WorldWideScience

Sample records for cmb rest-frame exist

  1. Non-existence of rest-frame spin-eigenstate spinors in their own electrodynamics

    Science.gov (United States)

    Fabbri, Luca; da Rocha, Roldão

    2018-05-01

    We assume a physical situation where gravity with torsion is neglected for an electrodynamically self-interacting spinor that will be taken in its rest-frame and spin-eigenstate: we demonstrate that under this circumstance no solution exists for the system of field equations. Despite such a situation might look artificial nevertheless it represents the instance that is commonly taken as the basis for all computations of quantum electrodynamics.

  2. Proton spin structure in the rest frame

    International Nuclear Information System (INIS)

    Zavada, P.

    1997-01-01

    It is shown that the quark-parton model in the standard infinite momentum approach overestimates the proton spin structure function g 1 (x) in comparison with the approach taking consistently into account the internal motion of quarks described by a spherical phase space in the proton rest frame. Particularly, it is shown the first moment of the spin structure function in the latter approach, assuming only the valence quarks contribution to the proton spin, does not contradict the experimental data. copyright 1997 The American Physical Society

  3. Ambiguities in the deduction of rest frame fluctuation spectrums from spectrums computed in moving frames

    International Nuclear Information System (INIS)

    Fredericks, R.W.; Coroniti, F.V.

    1976-01-01

    The problem of interpretation of power spectrums computed by Fourier analysis of data time series taken in frames moving with respect to the medium containing the fluctuations is examined. It is found that no unique connection exists between the rest frame power spectrum as a function of scale length and the derived power spectrum as a function 'frequency' computed from the time series data taken in the moving frame. This caused by a complex Doppler-shifting phenomenon that leads to a basically aliased frequency spectrum in the moving frame. Examples of nonuniqueness are given for various types of rest frame density or wave turbulence that lead to the same frequency dependence of the power spectrum computed in the moving frame. This has implications for the past interpretations of power spectrums of density or magnetic field fluctuations from satellites or interplanetary probes

  4. Effects of Different Types of 3D Rest Frames on Reducing Cybersickness in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    KyungHun Han

    2011-10-01

    Full Text Available A virtual environment (VE presents several kinds of sensory stimuli for creating a virtual reality. Some sensory stimuli presented in the VE have been reported to provoke cybersickness, which is caused by conflicts between sensory stimuli, especially conflicts between visual and vestibular sensations. Application of a rest frame has been known to be effective on reducing cybersickness by alleviating sensory conflict. The form and the way rest frames are presented in 3D VEs have different effects on reducing cybersickness. In this study, two different types of 3D rest frames were created. For verifying the rest frames' effects in reducing cybersickness, twenty subjects were exposed to two different rest frame conditions and a non-rest frame condition after an interval of three days in 3D VE. We observed the characteristic changes in the physiology of cybersickness in terms of autonomic regulation. Psychophysiological signals including EEG, EGG, and HRV were recorded and a simulator sickness questionnaire (SSQ was used for measuring the intensity of the sickness before and after the exposure to the different conditions. In the results, the SSQ was reduced significantly in the rest frame conditions. Psychophysiological responses changed significantly in the rest frame conditions compared to the non-rest frame condition. The results suggest that the rest frame conditions have condition-specific effects on reducing cybersickness by differentially alleviating aspects of visual and vestibular sensory conflicts in 3D VE.

  5. Alfvén waves in the foreshock propagating upstream in the plasma rest frame: statistics from Cluster observations

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2004-07-01

    Full Text Available We statistically study various properties of low-frequency waves such as frequencies, wave numbers, phase velocities, and polarization in the plasma rest frame in the terrestrial foreshock. Using Cluster observations the wave telescope or k-filtering is applied to investigate wave numbers and rest frame frequencies. We find that most of the foreshock waves propagate upstream along the magnetic field at phase velocity close to the Alfvén velocity. We identify that frequencies are around 0.1xΩcp and wave numbers are around 0.1xΩcp/VA, where Ωcp is the proton cyclotron frequency and VA is the Alfvén velocity. Our results confirm the conclusions drawn from ISEE observations and strongly support the existence of Alfvén waves in the foreshock.

  6. Alfvén waves in the foreshock propagating upstream in the plasma rest frame: statistics from Cluster observations

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2004-07-01

    Full Text Available We statistically study various properties of low-frequency waves such as frequencies, wave numbers, phase velocities, and polarization in the plasma rest frame in the terrestrial foreshock. Using Cluster observations the wave telescope or k-filtering is applied to investigate wave numbers and rest frame frequencies. We find that most of the foreshock waves propagate upstream along the magnetic field at phase velocity close to the Alfvén velocity. We identify that frequencies are around 0.1xΩcp and wave numbers are around 0.1xΩcp/VA, where Ωcp is the proton cyclotron frequency and VA is the Alfvén velocity. Our results confirm the conclusions drawn from ISEE observations and strongly support the existence of Alfvén waves in the foreshock.

  7. CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. I. DETAILED REST-FRAME OPTICAL MORPHOLOGIES ON KILOPARSEC SCALE OF z ∼ 2 STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Foerster Schreiber, N. M.; Genzel, R.; Davies, R.; Shapley, A. E.; Erb, D. K.; Bouche, N.; Steidel, C. C.; Cresci, G.

    2011-01-01

    We present deep and high-resolution Hubble Space Telescope NIC2 F160W imaging at 1.6 μm of six z ∼ 2 star-forming galaxies with existing near-infrared integral field spectroscopy from SINFONI at the Very Large Telescope. The unique combination of rest-frame optical imaging and nebular emission-line maps provides simultaneous insight into morphologies and dynamical properties. The overall rest-frame optical emission of the galaxies is characterized by shallow profiles in general (Sersic index n e ∼ 5 kpc. The morphologies are significantly clumpy and irregular, which we quantify through a non-parametric morphological approach, estimating the Gini (G), multiplicity (Ψ), and M 20 coefficients. The estimated strength of the rest-frame optical emission lines in the F160W bandpass indicates that the observed structure is not dominated by the morphology of line-emitting gas, and must reflect the underlying stellar mass distribution of the galaxies. The sizes and structural parameters in the rest-frame optical continuum and Hα emission reveal no significant differences, suggesting similar global distributions of the ongoing star formation and more evolved stellar population. While no strong correlations are observed between stellar population parameters and morphology within the NIC2/SINFONI sample itself, a consideration of the sample in the context of a broader range of z ∼ 2 galaxy types (K-selected quiescent, active galactic nucleus, and star forming; 24 μm selected dusty, infrared-luminous) indicates that these galaxies probe the high specific star formation rate and low stellar mass surface density part of the massive z ∼ 2 galaxy population, with correspondingly large effective radii, low Sersic indices, low G, and high Ψ and M 20 . The combined NIC2 and SINFONI data set yields insights of unprecedented detail into the nature of mass accretion at high redshift.

  8. Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    Our velocity relative to the rest frame of the cosmic microwave background (CMB) generates a dipole temperature anisotropy on the sky whichhas been well measured for more than 30 years, and has an accepted amplitude of v/c = 1.23 x 10-3, or v = 369 km-1. In addition to thissignal generated by Dop...

  9. REST-FRAME UV VERSUS OPTICAL MORPHOLOGIES OF GALAXIES USING SERSIC PROFILE FITTING: THE IMPORTANCE OF MORPHOLOGICAL K-CORRECTION

    International Nuclear Information System (INIS)

    Rawat, Abhishek; Wadadekar, Yogesh; De Mello, Duilia

    2009-01-01

    We show a comparison of the rest-frame UV morphologies of a sample of 162 intermediate-redshift (z median = 1.02) galaxies with their rest-frame optical morphologies. We select our sample from the deepest near-UV image obtained with the Hubble Space Telescope (HST) using the Wide Field Planetary Camera 2 (WFPC2; F300W) as part of the parallel observations of the Hubble Ultra Deep Field campaign overlapping with the HST/ACS Great Observatories Origins Deep Survey data set. We perform single-component Sersic fits in both WFPC2/F300W (rest-frame UV) and ACS/F850LP (rest-frame optical) bands and deduce that the Sersic index n is estimated to be smaller in the rest-frame UV compared to the rest-frame optical, leading to an overestimation of the number of merger candidates by ∼40%-100% compared to the rest-frame optical depending upon the cutoff in n employed for identifying merger candidates. This effect seems to be dominated by galaxies with low values of n(F300W) ≤ 0.5 that have a value of n(F850LP) ∼ 1.0. We argue that these objects are probably clumpy star-forming galaxies or minor mergers, both of which are essentially contaminants, if one is interested in identifying major mergers. In addition, we also find evidence that the axis ratio b/a is lower, i.e., ellipticity (1 - b/a) is higher in rest-frame UV compared to the rest-frame optical. Moreover, we find that in the rest-frame UV, the number of high ellipticity (e ≥ 0.8) objects are higher by a factor of ∼2.8 compared to the rest-frame optical. This indicates that the reported dominance of elongated morphologies among high-z Lyman Break Galaxies might just be a bias related to the use of rest-frame UV data sets in high-z studies.

  10. CMB scale dependent non-Gaussianity from massive gravity during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Domènech, Guillem; Hiramatsu, Takashi; Lin, Chunshan; Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 (Japan); Shiraishi, Maresuke [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, 277-8583 (Japan); Wang, Yi, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: chunshan.lin@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: shiraishi-m@t.kagawa-nct.ac.jp, E-mail: phyw@ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2017-05-01

    We consider a cosmological model in which the tensor mode becomes massive during inflation, and study the Cosmic Microwave Background (CMB) temperature and polarization bispectra arising from the mixing between the scalar mode and the massive tensor mode during inflation. The model assumes the existence of a preferred spatial frame during inflation. The local Lorentz invariance is already broken in cosmology due to the existence of a preferred rest frame. The existence of a preferred spatial frame further breaks the remaining local SO(3) invariance and in particular gives rise to a mass in the tensor mode. At linear perturbation level, we minimize our model so that the vector mode remains non-dynamical, while the scalar mode is the same as the one in single-field slow-roll inflation. At non-linear perturbation level, this inflationary massive graviton phase leads to a sizeable scalar-scalar-tensor coupling, much greater than the scalar-scalar-scalar one, as opposed to the conventional case. This scalar-scalar-tensor interaction imprints a scale dependent feature in the CMB temperature and polarization bispectra. Very intriguingly, we find a surprizing similarity between the predicted scale dependence and the scale-dependent non-Gaussianities at low multipoles hinted in the WMAP and Planck results.

  11. Relativistic entanglement from relativistic quantum mechanics in the rest-frame instant form of dynamics

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2011-01-01

    After a review of the problems induced by the Lorentz signature of Minkowski space-time, like the need of a clock synchronization convention for the definition of 3-space and the complexity of the notion of relativistic center of mass, there is the introduction of a new formulation of relativistic quantum mechanics compatible with the theory of relativistic bound states. In it the zeroth postulate of non-relativistic quantum mechanics is not valid and the physics is described in the rest frame by a Hilbert space containing only relative variables. The non-locality of the Poincare' generators imply a kinematical non-locality and non-separability influencing the theory of relativistic entanglement and not connected with the standard quantum non-locality.

  12. The rest-frame ultraviolet structure of 0.5 < z < 1.5 galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Nicholas A.; Gardner, Jonathan P. [Cosmology Laboratory (Code 665), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); De Mello, Duilia F. [Physics Department, The Catholic University of America, Washington, DC 20064 (United States); Teplitz, Harry I.; Rafelski, Marc [IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Koekemoer, Anton M.; Coe, Dan; Grogin, Norman [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gawiser, Eric [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Ravindranath, Swara [Inter-University Centre for Astronomy and Astrophysics, Pune (India); Scarlata, Claudia [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2014-08-10

    We present the rest-frame UV wavelength dependence of the Petrosian-like half-light radius (r{sub 50}), and the concentration parameter for a sample of 198 star-forming galaxies at 0.5 < z < 1.5. We find a ∼5% decrease in r{sub 50} from 1500 Å to 3000 Å, with half-light radii at 3000 Å ranging from 0.6 kpc to 6 kpc. We also find a decrease in concentration of ∼0.07 (1.9 < C{sub 3000} < 3.9). The lack of a strong relationship between r{sub 50} and wavelength is consistent with a model in which clumpy star formation is distributed over length scales comparable to the galaxy's rest-frame optical light. While the wavelength dependence of r{sub 50} is independent of size at all redshifts, concentration decreases more sharply in the far-UV (∼1500 Å) for large galaxies at z ∼ 1. This decrease in concentration is caused by a flattening of the inner ∼20% of the light profile in disk-like galaxies, indicating that the central regions have different UV colors than the rest of the galaxy. We interpret this as a bulge component with older stellar populations and/or more dust. The size-dependent decrease in concentration is less dramatic at z ∼ 2, suggesting that bulges are less dusty, younger, and/or less massive than the rest of the galaxy at higher redshifts.

  13. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aravena, M. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Béthermin, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Carlstrom, J. E.; Crawford, T. M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); De Breuck, C.; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Holzapfel, W. L., E-mail: jspilker@as.arizona.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); and others

    2014-04-20

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of {sup 12}CO, [C I], and H{sub 2}O, we also detect several faint transitions of {sup 13}CO, HCN, HNC, HCO{sup +}, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the {sup 13}CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which {sup 13}CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO{sup +}, and CN is consistent with a warm, dense medium with T {sub kin} ∼ 55 K and n{sub H{sub 2}}≳10{sup 5.5} cm{sup –3}. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  14. Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z ~ 2

    Science.gov (United States)

    Hainline, Kevin N.; Shapley, Alice E.; Kornei, Katherine A.; Pettini, Max; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.

    2009-08-01

    We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest frame 3600 to 6800 Å, including robust detections of fainter lines such as Hγ, [S II]λ6717,6732, and in one instance [Ne III]λ3869. SDSS J090122.37+181432.3 shows evidence for active galactic nucleus activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties. Current lensing models for the Cosmic Horseshoe and the Clone allow us to correct the measured Hα luminosity and calculated star formation rate. Metallicities have been estimated with a variety of indicators, which span a range of values of 12+ log(O/H) = 8.3-8.8, between ~0.4 and ~1.5 of the solar oxygen abundance. Dynamical masses were computed from the Hα velocity dispersions and measured half-light radii of the reconstructed sources. A comparison of the Balmer lines enabled measurement of dust reddening coefficients. Variations in the line ratios between the different lensed images are also observed, indicating that the spectra are probing different regions of the lensed galaxies. In all respects, the lensed objects appear fairly typical of ultraviolet-selected star-forming galaxies at z ~ 2. The Clone occupies a position on the emission-line diagnostic diagram of [O III]/Hβ versus [N II]/Hα that is offset from the locations of z ~ 0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [S II] line ratio, high electron densities (~1000 cm-3) are inferred compared

  15. CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4

    International Nuclear Information System (INIS)

    Finkelstein, Steven L.; Papovich, Casey; Salmon, Brett; Bassett, Robert; Finlator, Kristian; Dickinson, Mark; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Giavalisco, Mauro; Reddy, Naveen A.; Mobasher, Bahram; Conselice, Christopher J.; Dunlop, James S.; McLure, Ross J.; Faber, S. M.; Kocevski, Dale D.; Lai, Kamson; Hathi, Nimish P.; Lee, Kyoung-Soo

    2012-01-01

    We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 ∼ 3.5, including 113 at z ≅ 7-8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models and measure the value of the UV spectral slope (β) from the best-fit model spectrum. We run simulations to show that this measurement technique results in a smaller scatter on β than other methods, as well as a reduced number of galaxies with catastrophically incorrect β measurements (i.e., Δβ > 1). We find that the median value of β evolves significantly from –1.82 +0.00 –0.04 at z = 4 to –2.37 +0.26 –0.06 at z = 7. Additionally, we find that faint galaxies at z = 7 have β –2.68 +0.39 –0.24 (∼ –2.4 after correcting for observational bias); this is redder than previous claims in the literature and does not require 'exotic' stellar populations (e.g., very low metallicities or top-heavy initial mass functions) to explain their colors. This evolution can be explained by an increase in dust extinction, from low amounts at z = 7 to A V ∼ 0.5 mag at z = 4. The timescale for this increase is consistent with low-mass asymptotic giant branch stars forming the bulk of the dust. We find no significant ( UV when measuring M UV at a consistent rest-frame wavelength of 1500 Å. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF are considered separately, hinting that dynamic range in sample luminosities may play a role. We do find a strong correlation between β and the stellar mass at all redshifts, in that more massive galaxies exhibit redder colors. The most massive galaxies in our sample have similarly red colors at each redshift, implying that dust can build up quickly in massive galaxies and that feedback is likely removing dust from low-mass galaxies at z ≥ 7. Thus, the stellar-mass—metallicity relation, previously observed up

  16. Plasma rest frame distributions of suprathermal ions in the earth's foreshock region

    International Nuclear Information System (INIS)

    Sentman, D.D.; Kennel, C.F.; Frank, L.A.

    1981-01-01

    We present rest frame ion distributions computed from three-dimensional observations of upstream superthermal ions gained by the Universtiy of Iowa Quadrispherical Lepedea on ISEE-1. The observations are for a single inbound, midmorning pass starting upstream from the ion foreshock and continuing across the quasiparallel bow shock into the magnetosheath. The crossing of the ion foreshock boundary is marked by a several minute burst of ions of temperature 100--200 eV moving along the IMF away from the bow shock at 500 km/s relative to the solar wind. The observation of these 'reflected' ions is followed by an extended interval of 'diffuse' ions of temperatures 2--3 keV flowing at approx.250 km/s relative to the solar wind and persisting until the bow shock is crossed. The diffuse ion β has a value of approximately 6 in the region of the superthermal ions, exceeding the normal thermal β of the solar wind by roughly an order of magnitude. Both types of superthermal ions constitute roughly 2% of the total ion density and carry a parallel heat flux of approx.2 x 10 -2 ergs cm -2 s -2 . When integrated over an assumed 10 x 10 R/sub E/ bow shock emission area, this implies an upstream dissipation that may approach 10 17 to 10 18 ergs/s, comparable to a modest substorm

  17. ESTIMATING LONG GRB JET OPENING ANGLES AND REST-FRAME ENERGETICS

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Adam [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Connaughton, Valerie [Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805 (United States); Briggs, Michael S.; Burns, Eric, E-mail: adam.m.goldstein@nasa.gov [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States)

    2016-02-10

    We present a method to estimate the jet opening angles of long duration gamma-ray bursts (GRBs) using the prompt gamma-ray energetics and an inversion of the Ghirlanda relation, which is a correlation between the time-integrated peak energy of the GRB prompt spectrum and the collimation-corrected energy in gamma-rays. The derived jet opening angles using this method and detailed assumptions match well with the corresponding inferred jet opening angles obtained when a break in the afterglow is observed. Furthermore, using a model of the predicted long GRB redshift probability distribution observable by the Fermi Gamma-ray Burst Monitor (GBM), we estimate the probability distributions for the jet opening angle and rest-frame energetics for a large sample of GBM GRBs for which the redshifts have not been observed. Previous studies have only used a handful of GRBs to estimate these properties due to the paucity of observed afterglow jet breaks, spectroscopic redshifts, and comprehensive prompt gamma-ray observations, and we potentially expand the number of GRBs that can be used in this analysis by more than an order of magnitude. In this analysis, we also present an inferred distribution of jet breaks which indicates that a large fraction of jet breaks are not observable with current instrumentation and observing strategies. We present simple parameterizations for the jet angle, energetics, and jet break distributions so that they may be used in future studies.

  18. ACTIVE AND PASSIVE GALAXIES AT z ∼ 2: REST-FRAME OPTICAL MORPHOLOGIES WITH WFC3

    International Nuclear Information System (INIS)

    Cameron, E.; Carollo, C. M.; Oesch, P. A.; Bouwens, R. J.; Illingworth, G. D.; Magee, D.; Trenti, M.; Labbé, I.

    2011-01-01

    We use the high angular resolution in the near-infrared of the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope to determine YHVz color-color-selection criteria to identify and characterize 1.5 10 M ☉ . Meanwhile, galaxies maintaining diffuse and/or irregular morphologies in the rest-frame optical light—i.e., not yet dynamically settled—at these epochs are almost entirely restricted to masses below 10 11 M ☉ . In contrast at 2.25 11 M ☉ . Strikingly, by 1.5 < z < 2.25 roughly two out of every three galaxies at the highest masses are spheroids. In our small sample, the fraction of star-forming galaxies at these mass scales decreases concurrently from ∼60% to ∼5%. If confirmed, this indicates that z ∼ 2 is the epoch of both the morphological transformation and quenching of star formation which assemble the first substantial population of massive ellipticals.

  19. Rest-frame optical photometry of a z-7.54 quasar and its environment

    Science.gov (United States)

    Decarli, Roberto; Banados, Eduardo; Fan, Xiaohui; Walter, Fabian; Venemans, Bram; Paolo, Emanuele; Mazzucchelli, Chiara; Wang, Feige; Stern, Daniel

    2017-10-01

    Bright quasars are unique tools to study the dawn of galaxy and black hole formation, and to investigate the properties of the universe at the earliest cosmic epochs. We recently discovered the luminous quasar ULAS J1342+0928 at a record-breaking redshift of z=7.54 (whereas the previous quasar redshift record holder was at z=7.08). The presence of a damping wing in the quasar's spectrum, associated with a highly neutral intergalactic medium, and the high bolometric luminosity, powered by accretion on a supermassive, 8e8 Msun black hole, set unparalleled constraints on the history of reionization and on the formation and evolution of first massive black holes, only 690 Myr after the Big Bang. Here we propose to obtain sensitive Spitzer observations to sample the rest-frame optical emission of this quasar and of potential bright companion galaxies. By complementing our already secured observations with HST, IRAM/NOEMA, ALMA, and many other facilities, the proposed dataset will allow us (1) to constrain the Spectral Energy Distribution of the quasar, thus disentangling the contribution of its various components at optical wavelengths; (2) to investigate the quasar environment; and (3) to lay the foundation for high-resolution imaging and sensitive spectroscopy at MIR wavelengths with the James Webb Space Telescope.

  20. The rest-frame Darwin potential from the Lienard-Wiechert solution in the radiation gauge

    International Nuclear Information System (INIS)

    Crater, Horace; Lusanna, Luca

    2001-01-01

    In the semiclassical approximation in which the electric charges of scalar particles are described by Grassmann variables (Q 2 i =0, Q i Q j ≠0), it is possible to re-express the Lienard-Wiechert potentials and electric fields in the radiation gauge as phase space functions, because the difference among retarded, advanced, and symmetric Green functions is of order Q 2 i . By working in the rest-frame instant form of dynamics, the elimination of the electromagnetic degrees of freedom by means of suitable second class constraints leads to the identification of the Lienard-Wiechert reduced phase space containing only N charged particles with mutual action-at-a-distance vector and scalar potentials. A Darboux canonical basis of the reduced phase space is found. This allows one to re-express the potentials for arbitrary N as a unique effective scalar potential containing the Coulomb potential and the complete Darwin one, whose 1/c 2 component agrees with the known expression. The effective potential gives the classical analogue of all static and non-static effects of the one-photon exchange Feynman diagram of scalar electrodynamics

  1. Real Space Approach to CMB deboosting

    CERN Document Server

    Yoho, Amanda; Starkman, Glenn D.; Pereira, Thiago S.

    2013-01-01

    The effect of our Galaxy's motion through the Cosmic Microwave Background rest frame, which aberrates and Doppler shifts incoming photons measured by current CMB experiments, has been shown to produce mode-mixing in the multipole space temperature coefficients. However, multipole space determinations are subject to many difficulties, and a real-space analysis can provide a straightforward alternative. In this work we describe a numerical method for removing Lorentz- boost effects from real-space temperature maps. We show that to deboost a map so that one can accurately extract the temperature power spectrum requires calculating the boost kernel at a finer pixelization than one might naively expect. In idealized cases that allow for easy comparison to analytic results, we have confirmed that there is indeed mode mixing among the spherical harmonic coefficients of the temperature. We find that using a boost kernel calculated at Nside=8192 leads to a 1% bias in the binned boosted power spectrum at l~2000, while ...

  2. CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Steven L. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Papovich, Casey; Salmon, Brett; Bassett, Robert [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Finlator, Kristian [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Dickinson, Mark [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Giavalisco, Mauro [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Reddy, Naveen A.; Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Conselice, Christopher J. [School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom); Dunlop, James S.; McLure, Ross J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh (United Kingdom); Faber, S. M.; Kocevski, Dale D.; Lai, Kamson [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Hathi, Nimish P. [Carnegie Observatories, Pasadena, CA 91101 (United States); Lee, Kyoung-Soo, E-mail: stevenf@astro.as.utexas.edu [Yale Center for Astronomy and Astrophysics, Departments of Physics and Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2012-09-10

    We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 {approx}< z {approx}< 8. We use new wide-field near-infrared data in the Great Observatories Origins Deep Survey-South field from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Hubble Ultra Deep Field (HUDF) 2009, and Early Release Science programs to select galaxies via photometric redshift measurements. Our sample consists of 2812 candidate galaxies at z {approx}> 3.5, including 113 at z {approx_equal} 7-8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models and measure the value of the UV spectral slope ({beta}) from the best-fit model spectrum. We run simulations to show that this measurement technique results in a smaller scatter on {beta} than other methods, as well as a reduced number of galaxies with catastrophically incorrect {beta} measurements (i.e., {Delta}{beta} > 1). We find that the median value of {beta} evolves significantly from -1.82{sup +0.00}{sub -0.04} at z = 4 to -2.37{sup +0.26}{sub -0.06} at z = 7. Additionally, we find that faint galaxies at z = 7 have {beta} -2.68{sup +0.39}{sub -0.24} ({approx} -2.4 after correcting for observational bias); this is redder than previous claims in the literature and does not require 'exotic' stellar populations (e.g., very low metallicities or top-heavy initial mass functions) to explain their colors. This evolution can be explained by an increase in dust extinction, from low amounts at z = 7 to A{sub V} {approx} 0.5 mag at z = 4. The timescale for this increase is consistent with low-mass asymptotic giant branch stars forming the bulk of the dust. We find no significant (<2{sigma}) correlation between {beta} and M{sub UV} when measuring M{sub UV} at a consistent rest-frame wavelength of 1500 A. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF

  3. DIFFERENTIAL MORPHOLOGY BETWEEN REST-FRAME OPTICAL AND ULTRAVIOLET EMISSION FROM 1.5 < z < 3 STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Bond, Nicholas A.; Gawiser, Eric; Koekemoer, Anton M.

    2011-01-01

    We present the results of a comparative study of the rest-frame optical and rest-frame ultraviolet morphological properties of 117 star-forming galaxies (SFGs), including BX, BzK, and Lyman break galaxies with B 3σ) and larger than we find in passive galaxies at 1.4 0.05) generally have complex morphologies that are both extended and asymmetric, suggesting that they are mergers-in-progress or very large galaxies in the act of formation. We also find a correlation between half-light radius and ICD, a fact that is not reflected by the difference in half-light radii between bandpasses. In general, we find that it is better to use diagnostics like the ICD to measure the morphological properties of the difference image than it is to measure the difference in morphological properties between bandpasses.

  4. Description of deep inelastic processes in terms of the wave functions of the composite systems in the rest frame

    International Nuclear Information System (INIS)

    Kvinikhidze, A.N.; Sisakyan, A.N.; Khvedelidze, A.M.

    1988-01-01

    Inelastic lepton-hadron scattering is studied in the rest frame of the composite particle. A new variant of expansion of the structure functions in the coupling constant is proposed, each term of which possesses the property of spectrality. It is shown that in the rest frame of the bound state, in contrast to the frame in which P/sub z/→∞, the impulse approximation is not adequate for a correct description of the elastic limit x/sub Bj/ →1. To obtain the leading asymptotic form of the structure functions for x/sub Bj/ →1 it is necessary to take into account the interaction of the constituents in the final state. The corresponding diagrams are indicated, and a calculation of these in QCD gives results in agreement with results obtained previously in the framework of field theory on the 0-plane

  5. DETECTION OF REST-FRAME OPTICAL LINES FROM X-SHOOTER SPECTROSCOPY OF WEAK EMISSION-LINE QUASARS

    International Nuclear Information System (INIS)

    Plotkin, Richard M.; Gallo, Elena; Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Luo, Bin; Schneider, Donald P.; Fan, Xiaohui; Lira, Paulina; Richards, Gordon T.; Strauss, Michael A.; Wu, Jianfeng

    2015-01-01

    Over the past 15 yr, examples of exotic radio-quiet quasars with intrinsically weak or absent broad emission line regions (BELRs) have emerged from large-scale spectroscopic sky surveys. Here, we present spectroscopy of seven such weak emission line quasars (WLQs) at moderate redshifts (z = 1.4–1.7) using the X-shooter spectrograph, which provides simultaneous optical and near-infrared spectroscopy covering the rest-frame ultraviolet (UV) through optical. These new observations effectively double the number of WLQs with spectroscopy in the optical rest-frame, and they allow us to compare the strengths of (weak) high-ionization emission lines (e.g., C iv) to low-ionization lines (e.g., Mg ii, Hβ, Hα) in individual objects. We detect broad Hβ and Hα emission in all objects, and these lines are generally toward the weaker end of the distribution expected for typical quasars (e.g., Hβ has rest-frame equivalent widths ranging from 15–40 Å). However, these low-ionization lines are not exceptionally weak, as is the case for high-ionization lines in WLQs. The X-shooter spectra also display relatively strong optical Fe ii emission, Hβ FWHM ≲ 4000 km s −1 , and significant C iv blueshifts (≈1000–5500 km s −1 ) relative to the systemic redshift; two spectra also show elevated UV Fe ii emission, and an outflowing component to their (weak) Mg ii emission lines. These properties suggest that WLQs are exotic versions of “wind-dominated” quasars. Their BELRs either have unusual high-ionization components, or their BELRs are in an atypical photoionization state because of an unusually soft continuum

  6. THE SCUBA-2 COSMOLOGY LEGACY SURVEY: ALMA RESOLVES THE REST-FRAME FAR-INFRARED EMISSION OF SUB-MILLIMETER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J. M.; Smail, Ian; Swinbank, A. M.; Chen, Chian-Chou; Danielson, A. L. R.; Edge, A. C.; Ma, C.-J. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Almaini, O.; Conselice, C.; Hartley, W. G.; Lani, C. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Blain, A. W. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Bremer, M. N.; Coppin, K. E. K. [School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Dunlop, J. S.; Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford HIll, Edinburgh EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Geach, J. E. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Karim, A., E-mail: j.m.simpson@dur.ac.uk [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); and others

    2015-01-20

    We present high-resolution (0.''3) Atacama Large Millimeter Array 870 μm imaging of 52 sub-millimeter galaxies (SMGs) in the Ultra Deep Survey field to investigate the size and morphology of the sub-millimeter (sub-mm) emission on 2-10 kpc scales. We derive a median intrinsic angular size of FWHM = 0.''30 ± 0.''04 for the 23 SMGs in the sample detected at a signal-to-noise ratio (S/N) >10. Using the photometric redshifts of the SMGs we show that this corresponds to a median physical half-light diameter of 2.4 ± 0.2 kpc. A stacking analysis of the SMGs detected at S/N <10 shows they have sizes consistent with the 870 μm bright SMGs in the sample. We compare our results to the sizes of SMGs derived from other multi-wavelength studies, and show that the rest-frame ∼250 μm sizes of SMGs are consistent with studies of resolved {sup 12}CO (J = 3-2 to 7-6) emission lines, but that sizes derived from 1.4 GHz imaging appear to be approximately two times larger on average, which we attribute to cosmic ray diffusion. The rest-frame optical sizes of SMGs are around four times larger than the sub-millimeter sizes, indicating that the star formation in these galaxies is compact relative to the pre-existing stellar distribution. The size of the starburst region in SMGs is consistent with the majority of the star formation occurring in a central region, a few kiloparsecs in extent, with a median star formation rate surface density of 90 ± 30 M {sub ☉} yr{sup –1} kpc{sup –2}, which may suggest that we are witnessing an intense period of bulge growth in these galaxies.

  7. [Cosmic Microwave Background (CMB) Anisotropies

    Science.gov (United States)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  8. SIZES OF LYα-EMITTING GALAXIES AND THEIR REST-FRAME ULTRAVIOLET COMPONENTS AT z = 3.1

    International Nuclear Information System (INIS)

    Bond, Nicholas A.; Gawiser, Eric; Gronwall, Caryl; Ciardullo, Robin; Altmann, Martin; Schawinski, Kevin

    2009-01-01

    We present a rest-frame ultraviolet analysis of ∼120 z ∼ 3.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South. Using Hubble Space Telescope (HST) images taken as part of the Galaxy Evolution From Morphology and SEDS (GEMS) survey, Great Observatories Origins Deep Survey (GOODS), and Hubble Ultradeep Field surveys, we analyze the sizes of LAEs, as well as the spatial distribution of their components, which are defined as distinct clumps of UV-continuum emission. We set an upper limit of ∼1 kpc (∼0.''1) on the rms offset between the centroids of the continuum and Lyα emission. The SFRs of LAE components inferred from the rest-frame ultraviolet continuum range from ∼0.1 M sun yr -1 to ∼5 M sun yr -1 . A subsample of LAEs with coverage in multiple surveys (at different imaging depths) suggests that one needs a signal-to-noise ratio, S/N ∼>30, in order to make a robust estimate of the half-light radius of an LAE system. The majority of LAEs have observed half-light radii ∼<2 kpc, and LAE components typically have observed half-light radii ∼<1.5 kpc (∼<0.''20). Although only ∼50% of the detected LAE components are resolved at GOODS depth, the brightest (V ∼< 26.3) are all resolved in both GOODS and GEMS. Since we find little evidence for a correlation between the rest-UV sizes and magnitudes of LAEs, the majority should be resolved in a deeper survey at the ∼0.''05 angular resolution of the HST. Most of the multi-component LAEs identified in shallow frames become connected in deeper images, suggesting that the majority of the rest-UV 'clumps' are individual star-forming regions within a single system.

  9. The evolution of the rest-frame J- and H-band luminosity function of galaxies to z=3.5

    OpenAIRE

    Stefanon, Mauro; Marchesini, Danilo

    2011-01-01

    We present the rest-frame J- and H-band luminosity function (LF) of field galaxies, based on a deep multi-wavelength composite sample from the MUSYC, FIRES and FIREWORKS survey public catalogues, covering a total area of 450 arcmin^2. The availability of flux measurements in the Spitzer IRAC 3.6, 4.5, 5.8, and 8 um channels allows us to compute absolute magnitudes in the rest-frame J and H bands up to z=3.5 minimizing the dependence on the stellar evolution models. We compute the LF in the fo...

  10. Universe opacity and CMB

    Science.gov (United States)

    Vavryčuk, Václav

    2018-04-01

    A cosmological model, in which the cosmic microwave background (CMB) is a thermal radiation of intergalactic dust instead of a relic radiation of the Big Bang, is revived and revisited. The model suggests that a virtually transparent local Universe becomes considerably opaque at redshifts z > 2 - 3. Such opacity is hardly to be detected in the Type Ia supernova data, but confirmed using quasar data. The opacity steeply increases with redshift because of a high proper density of intergalactic dust in the previous epochs. The temperature of intergalactic dust increases as (1 + z) and exactly compensates the change of wavelengths due to redshift, so that the dust radiation looks apparently like the radiation of the blackbody with a single temperature. The predicted dust temperature is TD = 2.776 K, which differs from the CMB temperature by 1.9% only, and the predicted ratio between the total CMB and EBL intensities is 13.4 which is close to 12.5 obtained from observations. The CMB temperature fluctuations are caused by EBL fluctuations produced by galaxy clusters and voids in the Universe. The polarization anomalies of the CMB correlated with temperature anisotropies are caused by the polarized thermal emission of needle-shaped conducting dust grains aligned by large-scale magnetic fields around clusters and voids. A strong decline of the luminosity density for z > 4 is interpreted as the result of high opacity of the Universe rather than of a decline of the global stellar mass density at high redshifts.

  11. The ASTRODEEP Frontier Fields catalogues. II. Photometric redshifts and rest frame properties in Abell-2744 and MACS-J0416

    Science.gov (United States)

    Castellano, M.; Amorín, R.; Merlin, E.; Fontana, A.; McLure, R. J.; Mármol-Queraltó, E.; Mortlock, A.; Parsa, S.; Dunlop, J. S.; Elbaz, D.; Balestra, I.; Boucaud, A.; Bourne, N.; Boutsia, K.; Brammer, G.; Bruce, V. A.; Buitrago, F.; Capak, P.; Cappelluti, N.; Ciesla, L.; Comastri, A.; Cullen, F.; Derriere, S.; Faber, S. M.; Giallongo, E.; Grazian, A.; Grillo, C.; Mercurio, A.; Michałowski, M. J.; Nonino, M.; Paris, D.; Pentericci, L.; Pilo, S.; Rosati, P.; Santini, P.; Schreiber, C.; Shu, X.; Wang, T.

    2016-05-01

    Aims: We present the first public release of photometric redshifts, galaxy rest frame properties and associated magnification values in the cluster and parallel pointings of the first two Frontier Fields, Abell-2744 and MACS-J0416. The released catalogues aim to provide a reference for future investigations of extragalactic populations in these legacy fields: from lensed high-redshift galaxies to cluster members themselves. Methods: We exploit a multiwavelength catalogue, ranging from Hubble Space Telescope (HST) to ground-based K and Spitzer IRAC, which is specifically designed to enable detection and measurement of accurate fluxes in crowded cluster regions. The multiband information is used to derive photometric redshifts and physical properties of sources detected either in the H-band image alone, or from a stack of four WFC3 bands. To minimize systematics, median photometric redshifts are assembled from six different approaches to photo-z estimates. Their reliability is assessed through a comparison with available spectroscopic samples. State-of-the-art lensing models are used to derive magnification values on an object-by-object basis by taking into account sources positions and redshifts. Results: We show that photometric redshifts reach a remarkable ~3-5% accuracy. After accounting for magnification, the H-band number counts are found to be in agreement at bright magnitudes with number counts from the CANDELS fields, while extending the presently available samples to galaxies that, intrinsically, are as faint as H ~ 32-33, thanks to strong gravitational lensing. The Frontier Fields allow the galaxy stellar mass distribution to be probed, depending on magnification, at 0.5-1.5 dex lower masses with respect to extragalactic wide fields, including sources at Mstar ~ 107-108 M⊙ at z > 5. Similarly, they allow the detection of objects with intrinsic star formation rates (SFRs) >1 dex lower than in the CANDELS fields reaching 0.1-1 M⊙/yr at z ~ 6-10. The

  12. The effect of stellar evolution uncertainties on the rest-frame ultraviolet stellar lines of C IV and He II in high-redshift Lyman-break galaxies

    Science.gov (United States)

    Eldridge, John J.; Stanway, Elizabeth R.

    2012-01-01

    Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.

  13. CMB anisotropies interpolation

    NARCIS (Netherlands)

    Zinger, S.; Delabrouille, Jacques; Roux, Michel; Maitre, Henri

    2010-01-01

    We consider the problem of the interpolation of irregularly spaced spatial data, applied to observation of Cosmic Microwave Background (CMB) anisotropies. The well-known interpolation methods and kriging are compared to the binning method which serves as a reference approach. We analyse kriging

  14. Ages of Massive Galaxies at 0.5 > z > 2.0 from 3D-HST Rest-frame Optical Spectroscopy

    Science.gov (United States)

    Fumagalli, Mattia; Franx, Marijn; van Dokkum, Pieter; Whitaker, Katherine E.; Skelton, Rosalind E.; Brammer, Gabriel; Nelson, Erica; Maseda, Michael; Momcheva, Ivelina; Kriek, Mariska; Labbé, Ivo; Lundgren, Britt; Rix, Hans-Walter

    2016-05-01

    We present low-resolution near-infrared stacked spectra from the 3D-HST survey up to z = 2.0 and fit them with commonly used stellar population synthesis models: BC03, FSPS10 (Flexible Stellar Population Synthesis), and FSPS-C3K. The accuracy of the grism redshifts allows the unambiguous detection of many emission and absorption features and thus a first systematic exploration of the rest-frame optical spectra of galaxies up to z = 2. We select massive galaxies ({log}({M}*/{M}⊙ )\\gt 10.8), we divide them into quiescent and star-forming via a rest-frame color-color technique, and we median-stack the samples in three redshift bins between z = 0.5 and z = 2.0. We find that stellar population models fit the observations well at wavelengths below the 6500 Å rest frame, but show systematic residuals at redder wavelengths. The FSPS-C3K model generally provides the best fits (evaluated with χ 2 red statistics) for quiescent galaxies, while BC03 performs the best for star-forming galaxies. The stellar ages of quiescent galaxies implied by the models, assuming solar metallicity, vary from 4 Gyr at z ˜ 0.75 to 1.5 Gyr at z ˜ 1.75, with an uncertainty of a factor of two caused by the unknown metallicity. On average, the stellar ages are half the age of the universe at these redshifts. We show that the inferred evolution of ages of quiescent galaxies is in agreement with fundamental plane measurements, assuming an 8 Gyr age for local galaxies. For star-forming galaxies, the inferred ages depend strongly on the stellar population model and the shape of the assumed star-formation history.

  15. USING THE 1.6 μm BUMP TO STUDY REST-FRAME NEAR-INFRARED-SELECTED GALAXIES AT REDSHIFT 2

    International Nuclear Information System (INIS)

    Sorba, Robert; Sawicki, Marcin

    2010-01-01

    We explore the feasibility and limitations of using the 1.6 μm bump as a photometric redshift indicator and selection technique, and use it to study the rest-frame H-band galaxy luminosity and stellar mass functions (SMFs) at redshift z ∼ 2. We use publicly available Spitzer/IRAC images in the GOODS fields and find that color selection in the IRAC bandpasses alone is comparable in completeness and contamination to BzK selection. We find that the shape of the 1.6 μm bump is robust, and photometric redshifts are not greatly affected by choice of model parameters. Comparison with spectroscopic redshifts shows photometric redshifts to be reliable. We create a rest-frame NIR-selected catalog of galaxies at z ∼ 2 and construct a galaxy SMF. Comparisons with other SMFs at approximately the same redshift but determined using shorter wavelengths show good agreement. This agreement suggests that selection at bluer wavelengths does not miss a significant amount of stellar mass in passive galaxies. Comparison with SMFs at other redshifts shows evidence for the downsizing scenario of galaxy evolution. We conclude by pointing out the potential for using the 1.6 μm bump technique to select high-redshift galaxies with the JWST, whose λ>0.6 μm coverage will not be well suited to selecting galaxies using techniques that require imaging at shorter wavelengths.

  16. Towards relativistic atomic physics. Part 1. The rest-frame instant form of dynamics and a canonical transformation for a system of charged particles plus the electromagnetic field

    International Nuclear Information System (INIS)

    Alba, D.; Crater, H.W.; Lusanna, L.

    2010-01-01

    A complete exposition of the rest-frame instant form of dynamics for arbitrary isolated systems (particles, fields, strings, fluids) admitting a Lagrangian description is given. The starting point is the parametrized Minkowski theory describing the system in arbitrary admissible noninertial frames in Minkowski space-time, which allows one to define the energy-momentum tensor of the system and to show the independence of the description from the clock synchronization convention and from the choice of the 3-coordinates. The restriction to the inertial rest frame, centered on the inertial observer having the Fokker-Pryce center-of-inertia world-line, and the study of relativistic collective variables replacing the nonrelativistic center of mass lead to the description of the isolated system as a decoupled globally defined noncovariant canonical external center of mass carrying a pole-dipole structure (the invariant mass M and the rest spin S¯ of the system) and an external realization of the Poincare group. Mc and S¯ are the energy and angular momentum of a unfaithful internal realization of the Poincare group built with the energy-momentum tensor of the system and acting inside the instantaneous Wigner 3-spaces where all the 3-vectors are Wigner covariant. The vanishing of the internal 3-momentum and of the internal Lorentz boosts eliminate the internal 3-center of mass inside the Wigner 3-spaces, so that at the end the isolated system is described only by Wigner-covariant canonical internal relative variables. Then an isolated system of positive-energy charged scalar articles with mutual Coulomb interaction plus a transverse electromagnetic field in the radiation gauge is investigated as a classical background for defining relativistic atomic physics. The electric charges of the particles are Grassmann-valued to regularize the self-energies. The external and internal realizations of the Poincare algebra in the rest-frame instant form of dynamics are found. This

  17. CMB aberration and Doppler effects as a source of hemispherical asymmetries

    International Nuclear Information System (INIS)

    Notari, Alessio; Quartin, Miguel; Catena, Riccardo

    2014-01-01

    Our peculiar motion with respect to the CMB rest frame represents a preferred direction in the observed CMB sky since it induces an apparent deflection of the observed CMB photons (aberration) and a shift in their frequency (Doppler). Both effects distort the multipoles a ℓm 's at all ℓ's. Such effects are real as it has been recently measured for the first time by Planck according to what was forecast in some recent papers. However, the common lore when estimating a power spectrum from CMB is to consider that Doppler affects only the ℓ = 1 multipole, neglecting any other corrections. In this work we use simulations of the CMB sky in a boosted frame with a peculiar velocity β≡v/c = 1.23 × 10 −3 in order to assess the impact of such effect on power spectrum estimations in different regions of the sky. We show that the boost induces a north-south asymmetry in the power spectrum which is highly significant and non-negligible, of about (0.58±0.10)% for half-sky cuts when going up to ℓ ≈ 2500. We suggest that these effects are relevant and may account for some of the north-south asymmetries seen in the Planck data, being especially important at small scales. Finally we analyze the particular case of the ACT experiment, which observed only a small fraction of the sky and show that it suffers a bias of about 1% on the power spectrum and of similar size on some cosmological parameters: for example the position of the peaks shifts by 0.5% and the overall amplitude of the spectrum is about 0.4% lower than a full-sky case

  18. CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. II. PROPERTIES OF KILOPARSEC-SCALE CLUMPS IN REST-FRAME OPTICAL EMISSION OF z ∼ 2 STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Foerster Schreiber, N. M.; Genzel, R.; Davies, R.; Genel, S.; Lutz, D.; Tacconi, L. J.; Shapley, A. E.; Bouche, N.; Cresci, G.; Erb, D. K.; Newman, S.; Shapiro, K. L.; Steidel, C. C.; Sternberg, A.

    2011-01-01

    We study the properties of luminous stellar 'clumps' identified in deep, high-resolution Hubble Space Telescope NIC2/F160W imaging at 1.6 μm of six z ∼ 2 star-forming galaxies with existing near-infrared integral field spectroscopy from SINFONI at the Very Large Telescope. Individual clumps contribute ∼0.5%-15% of the galaxy-integrated rest-frame ∼5000 A emission, with median of ∼2%; the total contribution of clump light ranges from 10% to 25%. The median intrinsic clump size and stellar mass are ∼1 kpc and ∼10 9 M sun , in the ranges for clumps identified in rest-UV or line emission in other studies. The clump sizes and masses in the subset of disks are broadly consistent with expectations for clump formation through gravitational instabilities in gas-rich, turbulent disks given the host galaxies' global properties. By combining the NIC2 data with Advanced Camera for Surveys (ACS)/F814W imaging available for one source, and adaptive-optics-assisted SINFONI Hα data for another, we infer modest color, M/L, and stellar age variations within each galaxy. In these two objects, sets of clumps identified at different wavelengths do not fully overlap; NIC2-identified clumps tend to be redder/older than ACS- or Hα-identified clumps without rest-frame optical counterparts. There is evidence for a systematic trend of older ages at smaller galactocentric radii among the clumps, consistent with scenarios where inward migration of clumps transports material toward the central regions. From constraints on a bulge-like component at radii ∼< 1-3 kpc, none of the five disks in our sample appears to contain a compact massive stellar core, and we do not discern a trend of bulge stellar mass fraction with stellar age of the galaxy. Further observations are necessary to probe the buildup of stellar bulges and the role of clumps in this process.

  19. Signatures of graviton masses on the CMB

    Science.gov (United States)

    Brax, Philippe; Cespedes, Sebastian; Davis, Anne-Christine

    2018-03-01

    The impact of the existence of gravitons with non-vanishing masses on the B-modes of the Cosmic Microwave Background (CMB) is investigated. We also focus on putative modifications to the speed of the gravitational waves. We find that a change of the graviton speed shifts the acoustic peaks of the CMB and then could be easily constrained. For the case of massive gravity, we show analytically how the B-modes are sourced in a manner differing from the massless case leading to a plateau at low l in the CMB spectrum. We also study the case when there are more than one graviton, and when pressure instabilities are present. The latter would occur in doubly coupled bigravity in the radiation era. We focus on the case where a massless graviton becomes tachyonic in the radiation era whilst a massive one remains stable. As the unstable mode decouples from matter in the radiation era, we find that the effects of the instability is largely reduced on the spectrum of B-modes as long as the unstable graviton does not grow into the non-linear regime. In all cases when both massless and massive gravitons are present, we find that the B-mode CMB spectrum is characterised by a low l plateau together with a shifted position for the first few peaks compared to a purely massive graviton spectrum, a shift which depends on the mixing between the gravitons in their coupling to matter and could serve as a hint in favour of the existence of multiple gravitons.

  20. A REST-FRAME OPTICAL VIEW ON z ∼ 4 GALAXIES. I. COLOR AND AGE DISTRIBUTIONS FROM DEEP IRAC PHOTOMETRY OF THE IUDF10 AND GOODS SURVEYS

    International Nuclear Information System (INIS)

    Oesch, P. A.; Illingworth, G. D.; Gonzalez, V.; Holden, B. P.; Magee, D.; Labbé, I.; Bouwens, R. J.; Franx, M.; Trenti, M.; Van Dokkum, P. G.

    2013-01-01

    We present a study of rest-frame UV-to-optical color distributions for z ∼ 4 galaxies based on the combination of deep HST/ACS+WFC3/IR data with Spitzer/IRAC imaging. In particular, we use new, ultra-deep data from the IRAC Ultradeep Field program (IUDF10), together with previous, public IRAC data over the GOODS fields. Our sample contains a total of ∼2600 galaxies selected as B-dropout Lyman-break Galaxies in the HUDF and its deep parallel field HUDF09-2, as well as GOODS-North/South. This sample is used to investigate the UV continuum slopes β and Balmer break colors (J 125 – [4.5]) as a function of rest-frame optical luminosity (using [4.5] to avoid optical emission lines). We find that galaxies at M z * z∼4 ) are significantly redder than their lower luminosity counterparts. The UV continuum slopes and the J 125 – [4.5] colors are well correlated, indicating that the dust reddening at these redshifts is better described by an SMC-like extinction curve, rather than the typically assumed Calzetti reddening. After dust correction, we find that the galaxy population shows mean stellar population ages in the range 10 8.5 to 10 9 yr, with a dispersion of ∼0.5 dex, and only weak trends as a function of luminosity. Only a small fraction of galaxies shows Balmer break colors consistent with extremely young ages, younger than 100 Myr. Under the assumption of smooth star-formation histories, this fraction is 12%-19% for galaxies at M z 4 with only a small fraction of stars being formed in short, intense bursts of star-formation

  1. CMB lensing and giant rings

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, Ben; Itzhaki, Nissan, E-mail: nitzhaki@post.tau.ac.il, E-mail: ben.rathaus@gmail.com [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  2. Working Around Cosmic Variance: Remote Quadrupole Measurements of the CMB

    Science.gov (United States)

    Adil, Arsalan; Bunn, Emory

    2018-01-01

    Anisotropies in the CMB maps continue to revolutionize our understanding of the Cosmos. However, the statistical interpretation of these anisotropies is tainted with a posteriori statistics. The problem is particularly emphasized for lower order multipoles, i.e. in the cosmic variance regime of the power spectrum. Naturally, the solution lies in acquiring a new data set – a rather difficult task given the sample size of the Universe.The CMB temperature, in theory, depends on: the direction of photon propagation, the time at which the photons are observed, and the observer’s location in space. In existing CMB data, only the first parameter varies. However, as first pointed out by Kamionkowski and Loeb, a solution lies in making the so-called “Remote Quadrupole Measurements” by analyzing the secondary polarization produced by incoming CMB photons via the Sunyaev-Zel’dovich (SZ) effect. These observations allow us to measure the projected CMB quadrupole at the location and look-back time of a galaxy cluster.At low redshifts, the remote quadrupole is strongly correlated to the CMB anisotropy from our last scattering surface. We provide here a formalism for computing the covariance and relation matrices for both the two-point correlation function on the last scattering surface of a galaxy cluster and the cross correlation of the remote quadrupole with the local CMB. We then calculate these matrices based on a fiducial model and a non-standard model that suppresses power at large angles for ~104 clusters up to z=2. We anticipate to make a priori predictions of the differences between our expectations for the standard and non-standard models. Such an analysis is timely in the wake of the CMB S4 era which will provide us with an extensive SZ cluster catalogue.

  3. Cosmic string induced CMB maps

    International Nuclear Information System (INIS)

    Landriau, M.; Shellard, E. P. S.

    2011-01-01

    We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.

  4. A REST-FRAME OPTICAL VIEW ON z {approx} 4 GALAXIES. I. COLOR AND AGE DISTRIBUTIONS FROM DEEP IRAC PHOTOMETRY OF THE IUDF10 AND GOODS SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Oesch, P. A.; Illingworth, G. D.; Gonzalez, V.; Holden, B. P.; Magee, D. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Labbe, I.; Bouwens, R. J.; Franx, M. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Trenti, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Van Dokkum, P. G., E-mail: poesch@ucolick.org [Department of Astronomy, Yale University, New Haven, CT 06520 (United States)

    2013-08-01

    We present a study of rest-frame UV-to-optical color distributions for z {approx} 4 galaxies based on the combination of deep HST/ACS+WFC3/IR data with Spitzer/IRAC imaging. In particular, we use new, ultra-deep data from the IRAC Ultradeep Field program (IUDF10), together with previous, public IRAC data over the GOODS fields. Our sample contains a total of {approx}2600 galaxies selected as B-dropout Lyman-break Galaxies in the HUDF and its deep parallel field HUDF09-2, as well as GOODS-North/South. This sample is used to investigate the UV continuum slopes {beta} and Balmer break colors (J{sub 125} - [4.5]) as a function of rest-frame optical luminosity (using [4.5] to avoid optical emission lines). We find that galaxies at M{sub z} < -21.5 (roughly corresponding to L{sup *}{sub z{approx}4}) are significantly redder than their lower luminosity counterparts. The UV continuum slopes and the J{sub 125} - [4.5] colors are well correlated, indicating that the dust reddening at these redshifts is better described by an SMC-like extinction curve, rather than the typically assumed Calzetti reddening. After dust correction, we find that the galaxy population shows mean stellar population ages in the range 10{sup 8.5} to 10{sup 9} yr, with a dispersion of {approx}0.5 dex, and only weak trends as a function of luminosity. Only a small fraction of galaxies shows Balmer break colors consistent with extremely young ages, younger than 100 Myr. Under the assumption of smooth star-formation histories, this fraction is 12%-19% for galaxies at M{sub z} < -19.75. Our results are consistent with a gradual build-up of stars and dust in galaxies at z > 4 with only a small fraction of stars being formed in short, intense bursts of star-formation.

  5. Recent development in CMB experiments

    International Nuclear Information System (INIS)

    Matsumura, T.

    2014-01-01

    The rich data from the measurements of the cosmic microwave background (CMB) have played a key role to establish the ΛCDM cosmology. The WMAP results combined with Type Ia Supernova and BAO constrain not only the standard cosmological parameters to a few percent level. The combination of the data such as WMAP, SPT and H 0 started constraining such as the cosmic inflation r ν <0.38, and the equation of the dark energy w=-1.087 ± 0.096. The current experimental efforts are focused to measure the CMB B-mode polarization to probe deeper to 'beyond standard model' parameters from the sky. The upcoming ground-base and balloon-borne experiments are designed for r∼0.01. This sensitivity with an arcmin scale angular resolution is also well within the detection of the lensing B-mode. I review the recent development and the prospect from the upcoming CMB experiments. (author)

  6. To the problem of the secondary CMB anisotropy separation

    Directory of Open Access Journals (Sweden)

    Verkhodanov Oleg

    2016-01-01

    Full Text Available We study contribution to the secondary anisotropy maps of cosmic microwave background (CMB radiation which difficult to account for faint sources. Two effects are investigated. They are the Sunyaev–Zeldovich effect connected with the inverse Compton scattering of CMB photons on hot electrons of cluster of galaxies, and contamination of the background by weak extragalctic sources. First, we study fields of the Planck CMB maps around radio sources of the RATAN-600 catalog. We see weak microwave sources which make an additional contribution to the secondary anisotropy on angular small scales (< 7′. An algorithm for selecting candidate objects with the Sunyaev–Zeldovich effect was proposed, based on the use of data on the radio spectral indices and the signal in cosmic-microwave background maps. Second, applying the stacking method, we examine the areas of the CMB maps, constructed according to the Planck Space Observatory data in the neighborhood of different populations of radio sources and giant elliptical galaxies. The samples of objects include giant radio galaxies (GRG, radio sources, selected by the radio spectral index and redshift, as well as the gammaray bursts, used as a secondary comparative sample. The signal from this objects exists on CMB maps and its difference in the neighborhood of GRGs from the other types of objects was discovered.

  7. Power filtration of CMB observational data

    DEFF Research Database (Denmark)

    Novikov, D.I.; Naselsky, P.; Jørgensen, H.E.

    2001-01-01

    We propose a power filter Cp for linear reconstruction of the CMB signal from one-dimensional scans of observational maps. This Gp filter preserves the power spectrum of the CMB signal in contrast to the Wiener filter which diminishes the power spectrum of the reconstructed CMB signal. We demonst...

