCC origin and displays many of the same markers previously reported in the literature. USC-HN1 is available for public research and will further the investigation of HNSCC and the development of new therapeutic modalities.

  20. Radiation equivalence of genotoxic chemicals - Validation in cultered mammalian cell lines

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1982-01-01

    Published data on mutations induced by ionizing radiation and 6 monofunctional alkylating agents, namely EMS, MMS, ENNG, MNNG, ENU and MNU, in different cell lines (Chinese hamster ovary, Chinese hamster lung V79, mouse lymphoma L5178 and human cells) were analysed so that radiation-equivalent chemical (REC) values could be calculated. REC values thus obtained for a given alkylating agent with different cell lines fall within a narrow range suggesting its validation in cultured mammalian cell systems including human. (orig.)

  1. Warburg and Crabtree effects in premalignant Barrett's esophagus cell lines with active mitochondria.

    Directory of Open Access Journals (Sweden)

    Martin T Suchorolski

    Full Text Available BACKGROUND: Increased glycolysis is a hallmark of cancer metabolism, yet relatively little is known about this phenotype at premalignant stages of progression. Periodic ischemia occurs in the premalignant condition Barrett's esophagus (BE due to tissue damage from chronic acid-bile reflux and may select for early adaptations to hypoxia, including upregulation of glycolysis. METHODOLOGY/PRINCIPAL FINDINGS: We compared rates of glycolysis and oxidative phosphorylation in four cell lines derived from patients with BE (CP-A, CP-B, CP-C and CP-D in response to metabolic inhibitors and changes in glucose concentration. We report that cell lines derived from patients with more advanced genetically unstable BE have up to two-fold higher glycolysis compared to a cell line derived from a patient with early genetically stable BE; however, all cell lines preserve active mitochondria. In response to the glycolytic inhibitor 2-deoxyglucose, the most glycolytic cell lines (CP-C and CP-D had the greatest suppression of extra-cellular acidification, but were able to compensate with upregulation of oxidative phosphorylation. In addition, these cell lines showed the lowest compensatory increases in glycolysis in response to mitochondrial uncoupling by 2,4-dinitrophenol. Finally, these cell lines also upregulated their oxidative phosphorylation in response to glucose via the Crabtree effect, and demonstrate a greater range of modulation of oxygen consumption. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that cells from premalignant Barrett's esophagus tissue may adapt to an ever-changing selective microenvironment through changes in energy metabolic pathways typically associated with cancer cells.

  2. RESULTS OF HEMATOPOIETIC CELL TRANSPLANTATION IN PEDIATRIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    A. Mousavi

    2008-05-01

    Full Text Available Hematopoietic cell transplantation (HCT is an accepted treatment for acute myeloid leukemia (AML in first remission, the treatment of choice for chronic myeloid leukemia (CML and high risk groups of ALL who relapse with conventional chemotherapy. We assessed results of HCT for pediatric leukemia in our center. A total of 92 children, 63 with diagnose of AML, 23 with ALL and 6 with CML received allogeneic transplantation from HLA full matched siblings (57.6% and autologous transplantation (42.4%. Source of hematopoietic cells were peripheral blood 83.7%, bone marrow 15.2% and cord blood 1.6%. The median transplanted nucleated cells were 6.4 ± 4.7 ×108 /Kg (body weight of patients and mononuclear cells were 5.5 ± 2.9×108/Kg. The most common conditioning regimens were cyclophosphamide + busulfan. Prophylaxis regimen for GVHD was cyclosporin ± methotrexate. GVHD occurred in 50 (54.3% patients. Eighty five of children had engraftment, 26 (28.6% relapsed and 57 (62% are alive. The most common cause of death was relapse (68.6%. Five years overall survival of patients with AML and ALL were 49% and 44% respectively and disease free survival of them were 52% and 49%. One year overall survival and disease free survival of CML was 57%. Overall survival increased with increasing age of patients at transplantation time (P = 0.06. Longer survival significantly related to earlier WBC and platelet recovery (P < 0.0001 and P = 0.006 respectively. Considering acceptable overall and disease free survival of patients after HCT, we concluded that is a good modality in treatment of leukemia of children.

  3. Effect of failures and repairs on multiple cell production lines

    Energy Technology Data Exchange (ETDEWEB)

    Legato, P.; Bobbio, A.; Roberti, L.

    1989-01-01

    This paper examines a production line composed of multiple stages, or cells, which are passed in sequential order to arrive to the final product. Two possible coordination disciplines are considered, namely: the classical tandem arrangement of sequential working centers with input buffer and the kanban scheme, considered the Japanese shop floor realization of the Just-In-Time (JIT) manifacturing approach. The production line is modelled and analysed by means of Stochastic Petri Nets (SPN). Finally an analysis is made of the possibility that the working cells can incur failure/repair cycles perturbing the production flow of the line and thus reduce performance indices.

  4. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    International Nuclear Information System (INIS)

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara

    2011-01-01

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs

  5. Development and characterization of two cell lines from gills of Atlantic salmon

    Science.gov (United States)

    Gjessing, Mona C.; Aamelfot, Maria; Batts, William N.; Benestad, Sylvie L.; Dale, Ole B.; Thoen, Even; Weli, Simon C.; Winton, James R.

    2018-01-01

    Gill disease in Atlantic salmon, Salmo salar L., causes big losses in the salmon farming industry. Until now, tools to cultivate microorganisms causing gill disease and models to study the gill responses have been lacking. Here we describe the establishment and characterization of two cell lines from the gills of Atlantic salmon. Atlantic salmon gill cell ASG-10 consisted of cells staining for cytokeratin and e-cadherin and with desmosomes as seen by transmission electron microscopy suggesting the cells to be of epithelial origin. These structures were not seen in ASG-13. The cell lines have been maintained for almost 30 passages and both cell lines are fully susceptible to infection by infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus (VHSV), infectious pancreatic necrosis virus (IPNV), Atlantic salmon reovirus TS (TSRV) and Pacific salmon paramyxovirus (PSPV). While infectious salmon anemia virus (ISAV) did not cause visible CPE, immunofluorescent staining revealed a sub-fraction of cells in both the ASG-10 and ASG-13 lines may be permissive to infection. ASG-10 is able to proliferate and migrate to close scratches in the monolayer within seven days in vitro contrary to ASG-13, which does not appear to do have the same proliferative and migratory ability. These cell lines will be useful in studies of gill diseases in Atlantic salmon and may represent an important contribution for alternatives to experimental animals and studies of epithelial–mesenchymal cell biology.

  6. Absence of annexin I expression in B-cell non-Hodgkin's lymphomas and cell lines

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Velliyur K

    2004-03-01

    Full Text Available Abstract Background Annexin I, one of the 20 members of the annexin family of calcium and phospholipid-binding proteins, has been implicated in diverse biological processes including signal transduction, mediation of apoptosis and immunosuppression. Previous studies have shown increased annexin I expression in pancreatic and breast cancers, while it is absent in prostate and esophageal cancers. Results Data presented here show that annexin I mRNA and protein are undetectable in 10 out of 12 B-cell lymphoma cell lines examined. Southern blot analysis indicates that the annexin I gene is intact in B-cell lymphoma cell lines. Aberrant methylation was examined as a cause for lack of annexin I expression by treating cells 5-Aza-2-deoxycytidine. Reexpression of annexin I was observed after prolonged treatment with the demethylating agent indicating methylation may be one of the mechanisms of annexin I silencing. Treatment of Raji and OMA-BL-1 cells with lipopolysaccharide, an inflammation inducer, and with hydrogen peroxide, a promoter of oxidative stress, also failed to induce annexin I expression. Annexin I expression was examined in primary lymphoma tissues by immunohistochemistry and presence of annexin I in a subset of normal B-cells and absence of annexin I expression in the lymphoma tissues were observed. These results show that annexin I is expressed in normal B-cells, and its expression is lost in all primary B-cell lymphomas and 10 of 12 B-cell lymphoma cell lines. Conclusions Our results suggest that, similar to prostate and esophageal cancers, annexin I may be an endogenous suppressor of cancer development, and loss of annexin I may contribute to B-cell lymphoma development.

  7. Effects of radioactive 125I seeds on A549 cell line and human embryonic lung diploid cell line 2BS cultivated in vitro and assessment of its clinical safety dose

    International Nuclear Information System (INIS)

    Bian Wenchao; Qi Liangchen

    2012-01-01

    Objective: To observe the cell count changes of A549 cell line and human embryonic lung diploid cell line 2BS after irradiated by 125 I seeds with different doses, and to study the growth inhibition of 125 I on this two kinds of cell lines, and to determine its clinical safety dose in treatment of non-small cell lung. Methods: 125 I seeds with different doses (low dose: 0.2 mCi, mediate dose: 0.4 mCi, high dose: 0.8 mCi) were chosen and put into A549 cells and human embryonic lung diploid cell line 2BS in vitro, the cells on the 2nd, 4th, 6th and 8th days after irradiation were collected, the alive cells were counted by cells dyeing experiments, then the growth curves were drawn, and the IC 50 of the radioactive 125 I seeds to both two cell lines were calculated. Results: Compared with blank and control groups, the cell proliferation trend of A549 cells in low dose group was not significantly influenced (P>0.05), but the growth of A549 cells in mediate and high dose groups were inhibited in a time-dependent manner, there were significant differences (P<0.05), the most obvious change was on the 6th day. The IC 50 of the radioactive 125 I seeds to A549 cells was about .04 mCi. While the growth inhibition of 125 I 2BS had no statistically significant differences between various dose groups (P>0.05), and the IC 50 of the radioactive 125 I seeds to 2BS cell line was about 1.65 mCi. Conclusion: 0.4 mCi of radioactive 125 I seeds has already had the obvious damage effect on A549 cell, 0.8 mCi of radioactive 125 I seeds has the stronger effect. The IC 50 of the radioactive 125 I seeds to 2BS cells is about 1.65 mCi, so the clinical safety dosage is 0.4-0.8 mCi. (authors)

  8. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia

    Science.gov (United States)

    Piazza, Rocco; Valletta, Simona; Winkelmann, Nils; Redaelli, Sara; Spinelli, Roberta; Pirola, Alessandra; Antolini, Laura; Mologni, Luca; Donadoni, Carla; Papaemmanuil, Elli; Schnittger, Susanne; Kim, Dong-Wook; Boultwood, Jacqueline; Rossi, Fabio; Gaipa, Giuseppe; De Martini, Greta P; di Celle, Paola Francia; Jang, Hyun Gyung; Fantin, Valeria; Bignell, Graham R; Magistroni, Vera; Haferlach, Torsten; Pogliani, Enrico Maria; Campbell, Peter J; Chase, Andrew J; Tapper, William J; Cross, Nicholas C P; Gambacorti-Passerini, Carlo

    2013-01-01

    Atypical chronic myeloid leukemia (aCML) shares clinical and laboratory features with CML, but it lacks the BCR-ABL1 fusion. We performed exome sequencing of eight aCMLs and identified somatic alterations of SETBP1 (encoding a p.Gly870Ser alteration) in two cases. Targeted resequencing of 70 aCMLs, 574 diverse hematological malignancies and 344 cancer cell lines identified SETBP1 mutations in 24 cases, including 17 of 70 aCMLs (24.3%; 95% confidence interval (CI) = 16–35%). Most mutations (92%) were located between codons 858 and 871 and were identical to changes seen in individuals with Schinzel-Giedion syndrome. Individuals with mutations had higher white blood cell counts (P = 0.008) and worse prognosis (P = 0.01). The p.Gly870Ser alteration abrogated a site for ubiquitination, and cells exogenously expressing this mutant exhibited higher amounts of SETBP1 and SET protein, lower PP2A activity and higher proliferation rates relative to those expressing the wild-type protein. In summary, mutated SETBP1 represents a newly discovered oncogene present in aCML and closely related diseases. PMID:23222956

  9. MPT0B169, a New Antitubulin Agent, Inhibits Bcr-Abl Expression and Induces Mitochondrion-Mediated Apoptosis in Nonresistant and Imatinib-Resistant Chronic Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Shuit-Mun Wong

    Full Text Available Chronic myeloid leukemia (CML is a clonal disorder of hematopoietic stem/progenitor cells that is caused by the Bcr-Abl oncoprotein. Clinical resistance to the Bcr-Abl inhibitor imatinib is a critical problem in treating CML. This study investigated the antitumor effect and mechanism of MPT0B169, a new antitubulin agent, in K562 CML cells and their derived imatinib-resistant cells, IMR2 and IMR3. IMR2 and IMR3 cells showed complete resistance to imatinib-induced growth inhibition and apoptosis. Resistance involved ERK1/2 overactivation and MDR1 overexpression. MPT0B169 inhibited the growth of K562, IMR2, and IMR3 cells in a dose- and time-dependent manner. MPT0B169 substantially inhibited the mRNA and protein levels of Bcr-Abl, followed by its downstream pathways including Akt, ERK1/2, and STAT3 in these cells. MPT0B169 treatment resulted in a decrease in the polymer form of tubulin according to Western blot analysis. It triggered cell cycle arrest at the G2/M phase before apoptosis, which was related to the upregulation of the mitotic marker MPM2 and the cyclin B1 level, and a change in the phosphorylation of Cdk1. MPT0B169 induced apoptosis in nonresistant and imatinib-resistant cells via a mitochondrion-mediated caspase pathway. Further study showed that the agent led to a decrease in the antiapoptotic proteins Bcl-2, Bcl-xL, and Mcl-1 and an increase in the apoptotic protein Bax. Taken together, our results suggest that MPT0B169 might be a promising agent for overcoming imatinib resistance in CML cells.

  10. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    International Nuclear Information System (INIS)

    Nifterik, Krista A. van; Berg, Jaap van den; Stalpers, Lukas J.A.; Lafleur, M. Vincent M.; Leenstra, Sieger; Slotman, Ben J.; Hulsebos, Theo J.M.; Sminia, Peter

    2007-01-01

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated γ-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of γ-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 μmol/L (AMC-3046), 3 μmol/L (VU-109), and 2.5 μmol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to γ-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gene

  11. The Genomic and Transcriptomic Landscape of a HeLa Cell Line

    Science.gov (United States)

    Landry, Jonathan J. M.; Pyl, Paul Theodor; Rausch, Tobias; Zichner, Thomas; Tekkedil, Manu M.; Stütz, Adrian M.; Jauch, Anna; Aiyar, Raeka S.; Pau, Gregoire; Delhomme, Nicolas; Gagneur, Julien; Korbel, Jan O.; Huber, Wolfgang; Steinmetz, Lars M.

    2013-01-01

    HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology. PMID:23550136

  12. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongchao; Yin, Bingde; Zhang, Changcun; Zhou, Libin [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China); Fan, Jie, E-mail: jief67@sina.com [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer This study is the first to test the let-7a/c-myc loop in renal cell carcinoma cell lines. Black-Right-Pointing-Pointer Let-7a down-regulated c-myc in three renal cell carcinoma cell lines. Black-Right-Pointing-Pointer c-myc target genes were down-regulated because of the let-7a-mediated down-regulation of c-myc. Black-Right-Pointing-Pointer The let-7a/c-myc loop has a significant function in renal cell carcinoma cell lines. -- Abstract: Widespread functions of the c-myc pathway play a crucial role in renal cell carcinoma (RCC) carcinogenesis. Thus, we evaluated the connection between proto-oncogenic c-myc and anti-neoplastic hsa-let-7a (let-7a) in RCC cell lines. The levels of c-myc and let-7a in 3 RCC cell lines (769P, Caki-1 and 786O) were measured after transfecting the cells with let-7a mimics or a negative control. The change in c-myc protein level was confirmed by Western blot. The anti-neoplastic function of let-7a was evaluated using cell counting kit-8 (CCK-8) for proliferation analysis and cell flow cytometry for cell cycle analysis. The changes of downstream targets of c-myc were measured using reverse transcription quantitative real-time PCR (qRT-PCR). Our results suggest for the first time that let-7a acts as a tumor suppressor in RCC cell lines by down-regulating c-myc and c-myc target genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and the miR17-92 cluster, which is accompanied by proliferation inhibition and cell cycle arrest.

  13. The relationship of metabolic burden to productivity levels in CHO cell lines.

    Science.gov (United States)

    Zou, Wu; Edros, Raihana; Al-Rubeai, Mohamed

    2018-03-01

    The growing demand for recombinant therapeutics has driven biotechnologists to develop new production strategies. One such strategy for increasing the expression of heterologous proteins has focused on enhancing cell-specific productivity through environmental perturbations. In this work, the effects of hypothermia, hyperosmolarity, high shear stress, and sodium butyrate treatment on growth and productivity were studied using three (low, medium, and high producing) CHO cell lines that differed in their specific productivities of monoclonal antibody. In all three cell lines, the inhibitory effect of these parameters on proliferation was demonstrated. Additionally, compared to the control, specific productivity was enhanced under all conditions and exhibited a consistent cell line specific pattern, with maximum increases (50-290%) in the low producer, and minimum increases (7-20%) in the high producer. Thus, the high-producing cell line was less responsive to environmental perturbations than the low-producing cell line. We hypothesize that this difference is most likely due to the bottleneck associated with a higher metabolic burden caused by higher antibody expression. Increased recombinant mRNA levels and pyruvate carboxylase activities due to low temperature and hyperosmotic stress were found to be positively associated with the metabolic burden. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  14. Role of novel anticancer drug Roscovitine on enhancing radiosensitivity in carcinoma cell lines

    International Nuclear Information System (INIS)

    Mohamed, H.M.S.