  8. THE REST-FRAME OPTICAL LUMINOSITY FUNCTION OF CLUSTER GALAXIES AT z < 0.8 AND THE ASSEMBLY OF THE CLUSTER RED SEQUENCE

    International Nuclear Information System (INIS)

    Rudnick, Gregory; Von der Linden, Anja; De Lucia, Gabriella; White, Simon; Pello, Roser; Aragon-Salamanca, Alfonso; Marchesini, Danilo; Clowe, Douglas; Halliday, Claire; Jablonka, Pascale; Milvang-Jensen, Bo; Poggianti, Bianca; Saglia, Roberto; Simard, Luc; Zaritsky, Dennis

    2009-01-01

    We present the rest-frame optical luminosity function (LF) of red-sequence galaxies in 16 clusters at 0.4 < z < 0.8 drawn from the ESO Distant Cluster Survey (EDisCS). We compare our clusters to an analogous sample from the Sloan Digital Sky Survey (SDSS) and match the EDisCS clusters to their most likely descendants. We measure all LFs down to M ∼ M * + (2.5-3.5). At z < 0.8, the bright end of the LF is consistent with passive evolution but there is a significant buildup of the faint end of the red sequence toward lower redshift. There is a weak dependence of the LF on cluster velocity dispersion for EDisCS but no such dependence for the SDSS clusters. We find tentative evidence that red-sequence galaxies brighter than a threshold magnitude are already in place, and that this threshold evolves to fainter magnitudes toward lower redshifts. We compare the EDisCS LFs with the LF of coeval red-sequence galaxies in the field and find that the bright end of the LFs agree. However, relative to the number of bright red galaxies, the field has more faint red galaxies than clusters at 0.6 < z < 0.8 but fewer at 0.4 < z < 0.6, implying differential evolution. We compare the total light in the EDisCS cluster red sequences to the total red-sequence light in our SDSS cluster sample. Clusters at 0.4 < z < 0.8 must increase their luminosity on the red sequence (and therefore stellar mass in red galaxies) by a factor of 1-3 by z = 0. The necessary processes that add mass to the red sequence in clusters predict local clusters that are overluminous as compared to those observed in the SDSS. The predicted cluster luminosities can be reconciled with observed local cluster luminosities by combining multiple previously known effects.

  9. HerMES: The rest-frame UV emission and a lensing model for the z = 6.34 luminous dusty starburst galaxy HFLS3

    International Nuclear Information System (INIS)

    Cooray, Asantha; Calanog, Jae; Casey, C. M.; Ma, Brian; Osage, W. A.; Wardlow, Julie L.; Bock, J.; Bridge, C.; Burgarella, D.; Bussmann, R. S.; Clements, D.; Conley, A.; Farrah, D.; Fu, H.; Gavazzi, R.; Ivison, R. J.; La Porte, N.; Lo Faro, B.; Magdis, G.; Oliver, S. J.

    2014-01-01

    We discuss the rest-frame ultraviolet emission from the starbursting galaxy HFLS3 at a redshift of 6.34. The galaxy was discovered in Herschel/SPIRE data due to its red color in the submillimeter wavelengths from 250 to 500 μm. Keck/NIRC2 K s -band adaptive optics imaging data showed two potential near-IR counterparts near HFLS3. Previously, the northern galaxy was taken to be in the foreground at z = 2.1, while the southern galaxy was assumed to be HFLS3's near-IR counterpart. The recently acquired Hubble/WFC3 and Advanced Camera for Surveys (ACS) imaging data show conclusively that both optically bright galaxies are in the foreground at z < 6. A new lensing model based on the Hubble imaging data and the millimeter-wave continuum emission yields a magnification factor of 2.2 ± 0.3, with a 95% confidence upper limit on the magnification of 3.5. When corrected for lensing, the instantaneous star formation rate is 1320 M ☉ yr –1 , with the 95% confidence lower limit around 830 M ☉ yr –1 . The dust and stellar masses of HFLS3 from the same spectral energy distribution (SED) models are at the level of 3 × 10 8 M ☉ and ∼5 × 10 10 M ☉ , respectively, with large systematic uncertainties on assumptions related to the SED model. With Hubble/WFC3 images, we also find diffuse near-IR emission about 0.5 arcsec (∼3 kpc) to the southwest of HFLS3 that remains undetected in the ACS imaging data. The emission has a photometric redshift consistent with either z ∼ 6 or a dusty galaxy template at z ∼ 2.

  10. THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Hjorth, J.; Fynbo, J. P. U.; Krühler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Laskar, T.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chary, R. [US Planck Data Center, MS220-6, Pasadena, CA 91125 (United States); Postigo, A. de Ugarte [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Schulze, S., E-mail: dperley@dark-cosmology.dk [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago 22 (Chile)

    2016-01-20

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  11. EVIDENCE FOR NON-STELLAR REST-FRAME NEAR-IR EMISSION ASSOCIATED WITH INCREASED STAR FORMATION IN GALAXIES AT z ∼ 1

    International Nuclear Information System (INIS)

    Lange, Johannes U.; Van Dokkum, Pieter G.; Momcheva, Ivelina G.; Nelson, Erica J.; Leja, Joel; Brammer, Gabriel; Whitaker, Katherine E.; Franx, Marijn

    2016-01-01

    We explore the presence of non-stellar rest-frame near-IR (2–5 μm) emission in galaxies at z ∼ 1. Previous studies identified this excess in relatively small samples and suggested that such non-stellar emission, which could be linked to the 3.3 μm polycyclic aromatic hydrocarbons feature or hot dust emission, is associated with an increased star formation rate (SFR). In this Letter, we confirm and quantify the presence of an IR excess in a significant fraction of galaxies in the 3D-HST GOODS catalogs. By constructing a matched sample of galaxies with and without strong non-stellar near-IR emission, we find that galaxies with such emission are predominantly star-forming galaxies. Moreover, star-forming galaxies with an excess show increased mid- and far-IR and Hα emission compared to other star-forming galaxies without. While galaxies with a near-IR excess show a larger fraction of individually detected X-ray active galactic nuclei (AGNs), an X-ray stacking analysis, together with the IR-colors and Hα profiles, shows that AGNs are unlikely to be the dominant source of excess in the majority of galaxies. Our results suggest that non-stellar near-IR emission is linked to increased SFRs and is ubiquitous among star-forming galaxies. As such, the near-IR emission might be a powerful tool to measure SFRs in the era of the James Webb Space Telescope

  12. STACKED REST-FRAME ULTRAVIOLET SPECTRA OF Lyα-EMITTING AND CONTINUUM-SELECTED GALAXIES AT 2 < z < 3.5

    International Nuclear Information System (INIS)

    Berry, Michael; Gawiser, Eric; Guaita, Lucia; Padilla, Nelson; Francke, Harold; Treister, Ezequiel; Blanc, Guillermo A.; Ciardullo, Robin; Gronwall, Caryl

    2012-01-01

    We present properties of individual and composite rest-UV spectra of continuum- and narrowband-selected star-forming galaxies (SFGs) at a redshift of 2 Lyα > 20 Å, the canonical limit to be classified as an Lyα-emitting galaxy. We divide our data set into subsamples based on properties that we are able to measure for each individual galaxy: Lyα equivalent width, rest-frame UV colors, and redshift. Among our subsample of galaxies with R Lyα > 20 Å have bluer UV continua, weaker low-ionization interstellar absorption lines, weaker C IV absorption, and stronger Si II* nebular emission than those with W Lyα –1 between Lyα emission and low-ionization absorption, which does not vary substantially among any of our subsamples. We find that the interstellar component, as opposed to the stellar component, dominates the high-ionization absorption line profiles. We find that the low- and high-ionization Si ionization states have similar kinematic properties, yet the low-ionization absorption is correlated with Lyα emission and the high-ionization absorption is not. These trends are consistent with outflowing neutral gas being in the form of neutral clouds embedded in ionized gas as previously suggested by Steidel et al. Moreover, our galaxies with bluer UV colors have stronger Lyα emission, weaker low-ionization absorption, and more prominent nebular emission line profiles. From a redshift of 2.7 Lyα Lyα > 20 Å exhibit weaker Lyα emission at lower redshifts, although we caution that this could be caused by spectroscopic confirmation of low Lyα equivalent width galaxies being harder at z ∼ 3 than z ∼ 2.

  13. Multiscale analysis of the CMB temperature derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain. (Spain)

    2017-02-01

    We study the Planck CMB temperature at different scales through its derivatives up to second order, which allows one to characterize the local shape and isotropy of the field. The problem of having an incomplete sky in the calculation and statistical characterization of the derivatives is addressed in the paper. The analysis confirms the existence of a low variance in the CMB at large scales, which is also noticeable in the derivatives. Moreover, deviations from the standard model in the gradient, curvature and the eccentricity tensor are studied in terms of extreme values on the data. As it is expected, the Cold Spot is detected as one of the most prominent peaks in terms of curvature, but additionally, when the information of the temperature and its Laplacian are combined, another feature with similar probability at the scale of 10{sup o} is also observed. However, the p -value of these two deviations increase above the 6% when they are referred to the variance calculated from the theoretical fiducial model, indicating that these deviations can be associated to the low variance anomaly. Finally, an estimator of the directional anisotropy for spinorial quantities is introduced, which is applied to the spinors derived from the field derivatives. An anisotropic direction whose probability is <1% is detected in the eccentricity tensor.

  14. THE REST-FRAME OPTICAL SPECTROSCOPIC PROPERTIES OF LY α -EMITTERS AT z  ∼ 2.5: THE PHYSICAL ORIGINS OF STRONG LY α EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Trainor, Ryan F. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall, Berkeley, CA 94720 (United States); Strom, Allison L.; Steidel, Charles C. [Cahill Center for Astrophysics, MC 249-17, 1200 E California Boulevard, Pasadena, CA 91125 (United States); Rudie, Gwen C., E-mail: trainor@berkeley.edu [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2016-12-01

    We present the rest-frame optical spectroscopic properties of 60 faint ( R {sub AB} ∼ 27; L ∼ 0.1 L {sub *}) Ly α -selected galaxies (LAEs) at z  ≈ 2.56. These LAEs also have rest-UV spectra of their Ly α emission line morphologies, which trace the effects of interstellar and circumgalactic gas on the escape of Ly α photons. We find that the LAEs have diverse rest-optical spectra, but their average spectroscopic properties are broadly consistent with the extreme low-metallicity end of the populations of continuum-selected galaxies selected at z  ≈ 2–3. In particular, the LAEs have extremely high [O iii] λ 5008/H β ratios (log([O iii]/H β ) ∼ 0.8) and low [N ii] λ 6585/H α ratios (log([N ii]/H α ) < 1.15). Coupled with a detection of the [O iii] λ 4364 auroral line, these measurements indicate that the star-forming regions in faint LAEs are characterized by high electron temperatures (T{sub e} ≈ 1.8 × 10{sup 4} K), low oxygen abundances (12 + log(O/H) ≈ 8.04, Z{sub neb} ≈ 0.22 Z {sub ⊙}), and high excitations with respect to their more luminous continuum-selected analogs. Several of our faintest LAEs have line ratios consistent with even lower metallicities, including six with 12 + log(O/H) ≈ 6.9–7.4 (Z {sub neb} ≈ 0.02–0.05 Z{sub ⊙}). We interpret these observations in light of new models of stellar evolution (including binary interactions) that have been shown to produce long-lived populations of hot, massive stars at low metallicities. We find that strong, hard ionizing continua are required to reproduce our observed line ratios, suggesting that faint galaxies are efficient producers of ionizing photons and important analogs of reionization-era galaxies. Furthermore, we investigate the physical trends accompanying Ly α emission across the largest current sample of combined Ly α and rest-optical galaxy spectroscopy, including both the 60 KBSS-Ly α LAEs and 368 more luminous galaxies at similar redshifts. We

  15. REST-FRAME UV-OPTICALLY SELECTED GALAXIES AT 2.3 {approx}< z {approx}< 3.5: SEARCHING FOR DUSTY STAR-FORMING AND PASSIVELY EVOLVING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yicheng; Giavalisco, Mauro; Cassata, Paolo; Williams, Christina C.; Salimbeni, Sara [Astronomy Department, University of Massachusetts, 710 N. Pleasant Street, Amherst, MA 01003 (United States); Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dickinson, Mark [NOAO-Tucson, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Chary, Ranga-Ram [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Messias, Hugo [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Observatorio Astronomico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Tundo, Elena [INAF-Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34131 Trieste (Italy); Lin Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Lee, Seong-Kook [School of Physics, Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-Gu, Seoul 130-722 (Korea, Republic of); Fontana, Adriano; Grazian, Andrea [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I00040 Monteporzio (Italy); Kocevski, Dale [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Lee, Kyoung-Soo [Yale Center for Astronomy and Astrophysics, Department of Physics, Yale University, New Haven, CT 06520 (United States); Villanueva, Edward [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States); Van der Wel, Arjen, E-mail: yicheng@astro.umass.edu [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-04-20

    A new set of color selection criteria (VJL) analogous with the BzK method is designed to select both star-forming galaxies (SFGs) and passively evolving galaxies (PEGs) at 2.3 {approx}< z {approx}< 3.5 by using rest-frame UV-optical (V - J versus J - L) colors. The criteria are thoroughly tested with theoretical stellar population synthesis models and real galaxies with spectroscopic redshifts to evaluate their efficiency and contamination. We apply the well-tested VJL criteria to the HST/WFC3 Early Release Science field and study the physical properties of selected galaxies. The redshift distribution of selected SFGs peaks at z {approx} 2.7, slightly lower than that of Lyman break galaxies at z {approx} 3. Comparing the observed mid-infrared fluxes of selected galaxies with the prediction of pure stellar emission, we find that our VJL method is effective at selecting massive dusty SFGs that are missed by the Lyman break technique. About half of the star formation in massive (M{sub star} > 10{sup 10} M{sub Sun }) galaxies at 2.3 {approx}< z {approx}< 3.5 is contributed by dusty (extinction E(B - V) > 0.4) SFGs, which, however, only account for {approx}20% of the number density of massive SFGs. We also use the mid-infrared fluxes to clean our PEG sample and find that galaxy size can be used as a secondary criterion to effectively eliminate the contamination of dusty SFGs. The redshift distribution of the cleaned PEG sample peaks at z {approx} 2.5. We find six PEG candidates at z > 3 and discuss possible methods to distinguish them from dusty contamination. We conclude that at least part of our candidates are real PEGs at z {approx} 3, implying that these types of galaxies began to form their stars at z {approx}> 5. We measure the integrated stellar mass density (ISMD) of PEGs at z {approx} 2.5 and set constraints on it at z > 3. We find that the ISMD grows by at least about a factor of 10 in 1 Gyr at 3 < z <5 and by another factor of 10 in the next 3.5 Gyr (1 < z

  16. Self-Calibration of CMB Polarimeters

    Science.gov (United States)

    Keating, Brian

    2013-01-01

    Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity "B-modes", have far-reaching implications for cosmology. To detect the B-modes generated during inflation the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement and may be inherently unstable over the (long) duration these searches require to detect the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of ~1000 TeV. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes. The calibration procedure outlined here can be used for any CMB polarimeter.

  17. A New Limit on CMB Circular Polarization from SPIDER

    Science.gov (United States)

    Nagy, J. M.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bergman, A. S.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Doré, O.; Duivenvoorden, A. J.; Eriksen, H. K.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Freese, K.; Galloway, M.; Gambrel, A. E.; Gandilo, N. N.; Ganga, K.; Gudmundsson, J. E.; Halpern, M.; Hartley, J.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Huang, Z.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; Kermish, Z. D.; Li, S.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Morford, T. A.; Netterfield, C. B.; Nolta, M.; Padilla, I. L.; Racine, B.; Rahlin, A. S.; Reintsema, C.; Ruhl, J. E.; Runyan, M. C.; Ruud, T. M.; Shariff, J. A.; Soler, J. D.; Song, X.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; Van Der List, J. F.; Weber, A. C.; Wehus, I. K.; Wiebe, D. V.; Young, E. Y.

    2017-08-01

    We present a new upper limit on cosmic microwave background (CMB) circular polarization from the 2015 flight of Spider, a balloon-borne telescope designed to search for B-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the nonzero circular-to-linear polarization coupling of the half-wave plate polarization modulators, data from Spider's 2015 Antarctic flight provide a constraint on Stokes V at 95 and 150 GHz in the range 33< {\\ell }< 307. No other limits exist over this full range of angular scales, and Spider improves on the previous limit by several orders of magnitude, providing 95% C.L. constraints on {\\ell }({\\ell }+1){C}{\\ell }{VV}/(2π ) ranging from 141 to 255 μK2 at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain even stronger constraints on circular polarization.

  18. Testing alternative theories of dark matter with the CMB

    International Nuclear Information System (INIS)

    Li Baojiu; Barrow, John D.; Mota, David F.; Zhao, HongSheng

    2008-01-01

    We propose a method to study and constrain modified gravity theories for dark matter using CMB temperature anisotropies and polarization. We assume that the theories considered here have already passed the matter power-spectrum test of large-scale structure. With this requirement met, we show that a modified gravity theory can be specified by parametrizing the time evolution of its dark-matter density contrast, which is completely controlled by the dark-matter stress history. We calculate how the stress history with a given parametrization affects the CMB observables, and a qualitative discussion of the physical effects involved is supplemented with numerical examples. It is found that, in general, alternative gravity theories can be efficiently constrained by the CMB temperature and polarization spectra. There exist, however, special cases where modified gravity cannot be distinguished from the CDM model even by using both CMB and matter power spectrum observations, nor can they be efficiently restricted by other observables in perturbed cosmologies. Our results show how the stress properties of dark matter, which determine the evolutions of both density perturbations and the gravitational potential, can be effectively investigated using just the general conservation equations and without assuming any specific theoretical gravitational theory within a wide class.

  19. A New Limit on CMB Circular Polarization from SPIDER

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, J. M.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bergman, A. S.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Doré, O.; Duivenvoorden, A. J.; Eriksen, H. K.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Freese, K.; Galloway, M.; Gambrel, A. E.; Gandilo, N. N.; Ganga, K.; Gudmundsson, J. E.; Halpern, M.; Hartley, J.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Huang, Z.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; Kermish, Z. D.; Li, S.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Morford, T. A.; Netterfield, C. B.; Nolta, M.; Padilla, I. L.; Racine, B.; Rahlin, A. S.; Reintsema, C.; Ruhl, J. E.; Runyan, M. C.; Ruud, T. M.; Shariff, J. A.; Soler, J. D.; Song, X.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; List, J. F. Van Der; Weber, A. C.; Wehus, I. K.; Wiebe, D. V.; Young, E. Y.

    2017-08-01

    We present a new upper limit on CMB circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search for $B$-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the non-zero circular-to-linear polarization coupling of the HWP polarization modulators, data from SPIDER's 2015 Antarctic flight provides a constraint on Stokes $V$ at 95 and 150 GHz from $33<\\ell<307$. No other limits exist over this full range of angular scales, and SPIDER improves upon the previous limit by several orders of magnitude, providing 95% C.L. constraints on $\\ell (\\ell+1)C_{\\ell}^{VV}/(2\\pi)$ ranging from 141 $\\mu K ^2$ to 203 $\\mu K ^2$ at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain stronger constraints on circular polarization.

  20. CMB-8 material balance system

    International Nuclear Information System (INIS)

    Langner, D.; Canada, T.; Ensslin, N.; Atwell, T.; Baxman, H.; Cowder, L.; Speir, L.; Lyssel, T.V.; Sampson, T.

    1980-08-01

    We describe the automated nondestructive assay (NDA) system installed at the Los Alamos Scientific Laboratory (LASL) Group CMB-8 uranium recovery facility. A random driver (RD) is used to measure the 235 U content of various solids while a uranium solution assay system (USAS) measures the 235 U or total uranium content of solutions over a concentration range of a few ppM to 400 g/l. Both instruments are interfaced to and controlled by a single minicomputer. The measurement principles, mechanical specifications, system software description, and operational instructions are described

  1. BAYESIAN INFERENCE OF CMB GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Anderes, Ethan [Department of Statistics, University of California, Davis, CA 95616 (United States); Wandelt, Benjamin D.; Lavaux, Guilhem [Sorbonne Universités, UPMC Univ Paris 06 and CNRS, UMR7095, Institut d’Astrophysique de Paris, F-75014, Paris (France)

    2015-08-01

    The Planck satellite, along with several ground-based telescopes, has mapped the cosmic microwave background (CMB) at sufficient resolution and signal-to-noise so as to allow a detection of the subtle distortions due to the gravitational influence of the intervening matter distribution. A natural modeling approach is to write a Bayesian hierarchical model for the lensed CMB in terms of the unlensed CMB and the lensing potential. So far there has been no feasible algorithm for inferring the posterior distribution of the lensing potential from the lensed CMB map. We propose a solution that allows efficient Markov Chain Monte Carlo sampling from the joint posterior of the lensing potential and the unlensed CMB map using the Hamiltonian Monte Carlo technique. The main conceptual step in the solution is a re-parameterization of CMB lensing in terms of the lensed CMB and the “inverse lensing” potential. We demonstrate a fast implementation on simulated data, including noise and a sky cut, that uses a further acceleration based on a very mild approximation of the inverse lensing potential. We find that the resulting Markov Chain has short correlation lengths and excellent convergence properties, making it promising for applications to high-resolution CMB data sets in the future.

  2. Reconstruction of CMB temperature anisotropies with primordial CMB induced polarization in galaxy clusters

    Science.gov (United States)

    Liu, Guo-Chin; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2016-07-01

    Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces polarization signals determined by the quadrupole anisotropy in the photon distribution at the location of clusters. This `remote quadrupole' derived from the measurements of the induced polarization in galaxy clusters provides an opportunity to reconstruct local CMB temperature anisotropies. In this Letter, we develop an algorithm of the reconstruction through the estimation of the underlying primordial gravitational potential, which is the origin of the CMB temperature and polarization fluctuations and CMB induced polarization in galaxy clusters. We found a nice reconstruction for the quadrupole and octopole components of the CMB temperature anisotropies with the assistance of the CMB induced polarization signals. The reconstruction can be an important consistency test on the puzzles of CMB anomalies, especially for the low-quadrupole and axis-of-evil problems reported in Wilkinson Microwave Anisotropy Probe and Planck data.

  3. Nonlinear electrodynamics and CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta, Herman J. Mosquera [Departmento de Física Universidade Estadual Vale do Acaraú, Avenida da Universidade 850, Campus da Betânia, CEP 62.040-370, Sobral, Ceará (Brazil); Lambiase, G., E-mail: herman@icra.it, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica ' ' E.R. Caianiello' ' , Università di Salerno, 84081 Baronissi (Italy)

    2011-03-01

    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.

  4. A NEAR-INFRARED SPECTROSCOPIC SURVEY OF K-SELECTED GALAXIES AT z∼ 2.3: COMPARISON OF STELLAR POPULATION SYNTHESIS CODES AND CONSTRAINTS FROM THE REST-FRAME NIR

    International Nuclear Information System (INIS)

    Muzzin, Adam; Marchesini, Danilo; Van Dokkum, Pieter G.; Labbe, Ivo; Kriek, Mariska; Franx, Marijn

    2009-01-01

    We present spectral energy distribution (SED) modeling of a sample of 34 K-selected galaxies at z∼ 2.3. These galaxies have near-infrared (NIR) spectroscopy that samples the rest-frame Balmer/4000 A break as well as deep photometry in 13 broadband filters. New to our analysis is Infrared Array Camera (IRAC) data that extend the SEDs into the rest-frame NIR. Comparing parameters determined from SED fits with and without the IRAC data we find that the IRAC photometry significantly improves the confidence intervals of τ, A v , M star , and SFR for individual galaxies, but does not systematically alter the mean parameters of the sample. We use the IRAC data to assess how well current stellar population synthesis codes describe the rest-frame NIR SEDs of young galaxies where discrepancies between treatments of the thermally pulsating asymptotic giant branch phase of stellar evolution are most pronounced. The models of Bruzual and Charlot, Maraston, and Charlot and Bruzual all successfully reproduce the SEDs of our galaxies with ≤5% differences in the quality of fit; however, the best-fit masses from each code differ systematically by as much as a factor of 1.5, and other parameters vary more, up to factors of 2-3. A comparison of best-fit stellar population parameters from different stellar population synthesis (SPS) codes, dust laws, and metallicities shows that the choice of SPS code is the largest systematic uncertainty in most parameters, and that systematic uncertainties are typically larger than the formal random uncertainties. The SED fitting confirms our previous result that galaxies with strongly suppressed SF account for ∼50% of the K-bright population at z∼ 2.3; however, the uncertainty in this fraction is large due to systematic differences in the specific star formation rates derived from the three SPS models.

  5. Large-Angle CMB Suppression and Polarisation Predictions

    CERN Document Server

    Copi, C.J.; Schwarz, D.J.; Starkman, G.D.

    2013-01-01

    The anomalous lack of large angle temperature correlations has been a surprising feature of the CMB since first observed by COBE-DMR and subsequently confirmed and strengthened by WMAP. This anomaly may point to the need for modifications of the standard model of cosmology or may show that our Universe is a rare statistical fluctuation within that model. Further observations of the temperature auto-correlation function will not elucidate the issue; sufficiently high precision statistical observations already exist. Instead, alternative probes are required. In this work we explore the expectations for forthcoming polarisation observations. We define a prescription to test the hypothesis that the large-angle CMB temperature perturbations in our Universe represent a rare statistical fluctuation within the standard cosmological model. These tests are based on the temperature-Q Stokes parameter correlation. Unfortunately these tests cannot be expected to be definitive. However, we do show that if this TQ-correlati...

  6. Can CMB Surveys Help the AGN Community?

    Directory of Open Access Journals (Sweden)

    Bruce Partridge

    2017-08-01

    Full Text Available Contemporary projects to measure anisotropies in the cosmic microwave background (CMB are now detecting hundreds to thousands of extragalactic radio sources, most of them blazars. As a member of a group of CMB scientists involved in the construction of catalogues of such sources and their analysis, I wish to point out the potential value of CMB surveys to studies of AGN jets and their polarization. Current CMB projects, for instance, reach mJy sensitivity, offer wide sky coverage, are “blind” and generally of uniform sensitivity across the sky (hence useful statistically, make essentially simultaneous multi-frequency observations at frequencies from 30 to 857 GHz, routinely offer repeated observations of sources with interesting cadences and now generally provide polarization measurements. The aim here is not to analyze in any depth the AGN science already derived from such projects, but rather to heighten awareness of their promise for the AGN community.

  7. A Bayesian framework for cosmic string searches in CMB maps

    Energy Technology Data Exchange (ETDEWEB)

    Ciuca, Razvan; Hernández, Oscar F., E-mail: razvan.ciuca@mail.mcgill.ca, E-mail: oscarh@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 (Canada)

    2017-08-01

    There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension G μ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this framework with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of G μ=5 ×10{sup −9} and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that G μ≤2.3×10{sup −9}.

  8. Constraining the CMB optical depth through the dispersion measure of cosmological radio transients

    International Nuclear Information System (INIS)

    Fialkov, A.; Loeb, A.

    2016-01-01

    The dispersion measure of extragalactic radio transients can be used to measure the column density of free electrons in the intergalactic medium. The same electrons also scatter the Cosmic Microwave Background (CMB) photons, affecting precision measurements of cosmological parameters. We explore the connection between the dispersion measure of radio transients existing during the Epoch of Reionization (EoR) and the total optical depth for the CMB showing that the existence of such transients would provide a new sensitive probe of the CMB optical depth. As an example, we consider the population of FRBs. Assuming they exist during the EoR, we show that: (i) such sources can probe the reionization history by measuring the optical depth to sub-percent accuracy, and (ii) they can be detected with high significance by an instrument such as the Square Kilometer Array.

  9. Constraining the CMB optical depth through the dispersion measure of cosmological radio transients

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, A.; Loeb, A., E-mail: anastasia.fialkov@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Institute for Teory and Computation, Harvard University, 60 Garden Street, MS-51, Cambridge, MA, 02138 (United States)

    2016-05-01

    The dispersion measure of extragalactic radio transients can be used to measure the column density of free electrons in the intergalactic medium. The same electrons also scatter the Cosmic Microwave Background (CMB) photons, affecting precision measurements of cosmological parameters. We explore the connection between the dispersion measure of radio transients existing during the Epoch of Reionization (EoR) and the total optical depth for the CMB showing that the existence of such transients would provide a new sensitive probe of the CMB optical depth. As an example, we consider the population of FRBs. Assuming they exist during the EoR, we show that: (i) such sources can probe the reionization history by measuring the optical depth to sub-percent accuracy, and (ii) they can be detected with high significance by an instrument such as the Square Kilometer Array.

  10. FORMATION EPOCHS, STAR FORMATION HISTORIES, AND SIZES OF MASSIVE EARLY-TYPE GALAXIES IN CLUSTER AND FIELD ENVIRONMENTS AT z = 1.2: INSIGHTS FROM THE REST-FRAME ULTRAVIOLET

    International Nuclear Information System (INIS)

    Rettura, Alessandro; Demarco, R.; Ford, H. C.; Rosati, P.; Gobat, R.; Nonino, M.; Fosbury, R. A. E.; Menci, N.; Strazzullo, V.; Mei, S.

    2010-01-01

    We derive stellar masses, ages, and star formation histories (SFHs) of massive early-type galaxies in the z = 1.237 RDCS1252.9-2927 cluster and compare them with those measured in a similarly mass-selected sample of field contemporaries drawn from the Great Observatories Origin Deep Survey South Field. Robust estimates of these parameters are obtained by comparing a large grid of composite stellar population models with 8-9 band photometry in the rest-frame near-ultraviolet, optical, and IR, thus sampling the entire relevant domain of emission of the different stellar populations. Additionally, we present new, deep U-band photometry of both fields, giving access to the critical far-ultraviolet rest frame, in order to empirically constrain the dependence of the most recent star formation processes on the environment. We also analyze the morphological properties of both samples to examine the dependence of their scaling relations on their mass and environment. We find that early-type galaxies, both in the cluster and in the field, show analogous optical morphologies, follow comparable mass versus size relation, have congruent average surface stellar mass densities, and lie on the same Kormendy relation. We also show that a fraction of early-type galaxies in the field employ longer timescales, τ, to assemble their mass than their cluster contemporaries. Hence, we conclude that while the formation epoch of early-type galaxies only depends on their mass, the environment does regulate the timescales of their SFHs. Our deep U-band imaging strongly supports this conclusion. We show that cluster galaxies are at least 0.5 mag fainter than their field contemporaries of similar mass and optical-to-infrared colors, implying that the last episode of star formation must have happened more recently in the field than in the cluster.

  11. CMB lensing forecasts for constraining the primordial perturbations: adding to the CMB temperature and polarization information

    Energy Technology Data Exchange (ETDEWEB)

    Kasanda, Simon Muya; Moodley, Kavilan, E-mail: simon.muya.kasanda@gmail.com, E-mail: moodleyk41@ukzn.ac.za [Astrophysics and Cosmology Research Unit and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, University Road, Durban, 4041 (South Africa)

    2014-12-01

    We forecast how current (PLANCK) and future (PRISM) cosmic microwave background (CMB) experiments constrain the adiabatic mode and its admixtures with primordial isocurvature modes. The forecasts are based on measurements of the reconstructed CMB lensing potential and lensing-induced CMB B-mode polarization anisotropies in combination with the CMB temperature and E-mode polarization anisotropies. We first study the characteristic features of the CMB temperature, polarization and lensing spectra for adiabatic and isocurvature modes. We then consider how information from the CMB lensing potential and B-mode polarization induced by lensing can improve constraints on an admixture of adiabatic and three correlated isocurvature modes. We find that the CMB lensing spectrum improves constraints on isocurvature modes by at most 10% for the PLANCK and PRISM experiments. The limited improvement is a result of the low amplitude of isocurvature lensing spectra and cancellations between these spectra that render them only slightly detectable. There is a larger gain from using the lensing-induced B-mode polarization spectrum measured by PRISM. In this case constraints on isocurvature mode amplitudes improve by as much as 40% relative to the CMB temperature and E-mode polarization constraints. The addition of both lensing and lensing-induced B-mode polarization information constrains isocurvature mode amplitudes at the few percent level or better. In the case of admixtures of the adiabatic mode with one or two correlated isocurvature modes we find that constraints at the percent level or better are possible. We investigate the dependence of our results to various assumptions in our analysis, such as the inclusion of dark energy parameters, the CMB temperature-lensing correlation, and the presence of primordial tensor modes, and find that these assumptions do not significantly change our main results.

  12. Asymmetric beams and CMB statistical anisotropy

    International Nuclear Information System (INIS)

    Hanson, Duncan; Lewis, Antony; Challinor, Anthony

    2010-01-01

    Beam asymmetries result in statistically anisotropic cosmic microwave background (CMB) maps. Typically, they are studied for their effects on the CMB power spectrum, however they more closely mimic anisotropic effects such as gravitational lensing and primordial power asymmetry. We discuss tools for studying the effects of beam asymmetry on general quadratic estimators of anisotropy, analytically for full-sky observations as well as in the analysis of realistic data. We demonstrate this methodology in application to a recently detected 9σ quadrupolar modulation effect in the WMAP data, showing that beams provide a complete and sufficient explanation for the anomaly.

  13. CMB constraints on running non-Gaussianity

    OpenAIRE

    Oppizzi, Filippo; Liguori, Michele; Renzi, Alessandro; Arroja, Frederico; Bartolo, Nicola

    2017-01-01

    We develop a complete set of tools for CMB forecasting, simulation and estimation of primordial running bispectra, arising from a variety of curvaton and single-field (DBI) models of Inflation. We validate our pipeline using mock CMB running non-Gaussianity realizations and test it on real data by obtaining experimental constraints on the $f_{\\rm NL}$ running spectral index, $n_{\\rm NG}$, using WMAP 9-year data. Our final bounds (68\\% C.L.) read $-0.3< n_{\\rm NG}

  14. A CMB/Dark Energy Cosmic Duality

    DEFF Research Database (Denmark)

    Enqvist, Kari; Sloth, Martin Snoager

    2004-01-01

    We investigate a possible connection between the suppression of the power at low multipoles in the CMB spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon...

  15. Cosmological CPT violation and CMB polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jun-Qing, E-mail: xia@sissa.it [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)

    2012-01-01

    In this paper we study the possibility of testing Charge-Parity-Time Reversal (CPT) symmetry with cosmic microwave background (CMB) experiments. We consider two kinds of Chern-Simons (CS) term, electromagnetic CS term and gravitational CS term, and study their effects on the CMB polarization power spectra in detail. By combining current CMB polarization measurements, the seven-year WMAP, BOOMERanG 2003 and BICEP observations, we obtain a tight constraint on the rotation angle Δα = −2.28±1.02 deg (1 σ), indicating a 2.2 σ detection of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. After adding the QUaD polarization data, the constraint becomes −1.34 < Δα < 0.82 deg at 95% confidence level. When comparing with the effect of electromagnetic CS term, the gravitational CS term could only generate TB and EB power spectra with much smaller amplitude. Therefore, the induced parameter ε can not be constrained from the current polarization data. Furthermore, we study the capabilities of future CMB measurements, Planck and CMBPol, on the constraints of Δα and ε. We find that the constraint of Δα can be significantly improved by a factor of 15. Therefore, if this rotation angle effect can not be taken into account properly, the constraints of cosmological parameters will be biased obviously. For the gravitational CS term, the future Planck data still can not constrain ε very well, if the primordial tensor perturbations are small, r < 0.1. We need the more accurate CMBPol experiment to give better constraint on ε.

  16. Rest frame properties of the proton

    International Nuclear Information System (INIS)

    Strobel, G.L.

    1998-01-01

    The proton is modeled as three quarks of small current quark mass. The three-body Dirac equation is solved with spin-independent central diagonal linear confining potentials with an attractive Coulombic term in a relativistic three-quark model. Hyperspherical coordinates are used, and the bound state is found analytically. After integrating over the hyperangles, the Hamiltonian is an 8 by 8 matrix of coupled first-order differential equations in one variable, the hyperradius. These are analytically solved in hypercentral approximation. For the (1/2 + ) 3 ground-state configuration in the nonrelativistic large-quark-mass limit, there are no nodes in the wave function. However, in the extreme relativistic limit of small current quark masses of a few MeV, the expectation value of the number of nodes is about 1.30 when the potential parameters are chosen to reproduce the proton rms charge radius. The quarks are assumed to possess a Pauli anomalous magnetic moment, like that of the electron and muon of (α/2π)(e/m). Assuming all three quarks have equal mass, one can fit the rest energy, magnetic moment, rms charge radius, and axial charge of the proton with this relativistic three-body Dirac equation model. The solution found shows the necessity of including all components of the composite three-quark wave function, as the upper component contributes only 0.585 to the norm

  17. Probing the cosmological initial conditions using the CMB

    Science.gov (United States)

    Yadav, Amit P. S.

    In the last few decades, advances in observational cosmology have given us a standard model of cosmology. The basic cosmological parameters have been laid out to high precision. Cosmologists have started asking questions about the nature of the cosmological initial conditions. Many ambitious experiments such as Planck satellite, EBEX, ACT, CAPMAP, QUaD, BICEP, SPIDER, QUIET, and GEM are underway. Experiments like these will provide us with a wealth of information about CMB polarization, CMB lensing, and polarization foregrounds. These experiments will be complemented with great observational campaigns to map the 3D structure in the Universe and new particle physics constraints from the Large Hadron Collider. In my graduate work I have made explicit how observations of the CMB temperature and E-polarization anisotropies can be combined to provide optimal constraints on models of the early universe at the highest energies. I have developed new ways of constraining models of the early universe using CMB temperature and polarization data. Inflation is one of the most promising theories of the early universe. Different inflationary models predict different amounts of non-Gaussian perturbations. Although any non-Gaussianity predicted by the canonical inflation model is very small, there exist models which can generate significant amounts of non-Gaussianities. Hence any characterization of non-Gaussianity of the primordial perturbations constrains the models of inflation. The information in the bispectrum (or higher order moments) is completely independent of the power spectrum constraints on the amplitude of primordial power spectrum (A), the scalar spectral index of the primordial power spectrum ns, and the running of the primordial power spectrum. My work has made it possible to extract the bispectrum information from large, high resolution CMB temperature and polarization data. We have demonstrated that the primordial adiabatic perturbations can be reconstructed using

  18. Cosmology with clusters in the CMB

    International Nuclear Information System (INIS)

    Majumdar, Subhabrata

    2008-01-01

    Ever since the seminal work by Sunyaev and Zel'dovich describing the distortion of the CMB spectrum, due to photons passing through the hot inter cluster gas on its way to us from the surface of last scattering (the so called Sunyaev-Zel'dovich effect (SZE)), small scale distortions of the CMB by clusters has been used to detect clusters as well as to do cosmology with clusters. Cosmology with clusters in the CMB can be divided into three distinct regimes: a) when the clusters are completely unresolved and contribute to the secondary CMB distortions power spectrum at small angular scales; b) when we can just about resolve the clusters so as to detect the clusters through its total SZE flux such that the clusters can be tagged and counted for doing cosmology and c) when we can completely resolve the clusters so as to measure their sizes and other cluster structural properties and their evolution with redshift. In this article, we take a look at these three aspects of SZE cluster studies and their implication for using clusters as cosmological probes. We show that clusters can be used as effective probes of cosmology, when in all of these three cases, one explores the synergy between cluster physics and cosmology as well take clues about cluster physics from the latest high precision cluster observations (for example, from Chandra and XMM - Newton). As a specific case, we show how an observationally motivated cluster SZ template can explain the CBI-excess without the need for a high σ 8 . We also briefly discuss 'self-calibration' in cluster surveys and the prospect of using clusters as an ensemble of cosmic rulers to break degeneracies arising in cluster cosmology.

  19. Probing neutrino masses with CMB lensing extraction

    International Nuclear Information System (INIS)

    Lesgourgues, Julien; Perotto, Laurence; Pastor, Sergio; Piat, Michel

    2006-01-01

    We evaluate the ability of future cosmic microwave background (CMB) experiments to measure the power spectrum of large scale structure using quadratic estimators of the weak lensing deflection field. We calculate the sensitivity of upcoming CMB experiments such as BICEP, QUaD, BRAIN, ClOVER and Planck to the nonzero total neutrino mass M ν indicated by current neutrino oscillation data. We find that these experiments greatly benefit from lensing extraction techniques, improving their one-sigma sensitivity to M ν by a factor of order four. The combination of data from Planck and the SAMPAN mini-satellite project would lead to σ(M ν )∼0.1 eV, while a value as small as σ(M ν )∼0.035 eV is within the reach of a space mission based on bolometers with a passively cooled 3-4 m aperture telescope, representative of the most ambitious projects currently under investigation. We show that our results are robust not only considering possible difficulties in subtracting astrophysical foregrounds from the primary CMB signal but also when the minimal cosmological model (Λ Mixed Dark Matter) is generalized in order to include a possible scalar tilt running, a constant equation-of-state parameter for the dark energy and/or extra relativistic degrees of freedom

  20. What do we learn from the CMB observations?

    Energy Technology Data Exchange (ETDEWEB)

    Rubakov, V. A., E-mail: rubakov@ms2.inr.ac.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Vlasov, A. D., E-mail: vlasov.ad@gmail.com [Institute for Theoretical and Experimental Physics (Russian Federation)

    2012-09-15

    We give an account, at nonexpert and quantitative level, of physics behind the CMB temperature anisotropy and polarization and their peculiar features. We discuss, in particular, how cosmological parameters are determined from the CMB measurements and their combinations with other observations. We emphasize that CMB is the major source of information on the primordial density perturbations and, possibly, gravitational waves, and discuss the implication for our understanding of the extremely early Universe.

  1. Architectures and assessment of next-generation CMB polarization instruments

    Data.gov (United States)

    National Aeronautics and Space Administration — Cosmological inflation predicts a background of gravitational waves that imprint a characteristic polarized pattern on the CMB. This signal is degraded by...

  2. Development of Optics and Detectors for Advanced CMB Polarization Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Measurements of the cosmic microwave background (CMB) have been essential to the development of modern cosmology. Future observations will provide cosmological...

  3. Future CMB cosmological constraints in a dark coupled universe

    CERN Document Server

    Martinelli, Matteo; Melchiorri, Alessandro; Mena, Olga

    2010-01-01

    Cosmic Microwave Background satellite missions as the on-going Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.

  4. When can preheating affect the CMB?

    Science.gov (United States)

    Tsujikawa, Shinji; Bassett, Bruce A.

    2002-05-01

    We discuss the principles governing the selection of inflationary models for which preheating can affect the CMB. This is a (fairly small) subset of those models which have nonnegligible entropy/isocurvature perturbations on large scales during inflation. We study new models which belong to this class-two-field inflation with negative nonminimal coupling and hybrid/double/supernatural inflation models where the tachyonic growth of entropy perturbations can lead to the variation of the curvature perturbation, /R, on super-Hubble scales. Finally, we present evidence against recent claims for the variation of /R in the absence of substantial super-Hubble entropy perturbations.

  5. Working Group Report: Dark Energy and CMB

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S.; Honscheid, K.; Abazajian, K.; Carlstrom, J.; Huterer, D.; Jain, B.; Kim, A.; Kirkby, D.; Lee, A.; Padmanabhan, N.; Rhodes, J.; Weinberg, D.

    2013-09-20

    The American Physical Society's Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the community's long term aspirations. The sub-group "Dark Energy and CMB" prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv.

  6. CMB statistical anisotropy from noncommutative gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Maresuke; Ricciardone, Angelo [Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Mota, David F. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Arroja, Frederico, E-mail: maresuke.shiraishi@pd.infn.it, E-mail: d.f.mota@astro.uio.no, E-mail: angelo.ricciardone@pd.infn.it, E-mail: arroja@pd.infn.it [INFN, Sezione di Padova, via Marzolo 8, I-35131, Padova (Italy)

    2014-07-01

    Primordial statistical anisotropy is a key indicator to investigate early Universe models and has been probed by the cosmic microwave background (CMB) anisotropies. In this paper, we examine tensor-mode CMB fluctuations generated from anisotropic gravitational waves, parametrised by P{sub h}(k) = P{sub h}{sup (0)}(k) [ 1 + ∑{sub LM} f{sub L}(k) g{sub LM} Y{sub LM} ( k-circumflex )], where P{sub h}{sup (0)}(k) is the usual scale-invariant power spectrum. Such anisotropic tensor fluctuations may arise from an inflationary model with noncommutativity of fields. It is verified that in this model, an isotropic component and a quadrupole asymmetry with f{sub 0}(k) = f{sub 2}(k) ∝ k{sup -2} are created and hence highly red-tilted off-diagonal components arise in the CMB power spectra, namely ℓ{sub 2} = ℓ{sub 1} ± 2 in TT, TE, EE and BB, and ℓ{sub 2} = ℓ{sub 1} ± 1 in TB and EB. We find that B-mode polarisation is more sensitive to such signals than temperature and E-mode polarisation due to the smallness of large-scale cosmic variance and we can potentially measure g{sub 00} = 30 and g{sub 2M} = 58 at 68% CL in a cosmic-variance-limited experiment. Such a level of signal may be measured in a PRISM like experiment, while the instrumental noise contaminates it in the Planck experiment. These results imply that it is impossible to measure the noncommutative parameter if it is small enough for the perturbative treatment to be valid. Our formalism and methodology for dealing with the CMB tensor statistical anisotropy are general and straightforwardly applicable to other early Universe models.

  7. Multiverse effects on the CMB angular correlation function in the framework of NCG

    Science.gov (United States)

    Arabzadeh, Sahar; Kaviani, Kamran

    Following many theories that predict the existence of the multiverse and by conjecture that our space-time may have a generalized geometrical structure at the fundamental level, we are interested in using a non-commutative geometry (NCG) formalism to study a suggested two-layer space that contains our 4-dimensional (4D) universe and a re-derived photon propagator. It can be shown that the photon propagator and a cosmic microwave background (CMB) angular correlation function are comparable, and if there exists such a multiverse system, the distance between the two layers can be estimated to be within the observable universe’s radius. Furthermore, this study revealed that our results are not limited to CMB but can be applied to many other types of radiation, such as X-rays.

  8. THE EVOLUTION OF THE REST-FRAME V-BAND LUMINOSITY FUNCTION FROM z = 4: A CONSTANT FAINT-END SLOPE OVER THE LAST 12 Gyr OF COSMIC HISTORY

    International Nuclear Information System (INIS)

    Marchesini, Danilo; Stefanon, Mauro; Brammer, Gabriel B.; Whitaker, Katherine E.

    2012-01-01

    We present the rest-frame V-band luminosity function (LF) of galaxies at 0.4 ≤ z < 4.0, measured from a near-infrared selected sample constructed from the NMBS, the FIRES, the FIREWORKS, and the ultra-deep NICMOS and WFC3 observations in the HDFN, HUDF, and GOODS-CDFS, all having high-quality optical-to-mid-infrared data. This unique sample combines data from surveys with a large range of depths and areas in a self-consistent way, allowing us to (1) minimize the uncertainties due to cosmic variance; and (2) simultaneously constrain the bright and faint ends with unprecedented accuracy over the targeted redshift range, probing the LF down to 0.1L* at z ∼ 3.9. We find that (1) the faint end is fairly flat and with a constant slope from z = 4, with α = –1.27 ± 0.05; (2) the characteristic magnitude has dimmed by 1.3 mag from z ∼ 3.7 to z = 0.1; (3) the characteristic density has increased by a factor of ∼8 from z ∼ 3.7 to z = 0.1, with 50% of this increase from z ∼ 4 to z ∼ 1.8; and (4) the luminosity density peaks at z ≈ 1-1.5, increasing by a factor of ∼4 from z = 4.0 to z ≈ 1-1.5, and subsequently decreasing by a factor of ∼1.5 by z = 0.1. We find no evidence for a steepening of the faint-end slope with redshift out to z = 4, in contrast with previous observational claims and theoretical predictions. The constant faint-end slope suggests that the efficiency of stellar feedback may evolve with redshift. Alternative interpretations are discussed, such as different masses of the halos hosting faint galaxies at low and high redshifts and/or environmental effects.

  9. Pre-Inflationary Relics in the CMB?

    CERN Document Server

    Gruppuso, A.; Mandolesi, N.; Natoli, P.; Sagnotti, A.

    String Theory and Supergravity allow, in principle, to follow the transition of the inflaton from pre-inflationary fast roll to slow roll. This introduces an infrared depression in the primordial power spectrum that might have left an imprint in the CMB anisotropy, if it occurred at accessible wavelengths. We model the effect extending $\\Lambda$CDM with a scale $\\Delta$ related to the infrared depression and explore the constraints allowed by {\\sc Planck} data, employing also more conservative, wider Galactic masks in the low resolution CMB likelihood. In an extended mask with $f_{sky}=39\\%$, we thus find $\\Delta = (0.351 \\pm 0.114) \\times 10^{-3} \\, \\mbox{Mpc}^{-1}$, at $99.4\\%$ confidence level, to be compared with a nearby value at $88.5\\%$ with the standard $f_{sky}=94\\%$ mask. With about 64 $e$--folds of inflation, these values for $\\Delta$ would translate into primordial energy scales ${\\cal O}(10^{14})$ GeV.

  10. Probing CPT violation with CMB polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xia Junqing, E-mail: xia@sissa.i [Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, I-34014 Trieste (Italy); Li Hong; Zhang Xinmin [Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China)

    2010-04-12

    The electrodynamics modified by the Chern-Simons term L{sub cs}approxp{sub m}uA{sub n}uF-tilde{sup m}u{sup n}u with a non-vanishing p{sub m}u violates the Charge-Parity-Time Reversal symmetry (CPT) and rotates the linear polarizations of the propagating Cosmic Microwave Background (CMB) photons. In this Letter we measure the rotation angle DELTAalpha by performing a global analysis on the current CMB polarization measurements from the five-year Wilkinson Microwave Anisotropy Probe (WMAP5), BOOMERanG 2003 (B03), BICEP and QUaD using a Markov Chain Monte Carlo method. Neglecting the systematic errors of these experiments, we find that the results from WMAP5, B03 and BICEP all are consistent and their combination gives DELTAalpha=-2.62+-0.87deg (68% C.L.), indicating a 3sigma detection of the CPT violation. The QUaD data alone gives DELTAalpha=0.59+-0.42deg (68% C.L.) which has an opposite sign for the central value and smaller error bar compared to that obtained from WMAP5, B03 and BICEP. When combining all the polarization data together, we find DELTAalpha=0.09+-0.36deg (68% C.L.) which significantly improves the previous constraint on DELTAalpha and test the validity of the fundamental CPT symmetry at a higher level.

  11. Punctuated inflation and the low CMB multipoles

    International Nuclear Information System (INIS)

    Jain, Rajeev Kumar; Sriramkumar, L.; Chingangbam, Pravabati; Gong, Jinn-Ouk; Souradeep, Tarun

    2009-01-01

    We investigate inflationary scenarios driven by a class of potentials which are similar in form to those that arise in certain minimal supersymmetric extensions of the standard model. We find that these potentials allow a brief period of departure from inflation sandwiched between two stages of slow roll inflation. We show that such a background behavior leads to a step like feature in the scalar power spectrum. We set the scales such that the drop in the power spectrum occurs at a length scale that corresponds to the Hubble radius today — a feature that seems necessary to explain the lower power observed in the quadrupole moment of the Cosmic Microwave Background (CMB) anisotropies. We perform a Markov Chain Monte Carlo analysis to determine the values of the model parameters that provide the best fit to the recent WMAP 5-year data for the CMB angular power spectrum. We find that an inflationary spectrum with a suppression of power at large scales that we obtain leads to a much better fit (with just one extra parameter, χ eff 2 improves by 6.62) of the observed data when compared to the best fit reference ΛCDM model with a featureless, power law, primordial spectrum

  12. Gravitational lensing of the CMB: A Feynman diagram approach

    Directory of Open Access Journals (Sweden)

    Elizabeth E. Jenkins

    2014-09-01

    Full Text Available We develop a Feynman diagram approach to calculating correlations of the Cosmic Microwave Background (CMB in the presence of distortions. As one application, we focus on CMB distortions due to gravitational lensing by Large Scale Structure (LSS. We study the Hu–Okamoto quadratic estimator for extracting lensing from the CMB and derive the noise of the estimator up to O(ϕ4 in the lensing potential ϕ. By identifying the diagrams responsible for the previously noted large O(ϕ4 term, we conclude that the lensing expansion does not break down. The convergence can be significantly improved by a reorganization of the ϕ expansion. Our approach makes it simple to obtain expressions for quadratic estimators based on any CMB channel, including many previously unexplored cases. We briefly discuss other applications to cosmology of this diagrammatic approach, such as distortions of the CMB due to patchy reionization, or due to Faraday rotation from primordial axion fields.

  13. Halo Pressure Profile through the Skew Cross-power Spectrum of the Sunyaev–Zel’dovich Effect and CMB Lensing in Planck

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Nicholas; Cooray, Asantha; Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Keating, Brian [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States)

    2017-11-01

    We measure the cosmic microwave background (CMB) skewness power spectrum in Planck , using frequency maps of the HFI instrument and the Sunyaev–Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing–SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gas pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck .

  14. Quantum Gravity, Information Theory and the CMB

    Science.gov (United States)

    Kempf, Achim

    2018-04-01

    We review connections between the metric of spacetime and the quantum fluctuations of fields. We start with the finding that the spacetime metric can be expressed entirely in terms of the 2-point correlator of the fluctuations of quantum fields. We then discuss the open question whether the knowledge of only the spectra of the quantum fluctuations of fields also suffices to determine the spacetime metric. This question is of interest because spectra are geometric invariants and their quantization would, therefore, have the benefit of not requiring the modding out of diffeomorphisms. Further, we discuss the fact that spacetime at the Planck scale need not necessarily be either discrete or continuous. Instead, results from information theory show that spacetime may be simultaneously discrete and continuous in the same way that information can. Finally, we review the recent finding that a covariant natural ultraviolet cutoff at the Planck scale implies a signature in the cosmic microwave background (CMB) that may become observable.

  15. What will we learn from the CMB?

    International Nuclear Information System (INIS)

    Dodelson, S.

    1997-10-01

    Within the next decade, experiments measuring the anisotropies in the cosmic microwave background (CMB) will add greatly to our knowledge of the universe. There are dozens of experiments scheduled to take data over the next several years, capped by the satellite missions of NASA (MAP) and ESA (PLANCK). What will we learn from these experiments? I argue that the potential pay-off is immense: We are quite likely to determine cosmological parameters to unprecedented accuracy. This will provide key information about the theory of structure formation and even about the physics behind inflation. If the experiments succeed, can anything spoil this pay-off? I focus on three possible spoilers - foregrounds, reionization, and defect models - and argue that we have every reason to be optimistic

  16. Reionization history and CMB parameter estimation

    International Nuclear Information System (INIS)

    Dizgah, Azadeh Moradinezhad; Kinney, William H.; Gnedin, Nickolay Y.

    2013-01-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case

  17. Measuring the anisotropy in the CMB

    Science.gov (United States)

    Page, L. A.

    The CMB is perhaps the cleanest cosmological observable. Its angular spectrum may be both computed and measured to percent accuracy. The current data clearly show a rise in the angular spectrum to a peak of roughly Tl = (l(l + 1)Cl/2)1/2 80 K at l 200, and a fall at higher l. In particular, δTl at l = 400 is significantly less than at l = 200. This is shown through a combined analysis of data sets and by the TOCO data alone. For spatially flat models, a peak in the angular spectrum near l = 200 is indicated, whereas for Ω0 = 0.35 models one expects a peak near l = 400. The data clearly prefer the spatially flat models.

  18. Reionization history and CMB parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Dizgah, Azadeh Moradinezhad; Gnedin, Nickolay Y.; Kinney, William H.

    2013-05-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case.

  19. A note on the birefringence angle estimation in CMB data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gruppuso, A. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via P. Gobetti 101, I-40129 Bologna (Italy); Maggio, G. [INAF, Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, Trieste (Italy); Molinari, D.; Natoli, P., E-mail: gruppuso@iasbo.inaf.it, E-mail: maggio@oats.inaf.it, E-mail: molinari@iasfbo.inaf.it, E-mail: ntlpla@unife.it [Dipartimento di Fisica e Scienze della Terra and INFN, Università degli Studi di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy)

    2016-05-01

    Parity violating physics beyond the standard model of particle physics induces a rotation of the linear polarization of photons. This effect, also known as cosmological birefringence (CB), can be tested with the observations of the cosmic microwave background (CMB) anisotropies which are linearly polarized at the level of 5–10%. In particular CB produces non-null CMB cross correlations between temperature and B mode-polarization, and between E- and B-mode polarization. Here we study the properties of the so called D-estimators, often used to constrain such an effect. After deriving the framework of both frequentist and Bayesian analysis, we discuss the interplay between birefringence and weak-lensing, which, albeit parity conserving, modifies pre-existing TB and EB cross correlation.

  20. CMB probes on the correlated axion isocurvature perturbation

    International Nuclear Information System (INIS)

    Kadota, Kenji; Gong, Jinn-Ouk; Ichiki, Kiyotomo; Matsubara, Takahiko

    2015-01-01

    We explore the possible cosmological consequence of the gravitational coupling between the inflaton and axion-like fields. In view of the forthcoming cosmic microwave background (CMB) polarization and lensing data, we study the sensitivity of the CMB data on the cross-correlation between the curvature and axion isocurvature perturbations. Through a concrete example, we illustrate the explicit dependence of the scale dependent cross-correlation power spectrum on the axion parameters

  1. CMB-S4 Technology Book, First Edition

    Energy Technology Data Exchange (ETDEWEB)

    Abitbol, Maximilian H. [Columbia Univ., New York, NY (United States); et al.

    2017-06-08

    CMB-S4 is a proposed experiment to map the polarization of the Cosmic Microwave Background (CMB) to nearly the cosmic variance limit for the angular scales that are accessible from the ground. The science goals and capabilities of CMB-S4 in illuminating cosmic inflation, measuring the sum of neutrino masses, searching for relativistic relics in the early universe, characterizing dark energy and dark matter, and mapping the matter distribution in the universe have been described in the CMB-S4 Science Book. This Technology Book is a companion volume to the Science Book. The ambitious science goals of the proposed "Stage-IV" CMB-S4 will require a step forward in experimental capability from the current Stage-III experiments. To guide this process, the community summarized the current state of the technology and identify R&D efforts necessary to advance it for possible use in CMB-S4. The book focused on the technical challenges in four broad areas: Telescope Design; Receiver Optics; Focal-Plane Optical Coupling; and Focal-Plane Sensor and Readout.