    2009-01-01

    The present study was conducted to evaluate the radiosensitization effect of Roscovitine (cyclin dependent kinase inhibitor) in carcinoma cell lines. Three cell lines are used (HepG2 liver carcinoma cell line, U251 brain carcinoma cell line, H460 Lung carcinoma cell line) in this study .cells were treated with Roscovitine in different concentrations ranging from 0.1μM to 100 μM before exposure to radiation doses ranging from 0.5 Gy to 20 Gy according to each experiment. The cell viability by MTT assay, The cell cycle analysis by flow cytometry and DNA fragmentation repair mechanism by diphenylamine were measured after Roscovitine treatment with or without radiation to explore the sensitization effect of Roscovitine. The present study conclude that Roscovitine a good candidate as radiosensitizer for modifying the ionizing radiation (IR) response in cancer cells, beside its cyclin dependent kinase inhibitor function, roscovitine can generate DNA Double strand Breaks and cooperate to enhance IR induce DNA damages . Roscovitine is currently in clinical trials, although our findings suggest that the combination of Roscovitine with IR appears to be a very promising especially for liver, brain and lung cancer treatment, further investigation is needed to evaluate the therapeutic index before tested in clinical trial

  15. Role of novel anticancer drug Roscovitine on enhancing radiosensitivity in carcinoma cell lines

    International Nuclear Information System (INIS)

    Noaman, E.; Sayed, H.M.; Medhat, A.M.; Morcos, N.Y.S.

    2010-01-01

    The present study was conducted to evaluate the radiosensitization effect of Roscovitine (cyclin dependent kinase inhibitor) in carcinoma cell lines. Three cell lines are used liver carcinoma cell line (HepG2), brain carcinoma cell line (U251), Lung carcinoma cell line (H460) in this study cells were treated with Roscovitine in different concentrations ranging from 0.1 ?M to 100 ?M before exposure to radiation doses ranging from 0.5 Gy to 20 Gy according to each experiment. The cell viability by MTT assay, the cell cycle analysis by flow cytometry and DNA fragmentation repair mechanism by diphenylamine were measured after Roscovitine treatment with or without radiation exposure to explore the sensitization effect of Roscovitine. The present study conclude that Roscovitine a good candidate as radiosensitizer for modifying the ionizing radiation (IR) response in cancer cells, beside its cyclin dependent kinase inhibitor function, Roscovitine can generate DNA Double strand Breaks and cooperate to enhance IR induce DNA damages. Roscovitine is currently in clinical trials, although our findings suggest that the combination of Roscovitine with IR appears to be a very promising especially for liver, brain and lung cancer treatment, further investigation is needed to evaluate the therapeutic index before tested in clinical trials

  16. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  17. File list: His.Lng.20.AllAg.Lung_adenocarcinoma_cell_lines [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.20.AllAg.Lung_adenocarcinoma_cell_lines hg19 Histone Lung Lung adenocarcino...ma cell lines SRX1143596,SRX1143597,SRX1143598,SRX1143599 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.20.AllAg.Lung_adenocarcinoma_cell_lines.bed ...

  18. FogBank: a single cell segmentation across multiple cell lines and image modalities.

    Science.gov (United States)

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary

    2014-12-30

    Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell

  19. A Vitex agnus-castus extract inhibits cell growth and induces apoptosis in prostate epithelial cell lines.

    Science.gov (United States)

    Weisskopf, M; Schaffner, W; Jundt, G; Sulser, T; Wyler, S; Tullberg-Reinert, H

    2005-10-01

    Extracts of Vitex agnus-castus fruits (VACF) are described to have beneficial effects on disorders related to hyperprolactinemia (cycle disorders, premenstrual syndrome). A VACF extract has recently been shown to exhibit antitumor activities in different human cancer cell lines. In the present study, we explored the antiproliferative effects of a VACF extract with a particular focus on apoptosis-inducing and potential cytotoxic effects. Three different human prostate epithelial cell lines (BPH-1, LNCaP, PC-3) representing different disease stages and androgen responsiveness were chosen. The action of VACF on cell viability was assessed using the WST-8-tetrazolium assay. Cell proliferation in cells receiving VACF alone or in combination with a pan-caspase inhibitor (Z-VAD-fmk) was quantified using a Crystal Violet assay. Flow cytometric cell cycle analysis and measurement of DNA fragmentation using an ELISA method were used for studying the induction of apoptosis. Lactate dehydrogenase (LDH) activity was determined as a marker of cytotoxicity. The extract inhibited proliferation of all three cell lines in a concentration-dependent manner with IC (50) values below 10 microg/mL after treatment for 48 h. Cell cycle analysis and DNA fragmentation assays suggest that part of the cells were undergoing apoptosis. The VACF-induced decrease in cell number was partially inhibited by Z-VAD-fmk, indicating a caspase-dependent apoptotic cell death. However, the concentration-dependent LDH activity of VACF treated cells indicated cytotoxic effects as well. These data suggest that VACF contains components that inhibit proliferation and induce apoptosis in human prostate epithelial cell lines. The extract may be useful for the prevention and/or treatment not only of benign prostatic hyperplasia but also of human prostate cancer.

  20. Effects of irradiation on the expression of the adhesion molecules (NCAM, ICAM-1) by glioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Ryuya; Tanaka, Ryuichi; Yoshida, Seiichi [Niigata Univ. (Japan). Brain Research Inst.

    1993-11-01

    The expression of the intercellular adhesion molecule-1 (ICAM-1) and neural cell adhesion molecule (NCAM) by glioma cell lines was investigated. The effects of interferon (IFN)-[gamma] or irradiation on the expression was also assessed. Two glioma cell lines showed more than 75% NCAM-positive cells. After treatment with IFN-[gamma] or irradiation, another three cell lines were induced to show more than 50% positive cells. Three glioma cell lines showed more than 50% ICAM-1-positive cells. After treatment with IFN-[gamma], another two cell lines were induced to show more than 50% positive cells. After treatment with irradiation, one more cell line was induced to show more than 50% positive cells. ICAM-1 and NCAM expression by glioma cell lines is susceptible to modulation by IFN-[gamma] or irradiation. (author).

  1. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

    Science.gov (United States)

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A; Kim, Sungjoon; Wilson, Christopher J; Lehár, Joseph; Kryukov, Gregory V; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F; Monahan, John E; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H; Cheng, Jill; Yu, Guoying K; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P; Gabriel, Stacey B; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E; Weber, Barbara L; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L; Meyerson, Matthew; Golub, Todd R; Morrissey, Michael P; Sellers, William R; Schlegel, Robert; Garraway, Levi A

    2012-03-28

    The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.

  2. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  3. Tyrosine kinase inhibition: A therapeutic target for the management of chronic-phase chronic myeloid leukemia

    Science.gov (United States)

    Jabbour, Elias J; Cortes, Jorge E; Kantarjian, Hagop M

    2014-01-01

    Chronic myeloid leukemia (CML) is a hematologic neoplasm with a progressive, ultimately terminal, disease course. In most cases, CML arises owing to the aberrant formation of a chimeric gene for a constitutively active tyrosine kinase. Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target transforming the prognosis of patients with CML. New tyrosine kinase inhibitors (TKIs) continue to improve the management of CML, offering alternative options for those resistant to or intolerant of standard TKIs. Here we review the pathobiology of CML and explore emerging strategies to optimize the management of chronic-phase CML, particularly first-line treatment. PMID:24236822

  4. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael

    2006-01-01

    culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...... on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...

  5. A biocompatible micro cell culture chamber (microCCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, A M

    2006-01-01

    culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...... on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...

  6. Downregulation of telomerase activity in human promyelocytic cell line using RNA interference.

    Science.gov (United States)

    Miri-Moghaddam, E; Deezagi, A; Soheili, Z S

    2009-12-01

    Telomerase is a ribonucleoprotein complex. It consists of two main components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA. High telomerase activity is present in most malignant cells, but it is barely detectable in majority of somatic cells. The direct correlation between telomerase reactivation and carcinogens has made hTERT a key target for anticancer therapeutic studies. In this study, for the first time, we evaluated the ability of the new generation of short interfering RNA (siRNA) to regulate telomerase activity in the human promyelocytic leukemia cell line (HL-60). Transient transfection cell line by hTERT siRNAs resulted in statistically significant suppression of hTERT messenger RNAs which were detected by quantitative real-time polymerase chain reaction, while the expressed hTERT protein levels were measured by flow cytometry. The results of telomeric repeat amplification protocol showed that telomerase activity was significantly reduced upon transfection of the HL-60 cell line with hTERT siRNAs. The results of this study showed that telomerase activity and cell proliferation were efficiently inhibited in the hTERT siRNA-treated leukemic cell line.

  7. Response of BP cell lines to γ-radiation: evaluation of DNA repair and apoptosis

    International Nuclear Information System (INIS)

    Paris, F.E.; Martin, M.; Le Rhum, Y.; May, E.; Duriez, P; Shah, G.

    1997-01-01

    In the BP cell lines, mutation of p53 gene is associated with an increased radiosensitivity. In order to understand the relation between p53 and radiosensitivity, we looked at DNA repair and cell death. Unexpectedly, after radiation the mutated p53 cell line BPp- Tu and the wild type p53 cell line BPp- Tu cells, both ell lines died by the same non necrotic process: a programmed cell death independent of their p53 status. The cleavage of poly (ADP-ribose) polymerase (PARP) by an ICE-related protease is considered an early and critical event during apoptosis. The fate of PARP was monitored by Western extensively in the apoptotic BPp- Tu cells than in the BPp cells. This faster PARP cleavage might be linked to the increased radiosensitivity of the BPp- Tu cells. (authors)

  8. Systematic identification of combinatorial drivers and targets in cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Adel Tabchy

    Full Text Available There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance.

  9. Systematic identification of combinatorial drivers and targets in cancer cell lines.

    Science.gov (United States)

    Tabchy, Adel; Eltonsy, Nevine; Housman, David E; Mills, Gordon B

    2013-01-01

    There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance.

  10. Stable producer cell lines for adeno-associated virus (AAV) assembly.

    Science.gov (United States)

    Chadeuf, Gilliane; Salvetti, Anna

    2010-10-01

    Stable producer cell lines containing both the rep and cap genes and recombinant adeno-associated virus (rAAV) vectors can be infected with a helper virus to provide reliable and efficient production of rAAV stocks. However, the development of these cell lines is time-consuming. The procedure described here is therefore recommended only for studies requiring the production of high amounts of rAAV, such as preclinical studies performed in large animals.

  11. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor restores erectile function after cavernous nerve injury.

    Science.gov (United States)

    May, Florian; Buchner, Alexander; Schlenker, Boris; Gratzke, Christian; Arndt, Christian; Stief, Christian; Weidner, Norbert; Matiasek, Kaspar

    2013-03-01

    To evaluate the time-course of functional recovery after cavernous nerve injury using glial cell line-derived neurotrophic factor-transduced Schwann cell-seeded silicon tubes. Sections of the cavernous nerves were excised bilaterally (5 mm), followed by immediate bilateral surgical repair. A total of 20 study nerves per group were reconstructed by interposition of empty silicon tubes and silicon tubes seeded with either glial cell line-derived neurotrophic factor-overexpressing or green fluorescent protein-expressing Schwann cells. Control groups were either sham-operated or received bilateral nerve transection without nerve reconstruction. Erectile function was evaluated by relaparotomy, electrical nerve stimulation and intracavernous pressure recording after 2, 4, 6, 8 and 10 weeks. The animals underwent re-exploration only once, and were killed afterwards. The nerve grafts were investigated for the maturation state of regenerating nerve fibers and the fascular composition. Recovery of erectile function took at least 4 weeks in the current model. Glial cell line-derived neurotrophic factor-transduced Schwann cell grafts restored erectile function better than green fluorescent protein-transduced controls and unseeded conduits. Glial cell line-derived neurotrophic factor-transduced grafts promoted an intact erectile response (4/4) at 4, 6, 8 and 10 weeks that was overall significantly superior to negative controls (P cell line-derived neurotrophic factor-transduced grafts compared with negative controls (P = 0.018) and unseeded tubes (P = 0.034). Return of function was associated with the electron microscopic evidence of preganglionic myelinated nerve fibers and postganglionic unmyelinated axons. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor presents a viable approach for the treatment of erectile dysfunction after cavernous nerve injury. © 2013 The Japanese Urological Association.

  12. Isolation of a primate embryonic stem cell line.

    OpenAIRE

    Thomson, J A; Kalishman, J; Golos, T G; Durning, M; Harris, C P; Becker, R A; Hearn, J P

    1995-01-01

    Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, st...

  13. Synthesis of Chromonylthiazolidines and Their Cytotoxicity to Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Hoang Le Tuan Anh

    2015-01-01

    Full Text Available Nine new chromonylthiazolidine derivatives were successfully semi-synthesized from paeonol. All of the compounds, including starting materials, the intermediate compound and products, were evaluated for their cytotoxic effects toward eight human cancer cell lines. The synthesized chromonylthiazolidines displayed weak cytotoxic effects against the tested cancer cell lines, but selective cytotoxic effects were observed. Compounds 3a and 3b showed the most selective cytotoxic effects against human epidermoid carcinoma (IC50 44.1 ± 3.6 μg/mL and breast cancer (IC50 32.8 ± 1.4 μg/mL cell lines, respectively. The results suggest that chromoylthiazolidines are potential low-cost, and selective anticancer agents.

  14. Low-risk susceptibility alleles in 40 human breast cancer cell lines

    International Nuclear Information System (INIS)

    Riaz, Muhammad; Elstrodt, Fons; Hollestelle, Antoinette; Dehghan, Abbas; Klijn, Jan GM; Schutte, Mieke

    2009-01-01

    Low-risk breast cancer susceptibility alleles or SNPs confer only modest breast cancer risks ranging from just over 1.0 to1.3 fold. Yet, they are common among most populations and therefore are involved in the development of essentially all breast cancers. The mechanism by which the low-risk SNPs confer breast cancer risks is currently unclear. The breast cancer association consortium BCAC has hypothesized that the low-risk SNPs modulate expression levels of nearby located genes. Genotypes of five low-risk SNPs were determined for 40 human breast cancer cell lines, by direct sequencing of PCR-amplified genomic templates. We have analyzed expression of the four genes that are located nearby the low-risk SNPs, by using real-time RT-PCR and Human Exon microarrays. The SNP genotypes and additional phenotypic data on the breast cancer cell lines are presented. We did not detect any effect of the SNP genotypes on expression levels of the nearby-located genes MAP3K1, FGFR2, TNRC9 and LSP1. The SNP genotypes provide a base line for functional studies in a well-characterized cohort of 40 human breast cancer cell lines. Our expression analyses suggest that a putative disease mechanism through gene expression modulation is not operative in breast cancer cell lines

  15. Spontaneous pyrogen production by mouse histiocytic and myelomonocytic tumor cell lines in vitro.

    Science.gov (United States)

    Bodel, P

    1978-05-01

    Tumor-associated fever occurs commonly in acute leukemias and lymphomas. We investigated the capacity for in vitro production of pyrogen by three mouse histiocytic lymphoma cell lines (J-774, PU5-1.8, p 388 D1), one myelomonoyctic line (WEHI-3), and tow lymphoma-derived lines, RAW-8 and R-8. Pyrogen was released spontaneously into the culture medium during growth by all cell lines with macrophage or myeloid characteristics including lysozyme production; R-8 cells, of presumed B-lymphocyte origin, did not produce pyrogen. When injected into mice, the pyrogens gave fever curves typical of endogenous pyrogen, were inactived by heating to 56 degrees C and by pronase digestion, and appeared to be secreted continuously by viable cells. Two pyrogenic molecular species produced by H-774 cells were identified by Sephadex filtration, one of mol wt approximately equal to 30,000, and the other greater than or equal to 60,000. By contrast, three carcinoma cell lines of human origin and SV-40 3T3 mouse fibroblasts did not produce pyrogen in vitro. These results suggest that some malignant cells derived from phagocytic cells of bone marrow origin retain their capacity for pyrogen production, and may spontaneously secrete pyrogen during growth.

  16. A Sclerostin super-producer cell line derived from the human cell line SaOS-2: a new tool for the study of the molecular mechanisms driving Sclerostin expression.

    Science.gov (United States)

    Pérez-Campo, Flor M; Sañudo, Carolina; Delgado-Calle, Jesús; Arozamena, Jana; Zarrabeitia, María T; Riancho, José A

    2014-08-01

    Sclerostin, the product of the SOST gene, is a key regulator of bone homeostasis. Sclerostin interferes with the Wnt signalling pathway and, therefore, has a negative effect on bone formation. Although the importance of sclerostin in bone homeostasis is well established, many aspects of its biology are still unknown. Due to its restricted pattern of expression, in vitro studies of SOST gene regulation are technically challenging. Furthermore, a more profound investigation of the molecular mechanism controlling sclerostin expression has been hampered by the lack of a good human in vitro model. Here, we describe two cell lines derived from the human osteosarcoma cell line SaOS-2 that produce elevated levels of sclerostin. Analysis of the super-producer cell lines showed that sclerostin levels were still reduced in response to parathyroid hormone treatment or in response to mechanical loading, indicating that these regulatory mechanisms were not affected in the presented cell lines. In addition, we did not find differences between the promoter or ECR5 sequences of our clones and the SaOS-2 parental line. However, the methylation of the proximal CpG island located at the SOST promoter was lower in the super-producer clones, in agreement with a higher level of SOST transcription. Although the underlying biological causes of the elevated levels of sclerostin production in this cell line are not yet clear, we believe that it could be an extremely useful tool to study the molecular mechanisms driving sclerostin expression in humans.

  17. Transformation and Tumorigenicity Testing of Simian Cell Lines and Evaluation of Poliovirus Replication.

    Directory of Open Access Journals (Sweden)

    Silvia Dotti

    Full Text Available The key role of cell cultures in different scientific fields is worldwide recognized, both as in vitro research models alternative to laboratory animals and substrates for biological production. However, many safety concerns rise from the use of animal/human cell lines that may be tumorigenic, leading to potential adverse contaminations in cell-derived biologicals. In order to evaluate the suitability of 13 different cell lines for Poliovirus vaccine production, safety and quality, in vitro/in vivo tumorigenicity and Poliovirus propagation properties were evaluated. Our results revealed that non-human primate cell lines CYNOM-K1, FRhK-4, 4MBr-5 and 4647 are free of tumorigenic features and represent highly susceptible substrates for attenuated Sabin Poliovirus strains. In particular, FRhK-4 and 4647 cell lines are characterized by a higher in vitro replication, resulting indicated for the use in large-scale production field.