  2. Preferred axis of CMB parity asymmetry in the masked maps

    International Nuclear Information System (INIS)

    Cheng, Cheng; Zhao, Wen; Huang, Qing-Guo; Santos, Larissa

    2016-01-01

    Both WMAP and Planck data show a significant odd-multipole preference in the large scales of the cosmic microwave background (CMB) temperature anisotropies. If this pattern originates from cosmological effects, then it can be considered a crucial clue for a violation in the cosmological principle. By defining various direction dependent statistics in the full-sky Planck 2015 maps (see, for instance, Naselsky et al. (2012); W. Zhao (2014)), we found that the CMB parity asymmetry has a preferred direction, which is independent of the choices of the statistics. In particular, this preferred axis is strongly aligned with those in the CMB quadrupole and octopole, as well as that in the CMB kinematic dipole, which hints to their non-cosmological origin. In realistic observations, the foreground residuals are inevitable, and should be properly masked out in order to avoid possible misinterpretation of the results. In this paper, we extend our previous analyses to the masked Planck 2015 data. By defining a similar direction dependent statistic in the masked map, we find a preferred direction of the CMB parity asymmetry, in which the axis also coincides with that found in the full-sky analysis. Therefore, our conclusions on the CMB parity violation and its directional properties are confirmed.

  3. Preferred axis of CMB parity asymmetry in the masked maps

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Cheng [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Zhao, Wen, E-mail: wzhao7@ustc.edu.cn [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Huang, Qing-Guo [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Santos, Larissa [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China)

    2016-06-10

    Both WMAP and Planck data show a significant odd-multipole preference in the large scales of the cosmic microwave background (CMB) temperature anisotropies. If this pattern originates from cosmological effects, then it can be considered a crucial clue for a violation in the cosmological principle. By defining various direction dependent statistics in the full-sky Planck 2015 maps (see, for instance, Naselsky et al. (2012); W. Zhao (2014)), we found that the CMB parity asymmetry has a preferred direction, which is independent of the choices of the statistics. In particular, this preferred axis is strongly aligned with those in the CMB quadrupole and octopole, as well as that in the CMB kinematic dipole, which hints to their non-cosmological origin. In realistic observations, the foreground residuals are inevitable, and should be properly masked out in order to avoid possible misinterpretation of the results. In this paper, we extend our previous analyses to the masked Planck 2015 data. By defining a similar direction dependent statistic in the masked map, we find a preferred direction of the CMB parity asymmetry, in which the axis also coincides with that found in the full-sky analysis. Therefore, our conclusions on the CMB parity violation and its directional properties are confirmed.

  4. Creation of the CMB spectrum: precise analytic solutions for the blackbody photosphere

    Energy Technology Data Exchange (ETDEWEB)

    Khatri, Rishi; Sunyaev, Rashid A., E-mail: khatri@mpa-garching.mpg.de, E-mail: sunyaev@mpa-Garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2012-06-01

    The blackbody spectrum of CMB was created in the blackbody photosphere at redshifts z∼>2 × 10{sup 6}. At these early times, the Universe was dense and hot enough that complete thermal equilibrium between baryonic matter (electrons and ions) and photons could be established on time scales much shorter than the age of the Universe. Any perturbation away from the blackbody spectrum was suppressed exponentially. New physics, for example annihilation and decay of dark matter, can add energy and photons to CMB at redshifts z∼>10{sup 5} and result in a Bose-Einstein spectrum with a non-zero chemical potential (μ). Precise evolution of the CMB spectrum around the critical redshift of z ≅ 2 × 10{sup 6} is required in order to calculate the μ-type spectral distortion and constrain the underlying new physics. Although numerical calculation of important processes involved (double Compton process, comptonization and bremsstrahlung) is not difficult with present day computers, analytic solutions are much faster and easier to calculate and provide valuable physical insights. We provide precise (better than 1%) analytic solutions for the decay of μ, created at an earlier epoch, including all three processes, double Compton, Compton scattering on thermal electrons and bremsstrahlung in the limit of small distortions. This is a significant improvement over the existing solutions with accuracy ∼ 10% or worse. We also give a census of important sources of energy injection into CMB in standard cosmology. In particular, calculations of distortions from electron-positron annihilation and primordial nucleosynthesis illustrate in a dramatic way the strength of the equilibrium restoring processes in the early Universe. Finally, we point out the triple degeneracy in standard cosmology, i.e., the μ and y distortions from adiabatic cooling of baryons and electrons, Silk damping and annihilation of thermally produced WIMP dark matter are of similar order of magnitude ( ∼ 10{sup

  5. The evens and odds of CMB anomalies

    Science.gov (United States)

    Gruppuso, A.; Kitazawa, N.; Lattanzi, M.; Mandolesi, N.; Natoli, P.; Sagnotti, A.

    2018-06-01

    The lack of power of large-angle CMB anisotropies is known to increase its statistical significance at higher Galactic latitudes, where a string-inspired pre-inflationary scale Δ can also be detected. Considering the Planck 2015 data, and relying largely on a Bayesian approach, we show that the effect is mostly driven by the even - ℓ harmonic multipoles with ℓ ≲ 20, which appear sizably suppressed in a way that is robust with respect to Galactic masking, along with the corresponding detections of Δ. On the other hand, the first odd - ℓ multipoles are only suppressed at high Galactic latitudes. We investigate this behavior in different sky masks, constraining Δ through even and odd multipoles, and we elaborate on possible implications. We include low- ℓ polarization data which, despite being noise-limited, help in attaining confidence levels of about 3 σ in the detection of Δ. We also show by direct forecasts that a future all-sky E-mode cosmic-variance-limited polarization survey may push the constraining power for Δ beyond 5 σ.

  6. CMB seen through random Swiss Cheese

    Energy Technology Data Exchange (ETDEWEB)

    Lavinto, Mikko; Räsänen, Syksy, E-mail: mikko.lavinto@helsinki.fi, E-mail: syksy.rasanen@iki.fi [Physics Department, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FIN-00014, University of Helsinki (Finland)

    2015-10-01

    We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius r{sub b}=50 h{sup −1} Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude below the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ D{sub A}/ D-bar {sub A}|∼< 10{sup −4}. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.

  7. Modeling CMB lensing cross correlations with CLEFT

    Energy Technology Data Exchange (ETDEWEB)

    Modi, Chirag; White, Martin [Department of Physics, University of California, Berkeley, CA 94720 (United States); Vlah, Zvonimir, E-mail: modichirag@berkeley.edu, E-mail: mwhite@berkeley.edu, E-mail: zvlah@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States)

    2017-08-01

    A new generation of surveys will soon map large fractions of sky to ever greater depths and their science goals can be enhanced by exploiting cross correlations between them. In this paper we study cross correlations between the lensing of the CMB and biased tracers of large-scale structure at high z . We motivate the need for more sophisticated bias models for modeling increasingly biased tracers at these redshifts and propose the use of perturbation theories, specifically Convolution Lagrangian Effective Field Theory (CLEFT). Since such signals reside at large scales and redshifts, they can be well described by perturbative approaches. We compare our model with the current approach of using scale independent bias coupled with fitting functions for non-linear matter power spectra, showing that the latter will not be sufficient for upcoming surveys. We illustrate our ideas by estimating σ{sub 8} from the auto- and cross-spectra of mock surveys, finding that CLEFT returns accurate and unbiased results at high z . We discuss uncertainties due to the redshift distribution of the tracers, and several avenues for future development.

  8. Primordial gravitational waves measurements and anisotropies of CMB polarization rotation

    Directory of Open Access Journals (Sweden)

    Si-Yu Li

    2015-12-01

    Full Text Available Searching for the signal of primordial gravitational waves in the B-modes (BB power spectrum is one of the key scientific aims of the cosmic microwave background (CMB polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [α(nˆ] which can be separated into a background isotropic part [α¯] and a small anisotropic part [Δα(nˆ]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the “self-calibration” method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including Δα(nˆ in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial

  9. Observing patchy reionization with future CMB polarization experiments

    Science.gov (United States)

    Roy, A.; Lapi, A.; Spergel, D.; Baccigalupi, C.

    2018-05-01

    We study the signal from patchy reionization in view of the future high accuracy polarization measurements of the Cosmic Microwave Background (CMB). We implement an extraction procedure of the patchy reionization signal analogous to CMB lensing. We evaluate the signal to noise ratio (SNR) for the future Stage IV (S4) CMB experiment. The signal has a broad peak centered on the degree angular scales, with a long tail at higher multipoles. The CMB S4 experiment can effectively constrain the properties of reionization by measuring the signal on degree scales. The signal amplitude depends on the properties of the structure determining the reionization morphology. We describe bubbles having radii distributed log-normally. The expected S/N is sensitive to the mean bubble radius: bar R=5 Mpc implies S/N ≈ 4, bar R=10 Mpc implies S/N ≈ 20. The spread of the radii distribution strongly affects the integrated SNR, that changes by a factor of 102 when σlnr goes from ln 2 to ln 3. Future CMB experiments will thus place important constraints on the physics of reionization.

  10. Cosmology from CMB Polarization with POLARBEAR and the Simons Array

    Science.gov (United States)

    Barron, Darcy; POLARBEAR Collaboration

    2018-01-01

    POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012, and the POLARBEAR team has published a series of results from its first season of observations, including the first measurement of a non-zero B-mode polarization angular power spectrum, measured at sub-degree scales where the dominant signal is gravitational lensing of the CMB. Recently, we released an improved measurement of the B-mode polarization power spectrum, improving our band-power uncertainties by a factor of two, by adding new data from our second observing season and re-analyzing the combined data set.To further improve on these measurements, POLARBEAR is expanding to include an additional two telescopes with multi-chroic receivers observing at 95, 150, 220, and 270 GHz, known as the Simons Array. With high sensitivity and large sky coverage, the Simons Array will create a detailed survey of B-mode polarization, and its spectral information will be used to extract the CMB signal from astrophysical foregrounds. We will present the latest POLARBEAR results, as well as the status of development of the Simons Array and its expected capabilities.

  11. Constraining dark photon model with dark matter from CMB spectral distortions

    Directory of Open Access Journals (Sweden)

    Ki-Young Choi

    2017-08-01

    Full Text Available Many extensions of Standard Model (SM include a dark sector which can interact with the SM sector via a light mediator. We explore the possibilities to probe such a dark sector by studying the distortion of the CMB spectrum from the blackbody shape due to the elastic scatterings between the dark matter and baryons through a hidden light mediator. We in particular focus on the model where the dark sector gauge boson kinetically mixes with the SM and present the future experimental prospect for a PIXIE-like experiment along with its comparison to the existing bounds from complementary terrestrial experiments.

  12. Late time CMB anisotropies constrain mini-charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, C.; Redondo, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jaeckel, J. [Univ. of Durham, Inst. for Particle Physics Phenomenology (United Kingdom)

    2009-09-15

    Observations of the temperature anisotropies induced as light from the CMB passes through large scale structures in the late universe are a sensitive probe of the interactions of photons in such environments. In extensions of the Standard Model which give rise to mini-charged particles, photons propagating through transverse magnetic fields can be lost to pair production of such particles. Such a decrement in the photon flux would occur as photons from the CMB traverse the magnetic fields of galaxy clusters. Therefore late time CMB anisotropies can be used to constrain the properties of mini- charged particles. We outline how this test is constructed, and present new constraints on mini-charged particles from observations of the Sunyaev-Zel'dovich effect in the Coma cluster. (orig.)

  13. CMBPol Mission Concept Study: Probing Inflation with CMB Polarization

    CERN Document Server

    Baumann, Daniel; Adshead, Peter; Amblard, Alexandre; Ashoorioon, Amjad; Bartolo, Nicola; Bean, Rachel; Beltran, Maria; de Bernardis, Francesco; Bird, Simeon; Chen, Xingang; Chung, Daniel Jun Hun; Colombo, Loris; Cooray, Asantha R.; Creminelli, Paolo; Dodelson, Scott; Dunkley, Joanna; Dvorkin, Cora; Easther, Richard; Finelli, Fabio; Flauger, Raphael; Hertzberg, Mark P.; Jones-Smith, Katherine; Kachru, Shamit; Kadota, Kenji; Khoury, Justin; Kinney, William H.; Komatsu, Eiichiro; Krauss, Lawrence M.; Lesgourgues, Julien; Liddle, Andrew R.; Liguori, Michele; Lim, Eugene A.; Linde, Andrei D.; Matarrese, Sabino; Mathur, Harsh; McAllister, Liam; Melchiorri, Alessandro; Nicolis, Alberto; Pagano, Luca; Peiris, Hiranya V.; Peloso, Marco; Pogosian, Levon; Pierpaoli, Elena; Riotto, Antonio; Seljak, Uros; Senatore, Leonardo; Shandera, Sarah E.; Silverstein, Eva; Smith, Tristan; Vaudrevange, Pascal M.; Verde, Licia; Wandelt, Ben; Wands, David; Watson, Scott; Wyman, Mark; Yadav, Amit; Valkenburg, Wessel; Zaldarriaga, Matias

    2009-01-01

    We summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.

  14. TESTING CPT SYMMETRY WITH CURRENT AND FUTURE CMB MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Si-Yu; Zhang, Xinmin [Theory Division, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Xia, Jun-Qing; Li, Hong [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-3, Beijing 100049 (China); Li, Mingzhe, E-mail: xiajq@ihep.ac.cn [Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-02-01

    In this paper, we use the current and future cosmic microwave background (CMB) experiments to test the Charge-Parity-Time Reversal (CPT) symmetry. We consider a CPT-violating interaction in the photon sector L{sub cs}∼p{sub μ}A{sub ν} F-tilde {sup μν}, which gives rise to a rotation of the polarization vectors of the propagating CMB photons. By combining the 9 yr WMAP, BOOMERanG 2003, and BICEP1 observations, we obtain the current constraint on the isotropic rotation angle α-bar =−2.12±1.14 (1σ), indicating that the significance of the CPT violation is about 2σ. Here, we particularly take the systematic errors of CMB measurements into account. Then, we study the effects of the anisotropies of the rotation angle [Δα( n-hat )] on the CMB polarization power spectra in detail. Due to the small effects, the current CMB polarization data cannot constrain the related parameters very well. We obtain the 95% C.L. upper limit of the variance of the anisotropies of the rotation angle C {sup α}(0) < 0.035 from all of the CMB data sets. More interestingly, including the anisotropies of rotation angle could lower the best-fit value of r and relax the tension on the constraints of r between BICEP2 and Planck. Finally, we investigate the capabilities of future Planck polarization measurements on α-bar and Δα( n-hat ). Benefited from the high precision of Planck data, the constraints of the rotation angle can be significantly improved.

  15. The Kolmogorov-Smirnov test for the CMB

    International Nuclear Information System (INIS)

    Frommert, Mona; Durrer, Ruth; Michaud, Jérôme

    2012-01-01

    We investigate the statistics of the cosmic microwave background using the Kolmogorov-Smirnov test. We show that, when we correctly de-correlate the data, the partition function of the Kolmogorov stochasticity parameter is compatible with the Kolmogorov distribution and, contrary to previous claims, the CMB data are compatible with Gaussian fluctuations with the correlation function given by standard ΛCDM. We then use the Kolmogorov-Smirnov test to derive upper bounds on residual point source power in the CMB, and indicate the promise of this statistics for further datasets, especially Planck, to search for deviations from Gaussianity and for detecting point sources and Galactic foregrounds

  16. Measuring the cosmological lepton asymmetry through the CMB anisotropy

    CERN Document Server

    Kinney, W H; Kinney, William H.; Riotto, Antonio

    1999-01-01

    A large lepton asymmetry in the Universe is still a viable possibility and leads to many interesting phenomena such as gauge symmetry nonrestoration at high temperature. We show that a large lepton asymmetry changes the predicted cosmic microwave background (CMB) anisotropy and that any degeneracy in the relic neutrino sea will be measured to a precision of 1% or better when the CMB anisotropy is measured at the accuracy expected to result from the planned satellite missions MAP and Planck. In fact, the current measurements already put an upper limit on the lepton asymmetry of the Universe which is stronger than the one coming from considerations of primordial nucleosynthesis and structure formation.

  17. How sensitive is the CMB to a single lens?

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, Ben; Fialkov, Anastasia; Itzhaki, Nissan, E-mail: ben.rathaus@gmail.com, E-mail: nitzhaki@post.tau.ac.il, E-mail: anastasia.fialkov@gmail.com [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2011-06-01

    We study the imprints of a single lens, that breaks statistical isotropy, on the CMB and calculate the signal to noise ratio (S/N) for its detection. We emphasize the role of non-Gaussianities induced by ΛCDM weak lensing in this calculation and show that typically the S/N is much smaller than expected. In particular we find that the hypothesis that a void (texture) is responsible for the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB.

  18. How sensitive is the CMB to a single lens?

    International Nuclear Information System (INIS)

    Rathaus, Ben; Fialkov, Anastasia; Itzhaki, Nissan

    2011-01-01

    We study the imprints of a single lens, that breaks statistical isotropy, on the CMB and calculate the signal to noise ratio (S/N) for its detection. We emphasize the role of non-Gaussianities induced by ΛCDM weak lensing in this calculation and show that typically the S/N is much smaller than expected. In particular we find that the hypothesis that a void (texture) is responsible for the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB

  19. Effects on the CMB from magnetic field dissipation before recombination

    Science.gov (United States)

    Kunze, Kerstin E.

    2017-09-01

    Magnetic fields present before decoupling are damped due to radiative viscosity. This energy injection affects the thermal and ionization history of the cosmic plasma. The implications for the CMB anisotropies and polarization are investigated for different parameter choices of a nonhelical stochastic magnetic field. Assuming a Gaussian smoothing scale determined by the magnetic damping wave number at recombination, it is found that magnetic fields with present-day strength less than 0.1 nG and negative magnetic spectral indices have a sizable effect on the CMB temperature anisotropies and polarization.

  20. Big bang nucleosynthesis, the CMB, and the origin of matter and space-time

    Science.gov (United States)

    Mathews, Grant J.; Gangopadhyay, Mayukh; Sasankan, Nishanth; Ichiki, Kiyotomo; Kajino, Toshitaka

    2018-04-01

    We summarize some applications of big bang nucleosythesis (BBN) and the cosmic microwave background (CMB) to constrain the first moments of the creation of matter in the universe. We review the basic elements of BBN and how it constraints physics of the radiation-dominated epoch. In particular, how the existence of higher dimensions impacts the cosmic expansion through the projection of curvature from the higher dimension in the "dark radiation" term. We summarize current constraints from BBN and the CMB on this brane-world dark radiation term. At the same time, the existence of extra dimensions during the earlier inflation impacts the tensor to scalar ratio and the running spectral index as measured in the CMB. We summarize how the constraints on inflation shift when embedded in higher dimensions. Finally, one expects that the universe was born out of a complicated multiverse landscape near the Planck time. In these moments the energy scale of superstrings was obtainable during the early moments of chaotic inflation. We summarize the quest for cosmological evidence of the birth of space-time out of the string theory landscape. We will explore the possibility that a superstring excitations may have made itself known via a coupling to the field of inflation. This may have left an imprint of "dips" in the power spectrum of temperature fluctuations in the cosmic microwave background. The identification of this particle as a superstring is possible because there may be evidence for different oscillator states of the same superstring that appear on different scales on the sky. It will be shown that from this imprint one can deduce the mass, number of oscillations, and coupling constant for the superstring. Although the evidence is marginal, this may constitute the first observation of a superstring in Nature.

  1. Symmetry and Antisymmetry of the CMB Anisotropy Pattern

    Directory of Open Access Journals (Sweden)

    Jaiseung Kim

    2012-01-01

    Full Text Available Given an arbitrary function, we may construct symmetric and antisymmetric functions under a certain operation. Since statistical isotropy and homogeneity of our Universe has been a fundamental assumption of modern cosmology, we do not expect any particular symmetry or antisymmetry in our Universe. Besides fundamental properties of our Universe, we may also figure our contamination and improve the quality of the CMB data products, by matching the unusual symmetries and antisymmetries of the CMB data with known contaminantions. If we let the operation to be a coordinate inversion, the symmetric and antisymmetric functions have even and odd-parity respectively. The investigation on the parity of the recent CMB data shows a large-scale odd-parity preference, which is very unlikely in the statistical isotropic and homogeneous Universe. We investigated the association of the WMAP systematics with the anomaly, but did not find a definite non-cosmological cause. Besides the parity anomaly, there is anomalous lack of large-scale correlation in CMB data. We show that the odd-parity preference at low multipoles is, in fact, phenomenologically identical with the lack of large-angle correlation.

  2. FSD: Frequency Space Differential measurement of CMB spectral distortions

    Science.gov (United States)

    Mukherjee, Suvodip; Silk, Joseph; Wandelt, Benjamin D.

    2018-04-01

    Although the Cosmic Microwave Background agrees with a perfect blackbody spectrum within the current experimental limits, it is expected to exhibit certain spectral distortions with known spectral properties. We propose a new method, Frequency Space Differential (FSD) to measure the spectral distortions in the CMB spectrum by using the inter-frequency differences of the brightness temperature. The difference between the observed CMB temperature at different frequencies must agree with the frequency derivative of the blackbody spectrum, in the absence of any distortion. However, in the presence of spectral distortions, the measured inter-frequency differences would also exhibit deviations from blackbody which can be modeled for known sources of spectral distortions like y & μ. Our technique uses FSD information for the CMB blackbody, y, μ or any other sources of spectral distortions to model the observed signal. Successful application of this method in future CMB missions can provide an alternative method to extract spectral distortion signals and can potentially make it feasible to measure spectral distortions without an internal blackbody calibrator.

  3. Planck 2013 results. XXIII. Isotropy and Statistics of the CMB

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the CMB anisotropy from the \\Planck\\ satellite. The detailed results are based on studies of four independent estimates...

  4. Adiabatic CMB perturbations in pre-big bang string cosmology

    DEFF Research Database (Denmark)

    Enqvist, Kari; Sloth, Martin Snoager

    2001-01-01

    We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations...

  5. Planck 2013 results. XV. CMB power spectra and likelihood

    DEFF Research Database (Denmark)

    Tauber, Jan; Bartlett, J.G.; Bucher, M.

    2014-01-01

    This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best...

  6. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    Science.gov (United States)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  7. Foreground removal from CMB temperature maps using an MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik; Jørgensen, H.E.

    2008-01-01

    the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over...... CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting...

  8. Detection of CMB lensing in Planck-HFI data

    International Nuclear Information System (INIS)

    Lavabre, Alexis

    2011-01-01

    The Planck satellite is the third generation experiment dedicated to the observation of the cosmic microwave background (CMB). The resolution and sensibility of its instruments allow for the first time the detection of the weak lensing effect on CMB. This thesis present a original detection method of this effect in the data of the HFI instrument of Planck.The first part give a general description of the standard model of cosmology et the physics of the CMB. The part then presents the details of the weak lensing effect, concentrating on its impact on the CMB observables. This part ends with a description of the Planck satellite and its instruments.The second part, describes the set of simulations and analysis tools that I have developed allowing me to make the first measurement of the weak lensing effect on CMB. It presents the original method that I used which is based on a patch analysis of the full sky data, that is able to only take into account the less contaminated regions. This part also present the characterisation of the lensing potential estimator for masked maps in the presence of inhomogeneous noise and introduce a method, based on Monte-Carlo simulations, that is used to correct for the bias produced by the analysis method.The last part, concentrates on the work on HFI data. The first chapter presents the application of the above method to the maps of the combined observations at 143 GHz and 217 GHz and the maps from component separation using GMCA algorithm. The results show a deflection power spectrum compatible with the one expect in a lambda CMB universe, calculated with the cosmological parameters estimated by WMAP including seven years of observations. Using the points, from the combined estimation from the 143 GHz and 217 GHz maps, for multipole smaller than 500, gives a 1.26 Chi2 by degree of freedom. Finally, the last chapter presents the compression algorithm used onboard to compression HFI data. It gives the details of the tuning and the

  9. CMB-S4 Science Book, First Edition

    Energy Technology Data Exchange (ETDEWEB)

    Abazajian, Kevork N. [Univ. of California, Irvine, CA (United States); et al.

    2016-10-09

    This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales.

  10. Effects on the CMB from compactification before inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kontou, Eleni-Alexandra [Physics Program, Bard College, 30 Campus Rd, Annandale-on-Hudson, NY 12504 (United States); Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Hertzberg, Mark P.; Masoumi, Ali, E-mail: elenikontou@cosmos.phy.tufts.edu, E-mail: josejuan.blanco@ehu.es, E-mail: mark.hertzberg@tufts.edu, E-mail: ali@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-04-01

    Many theories beyond the Standard Model include extra dimensions, though these have yet to be directly observed. In this work we consider the possibility of a compactification mechanism which both allows extra dimensions and is compatible with current observations. This compactification is predicted to leave a signature on the CMB by altering the amplitude of the low l multipoles, dependent on the amount of inflation. Recently discovered CMB anomalies at low multipoles may be evidence for this. In our model we assume the spacetime is the product of a four-dimensional spacetime and flat extra dimensions. Before the compactification, both the four-dimensional spacetime and the extra dimensions can either be expanding or contracting independently. Taking into account physical constraints, we explore the observational consequences and the plausibility of these different models.

  11. Planck 2015 results. XVI. Isotropy and statistics of the CMB

    CERN Document Server

    Ade, P.A.R.; Akrami, Y.; Aluri, P.K.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Casaponsa, B.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B.P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fantaye, Y.; Fergusson, J.; Fernandez-Cobos, R.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Liu, H.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Pant, N.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Rotti, A.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Souradeep, T.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zibin, J.P.; Zonca, A.

    2016-01-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The "Cold S...

  12. Planck 2013 results. XXIII. Isotropy and Statistics of the CMB

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, M.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J.D.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Pogosyan, D.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rath, C.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rotti, A.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Souradeep, T.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the cosmic microwave background (CMB) anisotropy from the Planck satellite. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask choice and frequency dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (about 3 sigma). However, we find little evidence for non-Gaussianity, with the exception of a few statistical signatures that seem to be associated with specific anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance of the CMB signal. A power asymmetry is now found to persist to scales corresponding to about l=600, and can be described in the low-l regime by a phenomenological dipole modulation model. However, any primordial powe...

  13. Does the small CMB quadrupole moment suggest new physics?

    CERN Document Server

    Cline, J M; Lesgourgues, Julien; Cline, James M.; Crotty, Patrick; Lesgourgues, Julien

    2003-01-01

    Motivated by WMAP's confirmation of an anomalously low value of the quadrupole moment of the CMB temperature fluctuations, we investigate the effects on the CMB of cutting off the primordial power spectrum P(k) at low wave numbers. This could arise, for example, from a break in the inflaton potential, a prior period of matter or radiation domination, or an oscillating scalar field which couples to the inflaton. We reanalyze the full WMAP parameter space supplemented by a low-k cutoff for P(k). The temperature correlations by themselves are better fit by a cutoff spectrum, but including the TE temperature-polarization spectrum reduces this preference to a 1.4 sigma effect. Inclusion of large scale structure data does not change the conclusion. If taken seriously, the low-k cutoff is correlated with optical depth so that reionization occurs even earlier than indicated by the WMAP analysis.

  14. SPIDER: CMB Polarimetry from the Edge of Space

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, R.; et al.

    2017-11-28

    SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. SPIDER's first longduration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled Transition Edge Sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the SPIDER instrument, with a particular focus on the measured performance of the detectors and instrument in a space-like loading and radiation environment. SPIDER's second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.

  15. CMB constraints on β-exponential inflationary models

    Science.gov (United States)

    Santos, M. A.; Benetti, M.; Alcaniz, J. S.; Brito, F. A.; Silva, R.

    2018-03-01

    We analyze a class of generalized inflationary models proposed in ref. [1], known as β-exponential inflation. We show that this kind of potential can arise in the context of brane cosmology, where the field describing the size of the extra-dimension is interpreted as the inflaton. We discuss the observational viability of this class of model in light of the latest Cosmic Microwave Background (CMB) data from the Planck Collaboration through a Bayesian analysis, and impose tight constraints on the model parameters. We find that the CMB data alone prefer weakly the minimal standard model (ΛCDM) over the β-exponential inflation. However, when current local measurements of the Hubble parameter, H0, are considered, the β-inflation model is moderately preferred over the ΛCDM cosmology, making the study of this class of inflationary models interesting in the context of the current H0 tension.

  16. Testing inflation and curvaton scenarios with CMB distortions

    International Nuclear Information System (INIS)

    Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi

    2014-01-01

    Prior to recombination, Silk damping causes the dissipation of energy from acoustic waves into the monopole of the Cosmic Microwave Background (CMB), resulting in spectral distortions. These can be used to probe the primordial scalar power spectrum on smaller scales than it is possible with CMB anisotropies. An enhancement of power on these scales is nevertheless required for the resulting distortions to be detectable by future experiments like PIXIE. In this paper, we examine all 49 single-field inflation models listed by Martin et al. in the Encyclopaedia Inflationaris [1] and find that only one of these may lead to a detectable level of distortions in a tuned region of its parameter space, namely the original hybrid model. Three effective multi-field scenarios are also studied: with softly and suddenly turning trajectories, and with a mild waterfall trajectory. Softly turning trajectories do not induce distortions at any detectable level, whereas a sudden turn in the field space or a mild waterfall trajectory predicts a peak (plus damped oscillations in the sudden turn case) in the scalar power spectrum, which can lead to an observable amount of CMB distortions. Finally, another scenario leading to potentially detectable distortions involves a curvaton whose blue spectrum is subdominant on CMB angular scales and overtakes the inflaton spectrum on smaller scales. In this case however, we show that the bounds from ultra compact minihaloes are not satisfied. Expectations for an ultimate PRISM-class experiment characterized by an improvement in sensitivity by a factor of ten are discussed for some models

  17. Testing inflation and curvaton scenarios with CMB distortions

    Science.gov (United States)

    Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi

    2014-10-01

    Prior to recombination, Silk damping causes the dissipation of energy from acoustic waves into the monopole of the Cosmic Microwave Background (CMB), resulting in spectral distortions. These can be used to probe the primordial scalar power spectrum on smaller scales than it is possible with CMB anisotropies. An enhancement of power on these scales is nevertheless required for the resulting distortions to be detectable by future experiments like PIXIE. In this paper, we examine all 49 single-field inflation models listed by Martin et al. in the Encyclopaedia Inflationaris [1] and find that only one of these may lead to a detectable level of distortions in a tuned region of its parameter space, namely the original hybrid model. Three effective multi-field scenarios are also studied: with softly and suddenly turning trajectories, and with a mild waterfall trajectory. Softly turning trajectories do not induce distortions at any detectable level, whereas a sudden turn in the field space or a mild waterfall trajectory predicts a peak (plus damped oscillations in the sudden turn case) in the scalar power spectrum, which can lead to an observable amount of CMB distortions. Finally, another scenario leading to potentially detectable distortions involves a curvaton whose blue spectrum is subdominant on CMB angular scales and overtakes the inflaton spectrum on smaller scales. In this case however, we show that the bounds from ultra compact minihaloes are not satisfied. Expectations for an ultimate PRISM-class experiment characterized by an improvement in sensitivity by a factor of ten are discussed for some models.

  18. Cosmological birefringence constraints from CMB and astrophysical polarization data

    Energy Technology Data Exchange (ETDEWEB)

    Galaverni, M. [Studio Teologico Interdiocesano, V.le Timavo 93, Reggio Emilia, 42121 Italy (Italy); Gubitosi, G. [Dipartimento di Fisica and sez. Roma1 INFN, Università di Roma ' La Sapienza' , P.le A. Moro 2, Rome, 00185 Italy (Italy); Paci, F. [SISSA, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste, 34136 Italy (Italy); Finelli, F., E-mail: matteo.galaverni@gmail.com, E-mail: giulia.gubitosi@imperial.ac.uk, E-mail: fpaci@sissa.it, E-mail: finelli@iasfbo.inaf.it [INAF-IASF Bologna, via Gobetti 101, Bologna, I-40129 Italy (Italy)

    2015-08-01

    Cosmological birefringence is a rotation of the polarization plane of photons coming from sources of astrophysical and cosmological origin. The rotation can also depend on the energy of the photons and not only on the distance of the source and on the cosmological evolution of the underlying theoretical model. In this work, we constrain few selected models for cosmological birefringence, combining CMB and astrophysical data at radio, optical, X and γ wavelengths, taking into account the specific energy and distance dependences.

  19. CMB-S4 and the hemispherical variance anomaly

    Science.gov (United States)

    O'Dwyer, Márcio; Copi, Craig J.; Knox, Lloyd; Starkman, Glenn D.

    2017-09-01

    Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the Northern and Southern Ecliptic hemispheres, with the Northern hemisphere displaying an anomalously low variance while the Southern hemisphere appears unremarkable [consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM)]. While this is a well-established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. This will change with a proposed ground-based CMB experiment, CMB-S4. With that in mind, we generate realizations of polarization maps constrained by the temperature data and predict the distribution of the hemispherical variance in polarization considering two different sky coverage scenarios possible in CMB-S4: full Ecliptic north coverage and just the portion of the North that can be observed from a ground-based telescope at the high Chilean Atacama plateau. We find that even in the set of realizations constrained by the temperature data, the low Northern hemisphere variance observed in temperature is not expected in polarization. Therefore, observing an anomalously low variance in polarization would make the hypothesis that the temperature anomaly is simply a statistical fluke more unlikely and thus increase the motivation for physical explanations. We show, within ΛCDM, how variance measurements in both sky coverage scenarios are related. We find that the variance makes for a good statistic in cases where the sky coverage is limited, however, full northern coverage is still preferable.

  20. Planck 2013 results. XV. CMB power spectra and likelihood

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Gaier, T.C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Laureijs, R.J.; Lawrence, C.R.; Le Jeune, M.; Leach, S.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Lindholm, V.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I.J.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We present the Planck likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations. We use this likelihood to derive the Planck CMB power spectrum over three decades in l, covering 2 = 50, we employ a correlated Gaussian likelihood approximation based on angular cross-spectra derived from the 100, 143 and 217 GHz channels. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals of a few uK^2 at l <= 1000. We compare our results with foreground-cleaned CMB maps, and with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. The best-fit LCDM cosmology is in excellent agreement with preliminary Planck polarisation spectra. The standard LCDM cosmology is well constrained b...

  1. Novel calibration system with sparse wires for CMB polarization receivers

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, O.; /KEK, Tsukuba /Chicago U., KICP; Nguyen, H.; /Fermilab; Bischoff, C.; /Chicago U., KICP /Harvard-Smithsonian Ctr. Astrophys.; Brizius, A.; Buder, I.; Kusaka, A. /Chicago U., KICP

    2011-07-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature ({approx}10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  2. Planck-scale sensitivity of CMB polarization data

    Energy Technology Data Exchange (ETDEWEB)

    Gubitosi, Giulia; Pagano, Luca [Physics Department, University of Rome ' La Sapienza' , and Sezione Roma1 INFN P.le Aldo Moro 2, 00185 Rome (Italy)

    2009-10-15

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by xi, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate xiapprox =-0.097+-0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to xi achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-sigma confidence of 8.5x10{sup -4} (PLANCK), 6.1x10{sup -3} (Spider), and 1.0x10{sup -5} (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1x10{sup -6}.

  3. Planck-scale sensitivity of CMB polarization data

    International Nuclear Information System (INIS)

    Gubitosi, Giulia; Pagano, Luca

    2009-01-01

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ξ, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ξ≅-0.097±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ξ achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ confidence of 8.5x10 -4 (PLANCK), 6.1x10 -3 (Spider), and 1.0x10 -5 (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1x10 -6 .

  4. Constraining dark sector perturbations I: cosmic shear and CMB lensing

    International Nuclear Information System (INIS)

    Battye, Richard A.; Moss, Adam; Pearson, Jonathan A.

    2015-01-01

    We present current and future constraints on equations of state for dark sector perturbations. The equations of state considered are those corresponding to a generalized scalar field model and time-diffeomorphism invariant L(g) theories that are equivalent to models of a relativistic elastic medium and also Lorentz violating massive gravity. We develop a theoretical understanding of the observable impact of these models. In order to constrain these models we use CMB temperature data from Planck, BAO measurements, CMB lensing data from Planck and the South Pole Telescope, and weak galaxy lensing data from CFHTLenS. We find non-trivial exclusions on the range of parameters, although the data remains compatible with w=−1. We gauge how future experiments will help to constrain the parameters. This is done via a likelihood analysis for CMB experiments such as CoRE and PRISM, and tomographic galaxy weak lensing surveys, focussing in on the potential discriminatory power of Euclid on mildly non-linear scales

  5. Constraining dark sector perturbations I: cosmic shear and CMB lensing

    Science.gov (United States)

    Battye, Richard A.; Moss, Adam; Pearson, Jonathan A.

    2015-04-01

    We present current and future constraints on equations of state for dark sector perturbations. The equations of state considered are those corresponding to a generalized scalar field model and time-diffeomorphism invariant Script L(g) theories that are equivalent to models of a relativistic elastic medium and also Lorentz violating massive gravity. We develop a theoretical understanding of the observable impact of these models. In order to constrain these models we use CMB temperature data from Planck, BAO measurements, CMB lensing data from Planck and the South Pole Telescope, and weak galaxy lensing data from CFHTLenS. We find non-trivial exclusions on the range of parameters, although the data remains compatible with w=-1. We gauge how future experiments will help to constrain the parameters. This is done via a likelihood analysis for CMB experiments such as CoRE and PRISM, and tomographic galaxy weak lensing surveys, focussing in on the potential discriminatory power of Euclid on mildly non-linear scales.

  6. Novel calibration system with sparse wires for CMB polarization receivers

    International Nuclear Information System (INIS)

    Tajima, O.; Nguyen, H.; Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.

    2011-01-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature (∼10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  7. Exploring cosmic origins with CORE: Gravitational lensing of the CMB

    Science.gov (United States)

    Challinor, A.; Allison, R.; Carron, J.; Errard, J.; Feeney, S.; Kitching, T.; Lesgourgues, J.; Lewis, A.; Zubeldía, Í.; Achucarro, A.; Ade, P.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Baumann, D.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, G.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; d'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; De Zotti, G.; Delabrouille, J.; Di Valentino, E.; Diego, J.-M.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hervías-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Liguori, M.; Lindholm, V.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Martinez-González, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rubino-Martin, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    Lensing of the cosmic microwave background (CMB) is now a well-developed probe of the clustering of the large-scale mass distribution over a broad range of redshifts. By exploiting the non-Gaussian imprints of lensing in the polarization of the CMB, the CORE mission will allow production of a clean map of the lensing deflections over nearly the full-sky. The number of high-S/N modes in this map will exceed current CMB lensing maps by a factor of 40, and the measurement will be sample-variance limited on all scales where linear theory is valid. Here, we summarise this mission product and discuss the science that will follow from its power spectrum and the cross-correlation with other clustering data. For example, the summed mass of neutrinos will be determined to an accuracy of 17 meV combining CORE lensing and CMB two-point information with contemporaneous measurements of the baryon acoustic oscillation feature in the clustering of galaxies, three times smaller than the minimum total mass allowed by neutrino oscillation measurements. Lensing has applications across many other science goals of CORE, including the search for B-mode polarization from primordial gravitational waves. Here, lens-induced B-modes will dominate over instrument noise, limiting constraints on the power spectrum amplitude of primordial gravitational waves. With lensing reconstructed by CORE, one can "delens" the observed polarization internally, reducing the lensing B-mode power by 60 %. This can be improved to 70 % by combining lensing and measurements of the cosmic infrared background from CORE, leading to an improvement of a factor of 2.5 in the error on the amplitude of primordial gravitational waves compared to no delensing (in the null hypothesis of no primordial B-modes). Lensing measurements from CORE will allow calibration of the halo masses of the tens of thousands of galaxy clusters that it will find, with constraints dominated by the clean polarization-based estimators. The 19

  8. Spider: Probing the Early Universe with a Large-Scale CMB Polarization Survey

    Science.gov (United States)

    Jones, William

    The standard dark-matter and dark-energy dominated cosmological model (LCDM) has proven to be remarkably successful in describing the current state and past evolution of the Universe. However, there remain significant uncertainties regarding the physical mechanisms that established the initial conditions upon which the LCDM predictions rely. Theories of cosmic genesis - the extremely high energy mechanisms that established these conditions - should be expected to provide a natural description of the nearly flat geometry of the Universe, the existence of super-horizon density correlations, and the adiabatic, Gaussian and nearly scale-invariant nature of the observed primordial density perturbations. The primary objective of Spider is to subject models of the early Universe to observational test, probing fundamental physics at energy scales far beyond the reach of terrestrial particle accelerators. The main scientific result will be to characterize, or place stringent upper limits on the level of the odd-parity polarization of the CMB. In the context of the inflationary paradigm, Spider will confirm or exclude the predictions of the simplest single-field inflationary models near the Lyth bound, characterized by tensor to scalar ratios r 0.03. While viable alternatives to the inflationary paradigm are an active and important area of investigation, including string cosmologies and cyclic models, early Universe models described by inflationary periods are now widely accepted as the underlying cause behind much of what we observe in cosmology today. Nevertheless, we know very little about the mechanism that would drive inflation or the energy scale at which it occurred, and the paradigm faces significant questions about the viability of the framework as a scientific theory. Fortunately, inflationary paradigms and alternative theories offer distinct predictions regarding the statistical properties of the Cosmic Microwave Background radiation. Spider will use measurements

  9. Rest frames and relativistic effects on de Sitter spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Cotaescu, Ion I. [West University of Timisoara, Timisoara (Romania)

    2017-07-15

    It is shown that the Nachtmann boosting method of introducing coordinates on de Sitter manifolds can be completed with suitable gauge transformations able to keep under control the transformation under isometries of the conserved quantities. With this method, the rest local charts (or natural frames) are defined pointing out the role of the conserved quantities in investigating the relative geodesic motion. The advantages of this approach can be seen from the applications presented here. For the first time, the simple kinematic effects, the electromagnetic field of a free falling charge and the binary fission are solved in terms of conserved quantities on the expanding portion of the de Sitter spacetime. (orig.)

  10. Detectability of the 21-cm CMB cross-correlation from the epoch of reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem; Jelic, Vibor

    The 21-cm line fluctuations and the cosmic microwave background (CMB) are powerful probes of the epoch of reionization of the Universe. We study the potential of the cross-correlation between 21-cm line fluctuations and CMB anisotropy to obtain further constraints on the reionization history. We

  11. Galileon gravity in light of ISW, CMB, BAO and H {sub 0} data

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Janina [The Oskar Klein Centre for Cosmoparticle Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Zumalacárregui, Miguel [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Montanari, Francesco [Physics Department, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, 00014, University of Helsinki (Finland); Barreira, Alexandre, E-mail: janina.renk@fysik.su.se, E-mail: miguelzuma@berkeley.edu, E-mail: francesco.montanari@helsinki.fi, E-mail: barreira@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-10-01

    Cosmological models with Galileon gravity are an alternative to the standard ΛCDM paradigm with testable predictions at the level of its self-accelerating solutions for the expansion history, as well as large-scale structure formation. Here, we place constraints on the full parameter space of these models using data from the cosmic microwave background (CMB) (including lensing), baryonic acoustic oscillations (BAO) and the Integrated Sachs-Wolfe (ISW) effect. We pay special attention to the ISW effect for which we use the cross-spectra, C {sub ℓ}{sup Tg}, of CMB temperature maps and foreground galaxies from the WISE survey. The sign of C {sub ℓ}{sup Tg} is set by the time evolution of the lensing potential in the redshift range of the galaxy sample: it is positive if the potential decays (like in ΛCDM), negative if it deepens. We constrain three subsets of Galileon gravity separately known as the Cubic, Quartic and Quintic Galileons. The cubic Galileon model predicts a negative C {sub ℓ}{sup Tg} and exhibits a 7.8σ tension with the data, which effectively rules it out. For the quartic and quintic models the ISW data also rule out a significant portion of the parameter space but permit regions where the goodness-of-fit is comparable to ΛCDM. The data prefers a non zero sum of the neutrino masses (∑ m {sub ν} ≈ 0.5eV) with ∼ 5σ significance in these models. The best-fitting models have values of H {sub 0} consistent with local determinations, thereby avoiding the tension that exists in ΛCDM. We also identify and discuss a ∼ 2σ tension that Galileon gravity exhibits with recent BAO measurements. Our analysis shows overall that Galileon cosmologies cannot be ruled out by current data but future lensing, BAO and ISW data hold strong potential to do so.

  12. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Errard, J.; Borrill, J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff CF10 3XQ (United Kingdom); Akiba, Y.; Chinone, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T. [Department of Physics, University of California, San Diego, CA 92093-0424 (United States); Baccigalupi, C.; Fabbian, G. [International School for Advanced Studies (SISSA), Trieste I-34014 (Italy); Boettger, D. [Department of Astronomy, Pontifica Universidad Catolica de Chile (Chile); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Cukierman, A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Delabrouille, J. [AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité (France); Dobbs, M.; Gilbert, A. [Physics Department, McGill University, Montreal, QC H3A 0G4 (Canada); Ducout, A.; Feeney, S. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Feng, C. [Department of Physics and Astronomy, University of California, Irvine (United States); and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  13. Inflation in the closed FLRW model and the CMB

    Energy Technology Data Exchange (ETDEWEB)

    Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu [Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-10-01

    Recent cosmic microwave background (CMB) observations put strong constraints on the spatial curvature via estimation of the parameter Ω{sub k} assuming an almost scale invariant primordial power spectrum. We study the evolution of the background geometry and gauge-invariant scalar perturbations in an inflationary closed FLRW model and calculate the primordial power spectrum. We find that the inflationary dynamics is modified due to the presence of spatial curvature, leading to corrections to the nearly scale invariant power spectrum at the end of inflation. When evolved to the surface of last scattering, the resulting temperature anisotropy spectrum ( C {sup TT}{sub ℓ}) shows deficit of power at low multipoles (ℓ < 20). By comparing our results with the recent Planck data we discuss the role of spatial curvature in accounting for CMB anomalies and in the estimation of the parameter Ω{sub k}. Since the curvature effects are limited to low multipoles, the Planck estimation of cosmological parameters remains robust under inclusion of positive spatial curvature.

  14. An estimator for statistical anisotropy from the CMB bispectrum

    International Nuclear Information System (INIS)

    Bartolo, N.; Dimastrogiovanni, E.; Matarrese, S.; Liguori, M.; Riotto, A.

    2012-01-01

    Various data analyses of the Cosmic Microwave Background (CMB) provide observational hints of statistical isotropy breaking. Some of these features can be studied within the framework of primordial vector fields in inflationary theories which generally display some level of statistical anisotropy both in the power spectrum and in higher-order correlation functions. Motivated by these observations and the recent theoretical developments in the study of primordial vector fields, we develop the formalism necessary to extract statistical anisotropy information from the three-point function of the CMB temperature anisotropy. We employ a simplified vector field model and parametrize the bispectrum of curvature fluctuations in such a way that all the information about statistical anisotropy is encoded in some parameters λ LM (which measure the anisotropic to the isotropic bispectrum amplitudes). For such a template bispectrum, we compute an optimal estimator for λ LM and the expected signal-to-noise ratio. We estimate that, for f NL ≅ 30, an experiment like Planck can be sensitive to a ratio of the anisotropic to the isotropic amplitudes of the bispectrum as small as 10%. Our results are complementary to the information coming from a power spectrum analysis and particularly relevant for those models where statistical anisotropy turns out to be suppressed in the power spectrum but not negligible in the bispectrum

  15. Testing physical models for dipolar asymmetry with CMB polarization

    Science.gov (United States)

    Contreras, D.; Zibin, J. P.; Scott, D.; Banday, A. J.; Górski, K. M.

    2017-12-01

    The cosmic microwave background (CMB) temperature anisotropies exhibit a large-scale dipolar power asymmetry. To determine whether this is due to a real, physical modulation or is simply a large statistical fluctuation requires the measurement of new modes. Here we forecast how well CMB polarization data from Planck and future experiments will be able to confirm or constrain physical models for modulation. Fitting several such models to the Planck temperature data allows us to provide predictions for polarization asymmetry. While for some models and parameters Planck polarization will decrease error bars on the modulation amplitude by only a small percentage, we show, importantly, that cosmic-variance-limited (and in some cases even Planck) polarization data can decrease the errors by considerably better than the expectation of √{2 } based on simple ℓ-space arguments. We project that if the primordial fluctuations are truly modulated (with parameters as indicated by Planck temperature data) then Planck will be able to make a 2 σ detection of the modulation model with 20%-75% probability, increasing to 45%-99% when cosmic-variance-limited polarization is considered. We stress that these results are quite model dependent. Cosmic variance in temperature is important: combining statistically isotropic polarization with temperature data will spuriously increase the significance of the temperature signal with 30% probability for Planck.

  16. Hidden in the background: a local approach to CMB anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, Juan C. Bueno, E-mail: juan.c.bueno@correounivalle.edu.co [Centro de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Cra 3 Este # 47A-15, Bogotá D.C. 110231 (Colombia)

    2016-09-01

    We investigate a framework aiming to provide a common origin for the large-angle anomalies detected in the Cosmic Microwave Background (CMB), which are hypothesized as the result of the statistical inhomogeneity developed by different isocurvature fields of mass m ∼ H present during inflation. The inhomogeneity arises as the combined effect of ( i ) the initial conditions for isocurvature fields (obtained after a fast-roll stage finishing many e -foldings before cosmological scales exit the horizon), ( ii ) their inflationary fluctuations and ( iii ) their coupling to other degrees of freedom. Our case of interest is when these fields (interpreted as the precursors of large-angle anomalies) leave an observable imprint only in isolated patches of the Universe. When the latter intersect the last scattering surface, such imprints arise in the CMB. Nevertheless, due to their statistically inhomogeneous nature, these imprints are difficult to detect, for they become hidden in the background similarly to the Cold Spot. We then compute the probability that a single isocurvature field becomes inhomogeneous at the end of inflation and find that, if the appropriate conditions are given (which depend exclusively on the preexisting fast-roll stage), this probability is at the percent level. Finally, we discuss several mechanisms (including the curvaton and the inhomogeneous reheating) to investigate whether an initial statistically inhomogeneous isocurvature field fluctuation might give rise to some of the observed anomalies. In particular, we focus on the Cold Spot, the power deficit at low multipoles and the breaking of statistical isotropy.

  17. Conformal Invariance, Dark Energy, and CMB Non-Gaussianity

    CERN Document Server

    Antoniadis, Ignatios; Mottola, Emil

    2012-01-01

    We show that in addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial R^3 sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the S^2 horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the sym...

  18. Internal delensing of Planck CMB temperature and polarization

    Energy Technology Data Exchange (ETDEWEB)

    Carron, Julien [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Lewis, Antony; Challinor, Anthony, E-mail: j.carron@sussex.ac.uk, E-mail: Antony.Lewis@sussex.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-05-01

    We present a first internal delensing of CMB maps, both in temperature and polarization, using the public foreground-cleaned (SMICA) Planck 2015 maps. After forming quadratic estimates of the lensing potential, we use the corresponding displacement field to undo the lensing on the same data. We build differences of the delensed spectra to the original data spectra specifically to look for delensing signatures. After taking into account reconstruction noise biases in the delensed spectra, we find an expected sharpening of the power spectrum acoustic peaks with a delensing efficiency of 29 % ( TT ) 25 % ( TE ) and 22 % ( EE ). The detection significance of the delensing effects is very high in all spectra: 12 σ in EE polarization; 18 σ in TE ; and 20 σ in TT . The null hypothesis of no lensing in the maps is rejected at 26 σ. While direct detection of the power in lensing B -modes themselves is not possible at high significance at Planck noise levels, we do detect (at 4.5 σ (under the null hypothesis)) delensing effects in the B -mode map, with 7 % reduction in lensing power. Our results provide a first demonstration of polarization delensing, and generally of internal CMB delensing, and stand in agreement with the baseline ΛCDM Planck 2015 cosmology expectations.

  19. Planck 2015 results. IX. Diffuse component separation: CMB maps

    CERN Document Server

    Adam, R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Casaponsa, B.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Falgarone, E.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Racine, B.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-01-01

    We present foreground-reduced CMB maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales $\\ell\\gtrsim40$. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with $\\ell < 20$ are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with re...

  20. CMB Polarization B-mode Delensing with SPTpol and Herschel

    Energy Technology Data Exchange (ETDEWEB)

    Manzotti, A.; et al.

    2017-01-16

    We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg$^2$ patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the $\\textit{Herschel}$ $500\\,\\mu m$ map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range $300 < \\ell < 2300$; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at $6.9 \\sigma$. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.

  1. Large scale CMB anomalies from thawing cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Ringeval, Christophe [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Yamauchi, Daisuke; Yokoyama, Jun' ichi [Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Bouchet, François R., E-mail: christophe.ringeval@uclouvain.be, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp, E-mail: bouchet@iap.fr [Institut d' Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris (France)

    2016-02-01

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) × 10{sup −6} match the amplitude of the dipole modulation reported in the Planck satellite measurements and could be at the origin of other large scale anomalies.

  2. A Measurement of CMB Cluster Lensing with SPT and DES Year 1 Data

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, E.J.; et al.

    2017-08-03

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. We detect lensing of the CMB by the galaxy clusters at 6.5$\\sigma$ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly $20\\%$ precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.

  3. Challenges and prospects for better measurements of the CMB intensity spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Sironi, Giorgio, E-mail: giorgio.sironi@unimb.it [Physics Department, University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy)

    2017-02-01

    Spectral distortions of the Cosmic Microwave Background (CMB) offer the possibility of probing processes which occurred during the evolution of our Universe going back up to Z≅ 10{sup 7}. Unfortunately all the attempts so far carried out for detecting distortions failed. All of them were based on comparisons among absolute measurements of the CMB temperature at different frequencies. We suggest a different approach: measurements of the frequency derivative of the CMB temperature over large frequency intervals instead of observations of the absolute temperature at few, well separated, frequencies as frequently done in the past, and, direct measurements of the foregrounds which hinder observations, at the same site and with the same radiometer prepared for the search of CMB distortions. We discuss therefore the perspectives of new observations in the next years from the ground, at very special sites, or in space as independent missions or part of other CMB projects.

  4. Planck 2013 results. XV. CMB power spectra and likelihood

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, ℓ, covering 2 ≤ ℓ ≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ℓs. For ℓ impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-ℓ cross-spectra with residuals below a few μK2 at ℓ ≲ 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ΛCDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ΛCDM cosmology is well constrained by Planck from the measurements at ℓ ≲ 1500. One specific example is the spectral index of scalar perturbations, for which we report a 5.4σ deviation from scale invariance, ns = 1. Increasing the multipole range beyond ℓ ≃ 1500 does not increase our accuracy for the ΛCDM parameters, but instead allows us to study extensions beyond the standard model. We find no indication of significant departures from the ΛCDM framework. Finally, we report a tension between the Planck best-fit ΛCDM model and the low-ℓ spectrum in the form of a power deficit of 5-10% at ℓ ≲ 40, with a statistical significance of 2.5-3σ. Without a theoretically motivated model for

  5. Anisotropic cosmological constant and the CMB quadrupole anomaly

    International Nuclear Information System (INIS)

    Rodrigues, Davi C.

    2008-01-01

    There are evidences that the cosmic microwave background (CMB) large-angle anomalies imply a departure from statistical isotropy and hence from the standard cosmological model. We propose a ΛCDM model extension whose dark energy component preserves its nondynamical character but wields anisotropic vacuum pressure. Exact solutions for the cosmological scale factors are presented, upper bounds for the deformation parameter are evaluated and its value is estimated considering the elliptical universe proposal to solve the quadrupole anomaly. This model can be constructed from a Bianchi I cosmology with a cosmological constant from two different ways: (i) a straightforward anisotropic modification of the vacuum pressure consistently with energy-momentum conservation; (ii) a Poisson structure deformation between canonical momenta such that the dynamics remain invariant under scale factors rescalings

  6. Minkowski Functionals and Cluster Analysis for CMB Maps

    Science.gov (United States)

    Novikov, D.; Feldman, Hume A.; Shandarin, Sergei F.

    We suggest novel statistics for the CMB maps that are sensitive to non-Gaussian features. These statistics are natural generalizations of the geometrical and topological methods that have been already used in cosmology such as the cumulative distribution function and genus. We compute the distribution functions of the Partial Minkowski Functionals for the excursion set above or bellow a constant temperature threshold. Minkowski Functionals are additive and are translationally and rotationally invariant. Thus, they can be used for patchy and/or incomplete coverage. The technique is highly efficient computationally (it requires only O(N) operations, where N is the number of pixels per one threshold level). Further, the procedure makes it possible to split large data sets into smaller subsets. The full advantage of these statistics can be obtained only on very large data sets. We apply it to the 4-year DMR COBE data corrected for the Galaxy contamination as an illustration of the technique.

  7. Contribution of domain wall networks to the CMB power spectrum

    International Nuclear Information System (INIS)

    Lazanu, A.; Martins, C.J.A.P.; Shellard, E.P.S.

    2015-01-01

    We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined

  8. Contribution of domain wall networks to the CMB power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Lazanu, A., E-mail: A.Lazanu@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2015-07-30

    We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  9. Confronting hybrid inflation in supergravity with CMB data

    International Nuclear Information System (INIS)

    Jeannerot, Rachel; Postma, Marieke

    2005-01-01

    F-term GUT inflation coupled to N = 1 supergravity is confronted with CMB data. Corrections to the string mass-per-unit-length away from the Bogomolny limit are taken into account. We find that a superpotential coupling 10 -7 /N∼ -2 /N, with N the dimension of the Higgs-representation, is still compatible with the data. The parameter space is enlarged in warm inflation, as well as in the curvaton and inhomogeneous reheat scenario. F-strings formed at the end of P-term inflation are also considered. Because these strings satisfy the Bogomolny bound the bounds are stronger: the gauge coupling is constrained to the range 10 -7 -4

  10. Constraints on cosmological birefringence energy dependence from CMB polarization data

    International Nuclear Information System (INIS)

    Gubitosi, G.; Paci, F.