  18. Alpha-2 Heremans Schmid Glycoprotein (AHSG) Modulates Signaling Pathways in Head and Neck Squamous Cell Carcinoma Cell Line SQ20B

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Pamela D.; Sakwe, Amos [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Koumangoye, Rainelli [Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Yarbrough, Wendell G. [Division of Otolaryngology, Departments of Surgery and Pathology and Yale Cancer Center, Yale University, New Haven, CT 06520 (United States); Ochieng, Josiah [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Marshall, Dana R., E-mail: dmarshall@mmc.edu [Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208 (United States)

    2014-02-15

    This study was performed to identify the potential role of Alpha-2 Heremans Schmid Glycoprotein (AHSG) in Head and Neck Squamous Cell Carcinoma (HNSCC) tumorigenesis using an HNSCC cell line model. HNSCC cell lines are unique among cancer cell lines, in that they produce endogenous AHSG and do not rely, solely, on AHSG derived from serum. To produce our model, we performed a stable transfection to down-regulate AHSG in the HNSCC cell line SQ20B, resulting in three SQ20B sublines, AH50 with 50% AHSG production, AH20 with 20% AHSG production and EV which is the empty vector control expressing wild-type levels of AHSG. Utilizing these sublines, we examined the effect of AHSG depletion on cellular adhesion, proliferation, migration and invasion in a serum-free environment. We demonstrated that sublines EV and AH50 adhered to plastic and laminin significantly faster than the AH20 cell line, supporting the previously reported role of exogenous AHSG in cell adhesion. As for proliferative potential, EV had the greatest amount of proliferation with AH50 proliferation significantly diminished. AH20 cells did not proliferate at all. Depletion of AHSG also diminished cellular migration and invasion. TGF-β was examined to determine whether levels of the TGF-β binding AHSG influenced the effect of TGF-β on cell signaling and proliferation. Whereas higher levels of AHSG blunted TGF-β influenced SMAD and ERK signaling, it did not clearly affect proliferation, suggesting that AHSG influences on adhesion, proliferation, invasion and migration are primarily due to its role in adhesion and cell spreading. The previously reported role of AHSG in potentiating metastasis via protecting MMP-9 from autolysis was also supported in this cell line based model system of endogenous AHSG production in HNSCC. Together, these data show that endogenously produced AHSG in an HNSCC cell line, promotes in vitro cellular properties identified as having a role in tumorigenesis. Highlights: • Head

  19. Alpha-2 Heremans Schmid Glycoprotein (AHSG) Modulates Signaling Pathways in Head and Neck Squamous Cell Carcinoma Cell Line SQ20B

    International Nuclear Information System (INIS)

    Thompson, Pamela D.; Sakwe, Amos; Koumangoye, Rainelli; Yarbrough, Wendell G.; Ochieng, Josiah; Marshall, Dana R.

    2014-01-01

    This study was performed to identify the potential role of Alpha-2 Heremans Schmid Glycoprotein (AHSG) in Head and Neck Squamous Cell Carcinoma (HNSCC) tumorigenesis using an HNSCC cell line model. HNSCC cell lines are unique among cancer cell lines, in that they produce endogenous AHSG and do not rely, solely, on AHSG derived from serum. To produce our model, we performed a stable transfection to down-regulate AHSG in the HNSCC cell line SQ20B, resulting in three SQ20B sublines, AH50 with 50% AHSG production, AH20 with 20% AHSG production and EV which is the empty vector control expressing wild-type levels of AHSG. Utilizing these sublines, we examined the effect of AHSG depletion on cellular adhesion, proliferation, migration and invasion in a serum-free environment. We demonstrated that sublines EV and AH50 adhered to plastic and laminin significantly faster than the AH20 cell line, supporting the previously reported role of exogenous AHSG in cell adhesion. As for proliferative potential, EV had the greatest amount of proliferation with AH50 proliferation significantly diminished. AH20 cells did not proliferate at all. Depletion of AHSG also diminished cellular migration and invasion. TGF-β was examined to determine whether levels of the TGF-β binding AHSG influenced the effect of TGF-β on cell signaling and proliferation. Whereas higher levels of AHSG blunted TGF-β influenced SMAD and ERK signaling, it did not clearly affect proliferation, suggesting that AHSG influences on adhesion, proliferation, invasion and migration are primarily due to its role in adhesion and cell spreading. The previously reported role of AHSG in potentiating metastasis via protecting MMP-9 from autolysis was also supported in this cell line based model system of endogenous AHSG production in HNSCC. Together, these data show that endogenously produced AHSG in an HNSCC cell line, promotes in vitro cellular properties identified as having a role in tumorigenesis. Highlights: • Head

  20. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies....

  1. Fibronectin synthesized by a human hepatoma cell line

    International Nuclear Information System (INIS)

    Glasgow, J.E.; Colman, R.W.

    1984-01-01

    Fibronectin is a family of immunologically similar glycoproteins which mediate a variety of cell-cell and cell-substratum interactions. It is a constituent of the extracellular matrix of connective tissue and circulates in plasma. When suspension and adherent cultures of a human hepatoma cell line (SK-HEP-1) were incubated in serum-free medium, the resulting conditioned medium contained material which was specifically immunoprecipitated by antisera to human plasma fibronectin. By double immunodiffusion, a component in the conditioned culture medium was shown to form a line of identity with fibronectin in human plasma and to migrate as an alpha 2- to beta-globulin during immunoelectrophoresis. Human fibronectin was quantified in conditioned medium by electroimmunodiffusion, and was found to increase for at least three days at about 0.1 micrograms/10(6) cells/day. Adherent cultures of SK-HEP-1 cells were incubated with L-[ 35 S]methionine to label newly synthesized proteins. Labeled fibronectin in conditioned medium or in cell extracts comigrated with fibronectin in human plasma as shown by autoradiography following crossed-immunoelectrophoresis. Fibronectin was demonstrated in the extra-cellular matrix of adherent SK-HEP-1 cultures by immunofluorescence. It was shown previously that SK-HEP-1 cells synthesize alpha 1-protease inhibitor, one of the products of normal hepatocytes. The finding that these hepatoma cells also synthesize fibronectin supports the concept that the hepatocyte may be one source of circulating fibronectin, a possibility consistent with the established role of this cell type in blood plasma protein synthesis

  2. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    Directory of Open Access Journals (Sweden)

    Irene Veneziani

    2018-01-01

    Full Text Available Neuroblastoma (NB, the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR, triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted.

  3. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    Science.gov (United States)

    Veneziani, Irene; Brandetti, Elisa; Ognibene, Marzia; Pezzolo, Annalisa; Pistoia, Vito

    2018-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR), triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS) in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted. PMID:29805983

  4. Characterization of immortalized MARCO and SR-AI/II-deficient murine alveolar macrophage cell lines

    Directory of Open Access Journals (Sweden)

    Imrich Amy

    2008-05-01

    Full Text Available Abstract Background Alveolar macrophages (AM avidly bind and ingest unopsonized inhaled particles and bacteria through class A scavenger receptors (SRAs MARCO and SR-AI/II. Studies to characterize the function of these SRAs have used AMs from MARCO or SR-AI/II null mice, but this approach is limited by the relatively low yield of AMs. Moreover, studies using both MARCO and SR-AI/II-deficient (MS-/- mice have not been reported yet. Hence, we sought to develop continuous cell lines from primary alveolar macrophages from MS-/- mice. Results We used in vitro infection of the primary AMs with the J2 retrovirus carrying the v-raf and v-myc oncogenes. Following initial isolation in media supplemented with murine macrophage colony-stimulating factor (M-CSF, we subcloned three AM cell lines, designated ZK-1, ZK-2 and ZK-6. These cell lines grow well in RPMI-1640-10% FBS in the absence of M-CSF. These adherent but trypsin-sensitive cell lines have a doubling time of approximately 14 hours, exhibit typical macrophage morphology, and express macrophage-associated cell surface Mac-1 (CD11b and F4/80 antigens. The cell lines show robust Fc-receptor dependent phagocytosis of opsonized red blood cells. Similar to freshly isolated AMs from MS-/- mice, the cell lines exhibit decreased phagocytosis of unopsonized titanium dioxide (TiO2, fluorescent latex beads and bacteria (Staphylococcus aureus compared with the primary AMs from wild type (WT C57BL/6 mice. Conclusion Our results indicated that three contiguous murine alveolar macrophage cell lines with MS-/- (ZK1, ZK2 and ZK6 were established successfully. These cell lines demonstrated macrophage morphology and functional activity. Interestingly, similar to freshly isolated AMs from MS-/- mice, the cell lines have a reduced, but not absent, ability to bind and ingest particles, with an altered pattern of blockade by scavenger receptor inhibitors. These cell lines will facilitate in vitro studies to further define

  5. Cytotoxic effects of local anesthesia through lidocaine/ropivacaine on human melanoma cell lines

    Directory of Open Access Journals (Sweden)

    Ding-Kun Kang

    Full Text Available Abstract Background: Local anesthetics (LAs are generally considered as safe, but cytotoxicity has been reported for several local anesthetics used in humans, which is not well investigated. In the present study, the cytotoxicity of lidocaine, ropivacaine and the combination of lidocaine and ropivacaine were evaluated on human melanoma cell lines. Melphalan, a nitrogen mustard alkylating agent, was used as a control agent for comparison of cytotoxic activity. Methods: Melanoma cell lines, A375 and Hs294T, were exposed to 1 h to different concentrations of above agents. Cell-viability after exposure was determined by flow cytometry. Results: Investigated LAs showed detrimental cytotoxicity on studied melanoma cell lines in time- (p < 0.001, concentration- (p < 0.001, and agent dependant. In both A375 and Hs294T cell lines, minimum cell viability rates were found after 72 h of exposure to these agents. Lidocaine 2% caused a reduction of vital cells to 10% ± 2% and 14% ± 2% in A375 and Hs294T, respectively after 72 h of exposure. Ropivacaine 0.75% after 72 h reduced viable cells to 15% ± 3% and 25% ± 3% in A375 and Hs294T, respectively. Minimum cell viability after 72 h exposure to the combination was 10% ± 2% and 18% ± 2% in A375 and Hs294T, respectively. Minimum cell viability after 72 h exposure to melphalan was 8% ± 1% and 12% ± 2%, in A375 and Hs294T, respectively. Conclusion: LAs have cytotoxic activity on human melanoma cell lines in a time-, concentration- and agent-dependant manner. Apoptosis in the cell lines was mediated through activity of caspases-3 and caspases-8.

  6. Establishment of a novel feline leukemia virus (FeLV)-negative B-cell cell line from a cat with B-cell lymphoma.

    Science.gov (United States)

    Mochizuki, Hiroyuki; Takahashi, Masashi; Nishigaki, Kazuo; Ide, Tetsuya; Goto-Koshino, Yuko; Watanabe, Shinya; Sato, Hirofumi; Sato, Masahiko; Kotera, Yukiko; Fujino, Yasuhito; Ohno, Koichi; Uchida, Kazuyuki; Tsujimoto, Hajime

    2011-04-15

    We established a novel feline B-cell line, MS4, from the neoplastic pleural effusion of a cat with cutaneous B-cell lymphoma. Immunophenotype staining of the MS4 cells was positive for CD20, CD79α, and IgA and negative for CD3, CD4, CD5, CD8α, CD18, CD21, CD22, IgM, IgG, Ig light chain, and MHC class II. PCR analysis for immunoglobulin heavy chain gene rearrangements revealed a monoclonal rearrangement, whereas no clonal rearrangement of the T-cell receptor γ gene was detected. Southern blotting with an exogenous feline leukemia virus (FeLV) U3 probe revealed no integration of exogenous FeLV provirus. The MS4 cell line is the first FeLV-negative feline B-cell lymphoma cell line, and may be used to investigate the pathogenesis of spontaneously occurring feline lymphoma and the development of new therapies. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Fourier analysis of the cell shape of paired human urothelial cell lines of the same origin but of different grades of transformation.

    Science.gov (United States)

    Ostrowski, K; Dziedzic-Goclawska, A; Strojny, P; Grzesik, W; Kieler, J; Christensen, B; Mareel, M

    1986-01-01

    The rationale of the present investigation is the observations made by many authors of changes in the molecular structure of the cell surface during the multistep process of malignant transformation. These changes may influence cell-matrix and cell-cell interactions and thereby cause changes in cell adhesiveness and cell shape. The aim of the present work was to investigate whether the development of various grades of transformation in vivo and in vitro of human urothelial cells is accompanied by significant changes in cell shape as measured by Fourier analysis. The following transformation grades (TGr) have been defined (Christensen et al. 1984; Kieler 1984): TGr I = nonmalignant, mortal cell lines that grow independently of fibroblasts and have a prolonged life span. TGr II = nonmalignant cell lines with an infinite life span. TGr III = malignant and immortal cell lines that grow invasively in co-cultures with embryonic chick heart fragments and possess tumorigenic properties after s.c. injection into nude mice. Comparisons of 4 pairs of cell lines were performed; each pair was of the same origin. Two pairs--each including a TGr I cell line (Hu 961b and Hu 1703S) compared to a TGr III cell line (Hu 961a or Hu 1703He)--were derived from two transitional cell carcinomas (TCC) containing a heterogeneous cell population. Two additional cell lines classified as TGr II (HCV-29 and Hu 609) were compared to two TGr III sublines (HCV-29T and Hu 609T, respectively) which arose by "spontaneous" transformation during propagation in vitro of the respective maternal TGr II-cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Interleukin-2 production by human leukemia cell lines of pre-B cell origin

    International Nuclear Information System (INIS)

    Holan, V.; Minowada, J.

    1993-01-01

    Cells of 7 tested human leukemia cell lines of pre-B cell origin (as characterized by immunophenotyping and by the expression of cytoplasmic micro chains, but not by surface immunoglobulins) produced after stimulation with bacterial lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) a lymphokine activity which supported the growth of the interleukin-2 (IL-2)-dependent CTLL-2 cell line. Three pieces of evidence indicate that the secreted lymphokine was functionally and antigenically very similar, if not identical, to human IL-2: (1) The lymphokine supported the growth of murine IL-2-dependent CTLL-2 cells, which did not respond to human lymphokines other than IL-2, but it did not stimulate the growth of murine IL-3-dependent FDC-P2 cells, (2) the biological activity of the lymphokine was was inhibited by monoclonal antibody (mAb) anti-human-IL-2, and (3) the proliferation of IL-2-dependent cells in the presence of the active materials was completely inhibited by the inclusion of the anti-mouse-IL-2 receptor (IL-2R) mAb. Since leukemia cells of immature B-cell origin also synthesize IL-2R, the human pre-B cell leukemias could represent another type of hematological malignancy where the autocrine processes of IL-2 production and utilization are involved in the expansion of the disease. (author)

  9. Anticancer activity of Cynodon dactylon and Oxalis corniculata on Hep2 cell line.

    Science.gov (United States)

    Salahuddin, H; Mansoor, Q; Batool, R; Farooqi, A A; Mahmood, T; Ismail, M

    2016-04-30

    Bioactive chemicals isolated from plants have attracted considerable attention over the years and overwhelmingly increasing laboratory findings are emphasizing on tumor suppressing properties of these natural agents in genetically and chemically induced animal carcinogenesis models. We studied in vitro anticancer activity of organic extracts of Cynodon dactylon and Oxalis corniculata on Hep2 cell line and it was compared with normal human corneal epithelial cells (HCEC) by using MTT assay. Real Time PCR was conducted for p53 and PTEN genes in treated cancer cell line. DNA fragmentation assay was also carried out to note DNA damaging effects of the extracts. The minimally effective concentration of ethanolic extract of Cynodon dactylon and methanolic extract of Oxalis corniculata that was nontoxic to HCEC but toxic to Hep2 was recorded (IC50) at a concentration of 0.042mg/ml (49.48 % cell death) and 0.048mg/ml (47.93% cell death) respectively, which was comparable to the positive control. Our results indicated dose dependent increase in cell death. P53 and PTEN did not show significant increase in treated cell line. Moreover, DNA damaging effects were also not detected in treated cancer cell line. Anticancer activity of these plants on the cancer cell line showed the presence of anticancer components which should be characterized to be used as anticancer therapy.

  10. Derivation of NEM2 affected human embryonic stem cell line Genea079

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea079 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying compound heterozygous mutations in the NEB gene, exon 55 deletion & c.15110dupA, indicative of Nemaline Myopathy Type 2 (NEM2. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XY and STR analysis demonstrated a male Allele pattern. The hESC line had pluripotent cell morphology, 86% of cells expressed Nanog, 95% Oct4, 54% Tra1-60 and 98% SSEA4 and gave a PluriTest Pluripotency score of 30.25, Novelty of 1.21. The cell line was negative for Mycoplasma and visible contamination.

  11. In vitro culture of various species of microsporidia causing keratitis: Evaluation of three immortalized cell lines

    Directory of Open Access Journals (Sweden)

    Joseph J

    2009-01-01

    Full Text Available Being intracellular parasites, microsporidia can only be propagated in cell culture systems. This study evaluated three cell lines to determine the most suitable host-parasite In vitro system. Confluent monolayers of vero, SIRC, and HeLa cell lines, grown in 24-well tissue culture plates, were inoculated with varying concentrations (1 x 10 4 to 1 x 10 8 spores/mL of Vittaforma corneae, Encephalitozoon hellem, Encephalitozoon cuniculi, and Encephalitozoon intestinalis spores. Growth was compared quantitatively at weekly intervals. Encephalitozoon species showed the highest amount of growth when cultured in vero cell line, while there was no significant difference in their growth in SIRC and HeLa cell lines. In comparison, V. corneae showed the highest growth in SIRC cells, followed by vero cells. The analytical sensitivity was found to be 1 x 10 4 spores/mL for vero cell line compared to 1 x 10 5 spores/mL for SIRC cell line and 1 x 10 7 spores/mL for HeLa cell line. HeLa cells also showed rapid disruption of cells, and the spores could not be easily distinguished from cell debris. This is the first report of the comparison of vero, SIRC, and HeLa for the propagation of microsporidial spores. Vero cell line was found to be more sensitive than SIRC and HeLa cells, and we believe that the inclusion of vero cell line in the routine culture protocols of ocular parasitology laboratories would result in a significant increase in the diagnostic yield.

  12. Analysis of the regulation of fatty acid binding protein 7 expression in human renal carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Sugiyama Takayuki

    2011-07-01

    Full Text Available Abstract Background Improving the treatment of renal cell carcinoma (RCC will depend on the development of better biomarkers for predicting disease progression and aiding the design of appropriate therapies. One such marker may be fatty acid binding protein 7 (FABP7, also known as B-FABP and BLBP, which is expressed normally in radial glial cells of the developing central nervous system and cells of the mammary gland. Melanomas, glioblastomas, and several types of carcinomas, including RCC, overexpress FABP7. The abundant expression of FABP7 in primary RCCs compared to certain RCC-derived cell lines may allow the definition of the molecular components of FABP7's regulatory system. Results We determined FABP7 mRNA levels in six RCC cell lines. Two were highly expressed, whereas the other and the embryonic kidney cell line (HEK293 were weakly expressed FABP7 transcripts. Western blot analysis of the cell lines detected strong FABP7 expression only in one RCC cell line. Promoter activity in the RCC cell lines was 3- to 21-fold higher than that of HEK293. Deletion analysis demonstrated that three FABP7 promoter regions contributed to upregulated expression in RCC cell lines, but not in the HEK293 cell. Competition analysis of gel shifts indicated that OCT1, OCT6, and nuclear factor I (NFI bound to the FABP7 promoter region. Supershift experiments indicated that BRN2 (POU3F2 and NFI bound to the FABP7 promoter region as well. There was an inverse correlation between FABP7 promoter activity and BRN2 mRNA expression. The FABP7-positive cell line's NFI-DNA complex migrated faster than in other cell lines. Levels of NFIA mRNA were higher in the HEK293 cell line than in any of the six RCC cell lines. In contrast, NFIC mRNA expression was lower in the HEK293 cell line than in the six RCC cell lines. Conclusions Three putative FABP7 promoter regions drive reporter gene expression in RCC cell lines, but not in the HEK293 cell line. BRN2 and NFI may be key

  13. A hepatocellular carcinoma cell line producing mature hepatitis B viral particles

    International Nuclear Information System (INIS)

    Fellig, Yakov; Almogy, Gidon; Galun, Eithan; Ketzinel-Gilad, Mali

    2004-01-01

    Current in vitro models for hepatitis B virus (HBV) are based on human hepatoblastoma cell lines transfected with HBV genome. The objective of this work was to develop an in vitro, hepatocellular carcinoma (HCC)-based system supporting HBV full replication and producing mature viral particles. The FLC4 human HCC cell line was stably transfected with a plasmid carrying a head-to-tail dimer of the adwHBV genome. One of the clones, FLC4A10 II , exhibited prolonged expression of HBV, as was demonstrated by secreted levels of HBsAg, HBeAg, and HBV DNA in the culture medium of the growing cells. Furthermore, the cells produced HBV particles that were detected by a cesium chloride density gradient performed on the culture medium. Analysis by Southern blot revealed that HBV DNA has integrated into the FLC4A10 II cell genome. The presence of HBV in the FLC4A10 II cells did not cause alterations in cell morphology and the cells continued to resemble mature hepatocytes. They do exhibit a high mitotic activity. The new HBV stably transfected cell line, FLC4A10 II , can serve as an important tool for further exploration of HBV host-pathogen interaction, viral life cycle, and for assessing new antiviral agents

  14. Degradation of endothelial basement membrane by human breast cancer cell lines

    International Nuclear Information System (INIS)

    Yee, C.; Shiu, R.P.

    1986-01-01

    During metastasis, it is believed that tumor cells destroy the basement membrane (BM) of blood vessels in order to disseminate through the circulatory system. By radioactively labeling the extracellular matrix produced by primary endothelial cells in vitro, the ability of human breast cancer cells to degrade BM components was studied. We found that T-47D, a human breast cancer line, was able to degrade significant amounts of [35S]methionine-labeled and [3H]proline-labeled BM, but not 35SO4-labeled BM. Six other tumor cell lines of human breast origin were assayed in the same manner and were found to degrade BM to varying degrees. Several non-tumor cell lines tested showed relatively little degrading activity. The use of serum-free medium greatly enhanced degradation of the BM by tumor cells, suggesting a role for naturally occurring enzyme inhibitors in the serum. Direct cell contact with the BM was required for BM degradation, suggesting that the active enzymes are cell associated. The addition of hormones implicated in the etiology of breast cancer did not significantly alter the ability of T-47D cells to degrade the BM. The use of this assay affords future studies on the mechanism of invasion and metastasis of human breast cancer

  15. Chemo-sensitivity in a panel of B-cell precursor acute lymphoblastic leukemia cell lines, YCUB series, derived from children.

    Science.gov (United States)

    Goto, Hiroaki; Naruto, Takuya; Tanoshima, Reo; Kato, Hiromi; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Fujii, Hisaki; Yokota, Shumpei; Komine, Hiromi

    2009-10-01

    Sensitivity to 10 anticancer drugs was evaluated in 6 childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cell lines. Authenticity of newly established cell lines was confirmed by genomic fingerprinting. The line YCUB-5R established at relapse was more resistant to 4-hydroperoxy-cyclophosphamide, cytarabine, L-asparaginase, topotecan, fludarabine, and etoposide than YCUB-5 from the same patient at diagnosis. Of the drugs tested, etoposide and SN-38 (irinotecan) showed highest efficacy in the panel, with 50% growth inhibition at 0.22-1.8 microg/ml and 0.57-3.6 ng/ml, respectively. This cell line panel offers an in vitro model for the development of new therapies for childhood BCP-ALL.

  16. Exploiting mitochondrial dysfunction for effective elimination of imatinib-resistant leukemic cells.

    Directory of Open Access Journals (Sweden)

    Jérome Kluza

    Full Text Available Challenges today concern chronic myeloid leukemia (CML patients resistant to imatinib. There is growing evidence that imatinib-resistant leukemic cells present abnormal glucose metabolism but the impact on mitochondria has been neglected. Our work aimed to better understand and exploit the metabolic alterations of imatinib-resistant leukemic cells. Imatinib-resistant cells presented high glycolysis as compared to sensitive cells. Consistently, expression of key glycolytic enzymes, at least partly mediated by HIF-1α, was modified in imatinib-resistant cells suggesting that imatinib-resistant cells uncouple glycolytic flux from pyruvate oxidation. Interestingly, mitochondria of imatinib-resistant cells exhibited accumulation of TCA cycle intermediates, increased NADH and low oxygen consumption. These mitochondrial alterations due to the partial failure of ETC were further confirmed in leukemic cells isolated from some imatinib-resistant CML patients. As a consequence, mitochondria generated more ROS than those of imatinib-sensitive cells. This, in turn, resulted in increased death of imatinib-resistant leukemic cells following in vitro or in vivo treatment with the pro-oxidants, PEITC and Trisenox, in a syngeneic mouse tumor model. Conversely, inhibition of glycolysis caused derepression of respiration leading to lower cellular ROS. In conclusion, these findings indicate that imatinib-resistant leukemic cells have an unexpected mitochondrial dysfunction that could be exploited for selective therapeutic intervention.

  17. Dihydrochalcone Compounds Isolated from Crabapple Leaves Showed Anticancer Effects on Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Qin

    2015-11-01

    Full Text Available Seven dihydrochalcone compounds were isolated from the leaves of Malus crabapples, cv. “Radiant”, and their chemical structures were elucidated by UV, IR, ESI-MS, 1H-NMR and 13C-NMR analyses. These compounds, which include trilobatin (A1, phloretin (A2, 3-hydroxyphloretin (A3, phloretin rutinoside (A4, phlorizin (A5, 6′′-O-coumaroyl-4′-O-glucopyranosylphloretin (A6, and 3′′′-methoxy-6′′-O-feruloy-4′-O-glucopyranosyl-phloretin (A7, all belong to the phloretin class and its derivatives. Compounds A6 and A7 are two new rare dihydrochalcone compounds. The results of a MTT cancer cell growth inhibition assay demonstrated that phloretin and these derivatives showed significant positive anticancer activities against several human cancer cell lines, including the A549 human lung cancer cell line, Bel 7402 liver cancer cell line, HepG2 human ileocecal cancer cell line, and HT-29 human colon cancer cell line. A7 had significant effects on all cancer cell lines, suggesting potential applications for phloretin and its derivatives. Adding a methoxyl group to phloretin dramatically increases phloretin’s anticancer activity.

  18. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Nik Muhd Khuzaimi Nik Man

    2015-01-01

    Full Text Available Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS, human breast (MCF-7 and MDA-MB-231, and cervical (HeLa cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11 and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11 cell lines.

  19. Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT.

    Science.gov (United States)

    Sakaguchi, H; Ashikaga, T; Miyazawa, M; Yoshida, Y; Ito, Y; Yoneyama, K; Hirota, M; Itagaki, H; Toyoda, H; Suzuki, H

    2006-08-01

    Recent regulatory changes have placed a major emphasis on in vitro safety testing and alternative models. In regard to skin sensitization tests, dendritic cells (DCs) derived from human peripheral blood have been considered in the development of new in vitro alternatives. Human cell lines have been also reported recently. In our previous study, we suggested that measuring CD86 and/or CD54 expression on THP-1 cells (human monocytic leukemia cell line) could be used as an in vitro skin sensitization method. An inter-laboratory study among two laboratories was undertaken in Japan in order to further develop an in vitro skin sensitization model. In the present study, we used two human cell lines: THP-1 and U-937 (human histiocytic lymphoma cell line). First we optimized our test protocol (refer to the related paper entitled "optimization of the h-CLAT protocol" within this journal) and then we did an inter-laboratory validation with nine chemicals using the optimized protocol. We measured the expression of CD86 and CD54 on the above cells using flow cytometry after a 24h and 48h exposure to six known allergens (e.g., DNCB, pPD, NiSO(4)) and three non-allergens (e.g., SLS, tween 80). For the sample test concentration, four doses (0.1x, 0.5x, 1x, and 2x of the 50% inhibitory concentration (IC(50))) were evaluated. IC(50) was calculated using MTT assay. We found that allergens/non-allergens were better predicted using THP-1 cells compared to U-937 cells following a 24 h and a 48 h exposure. We also found that the 24h treatment time tended to have a better accuracy than the 48 h treatment time for THP-1 cells. Expression of CD86 and CD54 were good predictive markers for THP-1 cells, but for U-937 cells, expression of CD86 was a better predictor than CD54, at the 24h and the 48 h treatment time. The accuracy also improved when both markers (CD86 and CD54) were used as compared with a single marker for THP-1 cells. Both laboratories gave a good prediction of allergen

  20. A New Approach to Establish a Cell Line with Reduced Risk of Endogenous Retroviruses

    Science.gov (United States)

    Fukuma, Aiko; Yoshikawa, Rokusuke; Miyazawa, Takayuki; Yasuda, Jiro

    2013-01-01

    Endogenous retroviruses (ERVs) are integrated as DNA proviruses in the genomes of all mammalian species. Several ERVs are replication-competent and produced as fully infectious viruses from host cell. Thus, live-attenuated vaccines and biological substances have been prepared using the cell lines which may produce ERV. Indeed, we recently reported that several commercial live-attenuated vaccines for pets were contaminated with the infectious feline endogenous retrovirus, RD-114. In this study, to establish a cell line for vaccine manufacture with reduced risk of ERVs, we generated a cell line stably expressing human tetherin (Teth-CRFK cells). The release of infectious ERV from Teth-CRFK cells was suppressed to undetectable levels, while the production of parvovirus in Teth-CRFK cells was similar to that in parental CRFK cells. These observations suggest that Teth-CRFK cells will be useful as a cell line for the manufacture of live-attenuated vaccines or biological substances with reduced risk of ERV. PMID:23585909

  1. A new approach to establish a cell line with reduced risk of endogenous retroviruses.

    Directory of Open Access Journals (Sweden)

    Aiko Fukuma

    Full Text Available Endogenous retroviruses (ERVs are integrated as DNA proviruses in the genomes of all mammalian species. Several ERVs are replication-competent and produced as fully infectious viruses from host cell. Thus, live-attenuated vaccines and biological substances have been prepared using the cell lines which may produce ERV. Indeed, we recently reported that several commercial live-attenuated vaccines for pets were contaminated with the infectious feline endogenous retrovirus, RD-114. In this study, to establish a cell line for vaccine manufacture with reduced risk of ERVs, we generated a cell line stably expressing human tetherin (Teth-CRFK cells. The release of infectious ERV from Teth-CRFK cells was suppressed to undetectable levels, while the production of parvovirus in Teth-CRFK cells was similar to that in parental CRFK cells. These observations suggest that Teth-CRFK cells will be useful as a cell line for the manufacture of live-attenuated vaccines or biological substances with reduced risk of ERV.

  2. A new approach to establish a cell line with reduced risk of endogenous retroviruses.

    Science.gov (United States)

    Fukuma, Aiko; Yoshikawa, Rokusuke; Miyazawa, Takayuki; Yasuda, Jiro

    2013-01-01

    Endogenous retroviruses (ERVs) are integrated as DNA proviruses in the genomes of all mammalian species. Several ERVs are replication-competent and produced as fully infectious viruses from host cell. Thus, live-attenuated vaccines and biological substances have been prepared using the cell lines which may produce ERV. Indeed, we recently reported that several commercial live-attenuated vaccines for pets were contaminated with the infectious feline endogenous retrovirus, RD-114. In this study, to establish a cell line for vaccine manufacture with reduced risk of ERVs, we generated a cell line stably expressing human tetherin (Teth-CRFK cells). The release of infectious ERV from Teth-CRFK cells was suppressed to undetectable levels, while the production of parvovirus in Teth-CRFK cells was similar to that in parental CRFK cells. These observations suggest that Teth-CRFK cells will be useful as a cell line for the manufacture of live-attenuated vaccines or biological substances with reduced risk of ERV.

  3. In vitro radiation and chemotherapy sensitivity of established cell lines of human small cell lung cancer and its large cell morphological variants

    International Nuclear Information System (INIS)

    Carney, D.N.; Mitchell, J.B.; Kinsella, T.J.

    1983-01-01

    The in vitro response to radiation and chemotherapeutic drugs of cell lines established from 7 patients with small cell (SC) lung cancer were tested using a soft agarose clonogenic assay. Five cell lines retained the typical morphological and biochemical amine precursor uptake decarboxylation characteristics of SC, while two cell lines had undergone ''transformation'' to large cell (LC) morphological variants with loss of amine precursor uptake decarboxylation cell characteristics of SC. The radiation survival curves for the SC lines were characterized by D0 values ranging from 51 to 140 rads and extrapolation values (n) ranging from 1.0 to 3.3. While the D0 values of the radiation survival curves of the LC variants were similar (91 and 80 rads), the extrapolation values were 5.6 and 11.1 In vitro chemosensitivity testing of the cell lines revealed an excellent correlation between prior treatment status of the patient and in vitro sensitivity or resistance. No correlation was observed between in vitro chemosensitivity and radiation response. These data suggest that transformation of SC to LC with loss of amine precursor uptake and decarboxylation characteristics is associated with a marked increase in radiation resistance (n) in vitro. The observation of a 2- to 5-fold increase in survival of the LC compared to the SC lines following 200 rads suggests that the use of larger daily radiation fractions and/or radiation-sensitizing drugs might lead to a significantly greater clinical response in patients with LC morphology. This clinical approach may have a major impact on patient response and survival

  4. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII...... and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II m......RNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF...

  5. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    Science.gov (United States)

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.

    2017-01-01

    ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264

  6. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    Directory of Open Access Journals (Sweden)

    Ludovic Arandel

    2017-04-01

    Full Text Available Myotonic dystrophy type 1 (DM1 and type 2 (DM2 are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations.

  7. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.

    Science.gov (United States)

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis

    2017-04-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.

  8. Application of the inter-line PCR for the analyse of genomic rearrangements in radiation-transformed mammalian cell lines

    International Nuclear Information System (INIS)

    Leibhard, S.; Smida, J.

    1996-01-01

    Repetitive DNA sequences of the LINE-family (long interspersed elements) that are widely distributed among the mammalian genome can be activated or altered by the exposure to ionizing radiation [1]. By the integration at new sites in the genome alterations in the expression of genes that are involved in cell transformation and/or carcinogenesis may occur [2, 3]. A new technique -the inter-LINE PCR - has been developed in order to detect and analyse such genomic rearrangements in radiation-transformed cell lines. From the sites of transformation- or tumour-specific changes in the genome it might be possible to develop new tumour markers for diagnostic purpose. (orig.) [de

  9. Radiation Response of Cancer Stem-Like Cells From Established Human Cell Lines After Sorting for Surface Markers

    International Nuclear Information System (INIS)

    Al-Assar, Osama; Muschel, Ruth J.; Mantoni, Tine S.; McKenna, W. Gillies; Brunner, Thomas B.

    2009-01-01

    Purpose: A subpopulation of cancer stem-like cells (CSLC) is hypothesized to exist in different cancer cell lines and to mediate radioresistance in solid tumors. Methods and Materials: Cells were stained for CSLC markers and sorted (fluorescence-activated cell sorter/magnetic beads) to compare foci and radiosensitivity of phosphorylated histone H2AX at Ser 139 (γ-H2AX) in sorted vs. unsorted populations in eight cell lines from different organs. CSLC properties were examined using anchorage-independent growth and levels of activated Notch1. Validation consisted of testing tumorigenicity and postirradiation enrichment of CSLC in xenograft tumors. Results: The quantity of CSLC was generally in good agreement with primary tumors. CSLC from MDA-MB-231 (breast) and Panc-1 and PSN-1 (both pancreatic) cells had fewer residual γ-H2AX foci than unsorted cells, pointing to radioresistance of CSLC. However, only MDA-MB-231 CSLC were more radioresistant than unsorted cells. Furthermore, MDA-MB-231 CSLC showed enhanced anchorage-independent growth and overexpression of activated Notch1 protein. The expression of cancer stem cell surface markers in the MDA-MB-231 xenograft model was increased after exposure to fractionated radiation. In contrast to PSN-1 cells, a growth advantage for MDA-MB-231 CSLC xenograft tumors was found compared to tumors arising from unsorted cells. Conclusions: CSLC subpopulations showed no general radioresistant phenotype, despite the quantities of CSLC subpopulations shown to correspond relatively well in other reports. Likewise, CSLC characteristics were found in some but not all of the tested cell lines. The reported problems in testing for CSLC in cell lines may be overcome by additional techniques, beyond sorting for markers.