    2013-01-01

    We study the possibility of constraining the energy dependence of cosmological birefringence by using CMB polarization data. We consider four possible behaviors, characteristic of different theoretical scenarios: energy-independent birefringence motivated by Chern-Simons interactions of the electromagnetic field, linear energy dependence motivated by a 'Weyl' interaction of the electromagnetic field, quadratic energy dependence, motivated by quantum gravity modifications of low-energy electrodynamics, and inverse quadratic dependence, motivated by Faraday rotation generated by primordial magnetic fields. We constrain the parameters associated to each kind of dependence and use our results to give constraints on the models mentioned. We forecast the sensitivity that Planck data will be able to achieve in this respect

  11. Low-l CMB power loss in string inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, Francisco G.; Westphal, Alexander

    2013-09-15

    The lack of power on large scales (l CMB 2-point function power at low l, finding that the potential derived from string loops is not steep enough for this purpose. We introduce a steeper contribution to the potential, that dominates away from the inflationary region, and show that if properly tuned it can indeed lead to a spectrum with lack of power at large scales.

  12. Constraints on Inflation from Polarization and CMB Spectral Distortions

    Science.gov (United States)

    Kamionkowski, Marc

    2014-01-01

    This talk will summarize some things we can do with future CMB experiments to study the early Universe. An obvious first is to map the polarization from density perturbations to the cosmic-variance limit to improve upon the types of things (cosmological-parameter determination, lensing, etc.) that have been done so far with the temperature. Another direction, which already has considerable momentum, is the pursuit of the characteristic polarization signature of inflationary gravitational waves. But there is also a strong case, which I will review, now being assembled for a space mission to seek the tiny but nonzero departures from a blackbody spectrum that are expected in the standard cosmological model and that may arise from several interesting exotic mechanisms.

  13. Loop quantum gravity effects on inflation and the CMB

    International Nuclear Information System (INIS)

    Tsujikawa, Shinji; Singh, Parampreet; Maartens, Roy

    2004-01-01

    In loop quantum cosmology, the universe avoids a big bang singularity and undergoes an early and short super-inflation phase. During super-inflation, non-perturbative quantum corrections to the dynamics drive an inflaton field up its potential hill, thus setting the initial conditions for standard inflation. We show that this effect can raise the inflaton high enough to achieve sufficient e-foldings in the standard inflation era. We analyse the cosmological perturbations generated when slow-roll is violated after super-inflation and show that loop quantum effects can in principle leave an indirect signature on the largest scales in the CMB, with some loss of power and running of the spectral index

  14. Planck 2015 results IX. Diffuse component separation: CMB maps

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.

    2016-01-01

    We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz......, and between 4.5 and 6.1μK averaged over pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1σ level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description...... of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses...

  15. The effective gravitational decoupling between dark matter and the CMB

    CERN Document Server

    Voruz, Luc; Tram, Thomas

    2014-01-01

    We present a detailed and self-contained analytical derivation of the evolution of sub-horizon cosmological perturbations before decoupling, based on previous work by S. Weinberg. These solutions are valid in the minimal LCDM scenario, to first order in perturbation theory, in the tight-coupling limit and neglecting neutrino shear stress. We compare them to exact numerical solutions computed by a Boltzmann code, and we find the two to be in very good agreement. The analytic solutions show explicitly that CDM and the baryon-photon fluid effectively behave as separate self-gravitating fluids until the epoch of baryon drag. This in turn leads to the surprising conclusion that the CMB is much less sensitive to the clustering properties of minimally coupled Dark Matter models than what would be naively expected.

  16. Contribution of domain wall networks to the CMB power spectrum

    Directory of Open Access Journals (Sweden)

    A. Lazanu

    2015-07-01

    Full Text Available We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  17. Multitracer CMB delensing maps from Planck and WISE data

    Science.gov (United States)

    Yu, Byeonghee; Hill, J. Colin; Sherwin, Blake D.

    2017-12-01

    Delensing, the removal of the limiting lensing B -mode background, is crucial for the success of future cosmic microwave background (CMB) surveys in constraining inflationary gravitational waves (IGWs). In recent work, delensing with large-scale structure tracers has emerged as a promising method both for improving constraints on IGWs and for testing delensing methods for future use. However, the delensing fractions (i.e., the fraction of the lensing-B mode power removed) achieved by recent efforts have been only 20%-30%. In this work, we provide a detailed characterization of a full-sky, dust-cleaned cosmic infrared background (CIB) map for delensing and construct a further-improved delensing template by adding additional tracers to increase delensing performance. In particular, we build a multitracer delensing template by combining the dust-cleaned Planck CIB map with a reconstructed CMB lensing map from Planck and a galaxy number density map from the Wide-field Infrared Survey Explorer (WISE) satellite. For this combination, we calculate the relevant weightings by fitting smooth templates to measurements of all the cross-spectra and autospectra of these maps. On a large fraction of the sky (fsky=0.43 ), we demonstrate that our maps are capable of providing a delensing factor of 43 ±1 % ; using a more restrictive mask (fsky=0.11 ), the delensing factor reaches 48 ±1 % . For low-noise surveys, our delensing maps, which cover much of the sky, can thus improve constraints on the tensor-to-scalar ratio (r ) by nearly a factor of 2. The delensing tracer maps are made publicly available, and we encourage their use in ongoing and upcoming B -mode surveys.

  18. From Cavendish to PLANCK: Constraining Newton's gravitational constant with CMB temperature and polarization anisotropy

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Smoot, George F.; Zahn, Oliver

    2009-01-01

    We present new constraints on cosmic variations of Newton's gravitational constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and ACBAR experiments and independent constraints coming from big bang nucleosynthesis. We found that current CMB data provide constraints at the ∼10% level, that can be improved to ∼3% by including big bang nucleosynthesis data. We show that future data expected from the Planck satellite could constrain G at the ∼1.5% level while an ultimate, cosmic variance limited, CMB experiment could reach a precision of about 0.4%, competitive with current laboratory measurements.

  19. Needlet estimation of cross-correlation between CMB lensing maps and LSS

    Energy Technology Data Exchange (ETDEWEB)

    Bianchini, Federico [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Renzi, Alessandro; Marinucci, Domenico, E-mail: fbianchini@sissa.it, E-mail: renzi@mat.uniroma2.it, E-mail: marinucc@mat.uniroma2.it [Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2016-11-01

    In this paper we develop a novel needlet-based estimator to investigate the cross-correlation between cosmic microwave background (CMB) lensing maps and large-scale structure (LSS) data. We compare this estimator with its harmonic counterpart and, in particular, we analyze the bias effects of different forms of masking. In order to address this bias, we also implement a MASTER-like technique in the needlet case. The resulting estimator turns out to have an extremely good signal-to-noise performance. Our analysis aims at expanding and optimizing the operating domains in CMB-LSS cross-correlation studies, similarly to CMB needlet data analysis. It is motivated especially by next generation experiments (such as Euclid) which will allow us to derive much tighter constraints on cosmological and astrophysical parameters through cross-correlation measurements between CMB and LSS.

  20. Beyond CMB cosmic variance limits on reionization with the polarized Sunyaev-Zel'dovich effect

    Science.gov (United States)

    Meyers, Joel; Meerburg, P. Daniel; van Engelen, Alexander; Battaglia, Nicholas

    2018-05-01

    Upcoming cosmic microwave background (CMB) surveys will soon make the first detection of the polarized Sunyaev-Zel'dovich effect, the linear polarization generated by the scattering of CMB photons on the free electrons present in collapsed objects. Measurement of this polarization along with knowledge of the electron density of the objects allows a determination of the quadrupolar temperature anisotropy of the CMB as viewed from the space-time location of the objects. Maps of these remote temperature quadrupoles have several cosmological applications. Here we propose a new application: the reconstruction of the cosmological reionization history. We show that with quadrupole measurements out to redshift 3, constraints on the mean optical depth can be improved by an order of magnitude beyond the CMB cosmic variance limit.

  1. Developing Advanced Broadband Microwave Detectors for Next-Generation CMB Polarization Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — The photons of the cosmic microwave background (CMB) stream toward us from the boundary of the observable universe and arrive with information about both their point...

  2. CMB polarization at large angular scales: Data analysis of the POLAR experiment

    International Nuclear Information System (INIS)

    O'Dell, Christopher W.; Keating, Brian G.; Oliveira-Costa, Angelica de; Tegmark, Max; Timbie, Peter T.

    2003-01-01

    The coming flood of cosmic microwave background (CMB) polarization experiments, spurred by the recent detection of CMB polarization by the DASI and WMAP instruments, will be confronted by many new analysis tasks specific to polarization. For the analysis of CMB polarization data sets, the devil is truly in the details. With this in mind, we present details of the data analysis for the POLAR experiment, which recently led to the tightest upper limits on the polarization of the cosmic microwave background radiation at large angular scales. We discuss the data selection process, map-making algorithms, offset removal, and likelihood analysis which were used to find upper limits on the polarization. Stated using the modern convention for reporting CMB Stokes parameters, these limits are 5.0 μK on both E- and B-type polarization at 95% confidence. Finally, we discuss simulations used to test our analysis techniques and to probe the fundamental limitations of the experiment

  3. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    OpenAIRE

    Roldan, Omar

    2017-01-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instan...

  4. Tensor Minkowski Functionals: first application to the CMB

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Vidhya [Indian Institute of Astrophysics, Koramangala II Block, Bangalore 560 034 (India); Chingangbam, Pravabati, E-mail: vidhya@iiap.res.in, E-mail: prava@iiap.res.in [Indian Institute of Science, C.V. Raman Ave, Bangalore 560 012 (India)

    2017-06-01

    Tensor Minkowski Functionals (TMFs) are tensor generalizations of the usual Minkowski Functionals which are scalar quantities. We introduce them here for use in cosmological analysis, in particular to analyze the Cosmic Microwave Background (CMB) radiation. They encapsulate information about the shapes of structures and the orientation of distributions of structures. We focus on one of the TMFs, namely W {sub 2}{sup 1,1}, which is the (1,1) rank tensor generalization of the genus. The ratio of the eigenvalues of the average of W {sub 2}{sup 1,1} over all structures, α, encodes the net orientation of the structures; and the average of the ratios of the eigenvalues of W {sub 2}{sup 1,1} for each structure, β, encodes the net intrinsic anisotropy of the structures. We have developed a code that computes W {sub 2}{sup 1,1}, and from it α and β, for a set of structures on the 2-dimensional Euclidean plane. We use it to compute α and β as functions of chosen threshold levels for simulated Gaussian and isotropic CMB temperature and E mode fields. We obtain the value of α to be one for both temperature and E mode, which means that we recover the statistical isotropy of density fluctuations that we input in the simulations. We find that the standard ΛCDM model predicts a charateristic shape of β for temperature and E mode as a function of the threshold, and the average over thresholds is β∼ 0.62 for temperature and β∼ 0.63 for E mode. Accurate measurements of α and β can be used to test the standard model of cosmology and to search for deviations from it. For this purpose we compute α and β for temperature and E mode data of various data sets from PLANCK mission. We compare the values measured from observed data with those obtained from simulations to which instrument beam and noise characteristics of the 44GHz frequency channel have been added (which are provided as part of the PLANCK data release). We find very good agreement of β and α between all

  5. Foreground removal from CMB temperature maps using an MLP neural network

    Science.gov (United States)

    Nørgaard-Nielsen, H. U.; Jørgensen, H. E.

    2008-12-01

    One of the main obstacles for extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from Galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over more than 80 per cent of the sky that are to a high degree uncorrelated with the foreground signals. A single network will be able to cover the dynamic range of the Planck noise level over the entire sky.

  6. Constraining quantum collapse inflationary models with CMB data

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, Micol; Alcaniz, Jailson S. [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro, RJ (Brazil); Landau, Susana J., E-mail: micolbenetti@on.br, E-mail: slandau@df.uba.ar, E-mail: alcaniz@on.br [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, PabI, Buenos Aires 1428 (Argentina)

    2016-12-01

    The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model ΛCDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.

  7. Oscillations in the CMB from Axion Monodromy Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael; /Texas U.; McAllister, Liam; Pajer, Enrico; /Cornell U., Phys. Dept.; Westphal, Alexander; /SLAC /Stanford U., Phys. Dept.; Xu, Gang; /Cornell U., Phys. Dept.

    2011-12-01

    We study the CMB observables in axion monodromy inflation. These well-motivated scenarios for inflation in string theory have monomial potentials over super-Planckian field ranges, with superimposed sinusoidal modulations from instanton effects. Such periodic modulations of the potential can drive resonant enhancements of the correlation functions of cosmological perturbations, with characteristic modulations of the amplitude as a function of wavenumber. We give an analytical result for the scalar power spectrum in this class of models, and we determine the limits that present data places on the amplitude and frequency of modulations. Then, incorporating an improved understanding of the realization of axion monodromy inflation in string theory, we perform a careful study of microphysical constraints in this scenario. We find that detectable modulations of the scalar power spectrum are commonplace in well-controlled examples, while resonant contributions to the bispectrum are undetectable in some classes of examples and detectable in others. We conclude that resonant contributions to the spectrum and bispectrum are a characteristic signature of axion monodromy inflation that, in favorable cases, could be detected in near-future experiments.

  8. A Guide to Designing Future Ground-based CMB Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W. L.K. [Stanford Univ., CA (United States); Kavli Inst. for Particle Astrophysics and Cosmology, Menlo, Park, CA (United States); Errard, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Dvorkin, C. [Inst. for Advanced Study, Princeton, NJ (United States); Kuo, C. L. [Stanford Univ., CA (United States); Kavli Inst. for Particle Astrophysics and Cosmology, Menlo, Park, CA (United States); Lee, A. T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDonald, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Slosar, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zahn, O. [Univ. of California, Berkeley and Lawrence Berkeley National Lab. (LBNL), CA (United States)

    2014-02-18

    In this follow-up work to the High Energy Physics Community Summer Study 2013 (HEP CSS 2013, a.k.a. Snowmass), we explore the scientific capabilities of a future Stage-IV Cosmic Microwave Background polarization experiment (CMB-S4) under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties in cosmological parameters in vΛCDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark-energy equation of state, dark-matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the Baryon Acoustic Oscillation (BAO) signal as measured by DESI to constrain parameters that would benefit from low redshift information. We find the following best 1-σ constraints: σ(Mv ) = 15 meV, σ(Neff ) = 0.0156, Dark energy Figure of Merit = 303, σ(pann) = 0.00588 x 3 x 10-26 cm3/s/GeV, σ( ΩK) = 0.00074, σ(ns) = 0.00110, σ( αs) = 0.00145, and σ(r) = 0.00009. We also detail the dependences of the parameter constraints on detector count, resolution, and sky coverage.

  9. Dark matter CMB constraints and likelihoods for poor particle physicists

    Energy Technology Data Exchange (ETDEWEB)

    Cline, James M.; Scott, Pat, E-mail: jcline@physics.mcgill.ca, E-mail: patscott@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 (Canada)

    2013-03-01

    The cosmic microwave background provides constraints on the annihilation and decay of light dark matter at redshifts between 100 and 1000, the strength of which depends upon the fraction of energy ending up in the form of electrons and photons. The resulting constraints are usually presented for a limited selection of annihilation and decay channels. Here we provide constraints on the annihilation cross section and decay rate, at discrete values of the dark matter mass m{sub χ}, for all the annihilation and decay channels whose secondary spectra have been computed using PYTHIA in arXiv:1012.4515 (''PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection''), namely e, μ, τ, V → e, V → μ, V → τ, u, d s, c, b, t, γ, g, W, Z and h. By interpolating in mass, these can be used to find the CMB constraints and likelihood functions from WMAP7 and Planck for a wide range of dark matter models, including those with annihilation or decay into a linear combination of different channels.

  10. Dark matter CMB constraints and likelihoods for poor particle physicists

    International Nuclear Information System (INIS)

    Cline, James M.; Scott, Pat

    2013-01-01

    The cosmic microwave background provides constraints on the annihilation and decay of light dark matter at redshifts between 100 and 1000, the strength of which depends upon the fraction of energy ending up in the form of electrons and photons. The resulting constraints are usually presented for a limited selection of annihilation and decay channels. Here we provide constraints on the annihilation cross section and decay rate, at discrete values of the dark matter mass m χ , for all the annihilation and decay channels whose secondary spectra have been computed using PYTHIA in arXiv:1012.4515 (''PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection''), namely e, μ, τ, V → e, V → μ, V → τ, u, d s, c, b, t, γ, g, W, Z and h. By interpolating in mass, these can be used to find the CMB constraints and likelihood functions from WMAP7 and Planck for a wide range of dark matter models, including those with annihilation or decay into a linear combination of different channels

  11. A Guide to Designing Future Ground-based CMB Experiments

    International Nuclear Information System (INIS)

    Wu, W. L.K.; Errard, J.; Dvorkin, C.; Kuo, C. L.; Lee, A. T.; McDonald, P.; Slosar, A.; Zahn, O.

    2014-01-01

    In this follow-up work to the High Energy Physics Community Summer Study 2013 (HEP CSS 2013, a.k.a. Snowmass), we explore the scientific capabilities of a future Stage-IV Cosmic Microwave Background polarization experiment (CMB-S4) under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties in cosmological parameters in vΛCDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark-energy equation of state, dark-matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the Baryon Acoustic Oscillation (BAO) signal as measured by DESI to constrain parameters that would benefit from low redshift information. We find the following best 1-δ constraints: δ(M_v ) = 15 meV, δ(N_e_f_f ) = 0.0156, Dark energy Figure of Merit = 303, δ(p_a_n_n) = 0.00588 x 3 x 10"-"2"6 cm"3/s/GeV, δ(Ω_K) = 0.00074, δ(n_s) = 0.00110, δ(α_s) = 0.00145, and δ(r) = 0.00009. We also detail the dependences of the parameter constraints on detector count, resolution, and sky coverage.

  12. String Theory clues for the low-$\\ell$ CMB ?

    CERN Document Server

    Kitazawa, N.

    2015-05-29

    "Brane Supersymmetry Breaking" is a peculiar string-scale mechanism that can unpair Bose and Fermi excitations in orientifold models. It results from the simultaneous presence, in the vacuum, of collections of D-branes and orientifolds that are not mutually BPS, and is closely tied to the scale of string excitations. It also leaves behind, for a mixing of dilaton and internal breathing mode, an exponential potential that is just too steep for a scalar to emerge from the initial singularity while descending it. As a result, in this class of models the scalar can generically bounce off the exponential wall, and this dynamics brings along, in the power spectrum, an infrared depression typically followed by a pre-inflationary peak. We elaborate on a possible link between this type of bounce and the low-$\\ell$ end of the CMB angular power spectrum. For the first 32 multipoles, one can reach a 50 % reduction in $\\chi^{\\,2}$ with respect to the standard $\\Lambda$CDM setting.

  13. Signature of short distance physics on inflation power spectrum and CMB anisotropy

    International Nuclear Information System (INIS)

    Das, Suratna; Mohanty, Subhendra

    2009-01-01

    The inflaton field responsible for inflation may not be a canonical fundamental scalar. It is possible that the inflaton is a composite of fermions or it may have a decay width. In these cases the standard procedure for calculating the power spectrum is not applicable and a new formalism needs to be developed to determine the effect of short range interactions of the inflaton on the power spectrum and the CMB anisotropy. We develop a general formalism for computing the power spectrum of curvature perturbations for such non-canonical cases by using the flat space Källén-Lehmann spectral function in curved quasi-de Sitter space assuming implicitly that the Bunch-Davis boundary conditions enforces the inflaton mode functions to be plane wave in the short wavelength limit and a complete set of mode functions exists in quasi-de Sitter space. It is observed that the inflaton with a decay width suppresses the power at large scale while a composite inflaton's power spectrum oscillates at large scales. These observations may be vindicated in the WMAP data and confirmed by future observations with PLANCK

  14. Searching for primordial non-Gaussianity in Planck CMB maps using a combined estimator

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, C.P.; Wuensche, C.A. [Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, São José dos Campos 12227-010, SP (Brazil); Bernui, A. [Observatório Nacional, Rua General José Cristino 77, São Cristóvão, 20921-400, Rio de Janeiro, RJ (Brazil); Ferreira, I.S., E-mail: camilapnovaes@gmail.com, E-mail: bernui@on.br, E-mail: ivan@fis.unb.br, E-mail: ca.wuensche@inpe.br [Instituto de Física, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70919-970, Brasília, DF (Brazil)

    2014-01-01

    The extensive search for deviations from Gaussianity in cosmic microwave background radiation (CMB) data is very important due to the information about the very early moments of the universe encoded there. Recent analyses from Planck CMB data do not exclude the presence of non-Gaussianity of small amplitude, although they are consistent with the Gaussian hypothesis. The use of different techniques is essential to provide information about types and amplitudes of non-Gaussianities in the CMB data. In particular, we find interesting to construct an estimator based upon the combination of two powerful statistical tools that appears to be sensitive enough to detect tiny deviations from Gaussianity in CMB maps. This estimator combines the Minkowski functionals with a Neural Network, maximizing a tool widely used to study non-Gaussian signals with a reinforcement of another tool designed to identify patterns in a data set. We test our estimator by analyzing simulated CMB maps contaminated with different amounts of local primordial non-Gaussianity quantified by the dimensionless parameter f{sub  NL}. We apply it to these sets of CMB maps and find ∼> 98% of chance of positive detection, even for small intensity local non-Gaussianity like f{sub  NL} = 38±18, the current limit from Planck data for large angular scales. Additionally, we test the suitability to distinguish between primary and secondary non-Gaussianities: first we train the Neural Network with two sets, one of nearly Gaussian CMB maps (|f{sub  NL}| ≤ 10) but contaminated with realistic inhomogeneous Planck noise (i.e., secondary non-Gaussianity) and the other of non-Gaussian CMB maps, that is, maps endowed with weak primordial non-Gaussianity (28 ≤ f{sub  NL} ≤ 48); after that we test an ensemble composed of CMB maps either with one of these non-Gaussian contaminations, and find out that our method successfully classifies ∼ 95% of the tested maps as being CMB maps containing primordial or

  15. On the existence of Alfvén waves in the terrestrial foreshock

    Directory of Open Access Journals (Sweden)

    J. P. Eastwood

    2003-07-01

    Full Text Available The terrestrial foreshock is characterised by the existence of large amplitude ultra low frequency waves. The majority of such waves are observed to be left-handed in the spacecraft frame, but are in fact intrinsically right-handed and have been identified as fast-magnetosonic waves. More rarely observed are waves that are right-handed in the spacecraft frame. Cluster four spacecraft observations of such waves are presented and analysed using multi-spacecraft techniques; in particular the k-filtering/wave telescope technique is used. The waves are found to be left-handed and propagating sunwards in the plasma rest frame, and are, therefore, identified as Alfvénic. The convection of the waves anti-sunward in the solar wind flow causes the observed polarisation to be reversed. Generation mechanisms are discussed.Key words. Interplanetary physics (MHD waves and turbulence; planetary bow shocks – Space plasma physics (wave particle interactions

  16. On the existence of Alfvén waves in the terrestrial foreshock

    Directory of Open Access Journals (Sweden)

    J. P. Eastwood

    Full Text Available The terrestrial foreshock is characterised by the existence of large amplitude ultra low frequency waves. The majority of such waves are observed to be left-handed in the spacecraft frame, but are in fact intrinsically right-handed and have been identified as fast-magnetosonic waves. More rarely observed are waves that are right-handed in the spacecraft frame. Cluster four spacecraft observations of such waves are presented and analysed using multi-spacecraft techniques; in particular the k-filtering/wave telescope technique is used. The waves are found to be left-handed and propagating sunwards in the plasma rest frame, and are, therefore, identified as Alfvénic. The convection of the waves anti-sunward in the solar wind flow causes the observed polarisation to be reversed. Generation mechanisms are discussed.

    Key words. Interplanetary physics (MHD waves and turbulence; planetary bow shocks – Space plasma physics (wave particle interactions

  17. BICEP2, Planck, spinorial space-time, pre-Big Bang.. On the possible origin of primordial CMB B-modes and gravitational waves. Potentialities of alternative cosmologies and open questions

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2015-05-01

    The field of Cosmology is currently undergoing a positive and constructive crisis. Controversies concerning inflation are not really new. But after the 2013-2014 Planck and BICEP2 announcements, and the more recent joint analysis by Planck, BICEP2 and the Keck Array (PBKA), the basic issues can involve more direct links between the Mathematical Physics aspects of cosmological patterns and the interpretation of experimental results. Open questions and new ideas on the foundations of Cosmology can emerge, while future experimental and observational programs look very promising. The BICEP2 result reporting an excess of B-mode polarization signal of the cosmic microwave background (CMB) radiation was initially presented as a signature of primordial gravitational waves from cosmic inflation. But polarized dust emission can be at the origin of such a signal, and the evidence claimed by BICEP2 is no longer secure after the PBKA analysis. Furthermore, even assuming that significant CMB B-mode polarization has indeed been generated by the early Universe, its theoretical and cosmological interpretation would be far from obvious. Inflationary gravitational waves are not the only possible source of primordial CMB B-modes. Alternative cosmologies such as pre-Big Bang patterns and the spinorial space-time (SST) we introduced in 1996-97 can naturally produce this polarization. Furthermore, the SST automatically generates for each comoving observer a local privileged space direction (PSD) whose existence may have been confirmed by Planck data. If such a PSD exists, vector perturbations have most likely been strong in the early Universe and may have produced CMB B-modes. Pre-Big Bang cosmologies can also generate gravitational waves in the early Universe without inflation. After briefly describing detectors devoted to the study of the CMB polarization, we discuss the situation emerging from BICEP2 results, Planck results and the PBKA analysis. In particular, we further analyze

  18. Cross-correlation studies between CMB temperature anisotropies and 21 cm fluctuations

    International Nuclear Information System (INIS)

    Cooray, Asantha

    2004-01-01

    During the transition from a neutral to a fully reionized universe, scattering of cosmic microwave background (CMB) photons via free electrons leads to a new anisotropy contribution to the temperature distribution. If the reionization process is inhomogeneous and patchy, the era of reionization is also visible via brightness temperature fluctuations in the redshifted 21 cm line emission from neutral hydrogen. Since regions containing electrons and neutral hydrogen are expected to trace the same underlying density field, the two are (anti)correlated and this is expected to be reflected in the anisotropy maps via a correlation between arcminute-scale CMB temperature and the 21 cm background. In terms of the angular cross-power spectrum, unfortunately, this correlation is insignificant due to a geometric cancellation associated with second-order CMB anisotropies. The same cross correlation between ionized and neutral regions, however, can be studied using a bispectrum involving large-scale velocity field of ionized regions from the Doppler effect, arcminute-scale CMB anisotropies during reionization, and the 21 cm background. While the geometric cancellation is partly avoided, the signal-to-noise ratio related to this bispectrum is reduced due to the large cosmic variance related to velocity fluctuations traced by the Doppler effect. Unless the velocity field during reionization can be independently established, it is unlikely that the correlation information related to the relative distribution of ionized electrons and regions containing neutral hydrogen can be obtained with a combined study involving CMB and 21 cm fluctuations

  19. Constraining the evolution of the CMB temperature with SZ measurements from Planck data

    Energy Technology Data Exchange (ETDEWEB)

    Luzzi, G.; Petris, M. De; Lamagna, L. [Dept. of Physics, Sapienza, University of Rome, Piazzale Aldo Moro 2, Rome, I-00185 Italy (Italy); Génova-Santos, R.T. [Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, La Laguna, Tenerife (Spain); Martins, C.J.A.P., E-mail: gemma.luzzi@roma1.infn.it, E-mail: rgs@iac.es, E-mail: carlos.martins@astro.up.pt, E-mail: marco.depetris@roma1.infn.it, E-mail: luca.lamagna@roma1.infn.it [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, Porto, 4150-762 Portugal (Portugal)

    2015-09-01

    The CMB temperature-redshift relation, T{sub CMB}(z)=T{sub 0}(1+z), is a key prediction of the standard cosmology but is violated in many non-standard models. Constraining possible deviations from this law is an effective way to test the ΛCDM paradigm and to search for hints of new physics. We have determined T{sub CMB}(z), with a precision up to 3%, for a subsample (103 clusters) of the Planck SZ cluster catalog, at redshifts in the range 0.01–0.94, using measurements of the spectrum of the Sunyaev-Zel'dovich (SZ) effect obtained from Planck temperature maps at frequencies from 70 to 353 GHz. The method adopted to provide individual determinations of T{sub CMB}(z) at cluster redshift relies on the use of SZ intensity change, Δ I{sub SZ}(ν) at different frequencies and on a Monte Carlo Markov chain approach. By applying this method to the sample of 103 clusters, we limit possible deviations of the form T{sub CMB}(z)=T{sub 0}(1+z){sup 1−β} to be β= 0.012 ± 0.016, at 1σ uncertainty, consistent with the prediction of the standard model. Combining these measurements with previously published results, we get β=0.013±0.011.

  20. Weak lensing and CMB: Parameter forecasts including a running spectral index

    International Nuclear Information System (INIS)

    Ishak, Mustapha; Hirata, Christopher M.; McDonald, Patrick; Seljak, Uros

    2004-01-01

    We use statistical inference theory to explore the constraints from future galaxy weak lensing (cosmic shear) surveys combined with the current CMB constraints on cosmological parameters, focusing particularly on the running of the spectral index of the primordial scalar power spectrum, α s . Recent papers have drawn attention to the possibility of measuring α s by combining the CMB with galaxy clustering and/or the Lyman-α forest. Weak lensing combined with the CMB provides an alternative probe of the primordial power spectrum. We run a series of simulations with variable runnings and compare them to semianalytic nonlinear mappings to test their validity for our calculations. We find that a 'reference' cosmic shear survey with f sky =0.01 and 6.6x10 8 galaxies per steradian can reduce the uncertainty on n s and α s by roughly a factor of 2 relative to the CMB alone. We investigate the effect of shear calibration biases on lensing by including the calibration factor as a parameter, and show that for our reference survey, the precision of cosmological parameter determination is only slightly degraded even if the amplitude calibration is uncertain by as much as 5%. We conclude that in the near future weak lensing surveys can supplement the CMB observations to constrain the primordial power spectrum

  1. A measurement of CMB cluster lensing with SPT and DES year 1 data

    Science.gov (United States)

    Baxter, E. J.; Raghunathan, S.; Crawford, T. M.; Fosalba, P.; Hou, Z.; Holder, G. P.; Omori, Y.; Patil, S.; Rozo, E.; Abbott, T. M. C.; Annis, J.; Aylor, K.; Benoit-Lévy, A.; Benson, B. A.; Bertin, E.; Bleem, L.; Buckley-Geer, E.; Burke, D. L.; Carlstrom, J.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Chang, C. L.; Cho, H.-M.; Crites, A. T.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Davis, C.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Everett, W. B.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; George, E. M.; Gaztanaga, E.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Halverson, N. W.; Harrington, N. L.; Hartley, W. G.; Holzapfel, W. L.; Honscheid, K.; Hrubes, J. D.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Knox, L.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lee, A. T.; Leitch, E. M.; Li, T. S.; Lima, M.; Luong-Van, D.; Manzotti, A.; March, M.; Marrone, D. P.; Marshall, J. L.; Martini, P.; McMahon, J. J.; Melchior, P.; Menanteau, F.; Meyer, S. S.; Miller, C. J.; Miquel, R.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Nord, B.; Ogando, R. L. C.; Padin, S.; Plazas, A. A.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Ruhl, J. E.; Rykoff, E.; Sako, M.; Sanchez, E.; Sayre, J. T.; Scarpine, V.; Schaffer, K. K.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Shirokoff, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Staniszewski, Z.; Stark, A.; Story, K.; Suchyta, E.; Tarle, G.; Thomas, D.; Troxel, M. A.; Vanderlinde, K.; Vieira, J. D.; Walker, A. R.; Williamson, R.; Zhang, Y.; Zuntz, J.

    2018-05-01

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. The cluster catalogue used in this analysis contains 3697 members with mean redshift of \\bar{z} = 0.45. We detect lensing of the CMB by the galaxy clusters at 8.1σ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly 17 {per cent} precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentring.

  2. Large-Scale Corrections to the CMB Anisotropy from Asymptotic de Sitter Mode

    Science.gov (United States)

    Sojasi, A.

    2018-01-01

    In this study, large-scale effects from asymptotic de Sitter mode on the CMB anisotropy are investigated. Besides the slow variation of the Hubble parameter onset of the last stage of inflation, the recent observational constraints from Planck and WMAP on spectral index confirm that the geometry of the universe can not be pure de Sitter in this era. Motivated by these evidences, we use this mode to calculate the power spectrum of the CMB anisotropy on the large scale. It is found that the CMB spectrum is dependent on the index of Hankel function ν which in the de Sitter limit ν → 3/2, the power spectrum reduces to the scale invariant result. Also, the result shows that the spectrum of anisotropy is dependent on angular scale and slow-roll parameter and these additional corrections are swept away by a cutoff scale parameter H ≪ M ∗ < M P .

  3. Detecting relic gravitational waves in the CMB: The contamination caused by the cosmological birefringence

    Directory of Open Access Journals (Sweden)

    Wen Zhao

    2014-10-01

    Full Text Available The B-mode polarization of the cosmic microwave background (CMB radiation is an excellent information channel for the detection of relic gravitational waves. However, the detection is contaminated by the B-mode polarization generated by some other effects. In this paper, we discuss the contaminations caused by the cosmological birefringence, which converts the CMB E-mode to the B-mode, and forms the effective noise for the detection of gravitational waves. We find that this contamination is significant, if the rotation angle is large. However, this kind of B-mode can be properly de-rotated, and the effective noises can be greatly reduced. We find that, comparing with the contaminations caused by cosmic weak lensing, the residual polarization generated by the cosmological birefringence is negligible for the detection of relic gravitational waves in the CMB.

  4. Determination of neutrino mass hierarchy by 21 cm line and CMB B-mode polarization observations

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yoshihiko, E-mail: oyamayo@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Shimizu, Akie [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Kohri, Kazunori [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2013-01-29

    We focus on the ongoing and future observations for both the 21 cm line and the CMB B-mode polarization produced by a CMB lensing, and study their sensitivities to the effective number of neutrino species, the total neutrino mass, and the neutrino mass hierarchy. We find that combining the CMB observations with future square kilometer arrays optimized for 21 cm line such as Omniscope can determine the neutrino mass hierarchy at 2{sigma}. We also show that a more feasible combination of Planck + POLARBEAR and SKA can strongly improve errors of the bounds on the total neutrino mass and the effective number of neutrino species to be {Delta}{Sigma}m{sub {nu}}{approx}0.12 eV and {Delta}N{sub {nu}}{approx}0.38 at 2{sigma}, respectively.

  5. Total CMB analysis of streaker aerosol samples by PIXE, PIGE, beta- and optical-absorption analyses

    International Nuclear Information System (INIS)

    Annegarn, H.J.; Przybylowicz, W.J.

    1993-01-01

    Multielemental analyses of aerosol samples are widely used in air pollution receptor modelling. Specifically, the chemical mass balance (CMB) model has become a powerful tool in urban air quality studies. Input data required for the CMB includes not only the traditional X-ray fluorescence (and hence PIXE) detected elements, but also total mass, organic and inorganic carbon, and other light elements including Mg, Na and F. The circular streaker sampler, in combination with PIXE analysis, has developed into a powerful tool for obtaining time-resolved, multielemental aerosol data. However, application in CMB modelling has been limited by the absence of total mass and complementary light element data. This study reports on progress in using techniques complementary to PIXE to obtain additional data from circular streaker samples, maintaining the nondestructive, instrumental approach inherent in PIXE: Beta-gauging using a 147 Pm source for total mass; optical absorption for inorganic carbon; and PIGE to measure the lighter elements. (orig.)

  6. The cross-correlation of the CMB polarization and the 21-cm line fluctuations from cosmic reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem

    2008-01-01

    The cosmic microwave background (CMB) polarization and the 21-cm line fluctuations are powerful probes of cosmological reionization. We study how the cross-correlation between the CMB polarization (E modes) and the 21-cm line fluctuations can be used to gain further understanding of the reionization

  7. A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400

    Science.gov (United States)

    Miller, A. D.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Nolta, M. R.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, H. T.

    2000-05-01

    We report on a measurement of the angular spectrum of the CMB between l 100 and l 400 made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz, taken with the same instrument observing the same section of sky, we find: 1) a rise in the angular spectrum to a maximum with δ Tl 85 μ K at l 200 and a fall at l>300, thereby localizing the peak near l 200; and 2) that the anisotropy at l 200 has the spectrum of the CMB. Cosmological implications are discussed.

  8. Compensation for large tensor modes with iso-curvature perturbations in CMB anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro; Yokoyama, Shuichiro, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: shu@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan)

    2014-05-01

    Recently, BICEP2 has reported the large tensor-to-scalar ratio r = 0.2{sup +0.07}{sub −0.05} from the observation of the cosmic microwave background (CMB) B-mode at degree-scales. Since tensor modes induce not only CMB B-mode but also the temperature fluctuations on large scales, to realize the consistent temperature fluctuations with the Planck result we should consider suppression of scalar perturbations on corresponding large scales. To realize such a suppression, we consider anti-correlated iso-curvature perturbations which could be realized in the simple curvaton model.

  9. Constraining star formation through redshifted CO and CII emission in archival CMB data

    Science.gov (United States)

    Switzer, Eric

    LCDM is a strikingly successful paradigm to explain the CMB anisotropy and its evolution into observed galaxy clustering statistics. The formation and evolution of galaxies within this context is more complex and only partly characterized. Measurements of the average star formation and its precursors over cosmic time are required to connect theories of galaxy evolution to LCDM evolution. The fine structure transition in CII at 158 um traces star formation rates and the ISM radiation environment. Cold, molecular gas fuels star formation and is traced well by a ladder of CO emission lines. Catalogs of emission lines in individual galaxies have provided the most information about CII and CO to-date but are subject to selection effects. Intensity mapping is an alternative approach to measuring line emission. It surveys the sum of all line radiation as a function of redshift, and requires angular resolution to reach cosmologically interesting scales, but not to resolve individual sources. It directly measures moments of the luminosity function from all emitting objects. Intensity mapping of CII and CO can perform an unbiased census of stars and cold gas across cosmic time. We will use archival COBE-FIRAS and Planck data to bound or measure cosmologically redshifted CII and CO line emission through 1) the monopole spectrum, 2) cross-power between FIRAS/Planck and public galaxy survey catalogs from BOSS and the 2MASS redshift surveys, 3) auto-power of the FIRAS/Planck data itself. FIRAS is unique in its spectral range and all-sky coverage, provided by the space-borne FTS architecture. In addition to sensitivity to a particular emission line, intensity mapping is sensitive to all other contributions to surface brightness. We will remove CMB and foreground spatial and spectral templates using models from WMAP and Planck data. Interlopers and residual foregrounds additively bias the auto-power and monopole, but both can still be used to provide rigorous upper bounds. The

  10. Cysteine-mediated gene expression and characterization of the CmbR regulon in Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Muhammad Afzal

    2016-12-01

    Full Text Available In this study, we investigated the transcriptomic response of Streptococcus pneumoniae D39 to cysteine. Transcriptome comparison of the D39 wild-type strain grown at a restricted concentration of cysteine (0.03 mM to one grown at a high concentration of cysteine (50 mM in chemically-define medium (CDM revealed elevated expression of various genes/operons, i.e. spd-0150, metQ, spd-0431, metEF, gshT, spd-0618, fhs, tcyB, metB-csd, metA, spd-1898, yvdE, and cysK, likely to be involved in the transport and utilization of cysteine and/or methionine. Microarray-based data were further confirmed by quantitative RT-PCR. Promoter lacZ-fusion studies and quantitative RT-PCR data showed that the transcriptional regulator CmbR acts as a transcriptional repressor of spd-0150, metEF, gshT, spd-0618, tcyB, metA, and yvdE, putatively involved in cysteine uptake and utilization. The operator site of CmbR in the promoter regions of CmbR-regulated genes is predicted and confirmed by mutating or deleting CmbR operator sites from the promoter regions of these genes.

  11. What can the CMB tell about the microphysics of cosmic reheating?

    International Nuclear Information System (INIS)

    Drewes, Marco

    2016-01-01

    In inflationary cosmology, cosmic reheating after inflation sets the initial conditions for the hot big bang. We investigate how CMB data can be used to study the effective potential and couplings of the inflaton during reheating to constrain the underlying microphysics. If there is a phase of preheating that is driven by a parametric resonance or other instability, then the thermal history and expansion history during the reheating era depend on a large number of microphysical parameters in a complicated way. In this case the connection between CMB observables and microphysical parameters can only established with intense numerical studies. Such studies can help to improve CMB constraints on the effective inflaton potential in specific models, but parameter degeneracies usually make it impossible to extract meaningful best-fit values for individual microphysical parameters. If, on the other hand, reheating is driven by perturbative processes, then it can be possible to constrain the inflaton couplings and the reheating temperature from CMB data. This provides an indirect probe of fundamental microphysical parameters that most likely can never be measured directly in the laboratory, but have an immense impact on the evolution of the cosmos by setting the stage for the hot big bang

  12. Planck 2015 results: XVI. Isotropy and statistics of the CMB

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Akrami, Y.

    2016-01-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consi...

  13. Revisiting the EC/CMB model for extragalactic large scale jets

    Science.gov (United States)

    Lucchini, M.; Tavecchio, F.; Ghisellini, G.

    2017-04-01

    One of the most outstanding results of the Chandra X-ray Observatory was the discovery that AGN jets are bright X-ray emitters on very large scales, up to hundreds of kpc. Of these, the powerful and beamed jets of flat-spectrum radio quasars are particularly interesting, as the X-ray emission cannot be explained by an extrapolation of the lower frequency synchrotron spectrum. Instead, the most common model invokes inverse Compton scattering of photons of the cosmic microwave background (EC/CMB) as the mechanism responsible for the high-energy emission. The EC/CMB model has recently come under criticism, particularly because it should predict a significant steady flux in the MeV-GeV band which has not been detected by the Fermi/LAT telescope for two of the best studied jets (PKS 0637-752 and 3C273). In this work, we revisit some aspects of the EC/CMB model and show that electron cooling plays an important part in shaping the spectrum. This can solve the overproduction of γ-rays by suppressing the high-energy end of the emitting particle population. Furthermore, we show that cooling in the EC/CMB model predicts a new class of extended jets that are bright in X-rays but silent in the radio and optical bands. These jets are more likely to lie at intermediate redshifts and would have been missed in all previous X-ray surveys due to selection effects.

  14. Searching for a holographic connection between dark energy and the low-l CMB multipoles

    DEFF Research Database (Denmark)

    Enqvist, Kari; Hannestad, Steen; Sloth, Martin Snoager

    2004-01-01

    We consider the angular power spectrum in a finite universe with different boundary conditions and perform a fit to the CMB, LSS and supernova data. A finite universe could be the consequence of a holographic constraint, giving rise to an effective IR cutoff at the future event horizon...

  15. Probing the BSM physics with CMB precision cosmology: an application to supersymmetry

    Science.gov (United States)

    Dalianis, Ioannis; Watanabe, Yuki

    2018-02-01

    The cosmic history before the BBN is highly determined by the physics that operates beyond the Standard Model (BSM) of particle physics and it is poorly constrained observationally. Ongoing and future precision measurements of the CMB observables can provide us with significant information about the pre-BBN era and hence possibly test the cosmological predictions of different BSM scenarios. Supersymmetry is a particularly motivated BSM theory and it is often the case that different superymmetry breaking schemes require different cosmic histories with specific reheating temperatures or low entropy production in order to be cosmologically viable. In this paper we quantify the effects of the possible alternative cosmic histories on the n s and r CMB observables assuming a generic non-thermal stage after cosmic inflation. We analyze TeV and especially multi-TeV super-symmetry breaking schemes assuming the neutralino and gravitino dark matter scenarios. We complement our analysis considering the Starobinsky R 2 inflation model to exemplify the improved CMB predictions that a unified description of the early universe cosmic evolution yields. Our analysis underlines the importance of the CMB precision measurements that can be viewed, to some extend, as complementary to the laboratory experimental searches for supersymmetry or other BSM theories.

  16. Slow-roll inflation and BB-mode angular power spectrum of CMB

    Energy Technology Data Exchange (ETDEWEB)

    Malsawmtluangi, N.; Suresh, P.K. [University of Hyderabad, School of Physics, Hyderabad (India)

    2016-05-15

    The BB-mode correlation angular power spectrum of CMB is obtained by considering the primordial gravitational waves in the squeezed vacuum state for various inflationary models and results are compared with the joint analysis of the BICEP2/Keck Array and Planck 353 GHz data. The present results may constrain several models of inflation. (orig.)

  17. Observational constraint on spherical inhomogeneity with CMB and local Hubble parameter

    Science.gov (United States)

    Tokutake, Masato; Ichiki, Kiyotomo; Yoo, Chul-Moon

    2018-03-01

    We derive an observational constraint on a spherical inhomogeneity of the void centered at our position from the angular power spectrum of the cosmic microwave background (CMB) and local measurements of the Hubble parameter. The late time behaviour of the void is assumed to be well described by the so-called Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) solution. Then, we restrict the models to the asymptotically homogeneous models each of which is approximated by a flat Friedmann-Lemaȋtre-Robertson-Walker model. The late time ΛLTB models are parametrized by four parameters including the value of the cosmological constant and the local Hubble parameter. The other two parameters are used to parametrize the observed distance-redshift relation. Then, the ΛLTB models are constructed so that they are compatible with the given distance-redshift relation. Including conventional parameters for the CMB analysis, we characterize our models by seven parameters in total. The local Hubble measurements are reflected in the prior distribution of the local Hubble parameter. As a result of a Markov-Chains-Monte-Carlo analysis for the CMB temperature and polarization anisotropies, we found that the inhomogeneous universe models with vanishing cosmological constant are ruled out as is expected. However, a significant under-density around us is still compatible with the angular power spectrum of CMB and the local Hubble parameter.

  18. Analysing the Effect on CMB in a Parity and Charge Parity Violating Varying Alpha Theory

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Debaprasad; /NCTS, Taipei /Taiwan, Natl. Taiwan U.; Chen, Pisin; /NCTS, Taipei /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2012-09-14

    In this paper we study in detail the effect of our recently proposed model of parity and charge-parity (PCP) violating varying alpha on the Cosmic Microwave Background (CMB) photon passing through the intra galaxy-cluster medium (ICM). The ICM is well known to be composed of magnetized plasma. According to our model, the polarization and intensity of the CMB would be affected when traversing through the ICM due to non-trivial scalar photon interactions. We have calculated the evolution of such polarization and intensity collectively, known as the stokes parameters of the CMB photon during its journey through the ICM and tested our results against the Sunyaev-Zel'dovich (SZ) measurement on Coma galaxy cluster. Our model contains a PCP violating parameter, {beta}, and a scale of alpha variation {omega}. Using the derived constrained on the photon-to-scalar conversion probability, {bar P}{sub {gamma}{yields}{phi}}, for Coma cluster in ref.[34] we found a contour plot in the ({omega},{beta}) parameter plane. The {beta} = 0 line in this parameter space corresponds to well-studied Maxwell-dilaton type models which has lower bound on {omega} {approx}> 6.4 x 10{sup 9} GeV. In general, as the absolute value of {beta} increases, lower bound on {omega} also increases. Our model in general predicts the modification of the CMB polarization with a non-trivial dependence on the parity violating coupling parameter {beta}. However, it is unconstrained in this particular study. We show that this effect can in principle be detected in the future measurements on CMB polarization such that {beta} can also be constrained.

  19. Thermodynamics of SU(2) quantum Yang-Mills theory and CMB anomalies

    Science.gov (United States)

    Hofmann, Ralf

    2014-04-01

    A brief review of effective SU(2) Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field φ, based on non-propagating (anti)selfdual field configurations of topological charge unity. We also discuss kinematic constraints on interacting propagating gauge fields implied by the according spatial coarse-graining, and we explain why the screening physics of an SU(2) photon is subject to an electric-magnetically dual interpretation. This argument relies on the fact that only (anti)calorons of scale parameter ρ ˜ |φ|-1 contribute to the coarse-graining required for thermal-ground-state emergence at temperature T. Thus, use of the effective gauge coupling e in the (anti)caloron action is justified, yielding the value ħ for the latter at almost all temperatures. As a consequence, the indeterministic transition of initial to final plane waves caused by an effective, pointlike vertex is fundamentally mediated in Euclidean time by a single (anti)caloron being part of the thermal ground state. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB) determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2) Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2) photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planck collaboration. Finally, six relativistic polarisations residing in the SU(2) vector modes roughly match the number of degrees of freedom in cosmic neutrinos (Planck) which would disqualify the latter as radiation. Indeed, if interpreted as single center-vortex loops in

  20. Thermodynamics of SU(2 quantum Yang-Mills theory and CMB anomalies

    Directory of Open Access Journals (Sweden)

    Hofmann Ralf

    2014-04-01

    Full Text Available A brief review of effective SU(2 Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field φ, based on non-propagating (antiselfdual field configurations of topological charge unity. We also discuss kinematic constraints on interacting propagating gauge fields implied by the according spatial coarse-graining, and we explain why the screening physics of an SU(2 photon is subject to an electric-magnetically dual interpretation. This argument relies on the fact that only (anticalorons of scale parameter ρ ∼ |φ|−1 contribute to the coarse-graining required for thermal-ground-state emergence at temperature T. Thus, use of the effective gauge coupling e in the (anticaloron action is justified, yielding the value ħ for the latter at almost all temperatures. As a consequence, the indeterministic transition of initial to final plane waves caused by an effective, pointlike vertex is fundamentally mediated in Euclidean time by a single (anticaloron being part of the thermal ground state. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2 Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2 photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planck collaboration. Finally, six relativistic polarisations residing in the SU(2 vector modes roughly match the number of degrees of freedom in cosmic neutrinos (Planck which would disqualify the latter as radiation. Indeed, if interpreted as single center

  1. Evidence for an inflationary phase transition from the LSS and CMB anisotropy data

    International Nuclear Information System (INIS)

    Barriga, J.; Gaztanaga, E.; Santos, M.G.; Sarkar, S.

    2001-01-01

    In the light of the recent Boomerang and Maxima observations of the CMB which show an anomalously low second acoustic peak, we reexamine the prediction by Adams et al (1997) that this would be the consequence of a 'step' in the primordial spectrum induced by a spontaneous symmetry breaking phase transition during primordial inflation. We demonstrate that a deviation from scale-invariance around k ∼ 0.1h Mpc -1 can simultaneously explain both the feature identified earlier in the APM galaxy power spectrum as well the recent CMB anisotropy data, with a baryon density consistent with the BBN value. Such a break also allows a good fit to the data on cluster abundances even for a critical density matter-dominated universe with zero cosmological constant

  2. Testing non-minimally coupled inflation with CMB data: a Bayesian analysis

    International Nuclear Information System (INIS)

    Campista, Marcela; Benetti, Micol; Alcaniz, Jailson

    2017-01-01

    We use the most recent cosmic microwave background (CMB) data to perform a Bayesian statistical analysis and discuss the observational viability of inflationary models with a non-minimal coupling, ξ, between the inflaton field and the Ricci scalar. We particularize our analysis to two examples of small and large field inflationary models, namely, the Coleman-Weinberg and the chaotic quartic potentials. We find that ( i ) the ξ parameter is closely correlated with the primordial amplitude ; ( ii ) although improving the agreement with the CMB data in the r − n s plane, where r is the tensor-to-scalar ratio and n s the primordial spectral index, a non-null coupling is strongly disfavoured with respect to the minimally coupled standard ΛCDM model, since the upper bounds of the Bayes factor (odds) for ξ parameter are greater than 150:1.

  3. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Omar, E-mail: oaroldan@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ (Brazil)

    2017-08-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can iteratively be used to obtain the lensing solution at the desired order.

  4. The Atacama Cosmology Telescope: Likelihood for Small-Scale CMB Data

    Science.gov (United States)

    Dunkley, J.; Calabrese, E.; Sievers, J.; Addison, G. E.; Battaglia, N.; Battistelli, E. S.; Bond, J. R.; Das, S.; Devlin, M. J.; Dunner, R.; hide

    2013-01-01

    The Atacama Cosmology Telescope has measured the angular power spectra of microwave fluctuations to arcminute scales at frequencies of 148 and 218 GHz, from three seasons of data. At small scales the fluctuations in the primordial Cosmic Microwave Background (CMB) become increasingly obscured by extragalactic foregounds and secondary CMB signals. We present results from a nine-parameter model describing these secondary effects, including the thermal and kinematic Sunyaev-Zel'dovich (tSZ and kSZ) power; the clustered and Poisson-like power from Cosmic Infrared Background (CIB) sources, and their frequency scaling; the tSZ-CIB correlation coefficient; the extragalactic radio source power; and thermal dust emission from Galactic cirrus in two different regions of the sky. In order to extract cosmological parameters, we describe a likelihood function for the ACT data, fitting this model to the multi-frequency spectra in the multipole range 500 cosmological parameter estimation

  5. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    International Nuclear Information System (INIS)

    Roldan, Omar

    2017-01-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can iteratively be used to obtain the lensing solution at the desired order.

  6. Extraction Of Cobalt From Spent CMB Catalyst Using Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Joo S.-H.

    2015-06-01

    Full Text Available The metal extraction from spent CMB catalyst using supercritical CO2(scCO2 was investigated with single organic system, binary organic system and ternary organic system to extract metal ions. Leaching solution of spent CMB catalyst containing 389 mg L−1 Co2+, 187 mg L−1 Mn2+, 133 mg L−1 Na+, 14.97 mg L−1 Ca2+ and 13.2 mg L−1 Mg2+. The method consists of scCO2/ligands complexation process and metal extraction process at 60°C and 200bar. The result showed the Co and Mn was selectively extracted from Mg, Ca and Na in the ternary system of mixture of Cyanex272, DEA and Alamine304-I.

  7. Evidence for an inflationary phase transition from the LSS and CMB anisotropy data

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, J.; Gaztanaga, E.; Santos, M.G.; Sarkar, S

    2001-04-01

    In the light of the recent Boomerang and Maxima observations of the CMB which show an anomalously low second acoustic peak, we reexamine the prediction by Adams et al (1997) that this would be the consequence of a 'step' in the primordial spectrum induced by a spontaneous symmetry breaking phase transition during primordial inflation. We demonstrate that a deviation from scale-invariance around k {approx} 0.1h Mpc{sup -1} can simultaneously explain both the feature identified earlier in the APM galaxy power spectrum as well the recent CMB anisotropy data, with a baryon density consistent with the BBN value. Such a break also allows a good fit to the data on cluster abundances even for a critical density matter-dominated universe with zero cosmological constant.

  8. Testing non-minimally coupled inflation with CMB data: a Bayesian analysis

    Energy Technology Data Exchange (ETDEWEB)

    Campista, Marcela; Benetti, Micol; Alcaniz, Jailson, E-mail: campista@on.br, E-mail: micolbenetti@on.br, E-mail: alcaniz@on.br [Observatório Nacional, Rua General José Cristino 77, Rio de Janeiro, RJ, 20921-400 Brazil (Brazil)

    2017-09-01

    We use the most recent cosmic microwave background (CMB) data to perform a Bayesian statistical analysis and discuss the observational viability of inflationary models with a non-minimal coupling, ξ, between the inflaton field and the Ricci scalar. We particularize our analysis to two examples of small and large field inflationary models, namely, the Coleman-Weinberg and the chaotic quartic potentials. We find that ( i ) the ξ parameter is closely correlated with the primordial amplitude ; ( ii ) although improving the agreement with the CMB data in the r − n {sub s} plane, where r is the tensor-to-scalar ratio and n {sub s} the primordial spectral index, a non-null coupling is strongly disfavoured with respect to the minimally coupled standard ΛCDM model, since the upper bounds of the Bayes factor (odds) for ξ parameter are greater than 150:1.

  9. MAPCUMBA: A fast iterative multi-grid map-making algorithm for CMB experiments

    Science.gov (United States)

    Doré, O.; Teyssier, R.; Bouchet, F. R.; Vibert, D.; Prunet, S.

    2001-07-01

    The data analysis of current Cosmic Microwave Background (CMB) experiments like BOOMERanG or MAXIMA poses severe challenges which already stretch the limits of current (super-) computer capabilities, if brute force methods are used. In this paper we present a practical solution for the optimal map making problem which can be used directly for next generation CMB experiments like ARCHEOPS and TopHat, and can probably be extended relatively easily to the full PLANCK case. This solution is based on an iterative multi-grid Jacobi algorithm which is both fast and memory sparing. Indeed, if there are Ntod data points along the one dimensional timeline to analyse, the number of operations is of O (Ntod \\ln Ntod) and the memory requirement is O (Ntod). Timing and accuracy issues have been analysed on simulated ARCHEOPS and TopHat data, and we discuss as well the issue of the joint evaluation of the signal and noise statistical properties.

  10. Comparison of distance information given by SN Ia, BAO and CMB

    International Nuclear Information System (INIS)

    Li Hong

    2011-01-01

    The observations of Type Ia supernovae (SN Ia), Baryon Acoustic Oscillations (BAO) and Cosmic Microwave Background radiation (CMB) provide powerful tools for the measurement of cosmological parameters. One of the most useful information encodes in the distance measured by those probes. In this Letter, we test the coherence of the observational information provided by SN Ia, BAO and CMB experiments. We make two kinds of comparison: the first is the constraints on cosmological parameters of the equation of state parameter (EoS) of dark energy (DE) and matter budget parameter Ω m from the latest data by global fitting, and we find the large discrepancy from those different probes. The second comparison is performed among the derived distance information from these observations at certain appointed redshift, the results show that the distance provided by WMAP5 are larger than those from SN Ia and BAO on the whole.

  11. Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking

    International Nuclear Information System (INIS)

    Rassat, A.; Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J.