  10. Visualization of proteolytic activity associated with the apoptotic response in cancer cells

    Science.gov (United States)

    Tice, Brian George

    Caspases execute programmed cell death, where low levels of caspase activity are linked to cancer. Chemotherapies utilize induction of apoptosis as a key mechanism for cancer treatment, where caspase-3 is a major player involved in dismantling these aberrant cells. The ability to sensitively measure the initial caspase-3 cleavage events during apoptosis is important for understanding the initiation of this complex cellular process, however, current ensemble methods are not sensitive enough to measure single cleavage events in cells. By utilizing the optical properties of plasmon coupling, peptide-linked gold nanoparticles were developed to enable single molecule imaging of caspase-3 activity in two different cancer systems. Au crown nanoparticles were assembled in a multimeric fashion to overcome the high and heterogeneous background scattering of live cells. In a colon cancer (SW620) cell line challenged with tumor necrosis factor-alpha (TNF-alpha), single molecule trajectories show early stage caspase-3 activation within minutes, which was not detectable by ensemble assays until 23 hours. Variability in caspase-3 activation among the population of cells was identified and likely a result of each cell's specific resistance to death receptor-induced apoptosis. Following these studies, improvements by way of sensitivity and selectivity were tailored into an improved nanosensor construct. Au nanoshell dimers were prepared as a comparably bright construct with 1) reduced heterogeneity compared to the synthesis of the crown nanoparticles and 2) a peptide sequence highly selective for caspase-3. Chronic myeloid leukemia (CML) K562 cells were assessed for their early apoptotic response upon treatment with dasatinib, a clinically approved tyrosine kinase inhibitor that specifically targets BCR-ABL. It has been demonstrated that inhibition of BCR-ABL by dasatinib commits K562 cells to apoptosis. Single molecule experiments with Au nanoshell dimers show caspase-3 activation

  11. Anti-tumor effect of bisphosphonate (YM529 on non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Date Hiroshi

    2007-01-01

    Full Text Available Abstract Background YM529 is a newly developed nitrogen-containing bisphosphonate (BP classified as a third-generation BP that shows a 100-fold greater potency against bone resorption than pamidronate, a second-generation BP. This agent is, therefore expected to be extremely useful clinically for the treatment of osteoporosis and hypercalcemia. Recently, YM529 as well as other third-generation BPs have also been shown to exert anti-tumor effects against various types of cancer cells both in vitro or/and in vivo. In this study, we investigate the anti-tumor effect of YM529 on non-small cell lung cancer (NSCLC. Methods Direct anti-tumor effect of YM529 against 8 NSCLC cell lines (adenocarcinoma: H23, H1299, NCI-H1819, NCI-H2009, H44, A549, adenosquamous cell carcinoma: NCI-H125, squamous cell carcinoma: NCI-H157 were measured by MTS assay and calculated inhibition concentration 50 % (IC50 values. YM529 induced apoptosis of NCI-H1819 was examined by DNA fragmentation of 2 % agarose gel electrophoresis and flowcytometric analysis (sub-G1 method. We examined where YM529 given effect to apoptosis of NSCLC cells in signaling pathway of the mevalonate pathway by western blotting analysis. Results We found that there was direct anti-tumor effect of YM529 on 8 NSCLC cell lines in a dose-dependent manner and their IC50 values were 2.1 to 7.9 μM and YM529 induced apoptosis and G1 arrest cell cycle with dose-dependent manner and YM529 caused down regulation of phospholyration of ERK1/2 in signaling pathways of NSCLC cell line (NCI-H1819. Conclusion Our study demonstrate that YM529 showed direct anti-tumor effect on NSCLC cell lines in vitro, which supports the possibility that third-generation BPs including YM529 can be one of therapeutic options for NSCLC.

  12. Characteristics of replication and radiation response of Aedes Albopictus cell line in vitro

    International Nuclear Information System (INIS)

    Lee, C.K.

    1974-01-01

    The radiosensitivity of the line of Aedes albopictus cells was investigated by scoring x-ray-induced chromosome aberrations as a function of dose and of time after irradiation as well as the modification by dose fractionation. In order to obtain these data, a series of studies, e.g., karyotype, cell life cycle, radiation- induced mitotic delay, and frequency and type of spontaneous aberrations, were carried out. Cells from this line had three pairs of chromosomes as a stem line chromosome number. The morphology of the chromosomes is metacentric. Somatic pairing between homologous chromosomes was observed as a common event and there was a high frequency of achromatic gaps on the chromosomes. These observations are in good agreement with those made in other laboratories. The generation time of A. albopictus cell line was approximately 32 hours, in which G 1 , S, and G 2 phases were 2 1 / 2 , 24 and 5 1 / 2 hours respectively. This generation time is in agreement with the population doubling time observed in our cell growth studies. By contrast, in most mammalian cells, G 1 usually is the longest phase and S is comparatively short. Dose fractionation studies indicated that A. albopictus cells in culture may have a faster chromosome repair system than mammalian and other cell systems. This may, at least in part; explain the difference in radiosensitivity between A. albopictus cell line and other cell systems. (Diss. Abstr.)

  13. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    International Nuclear Information System (INIS)

    López, Jacqueline; Poitevin, Adela; Mendoza-Martínez, Veverly; Pérez-Plasencia, Carlos; García-Carrancá, Alejandro

    2012-01-01

    Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 10 3 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 10 5 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). We characterized a self-renewing subpopulation of CICs found among four well known human cancer-derived cell lines (HeLa, Si

  14. Proteomics of a new esophageal cancer cell line established from Persian patient.

    Science.gov (United States)

    Moghanibashi, Mehdi; Jazii, Ferdous Rastgar; Soheili, Zahra-Soheila; Zare, Maryam; Karkhane, Aliasghar; Parivar, Kazem; Mohamadynejad, Parisa

    2012-05-25

    Although the highest incidence of esophageal squamous cell carcinoma (ESCC) has repeatedly been reported from Persia (Iran), nevertheless the so far proteomic published reports were limited to one study on tissue specimens. Here we report the proteome of a newly established cell line from Persian ESCC patients and compare it with the normal primary cell proteome. Among polypeptides, whose expression was different in cell line sixteen polypeptides were identified by MALDI/TOF/TOF spectrometry. S100-A8 protein, annexin A1, annexin A2, regulatory subunit of calpain, subunit alpha type-3 of proteasome and glutamate dehydrogenase 1 were proteins down-regulated in cell line while peroxiredoxin-5, non-muscle myosin light polypeptide 6, keratin 1, annexin A4, keratin 8, tropomyosin 3, stress-induced-phosphoprotein 1 and albumin were found to be subject of up-regulation in cell line compared to the primary normal cells. The proteomic results were further verified by western blotting and RT-PCR on annexin A1 and keratin 8. In addition, among the aforementioned proteins, glutamate dehydrogenase 1, regulatory subunit of calpain, subunit alpha of type-3 proteasome and annexin A4 are proteins whose deregulation in ESCC is reported for the first time by this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effect of selective T cell depletion of host and/or donor bone marrow on lymphopoietic repopulation, tolerance, and graft-vs-host disease in mixed allogeneic chimeras (B10 + B10.D2----B10)

    International Nuclear Information System (INIS)

    Ildstad, S.T.; Wren, S.M.; Bluestone, J.A.; Barbieri, S.A.; Stephany, D.; Sachs, D.H.

    1986-01-01

    Reconstitution of lethally irradiated mice with a mixture of T cell-depleted syngeneic plus T cell-depleted allogeneic bone marrow (B10 + B10.D2----B10) leads to the induction of mixed lymphopoietic chimerism, excellent survivals, specific in vivo transplantation tolerance to subsequent donor strain skin grafts, and specific in vitro unresponsiveness to allogeneic donor lymphoid elements as assessed by mixed lymphocyte reaction (MLR) proliferative and cell-mediated lympholysis (CML) cytotoxicity assays. When B10 recipient mice received mixed marrow inocula in which the syngeneic component had not been T cell depleted, whether or not the allogeneic donor marrow was treated, they repopulated exclusively with host-type cells, promptly rejected donor-type skin allografts, and were reactive in vitro to the allogeneic donor by CML and MLR assays. In contrast, T cell depletion of the syngeneic component of the mixed marrow inocula resulted in specific acceptance of allogeneic donor strain skin grafts. Such animals were specifically unreactive to allogeneic donor lymphoid elements in vitro by CML and MLR, but were reactive to third party. When both the syngeneic and allogeneic marrow were T cell depleted, variable percentages of host- and donor-type lymphoid elements were detected in the mixed reconstituted host. When only the syngeneic bone marrow was T cell depleted, animals repopulated exclusively with donor-type cells. Although these animals had detectable in vitro anti-host (B10) reactivity by CML and MLR and reconstituted as fully allogeneic chimeras, they exhibited excellent survival and had no in vivo evidence for graft-vs-host disease. Experiments in which untreated donor spleen cells were added to the inocula in this last group suggest that the presence of T cell-depleted syngeneic bone marrow cells diminishes graft-vs-host disease and the mortality from it

  16. Radiation induced expression of survivin in Ewing sarcoma cell-lines

    International Nuclear Information System (INIS)

    Sheikh-Mounessi, F.; Willich, N.; Greve, B.

    2009-01-01

    Full text: Introduction: Survivin belongs to the Inhibitor of Apoptosis Protein Family (IAP), is a protein of 16.5 kD and active as a homodimer. It is overexpressed in nearly all human tumors and has a vital function in cell division and apoptotic processes. Beside its role as a relevant prognostic and predictive factor it was described to be a molecular target to improve effectiveness of radiotherapy. We investigated the radiation induced survivin expression in Ewing sarcoma cell-lines. Methods: Ewing sarcoma cells were either irradiated with 10 Gy X-ray and harvested at different time points (0, 2, 4, 6, 10 and 24 h) or irradiated with different doses (0, 2, 5 and 10 Gy) and harvested 24 h later. Protein and mRNA expression was analysed by Westernblot or Real-Time PCR. Results: Directly after irradiation with 10 Gy X-ray survivin mRNA expression was increased in relation to the reference GAPDH. Protein expression was increased in a time dependent manner and reached a maximum after 24h. Three of four investigated cell-lines showed a significant dose dependent increase of survivin protein concentration 24h after irradiation. The same three cell-lines showed a LD50 of >30 Gy. The line with the lowest dose dependent survivin induction was investigated to be most radiosensitive (LD50 = 24 Gy). Discussion: Ewing sarcoma is a childhood tumor with relatively poor prognosis. This tumor often shows significant therapeutic resistance to chemo- and/or radiotherapy. It would be of high interest to find new therapeutic approaches for its treatment. We found a remarkable overexpression of survivin in untreated Ewing sarcoma and a time and dose dependent increase of survivin protein concentration after irradiation with X-ray. The cell-line with the lowest survivin induction showed the highest radiosensitivity. In conclusion, our results show that survivin is an inducible radioresistance factor in Ewing sarcoma. This may open new therapeutic options to treat this aggressive

  17. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Carol F., E-mail: carol-webb@omrf.org [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ratliff, Michelle L., E-mail: michelle-ratliff@omrf.org [Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Powell, Rebecca, E-mail: rebeccapowell@gmail.com [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Wirsig-Wiechmann, Celeste R., E-mail: celeste-wirsig@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Lakiza, Olga, E-mail: olga-lakiza@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Obara, Tomoko, E-mail: tomoko-obara@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  18. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    International Nuclear Information System (INIS)

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-01-01

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development

  19. Combined inhibition of β-catenin and Bcr–Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo

    Science.gov (United States)

    Zhou, H; Mak, P Y; Mu, H; Mak, D H; Zeng, Z; Cortes, J; Liu, Q; Andreeff, M; Carter, B Z

    2017-01-01

    Tyrosine kinase inhibitor (TKI) resistance and progression to blast crisis (BC), both related to persistent β-catenin activation, remain formidable challenges for chronic myeloid leukemia (CML). We observed overexpression of β-catenin in BC-CML stem/progenitor cells, particularly in granulocyte–macrophage progenitors, and highest among a novel CD34+CD38+CD123hiTim-3hi subset as determined by CyTOF analysis. Co-culture with mesenchymal stromal cells (MSCs) induced the expression of β-catenin and its target CD44 in CML cells. A novel Wnt/β-catenin signaling modulator, C82, and nilotinib synergistically killed KBM5T315I and TKI-resistant primary BC-CML cells with or without BCR–ABL kinase mutations even under leukemia/MSC co-culture conditions. Silencing of β-catenin by short interfering RNA restored sensitivity of primary BCR–ABLT315I/E255V BC-CML cells to nilotinib. Combining the C82 pro-drug, PRI-724, with nilotinib significantly prolonged the survival of NOD/SCID/IL2Rγ null mice injected with primary BCR–ABLT315I/E255V BC-CML cells. The combined treatment selectively targeted CML progenitors and inhibited CD44, c-Myc, survivin, p-CRKL and p-STAT5 expression. In addition, pretreating primary BC-CML cells with C82, or the combination, but not with nilotinib alone, significantly impaired their engraftment potential in NOD/SCID/IL2Rγ-null-3/GM/SF mice and significantly prolonged survival. Our data suggest potential benefit of concomitant β-catenin and Bcr–Abl inhibition to prevent or overcome Bcr–Abl kinase-dependent or -independent TKI resistance in BC-CML. PMID:28321124

  20. Combined inhibition of β-catenin and Bcr-Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo.

    Science.gov (United States)

    Zhou, H; Mak, P Y; Mu, H; Mak, D H; Zeng, Z; Cortes, J; Liu, Q; Andreeff, M; Carter, B Z

    2017-10-01

    Tyrosine kinase inhibitor (TKI) resistance and progression to blast crisis (BC), both related to persistent β-catenin activation, remain formidable challenges for chronic myeloid leukemia (CML). We observed overexpression of β-catenin in BC-CML stem/progenitor cells, particularly in granulocyte-macrophage progenitors, and highest among a novel CD34 + CD38 + CD123 hi Tim-3 hi subset as determined by CyTOF analysis. Co-culture with mesenchymal stromal cells (MSCs) induced the expression of β-catenin and its target CD44 in CML cells. A novel Wnt/β-catenin signaling modulator, C82, and nilotinib synergistically killed KBM5 T315I and TKI-resistant primary BC-CML cells with or without BCR-ABL kinase mutations even under leukemia/MSC co-culture conditions. Silencing of β-catenin by short interfering RNA restored sensitivity of primary BCR-ABL T315I/E255V BC-CML cells to nilotinib. Combining the C82 pro-drug, PRI-724, with nilotinib significantly prolonged the survival of NOD/SCID/IL2Rγ null mice injected with primary BCR-ABL T315I/E255V BC-CML cells. The combined treatment selectively targeted CML progenitors and inhibited CD44, c-Myc, survivin, p-CRKL and p-STAT5 expression. In addition, pretreating primary BC-CML cells with C82, or the combination, but not with nilotinib alone, significantly impaired their engraftment potential in NOD/SCID/IL2Rγ-null-3/GM/SF mice and significantly prolonged survival. Our data suggest potential benefit of concomitant β-catenin and Bcr-Abl inhibition to prevent or overcome Bcr-Abl kinase-dependent or -independent TKI resistance in BC-CML.

  1. O-naphthoquinone isolated from Capraria biflora L. induces selective cytotoxicity in tumor cell lines.

    Science.gov (United States)

    de S Wisintainer, G G N; Scola, G; Moura, S; Lemos, T L G; Pessoa, C; de Moraes, M O; Souza, L G S; Roesch-Ely, M; Henriques, J A P

    2015-12-21

    Biflorin is an o-naphthoquinone isolated from the roots of the plant Capraria biflora L. (Scrophulariaceae). In this study, the cytotoxic effects of biflorin were verified, and late apoptosis was detected in various cancer cell lines by in situ analysis. The cytotoxicity was further evaluated exclusively for 48 h of treatment in different tumor and non-tumor cell lines (Hep-2, HeLa, HT-29, A-375, and A-549, and HEK-293, respectively). The results indicated that biflorin induced selective cytotoxicity in tumor cells. HeLa cells were more susceptible to biflorin, followed by HT-29, A-549, A-375, and Hep-2 at all concentrations (range 5-50 μg/mL), and the highest half-maximal inhibitory concentration IC50 (56.01 ± 1.17 μg/mL) was observed in HEK-293 cells. Late apoptotic/necrotic events, observed by in situ immunostaining with Annexin V, varied with each cell line; an increase in late apoptotic events was observed corresponding to the increase in biflorin dosage. Hep-2 cells showed a greater percentage of late apoptotic events among the tumor cell lines when treated with higher concentrations of biflorin (69.63 ± 2.28%). The non-tumor HEK-293 line showed greater resistance to late apoptotic events, as well as a lower level of cytotoxicity (77.69 ± 6.68%) than the tested tumor lines. The data presented indicate that biflorin showed an important, possibly selective, cytotoxicity against tumor cell lines, thereby revealing a promising novel substance with potential anticancer activity for tumor therapy.

  2. Antiproliferative Effects of Selected Chemotherapeutics in Human Ovarian Cancer Cell Line A2780

    Directory of Open Access Journals (Sweden)

    Kateřina Caltová

    2012-01-01

    Full Text Available The aim of our study was to determine the effect of selected cytostatics on a human ovarian cancer cell line A2780 as a model system for ovarian cancer treatment. This cell line is considered cisplatin-sensitive. Panel of tested cytostatics included cisplatin, paclitaxel, carboplatin, gemcitabine, topotecan and etoposide. These cytostatics have a different mechanism of action. To evaluate cytotoxic potential of the tested compounds, the methods measuring various toxicological endpoints were employed including morphological studies, MTT assay, dynamic monitoring of cell proliferation with xCELLigence, cell cycle analysis, caspase 3 activity and expression of proteins involved in cell cycle regulation and cell death. The A270 cell line showed different sensitivity towards the selected cytostatics, the highest cytotoxic effect was associated with paclitaxel and topotecan.