    2014-01-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html

  12. Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking

    Energy Technology Data Exchange (ETDEWEB)

    Rassat, A. [Laboratoire d' Astrophysique (LASTRO), École Polytechnique Fédérale de Lausanne (EPFL), 51 Chemin des Maillettes, Observatoire de Sauverny, Versoix, CH-1290 (Switzerland); Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J., E-mail: anais.rassat@epfl.ch, E-mail: jstarck@cea.fr, E-mail: paniez.paykari@cea.fr, E-mail: florent.sureau@cea.fr, E-mail: jbobin@cea.fr [Laboratoire AIM, UMR CEA-CNRS-Paris, Irfu, SAp, CEA Saclay, Gif-Sur-Yvette Cedex, F-91191 France (France)

    2014-08-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.

  13. Impact of calibration errors on CMB component separation using FastICA and ILC

    Science.gov (United States)

    Dick, Jason; Remazeilles, Mathieu; Delabrouille, Jacques

    2010-01-01

    The separation of emissions from different astrophysical processes is an important step towards the understanding of observational data. This topic of component separation is of particular importance in the observation of the relic cosmic microwave background (CMB) radiation, as performed by the Wilkinson Microwave Anisotropy Probe satellite and the more recent Planck mission, launched on 2009 May 14 from Kourou and currently taking data. When performing any sort of component separation, some assumptions about the components must be used. One assumption that many techniques typically use is knowledge of the frequency scaling of one or more components. This assumption may be broken in the presence of calibration errors. Here we compare, in the context of imperfect calibration, the recovery of a clean map of emission of the CMB from observational data with two methods: FastICA (which makes no assumption of the frequency scaling of the components) and an `Internal Linear Combination' (ILC), which explicitly extracts a component with a given frequency scaling. We find that even in the presence of small calibration errors (less than 1 per cent) with a Planck-style mission, the ILC method can lead to inaccurate CMB reconstruction in the high signal-to-noise ratio regime, because of partial cancellation of the CMB emission in the recovered map. While there is no indication that the failure of the ILC will translate to other foreground cleaning or component separation techniques, we propose that all methods which assume knowledge of the frequency scaling of one or more components be careful to estimate the effects of calibration errors.

  14. Cosmological parameters from CMB and other data: A Monte Carlo approach

    International Nuclear Information System (INIS)

    Lewis, Antony; Bridle, Sarah

    2002-01-01

    We present a fast Markov chain Monte Carlo exploration of cosmological parameter space. We perform a joint analysis of results from recent cosmic microwave background (CMB) experiments and provide parameter constraints, including σ 8 , from the CMB independent of other data. We next combine data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae type Ia and big-bang nucleosynthesis. The Monte Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and 9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include constraints on the neutrino mass (m ν < or approx. 3 eV), equation of state of the dark energy, and the tensor amplitude, as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of appendixes we describe the many uses of importance sampling, including computing results from new data and accuracy correction of results generated from an approximate method. We also discuss the different ways of converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and consistency, and describe the use of analytic marginalization over normalization parameters

  15. A constraint on Planck-scale modifications to electrodynamics with CMB polarization data

    Energy Technology Data Exchange (ETDEWEB)

    Gubitosi, Giulia; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro [Physics Department, University of Rome ' ' La Sapienza' ' and Sezione Roma1 INFN, P.le Aldo Moro 2, 00185 Rome (Italy); Cooray, Asantha, E-mail: giulia.gubitosi@roma1.infn.it, E-mail: luca.pagano@roma1.infn.it, E-mail: giovanni.amelino-camelia@roma1.infn.it, E-mail: alessandro.melchiorri@roma1.infn.it, E-mail: acooray@uci.edu [Center for Cosmology, Dept. of Physics and Astronomy, University of California Irvine, Irvine, CA 92697 (United States)

    2009-08-01

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ξ, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ξ ≅ −0.110±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ξ achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ confidence of 8.5 × 10{sup −4} (PLANCK), 6.1 × 10{sup −3} (Spider), and 1.0 × 10{sup −5} (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1 × 10{sup −6}.

  16. A constraint on Planck-scale modifications to electrodynamics with CMB polarization data

    International Nuclear Information System (INIS)

    Gubitosi, Giulia; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Cooray, Asantha

    2009-01-01

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ξ, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ξ ≅ −0.110±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ξ achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ confidence of 8.5 × 10 −4 (PLANCK), 6.1 × 10 −3 (Spider), and 1.0 × 10 −5 (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1 × 10 −6

  17. Using the CMB angular power spectrum to study Dark Matter-photon interactions

    International Nuclear Information System (INIS)

    Wilkinson, Ryan J.; Boehm, Céline; Lesgourgues, Julien

    2014-01-01

    In this paper, we explore the impact of Dark Matter-photon interactions on the CMB angular power spectrum. Using the one-year data release of the Planck satellite, we derive an upper bound on the Dark Matter-photon elastic scattering cross section of σ DM−γ ≤ 8 × 10 −31 (m DM /GeV) cm 2 (68% CL) if the cross section is constant and a present-day value of σ DM−γ ≤ 6 × 10 −40 (m DM /GeV) cm 2 (68% CL) if it scales as the temperature squared. For such a limiting cross section, both the B-modes and the TT angular power spectrum are suppressed with respect to ΛCDM predictions for ℓ∼>500 and ℓ∼>3000 respectively, indicating that forthcoming data from CMB polarisation experiments and Planck could help to constrain and characterise the physics of the dark sector. This essentially initiates a new type of dark matter search that is independent of whether dark matter is annihilating, decaying or asymmetric. Thus, any CMB experiment with the ability to measure the temperature and/or polarisation power spectra at high ℓ should be able to investigate the potential interactions of dark matter and contribute to our fundamental understanding of its nature

  18. CMB anisotropies from patchy reionisation and diffuse Sunyaev-Zel'dovich effects

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian; Ringeval, Christophe, E-mail: christophe.ringeval@uclouvain.be, E-mail: christian.fidler@uclouvain.be [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium)

    2017-10-01

    Anisotropies in the Cosmic Microwave Background (CMB) can be induced during the later stages of cosmic evolution, and in particular during and after the Epoch of Reionisation. Inhomogeneities in the ionised fraction, but also in the baryon density, in the velocity fields and in the gravitational potentials are expected to generate correlated CMB perturbations. We present a complete relativistic treatment of all these effects, up to second order in perturbation theory, that we solve using the numerical Boltzmann code (\\SONG). The physical origin and relevance of all second order terms are carefully discussed. In addition to collisional and gravitational contributions, we identify the diffuse analogue of the blurring and kinetic Sunyaev-Zel'dovich (SZ) effects. Our approach naturally includes the correlations between the imprint from patchy reionisation and the diffuse SZ effects thereby allowing us to derive reliable estimates of the induced temperature and polarisation CMB angular power spectra. In particular, we show that the B -modes generated at intermediate length-scales (ℓ ≅ 100) have the same amplitude as the B -modes coming from primordial gravitational waves with a tensor-to-scalar ratio r =10{sup −4}.

  19. Constraints on the CMB temperature-redshift dependence from SZ and distance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Luzzi, G. [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France); Martins, C.J.A.P.; Monteiro, A.M.R.V.L., E-mail: A.Avgoustidis@damtp.cam.ac.uk, E-mail: gluzzi@lal.in2p3.fr, E-mail: Carlos.Martins@astro.up.pt, E-mail: up090322024@alunos.fc.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-02-01

    The relation between redshift and the CMB temperature, T{sub CMB}(z) = T{sub 0}(1+z) is a key prediction of standard cosmology, but is violated in many non-standard models. Constraining possible deviations to this law is an effective way to test the ΛCDM paradigm and search for hints of new physics. We present state-of-the-art constraints, using both direct and indirect measurements. In particular, we point out that in models where photons can be created or destroyed, not only does the temperature-redshift relation change, but so does the distance duality relation, and these departures from the standard behaviour are related, providing us with an opportunity to improve constraints. We show that current datasets limit possible deviations of the form T{sub CMB}(z) = T{sub 0}(1+z){sup 1−β} to be β = 0.004±0.016 up to a redshift z ∼ 3. We also discuss how, with the next generation of space and ground-based experiments, these constraints can be improved by more than one order of magnitude.

  20. Constraints on the CMB temperature-redshift dependence from SZ and distance measurements

    International Nuclear Information System (INIS)

    Avgoustidis, A.; Luzzi, G.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.

    2012-01-01

    The relation between redshift and the CMB temperature, T CMB (z) = T 0 (1+z) is a key prediction of standard cosmology, but is violated in many non-standard models. Constraining possible deviations to this law is an effective way to test the ΛCDM paradigm and search for hints of new physics. We present state-of-the-art constraints, using both direct and indirect measurements. In particular, we point out that in models where photons can be created or destroyed, not only does the temperature-redshift relation change, but so does the distance duality relation, and these departures from the standard behaviour are related, providing us with an opportunity to improve constraints. We show that current datasets limit possible deviations of the form T CMB (z) = T 0 (1+z) 1−β to be β = 0.004±0.016 up to a redshift z ∼ 3. We also discuss how, with the next generation of space and ground-based experiments, these constraints can be improved by more than one order of magnitude

  1. Echoes of inflationary first-order phase transitions in the CMB

    Directory of Open Access Journals (Sweden)

    Hongliang Jiang

    2017-02-01

    Full Text Available Cosmological phase transitions (CPTs, such as the Grand Unified Theory (GUT and the electroweak (EW ones, play a significant role in both particle physics and cosmology. In this letter, we propose to probe the first-order CPTs, by detecting gravitational waves (GWs which are generated during the phase transitions through the cosmic microwave background (CMB. If happened around the inflation era, the first-order CPTs may yield low-frequency GWs due to bubble dynamics, leaving imprints on the CMB. In contrast to the nearly scale-invariant primordial GWs caused by vacuum fluctuation, these bubble-generated GWs are scale dependent and have non-trivial B-mode spectra. If decoupled from inflaton, the EWPT during inflation may serve as a probe for the one after reheating where the baryon asymmetry could be generated via EW baryogenesis (EWBG. The CMB thus provides a potential way to test the feasibility of the EWBG, complementary to the collider measurements of Higgs potential and the direct detection of GWs generated during EWPT.

  2. Echoes of inflationary first-order phase transitions in the CMB

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongliang, E-mail: hjiangag@connect.ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Liu, Tao, E-mail: taoliu@ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Sun, Sichun, E-mail: sichun@uw.edu [Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Wang, Yi, E-mail: phyw@ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong)

    2017-02-10

    Cosmological phase transitions (CPTs), such as the Grand Unified Theory (GUT) and the electroweak (EW) ones, play a significant role in both particle physics and cosmology. In this letter, we propose to probe the first-order CPTs, by detecting gravitational waves (GWs) which are generated during the phase transitions through the cosmic microwave background (CMB). If happened around the inflation era, the first-order CPTs may yield low-frequency GWs due to bubble dynamics, leaving imprints on the CMB. In contrast to the nearly scale-invariant primordial GWs caused by vacuum fluctuation, these bubble-generated GWs are scale dependent and have non-trivial B-mode spectra. If decoupled from inflaton, the EWPT during inflation may serve as a probe for the one after reheating where the baryon asymmetry could be generated via EW baryogenesis (EWBG). The CMB thus provides a potential way to test the feasibility of the EWBG, complementary to the collider measurements of Higgs potential and the direct detection of GWs generated during EWPT.

  3. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    Science.gov (United States)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  4. INTRODUCING MEXICAN NEEDLETS FOR CMB ANALYSIS: ISSUES FOR PRACTICAL APPLICATIONS AND COMPARISON WITH STANDARD NEEDLETS

    International Nuclear Information System (INIS)

    Scodeller, S.; Rudjord, Oe.; Hansen, F. K.; Marinucci, D.; Geller, D.; Mayeli, A.

    2011-01-01

    Over the last few years, needlets have emerged as a useful tool for the analysis of cosmic microwave background (CMB) data. Our aim in this paper is first to introduce into the CMB literature a different form of needlets, known as Mexican needlets, first discussed in the mathematical literature by Geller and Mayeli. We then proceed with an extensive study of the properties of both standard and Mexican needlets; these properties depend on some parameters which can be tuned in order to optimize the performance for a given application. Our second aim in this paper is then to give practical advice on how to adjust these parameters for WMAP and Planck data in order to achieve the best properties for a given problem in CMB data analysis. In particular, we investigate localization properties in real and harmonic space and propose a recipe for quantifying the influence of galactic and point-source masks on the needlet coefficients. We also show that for certain parameter values, the Mexican needlets provide a close approximation to the Spherical Mexican Hat Wavelets (whence their name), with some advantages concerning their numerical implementation and derivation of their statistical properties.

  5. On the impact of large angle CMB polarization data on cosmological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lattanzi, Massimiliano; Mandolesi, Nazzareno; Natoli, Paolo [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara (Italy); Burigana, Carlo; Gruppuso, Alessandro; Trombetti, Tiziana [Istituto Nazionale di Astrofisica, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, Via Piero Gobetti 101, I-40129 Bologna (Italy); Gerbino, Martina [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Polenta, Gianluca [Agenzia Spaziale Italiana Science Data Center, Via del Politecnico snc, 00133, Roma (Italy); Salvati, Laura, E-mail: lattanzi@fe.infn.it, E-mail: burigana@iasfbo.inaf.it, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: nazzareno.mandolesi@unife.it, E-mail: paolo.natoli@unife.it, E-mail: gianluca.polenta@asdc.asi.it, E-mail: laura.salvati@ias.u-psud.fr, E-mail: trombetti@iasfbo.inaf.it [Dipartimento di Fisica, Università La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma (Italy)

    2017-02-01

    We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the ΛCDM model. To complement large-angle polarization, we consider the high resolution (or 'high-ℓ') CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck 's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ, roughly of order 2σ, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ = 0.066 {sup +0.012}{sub −0.013}, again very stable against the particular choice for high-ℓ data. We find that the amplitude of primordial fluctuations A {sub s} , notoriously degenerate with τ, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1σ. In particular, cleaning dust with Planck 's 353 GHz data imposes a 1σ downward shift in the value of the Hubble constant H {sub 0}, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low ℓ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-ℓ dataset employed.

  6. Optimization study for the experimental configuration of CMB-S4

    Science.gov (United States)

    Barron, Darcy; Chinone, Yuji; Kusaka, Akito; Borril, Julian; Errard, Josquin; Feeney, Stephen; Ferraro, Simone; Keskitalo, Reijo; Lee, Adrian T.; Roe, Natalie A.; Sherwin, Blake D.; Suzuki, Aritoki

    2018-02-01

    The CMB Stage 4 (CMB-S4) experiment is a next-generation, ground-based experiment that will measure the cosmic microwave background (CMB) polarization to unprecedented accuracy, probing the signature of inflation, the nature of cosmic neutrinos, relativistic thermal relics in the early universe, and the evolution of the universe. CMB-S4 will consist of O(500,000) photon-noise-limited detectors that cover a wide range of angular scales in order to probe the cosmological signatures from both the early and late universe. It will measure a wide range of microwave frequencies to cleanly separate the CMB signals from galactic and extra-galactic foregrounds. To advance the progress towards designing the instrument for CMB-S4, we have established a framework to optimize the instrumental configuration to maximize its scientific output. The framework combines cost and instrumental models with a cosmology forecasting tool, and evaluates the scientific sensitivity as a function of various instrumental parameters. The cost model also allows us to perform the analysis under a fixed-cost constraint, optimizing for the scientific output of the experiment given finite resources. In this paper, we report our first results from this framework, using simplified instrumental and cost models. We have primarily studied two classes of instrumental configurations: arrays of large-aperture telescopes with diameters ranging from 2–10 m, and hybrid arrays that combine small-aperture telescopes (0.5-m diameter) with large-aperture telescopes. We explore performance as a function of telescope aperture size, distribution of the detectors into different microwave frequencies, survey strategy and survey area, low-frequency noise performance, and balance between small and large aperture telescopes for hybrid configurations. Both types of configurations must cover both large (~ degree) and small (~ arcmin) angular scales, and the performance depends on assumptions for performance vs. angular scale

  7. CMB and the elementary particles structure deduced from QFT of non-dot model

    Science.gov (United States)

    Chen, Shao-Guang

    In my paper ‘Planck Constant Deduced from Metrical Results of Doppler Effect of Moving Particle —Uncertainty Principle Caused by Collision of a Particle with CMB Photons and Virtual Photons (H05-0036-10)’ the absolute velocity is decided by CMB which as a mark of the vacuum. CMB come from the thermal radiation of stars via gravitational redshift about 10 (13) year (E14- 0032-08). In my paper ‘Quanta turn-advance ism, China Science && Technology Overview 131 192-210 (2011)’, QFT four-dimensional uncertainty principle and momentum-energy conservation law had been generalized as a five-dimensional equations: de Broglie wavelength as a position vector \\underline{q}= (i c t, r, s), momentum \\underline{P} = (i E / c, P, U c), \\underline{q} = i h / \\underline{P}, \\underline{q} \\underline{q} = 0, \\underline{P} \\underline{P} = 0, Sigma∑ \\underline{P} = \\underline{P} (0) . The five-dimensional time-space-spin had been quantized as a non-dot model basic cell, the lowest energy state vertical polarized left spin 1/2 neutrino and right spin 1/2 antineutrino are just the left, right advance unit quanta _{0}nuυ, nuυ _{0} and left, right back unit quanta (0) nuυ, nuυ (0) , it again compose into spin 1 unit advance photons _{0}nuυnuυ _{0} and back (0) nuυnuυ (0) , spin 0 unit rest mass nuυ _{0}nuυ (0) and anti-mass _{0}nuυ (0) nuυ, spin 0 unit positive charge _{0}nuυnuυ (0) and negative charge nuυ _{0} (0) nuυ. It accord to the high energy physics experimental results of the transformation among the photons, masses quanta and charges quanta. The physical vacuum is the even collocation of non-combinational nuυ _{0} or _{0}nuυ. QFT is no longer with divergence difficulty by the non-dot model. It is mathematically easy that from five-dimensional equations deduce out the Dirac, Klein-Gordan, Maxwell equations and Lorentz force formula, but appear some new results. The interactions between _{0}nuυ, nuυ _{0}, (0) nuυ, nuυ (0) , i.e., force f

  8. CMB in a box: Causal structure and the Fourier-Bessel expansion

    International Nuclear Information System (INIS)

    Abramo, L. Raul; Reimberg, Paulo H.; Xavier, Henrique S.

    2010-01-01

    This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the sources of anisotropies inside the past light cone of the observer. This foretold manifestation of causality in position (real) space happens order by order in a series expansion in powers of the visibility γ=e -μ , where μ is the optical depth to Thomson scattering. We show that the contributions of order γ N to the cosmic microwave background (CMB) anisotropies are regulated by spacetime window functions which have support only inside the past light cone of the point of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence of the fact that the visibility function becomes exponentially small at redshifts z>>10 3 , effectively cutting off the past light cone and introducing a finite radius inside which initial conditions can affect physical observables measured at our position x-vector=0 and time t 0 . Hence, for each multipole l there is a discrete tower of momenta k il (not a continuum) which can affect physical observables, with the smallest momenta being k 1l ∼l. The Fourier-Bessel modes take into account precisely the information from the sources of anisotropies that propagates from the initial value surface to the point of observation - no more, no less. We also show that the physical observables (the temperature and polarization maps), and hence the angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel expansion is the optimal scheme with which one can compute CMB anisotropies.

  9. Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking

    Science.gov (United States)

    Rassat, Anais

    2016-07-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes are available online.

  10. Precision epoch of reionization studies with next-generation CMB experiments

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Erminia; Louis, Thibaut [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Hložek, Renée; Hil, J. Colin [Department of Astrophysical Science, Peyton Hall, 4 Ivy Lane, Princeton, NJ, 08544 (United States); Battaglia, Nick [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213 (United States); Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, ON, M5S 3H8 Canada (Canada); De Bernardis, Francesco; Henderson, Shawn; Niemack, Michael D. [Department of Physics, Cornell University, 109 Clark Hall, Ithaca, NY, 14853 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 315 Allen Hall, Pittsburgh, PA, 15260 (United States); McMahon, Jeff [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI, 48109 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4041 South Africa (South Africa); Newburgh, Laura [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON, M5S 3H4 Canada (Canada); Page, Lyman A. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Washington Road, Princeton, NJ, 08544 (United States); Partridge, Bruce [Department of Physics and Astronomy, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041 (United States); Sehgal, Neelima, E-mail: erminia.calabrese@astro.ox.ac.uk, E-mail: rhlozek@astro.princeton.edu [Physics and Astronomy Department, Stony Brook University, Stony Brook, NY, 11794 (United States); and others

    2014-08-01

    Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of reionization near ℓ=1500 in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range 300<ℓ<3000 with simulated temperature data from the full Planck mission in the low and intermediate ℓ region, 2<ℓ<2000. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than 1% accuracy. Assuming an efficient cleaning from multi-frequency channels of most foregrounds in the temperature data, we investigate the sensitivity to the only residual secondary component, the kinematic Sunyaev-Zel'dovich (kSZ) term. The CMB polarization is used to break degeneracies between primordial and secondary terms present in temperature and, in effect, to remove from the temperature data all but the residual kSZ term. We estimate a 15σ detection of the diffuse homogeneous kSZ signal from expected AdvACT temperature data at ℓ>1500, leading to a measurement of the amplitude of matter density fluctuations, σ{sub 8}, at 1% precision. Alternatively, by exploring the reionization signal encoded in the patchy kSZ measurements, we bound the time and duration of the reionization with σ(z{sub re})=1.1 and σ(Δz{sub re})=0.2. We find that these constraints degrade rapidly with large beam sizes, which highlights the importance of arcminute-scale resolution for future CMB surveys.

  11. The Role of the CMB in Redshift Related Departures from the Gao–Solomon Relation

    International Nuclear Information System (INIS)

    Tunnard, R.; Greve, T. R.

    2017-01-01

    A strong correlation between the far-IR and HCN(1−0) line luminosities, known as the Gao–Solomon relation, has been observed to hold over more than 10 orders of magnitude in the local universe. Departures from this relation at redshifts ≳1.5 have been interpreted as evidence for increased dense gas star formation efficiency in luminous galaxies during the period of peak of star formation in the history of the universe. We examine whether the offsets from the relation can be explained by the hotter Cosmic Microwave Background (CMB) at high redshift, which, due to a loss of contrast against the hotter background, reduces the observable molecular-line flux far more significantly than the far-IR continuum bands. Simple line-of-sight modeling argues for highly significant departures from the Gao–Solomon relation at high redshift for kinetic temperatures ∼15 K, while more complex toy-galaxy models based on NGC 1068 suggest a much weaker effect with the galaxy integrated HCN line flux falling by only 10% at z = 3, within the intrinsic scatter of the relation. We conclude that, while the CMB is unlikely to explain the deviations reported in the literature, it may introduce a second-order effect on the relation by raising the low-luminosity end of the Gao–Solomon relation in cooler galaxies. A similar examination of the CO-IR relation finds tantalizing signs of the CMB having a measurable effect on the integrated CO emission in high-redshift galaxies, but these signs cannot be confirmed with the current data.

  12. Adapted Method for Separating Kinetic SZ Signal from Primary CMB Fluctuations

    Directory of Open Access Journals (Sweden)

    Forni Olivier

    2005-01-01

    Full Text Available In this first attempt to extract a map of the kinetic Sunyaev-Zel'dovich (KSZ temperature fluctuations from the cosmic microwave background (CMB anisotropies, we use a method which is based on simple and minimal assumptions. We first focus on the intrinsic limitations of the method due to the cosmological signal itself. We demonstrate using simulated maps that the KSZ reconstructed maps are in quite good agreement with the original input signal with a correlation coefficient between original and reconstructed maps of on average, and an error on the standard deviation of the reconstructed KSZ map of only % on average. To achieve these results, our method is based on the fact that some first-step component separation provides us with (i a map of Compton parameters for the thermal Sunyaev-Zel'dovich (TSZ effect of galaxy clusters, and (ii a map of temperature fluctuations which is the sum of primary CMB and KSZ signals. Our method takes benefit from the spatial correlation between KSZ and TSZ effects which are both due to the same galaxy clusters. This correlation allows us to use the TSZ map as a spatial template in order to mask, in the map, the pixels where the clusters must have imprinted an SZ fluctuation. In practice, a series of TSZ thresholds is defined and for each threshold, we estimate the corresponding KSZ signal by interpolating the CMB fluctuations on the masked pixels. The series of estimated KSZ maps is finally used to reconstruct the KSZ map through the minimisation of a criterion taking into account two statistical properties of the KSZ signal (KSZ dominates over primary anisotropies at small scales, KSZ fluctuations are non-Gaussian distributed. We show that the results are quite sensitive to the effect of beam convolution, especially for large beams, and to the corruption by instrumental noise.

  13. The Role of the CMB in Redshift Related Departures from the Gao–Solomon Relation

    Energy Technology Data Exchange (ETDEWEB)

    Tunnard, R.; Greve, T. R., E-mail: richard.tunnard.13@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2017-11-01

    A strong correlation between the far-IR and HCN(1−0) line luminosities, known as the Gao–Solomon relation, has been observed to hold over more than 10 orders of magnitude in the local universe. Departures from this relation at redshifts ≳1.5 have been interpreted as evidence for increased dense gas star formation efficiency in luminous galaxies during the period of peak of star formation in the history of the universe. We examine whether the offsets from the relation can be explained by the hotter Cosmic Microwave Background (CMB) at high redshift, which, due to a loss of contrast against the hotter background, reduces the observable molecular-line flux far more significantly than the far-IR continuum bands. Simple line-of-sight modeling argues for highly significant departures from the Gao–Solomon relation at high redshift for kinetic temperatures ∼15 K, while more complex toy-galaxy models based on NGC 1068 suggest a much weaker effect with the galaxy integrated HCN line flux falling by only 10% at z = 3, within the intrinsic scatter of the relation. We conclude that, while the CMB is unlikely to explain the deviations reported in the literature, it may introduce a second-order effect on the relation by raising the low-luminosity end of the Gao–Solomon relation in cooler galaxies. A similar examination of the CO-IR relation finds tantalizing signs of the CMB having a measurable effect on the integrated CO emission in high-redshift galaxies, but these signs cannot be confirmed with the current data.

  14. SU(2)CMB at high redshifts and the value of H0

    Science.gov (United States)

    Hahn, Steffen; Hofmann, Ralf

    2017-07-01

    We investigate a high-z cosmological model to compute the comoving sound horizon rs at baryon-velocity freeze-out towards the end of hydrogen recombination. This model assumes a replacement of the conventional cosmic microwave background (CMB) photon gas by deconfining SU(2) Yang-Mills thermodynamics, three flavours of massless neutrinos (Nν = 3) and a purely baryonic matter sector [no cold dark-matter (CDM)]. The according SU(2) temperature-redshift relation of the CMB is contrasted with recent measurements appealing to the thermal Sunyaev-Zel'dovich effect and CMB-photon absorption by molecular rotation bands or atomic hyperfine levels. Relying on a realistic simulation of the ionization history throughout recombination, we obtain z* = 1693.55 ± 6.98 and zdrag = 1812.66 ± 7.01. Due to considerable widths of the visibility functions in the solutions to the associated Boltzmann hierarchy and Euler equation, we conclude that z* and zdrag overestimate the redshifts for the respective photon and baryon-velocity freeze-out. Realistic decoupling values turn out to be zlf,* = 1554.89 ± 5.18 and zlf, drag = 1659.30 ± 5.48. With rs(zlf, drag) = (137.19 ± 0.45) Mpc and the essentially model independent extraction of rsH0 = constant from low-z data in Bernal, Verde & Riess, we obtain a good match with the value H0 = (73.24 ± 1.74) km s-1 Mpc-1 extracted in Riess et al. by appealing to Cepheid-calibrated Type Ia supernovae, new parallax measurements, stronger constraints on the Hubble flow and a refined computation of distance to NGC 4258 from maser data. We briefly comment on a possible interpolation of our high-z model, invoking percolated and unpercolated U(1) topological solitons of a Planck-scale axion field, to the phenomenologically successful low-z ΛCDM cosmology.

  15. Using Big Bang Nucleosynthesis to extend CMB probes of neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Shimon, M.; Miller, N.J.; Fuller, G.M.; Keating, B.G. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA, 92093 (United States); Kishimoto, C.T. [Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095 (United States); Smith, C.J., E-mail: meirs@mamacass.ucsd.edu, E-mail: nmiller@physics.ucsd.edu, E-mail: ckishimo@physics.ucsd.edu, E-mail: christel.smith@asu.edu, E-mail: gfuller@ucsd.edu, E-mail: bkeating@ucsd.edu [Department of Physics, Arizona State University, Tempe, AZ, 85287 (United States)

    2010-05-01

    We present calculations showing that upcoming Cosmic Microwave Background (CMB) experiments will have the power to improve on current constraints on neutrino masses and provide new limits on neutrino degeneracy parameters. The latter could surpass those derived from Big Bang Nucleosynthesis (BBN) and the observationally-inferred primordial helium abundance. These conclusions derive from our Monte Carlo Markov Chain (MCMC) simulations which incorporate a full BBN nuclear reaction network. This provides a self-consistent treatment of the helium abundance, the baryon number, the three individual neutrino degeneracy parameters and other cosmological parameters. Our analysis focuses on the effects of gravitational lensing on CMB constraints on neutrino rest mass and degeneracy parameter. We find for the PLANCK experiment that total (summed) neutrino mass M{sub ν} > 0.29 eV could be ruled out at 2σ or better. Likewise neutrino degeneracy parameters ξ{sub ν{sub e}} > 0.11 and |ξ{sub ν{sub μ{sub /{sub τ}}}}| > 0.49 could be detected or ruled out at 2σ confidence, or better. For POLARBEAR we find that the corresponding detectable values are M{sub ν} > 0.75 eV, ξ{sub ν{sub e}} > 0.62, and |ξ{sub ν{sub μ{sub /{sub τ}}}}| > 1.1, while for EPIC we obtain M{sub ν} > 0.20 eV, ξ{sub ν{sub e}} > 0.045, and |ξ{sub ν{sub μ{sub /{sub τ}}}}| > 0.29. Our forcast for EPIC demonstrates that CMB observations have the potential to set constraints on neutrino degeneracy parameters which are better than BBN-derived limits and an order of magnitude better than current WMAP-derived limits.

  16. Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation

    Science.gov (United States)

    Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.

    2015-11-01

    We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.

  17. Primordial helium abundance from CMB: A constraint from recent observations and a forecast

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Sekiguchi, Toyokazu; Takahashi, Tomo

    2008-01-01

    We studied a constraint on the primordial helium abundance Y p from current and future observations of CMB. Using the currently available data from WMAP, ACBAR, CBI, and BOOMERANG, we obtained the constraint as Y p =0.25 -0.07 +0.10 at 68% confidence level. We also provide a forecast for the Planck experiment using the Markov chain Monte Carlo approach. In addition to forecasting the constraint on Y p , we investigate how assumptions for Y p affect constraints on the other cosmological parameters.

  18. Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Errard, Josquin [Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris (France); Feeney, Stephen M.; Jaffe, Andrew H. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Peiris, Hiranya V., E-mail: josquin.errard@lpnhe.in2p3.fr, E-mail: s.feeney@imperial.ac.uk, E-mail: h.peiris@ucl.ac.uk, E-mail: a.jaffe@imperial.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-03-01

    Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)∼1.3×10{sup −4}, σ(n{sub t})∼0

  19. CMB constraints on the inflaton couplings and reheating temperature in α-attractor inflation

    Science.gov (United States)

    Drewes, Marco; Kang, Jin U.; Mun, Ui Ri

    2017-11-01

    We study reheating in α-attractor models of inflation in which the inflaton couples to other scalars or fermions. We show that the parameter space contains viable regions in which the inflaton couplings to radiation can be determined from the properties of CMB temperature fluctuations, in particular the spectral index. This may be the only way to measure these fundamental microphysical parameters, which shaped the universe by setting the initial temperature of the hot big bang and contain important information about the embedding of a given model of inflation into a more fundamental theory of physics. The method can be applied to other models of single field inflation.

  20. Planck 2015 results: XI. CMB power spectra, likelihoods, and robustness of parameters

    DEFF Research Database (Denmark)

    Aghanim, N.; Arnaud, M.; Ashdown, M.

    2016-01-01

    on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (ℓ data and of Planck polarization......This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based...... information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck...

  1. On the determination of neutrino masses and dark energy evolution from the cross-correlation of CMB and LSS

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Takahashi, Tomo

    2008-01-01

    We discuss the possibilities of the simultaneous determination of the neutrino masses and the evolution of dark energy from future cosmological observations such as cosmic microwave background (CMB), large scale structure (LSS) and the cross-correlation between them. Recently it has been discussed that there is a degeneracy between the neutrino masses and the equation of state for dark energy. It is also known that there are some degeneracies among the parameters describing the dark energy evolution. We discuss the implications of these for the cross-correlation of CMB with LSS in some detail. Then we consider to what extent we can determine the neutrino masses and the dark energy evolution using the expected data from CMB, LSS and their cross-correlation

  2. Fermi Non-detections of Four X-Ray Jet Sources and Implications for the IC/CMB Mechanism

    Science.gov (United States)

    Breiding, Peter; Meyer, Eileen T.; Georganopoulos, Markos; Keenan, M. E.; DeNigris, N. S.; Hewitt, Jennifer

    2017-11-01

    Since its launch in 1999, the Chandra X-ray observatory has discovered several dozen X-ray jets associated with powerful quasars. In many cases, the X-ray spectrum is hard and appears to come from a second spectral component. The most popular explanation for the kpc-scale X-ray emission in these cases has been inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by relativistic electrons in the jet (the IC/CMB model). Requiring the IC/CMB emission to reproduce the observed X-ray flux density inevitably predicts a high level of gamma-ray emission, which should be detectable with the Fermi Large Area Telescope (LAT). In previous work, we found that gamma-ray upper limits from the large-scale jets of 3C 273 and PKS 0637-752 violate the predictions of the IC/CMB model. Here, we present Fermi/LAT flux density upper limits for the X-ray jets of four additional sources: PKS 1136-135, PKS 1229-021, PKS 1354+195, and PKS 2209+080. We show that these limits violate the IC/CMB predictions at a very high significance level. We also present new Hubble Space Telescope observations of the quasar PKS 2209+080 showing a newly detected optical jet, and Atacama Large Millimeter/submillimeter Array band 3 and 6 observations of all four sources, which provide key constraints on the spectral shape that enable us to rule out the IC/CMB model.

  3. Transformation of the angular power spectrum of the Cosmic Microwave Background (CMB) radiation into reciprocal spaces and consequences of this approach

    Czech Academy of Sciences Publication Activity Database

    Červinka, Ladislav

    2011-01-01

    Roč. 2, č. 11 (2011), s. 1331-1347 ISSN 2153-120X Institutional research plan: CEZ:AV0Z10100521 Keywords : CMB radiation * analysis of CMB spectrum * radial distribution function of objects * early universe cluster structure * density of ordinary matter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  4. Local properties of the large-scale peaks of the CMB temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander (Spain)

    2017-05-01

    In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks is performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.

  5. How CMB and large-scale structure constrain chameleon interacting dark energy

    International Nuclear Information System (INIS)

    Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y.

    2015-01-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H 0 tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H 0 value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys

  6. Cosmological constraint on the light gravitino mass from CMB lensing and cosmic shear

    Energy Technology Data Exchange (ETDEWEB)

    Osato, Ken; Yoshida, Naoki [Department of Physics, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033 (Japan); Sekiguchi, Toyokazu [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland); Shirasaki, Masato [National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588 (Japan); Kamada, Ayuki, E-mail: ken.osato@utap.phys.s.u-tokyo.ac.jp, E-mail: toyokazu.sekiguchi@gmail.com, E-mail: masato.shirasaki@nao.ac.jp, E-mail: ayuki.kamada@ucr.edu, E-mail: naoki.yoshida@phys.s.u-tokyo.ac.jp [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States)

    2016-06-01

    Light gravitinos of mass ∼< O (10) eV are of particular interest in cosmology, offering various baryogenesis scenarios without suffering from the cosmological gravitino problem. The gravitino may contribute considerably to the total matter content of the Universe and affect structure formation from early to present epochs. After the gravitinos decouple from other particles in the early Universe, they free-stream and consequently suppress density fluctuations of (sub-)galactic length scales. Observations of structure at the relevant length-scales can be used to infer or constrain the mass and the abundance of light gravitinos. We derive constraints on the light gravitino mass using the data of cosmic microwave background (CMB) lensing from Planck and of cosmic shear from the Canada France Hawaii Lensing Survey survey, combined with analyses of the primary CMB anisotropies and the signature of baryon acoustic oscillations in galaxy distributions. The obtained constraint on the gravitino mass is m {sub 3/2} < 4.7 eV (95 % C.L.), which is substantially tighter than the previous constraint from clustering analysis of Ly-α forests.

  7. Searching for cosmic strings in CMB anisotropy maps using wavelets and curvelets

    International Nuclear Information System (INIS)

    Hergt, Lukas; Amara, Adam; Kacprzak, Tomasz; Réfrégier, Alexandre; Brandenberger, Robert

    2017-01-01

    We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10 −7 .

  8. Impact of theoretical assumptions in the determination of the neutrino effective number from future CMB measurements

    Science.gov (United States)

    Capparelli, Ludovico; Di Valentino, Eleonora; Melchiorri, Alessandro; Chluba, Jens

    2018-03-01

    One of the major goals of future cosmic microwave background (CMB) measurements is the accurate determination of the effective number of neutrinos Neff. Reaching an experimental sensitivity of Δ Neff=0.013 could indeed falsify the presence of any nonstandard relativistic particles at 95% C.L. In this paper, we test how this future constraint can be affected by the removal of two common assumptions: a negligible running of the inflationary spectral index nrun and a precise determination of the neutron lifetime τn. We first show that the constraints on Neff could be significantly biased by the unaccounted presence of a running of the spectral index. Considering the Stage-IV experiment, a negative running of d n /d ln k =-0.002 could mimic a positive variation of Δ Neff=0.03 . Moreover, given the current discrepancies between experimental measurements of the neutron lifetime τn, we show that the assumption of a conservative error of Δ τn˜10 s could cause a systematic error of Δ Neff=0.02 . Complementary cosmological constraints on the running of the spectral index and a solution to the neutron lifetime discrepancy are therefore needed for an accurate and reliable future CMB bound of Neff at the percent level.

  9. The CMB neutrino mass/vacuum energy degeneracy: a simple derivation of the degeneracy slopes

    Science.gov (United States)

    Sutherland, Will

    2018-06-01

    It is well known that estimating cosmological parameters from cosmic microwave background (CMB) data alone results in a significant degeneracy between the total neutrino mass and several other cosmological parameters, especially the Hubble constant H0 and the matter density parameter Ωm. Adding low-redshift measurements such as baryon acoustic oscillations (BAOs) breaks this degeneracy and greatly improves the constraints on neutrino mass. The sensitivity is surprisingly high, for example, adding the ˜1 percent measurement of the BAO ratio rs/DV from the BOSS survey leads to a limit Σ mν matter ratio (xν ≡ ων/ωcb) and the shifts in other cosmological parameters. The resulting multipliers are substantially larger than 1: conserving the CMB sound horizon angle requires parameter shifts δln H0 ≈ -2 δxν, δln Ωm ≈ +5 δxν, δln ωΛ ≈ -6.2 δxν, and most notably δωΛ ≈ -14 δων. These multipliers give an intuitive derivation of the degeneracy direction, which agrees well with the numerical likelihood results from the Planck team.

  10. Constraints on early dark energy from CMB lensing and weak lensing tomography

    International Nuclear Information System (INIS)

    Hollenstein, Lukas; Crittenden, Robert; Sapone, Domenico; Schäfer, Björn Malte

    2009-01-01

    Dark energy can be studied by its influence on the expansion of the Universe as well as on the growth history of the large-scale structure. In this paper, we follow the growth of the cosmic density field in early dark energy cosmologies by combining observations of the primary CMB temperature and polarisation power spectra at high redshift, of the CMB lensing deflection field at intermediate redshift and of weak cosmic shear at low redshifts for constraining the allowed amount of early dark energy. We present these forecasts using the Fisher matrix formalism and consider the combination of Planck data with the weak lensing survey of Euclid. We find that combining these data sets gives powerful constraints on early dark energy and is able to break degeneracies in the parameter set inherent to the various observational channels. The derived statistical 1σ-bound on the early dark energy density parameter is σ(Ω e d ) = 0.0022 which suggests that early dark energy models can be well examined in our approach. In addition, we derive the dark energy figure of merit for the considered dark energy parameterisation and comment on the applicability of the growth index to early dark energy cosmologies

  11. On the Origins of the CMB: Insight from the COBE, WMAP, and Relikt-1 Satellites

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available The powerful “Cosmic Microwave Background (CMB” signal currently associated with the origins of the Universe is examined from a historical perspective and relative to the experimental context in which it was measured. Results from the COBE satellite are reviewed, with particular emphasis on the systematic error observed in determining the CMB temperature. The nature of the microwave signal emanating from the oceans is also discussed. From this analysis, it is demonstrated that it is improper for the COBE team to model the Earth as a 285 K blackbody source. The assignment of temperatures to objects that fail to meet the requirements set forth in Kirchhoff’s law constitutes a serious overextension of the laws of thermal emission. Using this evidence, and the general rule that powerful signals are associated with proximal sources, the CMB monopole signal is reassigned to the oceans. In turn, through the analysis of COBE, WMAP, and Relikt-1 data, the dipole signal is attributed to motion through a much weaker microwave field present both at the position of the Earth and at the second Lagrange point.

  12. Searching for cosmic strings in CMB anisotropy maps using wavelets and curvelets

    Energy Technology Data Exchange (ETDEWEB)

    Hergt, Lukas; Amara, Adam; Kacprzak, Tomasz; Réfrégier, Alexandre [ETH Zurich, Department of Physics, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Brandenberger, Robert, E-mail: hergtl@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: rhb@physics.mcgill.ca, E-mail: tomasz.kacprzak@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch [Physics Department, McGill University, Montreal, QC, H3A 2T8 (Canada)

    2017-06-01

    We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10{sup −7}.

  13. Constraints on reconstructed dark energy model from SN Ia and BAO/CMB observations

    Energy Technology Data Exchange (ETDEWEB)

    Mamon, Abdulla Al [Manipal University, Manipal Centre for Natural Sciences, Manipal (India); Visva-Bharati, Department of Physics, Santiniketan (India); Bamba, Kazuharu [Fukushima University, Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima (Japan); Das, Sudipta [Visva-Bharati, Department of Physics, Santiniketan (India)

    2017-01-15

    The motivation of the present work is to reconstruct a dark energy model through the dimensionless dark energy function X(z), which is the dark energy density in units of its present value. In this paper, we have shown that a scalar field φ having a phenomenologically chosen X(z) can give rise to a transition from a decelerated to an accelerated phase of expansion for the universe. We have examined the possibility of constraining various cosmological parameters (such as the deceleration parameter and the effective equation of state parameter) by comparing our theoretical model with the latest Type Ia Supernova (SN Ia), Baryon Acoustic Oscillations (BAO) and Cosmic Microwave Background (CMB) radiation observations. Using the joint analysis of the SN Ia+BAO/CMB dataset, we have also reconstructed the scalar potential from the parametrized X(z). The relevant potential is found, a polynomial in φ. From our analysis, it has been found that the present model favors the standard ΛCDM model within 1σ confidence level. (orig.)

  14. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    Directory of Open Access Journals (Sweden)

    Dai G. Yamazaki

    2010-01-01

    Full Text Available Magnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF would be expected to manifest itself in the cosmic microwave background (CMB temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude Bλ and the power spectral index nB which have been deduced from the available CMB observational data by using our computational framework.

  15. Sensitivity of molecular marker-based CMB models to biomass burning source profiles

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Zheng, Mei; Wang, Bo

    To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30-50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30-50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.

  16. Probing features in inflaton potential and reionization history with future CMB space observations

    Science.gov (United States)

    Hazra, Dhiraj Kumar; Paoletti, Daniela; Ballardini, Mario; Finelli, Fabio; Shafieloo, Arman; Smoot, George F.; Starobinsky, Alexei A.

    2018-02-01

    We consider the prospects of probing features in the primordial power spectrum with future Cosmic Microwave Background (CMB) polarization measurements. In the scope of the inflationary scenario, such features in the spectrum can be produced by local non-smooth pieces in an inflaton potential (smooth and quasi-flat in general) which in turn may originate from fast phase transitions during inflation in other quantum fields interacting with the inflaton. They can fit some outliers in the CMB temperature power spectrum which are unaddressed within the standard inflationary ΛCDM model. We consider Wiggly Whipped Inflation (WWI) as a theoretical framework leading to improvements in the fit to the Planck 2015 temperature and polarization data in comparison with the standard inflationary models, although not at a statistically significant level. We show that some type of features in the potential within the WWI models, leading to oscillations in the primordial power spectrum that extend to intermediate and small scales can be constrained with high confidence (at 3σ or higher confidence level) by an instrument as the Cosmic ORigins Explorer (CORE). In order to investigate the possible confusion between inflationary features and footprints from the reionization era, we consider an extended reionization history with monotonic increase of free electrons with decrease in redshift. We discuss the present constraints on this model of extended reionization and future predictions with CORE. We also project, to what extent, this extended reionization can create confusion in identifying inflationary features in the data.

  17. Gravitational waves in axion inflation: implications for CMB and small-scales interferometer measurements

    Science.gov (United States)

    Unal, Caner; Peloso, Marco; Sorbo, Lorenzo; Garcia-Bellido, Juan

    2017-01-01

    A strong experimental effort is ongoing to detect the primordial gravitational waves (GW) generated during inflation from their impact on the Cosmic Microwave Background (CMB). This effort is motivated by the direct relation between the amplitude of GW signal and the energy scale of inflation, in the standard case of GW production from vacuum. I will discuss the robustness of this relation and the conditions under which particle production mechanisms during inflation can generate a stronger GW signal than the vacuum one. I will present a concrete model employing a coupling between a rolling axion and a gauge field, that can produce a detectable GW signal for an arbitrarily small inflation scale, respecting bounds from back-reaction, perturbativity, and the gaussianity of the measured density perturbations. I will show how the GW produced by this mechanism can be distinguished from the vacuum ones by their spectral dependence and statistical properties. I will finally discuss the possibility of detecting an inflationary GW signal at terrestrial (AdvLIGO) and space (LISA) interferometers. Such experiments are sensitive to the modes much smaller than the ones corresponding to CMB and Large Scale Structure, presenting a unique observational window on the final stages of inflation. The work of C.U. is s supported by a Doctoral Dissertation Fellowship from the Graduate School of the University of Minnesota.

  18. Requirements for existing buildings

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Wittchen, Kim Bjarne

    This report collects energy performance requirements for existing buildings in European member states by June 2012.......This report collects energy performance requirements for existing buildings in European member states by June 2012....

  19. Greening Existing Tribal Buildings

    Science.gov (United States)

    Guidance about improving sustainability in existing tribal casinos and manufactured homes. Many steps can be taken to make existing buildings greener and healthier. They may also reduce utility and medical costs.

  20. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, Srinivasan; Patil, Sanjaykumar; Bianchini, Federico; Reichardt, Christian L. [School of Physics, University of Melbourne, 313 David Caro building, Swanston St and Tin Alley, Parkville VIC 3010 (Australia); Baxter, Eric J. [Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA 19104 (United States); Bleem, Lindsey E. [Argonne National Laboratory, High-Energy Physics Division, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Crawford, Thomas M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Holder, Gilbert P. [Department of Astronomy and Department of Physics, University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Manzotti, Alessandro, E-mail: srinivasan.raghunathan@unimelb.edu.au, E-mail: s.patil2@student.unimelb.edu.au, E-mail: ebax@sas.upenn.edu, E-mail: federico.bianchini@unimelb.edu.au, E-mail: bleeml@uchicago.edu, E-mail: tcrawfor@kicp.uchicago.edu, E-mail: gholder@illinois.edu, E-mail: manzotti@uchicago.edu, E-mail: christian.reichardt@unimelb.edu.au [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-08-01

    We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.

  1. The BAHAMAS project: the CMB-large-scale structure tension and the roles of massive neutrinos and galaxy formation

    Science.gov (United States)

    McCarthy, Ian G.; Bird, Simeon; Schaye, Joop; Harnois-Deraps, Joachim; Font, Andreea S.; van Waerbeke, Ludovic

    2018-05-01

    Recent studies have presented evidence for tension between the constraints on Ωm and σ8 from the cosmic microwave background (CMB) and measurements of large-scale structure (LSS). This tension can potentially be resolved by appealing to extensions of the standard model of cosmology and/or untreated systematic errors in the modelling of LSS, of which baryonic physics has been frequently suggested. We revisit this tension using, for the first time, carefully calibrated cosmological hydrodynamical simulations, which thus capture the backreaction of the baryons on the total matter distribution. We have extended the BAryons and HAloes of MAssive Sysmtes simulations to include a treatment of massive neutrinos, which currently represents the best-motivated extension to the standard model. We make synthetic thermal Sunyaev-Zel'dovich effect, weak galaxy lensing, and CMB lensing maps and compare to observed auto- and cross-power spectra from a wide range of recent observational surveys. We conclude that: (i) in general, there is tension between the primary CMB and LSS when adopting the standard model with minimal neutrino mass; (ii) after calibrating feedback processes to match the gas fractions of clusters, the remaining uncertainties in the baryonic physics modelling are insufficient to reconcile this tension; and (iii) if one accounts for internal tensions in the Planck CMB data set (by allowing the lensing amplitude, ALens, to vary), invoking a non-minimal neutrino mass, typically of 0.2-0.4 eV, can resolve the tension. This solution is fully consistent with separate constraints from the primary CMB and baryon acoustic oscillations.

  2. Do joint CMB and HST data support a scale invariant spectrum?

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, Micol; Graef, Leila L.; Alcaniz, Jailson S., E-mail: micolbenetti@on.br, E-mail: leilagraef@on.br, E-mail: alcaniz@on.br [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro, RJ (Brazil)

    2017-04-01

    We combine current measurements of the local expansion rate, H {sub 0}, and Big Bang Nucleosynthesis (BBN) estimates of helium abundance with the latest cosmic microwave background (CMB) data from the Planck Collaboration to discuss the observational viability of the scale invariant Harrison-Zeldovch-Peebles (HZP) spectrum. We also analyze some of its extensions, namely, HZP + Y {sub P} and HZP + N {sub eff}, where Y {sub P} is the primordial helium mass fraction and N {sub eff} is the effective number of relativistic degrees of freedom. We perform a Bayesian analysis and show that the latter model is favored with respect to the standard cosmology for values of N {sub eff} lying in the interval 3.70 ± 0.13 (1σ), which is currently allowed by some independent analyses.

  3. CMB B-mode auto-bispectrum produced by primordial gravitational waves

    Science.gov (United States)

    Tahara, Hiroaki W. H.; Yokoyama, Jun'ichi

    2018-01-01

    Gravitational waves from inflation induce polarization patterns in the cosmic microwave background (CMB). It is known that there are only two types of non-Gaussianities of the gravitational waves in the most general covariant scalar field theory having second-order field equations, namely, generalized G-inflation. One originates from the inherent non-Gaussianity in general relativity, and the other from a derivative coupling between the Einstein tensor and the scalar field. We calculate polarization bispectra induced by these non-Gaussianities by transforming them into separable forms by virtue of the Laplace transformation. It is shown that future experiments can constrain the new one but cannot detect the general relativistic one.

  4. Constraints on hidden photons from current and future observations of CMB spectral distortions

    International Nuclear Information System (INIS)

    Kunze, Kerstin E.; Vázquez-Mozo, Miguel Á.

    2015-01-01

    A variety of beyond the standard model scenarios contain very light hidden sector U(1) gauge bosons undergoing kinetic mixing with the photon. The resulting oscillation between ordinary and hidden photons leads to spectral distortions of the cosmic microwave background. We update the bounds on the mixing parameter χ 0 and the mass of the hidden photon m γ' for future experiments measuring CMB spectral distortions, such as PIXIE and PRISM/COrE. For 10 −14  eV∼< m γ' ∼< 10 −13  eV, we find the kinetic mixing angle χ 0 has to be less than 10 −8 at 95% CL. These bounds are more than an order of magnitude stronger than those derived from the COBE/FIRAS data

  5. Fast and accurate CMB computations in non-flat FLRW universes

    Science.gov (United States)

    Lesgourgues, Julien; Tram, Thomas

    2014-09-01

    We present a new method for calculating CMB anisotropies in a non-flat Friedmann universe, relying on a very stable algorithm for the calculation of hyperspherical Bessel functions, that can be pushed to arbitrary precision levels. We also introduce a new approximation scheme which gradually takes over in the flat space limit and leads to significant reductions of the computation time. Our method is implemented in the Boltzmann code class. It can be used to benchmark the accuracy of the camb code in curved space, which is found to match expectations. For default precision settings, corresponding to 0.1% for scalar temperature spectra and 0.2% for scalar polarisation spectra, our code is two to three times faster, depending on curvature. We also simplify the temperature and polarisation source terms significantly, so the different contributions to the Cl 's are easy to identify inside the code.

  6. Fast and accurate CMB computations in non-flat FLRW universes

    CERN Document Server

    Lesgourgues, Julien

    2014-01-01

    We present a new method for calculating CMB anisotropies in a non-flat Friedmann universe, relying on a very stable algorithm for the calculation of hyperspherical Bessel functions, that can be pushed to arbitrary precision levels. We also introduce a new approximation scheme which gradually takes over in the flat space limit, and significant speeds-up calculations. Our method is implemented in the Boltzmann code CLASS. It can be used to benchmark the accuracy of the CAMB code in curved space, which is found to match expectations. For default precision settings, corresponding to 0.1% for scalar temperature spectra and 0.2% for scalar polarisation spectra, our code is two to three times faster, depending on curvature. We also simplify the temperature and polarisation source terms significantly, so the different contributions to the $C_\\ell$'s are easy to identify inside the code.

  7. Fast and accurate CMB computations in non-flat FLRW universes

    International Nuclear Information System (INIS)

    Lesgourgues, Julien; Tram, Thomas

    2014-01-01

    We present a new method for calculating CMB anisotropies in a non-flat Friedmann universe, relying on a very stable algorithm for the calculation of hyperspherical Bessel functions, that can be pushed to arbitrary precision levels. We also introduce a new approximation scheme which gradually takes over in the flat space limit and leads to significant reductions of the computation time. Our method is implemented in the Boltzmann code class. It can be used to benchmark the accuracy of the camb code in curved space, which is found to match expectations. For default precision settings, corresponding to 0.1% for scalar temperature spectra and 0.2% for scalar polarisation spectra, our code is two to three times faster, depending on curvature. We also simplify the temperature and polarisation source terms significantly, so the different contributions to the C ℓ  's are easy to identify inside the code

  8. Impact of reionization on CMB polarization tests of slow-roll inflation

    International Nuclear Information System (INIS)

    Mortonson, Michael J.; Hu, Wayne

    2008-01-01

    Estimates of inflationary parameters from the CMB B-mode polarization spectrum on the largest scales depend on knowledge of the reionization history, especially at low tensor-to-scalar ratio. Assuming an incorrect reionization history in the analysis of such polarization data can strongly bias the inflationary parameters. One consequence is that the single-field slow-roll consistency relation between the tensor-to-scalar ratio and tensor tilt might be excluded with high significance even if this relation holds in reality. We explain the origin of the bias and present case studies with various tensor amplitudes and noise characteristics. A more model-independent approach can account for uncertainties about reionization, and we show that parametrizing the reionization history by a set of its principal components with respect to E-mode polarization removes the bias in inflationary parameter measurement with little degradation in precision

  9. Multichroic Antenna-Coupled Bolometers for CMB Polarization and Sub-mm Observations

    Science.gov (United States)

    Lee, Adrian

    We propose to develop planar antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization log-periodic antenna with a 4:1-bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. The advantages of this approach, compared with those using conventional single-color pixels, include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands. These advantages have the potential to greatly reduce the cost and/or increase the performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization measurements, a wide frequency range of roughly 30 to 300 GHz is required to subtract galactic foregrounds. The multichroic architecture we propose enables a relatively low-cost 30-cm aperture space mission to have sufficient sensitivity to probe below the tensor-to-scalar ratio r = 0.01. For a larger aperture mission, such as the EPIC-IM concept, the proposed technology could reduce the focal-plane mass by a factor of 2-3, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR ground-based CMB polarization experiment now operating in Chile. That experiment uses a single-band planar antenna and produces excellent beam properties and optical efficiency. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Building on these accomplishments, the deliverables for the proposed work include: *Two pixel types that together cover the range from 30 to 300 GHz. The low-frequency pixel will have bands centered at 35, 50, and 80 GHz and the high frequency pixel will have bands centered at 120, 180, and 270

  10. Studying Heavy Ion Collisions Using Methods From Cosmic Microwave Background (CMB Analysis

    Directory of Open Access Journals (Sweden)

    Gaardhøje J. J.

    2014-04-01

    Full Text Available We present and discuss a framework for studying the morphology of high-multiplicity events from relativistic heavy ion collisions using methods commonly employed in the analysis of the photons from the Cosmic Microwave Background (CMB. The analysis is based on the decomposition of the distribution of the number density of (charged particles expressed in polar and azimuthal coordinates into a sum of spherical harmonic functions. We present an application of the method exploting relevant symmetries to the study of azimuthal correlations arizing from collective flow among charged particles produced in relativistic heavy ion collisions. We discuss perspectives for event-by- event analyses, which with increasing collision energy will eventually open entirely new dimensions in the study of ultrarelaticistic heavy ion reactions.

  11. CMB anomalies and the effects of local features of the inflaton potential

    Energy Technology Data Exchange (ETDEWEB)

    Cadavid, Alexander Gallego [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); ICRANet, Pescara (Italy); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Romano, Antonio Enea [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); University of Torino, Department of Physics, Turin (Italy); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Gariazzo, Stefano [University of Torino, Department of Physics, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Paterna, Valencia (Spain)

    2017-04-15

    Recent analysis of the WMAP and Planck data have shown the presence of a dip and a bump in the spectrum of primordial perturbations at the scales k = 0.002 Mpc{sup -1}, respectively. We analyze for the first time the effects of a local feature in the inflaton potential to explain the observed deviations from scale invariance in the primordial spectrum. We perform a best-fit analysis of the cosmic microwave background (CMB) radiation temperature and polarization data. The effects of the features can improve the agreement with observational data respect to the featureless model. The best-fit local feature affects the primordial curvature spectrum mainly in the region of the bump, leaving the spectrum unaffected on other scales. (orig.)

  12. Strongly scale-dependent CMB dipolar asymmetry from super-curvature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Christian [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Domènech, Guillem; Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Takahashi, Tomo, E-mail: C.Byrnes@sussex.ac.uk, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: tomot@cc.saga-u.ac.jp [Department of Physics, Saga University, Saga 840-8502 (Japan)

    2016-12-01

    We reconsider the observed CMB dipolar asymmetry in the context of open inflation, where a supercurvature mode might survive the bubble nucleation. If such a supercurvature mode modulates the amplitude of the curvature power spectrum, it would easily produce an asymmetry in the power spectrum. We show that current observational data can be accommodated in a three-field model, with simple quadratic potentials and a non-trivial field-space metric. Despite the presence of three fields, we believe this model is so far the simplest that can match current observations. We are able to match the observed strong scale dependence of the dipolar asymmetry, without a fine tuning of initial conditions, breaking slow roll or adding a feature to the evolution of any field.

  13. Atacama Cosmology Telescope: Polarization calibration analysis for CMB measurements with ACTPol and Advanced ACTPol

    Science.gov (United States)

    Koopman, Brian; ACTPol Collaboration

    2015-04-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade for the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. Achieving first light in 2013, ACTPol is entering its third observation season. Advanced ACTPol is a next generation upgrade for ACTPol, with additional frequencies, polarization modulation, and new detector arrays, that will begin in 2016. I will first present an overview of the two projects and then focus on describing the methods used for polarization angle calibration of the ACTPol detectors. These methods utilize polarization ray tracing in the optical design software CODEV together with detector positions determined from planet observations and represent a critical input for mapping the polarization of the CMB.

  14. ACTPol: Status and preliminary CMB polarization results from the Atacama Cosmology Telescope

    Science.gov (United States)

    Koopman, Brian

    2014-03-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade for the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. In summer 2013, ACTPol achieved first light with one third of the final detector configuration. The remaining two thirds of the detector array will be installed during spring 2014, enabling full sensitivity, high resolution, observations at both 90 GHz and 150 GHz. Using approximately 3,000 transition-edge sensor bolometers, ACTPol will enable measurements of small angular scale polarization anisotropies in the Cosmic Microwave Background (CMB). I will present a status update for the ACTPol receiver and some preliminary results. ACTPol measurements will allow us to probe the spectral index of inflation as well as to constrain early dark energy and the sum of neutrino masses.

  15. Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters

    CERN Document Server

    Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombo, L.P.L.; Combet, C.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Di Valentino, E.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Giard, M.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Holmes, W.A.; Hornstrup, A.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Lilley, M.; Linden-Vornle, M.; Lindholm, V.; Lopez-Caniego, M.; Macias-Perez, J.F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Meinhold, P.R.; Melchiorri, A.; Migliaccio, M.; Millea, M.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J.A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G.W.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; d'Orfeuil, B.Rouille; Rubino-Martin, J.A.; Rusholme, B.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Serra, P.; Spencer, L.D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-01-01

    This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of CMB temperature and polarization. They use the hybrid approach employed previously: pixel-based at low multipoles, $\\ell$, and a Gaussian approximation to the distribution of cross-power spectra at higher $\\ell$. The main improvements are the use of more and better processed data and of Planck polarization data, and more detailed foreground and instrumental models. More than doubling the data allows further checks and enhanced immunity to systematics. Progress in foreground modelling enables a larger sky fraction, contributing to enhanced precision. Improvements in processing and instrumental models further reduce uncertainties. Extensive tests establish robustness and accuracy, from temperature, from polarization, and from their combination, and show that the {\\Lambda}CDM model continues to offer a very good fit. We further validate the likelihood against specific extensions to this baseline, suc...

  16. Reconstruction of a direction-dependent primordial power spectrum from Planck CMB data

    Science.gov (United States)

    Durakovic, Amel; Hunt, Paul; Mukherjee, Suvodip; Sarkar, Subir; Souradeep, Tarun

    2018-02-01

    We consider the possibility that the primordial curvature perturbation is direction-dependent. To first order this is parameterised by a quadrupolar modulation of the power spectrum and results in statistical anisotropy of the CMB, which can be quantified using `bipolar spherical harmonics'. We compute these for the Planck DR2-2015 SMICA map and estimate the noise covariance from Planck Full Focal Plane 9 simulations. A constant quadrupolar modulation is detected with 2.2 σ significance, dropping to 2σ when the primordial power is assumed to scale with wave number k as a power law. Going beyond previous work we now allow the spectrum to have arbitrary scale-dependence. Our non-parametric reconstruction then suggests several spectral features, the most prominent at k ~ 0.006 Mpc‑1. When a constant quadrupolar modulation is fitted to data in the range 0.005 <= k/Mpc‑1 <= 0.008, its preferred directions are found to be related to the cosmic hemispherical asymmetry and the CMB dipole. To determine the significance we apply two test statistics to our reconstructions of the quadrupolar modulation from data, against reconstructions of realisations of noise only. With a test statistic sensitive only to the amplitude of the modulation, the reconstructions from the multipole range 30 <= l <= 1200 are unusual with 2.1σ significance. With the second test statistic, sensitive also to the direction, the significance rises to 6.9σ. Our approach is easily generalised to include other data sets such as polarisation, large-scale structure and forthcoming 21-cm line observations which will enable these anomalies to be investigated further.

  17. Emission-angle and polarization-rotation effects in the lensed CMB

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Antony [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Hall, Alex [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-08-01

    Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Born field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.

  18. How CMB and large-scale structure constrain chameleon interacting dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Boriero, Daniel [Fakultät für Physik, Universität Bielefeld, Universitätstr. 25, Bielefeld (Germany); Das, Subinoy [Indian Institute of Astrophisics, Bangalore, 560034 (India); Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2015-07-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.

  19. Improvement in momentum resolution of parent particles using mass constraint in the rest frame

    International Nuclear Information System (INIS)

    Bingül, Ahmet

    2017-01-01

    In particle physics, uncertainties in the reconstructed momentum of parent particles are introduced due to detector resolution. Traditionally, the momentum resolution of the parent particle is improved by minimizing a non-linear chi-square function via iterative methods. In this study, it is shown that the same chi-square minimization procedure results in a set of linear equations which can be solved non-iteratively in the center of mass frame of the parent particle. By using ALEPH full simulation data, the performance of the new method is compared with relatively slower iterative method for several decay channels. No significant difference between them is obtained in terms of improvement in momentum resolution. However, the new approach is found to be simple to implement and faster than that of traditional iterative method.

  20. Deep rest-frame far-UV spectroscopy of the giant Lyman α emitter 'Himiko'

    DEFF Research Database (Denmark)

    Zabl, J.; Nørgaard-Nielsen, Hans Ulrik; Fynbo, J. P. U.

    2015-01-01

    We present deep 10 h VLT/XSHOOTER spectroscopy for an extraordinarily luminous and extended Ly alpha emitter at z = 6.595 referred to asHimiko and first discussed by Ouchi et al., with the purpose of constraining the mechanisms powering its strong emission. Complementary to the spectrum, we discuss...... near-infrared imaging data from the CANDELS survey. We find neither for He II nor any metal line a significant excess, with 3 σ upper limits of 6.8, 3.1, and 5.8 x 10-18 erg s-1 cm-2 for C IV λ 1549, He II λ 1640, C III] λ 1909, respectively, assuming apertures with 200 km s-1 widths and offset by -250...

  1. PMF5.0 vs. CMB8.2: An inter-comparison study based on the new European SPECIEUROPE database

    Science.gov (United States)

    Bove, Maria Chiara; Massabò, Dario; Prati, Paolo

    2018-03-01

    Receptor Models are tools widely adopted in source apportionment studies. We describe here an experiment in which we integrated two different approaches, i.e. Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB) to apportion a set of PM10 (i.e. Particulate Matter with aerodynamic diameter lower than 10 μm) concentration values. The study was performed in the city of Genoa (Italy): a sampling campaign was carried out collecting daily PM10 samples for about two months in an urban background site. PM10 was collected on Quartz fiber filters by a low-volume sampler. A quite complete speciation of PM samples was obtained via Energy Dispersive-X Ray Fluorescence (ED-XRF, for elements), Ionic Chromatography (IC, for major ions and levoglucosan), thermo-optical Analysis (TOT, for organic and elemental carbon). The chemical analyses provided the input database for source apportionment by both PMF and CMB. Source profiles were directly calculated from the input data by PMF while in the CMB runs they were first calculated by averaging the profiles of similar sources collected in the European database SPECIEUROPE. Differences between the two receptor models emerged in particular with PM10 sources linked to very local processes. For this reason, PMF source profiles were adopted in refined CMB runs thus testing a new hybrid approach. Finally, PMF and the "tuned" CMB showed a better agreement even if some discrepancies could not completely been resolved. In this work, we compared the results coming from the last available PMF and CMB versions applied on a set of PM10 samples. Input profiles used in CMB analysis were obtained by averaging the profiles of the new European SPECIEUROPE database. The main differences between PMF and CMB results were linked to very local processes: we obtained the best solution by integrating the two different approaches with the implementation of some output PMF profiles to CMB runs.

  2. Probing primordial non Gaussianity in the BOOMERanG CMB maps: an analysis based on analytical Minkowski functionals

    International Nuclear Information System (INIS)

    Migliaccio, M.; Natoli, P.; De Troia, G.; Hikage, C.; Komatsu, E.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Contaldi, C.R.; Crill, B.P.; Bernardis, P. de; Gasperis, G. de; Oliveira-Costa, A. de; Di Stefano, G.; Hivon, E.; Kisner, T.S.; Jones, W.C.; Lange, A.E.

    2009-01-01

    Minkowski functionals are a powerful tool to constrain the Gaussianity of the Cosmic Microwave Background (CMB). In the limit of a weakly non Gaussian field, a perturbative approach can be derived [Hikage C., Komatsu E., and Matsubara T., 2006, ApJ, 653, 11] that is completely based on analytical formulae without requiring computationally intensive, dedicated Monte Carlo non Gaussian simulations of the CMB anisotropy. We apply this machinery to an intensity map derived from the 1998 and 2003 flights of BOOMERanG, analyzed here together for the first time. We set limits on the non-linear coupling parameter f NL as -1020 NL <390 at 95% CL, markedly improving the previous constraints set by [De Troia G. et al., 2007, ApJ, 670, L73] whose analysis was limited to the BOOMERanG 2003 dataset. These limits are the most stringent ever set among suborbital experiments.

  3. Probing primordial non Gaussianity in the BOOMERanG CMB maps: an analysis based on analytical Minkowski functionals

    Energy Technology Data Exchange (ETDEWEB)

    Migliaccio, M.; Natoli, P.; De Troia, G. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 1 I-00133 Roma (Italy); Hikage, C. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Komatsu, E. [Texas Cosmology Center, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States); Ade, P.A.R. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Bock, J.J. [Jet Propulsion Laboratory, Pasadena, CA (United States); Bond, J.R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario (Canada); Borrill, J. [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boscaleri, A. [IFAC-CNR, Firenze (Italy); Contaldi, C.R. [Theoretical Physics Group, Imperial College, London (United Kingdom); Crill, B.P. [Jet Propulsion Laboratory, Pasadena, CA (United States); Bernardis, P. de [Dipartimento di Fisica, Universita La Sapienza, Roma (Italy); Gasperis, G. de [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 1 I-00133 Roma (Italy); Oliveira-Costa, A. de [Department of Physics, MIT, Cambridge, MA 02139 (United States); Di Stefano, G. [Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome (Italy); Hivon, E. [Institut d' Astrophysique, Paris (France); Kisner, T.S. [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Jones, W.C. [Department of Physics, Princeton University, Princeton, NJ 0854 (United States); Lange, A.E. [Observational Cosmology, California Institute of Technology, Pasadena, CA (United States)

    2009-10-15

    Minkowski functionals are a powerful tool to constrain the Gaussianity of the Cosmic Microwave Background (CMB). In the limit of a weakly non Gaussian field, a perturbative approach can be derived [Hikage C., Komatsu E., and Matsubara T., 2006, ApJ, 653, 11] that is completely based on analytical formulae without requiring computationally intensive, dedicated Monte Carlo non Gaussian simulations of the CMB anisotropy. We apply this machinery to an intensity map derived from the 1998 and 2003 flights of BOOMERanG, analyzed here together for the first time. We set limits on the non-linear coupling parameter f{sub NL} as -1020

  4. Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol

    Science.gov (United States)

    Koopman, Brian; Austermann, Jason; Cho, Hsiao-Mei; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D.; Li, Dale; McMahon, Jeff; Nati, Federico; Niemack, Michael D.; Newburgh, Laura; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Vavagiakis, Eve M.; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. ACTPol uses transition edge sensor bolometers coupled to orthomode transducers to measure both the temperature and polarization of the Cosmic Microwave Background (CMB). Calibration of the detector angles is a critical step in producing polarization maps of the CMB. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We calibrate the ACTPol detector angles by ray tracing the designed detector angle through the entire optical chain to determine the projection of each detector angle on the sky. The distribution of calibrated detector polarization angles are consistent with a global offset angle from zero when compared to the EB-nulling offset angle, the angle required to null the EB cross-correlation power spectrum. We present the optical modeling process. The detector angles can be cross checked through observations of known polarized sources, whether this be a galactic source or a laboratory reference standard. To cross check the ACTPol detector angles, we use a thin film polarization grid placed in front of the receiver of the telescope, between the receiver and the secondary reflector. Making use of a rapidly rotating half-wave plate (HWP) mount we spin the polarizing grid at a constant speed, polarizing and rotating the incoming atmospheric signal. The resulting sinusoidal signal is used to determine the detector angles. The optical modeling calibration was shown to be consistent with a global offset angle of zero when compared to EB nulling in the first ACTPol results and will continue to be a part of our calibration implementation. The first

  5. Estimation of inflation parameters for Perturbed Power Law model using recent CMB measurements

    International Nuclear Information System (INIS)

    Mukherjee, Suvodip; Das, Santanu; Souradeep, Tarun; Joy, Minu

    2015-01-01

    Cosmic Microwave Background (CMB) is an important probe for understanding the inflationary era of the Universe. We consider the Perturbed Power Law (PPL) model of inflation which is a soft deviation from Power Law (PL) inflationary model. This model captures the effect of higher order derivative of Hubble parameter during inflation, which in turn leads to a non-zero effective mass m eff for the inflaton field. The higher order derivatives of Hubble parameter at leading order sources constant difference in the spectral index for scalar and tensor perturbation going beyond PL model of inflation. PPL model have two observable independent parameters, namely spectral index for tensor perturbation ν t and change in spectral index for scalar perturbation ν st to explain the observed features in the scalar and tensor power spectrum of perturbation. From the recent measurements of CMB power spectra by WMAP, Planck and BICEP-2 for temperature and polarization, we estimate the feasibility of PPL model with standard ΛCDM model. Although BICEP-2 claimed a detection of r=0.2, estimates of dust contamination provided by Planck have left open the possibility that only upper bound on r will be expected in a joint analysis. As a result we consider different upper bounds on the value of r and show that PPL model can explain a lower value of tensor to scalar ratio (r<0.1 or r<0.01) for a scalar spectral index of n s =0.96 by having a non-zero value of effective mass of the inflaton field m 2 eff /H 2 . The analysis with WP + Planck likelihood shows a non-zero detection of m 2 eff /H 2 with 5.7 σ and 8.1 σ respectively for r<0.1 and r<0.01. Whereas, with BICEP-2 likelihood m 2 eff /H 2  = −0.0237 ± 0.0135 which is consistent with zero

  6. A 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck Data

    International Nuclear Information System (INIS)

    Omori, Y.; Chown, R.; Simard, G.; Story, K. T.; University of Chicago, IL

    2017-01-01

    Here, we present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and Planck temperature data. The 150 GHz temperature data from the 2500 deg 2 SPT-SZ survey is combined with the Planck 143 GHz data in harmonic space to obtain a temperature map that has a broader ℓ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential C L ϕϕ , and compare it to the theoretical prediction for a ΛCDM cosmology consistent with the Planck 2015 data set, finding a best-fit amplitude of 0.95 −0.06 +0.06 (stat.) −0.01 +0.01 (sys.). The null hypothesis of no lensing is rejected at a significance of 24σ. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, C L ϕG , between the SPT+Planck lensing map and Wide-field Infrared Survey Explorer (WISE) galaxies. We fit C L ϕG to a power law of the form p L =a(L/L 0 ) −b with a, L 0, and b fixed, and find η ϕG =C L ϕG /p L =0.94 −0.04 +0.04 , which is marginally lower, but in good agreement with η ϕG =1.00 −0.01 +0.02 , the best-fit amplitude for the cross-correlation of Planck-2015 CMB lensing and WISE galaxies over ~67% of the sky. Finally, the lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey, whose footprint nearly completely covers the SPT 2500 deg 2 field.

  7. Cross-correlating CMB temperature fluctuations with high-energy γ-ray from Dark-Matter annihilation

    International Nuclear Information System (INIS)

    Pieri, L.

    2013-01-01

    In this paper we compute the Integrated Sachs-Wolfe effect due to the presence of dark-matter structures on cosmological scale. We cross-correlate the CMB temperature fluctuations with the extragalactic high-energy γ-ray flux map obtained with FERMI-LAT. We find a null signal consistent with the theory and conclude that the presence of halos and subhalos at galactic and extragalactic scale, if not excluded, will be hardly discoverable.

  8. The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion

    Science.gov (United States)

    Sarkar, Abir; Sethi, Shiv. K.; Das, Subinoy

    2017-07-01

    After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y-parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift zf = 105 (7%); WDM for mass mwdm = 1 keV (2%); CHDM for decay redshift zdecay = 105 (5%); ULA for mass ma = 10-24 eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y-distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from the pre-recombination phase.

  9. Imitating intrinsic alignments: a bias to the CMB lensing-galaxy shape cross-correlation power spectrum induced by the large-scale structure bispectrum

    Science.gov (United States)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2017-10-01

    Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.

  10. Thermal analysis of a prototype cryogenic polarization modulator for use in a space-borne CMB polarization experiment

    Science.gov (United States)

    Iida, T.; Sakurai, Y.; Matsumura, T.; Sugai, H.; Imada, H.; Kataza, H.; Ohsaki, H.; Hazumi, M.; Katayama, N.; Yamamoto, R.; Utsunomiya, S.; Terao, Y.

    2017-12-01

    We report a thermal analysis of a polarization modulator unit (PMU) for use in a space-borne cosmic microwave background (CMB) project. A measurement of the CMB polarization allows us to probe the physics of early universe, and that is the best method to test the cosmic inflation experimentally. One of the key instruments for this science is to use a halfwave plate (HWP) based polarization modulator. The HWP is required to rotate continuously at about 1 Hz below 10 K to minimize its own thermal emission to a detector system. The rotating HWP system at the cryogenic environment can be realized by using a superconducting magnetic bearing (SMB) without significant heat dissipation by mechanical friction. While the SMB achieves the smooth rotation due to the contactless bearing, an estimation of a levitating HWP temperature becomes a challenge. We manufactured a one-eighth scale prototype model of PMU and built a thermal model. We verified our thermal model with the experimental data. We forecasted the projected thermal performance of PMU for a full-scale model based on the thermal model. From this analysis, we discuss the design requirement toward constructing the full-scale model for use in a space environment such as a future CMB satellite mission, LiteBIRD.

  11. Testing chirality of primordial gravitational waves with Planck and future CMB data: no hope from angular power spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gerbino, Martina [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Gruppuso, Alessandro [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via P. Gobetti 101, I-40129 Bologna (Italy); Natoli, Paolo [Dipartimento di Fisica e Scienze della Terra and INFN, Università degli Studi di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); Shiraishi, Maresuke [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, 277-8583 (Japan); Melchiorri, Alessandro, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: paolo.natoli@gmail.com, E-mail: maresuke.shiraishi@ipmu.jp, E-mail: alessandro.melchiorri@roma1.infn.it [Physics Department and INFN, Università di Roma ' La Sapienza' , P.le Aldo Moro 2, 00185, Rome (Italy)

    2016-07-01

    We use the 2015 Planck likelihood in combination with the Bicep2/Keck likelihood (BKP and BK14) to constrain the chirality, χ, of primordial gravitational waves in a scale-invariant scenario. In this framework, the parameter χ enters theory always coupled to the tensor-to-scalar ratio, r , e.g. in combination of the form χ ⋅ r . Thus, the capability to detect χ critically depends on the value of r . We find that with present data sets χ is de facto unconstrained. We also provide forecasts for χ from future CMB experiments, including COrE+, exploring several fiducial values of r . We find that the current limit on r is tight enough to disfavor a neat detection of χ. For example, in the unlikely case in which r ∼0.1(0.05), the maximal chirality case, i.e. χ = ±1, could be detected with a significance of ∼2.5(1.5)σ at best. We conclude that the two-point statistics at the basis of CMB likelihood functions is currently unable to constrain chirality and may only provide weak limits on χ in the most optimistic scenarios. Hence, it is crucial to investigate the use of other observables, e.g. provided by higher order statistics, to constrain these kinds of parity violating theories with the CMB.

  12. Constraining the shape of the CMB: A peak-by-peak analysis

    International Nuclear Information System (INIS)

    Oedman, Carolina J.; Hobson, Michael P.; Lasenby, Anthony N.; Melchiorri, Alessandro

    2003-01-01

    The recent measurements of the power spectrum of cosmic microwave background anisotropies are consistent with the simplest inflationary scenario and big bang nucleosynthesis constraints. However, these results rely on the assumption of a class of models based on primordial adiabatic perturbations, cold dark matter and a cosmological constant. In this paper we investigate the need for deviations from the Λ-CDM scenario by first characterizing the spectrum using a phenomenological function in a 15 dimensional parameter space. Using a Monte Carlo Markov chain approach to Bayesian inference and a low curvature model template we then check for the presence of new physics and/or systematics in the CMB data. We find an almost perfect consistency between the phenomenological fits and the standard Λ-CDM models. The curvature of the secondary peaks is weakly constrained by the present data, but they are well located. The improved spectral resolution expected from future satellite experiments is warranted for a definitive test of the scenario

  13. Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement

    International Nuclear Information System (INIS)

    Zavala, Jesus; White, Simon D. M.; Vogelsberger, Mark

    2010-01-01

    We calculate how the relic density of dark matter particles is altered when their annihilation is enhanced by the Sommerfeld mechanism due to a Yukawa interaction between the annihilating particles. Maintaining a dark matter abundance consistent with current observational bounds requires the normalization of the s-wave annihilation cross section to be decreased compared to a model without enhancement. The level of suppression depends on the specific parameters of the particle model, with the kinetic decoupling temperature having the most effect. We find that the cross section can be reduced by as much as an order of magnitude for extreme cases. We also compute the μ-type distortion of the CMB energy spectrum caused by energy injection from such Sommerfeld-enhanced annihilation. Our results indicate that in the vicinity of resonances, associated with bound states, distortions can be large enough to be excluded by the upper limit |μ|≤9.0x10 -5 found by the FIRAS (Far Infrared Absolute Spectrophotometer) instrument on the COBE (Cosmic Background Explorer) satellite.

  14. Testing string vacua in the lab. From a hidden CMB to dark forces in flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele; Goodsell, Mark; Ringwald, Andreas [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenolgy

    2011-03-15

    We perform a detailed analysis of the phenomenological properties of hidden Abelian gauge bosons with a kinetic mixing with the ordinary photon within type IIB flux compactifications. We study the interplay between moduli stabilisation and the Green-Schwarz mechanism that gives mass to the hidden photon paying particular attention to the role of D-terms. We present two generic classes of explicit Calabi-Yau examples with an isotropic and an anisotropic shape of the extra dimensions showing how the last case turns out to be very promising to make contact with current experiments. In fact, anisotropic compactifications lead naturally to a GeV-scale hidden photon (''dark forces'' that can be searched for in beam dump experiments) for an intermediate string scale; or even to an meV-scale hidden photon (which could lead to a ''hidden CMB'' and can be tested by light-shining-through-a-wall experiments) in the case of TeV-scale strings. (orig.)

  15. An analytical approach to the CMB polarization in a spatially closed background

    Science.gov (United States)

    Niazy, Pedram; Abbassi, Amir H.

    2018-03-01

    The scalar mode polarization of the cosmic microwave background is derived in a spatially closed universe from the Boltzmann equation using the line of sight integral method. The EE and TE multipole coefficients have been extracted analytically by considering some tolerable approximations such as considering the evolution of perturbation hydrodynamically and sudden transition from opacity to transparency at the time of last scattering. As the major advantage of analytic expressions, CEE,ℓS and CTE,ℓ explicitly show the dependencies on baryon density ΩB, matter density ΩM, curvature ΩK, primordial spectral index ns, primordial power spectrum amplitude As, Optical depth τreion, recombination width σt and recombination time tL. Using a realistic set of cosmological parameters taken from a fit to data from Planck, the closed universe EE and TE power spectrums in the scalar mode are compared with numerical results from the CAMB code and also latest observational data. The analytic results agree with the numerical ones on the big and moderate scales. The peak positions are in good agreement with the numerical result on these scales while the peak heights agree with that to within 20% due to the approximations have been considered for these derivations. Also, several interesting properties of CMB polarization are revealed by the analytic spectra.

  16. Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole?

    International Nuclear Information System (INIS)

    Roldan, Omar; Quartin, Miguel; Notari, Alessio

    2016-01-01

    The aberration and Doppler coupling effects of the Cosmic Microwave Background (CMB) were recently measured by the Planck satellite. The most straightforward interpretation leads to a direct detection of our peculiar velocity β, consistent with the measurement of the well-known dipole. In this paper we discuss the assumptions behind such interpretation. We show that Doppler-like couplings appear from two effects: our peculiar velocity and a second order large-scale effect due to the dipolar part of the gravitational potential. We find that the two effects are exactly degenerate but only if we assume second-order initial conditions from single-field Inflation. Thus, detecting a discrepancy in the value of β from the dipole and the Doppler couplings implies the presence of a primordial non-Gaussianity. We also show that aberration-like signals likewise arise from two independent effects: our peculiar velocity and lensing due to a first order large-scale dipolar gravitational potential, independently on Gaussianity of the initial conditions. In general such effects are not degenerate and so a discrepancy between the measured β from the dipole and aberration could be accounted for by a dipolar gravitational potential. Only through a fine-tuning of the radial profile of the potential it is possible to have a complete degeneracy with a boost effect. Finally we discuss that we also expect other signatures due to integrated second order terms, which may be further used to disentangle this scenario from a simple boost.

  17. Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole?

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Omar; Quartin, Miguel [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ (Brazil); Notari, Alessio, E-mail: oaroldan@if.ufrj.br, E-mail: notari@ffn.ub.es, E-mail: mquartin@if.ufrj.br [Departament de Física Fondamental i Institut de Ciéncies del Cosmos, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona (Spain)

    2016-06-01

    The aberration and Doppler coupling effects of the Cosmic Microwave Background (CMB) were recently measured by the Planck satellite. The most straightforward interpretation leads to a direct detection of our peculiar velocity β, consistent with the measurement of the well-known dipole. In this paper we discuss the assumptions behind such interpretation. We show that Doppler-like couplings appear from two effects: our peculiar velocity and a second order large-scale effect due to the dipolar part of the gravitational potential. We find that the two effects are exactly degenerate but only if we assume second-order initial conditions from single-field Inflation. Thus, detecting a discrepancy in the value of β from the dipole and the Doppler couplings implies the presence of a primordial non-Gaussianity. We also show that aberration-like signals likewise arise from two independent effects: our peculiar velocity and lensing due to a first order large-scale dipolar gravitational potential, independently on Gaussianity of the initial conditions. In general such effects are not degenerate and so a discrepancy between the measured β from the dipole and aberration could be accounted for by a dipolar gravitational potential. Only through a fine-tuning of the radial profile of the potential it is possible to have a complete degeneracy with a boost effect. Finally we discuss that we also expect other signatures due to integrated second order terms, which may be further used to disentangle this scenario from a simple boost.

  18. Bias of damped Lyman-α systems from their cross-correlation with CMB lensing

    Science.gov (United States)

    Alonso, D.; Colosimo, J.; Font-Ribera, A.; Slosar, A.

    2018-04-01

    We cross-correlate the positions of damped Lyman-α systems (DLAs) and their parent quasar catalog with a convergence map derived from the Planck cosmic microwave background (CMB) temperature data. We make consistent measurements of the lensing signal of both samples in both Fourier and configuration space. By interpreting the excess signal present in the DLA catalog with respect to the parent quasar catalog as caused by the large scale structure traced by DLAs, we are able to infer the bias of these objects: bDLA=2.6±0.9. These results are consistent with previous measurements made in cross-correlation with the Lyman-α forest, although the current noise in the lensing data and the low number density of DLAs limits the constraining power of this measurement. We discuss the robustness of the analysis with respect to a number different systematic effects and forecast prospects of carrying out this measurement with data from future experiments.

  19. A String-Inspired Model for the Low-$\\ell$ CMB

    CERN Document Server

    Kitazawa, N.

    2015-07-09

    We present a semi--analytic exploration of some low--$\\ell$ angular power spectra inspired by "Brane Supersymmetry Breaking". This mechanism splits Bose and Fermi excitations in String Theory, leaving behind an exponential potential that is just too steep for the inflaton to emerge from the initial singularity while descending it. As a result, the scalar generically bounces against the exponential wall, which typically introduces an infrared depression and a pre--inflationary peak in the power spectrum of scalar perturbations. We elaborate on a possible link between this phenomenon and the low--$\\ell$ CMB. For the first 32 multipoles, combining the hard exponential with a milder one leading to $n_s\\simeq 0.96$ and with a small gaussian bump we have attained a reduction of $\\chi^{\\,2}$ to about 46% of the standard $\\Lambda$CDM setting, with both WMAP9 and PLANCK 2013 data. This result corresponds to a $\\chi^{\\,2}/DOF$ of about 0.45, to be compared with a $\\Lambda$CDM value of about 0.85. The preferred choices ...

  20. Bayesian `hyper-parameters' approach to joint estimation: the Hubble constant from CMB measurements

    Science.gov (United States)

    Lahav, O.; Bridle, S. L.; Hobson, M. P.; Lasenby, A. N.; Sodré, L.

    2000-07-01

    Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalize this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint χ2 function a set of `hyper-parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the hyper-parameters, is very simple: instead of minimizing \\sum \\chi_j2 (where \\chi_j2 is per data set j) we propose to minimize \\sum Nj (\\chi_j2) (where Nj is the number of data points per data set j). We illustrate the method by estimating the Hubble constant H0 from different sets of recent cosmic microwave background (CMB) experiments (including Saskatoon, Python V, MSAM1, TOCO and Boomerang). The approach can be generalized for combinations of cosmic probes, and for other priors on the hyper-parameters.

  1. Why preeclampsia still exists?

    Science.gov (United States)

    Chelbi, Sonia T; Veitia, Reiner A; Vaiman, Daniel

    2013-08-01

    Preeclampsia (PE) is a deadly gestational disease affecting up to 10% of women and specific of the human species. Preeclampsia is clearly multifactorial, but the existence of a genetic basis for this disease is now clearly established by the existence of familial cases, epidemiological studies and known predisposing gene polymorphisms. PE is very common despite the fact that Darwinian pressure should have rapidly eliminated or strongly minimized the frequency of predisposing alleles. Consecutive pregnancies with the same partner decrease the risk and severity of PE. Here, we show that, due to this peculiar feature, preeclampsia predisposing-alleles can be differentially maintained according to the familial structure. Thus, we suggest that an optimal frequency of PE-predisposing alleles in human populations can be achieved as a result of a trade-off between benefits of exogamy, importance for maintaining genetic diversity and increase of the fitness owing to a stable paternal investment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Existence of Projective Planes

    OpenAIRE

    Perrott, Xander

    2016-01-01

    This report gives an overview of the history of finite projective planes and their properties before going on to outline the proof that no projective plane of order 10 exists. The report also investigates the search carried out by MacWilliams, Sloane and Thompson in 1970 [12] and confirms their result by providing independent verification that there is no vector of weight 15 in the code generated by the projective plane of order 10.

  3. Does bioethics exist?

    Science.gov (United States)

    Turner, L

    2009-12-01

    Bioethicists disagree over methods, theories, decision-making guides, case analyses and public policies. Thirty years ago, the thinking of many scholars coalesced around a principlist approach to bioethics. That mid-level mode of moral reasoning is now one of many approaches to moral deliberation. Significant variation in contemporary approaches to the study of ethical issues related to medicine, biotechnology and health care raises the question of whether bioethics exists as widely shared method, theory, normative framework or mode of moral reasoning.

  4. The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Abir; Sethi, Shiv K. [Raman Research Institute, CV Raman Ave Sadashivnagar, Bengaluru, Karnataka 560080 (India); Das, Subinoy, E-mail: abir@rri.res.in, E-mail: sethi@rri.res.in, E-mail: subinoy@iiap.res.in [Indian Institute of Astrophysics, 100 Feet Rd, Madiwala, 2nd Block, Koramangala, Bengaluru, Karnataka 560034 (India)

    2017-07-01

    After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc < k < 10{sup 4} Mpc{sup −1}, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as a probe of the small-scale power. We consider four suggested alternative dark matter candidates—Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y -parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift z {sub f} = 10{sup 5} (7%); WDM for mass m {sub wdm} = 1 keV (2%); CHDM for decay redshift z {sub decay} = 10{sup 5} (5%); ULA for mass m {sub a} = 10{sup −24} eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y -distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from

  5. O Ponto G Existe?

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Molina Noccioli

    2016-07-01

    Full Text Available Este trabalho busca analisar o tratamento linguístico-discursivo das informações acerca de um tópicotemático tradicionalmente visto como tabu, relacionado a questões sexuais, na notícia O ponto G existe?, publicada em 2008, na revista brasileira Superinteressante, destacando-se como o conhecimento em questão é representado socialmente ao se considerar a linha editorial da revista. A notícia caracteriza-se como um campo fértil para a análise das estratégias divulgativas, já que atrai, inclusive pelas escolhas temáticas, a curiosidade dos leitores. Imbuído de um tema excêntrico, o texto consegue angariar um público jovem interessado em discussões polêmicas relacionadas ao seu universo.

  6. Lebesgue Sets Immeasurable Existence

    Directory of Open Access Journals (Sweden)

    Diana Marginean Petrovai

    2012-12-01

    Full Text Available It is well known that the notion of measure and integral were released early enough in close connection with practical problems of measuring of geometric figures. Notion of measure was outlined in the early 20th century through H. Lebesgue’s research, founder of the modern theory of measure and integral. It was developed concurrently a technique of integration of functions. Gradually it was formed a specific area todaycalled the measure and integral theory. Essential contributions to building this theory was made by a large number of mathematicians: C. Carathodory, J. Radon, O. Nikodym, S. Bochner, J. Pettis, P. Halmos and many others. In the following we present several abstract sets, classes of sets. There exists the sets which are not Lebesgue measurable and the sets which are Lebesgue measurable but are not Borel measurable. Hence B ⊂ L ⊂ P(X.

  7. EXIST Perspective for SFXTs

    Science.gov (United States)

    Ubertini, Pietro; Sidoli, L.; Sguera, V.; Bazzano, A.

    2009-12-01

    Supergiant Fast X-ray Transients (SFXTs) are one of the most interesting (and unexpected) results of the INTEGRAL mission. They are a new class of HMXBs displaying short hard X-ray outbursts (duration less tha a day) characterized by fast flares (few hours timescale) and large dinamic range (10E3-10E4). The physical mechanism driving their peculiar behaviour is still unclear and highly debated: some models involve the structure of the supergiant companion donor wind (likely clumpy, in a spherical or non spherical geometry) and the orbital properties (wide separation with eccentric or circular orbit), while others involve the properties of the neutron star compact object and invoke very low magnetic field values (B 1E14 G, magnetars). The picture is still highly unclear from the observational point of view as well: no cyclotron lines have been detected in the spectra, thus the strength of the neutron star magnetic field is unknown. Orbital periods have been measured in only 4 systems, spanning from 3.3 days to 165 days. Even the duty cycle seems to be quite different from source to source. The Energetic X-ray Imaging Survey Telescope (EXIST), with its hard X-ray all-sky survey and large improved limiting sensitivity, will allow us to get a clearer picture of SFXTs. A complete census of their number is essential to enlarge the sample. A long term and continuous as possible X-ray monitoring is crucial to -(1) obtain the duty cycle, -(2 )investigate their unknown orbital properties (separation, orbital period, eccentricity),- (3) to completely cover the whole outburst activity, (4)-to search for cyclotron lines in the high energy spectra. EXIST observations will provide crucial informations to test the different models and shed light on the peculiar behaviour of SFXTs.

  8. The Atacama Cosmology Telescope: CMB polarization at 200 < ℓ < 9000

    Energy Technology Data Exchange (ETDEWEB)

    Naess, Sigurd; Allison, Rupert; Calabrese, Erminia [Sub-Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Hasselfield, Matthew [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); McMahon, Jeff; Coughlin, Kevin; Datta, Rahul [Department of Physics, University of Michigan, Ann Arbor 48103 (United States); Niemack, Michael D.; De Bernardis, Francesco [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Addison, Graeme E.; Amiri, Mandana [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Ade, Peter A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales CF24 3AA (United Kingdom); Battaglia, Nick [McWilliams Center for Cosmology, Carnegie Mellon University, Department of Physics, 5000 Forbes Ave., Pittsburgh PA 15213 (United States); Beall, James A.; Britton, Joe; Cho, Hsiao-mei [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Bond, J Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Crichton, Devin [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Das, Sudeep [Department of High Energy Physics, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439 (United States); Devlin, Mark J., E-mail: sigurd.naess@astro.ox.ac.uk [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); and others

    2014-10-01

    We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of 1.3'. The map noise levels in the four regions are between 11 and 17 μK-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range 200 < ℓ < 3000, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at ℓ < 9000, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than 2.4 μ {sup 2} at ℓ = 3000 at 95% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7% polarization with an angle of 150.7{sup o} ± 0.6{sup o} when smoothed with a 5' Gaussian beam.

  9. Nonparametric test of consistency between cosmological models and multiband CMB measurements

    Energy Technology Data Exchange (ETDEWEB)

    Aghamousa, Amir [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Shafieloo, Arman, E-mail: amir@apctp.org, E-mail: shafieloo@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-06-01

    We present a novel approach to test the consistency of the cosmological models with multiband CMB data using a nonparametric approach. In our analysis we calibrate the REACT (Risk Estimation and Adaptation after Coordinate Transformation) confidence levels associated with distances in function space (confidence distances) based on the Monte Carlo simulations in order to test the consistency of an assumed cosmological model with observation. To show the applicability of our algorithm, we confront Planck 2013 temperature data with concordance model of cosmology considering two different Planck spectra combination. In order to have an accurate quantitative statistical measure to compare between the data and the theoretical expectations, we calibrate REACT confidence distances and perform a bias control using many realizations of the data. Our results in this work using Planck 2013 temperature data put the best fit ΛCDM model at 95% (∼ 2σ) confidence distance from the center of the nonparametric confidence set while repeating the analysis excluding the Planck 217 × 217 GHz spectrum data, the best fit ΛCDM model shifts to 70% (∼ 1σ) confidence distance. The most prominent features in the data deviating from the best fit ΛCDM model seems to be at low multipoles  18 < ℓ < 26 at greater than 2σ, ℓ ∼ 750 at ∼1 to 2σ and ℓ ∼ 1800 at greater than 2σ level. Excluding the 217×217 GHz spectrum the feature at ℓ ∼ 1800 becomes substantially less significance at ∼1 to 2σ confidence level. Results of our analysis based on the new approach we propose in this work are in agreement with other analysis done using alternative methods.

  10. Correlated mixture between adiabatic and isocurvature fluctuations and recent CMB observations

    International Nuclear Information System (INIS)

    Andrade, Ana Paula A.; Wuensche, Carlos Alexandre; Ribeiro, Andre Luis Batista

    2005-01-01

    This work presents a reduced χ ν 2 test to search for non-Gaussian signals in the cosmic microwave background radiation (CMBR) TT power spectrum of recent CMBR data, Wilkinson Anisotropy Microwave Probe, Arcminute Cosmology Bolometer Array Receiver, and Cosmic Background Imager data sets, assuming a mixed density field including adiabatic and isocurvature fluctuations. We assume a skew positive mixed model with adiabatic inflation perturbations plus additional isocurvature perturbations possibly produced by topological defects. The joint probability distribution used in this context is a weighted combination of Gaussian and non-Gaussian random fields. Results from simulations of CMBR temperature for the mixed field show a distinct signature in CMB power spectrum for very small deviations (∼0.1%) from a pure Gaussian field, and can be used as a direct test for the nature of primordial fluctuations. A reduced χ ν 2 test applied on the most recent CMBR observations reveals that an isocurvature fluctuations field is not ruled out and indeed permits a very good description for a flat geometry Λ-CDM Universe, χ 930 2 ∼1.5, rather than the simple inflationary standard model with χ 930 2 ∼2.3. This result may looks is particular discrepant with the reduced χ 2 of 1.07 obtained with the same model in Spergel et al. [Astrophys. J. 148, 175 (2003)] for temperature only, however, our work is restricted to a region of the parameter space that does not include the best fit model for TT only of Spergel et al.

  11. New ALMA and Fermi /LAT Observations of the Large-scale Jet of PKS 0637−752 Strengthen the Case Against the IC/CMB Model

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Eileen T.; Breiding, Peter; Georganopoulos, Markos [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Oteo, Iván; Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Zwaan, Martin A.; Laing, Robert [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching-bei-München (Germany); Godfrey, Leith, E-mail: meyer@umbc.edu [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands)

    2017-02-01

    The Chandra X-ray observatory has discovered several dozen anomalously X-ray-bright jets associated with powerful quasars. A popular explanation for the X-ray flux from the knots in these jets is that relativistic synchrotron-emitting electrons inverse-Compton scatter cosmic microwave background (CMB) photons to X-ray energies (the IC/CMB model). This model predicts a high gamma-ray flux that should be detectable by the Fermi /Large Area Telescope (LAT) for many sources. GeV-band upper limits from Fermi /LAT for the well-known anomalous X-ray jet in PKS 0637−752 were previously shown in Meyer et al. to violate the predictions of the IC/CMB model. Previously, measurements of the jet synchrotron spectrum, important for accurately predicting the gamma-ray flux level, were lacking between radio and infrared wavelengths. Here, we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations of the large-scale jet at 100, 233, and 319 GHz, which further constrain the synchrotron spectrum, supporting the previously published empirical model. We also present updated limits from the Fermi /LAT using the new “Pass 8” calibration and approximately 30% more time on source. With these deeper limits, we rule out the IC/CMB model at the 8.7 σ level. Finally, we demonstrate that complete knowledge of the synchrotron SED is critical in evaluating the IC/CMB model.

  12. Using CMB spectral distortions to distinguish between dark matter solutions to the small-scale crisis

    Energy Technology Data Exchange (ETDEWEB)

    Diacoumis, James A.D.; Wong, Yvonne Y.Y., E-mail: j.diacoumis@unsw.edu.au, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2017-09-01

    The dissipation of small-scale perturbations in the early universe produces a distortion in the blackbody spectrum of cosmic microwave background photons. In this work, we propose to use these distortions as a probe of the microphysics of dark matter on scales 1 Mpc{sup -1}∼< k ∼< 10{sup 4} Mpc{sup -1}. We consider in particular models in which the dark matter is kinetically coupled to either neutrinos or photons until shortly before recombination, and compute the photon heating rate and the resultant μ-distortion in both cases. We show that the μ-parameter is generally enhanced relative to ΛCDM for interactions with neutrinos, and may be either enhanced or suppressed in the case of interactions with photons. The deviations from the ΛCDM signal are potentially within the sensitivity reach of a PRISM-like experiment if σ{sub DM-γ} ∼> 1.1 × 10{sup -30} (m{sub DM}/GeV) cm{sup 2} and σ{sub DM-ν} ∼> 4.8 × 10{sup -32} (m{sub DM}/GeV) cm{sup 2} for time-independent cross sections, and σ{sup 0}{sub DM-γ} ∼> 1.8 × 10{sup -40} (m{sub DM}/GeV) cm{sup 2} and σ{sup 0}{sub DM-ν} ∼> 2.5 × 10{sup -47} (m{sub DM}/GeV) cm{sup 2} for cross sections scaling as temperature squared, coinciding with the parameter regions in which late kinetic decoupling may serve as a solution to the small-scale crisis. Furthermore, these μ-distortion signals differ from those of warm dark matter (no deviation from ΛCDM) and a suppressed primordial power spectrum (a strongly suppressed or negative μ-parameter), demonstrating that CMB spectral distortion can potentially be used to distinguish between solutions to the small-scale crisis.

  13. Interacting scalar tensor cosmology in light of SNeIa, CMB, BAO and OHD observational data sets

    Energy Technology Data Exchange (ETDEWEB)

    Rabiei, Sayed Wrya; Saaidi, Khaled [Faculty of Science University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Sheikhahmadi, Haidar [Faculty of Science University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Institute for Advance Studies in Basic Sciences (IASBS) Gava Zang, Zanjan (Iran, Islamic Republic of); Aghamohammadi, Ali [Sanandaj Branch Islamic Azad University, Sanandaj (Iran, Islamic Republic of)

    2016-02-15

    In this work, an interacting chameleon-like scalar field scenario, by considering SNeIa, CMB, BAO, and OHD data sets, is investigated. In fact, the investigation is realized by introducing an ansatz for the effective dark energy equation of state, which mimics the behavior of chameleon-like models. Based on this assumption, some cosmological parameters, including the Hubble, deceleration, and coincidence parameters, in such a mechanism are analyzed. It is realized that, to estimate the free parameters of a theoretical model, by regarding the systematic errors it is better that the whole of the above observational data sets would be considered. In fact, if one considers SNeIa, CMB, and BAO, but disregards OHD, it maybe leads to different results. Also, to get a better overlap between the contours with the constraint χ{sub m}{sup 2} ≤ 1, the χ{sub T}{sup 2} function could be re-weighted. The relative probability functions are plotted for marginalized likelihood L(Ω{sub m0}, ω{sub 1}, β) according to the two dimensional confidence levels 68.3, 90, and 95.4%. Meanwhile, the value of the free parameters which maximize the marginalized likelihoods using the above confidence levels are obtained. In addition, based on these calculations the minimum value of χ{sup 2} based on the free parameters of the ansatz for the effective dark energy equation of state is achieved. (orig.)

  14. Interacting scalar tensor cosmology in light of SNeIa, CMB, BAO and OHD observational data sets

    International Nuclear Information System (INIS)

    Rabiei, Sayed Wrya; Saaidi, Khaled; Sheikhahmadi, Haidar; Aghamohammadi, Ali

    2016-01-01

    In this work, an interacting chameleon-like scalar field scenario, by considering SNeIa, CMB, BAO, and OHD data sets, is investigated. In fact, the investigation is realized by introducing an ansatz for the effective dark energy equation of state, which mimics the behavior of chameleon-like models. Based on this assumption, some cosmological parameters, including the Hubble, deceleration, and coincidence parameters, in such a mechanism are analyzed. It is realized that, to estimate the free parameters of a theoretical model, by regarding the systematic errors it is better that the whole of the above observational data sets would be considered. In fact, if one considers SNeIa, CMB, and BAO, but disregards OHD, it maybe leads to different results. Also, to get a better overlap between the contours with the constraint χ m 2 ≤ 1, the χ T 2 function could be re-weighted. The relative probability functions are plotted for marginalized likelihood L(Ω m0 , ω 1 , β) according to the two dimensional confidence levels 68.3, 90, and 95.4%. Meanwhile, the value of the free parameters which maximize the marginalized likelihoods using the above confidence levels are obtained. In addition, based on these calculations the minimum value of χ 2 based on the free parameters of the ansatz for the effective dark energy equation of state is achieved. (orig.)

  15. Motion induced second order temperature and y-type anisotropies after the subtraction of linear dipole in the CMB maps

    International Nuclear Information System (INIS)

    Sunyaev, Rashid A.; Khatri, Rishi

    2013-01-01

    y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μK which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired

  16. Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data

    Science.gov (United States)

    Henning, J. W.; Sayre, J. T.; Reichardt, C. L.; Ade, P. A. R.; Anderson, A. J.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H.-M.; Citron, R.; Corbett Moran, C.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W.; Gallicchio, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Lowitz, A.; Manzotti, A.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Ruhl, J. E.; Saliwanchik, B. R.; Schaffer, K. K.; Sievers, C.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Veach, T.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Yefremenko, V.

    2018-01-01

    We present measurements of the E-mode polarization angular auto-power spectrum (EE) and temperature–E-mode cross-power spectrum (TE) of the cosmic microwave background (CMB) using 150 GHz data from three seasons of SPTpol observations. We report the power spectra over the spherical harmonic multipole range 50 1050 and {\\ell }> 1475, respectively. The observations cover 500 {\\deg }2, a fivefold increase in area compared to previous SPTpol analyses, which increases our sensitivity to the photon diffusion damping tail of the CMB power spectra enabling tighter constraints on ΛCDM model extensions. After masking all sources with unpolarized flux > 50 mJy, we place a 95% confidence upper limit on residual polarized point-source power of {D}{\\ell }={\\ell }({\\ell }+1){C}{\\ell }/2π masking. We find that the SPTpol data set is in mild tension with the ΛCDM model (2.1σ ), and different data splits prefer parameter values that differ at the ∼ 1 σ level. When fitting SPTpol data at {\\ell }data at {\\ell }> 1000 results in a preference for a higher value of the expansion rate ({H}0=71.3+/- 2.1 {km} {{{s}}}-1{{Mpc}}-1 ) and a lower value for present-day density fluctuations ({σ }8=0.77+/- 0.02).

  17. Modeling the Radio Foreground for Detection of CMB Spectral Distortions from the Cosmic Dawn and the Epoch of Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Shankar, N Udaya [Raman Research Institute, C V Raman Avenue, Sadashivanagar, Bangalore 560080 (India); Chluba, Jens, E-mail: mayuris@rri.res.in [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, M13 9PL (United Kingdom)

    2017-05-01

    Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30–6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal. We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.

  18. Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments

    Science.gov (United States)

    Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.

    2016-07-01

    The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.

  19. Beyond y and μ: the shape of the CMB spectral distortions in the intermediate epoch, 1.5 × 104∼5

    International Nuclear Information System (INIS)

    Khatri, Rishi; Sunyaev, Rashid A.

    2012-01-01

    We calculate numerical solutions and analytic approximations for the intermediate-type spectral distortions. Detection of a μ-type distortion (saturated comptonization) in the CMB will constrain the time of energy injection to be at a redshift 2 × 10 6 ∼>z∼>2 × 10 5 , while a detection of a y-type distortion (minimal comptonization) will mean that there was heating of CMB at redshift z∼ 4 . We point out that the partially comptonized spectral distortions, generated in the redshift range 1.5 × 10 4 ∼ 5 , are much richer in information than the pure y and μ-type distortions. The spectrum created during this period is intermediate between y and μ-type distortions and depends sensitively on the redshift of energy injection. These intermediate-type distortions cannot be mimicked by a mixture of y and μ-type distortions at all frequencies and vice versa. The measurement of these intermediate-type CMB spectral distortions has the possibility to constrain precisely not only the amount of energy release in the early Universe but also the mechanism, for example, particle annihilation and Silk damping can be distinguished from particle decay. The intermediate-type distortion templates and software code using these templates to calculate the CMB spectral distortions for user-defined energy injection rate is made publicly available

  20. Finding the chiral gravitational wave background of an axion-S U (2 ) inflationary model using CMB observations and laser interferometers

    Science.gov (United States)

    Thorne, Ben; Fujita, Tomohiro; Hazumi, Masashi; Katayama, Nobuhiko; Komatsu, Eiichiro; Shiraishi, Maresuke

    2018-02-01

    A detection of B-mode polarization of the cosmic microwave background (CMB) anisotropies would confirm the presence of a primordial gravitational wave background (GWB). In the inflation paradigm, this would be an unprecedented probe of the energy scale of inflation as it is directly proportional to the power spectrum of the GWB. However, similar tensor perturbations can be produced by the matter fields present during inflation, breaking the simple relationship between energy scale and the tensor-to-scalar ratio r . It is therefore important to find ways of distinguishing between the generation mechanisms of the GWB. Without doing a full model selection, we analyze the detectability of a new axion-S U (2 ) gauge field model by calculating the signal-to-noise ratio of future CMB and interferometer observations sensitive to the chirality of the tensor spectrum. We forecast the detectability of the resulting CMB temperature and B-mode (TB) or E-mode and B-mode (EB) cross-correlation by the LiteBIRD satellite, considering the effects of residual foregrounds, gravitational lensing, and assess the ability of such an experiment to jointly detect primordial TB and EB spectra and self-calibrate its polarimeter. We find that LiteBIRD will be able to detect the chiral signal for r*>0.03 , with r* denoting the tensor-to-scalar ratio at the peak scale, and that the maximum signal-to-noise ratio for r*advanced stage of a LISA-like mission, which is designed to be sensitive to the intensity and polarization of the GWB. We find that such experiments would complement CMB observations as they would be able to detect the chirality of the GWB with high significance on scales inaccessible to the CMB. We conclude that CMB two-point statistics are limited in their ability to distinguish this model from a conventional vacuum fluctuation model of GWB generation, due to the fundamental limits on their sensitivity to parity violation. In order to test the predictions of such a model as

  1. Experiments on the CMB Spectrum, Big Jets Model and Their Implications for the Missing Half of the Universe

    Directory of Open Access Journals (Sweden)

    Hsu Leonardo

    2018-01-01

    Full Text Available Based on the limiting continuation of Lorentz-Poincaré invariance, we propose an alternative formulation of the generalized Planck distribution for inertial and noninertial frames. The Lorentz invariant Planck distribution law leads to a new physical interpretation of the dipole anisotropy of the Cosmic Microwave Background. The Big Jets model predicts a distant ‘antimatter blackbody,’ whose radiations could make 50% of the sky very slightly warmer than the isotropic CMB temperature TCMB with a cosine function. The other 50% of the sky has the same isotropic temperature TCMB. Thus, we could have a pseudo-dipole anisotropy because the microwaves emitted from the antimatter blackbody are totally absorbed by our matter blackbody. We suggest that accurate data of satellite experiments might be used to search for the pseudo-dipole anisotropy and the missing half of the antimatter universe.

  2. Measuring the Largest Angular Scale CMB B-mode Polarization with Galactic Foregrounds on a Cut Sky

    Science.gov (United States)

    Watts, Duncan J.; Larson, David; Marriage, Tobias A.; Abitbol, Maximilian H.; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Eimer, Joseph R.; Essinger-Hileman, Thomas; Miller, Nathan J.; Rostem, Karwan; Wollack, Edward J.

    2015-12-01

    We consider the effectiveness of foreground cleaning in the recovery of Cosmic Microwave Background (CMB) polarization sourced by gravitational waves for tensor-to-scalar ratios in the range 0\\lt r\\lt 0.1. Using the planned survey area, frequency bands, and sensitivity of the Cosmology Large Angular Scale Surveyor (CLASS), we simulate maps of Stokes Q and U parameters at 40, 90, 150, and 220 GHz, including realistic models of the CMB, diffuse Galactic thermal dust and synchrotron foregrounds, and Gaussian white noise. We use linear combinations (LCs) of the simulated multifrequency data to obtain maximum likelihood estimates of r, the relative scalar amplitude s, and LC coefficients. We find that for 10,000 simulations of a CLASS-like experiment using only measurements of the reionization peak ({\\ell }≤slant 23), there is a 95% C.L. upper limit of r\\lt 0.017 in the case of no primordial gravitational waves. For simulations with r=0.01, we recover at 68% C.L. r={0.012}-0.006+0.011. The reionization peak corresponds to a fraction of the multipole moments probed by CLASS, and simulations including 30≤slant {\\ell }≤slant 100 further improve our upper limits to r\\lt 0.008 at 95% C.L. (r={0.010}-0.004+0.004 for primordial gravitational waves with r = 0.01). In addition to decreasing the current upper bound on r by an order of magnitude, these foreground-cleaned low multipole data will achieve a cosmic variance limited measurement of the E-mode polarization’s reionization peak.

  3. Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data

    Energy Technology Data Exchange (ETDEWEB)

    Henning, J. W.; Sayre, J. T.; Reichardt, C. L.; Ade, P. A. R.; Anderson, A. J.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H-M.; Citron, R.; Moran, C. Corbett; Crawford, T. M.; Crites, A. T.; Haan, T. de; Dobbs, M. A.; Everett, W.; Gallicchio, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Lowitz, A.; Manzotti, A.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Ruhl, J. E.; Saliwanchik, B. R.; Schaffer, K. K.; Sievers, C.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Veach, T.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Yefremenko, V.