  3. Proliferation-dependent changes in amino acid transport and glucose metabolism in glioma cell lines

    International Nuclear Information System (INIS)

    Sasajima, Toshio; Miyagawa, Tadashi; Oku, Takamitsu; Gelovani, Juri G.; Finn, Ronald; Blasberg, Ronald

    2004-01-01

    Amino acid imaging is increasingly being used for assessment of brain tumor malignancy, extent of disease, and prognosis. This study explores the relationship between proliferative activity, amino acid transport, and glucose metabolism in three glioma cell lines (U87, Hs683, C6) at different phases of growth in culture. Growth phase was characterized by direct cell counting, proliferation index determined by flow cytometry, and [ 3 H]thymidine (TdR) accumulation, and was compared with the uptake of two non-metabolized amino acids ([ 14 C]aminocyclopentane carboxylic acid (ACPC) and [ 14 C]aminoisobutyric acid (AIB)), and [ 18 F]fluorodeoxyglucose (FDG). Highly significant relationships between cell number (density), proliferation index, and TdR accumulation rate were observed in all cell lines (r>0.99). Influx (K 1 ) of both ACPC and AIB was directly related to cell density, and inversely related to the proliferation index and TdR accumulation in all cell lines. The volume of distribution (V d ) for ACPC and AIB was lowest during rapid growth and highest during the near-plateau growth phase in all cell lines. FDG accumulation in Hs683 and C6 cells was unaffected by proliferation rate, growth phase, and cell density, whereas FDG accumulation was correlated with TdR accumulation, growth phase, and cell density in U87 cells. This study demonstrates that proliferation rate and glucose metabolism are not necessarily co-related in all glioma cell lines. The values of K 1 and V d for ACPC and AIB under different growth conditions suggest that these tumor cell lines can up-regulate amino acid transporters in their cell membranes when their growth conditions become adverse and less than optimal. (orig.)

  4. Naturally occurring glucagon-like peptide-2 (GLP-2) receptors in human intestinal cell lines.

    Science.gov (United States)

    Sams, Anette; Hastrup, Sven; Andersen, Marie; Thim, Lars

    2006-02-17

    Although clinical trials with GLP-2 receptor agonists are currently ongoing, the mechanisms behind GLP-2-induced intestinal epithelial growth remain to be understood. To approach the GLP-2 mechanism of action this study aimed to identify intestinal cell lines endogenously expressing the GLP-2 receptor. Here we report the first identification of a cell line endogenously expressing functional GLP-2 receptors. The human intestinal epithelial cell line, FHC, expressed GLP-2 receptor encoding mRNA (RT-PCR) and GLP-2 receptor protein (Western blot). In cultured FHC cells, GLP-2 induced concentration dependent cAMP accumulation (pEC(50)=9.7+/-0.04 (mean+/-S.E.M., n=4)). In addition, a naturally occurring human intestinal fibroblast cell line, 18Co, endogenously expressing GLP-2 receptor encoding mRNA (RT-PCR) and protein (Western blot) was identified. No receptor functionality (binding or G-protein signalling) could be demonstrated in 18Co cells. The identified gut-relevant cell lines provide tools for future clarification of the mechanisms underlying GLP-2-induced epithelial growth.

  5. Breast cancer cell lines: friend or foe?

    International Nuclear Information System (INIS)

    Burdall, Sarah E; Hanby, Andrew M; Lansdown, Mark RJ; Speirs, Valerie

    2003-01-01

    The majority of breast cancer research is conducted using established breast cancer cell lines as in vitro models. An alternative is to use cultures established from primary breast tumours. Here, we discuss the pros and cons of using both of these models in translational breast cancer research

  6. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines.

    Science.gov (United States)

    Solarte, Víctor A; Rosas, Jaiver E; Rivera, Zuly J; Arango-Rodríguez, Martha L; García, Javier E; Vernot, Jean-Paul

    2015-01-01

    Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20-25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  7. Polimorfismo do gene tp53 no códon 72 em pacientes com suspeita de LMC Codon 72 polymorphism of the TP53 gene in patients suspected to have CML

    Directory of Open Access Journals (Sweden)

    Camila S. Hamú

    2007-12-01

    Full Text Available A leucemia mielóide crônica (LMC é uma doença proliferativa do sistema hematopoiético, caracterizada pela expansão clonal de uma célula-tronco primitiva e pluripotente denominada stem cell. Este tipo de leucemia está associado, em 90% dos casos, à translocação t(9;22(q34;q11. Essa alteração cromossômica estrutural codifica para uma proteína quimérica BCR-ABL, que confere às células leucêmicas uma alta resistência à morte, independente do agente indutor desse processo. A proteína p53 é uma reguladora transcricional induzida por danos no DNA, fato que resulta na parada do ciclo celular com conseqüente ativação de mecanismos de reparo ou mesmo na indução à apoptose. As mutações no gene TP53 são as alterações genéticas mais comuns em tumores malignos humanos. O presente estudo teve como objetivo genotipar e determinar a freqüência alélica do polimorfismo do TP53 no códon 72 (arginina - Arg e prolina - Pro, em pacientes com suspeita de LMC, pela Reação em Cadeia da Polimerase. Desta forma, os resultados indicaram que 73,4% (23/30 dos pacientes apresentaram homozigose para arginina (Arg/Arg e 26,6% (7/30 heterozigose (Arg/Pro. Não foi encontrado nenhum paciente homozigoto para prolina (Pro/Pro. Os resultados obtidos sugerem que o polimorfismo do gene TP53 no códon 72 não é um fator de risco importante para a iniciação, promoção e progressão da LMC.Chronic myeloid leukemia (CML is a proliferative disorder of the hematopoietic system characterized by clonal expansion of a primitive and pluripotent stem cell. In this type of leukemia, up to 90% of all cases is associated to a specific chromosomal translocation, t(9;22(q34;q11. The genomic alteration results in a chimeric protein, BCR-ABL, that confers a high resistance leukemia cells to death, independent of the induction mechanism of this process. Protein p53 is a transcriptional factor expressed after DNA damage which ceases cell cycle progression and

  8. Diversity in host clone performance within a Chinese hamster ovary cell line.

    Science.gov (United States)

    O'Callaghan, Peter M; Berthelot, Maud E; Young, Robert J; Graham, James W A; Racher, Andrew J; Aldana, Dulce

    2015-01-01

    Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc-fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool-produced Mab and etanercept (by N-glycan ultra performance liquid chromatography (UPLC) and liquid chromatography - tandem mass spectrometry (LC-MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N-glycan micro-heterogeneity and etanercept N and O-linked macro-heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics. © 2015 American Institute of Chemical Engineers.

  9. Metabolic characterization of invaded cells of the pancreatic cancer cell line, PANC?1

    OpenAIRE

    Fujita, Mayumi; Imadome, Kaori; Imai, Takashi

    2017-01-01

    We previously reported that about 0.4% of cells in the cultured human pancreatic cancer cell line, PANC?1, can invade matrigel during the transwell invasion assay, suggesting that these invaded PANC?1 cells may have specific characteristics to keep their invasive potential. To identify the metabolic characterization specific in the invaded PANC?1 cells, metabolome analysis of the invaded PANC?1 compared with the whole cultured PANC?1 was performed using CE?TOFMS, and concentrations of 110 met...

  10. Cell surface area and membrane folding in glioblastoma cell lines differing in PTEN and p53 status.

    Directory of Open Access Journals (Sweden)

    Simon Memmel

    Full Text Available Glioblastoma multiforme (GBM is characterized by rapid growth, invasion and resistance to chemo-/radiotherapy. The complex cell surface morphology with abundant membrane folds, microvilli, filopodia and other membrane extensions is believed to contribute to the highly invasive behavior and therapy resistance of GBM cells. The present study addresses the mechanisms leading to the excessive cell membrane area in five GBM lines differing in mutational status for PTEN and p53. In addition to scanning electron microscopy (SEM, the membrane area and folding were quantified by dielectric measurements of membrane capacitance using the single-cell electrorotation (ROT technique. The osmotic stability and volume regulation of GBM cells were analyzed by video microscopy. The expression of PTEN, p53, mTOR and several other marker proteins involved in cell growth and membrane synthesis were examined by Western blotting. The combined SEM, ROT and osmotic data provided independent lines of evidence for a large variability in membrane area and folding among tested GBM lines. Thus, DK-MG cells (wild type p53 and wild type PTEN exhibited the lowest degree of membrane folding, probed by the area-specific capacitance C m = 1.9 µF/cm(2. In contrast, cell lines carrying mutations in both p53 and PTEN (U373-MG and SNB19 showed the highest C m values of 3.7-4.0 µF/cm(2, which corroborate well with their heavily villated cell surface revealed by SEM. Since PTEN and p53 are well-known inhibitors of mTOR, the increased membrane area/folding in mutant GBM lines may be related to the enhanced protein and lipid synthesis due to a deregulation of the mTOR-dependent downstream signaling pathway. Given that membrane folds and extensions are implicated in tumor cell motility and metastasis, the dielectric approach presented here provides a rapid and simple tool for screening the biophysical cell properties in studies on targeting chemo- or radiotherapeutically the

  11. Promoter, transgene, and cell line effects in the transfection of mammalian cells using PDMAEMA-based nano-stars

    Directory of Open Access Journals (Sweden)

    Alexander Raup

    2016-09-01

    Full Text Available Non-viral transfection protocols are typically optimized using standard cells and reporter proteins, potentially underestimating cellular or transgene effects. Here such effects were studied for two human (Jurkat, HEK-293 and two rodent (CHO-K1, L929 cell lines and three fluorescent reporter proteins. Expression of the enhanced green fluorescent protein (EGFP was studied under the control of the human elongation factor 1 alpha promoter and three viral promoters (SV40, SV40/enhancer, CMV, that of ZsYellow1 (yellow fluorescence and mCherry (red fluorescence for the CMV promoter. Results varied with the cell line, in particular for the Jurkat cells. Pair-wise co-transfection of the CMV controlled transgenes resulted in a significant fraction of monochromatic cells (EGFP for EGFP/YFP and EGFP/RFP co-transfections, YFP in case of YFP/RFP co-transfections. Only Jurkat cells were almost incapable of expressing YFP. Dilution of the plasmid DNA with a non-expressed plasmid showed cell line dependent effects on transfection efficiency and/or expression levels.

  12. Profound radiosensitivity in leukemic T-cell lines and T-cell-type acute lymphoblastic leukemia demonstrated by sodium [51Cr]chromate labeling

    International Nuclear Information System (INIS)

    Nakazawa, S.; Minowada, J.; Tsubota, T.; Sinks, L.F.

    1978-01-01

    Radiation sensitivity was determined by measuring spontaneous release from 51 Cr-labeled cells in various lymphoid cell populations. Among six leukemia T-cell lines originating from acute lymphoblastic leukemia, four such lines were found to be highly radiosensitive. In contrast, two of the leukemic T-cell lines and four normal control B-cell lines were not radiosensitive. Thymocytes from six patients and leukemia T-cell blasts from three patients with T-cell leukemia were likewise found to be highly radiosensitive, whereas leukemic blasts from six patients with null-cell (non-T, non-B-cell) acute lymphoblastic leukemia were not radiosensitive. Normal peripheral blood lymphocytes and mitogen-induced normal lymphoblasts were found not to be radiosensitive. The results indicate that measurement of the radiation sensitivity of acute leukemic blasts may have a therapeutic significance in coping with the heterogeneous nature of individual leukemia cases

  13. Sensitivity of breast cancer cell lines to recombinant thiaminase I.

    Science.gov (United States)

    Liu, Shuqian; Monks, Noel R; Hanes, Jeremiah W; Begley, Tadhg P; Yu, Hui; Moscow, Jeffrey A

    2010-05-01

    We have previously shown that the expression of the thiamine transporter THTR2 is decreased sevenfold in breast cancer, which may leave breast cancer cells vulnerable to acute thiamine starvation. This concept was supported by the observation that MDA231 breast cancer xenografts demonstrated growth inhibition in mice fed a thiamine-free diet. We purified recombinant Bacillus thiaminolyticus thiaminase I enzyme, which digests thiamine, to study acute thiamine starvation in breast cancer. Thiaminase I enzyme was cytotoxic in six breast cancer cell lines with IC(50)s ranging from 0.012 to 0.022 U/ml. The growth inhibitory effects of the combination of thiaminase I with either doxorubicin or paclitaxel were also examined. Over a wide range of drug concentrations, thiaminase 1 was consistently synergistic or additive with doxorubicin and paclitaxel in MCF-7, ZR75, HS578T and T47D cell lines, with most combinations having a calculated combination index (CI) of less than 0.8, indicating synergy. Although thiaminase I exposure did not stimulate the energy-sensing signaling kinases AKT, AMPK and GSK-3beta in MCF-7, ZR75, HS578T and T47D cell lines, thiaminase I exposure did stimulate expression of the ER stress response protein GRP78. In summary, thiaminase I is cytotoxic in breast cancer cell lines and triggers the unfolded protein response. These findings suggest that THTR2 down-regulation in breast tumors may present a nutritional vulnerability that could be exploited by thiaminase I enzyme therapy.

  14. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Directory of Open Access Journals (Sweden)

    Seyhan Turk

    2017-02-01

    Full Text Available Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

  15. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

    DEFF Research Database (Denmark)

    Xu, Xun; Pan, Shengkai; Liu, Xin

    2011-01-01

    Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most of...

  16. Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis

    International Nuclear Information System (INIS)

    Marini, Patrizia; Schmid, Angelika; Jendrossek, Verena; Faltin, Heidrun; Daniel, Peter T; Budach, Wilfried; Belka, Claus

    2005-01-01

    TRAIL (tumor necrosis factor related apoptosis inducing ligand) is an apoptosis inducing ligand with high specificity for malignant cell systems. Combined treatment modalities using TRAIL and cytotoxic drugs revealed highly additive effects in different tumour cell lines. Little is known about the efficacy and underlying mechanistic effects of a combined therapy using TRAIL and ionising radiation in solid tumour cell systems. Additionally, little is known about the effect of TRAIL combined with radiation on normal tissues. Tumour cell systems derived from breast- (MDA MB231), lung- (NCI H460) colorectal- (Colo 205, HCT-15) and head and neck cancer (FaDu, SCC-4) were treated with a combination of TRAIL and irradiation using two different time schedules. Normal tissue cultures from breast, prostate, renal and bronchial epithelia, small muscle cells, endothelial cells, hepatocytes and fibroblasts were tested accordingly. Apoptosis was determined by fluorescence microscopy and western blot determination of PARP processing. Upregulation of death receptors was quantified by flow cytometry. The combined treatment of TRAIL with irradiation strongly increased apoptosis induction in all treated tumour cell lines compared to treatment with TRAIL or irradiation alone. The synergistic effect was most prominent after sequential application of TRAIL after irradiation. Upregulation of TRAIL receptor DR5 after irradiation was observed in four of six tumour cell lines but did not correlate to tumour cell sensitisation to TRAIL. TRAIL did not show toxicity in normal tissue cell systems. In addition, pre-irradiation did not sensitise all nine tested human normal tissue cell cultures to TRAIL. Based on the in vitro data, TRAIL represents a very promising candidate for combination with radiotherapy. Sequential application of ionising radiation followed by TRAIL is associated with an synergistic induction of cell death in a large panel of solid tumour cell lines. However, TRAIL receptor

  17. Comparison of Two Mouse Ameloblast-like Cell Lines for Enamel-specific Gene Expression

    Directory of Open Access Journals (Sweden)

    Juni eSarkar

    2014-07-01

    Full Text Available Ameloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of enamel-specific genes in two mouse derived ameloblast-like cell lines: LS8 and ALC cells. Quantitative PCR analysis indicates that, relative to each other, LS8 cells express greater mRNA levels for genes that define secretory-stage activities (Amelx, Ambn, Enam and Mmp20, while ALC express greater mRNA levels for genes that define maturation-stage activities (Odam and Klk4. Western blot analyses show that Amelx, Ambn and Odam proteins are detectable in ALC, but not LS8 cells. Unstimulated ALC cells form calcified nodules, while LS8 cells do not. These data provide greater insight as to the suitability of both cell lines to contribute to biological studies on enamel formation and biomineralization, and highlight some of the strengths and weaknesses when relying on enamel epithelial organ-derived cell lines to study molecular activities of amelogenesis.

  18. Abnormal A-type lamin organization in a human lung carcinoma cell line

    NARCIS (Netherlands)

    Machiels, BM; Broers, JL; Raymond, Y; de Leij, Louis; Kuijpers, HJH; Caberg, NEH; Ramaekers, Frans C. S.

    We have studied the expression of lamins A and C (A-type lamins) in a lung carcinoma cell line using type-specific monoclonal antibodies, Using immunofluorescence and immunoblotting studies it was noted that several irregularities in lamin expression exist in the cell line GLC-A1, derived from an

  19. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity

    Science.gov (United States)

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A.; Kim, Sungjoon; Wilson, Christopher J.; Lehár, Joseph; Kryukov, Gregory V.; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F.; Monahan, John E.; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A.; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H.; Cheng, Jill; Yu, Guoying K.; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D.; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C.; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P.; Gabriel, Stacey B.; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E.; Weber, Barbara L.; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L.; Meyerson, Matthew; Golub, Todd R.; Morrissey, Michael P.; Sellers, William R.; Schlegel, Robert; Garraway, Levi A.

    2012-01-01

    The systematic translation of cancer genomic data into knowledge of tumor biology and therapeutic avenues remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacologic annotation is available1. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacologic profiles for 24 anticancer drugs across 479 of the lines, this collection allowed identification of genetic, lineage, and gene expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Altogether, our results suggest that large, annotated cell line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of “personalized” therapeutic regimens2. PMID:22460905

  20. Establishing clonal cell lines with endothelial-like potential from CD9(hi, SSEA-1(- cells in embryonic stem cell-derived embryoid bodies.