    2018-01-11

    We present measurements of the $E$-mode polarization angular auto-power spectrum ($EE$) and temperature-$E$-mode cross-power spectrum ($TE$) of the cosmic microwave background (CMB) using 150 GHz data from three seasons of SPTpol observations. We now report the $EE$ and $TE$ power spectra over the spherical harmonic multipole range $50 < \\ell \\leq 8000$, and detect the first nine acoustic peaks in the $EE$ spectrum with high signal-to-noise. These measurements are the most sensitive to date of the $EE$ and $TE$ angular polarization power spectra at $\\ell > 1050$ and $\\ell > 1475$, respectively. The observations cover $500\\, \\rm{deg}^2$ of sky, a fivefold increase in area compared to previous SPTpol power spectrum releases, leading to more than a factor of two reduction in bandpower uncertainties. The additional sky coverage increases our sensitivity to the photon-diffusion damping tail of the CMB angular power spectra, which enables tighter constraints on $\\Lambda CDM$ model extensions such as primordial helium content $Y_\\rm{p}$ and effective number of relativistic species $N_\\rm{eff}$. Furthermore, after masking all sources with unpolarized flux $>50$ mJy we place a 95% confidence upper limit on residual polarized point-source power of $D_\\ell < 0.10 \\mu{\\rm K}^2$ at $\\ell=3000$. This limit is a factor of four lower than the previous best upper limit, and suggests that the $EE$ damping tail is brighter than foregrounds to at least $\\ell = 4100$ with modest source masking. Finally, we find cosmological parameter constraints consistent with those for $Planck$ temperature when fitting SPTpol data at $\\ell < 1000$. However, including SPTpol data at $\\ell > 1000$ results in a preference for a higher value of the expansion rate ($H_0 = 71.2 \\pm 2.1\\,\\mbox{km}\\,s^{-1}\\mbox{Mpc}^{-1}$) and a lower value for present-day density fluctuations ($\\sigma_8 = 0.77 \\pm 0.02$). (Abridged).

  4. Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data

    Energy Technology Data Exchange (ETDEWEB)

    Henning, J. W.; Sayre, J. T.; Reichardt, C. L.; Ade, P. A. R.; Anderson, A. J.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H-M.; Citron, R.; Moran, C. Corbett; Crawford, T. M.; Crites, A. T.; Haan, T. de; Dobbs, M. A.; Everett, W.; Gallicchio, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Lowitz, A.; Manzotti, A.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Ruhl, J. E.; Saliwanchik, B. R.; Schaffer, K. K.; Sievers, C.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Veach, T.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Yefremenko, V.

    2018-01-11

    We present measurements of the E-mode polarization angular auto-power spectrum (EE) and temperature-E-mode cross-power spectrum (TE) of the cosmic microwave background (CMB) using 150 GHz data from three seasons of SPTpol observations. We report the power spectra over the spherical harmonic multipole range 50 < l <= 8000 and detect nine acoustic peaks in the EE spectrum with high signal-to-noise ratio. These measurements are the most sensitive to date of the EE and TE power spectra at l > 1050 and l > 1475, respectively. The observations cover 500 deg(2), a fivefold increase in area compared to previous SPTpol analyses, which increases our sensitivity to the photon diffusion damping tail of the CMB power spectra enabling tighter constraints on Lambda CDM model extensions. After masking all sources with unpolarized flux > 50 mJy, we place a 95% confidence upper limit on residual polarized point-source power of D-l= l(l + 1)C-l/2 pi < 0.107 mu K-2 at l = 3000, suggesting that the EE damping tail dominates foregrounds to at least l = 4050 with modest source masking. We find that the SPTpol data set is in mild tension with the Lambda CDM model (2.1 sigma), and different data splits prefer parameter values that differ at the similar to 1 sigma level. When fitting SPTpol data at l < 1000, we find cosmological parameter constraints consistent with those for Planck temperature. Including SPTpol data at l > 1000 results in a preference for a higher value of the expansion rate (H-0 = 71.3 +/- 2.1 km s(-1) Mpc(-1)) and a lower value for present-day density fluctuations (sigma(8) = 0.77 +/- 0.02).

  5. Fermat Potentials of Embedded Lensing, the Integrated Sachs-Wolfe Effect, and Weak-Lensing of CMB by Cosmic Voids

    Science.gov (United States)

    Chen, Bin; Kantowski, R.; Dai, X.

    2014-01-01

    We have developed an accurate gravitational lens theory for an inhomogeneity embedded in an otherwise homogeneous universe, which to the lowest order is applicable to any mass distribution. We derive the Fermat potential for a spherically symmetric lens embedded in a FLRW cosmology and use it to investigate the late-time integrated Sachs-Wolfe effect (ISW) caused by individual large scale inhomogeneities, in particular, cosmic voids. We present a simple analytical expression for the CMB temperature fluctuation across such a lens as the derivative of the lens Fermat potential. Our formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. Our results are particularly useful for modeling ISW effects extracted through stacking large numbers of cosmic voids and clusters (that is, the aperture photometry method). For structures co-expanding with the background cosmology, i.e., for time-independent density contrasts, we find that the gravitational lensing time delay alone can produce fluctuations of the order of seen in recent observations by WMAP and Planck. We revisit the possibility of explaining the non-Gaussian cold spot on the south hemisphere via the Rees-Sciama effect of a large cosmic void using constraints obtained from the most recent void catalogs and our new void-lensing formalism, and compare it with other explanations such as a collapsing cosmic texture. We also study the remapping of primordial CMB anisotropies, the weak-lensing shear, and magnification caused by void lensing.

  6. Ontological Proofs of Existence and Non-Existence

    Czech Academy of Sciences Publication Activity Database

    Hájek, Petr

    2008-01-01

    Roč. 90, č. 2 (2008), s. 257-262 ISSN 0039-3215 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : ontological proofs * existence * non-existence * Gödel * Caramuel Subject RIV: BA - General Mathematics

  7. Existence theory in optimal control

    International Nuclear Information System (INIS)

    Olech, C.

    1976-01-01

    This paper treats the existence problem in two main cases. One case is that of linear systems when existence is based on closedness or compactness of the reachable set and the other, non-linear case refers to a situation where for the existence of optimal solutions closedness of the set of admissible solutions is needed. Some results from convex analysis are included in the paper. (author)

  8. VizieR Online Data Catalog: 1H 0323+342 rest frame optical spectrum with GHAO (Leon+, 2014)

    Science.gov (United States)

    Leon Tavares, J.; Kotilainen, J.; Chavushyan, V.; Anorve, C.; Puerari, I.; Cruz-Gonzalez, I.; Patino-Alvarez, V.; Anton, S.; Carraminana, A.; Carrasco, L.; Guichard, J.; Karhunen, K.; Olguin-Iglesias, A.; Sanghvi, J.; Valdes, J.

    2017-05-01

    Within the framework of a spectrophotometric monitoring program of bright γ-ray sources (Patino-Alvarez et al. 2013, Proc. Fermi Symposium, arXiv:1303.1893), we undertook spectroscopic observations of 1H 0323+342 using the Boller & Chivens long-slit spectrograph on the 2.1 m Guillermo Haro Astrophysical Observatory (GHAO) in Sonora, Mexico. The spectra were obtained under photometric weather conditions (2012 September 17, 2013 January 9, 2013 February 7 and 11) using a slit width of 2.5 arcsec. The spectral resolution was R=15 Å and R=7 Å (FWHM) for the low-resolution and intermediate-resolution spectra, respectively. The wavelength range for the three low-resolution spectra is 3800-7100 Å, and for one intermediate-resolution spectrum the wavelength range is 4300-5900 Å. The signal-to-noise ratio (S/N) was >40 in the continuum near H{Beta}. To enable a wavelength calibration, HeAr lamp spectra were taken after each object exposure. Spectrophotometric standard stars were observed every night (at least two per night) to enable flux calibration. (1 data file).

  9. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

    Science.gov (United States)

    Posada, Chrystian M.; Ade, Peter A. R.; Anderson, Adam J.; Avva, Jessica; Ahmed, Zeeshan; Arnold, Kam S.; Austermann, Jason; Bender, Amy N.; Benson, Bradford A.; Bleem, Lindsey; Byrum, Karen; Carlstrom, John E.; Carter, Faustin W.; Chang, Clarence; Cho, Hsiao-Mei; Cukierman, Ari; Czaplewski, David A.; Ding, Junjia; Divan, Ralu N. S.; de Haan, Tijmen; Dobbs, Matt; Dutcher, Daniel; Everett, Wenderline; Gannon, Renae N.; Guyser, Robert J.; Halverson, Nils W.; Harrington, Nicholas L.; Hattori, Kaori; Henning, Jason W.; Hilton, Gene C.; Holzapfel, William L.; Huang, Nicholas; Irwin, Kent D.; Jeong, Oliver; Khaire, Trupti; Korman, Milo; Kubik, Donna L.; Kuo, Chao-Lin; Lee, Adrian T.; Leitch, Erik M.; Lendinez Escudero, Sergi; Meyer, Stephan S.; Miller, Christina S.; Montgomery, Joshua; Nadolski, Andrew; Natoli, Tyler J.; Nguyen, Hogan; Novosad, Valentyn; Padin, Stephen; Pan, Zhaodi; Pearson, John E.; Rahlin, Alexandra; Reichardt, Christian L.; Ruhl, John E.; Saliwanchik, Benjamin; Shirley, Ian; Sayre, James T.; Shariff, Jamil A.; Shirokoff, Erik D.; Stan, Liliana; Stark, Antony A.; Sobrin, Joshua; Story, Kyle; Suzuki, Aritoki; Tang, Qing Yang; Thakur, Ritoban B.; Thompson, Keith L.; Tucker, Carole E.; Vanderlinde, Keith; Vieira, Joaquin D.; Wang, Gensheng; Whitehorn, Nathan; Yefremenko, Volodymyr; Yoon, Ki Won

    2016-07-01

    Detectors for cosmic microwave background (CMB) experiments are now essentially background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. Here, we present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's Tc is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from

  10. A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Y.; Chown, R.; Simard, G.; Story, K. T.; Aylor, K.; Baxter, E. J.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H-M.; Crawford, T. M.; Crites, A. T.; Haan, T. de; Dobbs, M. A.; Everett, W. B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Hou, Z.; Holzapfel, W. L.; Hrubes, J. D.; Knox, L.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Manzotti, A.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zahn, O.

    2017-11-07

    We present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and \\emph{Planck} temperature data. The 150 GHz temperature data from the $2500\\ {\\rm deg}^{2}$ SPT-SZ survey is combined with the \\emph{Planck} 143 GHz data in harmonic space, to obtain a temperature map that has a broader $\\ell$ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential $C_{L}^{\\phi\\phi}$, and compare it to the theoretical prediction for a $\\Lambda$CDM cosmology consistent with the \\emph{Planck} 2015 data set, finding a best-fit amplitude of $0.95_{-0.06}^{+0.06}({\\rm Stat.})\\! _{-0.01}^{+0.01}({\\rm Sys.})$. The null hypothesis of no lensing is rejected at a significance of $24\\,\\sigma$. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, $C_{L}^{\\phi G}$, between the SPT+\\emph{Planck} lensing map and Wide-field Infrared Survey Explorer (\\emph{WISE}) galaxies. We fit $C_{L}^{\\phi G}$ to a power law of the form $p_{L}=a(L/L_{0})^{-b}$ with $a=2.15 \\times 10^{-8}$, $b=1.35$, $L_{0}=490$, and find $\\eta^{\\phi G}=0.94^{+0.04}_{-0.04}$, which is marginally lower, but in good agreement with $\\eta^{\\phi G}=1.00^{+0.02}_{-0.01}$, the best-fit amplitude for the cross-correlation of \\emph{Planck}-2015 CMB lensing and \\emph{WISE} galaxies over $\\sim67\\%$ of the sky. The lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey (DES), whose footprint nearly completely covers the SPT $2500\\ {\\rm deg}^2$ field.

  11. The X-ray emission mechanism of large scale powerful quasar jets: Fermi rules out IC/CMB for 3C 273.

    Directory of Open Access Journals (Sweden)

    Georganopoulos Markos

    2013-12-01

    Full Text Available The process responsible for the Chandra-detected X-ray emission from the large-scale jets of powerful quasars is not clear yet. The two main models are inverse Compton scattering off the cosmic microwave background photons (IC/CMB and synchrotron emission from a population of electrons separate from those producing the radio-IR emission. These two models imply radically different conditions in the large scale jet in terms of jet speed, kinetic power, and maximum energy of the particle acceleration mechanism, with important implications for the impact of the jet on the larger-scale environment. Georganopoulos et al. (2006 proposed a diagnostic based on a fundamental difference between these two models: the production of synchrotron X-rays requires multi-TeV electrons, while the EC/CMB model requires a cutoff in the electron energy distribution below TeV energies. This has significant implications for the γ-ray emission predicted by these two models. Here we present new Fermi observations that put an upper limit on the gamma-ray flux from the large-scale jet of 3C 273 that clearly violates the flux expected from the IC/CMB X-ray interpretation found by extrapolation of the UV to X-ray spectrum of knot A, thus ruling out the IC/CMB interpretation entirely for this source. Further, the upper limit from Fermi puts a limit on the Doppler beaming factor of at least δ <9, assuming equipartition fields, and possibly as low as δ <5 assuming no major deceleration of the jet from knots A through D1.

  12. Statistical nature of non-Gaussianity from cubic order primordial perturbations: CMB map simulations and genus statistic

    International Nuclear Information System (INIS)

    Chingangbam, Pravabati; Park, Changbom

    2009-01-01

    We simulate CMB maps including non-Gaussianity arising from cubic order perturbations of the primordial gravitational potential, characterized by the non-linearity parameter g NL . The maps are used to study the characteristic nature of the resulting non-Gaussian temperature fluctuations. We measure the genus and investigate how it deviates from Gaussian shape as a function of g NL and smoothing scale. We find that the deviation of the non-Gaussian genus curve from the Gaussian one has an antisymmetric, sine function like shape, implying more hot and more cold spots for g NL > 0 and less of both for g NL NL and also exhibits mild increase as the smoothing scale increases. We further study other statistics derived from the genus, namely, the number of hot spots, the number of cold spots, combined number of hot and cold spots and the slope of the genus curve at mean temperature fluctuation. We find that these observables carry signatures of g NL that are clearly distinct from the quadratic order perturbations, encoded in the parameter f NL . Hence they can be very useful tools for distinguishing not only between non-Gaussian temperature fluctuations and Gaussian ones but also between g NL and f NL type non-Gaussianities

  13. Gravity with free initial conditions: A solution to the cosmological constant problem testable by CMB B -mode polarization

    Science.gov (United States)

    Totani, Tomonori

    2017-10-01

    In standard general relativity the universe cannot be started with arbitrary initial conditions, because four of the ten components of the Einstein's field equations (EFE) are constraints on initial conditions. In the previous work it was proposed to extend the gravity theory to allow free initial conditions, with a motivation to solve the cosmological constant problem. This was done by setting four constraints on metric variations in the action principle, which is reasonable because the gravity's physical degrees of freedom are at most six. However, there are two problems about this theory; the three constraints in addition to the unimodular condition were introduced without clear physical meanings, and the flat Minkowski spacetime is unstable against perturbations. Here a new set of gravitational field equations is derived by replacing the three constraints with new ones requiring that geodesic paths remain geodesic against metric variations. The instability problem is then naturally solved. Implications for the cosmological constant Λ are unchanged; the theory converges into EFE with nonzero Λ by inflation, but Λ varies on scales much larger than the present Hubble horizon. Then galaxies are formed only in small Λ regions, and the cosmological constant problem is solved by the anthropic argument. Because of the increased degrees of freedom in metric dynamics, the theory predicts new non-oscillatory modes of metric anisotropy generated by quantum fluctuation during inflation, and CMB B -mode polarization would be observed differently from the standard predictions by general relativity.

  14. Dynamical 3-Space Predicts Hotter Early Universe: Resolves CMB-BBN 7-Li and 4-He Abundance Anomalies

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2010-01-01

    Full Text Available The observed abundances of 7-Li and 4-He are significantly inconsistent with the predictions from Big Bang Nucleosynthesis (BBN when using the $Lambda$CDM cosmological model together with the value for $Omega_B h^2 = 0.0224pm0.0009$ from WMAP CMB fluctuations, with the value from BBN required to fit observed abundances being $0.009 < Omega_B h^2 < 0.013$. The dynamical 3-space theory is shown to predict a 20% hotter universe in the radiation-dominated epoch, which then results in a remarkable parameter-free agreement between the BBN and the WMAP value for $Omega_B h^2$. The dynamical 3-space also gives a parameter-free fit to the supernova redshift data, and predicts that the flawed $Lambda$CDM model would require $Omega_Lambda = 0.73$ and $Omega_M = 0.27$ to fit the 3-space dynamics Hubble expansion, and independently of the supernova data. These results amount to the discovery of new physics for the early universe that is matched by numerous other successful observational and experimental tests.

  15. Dynamical 3-Space Predicts Hotter Early Universe: Resolves CMB-BBN 7-Li and 4-He Abundance Anomalies

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2010-01-01

    Full Text Available The observed abundances of 7 Li and 4 He are significantly inconsistent with the pre- dictions from Big Bang Nucleosynthesis (BBN when using the CDM cosmolog- ical model together with the value for B h 2 = 0 : 0224 0 : 0009 from WMAP CMB fluctuations, with the value from BBN required to fit observed abundances being 0 : 009 < B h 2 < 0 : 013. The dynamical 3-space theory is shown to predict a 20% hot- ter universe in the radiation-dominated epoch, which then results in a remarkable parameter-free agreement between the BBN and the WMAP value for B h 2 . The dy- namical 3-space also gives a parameter-free fit to the supernova redshift data, and pre- dicts that the flawed CDM model would require = 0 : 73 and M = 0 : 27 to fit the 3-space dynamics Hubble expansion, and independently of the supernova data. These results amount to the discovery of new physics for the early universe that is matched by numerous other successful observational and experimental tests.

  16. Existing Steel Railway Bridges Evaluation

    Science.gov (United States)

    Vičan, Josef; Gocál, Jozef; Odrobiňák, Jaroslav; Koteš, Peter

    2016-12-01

    The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  17. Existing Steel Railway Bridges Evaluation

    Directory of Open Access Journals (Sweden)

    Vičan Josef

    2016-12-01

    Full Text Available The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  18. Measuring α in the early universe: CMB temperature, large-scale structure, and Fisher matrix analysis

    International Nuclear Information System (INIS)

    Martins, C. J. A. P.; Melchiorri, A.; Trotta, R.; Bean, R.; Rocha, G.; Avelino, P. P.; Viana, P. T. P.

    2002-01-01

    We extend our recent work on the effects of a time-varying fine-structure constant α in the cosmic microwave background by providing a thorough analysis of the degeneracies between α and the other cosmological parameters, and discussing ways to break these with both existing and/or forthcoming data. In particular, we present the state-of-the-art cosmic microwave background constraints on α through a combined analysis of the BOOMERanG, MAXIMA and DASI data sets. We also present a novel discussion of the constraints on α coming from large-scale structure observations, focusing in particular on the power spectrum from the 2dF survey. Our results are consistent with no variation in α from the epoch of recombination to the present day, and restrict any such variation to be less than about 4%. We show that the forthcoming Microwave Anisotropy Probe and Planck experiments will be able to break most of the currently existing degeneracies between α and other parameters, and measure α to better than percent accuracy

  19. Limitations of existing web services

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Limitations of existing web services. Uploading or downloading large data. Serving too many user from single source. Difficult to provide computer intensive job. Depend on internet and its bandwidth. Security of data in transition. Maintain confidentiality of data ...

  20. Performance of Existing Hydrogen Stations

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Christopher D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peters, Michael C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    In this presentation, the National Renewable Energy Laboratory presented aggregated analysis results on the performance of existing hydrogen stations, including performance, operation, utilization, maintenance, safety, hydrogen quality, and cost. The U.S. Department of Energy funds technology validation work at NREL through its National Fuel Cell Technology Evaluation Center (NFCTEC).

  1. The EXIST Mission Concept Study

    Science.gov (United States)

    Fishman, Gerald J.; Grindlay, J.; Hong, J.

    2008-01-01

    EXIST is a mission designed to find and study black holes (BHs) over a wide range of environments and masses, including: 1) BHs accreting from binary companions or dense molecular clouds throughout our Galaxy and the Local Group, 2) supermassive black holes (SMBHs) lying dormant in galaxies that reveal their existence by disrupting passing stars, and 3) SMBHs that are hidden from our view at lower energies due to obscuration by the gas that they accrete. 4) the birth of stellar mass BHs which is accompanied by long cosmic gamma-ray bursts (GRBs) which are seen several times a day and may be associated with the earliest stars to form in the Universe. EXIST will provide an order of magnitude increase in sensitivity and angular resolution as well as greater spectral resolution and bandwidth compared with earlier hard X-ray survey telescopes. With an onboard optical-infra red (IR) telescope, EXIST will measure the spectra and redshifts of GRBs and their utility as cosmological probes of the highest z universe and epoch of reionization. The mission would retain its primary goal of being the Black Hole Finder Probe in the Beyond Einstein Program. However, the new design for EXIST proposed to be studied here represents a significant advance from its previous incarnation as presented to BEPAC. The mission is now less than half the total mass, would be launched on the smallest EELV available (Atlas V-401) for a Medium Class mission, and most importantly includes a two-telescope complement that is ideally suited for the study of both obscured and very distant BHs. EXIST retains its very wide field hard X-ray imaging High Energy Telescope (HET) as the primary instrument, now with improved angular and spectral resolution, and in a more compact payload that allows occasional rapid slews for immediate optical/IR imaging and spectra of GRBs and AGN as well as enhanced hard X-ray spectra and timing with pointed observations. The mission would conduct a 2 year full sky survey in

  2. The Greenhouse Effect Does Exist!

    OpenAIRE

    Ebel, Jochen

    2009-01-01

    In particular, without the greenhouse effect, essential features of the atmospheric temperature profile as a function of height cannot be described, i.e., the existence of the tropopause above which we see an almost isothermal temperature curve, whereas beneath it the temperature curve is nearly adiabatic. The relationship between the greenhouse effect and observed temperature curve is explained and the paper by Gerlich and Tscheuschner [arXiv:0707.1161] critically analyzed. Gerlich and Tsche...

  3. Europe - space for transcultural existence?

    OpenAIRE

    Tamcke, Martin; Janny, de Jong; Klein, Lars; Waal, Margriet

    2013-01-01

    Europe - Space for Transcultural Existence? is the first volume of the new series, Studies in Euroculture, published by Göttingen University Press. The series derives its name from the Erasmus Mundus Master of Excellence Euroculture: Europe in the Wider World, a two year programme offered by a consortium of eight European universities in collaboration with four partner universities outside Europe. This master highlights regional, national and supranational dimensions of the European democrati...

  4. Existence of undiscovered Uranian satellites

    International Nuclear Information System (INIS)

    Boice, D.C.

    1986-04-01

    Structure in the Uranian ring system as observed in recent occultations may contain indirect evidence for the existence of undiscovered satellites. Using the Alfven and Arrhenius (1975, 1976) scenario for the formation of planetary systems, the orbital radii of up to nine hypothetical satellites interior to Miranda are computed. These calculations should provide interesting comparisons when the results from the Voyager 2 encounter with Uranus are made public. 15 refs., 1 fig., 1 tab

  5. UNCITRAL: Changes to existing law

    OpenAIRE

    Andersson, Joakim

    2008-01-01

    The UNCITRAL Convention on Contracts for the International Carriage of Goods [wholly or partly] by Sea has an ambition of replacing current maritime regimes and expands the application of the Convention to include also multimodal transport. This thesis questions what changes to existing law, in certain areas, the new Convention will bring compared to the current regimes. In the initial part, the thesis provides for a brief background and history of international maritime regulations and focus...

  6. Existence Results for Incompressible Magnetoelasticity

    Czech Academy of Sciences Publication Activity Database

    Kružík, Martin; Stefanelli, U.; Zeman, J.

    2015-01-01

    Roč. 35, č. 6 (2015), s. 2615-2623 ISSN 1078-0947 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:67985556 Keywords : magnetoelasticity * magnetostrictive solids * incompressibility * existence of minimizers * quasistatic evolution * energetic solution Subject RIV: BA - General Mathematics Impact factor: 1.127, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/kruzik-0443017.pdf

  7. Is a step in the primordial spectral index favoured by CMB data?

    International Nuclear Information System (INIS)

    Joy, Minu; Shafieloo, Arman; Sahni, Varun; Starobinsky, Alexei A.

    2009-01-01

    A sudden small change in the second derivative of the inflaton potential can result in a universal local feature in the spectrum of primordial perturbations generated during inflation. The exact solution describing this feature \\cite(minu) is characterized by a step in the spectral index modulated by characteristic oscillations and results in a large running of the spectral index localized over a few e-folds of scale. In this paper we confront this step-like feature with the 5 year WMAP results and demonstrate that it provides a better fit to this data than a featureless initial spectrum. If such a feature exists at all, then it should lie at sufficiently large scales k 0 ∼ −1 corresponding to l ∼ s localized near this scale. This feature could arise as a result of a 'mini-waterfall'-type fast second order phase transition experienced by an auxiliary heavy field during inflation, in a model similar to hybrid inflation (though for a different choice of parameters). If this is the case, then the auxiliary field should be positively coupled to the inflaton

  8. Is a step in the primordial spectral index favoured by CMB data?

    Energy Technology Data Exchange (ETDEWEB)

    Joy, Minu; Shafieloo, Arman; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Pune 411 007 (India); Starobinsky, Alexei A., E-mail: minujoy@alphonsacollege.ac.in, E-mail: a.shafieloo1@physics.ox.ac.uk, E-mail: varun@iucaa.ernet.in, E-mail: alstar@landau.ac.ru [Landau Institute for Theoretical Physics, 119334 Moscow (Russian Federation)

    2009-06-01

    A sudden small change in the second derivative of the inflaton potential can result in a universal local feature in the spectrum of primordial perturbations generated during inflation. The exact solution describing this feature \\cite(minu) is characterized by a step in the spectral index modulated by characteristic oscillations and results in a large running of the spectral index localized over a few e-folds of scale. In this paper we confront this step-like feature with the 5 year WMAP results and demonstrate that it provides a better fit to this data than a featureless initial spectrum. If such a feature exists at all, then it should lie at sufficiently large scales k{sub 0} ∼< 0.003 Mpc{sup −1} corresponding to l ∼< 40. The sign of the effect is shown to correspond to the negative running of n{sub s} localized near this scale. This feature could arise as a result of a 'mini-waterfall'-type fast second order phase transition experienced by an auxiliary heavy field during inflation, in a model similar to hybrid inflation (though for a different choice of parameters). If this is the case, then the auxiliary field should be positively coupled to the inflaton.

  9. CMB spectra and bispectra calculations: making the flat-sky approximation rigorous

    International Nuclear Information System (INIS)

    Bernardeau, Francis; Pitrou, Cyril; Uzan, Jean-Philippe

    2011-01-01

    This article constructs flat-sky approximations in a controlled way in the context of the cosmic microwave background observations for the computation of both spectra and bispectra. For angular spectra, it is explicitly shown that there exists a whole family of flat-sky approximations of similar accuracy for which the expression and amplitude of next to leading order terms can be explicitly computed. It is noted that in this context two limiting cases can be encountered for which the expressions can be further simplified. They correspond to cases where either the sources are localized in a narrow region (thin-shell approximation) or are slowly varying over a large distance (which leads to the so-called Limber approximation). Applying this to the calculation of the spectra it is shown that, as long as the late integrated Sachs-Wolfe contribution is neglected, the flat-sky approximation at leading order is accurate at 1% level for any multipole. Generalization of this construction scheme to the bispectra led to the introduction of an alternative description of the bispectra for which the flat-sky approximation is well controlled. This is not the case for the usual description of the bispectrum in terms of reduced bispectrum for which a flat-sky approximation is proposed but the next-to-leading order terms of which remain obscure

  10. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

    International Nuclear Information System (INIS)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Vidal, J. Muñoz; Peña-Garay, C.

    2013-01-01

    The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Σm ν = (0.32±0.11) eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m ββ involved in neutrinoless double beta decay (ββ0ν) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based ββ0ν experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg·year, could already have a sizeable opportunity to observe ββ0ν events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton·year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely

  11. Quantum logics with existence property

    International Nuclear Information System (INIS)

    Schindler, C.

    1991-01-01

    A quantum logic (σ-orthocomplete orthomodular poset L with a convex, unital, and separating set Δ of states) is said to have the existence property if the expectation functionals on lin(Δ) associated with the bounded observables of L form a vector space. Classical quantum logics as well as the Hilbert space logics of traditional quantum mechanics have this property. The author shows that, if a quantum logic satisfies certain conditions in addition to having property E, then the number of its blocks (maximal classical subsystems) must either be one (classical logics) or uncountable (as in Hilbert space logics)

  12. Forecasts for CMB μ and i-type spectral distortion constraints on the primordial power spectrum on scales 8∼4 Mpc−1 with the future Pixie-like experiments

    International Nuclear Information System (INIS)

    Khatri, Rishi; Sunyaev, Rashid A.

    2013-01-01

    Silk damping at redshifts 1.5 × 10 4 ∼ 6 erases CMB anisotropies on scales corresponding to the comoving wavenumbers 8∼ 4 Mpc −1 (10 5 ∼ 8 ). This dissipated energy is gained by the CMB monopole, creating distortions from a blackbody in the CMB spectrum of the μ-type and the i-type. We study, using Fisher matrices, the constraints we can get from measurements of these spectral distortions on the primordial power spectrum from future experiments such as Pixie, and how these constraints change as we change the frequency resolution and the sensitivity of the experiment. We show that the additional information in the shape of the i-type distortions, in combination with the μ-type distortions, allows us to break the degeneracy between the amplitude and the spectral index of the power spectrum on these scales and leads to much tighter constraints. We quantify the information contained in both the μ-type distortions and the i-type distortions taking into account the partial degeneracy with the y-type distortions and the temperature of the blackbody part of the CMB. We also calculate the constraints possible on the primordial power spectrum when the spectral distortion information is combined with the CMB anisotropies measured by the WMAP, SPT, ACT and Planck experiments

  13. Does cold nuclear fusion exist?

    International Nuclear Information System (INIS)

    Brudanin, V.B.; Bystritskij, V.M.; Egorov, V.G.; Shamsutdinov, S.G.; Shyshkin, A.L.; Stolupin, V.A.; Yutlandov, I.A.

    1989-01-01

    The results of investigation of cold nuclear fusion on palladium are given both for electrolysis of heavy water D 2 O and mixture D 2 O + H 2 O) (1:1) and for palladium saturation with gaseous deuterium. The possibility of existance of this phenomenon was examined by detection of neutrons and gamma quanta from reactions: d + d → 3 He + n + 3.27 MeV, p + d → 3 He + γ + 5.5 MeV. Besides these reactions were identified by measuring the characteristic X radiation of palladium due to effect of charged products 3 He, p, t. The upper limits of the intensities of hypothetical sources of neutrons and gamma quanta at the 95% confidence level were obtained to be Q n ≤ 2x10 -2 n/sxcm 3 Pd, Q γ ≤ 2x10 -3 γ/sxcm 3 Pd. 2 refs.; 4 figs.; 2 tabs

  14. Straightening: existence, uniqueness and stability

    Science.gov (United States)

    Destrade, M.; Ogden, R. W.; Sgura, I.; Vergori, L.

    2014-01-01

    One of the least studied universal deformations of incompressible nonlinear elasticity, namely the straightening of a sector of a circular cylinder into a rectangular block, is revisited here and, in particular, issues of existence and stability are addressed. Particular attention is paid to the system of forces required to sustain the large static deformation, including by the application of end couples. The influence of geometric parameters and constitutive models on the appearance of wrinkles on the compressed face of the block is also studied. Different numerical methods for solving the incremental stability problem are compared and it is found that the impedance matrix method, based on the resolution of a matrix Riccati differential equation, is the more precise. PMID:24711723

  15. Why do interstellar grains exist

    International Nuclear Information System (INIS)

    Seab, C.G.; Hollenbach, D.J.; Mckee, C.F.; Tielens, A.G.G.M.

    1986-01-01

    There exists a discrepancy between calculated destruction rates of grains in the interstellar medium and postulated sources of new grains. This problem was examined by modelling the global life cycle of grains in the galaxy. The model includes: grain destruction due to supernovae shock waves; grain injection from cool stars, planetary nebulae, star formation, novae, and supernovae; grain growth by accretion in dark clouds; and a mixing scheme between phases of the interstellar medium. Grain growth in molecular clouds is considered as a mechanism or increasing the formation rate. To decrease the shock destruction rate, several new physical processes, such as partial vaporization effects in grain-grain collisions, breakdown of the small Larmor radius approximation for betatron acceleration, and relaxation of the steady-state shock assumption are included

  16. Existe sujeito em Michel Maffesoli?

    Directory of Open Access Journals (Sweden)

    Marli Appel da Silva

    2010-06-01

    Full Text Available Este ensaio discute a concepção de sujeito na abordagem teórica de Michel Maffesoli. As ideias desse autor estão em voga em alguns meios acadêmicos no Brasil e são difundidas por algumas mídias de grande circulação nacional. Entretanto, ao longo de suas obras, os pressupostos que definem quem é o sujeito maffesoliano se encontram pouco clarificados. Portanto, para alcançar o objetivo a que se propõe, este ensaio desenvolve uma análise da epistemologia e da ontologia maffesoliana com a finalidade de compreender as origens dos pressupostos desse autor, ou seja, as teorias e os autores em que Maffesoli se baseou para desenvolver uma visão de sujeito. Com essa compreensão, pretende-se responder à questão: existe sujeito na abordagem teórica de Maffesoli.

  17. The comparison of source contributions from residential coal and low-smoke fuels, using CMB modeling in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrech, J.P.; Swanepoel, L.; Chow, J.C.; Watson, J.G.; Egami, R.T. [Desert Research Institute, Reno, NV (USA)

    2002-04-01

    D-grade residential coal is being widely used for heating and cooking by most of the lower-income urban communities in South Africa. The adverse health effects resulting from exposure to residential coal combustion emissions have been a major public concern for many years. The Department of Minerals and Energy of South Africa conducted a macro-scale experiment in the township of Qalabotjha during the winter of 1997 to assess the technical and social benefits of combusting low-smoke fuels. This paper reports the PM{sub 2.5} and PM{sub 10} chemical mass-balance (CMB) source apportionment results from Qalabotjha during a 30-day sampling period, including a 10-day period when a large proportion of low-smoke fuels was burnt. Residential coal combustion was found to be the greatest source of air pollution, accounting for 62.1% of PM{sub 2.5} and 42.6% of PM{sub 10} at the three Qalabotjha sites. Biomass burning is also a major source, accounting for 13.8% of PM{sub 2.5} and 19.9% of PM{sub 10}. Fugitive dust is only significant in the coarse particle fraction, accounting for 11.3% of PM{sub 10}. Contributions from secondary ammonium sulfate are three-four times greater than from ammonium nitrate, accounting for 5-6% of PM mass. Minor contributions were found for power plant fly ash, motor vehicle exhaust, and agricultural lime. Average PM{sub 2.5} and PM{sub 10} mass decreased by 20 and 25%, respectively, from the D-grade coal combustion period (days 1-10) to the majority of the low-smoke fuel period (days 11-20). Relative source contribution estimates were similar among the three sampling periods for PM{sub 2.5}, and were quite different for PM{sub 10} during the second period when 14% higher residential coal combustion and 9% lower biomass burning source contributions were found.

  18. Dark Energy Survey Year 1 Results: Methodology and Projections for Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions

    Energy Technology Data Exchange (ETDEWEB)

    Giannantonio, T.; et al.

    2018-02-14

    Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to place tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES Collaboration et al. (2017) analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-point functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zel'dovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.

  19. Summary of existing uncertainty methods

    International Nuclear Information System (INIS)

    Glaeser, Horst

    2013-01-01

    A summary of existing and most used uncertainty methods is presented, and the main features are compared. One of these methods is the order statistics method based on Wilks' formula. It is applied in safety research as well as in licensing. This method has been first proposed by GRS for use in deterministic safety analysis, and is now used by many organisations world-wide. Its advantage is that the number of potential uncertain input and output parameters is not limited to a small number. Such a limitation was necessary for the first demonstration of the Code Scaling Applicability Uncertainty Method (CSAU) by the United States Regulatory Commission (USNRC). They did not apply Wilks' formula in their statistical method propagating input uncertainties to obtain the uncertainty of a single output variable, like peak cladding temperature. A Phenomena Identification and Ranking Table (PIRT) was set up in order to limit the number of uncertain input parameters, and consequently, the number of calculations to be performed. Another purpose of such a PIRT process is to identify the most important physical phenomena which a computer code should be suitable to calculate. The validation of the code should be focused on the identified phenomena. Response surfaces are used in some applications replacing the computer code for performing a high number of calculations. The second well known uncertainty method is the Uncertainty Methodology Based on Accuracy Extrapolation (UMAE) and the follow-up method 'Code with the Capability of Internal Assessment of Uncertainty (CIAU)' developed by the University Pisa. Unlike the statistical approaches, the CIAU does compare experimental data with calculation results. It does not consider uncertain input parameters. Therefore, the CIAU is highly dependent on the experimental database. The accuracy gained from the comparison between experimental data and calculated results are extrapolated to obtain the uncertainty of the system code predictions

  20. 10 CFR 4.127 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Existing facilities. 4.127 Section 4.127 Energy NUCLEAR... 1973, as Amended Discriminatory Practices § 4.127 Existing facilities. (a) Accessibility. A recipient... make each of its existing facilities or every part of an existing facility accessible to and usable by...

  1. Planck 2013 results. V. LFI calibration

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.

    2014-01-01

    We discuss the methods employed to photometrically calibrate the data acquired by the Low Frequency Instrument on Planck. Our calibration is based on the Solar Dipole, caused by motion of the Solar System with respect to the CMB rest frame, which provides a signal of a few mK with the same spectr...

  2. Prolinimines: N-Amino-l-Pro-methyl Ester (Hydrazine) Schiff Bases from a Fish Gastrointestinal Tract-Derived Fungus, Trichoderma sp. CMB-F563.

    Science.gov (United States)

    Mohamed, Osama G; Khalil, Zeinab G; Capon, Robert J

    2018-01-19

    A rice cultivation of a fish gastrointestinal tract-derived fungus, Trichoderma sp. CMB-F563, yielded natural products incorporating a rare hydrazine moiety, embedded within a Schiff base. Structures inclusive of absolute configurations were assigned to prolinimines A-D (1-4) on the basis of detailed spectroscopic and C 3 Marfey's analysis, as well as biosynthetic considerations, biomimetic total synthesis, and chemical transformations. Of note, monomeric 1 proved to be acid labile and, during isolation, underwent quantitative transformation to dimeric 3 and trimeric 4. Prolinimines are only the second reported natural products incorporating an N-amino-Pro residue, the first to include l-Pro, the first to occur as Schiff bases, and the first to be isolated from a microorganism.

  3. Do Elementary Particles Have an Objective Existence?

    OpenAIRE

    Nissenson, Bilha

    2007-01-01

    The formulation of quantum theory does not comply with the notion of objective existence of elementary particles. Objective existence independent of observation implies the distinguishability of elementary particles. In other words: If elementary particles have an objective existence independent of observations, then they are distinguishable. Or if elementary particles are indistinguishable then matter cannot have existence independent of our observation. This paper presents a simple deductio...

  4. 34 CFR 104.22 - Existing facilities.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Existing facilities. 104.22 Section 104.22 Education... Accessibility § 104.22 Existing facilities. (a) Accessibility. A recipient shall operate its program or activity.... This paragraph does not require a recipient to make each of its existing facilities or every part of a...

  5. 45 CFR 1170.32 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Existing facilities. 1170.32 Section 1170.32... ASSISTED PROGRAMS OR ACTIVITIES Accessibility § 1170.32 Existing facilities. (a) Accessibility. A recipient... require a recipient to make each of its existing facilities or every part of a facility accessible to and...

  6. 45 CFR 605.22 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Existing facilities. 605.22 Section 605.22 Public... Accessibility § 605.22 Existing facilities. (a) Accessibility. A recipient shall operate each program or... existing facilities or every part of a facility accessible to and usable by qualified handicapped persons...

  7. 14 CFR 1251.301 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Existing facilities. 1251.301 Section 1251... HANDICAP Accessibility § 1251.301 Existing facilities. (a) Accessibility. A recipient shall operate each... existing facilities or every part of a facility accessible to and usable by handicapped persons. (b...

  8. 45 CFR 1151.22 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Existing facilities. 1151.22 Section 1151.22... Prohibited Accessibility § 1151.22 Existing facilities. (a) A recipient shall operate each program or... make each of its existing facilities or every part of a facility accessible to and usable by...

  9. 10 CFR 611.206 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 611.206 Section 611.206 Energy... PROGRAM Facility/Funding Awards § 611.206 Existing facilities. The Secretary shall, in making awards to those manufacturers that have existing facilities, give priority to those facilities that are oldest or...

  10. Existence of equilibria in articulated bearings

    Science.gov (United States)

    Buscaglia, G.; Ciuperca, I.; Hafidi, I.; Jai, M.

    2007-04-01

    The existence of equilibrium solutions for a lubricated system consisting of an articulated body sliding over a flat plate is considered. Though this configuration is very common (it corresponds to the popular tilting-pad thrust bearings), the existence problem has only been addressed in extremely simplified cases, such as planar sliders of infinite width. Our results show the existence of at least one equilibrium for a quite general class of (nonplanar) slider shapes. We also extend previous results concerning planar sliders.

  11. 47 CFR 17.17 - Existing structures.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Existing structures. 17.17 Section 17.17... STRUCTURES Federal Aviation Administration Notification Criteria § 17.17 Existing structures. (a) The requirements found in § 17.23 relating to painting and lighting of antenna structures shall not apply to those...

  12. 10 CFR 1040.72 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 1040.72 Section 1040.72 Energy... § 1040.72 Existing facilities. (a) Accessibility. A recipient shall operate any program or activity to... facilities or every part of a facility accessible to and useable by handicapped persons. (b) Methods. A...

  13. 45 CFR 84.22 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Accessibility § 84.22 Existing facilities. (a) Accessibility. A recipient shall operate its program or activity so that when each part is..., welfare, or other social services at alternate accessible sites, alteration of existing facilities and...

  14. Financial gap calculations for existing cogeneration 2008

    International Nuclear Information System (INIS)

    Hers, S.J.; Wetzels, W.; Seebregts, A.J.; Van der Welle, A.J.

    2008-05-01

    The Dutch SDE (abbreviation for the renewable energy incentive) subsidy scheme promotes the reduction of CO2 emissions which results from the use of Combined Heat and Power (CHP) plants. This report calculates the profitability of operation of existing CHP plants. This information can be used for decision making on the SDE subsidy for existing CHP plants in 2008 [nl

  15. On the existence of consistent price systems

    DEFF Research Database (Denmark)

    Bayraktar, Erhan; Pakkanen, Mikko S.; Sayit, Hasanjan

    2014-01-01

    We formulate a sufficient condition for the existence of a consistent price system (CPS), which is weaker than the conditional full support condition (CFS). We use the new condition to show the existence of CPSs for certain processes that fail to have the CFS property. In particular this condition...

  16. The existence of trajectories joining critical points

    International Nuclear Information System (INIS)

    Yu Shuxiang.

    1985-01-01

    In this paper, using the notion of an isolating block and the concept of canonical regions, three existence criteria of trajectories connecting a pair of critical points of planar differential equations are given. (author)

  17. Pre-Existing Condition Insurance Plan Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Affordable Care Act created the new Pre-Existing Condition Insurance Plan (PCIP) program to make health insurance available to Americans denied coverage by...

  18. Seismic assessment of existing nuclear chemical plants

    International Nuclear Information System (INIS)

    Merriman, P.A.

    1997-01-01

    This paper outlines the generic approach to the seismic assessment of existing structures. It describes the role of the safety case in determining the studies carried out by the functional departments on individual projects. There is an emphasis on the role of existing information and material tests to provide realistic properties for analysis to account for possible degradation effects. Finally, a case study of a concrete containment cell is shown to illustrate the approach. (author)

  19. Solar Panel Installations on Existing Structures

    OpenAIRE

    Tim D. Sass; Pe; Leed

    2013-01-01

    The rising price of fossil fuels, government incentives and growing public aware-ness for the need to implement sustainable energy supplies has resulted in a large in-crease in solar panel installations across the country. For many sites the most eco-nomical solar panel installation uses existing, southerly facing rooftops. Adding solar panels to an existing roof typically means increased loads that must be borne by the building-s structural elements. The structural desig...

  20. The global existence problem in general relativity

    CERN Document Server

    Andersson, L

    2000-01-01

    We survey some known facts and open questions concerning the global properties of 3+1 dimensional space--times containing a compact Cauchy surface. We consider space--times with an $\\ell$--dimensional Lie algebra of space--like Killing fields. For each $\\ell \\leq 3$, we give some basic results and conjectures on global existence and cosmic censorship. For the case of the 3+1 dimensional Einstein equations without symmetries, a new small data global existence result is announced.

  1. REST-FRAME UV-OPTICALLY SELECTED GALAXIES AT 2.3 ∼< z ∼< 3.5: SEARCHING FOR DUSTY STAR-FORMING AND PASSIVELY EVOLVING GALAXIES

    International Nuclear Information System (INIS)

    Guo Yicheng; Giavalisco, Mauro; Cassata, Paolo; Williams, Christina C.; Salimbeni, Sara; Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman A.; Dickinson, Mark; Chary, Ranga-Ram; Messias, Hugo; Tundo, Elena; Lin Lihwai; Lee, Seong-Kook; Fontana, Adriano; Grazian, Andrea; Kocevski, Dale; Lee, Kyoung-Soo; Villanueva, Edward; Van der Wel, Arjen

    2012-01-01

    A new set of color selection criteria (VJL) analogous with the BzK method is designed to select both star-forming galaxies (SFGs) and passively evolving galaxies (PEGs) at 2.3 ∼ star > 10 10 M ☉ ) galaxies at 2.3 ∼ 0.4) SFGs, which, however, only account for ∼20% of the number density of massive SFGs. We also use the mid-infrared fluxes to clean our PEG sample and find that galaxy size can be used as a secondary criterion to effectively eliminate the contamination of dusty SFGs. The redshift distribution of the cleaned PEG sample peaks at z ∼ 2.5. We find six PEG candidates at z > 3 and discuss possible methods to distinguish them from dusty contamination. We conclude that at least part of our candidates are real PEGs at z ∼ 3, implying that these types of galaxies began to form their stars at z ∼> 5. We measure the integrated stellar mass density (ISMD) of PEGs at z ∼ 2.5 and set constraints on it at z > 3. We find that the ISMD grows by at least about a factor of 10 in 1 Gyr at 3 < z <5 and by another factor of 10 in the next 3.5 Gyr (1 < z < 3).

  2. Existence test for asynchronous interval iterations

    DEFF Research Database (Denmark)

    Madsen, Kaj; Caprani, O.; Stauning, Ole

    1997-01-01

    In the search for regions that contain fixed points ofa real function of several variables, tests based on interval calculationscan be used to establish existence ornon-existence of fixed points in regions that are examined in the course ofthe search. The search can e.g. be performed...... as a synchronous (sequential) interval iteration:In each iteration step all components of the iterate are calculatedbased on the previous iterate. In this case it is straight forward to base simple interval existence and non-existencetests on the calculations done in each step of the iteration. The search can also...... on thecomponentwise calculations done in the course of the iteration. These componentwisetests are useful for parallel implementation of the search, sincethe tests can then be performed local to each processor and only when a test issuccessful do a processor communicate this result to other processors....

  3. Seismic reevaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    Hennart, J.C.

    1978-01-01

    The codes and regulations governing Nuclear Power Plant seismic analysis are continuously becoming more stringent. In addition, design ground accelerations of existing plants must sometimes be increased as a result of discovery of faulting zones or recording of recent earthquakes near the plant location after plant design. These new factors can result in augmented seismic design criteria. Seismic reanalysius of the existing Nuclear Power Plant structures and equipments is necessary to prevent the consequences of newly postulated accidents that could cause undue risk to the health or safety of the public. This paper reviews the developments of seismic analysis as applied to Nuclear Power Plants and the methods used by Westinghouse to requalify existing plants to the most recent safety requirements. (author)

  4. The Existence of Public Protection Unit

    Directory of Open Access Journals (Sweden)

    Moh. Ilham A. Hamudy

    2014-12-01

    Full Text Available This article is about the Public Protection Unit (Satlinmas formerly known as civil defence (Hansip. This article is a summary of the results of the desk study and fieldwork conducted in October-November 2013 in the town of Magelang and Surabaya. This study used descriptive qualitative approach to explore the combined role and existence Satlinmas. The results of the study showed, the existence of the problem Satlinmas still leave many, including, first, the legal basis for the establishment of Satlinmas. Until now, there has been no new regulations governing Satlinmas. Existing regulations are too weak and cannot capture the times. Second, the formulation of concepts and basic tasks and functions Satlinmas overlap with other institutions. Third, Satlinmas image in society tend to fade and abused. Fourth, Satlinmas incorporation into the Municipal Police deemed not appropriate, because different philosophy.

  5. Radiation protection programme for existing exposure situation

    International Nuclear Information System (INIS)

    Ramadhani, Hilali Hussein

    2016-04-01

    This study was conducted to develop the Radiation protection Programme (RPP) to ensure that measures are in place for protection of individuals from the existing source of exposure. The study established a number of protective and remedial actions to be considered by the responsible regulatory Authority, licensee for existing exposure in workplace and dwellings. Tanzania is endowed with a number NORMs processing industries with an experience of uncontrolled exploration and extraction of minerals and the use of unsafe mining methods leading to severe environmental damage and appalling living conditions in the mining communities. Some of NORMs industries have been abandoned due to lack of an effect management infrastructure. The residual radioactive materials have been found to be the most import source of existing exposure resulted from NORMs industries. The Radon gas and its progeny have also been found to be a source of existing exposure from natural source as well as the major source of risk and health effects associated with existing exposure situation. The following measures have been discovered to play a pivotal role in avoiding or reducing the source of exposure to individuals such as restriction of the use of the construction materials, restriction on the consumption of foodstuffs and restriction on the access to the land and buildings, the removal of the magnitude of the source in terms of activity concentration as well as improvement of ventilation in dwellings. Therefore, the regulatory body (Tanzania Atomic Energy Commission) should examine the major areas outlined in the established RRP for existing exposure situation resulted from the NORMs industries and natural sources so as to develop strategies that will ensure the adequate protection of members of the public and the environment as well as guiding operating organizations to develop radiation protection and safety measures for workers. (au)

  6. Foucault, Counselling and the Aesthetics of Existence

    Science.gov (United States)

    Peters, Michael A.

    2005-01-01

    Michel Foucault was drawn late in life to study the "arts of the self" in Greco-Roman culture as a basis, following Nietzsche, for what he called an "aesthetics of existence." By this, he meant a set of creative and experimental processes and techniques by which an individual turns him- or herself into a work of art. For Nietzsche, it was above…

  7. How to prove the existence of metabolons?

    DEFF Research Database (Denmark)

    Bassard, Jean-Étienne André; Halkier, Barbara Ann

    2017-01-01

    Sequential enzymes in biosynthetic pathways are organized in metabolons. It is challenging to provide experimental evidence for the existence of metabolons as biosynthetic pathways are composed of highly dynamic protein–protein interactions. Many different methods are being applied, each with str...

  8. Conditions for the Existence of Market Equilibrium.

    Science.gov (United States)

    Bryant, William D. A.

    1997-01-01

    Maintains that most graduate-level economics textbooks rarely mention the need for consumers to be above their minimum wealth position as a condition for market equilibrium. Argues that this omission leaves students with a mistaken sense about the range of circumstances under which market equilibria can exist. (MJP)

  9. 22 CFR 142.16 - Existing facilities.

    Science.gov (United States)

    2010-04-01

    ... OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Accessibility § 142.16 Existing facilities. (a) Accessibility. A recipient shall operate each program or activity to which this part applies so that when each...., telecommunication device for the deaf) redesign of equipment, reassignment of classes or other services to...

  10. Transportation capabilities of the existing cask fleet

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Wankerl, M.W.

    1991-01-01

    This paper describes a number of scenarios estimating the amount of spent nuclear fuel that could be transported to a Monitored Retrievable Storage (MRS) Facility by various combinations of existing cask fleets. To develop the scenarios, the data provided by the Transportation System Data Base (TSDB) were modified to reflect the additional time for cask turnaround resulting from various startup and transportation issues. With these more realistic speed and cask-handling assumptions, the annual transportation capability of a fleet consisting of all of the existing casks is approximately 46 metric tons of uranium (MTU). The most likely fleet of existing casks that would be made available to the Department of Energy (DOE) consists of two rail, three overweight truck, and six legal weight truck casks. Under the same transportation assumptions, this cask fleet is capable of approximately transporting 270 MTU/year. These ranges of capability is a result of the assumptions pertaining to the number of casks assumed to be available. It should be noted that this assessment assumes additional casks based on existing certifications are not fabricated. 5 refs., 4 tabs

  11. Conservation and Development Options existing on Uluguru ...

    African Journals Online (AJOL)

    Effective management of projects on Uluguru Mountains requires that both development and conservation options are weighed and that opportunities and challenges are considered. This study identified various conservation and development options existing on Uluguru Mountains and assessed the perceptions of the local ...

  12. Transportation capabilities of the existing cask fleet

    International Nuclear Information System (INIS)

    Johnson, P.E.; Wankerl, M.W.; Joy, D.S.

    1991-01-01

    This paper describes a number of scenarios estimating the amount of spent nuclear fuel that could be transported to a Monitored Retrievable Storage (MRS) Facility by various combinations of existing cask fleets. To develop the scenarios, the data provided by the Transportation System Data Base (TSDB) were modified to reflect the additional time for cask turnaround resulting from various startup and transportation issues. With these more realistic speed and cask-handling assumptions, the annual transportation capability of a fleet consisting of all of the existing casks is approximately 465 metric tons of uranium (MTU). The most likely fleet of existing casks that would be made available to the DOE consists of two rail, three overweight truck, and six legal weight truck casks. Under the same transportation assumptions, this cask fleet is capable of approximately transporting 270 MTU/year. These ranges of capability is a result of the assumptions pertaining to the number of casks assumed to be available. It should be noted that this assessment assumes additional casks based on existing certifications are not fabricated

  13. Does the Kuleshov Effect really Exist?

    DEFF Research Database (Denmark)

    Barratt, Daniel; Cabak Rédei, Anna

    2013-01-01

    with a doll, a dead woman in a coffin, and a bowl of soup; the viewers of the three sequences were reported to have perceived Mozhukin’s face as expressing happiness, sadness, and hunger/thoughtfulness respectively. It is not clear, however, whether or not the socalled “Kuleshov effect” really exists...

  14. COMPARATIVE ANALYSIS OF SOME EXISTING KINETIC MODELS ...

    African Journals Online (AJOL)

    The biosorption of three heavy metal ions namely; Zn2+, Cu2+ and Mn2+ using five microorganisms namely; Bacillus circulans, Pseudomonas aeruginosa, Staphylococcus xylosus, Streptomyces rimosus and Yeast (Saccharomyces sp.) were studied. In this paper, the effectiveness of six existing and two proposed kinetic ...

  15. Do ‘African’ universities exist?

    DEFF Research Database (Denmark)

    Jensen, Stig; Adriansen, Hanne Kirstine; Madsen, Lene Møller

    2015-01-01

    This chapter provides a background for understanding the book. We outline some of the debates in which the individual chapters are situated and thereby show how the book contributes to and fills gaps in existing research. After providing a short history of African universities, the chapter subseq...

  16. Do Biopositive Effects of Ionizing Radiations Exist

    International Nuclear Information System (INIS)

    Broda, E.

    1983-01-01

    The claim that radiations, e.g, in spas, can have biopositive actions on humans is unproven and unplausible. It also conflicts with the contents of the standard handbooks and with national legislation everywhere. Further, stimulation of plants by radiation is badly reproducible. But even if existing it need not be beneficial to the plant itself ("selfpositive"). (author)

  17. Repurposing Existing Material for Performance Support.

    Science.gov (United States)

    Harvey, Francis A.; Nelson, Adam

    1995-01-01

    Presents an overview of performance support systems (PSS), describes their role in promoting productivity in agile organizations, and discusses issues related to developing effective performance support using existing orientation, training, or procedural manuals. Topics include strategic principles of agility, and adding value when incorporating…

  18. Global existence proof for relativistic Boltzmann equation

    International Nuclear Information System (INIS)

    Dudynski, M.; Ekiel-Jezewska, M.L.

    1992-01-01

    The existence and causality of solutions to the relativistic Boltzmann equation in L 1 and in L loc 1 are proved. The solutions are shown to satisfy physically natural a priori bounds, time-independent in L 1 . The results rely upon new techniques developed for the nonrelativistic Boltzmann equation by DiPerna and Lions

  19. 38 CFR 18.422 - Existing facilities.

    Science.gov (United States)

    2010-07-01

    ... THE CIVIL RIGHTS ACT OF 1964 Nondiscrimination on the Basis of Handicap Accessibility § 18.422 Existing facilities. (a) Accessibility. A recipient shall operate each program or activity to which this... visits, delivery of health, or other social services at alternate accessible sites, alteration of...

  20. Developing an Actuarial Track Utilizing Existing Resources

    Science.gov (United States)

    Rodgers, Kathy V.; Sarol, Yalçin

    2014-01-01

    Students earning a degree in mathematics often seek information on how to apply their mathematical knowledge. One option is to follow a curriculum with an actuarial emphasis designed to prepare students as an applied mathematician in the actuarial field. By developing only two new courses and utilizing existing courses for Validation by…

  1. 7 CFR 1718.52 - Existing mortgages.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Existing mortgages. 1718.52 Section 1718.52 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOAN SECURITY DOCUMENTS FOR ELECTRIC BORROWERS Mortgage for Distribution Borrowers § 1718.52...

  2. Transforming existing content into reusable Learning Objects

    NARCIS (Netherlands)

    Doorten, Monique; Giesbers, Bas; Janssen, José; Daniels, Jan; Koper, Rob

    2003-01-01

    Please cite as: Doorten, M., Giesbers, B., Janssen, J., Daniëls, J, & Koper, E.J.R., (2004). Transforming existing content into reusable learning objects. In R. McGreal, Online Education using Learning Objects (pp. 116-127). London: RoutledgeFalmer.