    Directory of Open Access Journals (Sweden)

    Qizhou Lian

    Full Text Available BACKGROUND: Differentiation of embryonic stem cells (ESCs into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. METHODOLOGY/PRINCIPAL FINDINGS: We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs. Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r(2 = 0.93 while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9(hi, SSEA-1(- while ESCs are CD9(lo, SSEA-1(+. Isolation of CD9(hi, SSEA-1(- cells that constituted 1%-10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r(2 = 0.95 and a propensity to differentiate into endothelial-like cells. CONCLUSIONS: By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells

  1. Characterization of the camel skin cell line Dubca.

    Science.gov (United States)

    Klopries, M; Wernery, U; Kaaden, O R

    1995-01-01

    A skin fibroblast cell culture was established from a 2-month-old dromedary foetus. The cells were transformed by infection with SV40 and cloned in soft agar. The established cell line is now designated Dubca cells (Dubai camel) and has been in permanent culture for 95 passages. The cell culture was examined morphologically, chromosome preparations made and DNA fingerprinting performed by hybridization with the oligonucleotide probe (GTG)5. SV40 large T antigen was detected by western blotting. The viral host range was determined by infection with viruses of different families. Camelpox virus (CaPV) bovine herpesvirus-1 (BHV-1), vesicular stomatitis virus (VSV) and border disease virus (BDV) could be propagated in these cells.

  2. JSI-124 inhibits IgE production in an IgE B cell line

    International Nuclear Information System (INIS)

    Cui, Lulu; Bi, Jiacheng; Yan, Dehong; Ye, Xiufeng; Zheng, Mingxing; Yu, Guang; Wan, Xiaochun

    2017-01-01

    IgE is a key effector molecule in atopic diseases; however, the regulation mechanisms of IgE production in IgE B cells remain poorly understood. In the present study, we demonstrate that JSI-124 (cucurbitacin I), a selective STAT3 inhibitor, selectively inhibits production of IgE by a human IgE B cell line, CRL-8033 cells, while does not affect the IgG production by IgG B cell lines. In the aspect of molecular mechanism, we found that Igλ, but not Ighe, gene expression was suppressed by JSI-124. The above effects of JSI-124 were not mediated by affecting cellular proliferation or apoptosis. Furthermore, multiple B cell differentiation-related genes expression was not significantly affected by JSI-124. Taken together, we demonstrate a potential strategy of therapeutically suppressing IgE production without affecting IgG production in atopic patients. - Highlights: • JSI-124 inhibits IgE production in an IgE B cell line, CRL-8033 cells. • JSI-124 does not affect IgG production by IgG B cell lines. • JSI-124 inhibits IgE production mainly by suppressing transcription of Igλ.

  3. CD4+ T-cell lines used to evaluate a Mycobacterium avium subsp. paratuberculosis (MAP) peptide vaccine

    DEFF Research Database (Denmark)

    Lybeck, Kari; Sjurseth, Siri K.; Al-Touama, Zainab

    The aim of the study was to establish a protocol for generation of MAP-specific T-cell lines and to use these lines for evaluation of a peptide vaccine. A protocol for culturing T-cell lines from peripheral blood of goats naturally infected with MAP was established. CD4+ T cells were positively...... selected using an anti CD4 mAb and Dynabeads. Sorted CD4+ cells were cultivated with purified protein derivative from MAP (PPDj) or E. coli sonicate, IL-2, and IL-15. After two cultivation cycles, T cells were tested for recall responses in a proliferative T-cell assay. T-cell line responses were...... in average 92 % for PPDj, and -3 % for E. coli sonicate. CD4+ T-cell lines stimulated with PPDj showed a 6 fold increase in IFN- γ production compared to controls. These results indicated that the T-cell lines were MAP-specific. The protocol was subsequently used to evaluate MAP-specific peptides as vaccine...

  4. Functional activity of human sodium/iodide symporter in tumor cell lines

    International Nuclear Information System (INIS)

    Petrich, T.; Knapp, W.H.; Poetter, E.

    2003-01-01

    Aim: The sodium/iodide symporter (NIS) actively transports iodide into thyrocytes. Thus, NIS represents a key protein for diagnosis and radioiodine therapy of differentiated thyroid cancer. Additionally, in the future the NIS gene may be used for cancer gene therapy of non-thyroid-derived malignancies. In this study we evaluated the functionality of NIS with respect to iodide uptake in a panel of tumor cell lines and compared this to gene transfer efficiency. Methods: A human NIS-containing expression vector and reporter-gene vectors encoding and beta;-Galactosidase- or EGFP were used for transient transfection of 13 tumor cell lines. Following transfection measurements of NIS-mediated radioiodide uptake using Na 125 I and of transfection efficiency were performed. The latter included β;-Galactosidase activity measurements using a commercial kit and observation by fluorescence microscopy for EGFP expression. Results: In contrast to respective parental cells, most NIS-transfected cell lines displayed high, perchlorate-sensitive radioiodide uptake. Differences in radioiodide uptake between cell lines apparently corresponded to transfection efficiencies, as judged from reporter-gene assays. Conclusion: With respect to iodide uptake we provide evidence that NIS is functional in different cellular context. As iodide uptake capacity appears to be well correlated to gene transfer efficiency, cell type-specific actions on NIS (e. g. post-translational modification such as glycosylation) are not inhibitory to NIS function. Our data support the promising role of NIS in cancer gene therapy strategies. (orig.)

  5. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins

    Science.gov (United States)

    2014-01-01

    Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745

  6. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.

    Science.gov (United States)

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.

  7. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs

    Directory of Open Access Journals (Sweden)

    Rafael Chacolla-Huaringa

    2017-07-01

    Full Text Available Circadian rhythms are essential for temporal (~24 h regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection.

  8. The antineoplastic agent α-bisabolol promotes cell death by inducing pores in mitochondria and lysosomes.

    Science.gov (United States)

    Rigo, Antonella; Vinante, Fabrizio

    2016-08-01

    The sesquiterpene α-bisabolol (α-BSB) has been shown to be an effective cytotoxic agent for a variety of human cancer cells in culture and animal models. However, much of its intracellular action remains elusive. We evaluated the cytotoxic action of α-BSB against CML-T1, Jurkat and HeLa cell lines, as preclinical models for myeloid, lymphoid and epithelial neoplasias. The approach included single cell analysis (flow cytometry, immunocytology) combined with cytotoxicity and proliferation assays to characterize organelle damage, autophagy, cytostatic effect, and apoptosis. The study focuses on the relevant steps in the cytotoxic cascade triggered by α-BSB: (1) the lipid rafts through which α-BSB enters the cells, (2) the opening of pores in the mitochondria and lysosomes, (3) the activation of both caspase-dependent and caspase-independent cell death pathways, (4) the induction of autophagy and (5) apoptosis. The effectiveness of α-BSB as an agent against tumor cells is grounded on its capability to act on different layers of cell regulation to elicit different concurrent death signals, thereby neutralizing a variety of aberrant survival mechanisms leading to treatment resistance in neoplastic cell.

  9. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...... both to immortalize a rare cell type and to provide a selection for the maintenance of its differentiated phenotype....

  10. Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines

    International Nuclear Information System (INIS)

    Price, Karina J.; Tsykin, Anna; Giles, Keith M.; Sladic, Rosemary T.; Epis, Michael R.; Ganss, Ruth; Goodall, Gregory J.; Leedman, Peter J.

    2012-01-01

    Highlights: ► Matrigel alters cancer cell line miRNA expression relative to culture on plastic. ► Many identified Matrigel-regulated miRNAs are implicated in cancer. ► miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. ► miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence of Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a valuable approach to the in vitro study of miRNAs.

  11. Comprehensive characterization of genomic instability in pluripotent stem cells and their derived neuroprogenitor cell lines

    Directory of Open Access Journals (Sweden)

    Nestor Luis Lopez Corrales

    2012-12-01

    Full Text Available The genomic integrity of two human pluripotent stem cells and their derived neuroprogenitor cell lines was studied, applying a combination of high-resolution genetic methodologies. The usefulness of combining array-comparative genomic hybridization (aCGH and multiplex fluorescence in situ hybridization (M-FISH techniques should be delineated to exclude/detect a maximum of possible genomic structural aberrations. Interestingly, in parts different genomic imbalances at chromosomal and subchromosomal levels were detected in pluripotent stem cells and their derivatives. Some of the copy number variations were inherited from the original cell line, whereas other modifications were presumably acquired during the differentiation and manipulation procedures. These results underline the necessity to study both pluripotent stem cells and their differentiated progeny by as many approaches as possible in order to assess their genomic stability before using them in clinical therapies.

  12. Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines

    International Nuclear Information System (INIS)

    Li Xiaoming; Song Tianbao

    1999-01-01

    Objective: To research the expression of caspase-3 gene in the apoptotic and the control HL-60 cells and in the different human tumor cell lines. Methods: Caspase-3 mRNA in the control and γ-radiation-induced apoptotic HL-60 cells, and in the 6 types of human tumor cell lines, was analysed by Northern blot. Results: The caspase-3 gene transcript was more highly expressed in leukemia cells HL-60, CEM, K562 and neuroblastoma SH-SY5Y than in cervical adenocarcinoma HeLa and breast carcinoma MCF7, and more highly in the radiation-induced apoptotic HL-60 than in the control HL-60 cells. Conclusion: The high level of expression of caspase-3 may aid the efforts to understand the tumor cell sensitivity to radiation, apoptosis and its inherent ability to survive

  13. Effects of gamma radiation on the OM431 human ocular melanoma cell line

    International Nuclear Information System (INIS)

    Logani, S.; Cho, A.S.; Su, L.D.; Withers, H.R.; McBride, W.H.; Hall, M.O.; Lee, D.A.; Milani, J.K.; Straatsma, B.R.

    1995-01-01

    In order to determine the dose responsiveness to radiation of ocular melanoma, we conducted an in vitro dose-response study on a monolayer cell culture using a clonogenic assay. The effects on cell survival were determined relative to unirradiated controls. A human epithelioid ocular melanoma cell line, OM431, was maintained in tissue culture and serial dilutions of viable cells were plated in flasks, allowed to settle and attach for 48 h, and subsequently irradiated with 1-10 Gy in single fractions. After 2 weeks, the number of reproducing clones (forming colonies with greater than 32 cells or five generations) were counted. The surviving fractions of cells were plotted on a cell survival curve using the linear quadratic model. The survival curve showed a large initial shoulder followed by an exponential decline in growth. Our data suggest that the OM431 ocular melanoma cell line responds to irradiation in a manner similar to other melanoma cell lines and is relatively radioresistent especially at lower doses. (author)

  14. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

    Science.gov (United States)

    Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent

    2018-04-13

    Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A universal mammalian vaccine cell line substrate.

    Directory of Open Access Journals (Sweden)

    Jackelyn Murray

    Full Text Available Using genome-wide small interfering RNA (siRNA screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205 showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.

  16. Differential expression of the ufo/axl oncogene in human leukemia-lymphoma cell lines.

    Science.gov (United States)

    Challier, C; Uphoff, C C; Janssen, J W; Drexler, H G

    1996-05-01

    The ufo protein (also termed axl) is a member of a new family of receptor tyrosine kinases and is encoded by a transforming gene that was initially isolated from primary human myeloid leukemia cells by DNA-mediated transformation of NIH/3T3 cells. The ligand, Gas6, a protein S-related molecule lacking any known function yet, has recently been identified. We report the expression pattern of ufo mRNA in a panel of 76 human continuous leukemia-lymphoma cell lines. The gene was not expressed in cell lines derived from lymphoid malignancies (n=28), but transcription was seen in 3/11 myeloid, 0/6 monocytic, 9/13 erythroid and 11/18 megakaryocytic cell lines. Several cell lines were treated with phorbol ester leading to significant upregulation of the ufo message in constitutively positive cells. An apparent ufo mRNA overexpression was not found in any of the positive leukemia cell lines, but was identified in the drug-resistant subclones of the cervix carcinoma cell line HeLa. Southern blot analysis of restriction enzyme-digested genomic DNA did not provide evidence for gene amplification, but the HeLa subclones showed banding patterns suggestive of gene rearrangement. Two main ufo mRNA bands of 3.2 and 5.0 kb were identified; no differences in the half-lives (t1/2 = 2.5 h) of these two mRNA species could be identified. In summary, ufo, representing a novel type of receptor tyrosine kinase, is expressed solely in myeloid and erythro-megakaryocytic leukemias but not in lymphoid malignancies. These and previous data suggest an involvement of the ufo receptor tyrosine kinase in normal and malignant myelopoiesis; however, its exact role, if any, and mode of operation in leukemogenesis remains to be determined.

  17. Effects of cholera toxin on human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Hayward, I P

    1992-10-01

    This study reports on changes in morphology and membrane transport in 5 human colon carcinoma cell lines treated with cholera toxin (CT). Three of the cell lines that grew as monolayers (LIM 1215, LIM 1899, LIM 2099) and 1 that grew as floating clumps (LIM 2408) did not show morphological changes after CT treatment. However, cell line LIM 1863 that grows as floating "crypt-like" organoids showed rapid and distinctive changes in morphology and membrane transport after CT treatment. At 1 and 6 hrs after CT treatment, light and transmission electron microscopy revealed rapid dilatation of the central lumen of organoids and the appearance of 2 populations of apical vesicular inclusions. The first population was unusual in being non-membrane bound and limited by fuzzy filamentous material. The second population was membrane bound. Scanning electron microscopy at 1-6 hr after CT treatment showed swelling and loss of surface microvilli on some, but not all, cells. At 24 hr after CT treatment the majority of organoids showed evidence of fluid accumulation and small apical vesicles coalesced to form large single vacuoles that obliterated normal cell morphology. By 48 hr, continued swelling produced extreme attenuation of the plasma membrane with cells taking on an "endothelial cell-like" appearance. The response to CT was dose-dependent. Uptake studies using 86Rubidium and blocking studies using ouabain and amiloride indicated that CT is acting on the Na+/K+ ATPase membrane pump to cause the increased fluid uptake by LIM 1863 cells. This study is the first to report specific morphological changes in intestine-derived cells in response to CT.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  19. Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra-Soheila; Essmann, Frank; Deezagi, Abdolkhaleg; Engers, Rainer; Goering, Wolfgang; Schulz, Wolfgang A

    2010-08-01

    Many metastatic cancers recapitulate the epithelial-to-mesenchymal transition (EMT) resulting in enhanced cell motility and invasiveness. The EMT is regulated by several transcription factors, including the zinc finger protein SNAI2, also named Slug, which appears to exert additional functions during development and cancer progression. We have studied the function of SNAI2 in prostate cancer cells. Quantitative RT-PCR analysis showed strong SNAI2 expression particularly in the PC-3 and PC3-16 prostate carcinoma cell lines. Knockdown of SNAI2 by specific siRNA induced changes in EMT markers and inhibited invasion of both cell lines into a matrigel matrix. SNAI2 siRNA-treated cells did not tolerate detachment from the culture plates, likely at least in part due to downregulation of integrin alpha6beta4. SNAI2 knockdown disturbed the microtubular and actin cytoskeletons, especially severely in PC-3 cells, resulting in grossly enlarged, flattened, and sometimes multinuclear cells. Knockdown also decreased cell proliferation, with a prominent G0/G1 arrest in PC3-16. Together, our data imply that SNAI2 exerts strong effects on the cytoskeleton and adhesion of those prostate cancer cells that express it and is necessary for their proliferation and invasiveness.

  20. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Fujiwara, Hironori [Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yokosuka, Akihito; Mimaki, Yoshihiro [Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392 (Japan); Ohizumi, Yasushi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Laboratory of Kampo Medicines, Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066 (Japan); Degawa, Masakuni [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  1. Potentially lethal damage repair in cell lines of radioresistant human tumours and normal skin fibroblasts

    International Nuclear Information System (INIS)

    Marchese, M.J.; Minarik, L.; Hall, E.J.; Zaider, M.

    1985-01-01

    Radiation cell survival data were obtained in vitro for three cell lines isolated from human tumours traditionally considered to be radioresistant-two melanomas and one osteosarcoma-as well as from a diploid skin fibroblast cell line. One melanoma cell line was much more radioresistant than the other, while the osteosarcoma and fibroblast cell lines were more radiosensitive than either. For cells growing exponentially, little potentially lethal damage repair (PLDR) could be demonstrated by comparing survival data for cells in which subculture was delayed by 6 h with those sub-cultured immediately after treatment. For the malignant cells in plateau phase, which in these cells might be better termed 'slowed growth phase', since an appreciable fraction of the cells are still cycling, a small amount of PLDR was observed, but not as much as reported by other investigators in the literature. The normal fibroblasts, which achieved a truer plateau phase in terms of noncycling cells, showed a significantly larger amount of PLDR than the tumour cells. (author)

  2. Transplantability of human lymphoid cell line, lymphoma, and leukemia in splenectomized and/or irradiated nude mice

    International Nuclear Information System (INIS)

    Watanabe, S.; Shimosato, Y.; Kuroki, M.; Sato, Y.; Nakajima, T.

    1980-01-01

    The effects of splenectomy and/or whole-body irradiation of nude mice before xenotransplantation of lymphoid cell lines, lymphoma, and leukemia were studied. Transplantation after whole-body irradiation resulted in the increased ''take'' rate of three cultured cell lines (two of T-cell-derived acute lymphocytic leukemia and one of B-cell derived acute lymphocytic leukemia) and in the tumorous growth of Burkitt-derived Raji and spontaneously transformed lymphoblastoid cell lines. With splenectomy plus irradiation as a pretreatment, tumorous growth occurred in four other cell lines which were not transplantable after irradiation only (two cell lines of Epstein-Barr virus-transformed cord blood cells and one each of null acute lymphocytic leukemia and nodular lymphoma-derived cell lines). Direct transplantation of leukemia and lymphoma cells into the pretreated mice was successful in 7 of 24 cases (29%). B-cell-derived diffuse large lymphoid lymphoma was transplantable in three of seven cases (43%). However, lymphoma and leukemia of peripheral T-cell origin was difficult to transplant even with pretreatment, and only one pleomorphic T-cell lymphoma grew to a significant size (2 cm). One tumor each of B-cell-derived diffuse large lymphoid and T-cell diffuse lymphoblastic lymphoma became transplantable

  3. An SSH library responsive to azadirachtin A constructed in Spodoptera litura Fabricius cell lines.

    Science.gov (United States)

    Yan, Chao; Zhang, Zhi-Xiang; Xu, Han-Hong

    2012-05-31

    The present study revealed differentially expressed genes responsive to azadirachtin A (Aza) in Spodoptera litura cell line through suppression subtractive hybridization. In the Aza-responsive SSH library, approximately 270 sequences represent 53 different identified genes encoding proteins with various predicted functions, and the percentages of the gene clusters were 26.09% (genetic information processing), 11.41% (cell growth and death), 7.07% (metabolism), 6.52% (signal transduction/transport) and 2.72% (immunity), respectively. Eleven clones homologous to identified genes were selected to be confirmed through quantitative real time polymerase chain reaction. Among the eleven clones validated, all but one transcript of lipase showed an increase in SL cell line collected from ETA, whereas the transcripts of other genes were lower in the SL cell line collected from ETA compared with that of UETA. These genes were considered to be related to the response of SL cell line to Aza. These will provide a new clue to uncover the molecular mechanisms of Aza acting on SL cell line. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Establishment and long-term culture of the cell lines derived from gonad tissues of Siberian sturgeon (Acipenser baerii

    Directory of Open Access Journals (Sweden)

    Jun Hyung Ryu

    2016-06-01

    Full Text Available Abstract To culture germline stem cells in vitro, establishment of the cell lines that can be used as the feeder cells is a prerequisite. In this study, we tried to establish gonad-derived cell lines in Siberian sturgeon (Acipenser baerii. Five 1-year-old A. baerii were used as a donor of gonad tissues, and gonad-dissociated cells were cultured in vitro. Subsequently, determination of growth conditions, long-term culture, characterization, and cryopreservation of the cell lines were also conducted. Five gonad-derived cell lines were stably established and cultured continuously over at least the 73th passage and 402 culture days under the media containing 20 % fetal bovine serum at 28 °C. All cell lines consisted of two main cell types based on morphology even if the ratio of the two cell types was different depending on cell lines. Despite long-term culture, all cell lines maintained diploid DNA contents and expression of several genes that are known to express in the A. baerii gonad. After freezing and thawing of the cell lines, post-thaw cell viabilities between 57.6 and 92.9 % depending on cell lines were indentified, suggesting that stable cryopreservation is possible. The results and the cell lines established in this study will contribute to the development of an in vitro system for A. baerii germline stem cell culture.

  5. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Directory of Open Access Journals (Sweden)

    Agnes S. M. Yong

    2017-04-01

    Full Text Available Chronic myeloid leukemia (CML is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01% in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR, which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important

  6. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Science.gov (United States)

    Hughes, Amy; Yong, Agnes S. M.

    2017-01-01

    Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating

  7. Cytotoxicity effect of Zataria multiflora Boiss. on two human colon carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    F. Sharififar

    2017-10-01

    Full Text Available Background and objectives: Natural products are one of the major sources for investigations of novel medicines. Zataria multiflora Boiss (ZM has shown pharmacological activities especially in gastrointestinal tract; however, there are limited studies about its cytotoxicity effects. In this study, the effect of Zataria multiflora was examined on two colon cancer cell lines (SW-48 and HT-29. Methods: Hydro-alcoholic extract of ZM and its fractions including chloroform, petroleum ether and methanol extract were prepared by warm maceration method. Different concentrations were prepared and examined on SW-48 and HT-29 cell lines using 2-(4, 5-dimethylthiazol-2-yl 2, 5-diphenyltetrazolium bromide (MTT assay. Results: The results of the present study have shown the cytotoxic effect of some fractions of ZM. The most considerable cytotoxic effect was shown against HT-29 cell line. Also, total ZM extract and the petroleum ether fraction demonstrated cytotoxic effects with IC50 values of 44.22 and 33.42 µg/ml on SW-48 and HT-29 cell lines, respectively. Conclusion: Zataria multiflora was cytotoxic to against colon cancer cell lines HT-29 and SW-48.

  8. Cell Penetrating Capacity and Internalization Mechanisms Used by the Synthetic Peptide CIGB-552 and Its Relationship with Tumor Cell Line Sensitivity.

    Science.gov (United States)

    Astrada, Soledad; Fernández Massó, Julio Raúl; Vallespí, Maribel G; Bollati-Fogolín, Mariela

    2018-03-30

    CIGB-552 is a twenty-amino-acid novel synthetic peptide that has proven to be effective in reducing tumor size and increasing lifespan in tumor-bearing mice. Such capability is conferred by its cell-penetrating peptide character, which allows it to enter cells and elicit a pro-apoptotic effect through its major mediator, COMMD1 protein. Cell-penetrating peptides are able to use different internalization mechanisms, such as endocytosis or direct transduction through the plasma membrane. Although CIGB-552 cytotoxicity has been evaluated in several non-tumor- and tumor-derived cell lines, no data regarding the relationship between cell line sensitivity, cell penetrating capacity, the internalization mechanisms involved, COMMD1 expression levels, or its subcellular localization has yet been produced. Here, we present the results obtained from a comparative analysis of CIGB-552 sensitivity, internalization capacity and the mechanisms involved in three human tumor-derived cell lines from different origins: mammary gland, colon and lung (MCF-7, HT-29 and H460, respectively). Furthermore, cell surface markers relevant for internalization processes such as phosphatidylserine, as well as CIGB-552 target COMMD1 expression/localization, were also evaluated. We found that both endocytosis and transduction are involved in CIGB-552 internalization in the three cell lines evaluated. However, CIGB-552 incorporation efficiency and contribution of each mechanism is cell-line dependent. Finally, sensitivity was directly correlated with high internalization capacity in those cell lines where endocytosis had a major contribution on CIGB-552 internalization.

  9. Early Complete Molecular Response to First-Line Nilotinib in Two Patients with Chronic Myeloid Leukemia Carrying the p230 Transcript

    Directory of Open Access Journals (Sweden)

    Marianna Greco

    2013-01-01

    Full Text Available Chronic myeloid leukemia (CML with the rare fusion gene e19a2, encoding a p230 protein, has been described in patients with typical or rather aggressive clinical course. Although tyrosine kinase inhibitors (TKIs induce a substantial cytogenetic and molecular response in all phases of CML, a minority of p230 positive patients have been treated with TKIs. We report two cases of CML patients carrying the p230 transcript, who achieved fast and deep complete molecular response (CMR after frontline treatment with nilotinib. Our results suggest the use of nilotinib as frontline agent for the treatment of this CML variant.

  10. Influence of different chromosomal abnormalities in Ph-positive bone marrow cells on the chronic myeloid leukemia course during tyrosine kinase inhibitors therapy

    Directory of Open Access Journals (Sweden)

    O. Yu. Vinogradova

    2014-07-01

    Full Text Available The additional molecular and chromosomal abnormalities (ACA in Phositive cells usually considered as a genetic marker of chronic myeloid leukemia (CML progression. 457 patients in different CML phases received tyrosine kinase inhibitors (1st and 2nd generation were studied. During therapy 50 cases with additional chromosomal abnormalities in Ph+ clone (22 of them in chronic CML phase were revealed (median follow-up from CML diagnosis – 117 months, median imatinib therapy – 62 months. 86 % of patients in chronic phase with Ph+- cell abnormalities were cytogenetic resistance, and their 5-years overall survival was 80 % which was significantly lower than in patients without ACA (p < 0.005. The treatment results depend on chromosomal abnormalities detected. In patients with additional chromosome 8 imatinib therapy is effective, although complete cytogenetic response (CCR is achieved only in the later therapy stages. In patients with additional translocations CCR also achieved with imatinib or 2nd generation TKI. Only a third of patients with additional Ph-chromosome or BCR/ABL amplification achieved complete suppression of Ph+ clone using 2nd generation TKI. The presence of additional chromosome 7 abnormalities and complex karyotype disorders involving isochromosome i(17(q10 are poor prognostic factors of TKI treatment failures.

  11. Dose selenomethionine have radio-protective effect on cell lines with wild type p53?

    International Nuclear Information System (INIS)

    Tsuji, K.; Hagihira, T.; Ohnishi, K.; Ohnishi, T.; Matsumoto, H.

    2003-01-01

    Full text: Selenium compounds are known to have cancer preventive effects. It is reported recently that selenium in the form of selenomethionine (SeMet) can protect cells with wild type p53 from UV-induced cell killing by activating the DNA repair mechanism of p53 tumor suppressor protein via redox factor Ref1 by reducing p53 cysteine residue 275 and 277. In contrast, SeMet has no protective effect on UV-induced cell killing in p53-null cells. If SeMet also has protective effect in cells with wild type p53 on cell killing by photon irradiation, SeMet can be used as normal tissue radio-protector. We examined the effect of SeMet on cell killing by X-ray irradiation in several cell lines with different p53 status at exponentially growing phase. Cell lines used in this experiment were as follows: H1299/neo; human lung cancer cell line of p53 null type tranfected with control vector with no p53, H1299/wp53; wild type p53 transfected counterpart. A172/neo; human glioblastoma cell line with wild type p53, A172/mp53-248; mp53-248 (248-mutant, ARG >TRP) transfected counterpart. SAS/neo; human tongue cancer cell line with wild type p53, and SAS/mp53-248; mp53-248 transfected counterpart. Cells were subcultured at monolayer in D-MEM containing 10% FBS. Survivals of the cells were determined by colony forming ability. Ten-MV linac X-ray was used to irradiate the cells. Exponentially growing cells were incubated with 20μM of SeMet for 15 hours before irradiation. After 24 hours exposure of SeMet, cells were incubated up to two weeks in growth medium for colony formation. Twenty-four hours exposure of 20μM of SeMet had no cytotoxicity on these cell lines. SeMet had no modification effect on cell killing by photon irradiation in H1299/neo, H1299/wp53, SAS/neo, SAS/mp53-248, and A172/mp53-248. On the other hand, SeMet sensitized A172/neo in radiation cell killing. The effects of p53 on interaction of SeMet and photon irradiation differ according to cell lines

  12. Quantification of BCR-ABL transcripts in peripheral blood cells and ...

    African Journals Online (AJOL)

    Purpose: To investigate the feasibility of using peripheral blood plasma samples as surrogates for blood cell sampling for quantification of breakpoint cluster region-Abelson oncogene (BCR-ABL) transcript levels to monitor treatment responses in chronic myeloid leukemia (CML) patients. Methods: Peripheral blood samples ...

  13. Comparison of Cultivars and Seasonal Variation in Blueberry (Vaccinium Species) Leaf Extract on Adult T-Cell Leukemia Cell Line Growth Suppression

    OpenAIRE

    Kai, Hisahiro; Fuse, Takuichi; Kunitake, Hisato; Morishita, Kazuhiro; Matsuno, Koji

    2014-01-01

    The inhibitory effects of blueberry leaves on the proliferation of adult T-cell leukemia (ATL) cell lines have previously been reported. A comparison of blueberry leaf extracts from different cultivars and seasonal variation were investigated regarding their effects on ATL cell line proliferation. The inhibitory effects of 80% ethanol leaf extracts from different blueberry cultivars collected from April to December in 2006 or 2008 were evaluated using two ATL cell lines. The bioactivities of ...

  14. Comparison of the radiosensitivity of three goldfish cell lines using short term endpoints

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, H. (Tokyo Univ. (Japan). Faculty of Science)

    1984-06-01

    The induction and rejoining of DNA strand breaks after ..gamma..-irradiation in three goldfish (Carassius auratus) cell lines with different sensitivities to the lethal effect of ..gamma..-rays has been studied by the DNA strand separation method using hydroxylapatite chromatography. The induction and rejoining of DNA strand breaks was similar in all cell lines. There was also little difference in the degree of inhibition of DNA synthesis immediately after irradiation. However, the rank orders of the durations of division delay and the radiosensitivities of the three cell lines were the same.

  15. [Effects of icotinib hydrochloride on the proliferation and apoptosis of human lung cancer cell lines].

    Science.gov (United States)

    Ma, Li; Han, Xiao-hong; Wang, Shuai; Wang, Jian-fei; Shi, Yuan-kai

    2012-09-25

    To explore the effects of icotinib on the proliferation and apoptosis of various lung cancer cell lines. Human lung cancer cell lines HCC827, H1650, H1975, A549 and human epidermal cancer cell line A431 were treated in vitro with icotinib or gefitinib at a concentration gradient of 0 - 40 µmol/L. Their proliferation effects were analyzed by the thiazolyl blue (MTT) assay and the apoptotic effects detected by flow cytometer. The downstream signaling proteins were detected by Western blot. The median inhibitory concentrations (IC(50)) of icotinib for A431 and HCC827 cell lines were (0.04 ± 0.02) and (0.15 ± 0.06) µmol/L respectively. No significant differences existed between the inhibitions of gefitinib and icotinib on A431, HCC827, H1650, H1975 and A549 cell lines (all P > 0.05). Compared with H1650, H1975 and A549 cell lines, icotinib significantly inhibited A431 (P = 0.009, 0.005 and 0.000) and HCC827 (P = 0.001, 0.001 and 0.000) cell lines. And it lowered the expressions of p-AKT, p-ERK and survivin protein expression through the inhibited activity of p-EGFR protein. Icotinib can arrest the proliferation of lung adenocarcinoma cells with EGFR mutation or over-expression by inhibiting the signal pathways of AKT-ERK and survivin.

  16. The costs of using unauthenticated, over-passaged cell lines: how much more data do we need?

    Science.gov (United States)

    Hughes, Peyton; Marshall, Damian; Reid, Yvonne; Parkes, Helen; Gelber, Cohava

    2007-11-01

    Increasing data demonstrate that cellular cross-contamination, misidentified cell lines, and the use of cultures at high-passage levels contribute to the generation of erroneous and misleading results as well as wasted research funds. Contamination of cell lines by other lines has been recognized and documented back to the 1950s. Based on submissions to major cell repositories in the last decade, it is estimated that between 18% and 36% of cell lines may be contaminated or misidentified. More recently, problems surrounding practices of over-subculturing cells are being identified. As a result of selective pressures and genetic drift, cell lines, when kept in culture too long, exhibit reduced or altered key functions and often no longer represent reliable models of their original source material. A review of papers showing significant experimental variances between low- and high-passage cell culture numbers, as well as contaminated lines, makes a strong case for using verified, tested cell lines at low- or defined passage numbers. In the absence of cell culture guidelines, mandates from the National Institutes of Health (NIH) and other funding agencies or journal requirements, it becomes the responsibility of the scientific community to perform due diligence to ensure the integrity of cell cultures used in research.

  17. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Víctor A. Solarte

    2015-01-01

    Full Text Available Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–254, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90% in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  18. DNA double strand break repair in a radioresistant cell line

    International Nuclear Information System (INIS)

    Koval, T.M.; Kazmar, E.R.

    1987-01-01

    TN-368 lepidopteran insect cells are on the order of 100 times more resistant to the lethal effects of ionizing radiation than cultured mammalian cells. DNA double strand breaks (DSB) are believed by many to be the critical molecular lesion leading to cell death. The authors therefore measured the rejoining of DSB in TN-368 and V79 Chinese hamster cells. Cells were irradiated on ice with /sup 137/Cs γ rays at a dose rate of 2.5 Gy/min, incubated for various periods of time, and assayed for DNA DSB using the method of neutral elution. The kinetics of DSB rejoining following a dose of 90.2 Gy are similar for both cell lines. Approximately 80% of the DSB are rejoined in both lines by 1 hr postirradiation. However, no further rejoining occurs in the TN-368 cells through at least 6 hr postirradiation, whereas 90% of the DSB are rejoined in the V79 cells by 2 hr postirradiation. Other studies (from 22.6 to 226 Gy) demonstrate that the amount of rejoining of DSB varies inversely with dose for the V79 cells but remains constant for the TN-368 cells. These findings do not support the hypothesis that unrejoined DNA DSB represent the major lesion resulting in cell death

  19. No Relationship between Embryo Morphology and Successful Derivation of Human Embryonic Stem Cell Lines

    Science.gov (United States)

    Ström, Susanne; Rodriguez-Wallberg, Kenny; Holm, Frida; Bergström, Rosita; Eklund, Linda; Strömberg, Anne-Marie; Hovatta, Outi

    2010-01-01

    Background The large number (30) of permanent human embryonic stem cell (hESC) lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002–2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. Methods We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. Results Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM) was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN) zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. Conclusion Even very poor quality embryos with few cells in the ICM can give origin to hESC lines. PMID:21217828

  20. Chromosomal imbalances in four new uterine cervix carcinoma derived cell lines

    International Nuclear Information System (INIS)

    Hidalgo, Alfredo; Monroy, Alberto; Arana, Rosa Ma; Taja, Lucía; Vázquez, Guelaguetza; Salcedo, Mauricio

    2003-01-01

    Uterine cervix carcinoma is the second most common female malignancy worldwide and a major health problem in Mexico, representing the primary cause of death among the Mexican female population. High risk human papillomavirus (HPV) infection is considered to be the most important risk factor for the development of this tumor and cervical carcinoma derived cell lines are very useful models for the study of viral carcinogenesis. Comparative Genomic Hybridization (CGH) experiments have detected a specific pattern of chromosomal imbalances during cervical cancer progression, indicating chromosomal regions that might contain genes that are important for cervical transformation. We performed HPV detection and CGH analysis in order to initiate the genomic characterization of four recently established cervical carcinoma derived cell lines from Mexican patients. All the cell lines were HPV18 positive. The most prevalent imbalances in the cell lines were gains in chromosomes 1q23-q32, 3q11.2-q13.1, 3q22-q26.1, 5p15.1-p11.2, this alteration present as a high copy number amplification in three of the cell lines, 7p15-p13, 7q21, 7q31, 11q21, and 12q12, and losses in 2q35-qter, 4p16, 6q26-qter, 9q34 and 19q13.2-qter. Analysis of our present findings and previously reported data suggest that gains at 1q31-q32 and 7p13-p14, as well as losses at 6q26-q27 are alterations that might be unique for HPV18 positive cases. These chromosomal regions, as well as regions with high copy number amplifications, coincide with known fragile sites and known HPV integration sites. The general pattern of chromosomal imbalances detected in the cells resembled that found in invasive cervical tumors, suggesting that the cells represent good models for the study of cervical carcinoma