  3. Psychology's struggle for existence: Second edition, 1913.

    Science.gov (United States)

    Wundt, Wilhelm; Lamiell, James T

    2013-08-01

    Presents an English translation of Wilhelm Wundt's Psychology's struggle for existence: Second edition, 1913, by James T. Lamiell in August, 2012. In his essay, Wundt advised against the impending divorce of psychology from philosophy. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  4. Altering existing buildings in the UK

    International Nuclear Information System (INIS)

    Roberts, Simon

    2008-01-01

    The profiles of both existing housing and existing public and commercial buildings show that many have very poor thermal efficiency. The UK housing stock is replaced at a low rate of about 1% a year, so to cut energy use it is essential to address the challenges of existing buildings. This will involve reducing energy demand through passive measures such as retrofitted insulation, replacement of windows and proper airtightness, while ensuring adequate ventilation. Active measures include upgrading improved boilers and adding locally produced energy from wind, biomass, solar power and other sources. The introduction of Display Energy Certificates will increase energy awareness but there will also need to be a programme of increased demolition for the worst-performing homes. In addition, buildings will need to be adapted to cope with worse weather, higher temperatures and increased flood risk as climate change takes effect. Overheating, rather than excessive cold, is set to become a growing problem for householders and employees in existing UK buildings

  5. Adding Semantic Support to Existing UDDI Infrastructure

    National Research Council Canada - National Science Library

    Luo, Jim; Montrose, Bruce; Kang, Myong

    2005-01-01

    .... The advantage is that it is completely backward compatible. The add-on modules only need to be installed on the clients of users who wish to take advantage of semantic markups. They can be integrated seamlessly into existing systems and operations without any modification of the infrastructure.

  6. Characterizing and sourcing ambient PM2.5 over key emission regions in China II: Organic molecular markers and CMB modeling

    Science.gov (United States)

    Zhou, Jiabin; Xiong, Ying; Xing, Zhenyu; Deng, Junjun; Du, Ke

    2017-08-01

    From November 2012 to July 2013, a sampling campaign was completed for comprehensive characterization of PM2.5 over four key emission regions in China: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). A multi-method approach, adopting different analytical and receptor modeling methods, was employed to determine the relative abundances of region-specific air pollution constituents and contributions of emission sources. This paper is focused on organic molecular marker based source apportionment using chemical mass balance (CMB) receptor modeling. Analyses of the organic molecular markers revealed that vehicle emission, coal combustion, biomass burning, meat cooking and natural gas combustion were the major contributors to organic carbon (OC) in PM2.5. The vehicle emission dominated the sources contributing to OC in spring at four sampling sites. During wintertime, the coal combustion had highest contribution to OC at BTH site, while the major source contributing to OC at YRD and PRD sites was vehicle emission. In addition, the relative contributions of different emission sources to PM2.5 mass at a specific location site and in a specific season revealed seasonal and spatial variations across all four sampling locations. The largest contributor to PM2.5 mass was secondary sulfate (14-17%) in winter at the four sites. The vehicle emission was found to be the major source (14-21%) for PM2.5 mass at PRD site. The secondary ammonium has minor variation (4-5%) across the sites, confirming the influences of regional emission sources on these sites. The distinct patterns of seasonal and spatial variations of source apportionment observed in this study were consistent with the findings in our previous paper based upon water-soluble ions and carbonaceous fractions. This makes it essential for the local government to make season- and region-specific mitigation strategies for abating PM2.5 pollution in China.

  7. Essence and Existence in Avicenna and Averroes

    Directory of Open Access Journals (Sweden)

    Belo, Catarina

    2009-12-01

    Full Text Available This article explores the views on existence of medieval Muslim philosophers Avicenna (d. 1037 and Averroes (d. 1198, whose works followed closely the philosophy of Aristotle. In addition to the Aristotelian influence, which permeated all medieval Islamic philosophy, Avicenna and Averroes were also inspired by Islamic theology, known in Arabic as kalām. The distinction between essence and existence is one of the most central and controversial aspects of Avicenna’s philosophy, together with his claim that existence is an accident. Averroes in turn has a radically different conception of existence, identifying it with existing beings rather than considering it as something in itself. With the Latin translation of Avicenna’s metaphysical works in the 12th century, the Avicennian distinction went on to shape much of the debate on existence in medieval Scholastic philosophy and beyond. This article assesses the meaning of the distinction in Avicenna as well as Averroes’ criticism. In explicating their radically different views on existence, it also touches on later discussions concerning existence, for example the issue whether existence is a predicate, in the Modern Age.

    El presente artículo explora las percepciones sobre la existencia de los filósofos medievales musulmanes Avicena (m. 1037 y Averroes (m. 1198, cuyas obras se encuentran muy próximas a la filosofía de Aristóteles. Además de la influencia aristotélica, que caló en toda la filosofía islámica medieval, Avicena y Averroes estuvieron inspirados por la teología islámica, conocida en árabe como Kalām. La distinción entre esencia y existencia es uno de los más fundamentales y controvertidos aspectos de la filosofía de Avicena junto a su aseveración de que la existencia es un accidente. Averroes, en cambio, concibe de forma radicalmente diferente la existencia, identificándola con los seres existentes más que considerarla como algo en

  8. Overview of Existing Wind Energy Ordinances

    Energy Technology Data Exchange (ETDEWEB)

    Oteri, F.

    2008-12-01

    Due to increased energy demand in the United States, rural communities with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to ensure that ordinances will be established to aid the development of safe facilities that will be embraced by the community. The purpose of this report is to educate and engage state and local governments, as well as policymakers, about existing large wind energy ordinances. These groups will have a collection of examples to utilize when they attempt to draft a new large wind energy ordinance in a town or county without existing ordinances.

  9. Co-existence in multispecies biofilm communities

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng

    of these emergent properties which are relevant to as diverse areas as clinical settings and natural systems. In this thesis, I have attempted to contribute to our knowledge on the multispecies interactions with a special focus on biofilm communities. I was especially interested in how co-existing species affect...... each other and in understanding the key mechanisms and interactions involved. In the introduction of this thesis the most important concepts of multi-species interactions and biofilm development are explained. After this the topic changes to the various ways of examining community interactions...... and production. The analysis was further extended in manuscript 3, in which the effect of social interac-tions on biofilm formation in multispecies co-cultures isolated from a diverse range of environments was examined. The question raised was whether the interspecific interactions of co-existing bacteria...

  10. Partial Cooperative Equilibria: Existence and Characterization

    Directory of Open Access Journals (Sweden)

    Amandine Ghintran

    2010-09-01

    Full Text Available We study the solution concepts of partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria. The partial cooperative Cournot-Nash equilibrium is axiomatically characterized by using notions of rationality, consistency and converse consistency with regard to reduced games. We also establish sufficient conditions for which partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria exist in supermodular games. Finally, we provide an application to strategic network formation where such solution concepts may be useful.

  11. Does evaporation paradox exist in China?

    Directory of Open Access Journals (Sweden)

    Z. T. Cong

    2009-03-01

    Full Text Available One expected consequence of global warming is the increase in evaporation. However, lots of observations show that the rate of evaporation from open pans of water has been steadily decreasing all over the world in the past 50 years. The contrast between expectation and observation is called "evaporation paradox". Based on data from 317 weather stations in China from 1956 to 2005, the trends of pan evaporation and air temperature were obtained and evaporation paradox was analyzed. The conclusions include: (1 From 1956 to 2005, pan evaporation paradox existed in China as a whole while pan evaporation kept decreasing and air temperature became warmer and warmer, but it does not apply to Northeast and Southeast China; (2 From 1956 to 1985, pan evaporation paradox existed narrowly as a whole with unobvious climate warming trend, but it does not apply to Northeast China; (3 From 1986 to 2005, in the past 20 years, pan evaporation paradox did not exist for the whole period while pan evaporation kept increasing, although it existed in South China. Furthermore, the trend of other weather factors including sunshine duration, windspeed, humidity and vapor pressure deficit, and their relations with pan evaporation are discussed. As a result, it can be concluded that pan evaporation decreasing is caused by the decreasing in radiation and wind speed before 1985 and pan evaporation increasing is caused by the decreasing in vapor pressure deficit due to strong warming after 1986. With the Budyko curve, it can be concluded that the actual evaporation decreased in the former 30 years and increased in the latter 20 year for the whole China.

  12. Existence and Comparability of data sources

    OpenAIRE

    KUHNIMHOF, T; ARMOOGUM, J

    2007-01-01

    The deliverable at hand comprises a comprehensive overview over existing data sources which can be used for analysis of long distance travel demand. This encompasses both national and international data sources with a focus on household travel surveys. Three types of relevant surveys were identified: - National travel surveys with focus on daily mobility - Travel survey elements dedicated to long distance mobility - Long distance travel surveys. RAPPORT DE CONTRAT

  13. Transgender Parenting: A Review of Existing Research

    OpenAIRE

    Stotzer, Rebecca L; Herman, Jody L; Hasenbush, Amira

    2014-01-01

    The authors of this report reviewed 51 studies that analyze data about transgender parents. This report reviews the existing research on the prevalence and characteristics of transgender people who are parents, the quality of relationships between transgender parents and their children, outcomes for children with a transgender parent, and the reported needs of transgender parents. Overall, the authors found that substantial numbers of transgender people are parents, though at rates below the ...

  14. Streamlining Research by Using Existing Tools

    OpenAIRE

    Greene, Sarah M.; Baldwin, Laura-Mae; Dolor, Rowena J.; Thompson, Ella; Neale, Anne Victoria

    2011-01-01

    Over the past two decades, the health research enterprise has matured rapidly, and many recognize an urgent need to translate pertinent research results into practice, to help improve the quality, accessibility, and affordability of U.S. health care. Streamlining research operations would speed translation, particularly for multi-site collaborations. However, the culture of research discourages reusing or adapting existing resources or study materials. Too often, researchers start studies and...

  15. Seismic evaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    2003-01-01

    The IAEA nuclear safety standards publications address the site evaluation and the design of new nuclear power plants (NPPs), including seismic hazard assessment and safe seismic design, at the level of the Safety Requirements as well as at the level of dedicated Safety Guides. It rapidly became apparent that the existing nuclear safety standards documents were not adequate for handling specific issues in the seismic evaluation of existing NPPs, and that a dedicated document was necessary. This is the purpose of this Safety Report, which is written in the spirit of the nuclear safety standards and can be regarded as guidance for the interpretation of their intent. Worldwide experience shows that an assessment of the seismic capacity of an existing operating facility can be prompted for the following: (a) Evidence of a greater seismic hazard at the site than expected before, owing to new or additional data and/or to new methods; (b) Regulatory requirements, such as periodic safety reviews, to ensure that the plant has adequate margins for seismic loads; (c) Lack of anti-seismic design or poor anti-seismic design; (d) New technical finding such as vulnerability of some structures (masonry walls) or equipment (relays), other feedback and new experience from real earthquakes. Post-construction evaluation programmes evaluate the current capability of the plant to withstand the seismic concern and identify any necessary upgrades or changes in operating procedures. Seismic qualification is distinguished from seismic evaluation primarily in that seismic qualification is intended to be performed at the design stage of a plant, whereas seismic evaluation is intended to be applied after a plant has been constructed. Although some guidelines do exist for the evaluation of existing NPPs, these are not established at the level of a regulatory guide or its equivalent. Nevertheless, a number of existing NPPs throughout the world have been and are being subjected to review of their

  16. Existing and new techniques in uranium exploration

    International Nuclear Information System (INIS)

    Bowie, S.H.U.; Cameron, J.

    1976-01-01

    The demands on uranium exploration over the next 25 years will be very great indeed and will call for every possible means of improvement in exploration capability. The first essential is to increase geological knowledge of the mode of occurrence of uranium ore deposits. The second is to improve existing exploration techniques and instrumentation while, at the same time, promoting research and development on new methods to discover uranium ore bodies on the earth's surface and at depth. The present symposium is an effort to increase co-operation and the exchange of information in the critical field of uranium exploration techniques and instrumentation. As an introduction to the symposium a brief review is presented, firstly of what can be considered as existing techniques and, secondly, of techniques which have not yet been used on an appreciable scale. Some fourteen techniques used over the last 30 years are identified and their appropriate application, advantages and limitations are briefly summarized and the possibilities of their further development considered. The aim of future research on new techniques, in addition to finding new ways and means of identifying surface deposits, should be mainly directed to devising methods and instrumentation capable of detecting buried ore bodies that do not give a gamma signal at the surface. To achieve this aim, two contributory factors are essential: adequate financial support for research and development and increased specialized training in uranium exploration and instrumentation design. The papers in this symposium describe developments in the existing techniques, proposals for future research and development and case histories of exploration programmes

  17. Does the Kuleshov Effect Really Exist?

    DEFF Research Database (Denmark)

    Barratt, Daniel; Rédei, Anna Cabak; Innes-Ker, Åse

    2016-01-01

    to replicate Kuleshov’s original experiment using an improved experimental design. In a behavioral and eye tracking study, 36 participants were each presented with 24 film sequences of neutral faces across six emotional conditions. For each film sequence, the participants were asked to evaluate the emotion...... of the target person in terms of valence, arousal, and category. The participants’ eye movements were recorded throughout. The results suggest that some sort of Kuleshov effect does in fact exist. For each emotional condition, the participants tended to choose the appropriate category more frequently than...... between the emotional conditions....

  18. Energy Savings Measure Packages. Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the United States. These packages are optimized for minimum cost to homeowners for source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home; this typically amounts to $300 - $700/year.

  19. Analysis of field errors in existing undulators

    International Nuclear Information System (INIS)

    Kincaid, B.M.

    1990-01-01

    The Advanced Light Source (ALS) and other third generation synchrotron light sources have been designed for optimum performance with undulator insertion devices. The performance requirements for these new undulators are explored, with emphasis on the effects of errors on source spectral brightness. Analysis of magnetic field data for several existing hybrid undulators is presented, decomposing errors into systematic and random components. An attempts is made to identify the sources of these errors, and recommendations are made for designing future insertion devices. 12 refs., 16 figs

  20. Existence families, functional calculi and evolution equations

    CERN Document Server

    deLaubenfels, Ralph

    1994-01-01

    This book presents an operator-theoretic approach to ill-posed evolution equations. It presents the basic theory, and the more surprising examples, of generalizations of strongly continuous semigroups known as 'existent families' and 'regularized semigroups'. These families of operators may be used either to produce all initial data for which a solution in the original space exists, or to construct a maximal subspace on which the problem is well-posed. Regularized semigroups are also used to construct functional, or operational, calculi for unbounded operators. The book takes an intuitive and constructive approach by emphasizing the interaction between functional calculus constructions and evolution equations. One thinks of a semigroup generated by A as etA and thinks of a regularized semigroup generated by A as etA g(A), producing solutions of the abstract Cauchy problem for initial data in the image of g(A). Material that is scattered throughout numerous papers is brought together and presented in a fresh, ...

  1. LDEF data: Comparisons with existing models

    Science.gov (United States)

    Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.

    1993-04-01

    The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.

  2. Eternally existing self-reproducing inflationary universe

    International Nuclear Information System (INIS)

    Linde, A.D.

    1986-05-01

    It is shown that the large-scale quantum fluctuations of the scalar field φ generated in the chaotic inflation scenario lead to an infinite process of self-reproduction of inflationary mini-universes. A model of eternally existing chaotic inflationary universe is suggested. It is pointed out that whereas the universe locally is very homogeneous as a result of inflation, which occurs at the classical level, the global structure of the universe is determined by quantum effects and is highly non-trivial. The universe consists of exponentially large number of different mini-universes, inside which all possible (metastable) vacuum states and all possible types of compactification are realized. The picture differs crucially from the standard picture of a one-domain universe in a ''true'' vacuum state. Our results may serve as a justification of the anthropic principle in the inflationary cosmology. These results may have important implications for the elementary particle theory as well. Namely, since all possible types of mini-universes, in which inflation may occur, should exist in our universe, there is no need to insist (as it is usually done) that in realistic theories the vacuum state of our type should be the only possible one or the best one. (author)

  3. Existing ingestion guidance: Problems and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, Robert R; Ziegler, Gordon L; Peterson, Donald S [Environmental Radiation Section, Division of Radiation Protection, WA (United States)

    1989-09-01

    Washington State has been developing plans and procedures for responding to nuclear accidents since the early 1970s. A key part of this process has been formulating a method for calculating ingestion pathway concentration guides (CGs). Such a method must be both technically sound and easy to use. This process has been slow and frustrating. However, much technical headway has been made in recent years, and hopefully the experience of the State of Washington will provide useful insight to problems with the existing guidance. Several recommendations are offered on ways to deal with these problems. In January 1986, the state held an ingestion pathway exercise which required the determination of allowed concentrations of isotopes for various foods, based upon reactor source term and field data. Objectives of the exercise were not met because of the complexity of the necessary calculations. A major problem was that the allowed concentrations had to be computed for each isotope and each food group, given assumptions on the average diet. To solve problems identified during that exercise, Washington developed, by March 1986, partitioned CGs. These CGs apportioned doses from each food group for an assumed mix of radionuclides expected to result from a reactor accident. This effort was therefore in place just in time for actual use during the Chernobyl fallout episode in May 1986. This technique was refined and described in a later report and presented at the 1987 annual meeting of the Health Physics Society. Realizing the technical weaknesses which still existed and a need to simplify the numbers for decision makers, Washington State has been developing computer methods to quickly calculate, from an accident specific relative mix of isotopes, CGs which allow a single radionuclide concentration for all food groups. This latest approach allows constant CGs for different periods of time following the accident, instead of peak CGs, which are good only for a short time after the

  4. Existing ingestion guidance: Problems and recommendations

    International Nuclear Information System (INIS)

    Mooney, Robert R.; Ziegler, Gordon L.; Peterson, Donald S.

    1989-01-01

    Washington State has been developing plans and procedures for responding to nuclear accidents since the early 1970s. A key part of this process has been formulating a method for calculating ingestion pathway concentration guides (CGs). Such a method must be both technically sound and easy to use. This process has been slow and frustrating. However, much technical headway has been made in recent years, and hopefully the experience of the State of Washington will provide useful insight to problems with the existing guidance. Several recommendations are offered on ways to deal with these problems. In January 1986, the state held an ingestion pathway exercise which required the determination of allowed concentrations of isotopes for various foods, based upon reactor source term and field data. Objectives of the exercise were not met because of the complexity of the necessary calculations. A major problem was that the allowed concentrations had to be computed for each isotope and each food group, given assumptions on the average diet. To solve problems identified during that exercise, Washington developed, by March 1986, partitioned CGs. These CGs apportioned doses from each food group for an assumed mix of radionuclides expected to result from a reactor accident. This effort was therefore in place just in time for actual use during the Chernobyl fallout episode in May 1986. This technique was refined and described in a later report and presented at the 1987 annual meeting of the Health Physics Society. Realizing the technical weaknesses which still existed and a need to simplify the numbers for decision makers, Washington State has been developing computer methods to quickly calculate, from an accident specific relative mix of isotopes, CGs which allow a single radionuclide concentration for all food groups. This latest approach allows constant CGs for different periods of time following the accident, instead of peak CGs, which are good only for a short time after the

  5. Do Bare Rocks Exist on the Moon?

    Science.gov (United States)

    Allen, Carlton; Bandfield, Joshua; Greenhagen, Benjamin; Hayne, Paul; Leader, Frank; Paige, David

    2017-01-01

    Astronaut surface observations and close-up images at the Apollo and Chang'e 1 landing sites confirm that at least some lunar rocks have no discernable dust cover. However, ALSEP (Apollo Lunar Surface Experiments Package) measurements as well as astronaut and LADEE (Lunar Atmosphere and Dust Environment Explorer) orbital observations and laboratory experiments possibly suggest that a fine fraction of dust is levitated and moves across and above the lunar surface. Over millions of years such dust might be expected to coat all exposed rock surfaces. This study uses thermal modeling, combined with Diviner (a Lunar Reconnaissance Orbiter experiment) orbital lunar eclipse temperature data, to further document the existence of bare rocks on the lunar surface.

  6. Integrating existing software toolkits into VO system

    Science.gov (United States)

    Cui, Chenzhou; Zhao, Yong-Heng; Wang, Xiaoqian; Sang, Jian; Luo, Ze

    2004-09-01

    Virtual Observatory (VO) is a collection of interoperating data archives and software tools. Taking advantages of the latest information technologies, it aims to provide a data-intensively online research environment for astronomers all around the world. A large number of high-qualified astronomical software packages and libraries are powerful and easy of use, and have been widely used by astronomers for many years. Integrating those toolkits into the VO system is a necessary and important task for the VO developers. VO architecture greatly depends on Grid and Web services, consequently the general VO integration route is "Java Ready - Grid Ready - VO Ready". In the paper, we discuss the importance of VO integration for existing toolkits and discuss the possible solutions. We introduce two efforts in the field from China-VO project, "gImageMagick" and "Galactic abundance gradients statistical research under grid environment". We also discuss what additional work should be done to convert Grid service to VO service.

  7. Seismic review of existing nuclear power plants

    International Nuclear Information System (INIS)

    Yanev, P.I.; Mayes, R.L.; Jones, L.R.

    1975-01-01

    Because of developments in the fields of earthquake and structural engineering over the last two decades, the codes, standards and design criteria for Nuclear Power Plants and other critical structures have changed substantially. As a result, plants designed only a few years ago do not satisfy the requirements for new plants. Accordingly, the Regulatory Agencies are requiring owners of older Nuclear Power Plants to re-qualify the plants seismically, using codes, standards, analytical techniques and knowledge developed in recent years. Seismic review consists of three major phases: establishing the design and performance criteria, re-qualifying the structures, and re-qualifying the equipment. The authors of the paper have been recently involved in the seismic review of existing nuclear power plants in the United States. This paper is a brief summary of their experiences

  8. Welfare Economics: A Story of Existence

    Directory of Open Access Journals (Sweden)

    Khalid Iqbal

    2017-06-01

    Full Text Available The purpose of this study is to explore that, despite severe challenges, welfare economics still exists. This descriptive study is conducted through some specific time line developments in this field. Economists are divided over the veracity and survival of the welfare economics. Welfare economics emphasizes on the optimum resource and goods allocation with the objective of better living standard, materialistic gains, social welfare and ethical decisions. It origins back to the political economics and utilitarianism. Adam Smith, Irving Fisher and Pareto contributed significantly towards it. During 1930 to 1940, American and British approaches were developed. Many economists tried to explore the relationship between level of income and happiness. Amartya Sen gave the comparative approach and Tinbergen pioneered the theory of equity. Contemporarily the futuristic restoration of welfare economics is on trial and hopes are alive. This study may be useful to understand the transitional and survival process of welfare economics.

  9. Testing Metadata Existence of Web Map Services

    Directory of Open Access Journals (Sweden)

    Jan Růžička

    2011-05-01

    Full Text Available For a general user is quite common to use data sources available on WWW. Almost all GIS software allow to use data sources available via Web Map Service (ISO/OGC standard interface. The opportunity to use different sources and combine them brings a lot of problems that were discussed many times on conferences or journal papers. One of the problem is based on non existence of metadata for published sources. The question was: were the discussions effective? The article is partly based on comparison of situation for metadata between years 2007 and 2010. Second part of the article is focused only on 2010 year situation. The paper is created in a context of research of intelligent map systems, that can be used for an automatic or a semi-automatic map creation or a map evaluation.

  10. On the existence of hot positronium reactions

    International Nuclear Information System (INIS)

    Lazzarini, E.

    1984-01-01

    The existence of hot Ps reactions is nowadays questioned; the controversy arises from the two models (the Ore gap and the spur theories) advanced in order to explain the mechanism of the positronium formation and of its inhibition in liquids by dissolution of certain compounds. The hypothesis of the hot Ps reactions was initially advanced as an additional statement for explaining the inhibition phenomenon within the framework of the Ore gap theory, but it is not considered necessary for the spur theory. The present paper is chiefly intended as a presentation of this particular aspect of Ps chemistry to hot atom chemists unspecialized in the field. The reader is assumed to be familiar with the basic physics and experimental methods used in positronium chemistry. Contents: positrons and positronium formation; inhibition and enhancement of Ps formation in solutions; positronium reactions in gases. (Auth.)

  11. Sustainability in the existing building stock

    DEFF Research Database (Denmark)

    Elle, Morten; Nielsen, Susanne Balslev; Hoffmann, Birgitte

    2005-01-01

    , QRWfacilities management’s most important contribution to sustainable development in the built environment. Space management is an essential tool in facilities management – and it could be considered a powerful tool in sustainable development; remembering that the building not being built is perhaps the most......This paper explores the role of Facilities Management in the relation to sustainable development in the existing building stock. Facilities management is a concept still developing as the management of buildings are becoming more and more professional. Many recognize today that facilities...... management is a concept relevant to others than large companies. Managing the flows of energy and other resources is a part of facilities management, and an increased professionalism could lead to the reduction of the use of energy and water and the generation of waste and wastewater. This is, however...

  12. Compilation of Existing Neutron Screen Technology

    Directory of Open Access Journals (Sweden)

    N. Chrysanthopoulou

    2014-01-01

    Full Text Available The presence of fast neutron spectra in new reactors is expected to induce a strong impact on the contained materials, including structural materials, nuclear fuels, neutron reflecting materials, and tritium breeding materials. Therefore, introduction of these reactors into operation will require extensive testing of their components, which must be performed under neutronic conditions representative of those expected to prevail inside the reactor cores when in operation. Due to limited availability of fast reactors, testing of future reactor materials will mostly take place in water cooled material test reactors (MTRs by tailoring the neutron spectrum via neutron screens. The latter rely on the utilization of materials capable of absorbing neutrons at specific energy. A large but fragmented experience is available on that topic. In this work a comprehensive compilation of the existing neutron screen technology is attempted, focusing on neutron screens developed in order to locally enhance the fast over thermal neutron flux ratio in a reactor core.

  13. [The depression epidemic does not exist].

    Science.gov (United States)

    van der Feltz-Cornelis, Christina M

    2009-01-01

    There has been much discussion in the media about the question of the existence of a depression epidemic. This leads on to the questions of whether the social and economic approaches are adequate, and what the alternatives are. The concept of the disease 'depression' can be defined using a medical model, or from a patient's or a societal perspective. From a medical perspective, indeed a depression epidemic has ensued from the increased prosperity and the associated decompression of the mortality rate. Society responded with preventative measures and policies aimed at improving functioning in the workplace. However, patients with a major depressive disorder (MDD) who are eligible for treatment are often not motivated to take it up, or are undertreated. Research is necessary in order to explore what patients think about the identification and treatment of depression. The confusion regarding the concept of depression found in the media, needs to be cleared.

  14. On the existence of Levi Foliations

    Directory of Open Access Journals (Sweden)

    RENATA N. OSTWALD

    2001-03-01

    Full Text Available Let L be a real 3 dimensional analytic variety. For each regular point p L there exists a unique complex line l p on the space tangent to L at p. When the field of complex line p l p is completely integrable, we say that L is Levi variety. More generally; let L M be a real subvariety in an holomorphic complex variety M. If there exists a real 2 dimensional integrable distribution on L which is invariant by the holomorphic structure J induced by M, we say that L is a Levi variety. We shall prove: Theorem. Let be a Levi foliation and let be the induced holomorphic foliation. Then, admits a Liouvillian first integral. In other words, if is a 3 dimensional analytic foliation such that the induced complex distribution defines an holomorphic foliation ; that is, if is a Levi foliation; then admits a Liouvillian first integral--a function which can be constructed by the composition of rational functions, exponentiation, integration, and algebraic functions (Singer 1992. For example, if f is an holomorphic function and if theta is real a 1-form on ; then the pull-back of theta by f defines a Levi foliation : f*theta = 0 which is tangent to the holomorphic foliation : df = 0. This problem was proposed by D. Cerveau in a meeting (see Fernandez 1997.Seja L Ì uma variedade real de dimensão 3. Para todo ponto regular p Î L existe uma única reta complexa l p no espaço tangente à L em p. Quando o campo de linhas complexas p l p é completamente integrável, dizemos que L é uma variedade de Levi. Mais geralmente, seja L Ì M uma subvariedade real em uma variedade analítica complexa. Se existe uma distribuição real integrável de dimensão 2 em L que é invariante pela estrutura holomorfa J induzida pela variedade complexa M, dizemos que L é uma variedade de Levi. Vamos provar: Teorema. Seja uma folheação de Levi e seja a folheação holomorfa induzida. Então tem integral primeira Liouvilliana. Em outras palavras, se é uma folheação real de

  15. How many N = 4 strings exist?

    International Nuclear Information System (INIS)

    Ketov, S.V.

    1994-09-01

    Possible ways of constructing extended fermionic strings with N=4 world-sheet supersymmetry are reviewed. String theory constraints form, in general, a non-linear quasi(super)conformal algebra, and can have conformal dimensions ≥1. When N=4, the most general N=4 quasi-superconformal algebra to consider for string theory building is D(1, 2; α), whose linearisation is the so-called ''large'' N=4 superconformal algebra. The D(1, 2; α) algebra has su(2)sub(κ + )+su(2)sub(κ - )+u(1) Kac-Moody component, and α=κ - /κ + . We check the Jacobi identities and construct a BRST charge for the D(1, 2; α) algebra. The quantum BRST operator can be made nilpotent only when κ + =κ - =-2. The D(1, 2; 1) algebra is actually isomorphic to the SO(4)-based Bershadsky-Knizhnik non-linear quasi-superconformal algebra. We argue about the existence of a string theory associated with the latter, and propose the (non-covariant) hamiltonian action for this new N=4 string theory. Our results imply the existence of two different N=4 fermionic string theories: the old one based on the ''small'' linear N=4 superconformal algebra and having the total ghost central charge c gh =+12, and the new one with non-linearly realised N=4 supersymmetry, based on the SO(4) quasi-superconformal algebra and having c gh =+6. Both critical string theories have negative ''critical dimensions'' and do not admit unitary matter representations. (orig.)

  16. Energy consumptions in existing buildings; Les consommations d'energie des batiments existants

    Energy Technology Data Exchange (ETDEWEB)

    Nuss, St. [Ecole Nationale Superieure des Arts et Industries de Strasbourg, 78 - Saint-Remy-Les-Chevreuse (France)]|[Costic, 78 - Sainte Remy les Chevreuses (France)

    2002-05-01

    This document presents a sectoral analysis of the energy consumptions in existing French buildings: 1) - residential sector: social buildings, private dwellings; 2) - tertiary sector: office buildings, hotels, commercial buildings, school buildings, hospitals; 3) - industry; 4) - general status. (J.S.)

  17. Obstructions to Bell CMB experiments

    Science.gov (United States)

    Martin, Jérôme; Vennin, Vincent

    2017-09-01

    We present a general and systematic study of how a Bell experiment on the cosmic microwave background could be carried out. We introduce different classes of pseudo-spin operators and show that, if the system is placed in a two-mode squeezed state as inflation predicts, they all lead to a violation of the Bell inequality. However, we also discuss the obstacles that one faces in order to realize this program in practice and show that they are probably insurmountable. We suggest alternative methods that could reveal the quantum origin of cosmological structures without relying on Bell experiments.

  18. Effectiveness of Existing International Nuclear Liability Regime

    International Nuclear Information System (INIS)

    Al-Doais, Salwa; Kessel, Daivd

    2015-01-01

    The first convention was the Paris Convention on Third Party Liability in the Field of Nuclear Energy (the Paris Convention) had been adopted on 29 July 1960 under the auspices of the OECD, and entered into force on 1 April 1968. In 1963,the Brussels Convention - supplementary to the Paris Convention- was adopted in to provide additional funds to compensate damage as a result of a nuclear incident where Paris Convention funds proved to be insufficient. The IAEA's first convention was the Vienna Convention on Civil Liability for Nuclear Damage (the Vienna Convention) which adopted on 21 May 1963,and entered into force in 1977. Both the Paris Convention and the Vienna Convention laid down very similar nuclear liability rules based on the same general principles. The broad principles in these conventions can be summarized as follows: 1- The no-fault liability principle (strict liability) 2- Liability is channeled exclusively to the operator of the nuclear installation (legal channeling) 3- Only courts of the state in which the nuclear accident occurs would have jurisdiction (exclusive jurisdiction) 4- Limitation of the amount of liability and the time frame for claiming damages (limited liability) 5- The operator is required to have adequate insurance or financial guarantees to the extent of its liability amount (liability must be financially secured). 6- Liability is limited in time. Compensation rights are extinguished after specific time. 7- Non-discrimination of victims on the grounds of nationality, domicile or residence. Nuclear liability conventions objective is to provide adequate compensation payments to victims of a nuclear accident. Procedures for receiving these compensation are controlled by some rules such as exclusive jurisdiction, that rule need a further amendment to ensure the effectiveness of the exiting nuclear liability regime . Membership of the Conventions is a critical issue, because the existence of the conventions without being party to

  19. Existing facilities and past practices: Lessons learned

    International Nuclear Information System (INIS)

    Huizenga, D.; Tonkay, D.W.; Owens, K.

    2000-01-01

    Article 12 of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) requires parties to the Joint Convention to review the safety of existing radioactive waste management facilities 'to ensure that, if necessary, all reasonably practicable improvements are made to upgrade the safety of such a facility'. Also required is a review of the results of past practices to determine 'whether any intervention is needed for reasons of radiation protection' and to consider whether the benefits of the intervention or remediation are sufficient, with regard to the costs and the impact on workers, the public and the environment. This paper discusses the experience of the United States Department of Energy in terms of the lessons learned from operating radioactive waste management facilities and from undertaking intervention or remedial action, and from decision making in an international context. Overarching safety principles are discussed, including integrating safety into all work practices and minimizing the generation of waste. Safety review lessons learned with existing facilities are discussed with respect to: applying new requirements to old facilities, taking a life-cycle perspective of waste management, improving high level waste facility management, and blending current and past practices with respect to the process used to arrive at decisions for intervention. Special emphasis is placed on the need to provide for early and substantive input from the involved regulatory agencies, Native American tribes, and those citizens and groups with an interest in the decisions. Examples of intervention decisions are discussed, including examples taken from uranium mill tailings operations, from cleanup of a former uranium processing plant site, from evaluation of pre-1970 buried 'transuranic waste' sites, and from decommissioning or closure of high level waste storage tanks. The paper concludes that on the

  20. Measuring Input Thresholds on an Existing Board

    Science.gov (United States)

    Kuperman, Igor; Gutrich, Daniel G.; Berkun, Andrew C.

    2011-01-01

    A critical PECL (positive emitter-coupled logic) interface to Xilinx interface needed to be changed on an existing flight board. The new Xilinx input interface used a CMOS (complementary metal-oxide semiconductor) type of input, and the driver could meet its thresholds typically, but not in worst-case, according to the data sheet. The previous interface had been based on comparison with an external reference, but the CMOS input is based on comparison with an internal divider from the power supply. A way to measure what the exact input threshold was for this device for 64 inputs on a flight board was needed. The measurement technique allowed an accurate measurement of the voltage required to switch a Xilinx input from high to low for each of the 64 lines, while only probing two of them. Directly driving an external voltage was considered too risky, and tests done on any other unit could not be used to qualify the flight board. The two lines directly probed gave an absolute voltage threshold calibration, while data collected on the remaining 62 lines without probing gave relative measurements that could be used to identify any outliers. The PECL interface was forced to a long-period square wave by driving a saturated square wave into the ADC (analog to digital converter). The active pull-down circuit was turned off, causing each line to rise rapidly and fall slowly according to the input s weak pull-down circuitry. The fall time shows up as a change in the pulse width of the signal ready by the Xilinx. This change in pulse width is a function of capacitance, pulldown current, and input threshold. Capacitance was known from the different trace lengths, plus a gate input capacitance, which is the same for all inputs. The pull-down current is the same for all inputs including the two that are probed directly. The data was combined, and the Excel solver tool was used to find input thresholds for the 62 lines. This was repeated over different supply voltages and

  1. Effectiveness of Existing International Nuclear Liability Regime

    Energy Technology Data Exchange (ETDEWEB)

    Al-Doais, Salwa; Kessel, Daivd [KEPCO International Nuclear Graduate School, Daejeon (Korea, Republic of)

    2015-10-15

    The first convention was the Paris Convention on Third Party Liability in the Field of Nuclear Energy (the Paris Convention) had been adopted on 29 July 1960 under the auspices of the OECD, and entered into force on 1 April 1968. In 1963,the Brussels Convention - supplementary to the Paris Convention- was adopted in to provide additional funds to compensate damage as a result of a nuclear incident where Paris Convention funds proved to be insufficient. The IAEA's first convention was the Vienna Convention on Civil Liability for Nuclear Damage (the Vienna Convention) which adopted on 21 May 1963,and entered into force in 1977. Both the Paris Convention and the Vienna Convention laid down very similar nuclear liability rules based on the same general principles. The broad principles in these conventions can be summarized as follows: 1- The no-fault liability principle (strict liability) 2- Liability is channeled exclusively to the operator of the nuclear installation (legal channeling) 3- Only courts of the state in which the nuclear accident occurs would have jurisdiction (exclusive jurisdiction) 4- Limitation of the amount of liability and the time frame for claiming damages (limited liability) 5- The operator is required to have adequate insurance or financial guarantees to the extent of its liability amount (liability must be financially secured). 6- Liability is limited in time. Compensation rights are extinguished after specific time. 7- Non-discrimination of victims on the grounds of nationality, domicile or residence. Nuclear liability conventions objective is to provide adequate compensation payments to victims of a nuclear accident. Procedures for receiving these compensation are controlled by some rules such as exclusive jurisdiction, that rule need a further amendment to ensure the effectiveness of the exiting nuclear liability regime . Membership of the Conventions is a critical issue, because the existence of the conventions without being party to

  2. Peculiar velocity effects in high-resolution microwave background experiments

    International Nuclear Information System (INIS)

    Challinor, Anthony; Leeuwen, Floor van

    2002-01-01

    We investigate the impact of peculiar velocity effects due to the motion of the solar system relative to the cosmic microwave background (CMB) on high resolution CMB experiments. It is well known that on the largest angular scales the combined effects of Doppler shifts and aberration are important; the lowest Legendre multipoles of total intensity receive power from the large CMB monopole in transforming from the CMB frame. On small angular scales aberration dominates and is shown here to lead to significant distortions of the total intensity and polarization multipoles in transforming from the rest frame of the CMB to the frame of the solar system. We provide convenient analytic results for the distortions as series expansions in the relative velocity of the two frames, but at the highest resolutions a numerical quadrature is required. Although many of the high resolution multipoles themselves are severely distorted by the frame transformations, we show that their statistical properties distort by only an insignificant amount. Therefore, the cosmological parameter estimation is insensitive to the transformation from the CMB frame (where theoretical predictions are calculated) to the rest frame of the experiment

  3. Existing reflection seismic data re-processing

    International Nuclear Information System (INIS)

    Higashinaka, Motonori; Sano, Yukiko; Kozawa, Takeshi

    2005-08-01

    This document is to report the results of existing seismic data re-processing around Horonobe town, Hokkaido, Japan, which is a part of the Horonobe Underground Research Project. The main purpose of this re-processing is to recognize the subsurface structure of Omagari Fault and fold system around Omagari Fault. The seismic lines for re-processing are TYHR-A3 line and SHRB-2 line, which JAPEX surveyed in 1975. Applying weathering static correction using refraction analysis and noise suppression procedure, we have much enhanced seismic profile. Following information was obtained from seismic re-processing results. TYHR-A3 line: There are strong reflections, dipping to the west. These reflections are corresponding western limb of anticline to the west side of Omagari Fault. SHRB-2 line: There are strong reflections, dipping to the west, at CDP 60-140, while there are reflections, dipping to the east, to the east side of CDP 140. These reflections correspond to the western limb and the eastern limb of the anticline, which is parallel to Omagari FAULT. This seismic re-processing provides some useful information to know the geological structure around Omagari Fault. (author)

  4. On the Existence of Evolutionary Learning Equilibriums

    Directory of Open Access Journals (Sweden)

    Masudul Alam Choudhury

    2011-12-01

    Full Text Available The usual kinds of Fixed-Point Theorems formalized on the existence of competitive equilibrium that explain much of economic theory at the core of economics can operate only on bounded and closed sets with convex mappings. But these conditions are hardly true of the real world of economic and financial complexities and perturbations. The category of learning sets explained by continuous fields of interactive, integrative and evolutionary behaviour caused by dynamic preferences at the individual and institutional and social levels cannot maintain the assumption of closed, bounded and convex sets. Thus learning sets and multi-system inter-temporal relations explained by pervasive complementarities and  participation between variables and entities, and evolution by learning, have evolutionary equilibriums. Such a study requires a new methodological approach. This paper formalizes such a methodology for evolutionary equilibriums in learning spaces. It briefly points out the universality of learning equilibriums in all mathematical structures. For a particular case though, the inter-systemic interdependence between sustainable development and ethics and economics in the specific understanding of learning domain is pointed out.

  5. Does the chromatic Mach bands effect exist?

    Science.gov (United States)

    Tsofe, Avital; Spitzer, Hedva; Einav, Shmuel

    2009-06-30

    The achromatic Mach bands effect is a well-known visual illusion, discovered over a hundred years ago. This effect has been investigated thoroughly, mainly for its brightness aspect. The existence of Chromatic Mach bands, however, has been disputed. In recent years it has been reported that Chromatic Mach bands are not perceived under controlled iso-luminance conditions. However, here we show that a variety of Chromatic Mach bands, consisting of chromatic and achromatic regions, separated by a saturation ramp, can be clearly perceived under iso-luminance and iso-brightness conditions. In this study, observers' eye movements were recorded under iso-brightness conditions. Several observers were tested for their ability to perceive the Chromatic Mach bands effect and its magnitude, across different cardinal and non-cardinal Chromatic Mach bands stimuli. A computational model of color adaptation, which predicted color induction and color constancy, successfully predicts this variation of Chromatic Mach bands. This has been tested by measuring the distance of the data points from the "achromatic point" and by calculating the shift of the data points from predicted complementary lines. The results suggest that the Chromatic Mach bands effect is a specific chromatic induction effect.

  6. Evaluation and modification of existing CETP.

    Science.gov (United States)

    Sharma, Bhavisha; Shah, A R

    2013-07-01

    For the development of small and medium scale industries in various Gujarat industrial development corporation (GIDC) areas and in clusters of industrial areas, the common effluent treatment plant (CETP) has always been found advantageous in view of cost of treatment, operation and maintenance and disposal of residues being produced. In small scale industrial units due to market requirement, product changes and quantity enhancement are taking place. Due to such changes, the effluent characteristics are continuously changing which affects performance of CETP. Hence it has been found necessary to study continuously the performance, evaluation and modification in the working of the CETP. This paper contains a case study of one of the existing CETP near Baroda which is facing the problem of disposal of treated effluent in which the important parameters like COD, BOD, Suspended Solid, NH3-N and oil and grease were analyzed. Based on the characterization of wastewater, the various treatability studies were carried out on CETP wastewater. To comply with disposal standard prescribed by Effluent Channel Project Ltd.(ECPL)* and Gujarat Pollution Control Board (GPCB) for discharge of industrial effluent into channel, various treatments in form of ammonia stripping, coagulation and flocculation, biological treatment, filtration and chlorination are suggested.

  7. On the existence of tropical anvil clouds

    Science.gov (United States)

    Seeley, J.; Jeevanjee, N.; Langhans, W.; Romps, D.

    2017-12-01

    In the deep tropics, extensive anvil clouds produce a peak in cloud cover below the tropopause. The dominant paradigm for cloud cover attributes this anvil peak to a layer of enhanced mass convergence in the clear-sky upper-troposphere, which is presumed to force frequent detrainment of convective anvils. However, cloud cover also depends on the lifetime of cloudy air after it detrains, which raises the possibility that anvil clouds may be the signature of slow cloud decay rather than enhanced detrainment. Here we measure the cloud decay timescale in cloud-resolving simulations, and find that cloudy updrafts that detrain in the upper troposphere take much longer to dissipate than their shallower counterparts. We show that cloud lifetimes are long in the upper troposphere because the saturation specific humidity becomes orders of magnitude smaller than the typical condensed water loading of cloudy updrafts. This causes evaporative cloud decay to act extremely slowly, thereby prolonging cloud lifetimes in the upper troposphere. As a consequence, extensive anvil clouds still occur in a convecting atmosphere that is forced to have no preferential clear-sky convergence layer. On the other hand, when cloud lifetimes are fixed at a characteristic lower-tropospheric value, extensive anvil clouds do not form. Our results support a revised understanding of tropical anvil clouds, which attributes their existence to the microphysics of slow cloud decay rather than a peak in clear-sky convergence.

  8. Bibliography - Existing Guidance for External Hazard Modelling

    International Nuclear Information System (INIS)

    Decker, Kurt

    2015-01-01

    The bibliography of deliverable D21.1 includes existing international and national guidance documents and standards on external hazard assessment together with a selection of recent scientific papers, which are regarded to provide useful information on the state of the art of external event modelling. The literature database is subdivided into International Standards, National Standards, and Science Papers. The deliverable is treated as a 'living document' which is regularly updated as necessary during the lifetime of ASAMPSA-E. The current content of the database is about 140 papers. Most of the articles are available as full-text versions in PDF format. The deliverable is available as an EndNote X4 database and as text files. The database includes the following information: Reference, Key words, Abstract (if available), PDF file of the original paper (if available), Notes (comments by the ASAMPSA-E consortium if available) The database is stored at the ASAMPSA-E FTP server hosted by IRSN. PDF files of original papers are accessible through the EndNote software

  9. Interim Storage of Plutonium in Existing Facilities

    International Nuclear Information System (INIS)

    Woodsmall, T.D.

    1999-01-01

    'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the

  10. Sharing information among existing data sources

    Science.gov (United States)

    Ashley, W. R., III

    1999-01-01

    The sharing of information between law enforcement agencies is a premise for the success of all jurisdictions. A wealth of information resides in both the databases and infrastructures of local, state, and regional agencies. However, this information is often not available to the law enforcement professionals who require it. When the information is, available, individual investigators must not only know that it exists, but where it resides, and how to retrieve it. In many cases, these types of cross-jurisdictional communications are limited to personal relationships that result from telephone calls, faxes, and in some cases, e-mail. As criminal elements become more sophisticated and distributed, law enforcement agencies must begin to develop infrastructures and common sharing mechanisms that address a constantly evolving criminal threat. Historically, criminals have taken advantage of the lack of communication between law enforcement agencies. Examples of this are evident in the search for stolen property and monetary dealings. Pawned property, cash transactions, and failure to supply child support are three common cross- jurisdictional crimes that could be better enforced by strengthening the lines of communication. Criminal behavior demonstrates that it is easier to profit from their actions by dealing in separate jurisdictions. For example, stolen property is sold outside of the jurisdiction of its origin. In most cases, simply traveling a short distance to the adjoining county or municipality is sufficient to ensure that apprehension of the criminal or seizure of the stolen property is highly unlikely. In addition to the traditional burglar, fugitives often sell or pawn property to finance their continued evasion from the law. Sharing of information in a rapid manner would increase the ability of law enforcement personnel to track and capture fugitives, as well as criminals. In an example to combat this threat, the State of Florida recently acted on the need to

  11. Seismic evaluation of existing nuclear facilities. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Programmes for re-evaluation and upgrading of safety of existing nuclear facilities are presently under way in a number of countries around the world. An important component of these programmes is the re-evaluation of the seismic safety through definition of new seismic parameters at the site and evaluation of seismic capacity of structures, equipment and distribution systems following updated information and criteria. The Seminar is intended to provide a forum for the exchange of information and discussion of the state-of-the-art on seismic safety of nuclear facilities in operation or under construction. Both analytical and experimental techniques for the evaluation of seismic capacity of structures, equipment and distribution systems are discussed. Full scale and field tests of structures and components using shaking tables, mechanical exciters, explosive and shock tests, and ambient vibrations are included in the seminar programme with emphasis on recent case histories. Presentations at the Seminar also include analytical techniques for the determination of dynamic properties of soil-structure systems from experiments as well as calibration of numerical models. Methods and criteria for seismic margin assessment based on experience data obtained from the behaviour of structures and components in real earthquakes are discussed. Guidelines for defining technical requirements for capacity re-evaluation (i.e. acceptable behaviour limits and design and implementation of structure and components upgrades are also presented and discussed. The following topics were covered during 7 sessions: earthquake experience and seismic re-evaluation; country experience in seismic re-evaluation programme; generic WWER studies; analytical methods for seismic capacity re-evaluation; experimental methods for seismic capacity re-evaluation; case studies.

  12. Does Glocal Political Power Already Exist?

    Directory of Open Access Journals (Sweden)

    Lorenzo Ornaghi

    2017-05-01

    Full Text Available Large periods of history are usually characterized by equally important moments of change in scientific knowledge and, in particular, in the understanding of political power. We still need to study in depth whether the former provokes (almost of out necessity the latter, or whether they are “great” because they are favored by the innovation of the paradigms of knowledge. The passage from medieval universalism to the particularism of the modern age represents an extremely interesting analogy when compared to the transformations that are now underway. The example of John of Salisbury’s Policratus, the starting point of this article, is illuminating in our comprehension of the relevance of the interweaving between the persistence of the ancient forms of recognition of power and the search for new forms. The existence of glocal realities is already a fact. Even if it is relatively easy to recognize these realities (a business, a university, a humanitarian association, not a few of the same “parts” which constitute the traditional organization of the State, it is more difficult to define the specific characteristics of the power at their disposal. Moving from the widening gap between “actual” power and “potential” power, the article examines the motives for which the classical definitions of power are always becoming more insufficient in understanding the role now emerging from glocal realities. And, in particular, by looking at how the “command-obedience” relationship is changing also as a consequence of communication networks and information technology, the article analyzes that specific “contamination” within global elements and local elements, which seems to be the main base of glocal political power.

  13. David Barker: the revolution that anticipates existence

    Directory of Open Access Journals (Sweden)

    Italo Farnetani

    2014-01-01

    Full Text Available David Barker is the man who “anticipated" the existence of babies by focusing attention on the importance of the fetus and what takes place during intrauterine life. Barker was one of the physicians who in the last decades brought about the greatest changes in medicine, changes so important as to represent a veritable revolution in medical thought. According to Barker's studies, the embryo obviously has a genetic complement coming from the mother and father, but from the very first stages of development it begins to undergo the influence of the outside environment, just as occurs for adults whose biological, psychological and pathological aspects are influenced by the environment to a not well-established percentage between genetic complement and epigenetics. Much of our future lives as adults is decided in our mothers' wombs. If Barker's discovery was revolutionary from the cultural standpoint, it was even more so from the strictly medical one. Barker's research method was rigid from the methodological standpoint, but innovative and speculative in its working hypotheses, with a humanistic slant. Barker's idea has another practical corollary: it is evident that the role of obstetricians, perinatologists and neonatologists is more and more relevant in medicine and future prevention. Unquestionably, besides the enormous merits of his clinical research, among the benefits that Barker has contributed there is that of having helped us to see things from new points of view. Not only is the neonate (and even more so the fetus not an adult of reduced proportions, but perhaps the neonate is the "father" of the adult person.

  14. Virtual existence in contemporary Serbian novel

    Directory of Open Access Journals (Sweden)

    Gordić-Petković Vladislava S.

    2017-01-01

    Full Text Available The paper sets out to explore the perspectives and strategies of virtual existence in contemporary Serbian novel in order to illustrate radical changes in the concept of reality and writers' concern with the fidelity to experience. A new surge of the so-called digital realism emerges simultaneously with the increase of awareness that the line between our digital selves and our real-world selves has become blurred and difficult to explain, while new technologies are required to go beyond what our human senses can encompass and deliver. The fictional realism of the digital age will also commit itself to young or middle-aged individuals that passionately attempt to define their aims and objectives so that they could fit into a newly constructed and acquired concept of reality. This is the case with the protagonists in the novels by Ivančica Đerić, Tamara Jecić and Aleksandar Ilić, all of them questioning both their offline and online identities. Their everyday life in a postmillennial world includes many intersecting empirical and virtual realities: love, career and sex take place in a dimension which ignores geography and physical distance and ultimately alters the concepts of time and space, as well the concepts of privacy and intimacy. The paper intends to examine the ways new digital technologies contribute to representations of reality in the novels of both accomplished and aspiring authors whose novels deal with ways of life amid social networks. The novels we analyzed show that the distinction between the virtual and the real world narrows, as the narratives range from intimate confession in letters and journals to tweets, notes and statuses, introducing verbal and structural experimental practices which involve shifting points of view.

  15. Thallium exists in opioid poisoned patients.

    Science.gov (United States)

    Ghaderi, Amir; Vahdati-Mashhadian, Naser; Oghabian, Zohreh; Moradi, Valiallah; Afshari, Reza; Mehrpour, Omid

    2015-08-01

    Thallium (Tl) is a toxic heavy metal that exists in nature. Tl poisoning (thallotoxicosis) may occur in opioid addicts. This study was designed to evaluate the frequency and level of urinary Tl in opioid abusers. In addition, clinical findings were evaluated. A total of 150 subjects were examined. Cases with a history of at least 3 years of abuse were admitted in the Imam Reza Hospital as the case group; 50 non-opioid abusers from the target population were included as the control group. Twenty-four hour urinary qualitative and quantitative Tl analyses were performed on both groups. Out of the 150 subjects, 128 (85 %) were negative for qualitative urinary Tl, followed by 5 % (trace), 7 % (1+), 2 % (2+), and 1 % (3+). Mean (standard error (SE), Min-Max) quantitative urinary Tl level was 14 μg/L (3.5 μg/L, 0-346 μg/L). Mean urinary Tl level in the case group was 21 μg/L (5 μg/L, 0-346 μg/L) and that in the controls was 1 μg/L (0.14 μg/L, 0-26 μg/L), which were significantly different (P = 0.001). The most frequent clinical findings were ataxia (86 %), sweating (81 %), and constipation (54 %). In all cases (n = 150), the mean (SE) value for cases with positive qualitative urinary Tl was 26.8 μg/L (0.9 μg/L) and that in the negative cases was 2.3 μg/L (0.2 μg/L), which were significantly different (P = 0.002). This study showed that long-term opioid abuse may lead to Tl exposure. In opioid abusers with the clinical manifestation of thallotoxicosis, urinary Tl should be determined.

  16. Seismic evaluation of existing nuclear facilities. Proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    Programmes for re-evaluation and upgrading of safety of existing nuclear facilities are presently under way in a number of countries around the world. An important component of these programmes is the re-evaluation of the seismic safety through definition of new seismic parameters at the site and evaluation of seismic capacity of structures, equipment and distribution systems following updated information and criteria. The Seminar is intended to provide a forum for the exchange of information and discussion of the state-of-the-art on seismic safety of nuclear facilities in operation or under construction. Both analytical and experimental techniques for the evaluation of seismic capacity of structures, equipment and distribution systems are discussed. Full scale and field tests of structures and components using shaking tables, mechanical exciters, explosive and shock tests, and ambient vibrations are included in the seminar programme with emphasis on recent case histories. Presentations at the Seminar also include analytical techniques for the determination of dynamic properties of soil-structure systems from experiments as well as calibration of numerical models. Methods and criteria for seismic margin assessment based on experience data obtained from the behaviour of structures and components in real earthquakes are discussed. Guidelines for defining technical requirements for capacity re-evaluation (i.e. acceptable behaviour limits and design and implementation of structure and components upgrades are also presented and discussed. The following topics were covered during 7 sessions: earthquake experience and seismic re-evaluation; country experience in seismic re-evaluation programme; generic WWER studies; analytical methods for seismic capacity re-evaluation; experimental methods for seismic capacity re-evaluation; case studies

  17. Does GaH5 exist?

    Science.gov (United States)

    Speakman, Lucas D.; Turney, Justin M.; Schaefer, Henry F.

    2005-11-01

    The existence or nonexistence of GaH5 has been widely discussed [N. M. Mitzel, Angew. Chem. Int. Ed. 42, 3856 (2003)]. Seven possible structures for gallium pentahydride have been systematically investigated using ab initio electronic structure theory. Structures and vibrational frequencies have been determined employing self-consistent field, coupled cluster including all single and double excitations (CCSD), and CCSD with perturbative triples levels of theory, with at least three correlation-consistent polarized-valence-(cc-pVXZ and aug-cc-pVXZ) type basis sets. The X˜A'1 state for GaH5 is predicted to be weakly bound complex 1 between gallane and molecular hydrogen, with Cs symmetry. The dissociation energy corresponding to GaH5→GaH3+H2 is predicted to be De=2.05kcalmol-1. The H-H stretching fundamental is predicted to be v =4060cm-1, compared to the tentatively assigned experimental feature of Wang and Andrews [J. Phys. Chem. A 107, 11371 (2003)] at 4087cm-1. A second Cs structure 2 with nearly equal energy is predicted to be a transition state, corresponding to a 90° rotation of the H2 bond. Thus the rotation of the hydrogen molecule is essentially free. However, hydrogen scrambling through the C2v structure 3 seems unlikely, as the activation barrier for scrambling is at least 30kcalmol-1 higher in energy than that for the dissociation of GaH5 to GaH3 and H2. Two additional structures consisting of GaH3 with a dihydrogen bond perpendicular to gallane (C3v structure 4) and an in-plane dihydrogen bond [Cs(III) structure 5] were also examined. A C3v symmetry second-order saddle point has nearly the same energy as the GaH3+H2 dissociation limit, while the Cs(III) structure 5 is a transition structure to the C3v structure. The C4v structure 6 and the D3h structure 7 are much higher in energy than GaH3+H2 by 88 and 103kcalmol-1, respectively.

  18. PASSCLAIM - Synthesis and review of existing processes.

    Science.gov (United States)

    Richardson, David P; Affertsholt, Tage; Asp, Nils-Georg; Bruce, Ake; Grossklaus, Rolf; Howlett, John; Pannemans, Daphne; Ross, Richard; Verhagen, Hans; Viechtbauer, Volker

    2003-03-01

    Several approaches to the use of health claims on foods have been made around the world, and the common theme is that any health claim will require scientific validation and substantiation. There is also broad consensus that any regulatory framework should protect the consumer, promote fair trade and encourage innovation in the food industry.This paper is based on a critical evaluation of existing international approaches to the scientific substantiation of health claims, with a view to identifying common new ideas, definitions, best practice and a methodology to underpin current and future developments. There is a clear need to have uniform understanding, terminology and description of types of nutrition and health claims. Two broad categories were defined: Nutrition Claims, i. e. what the product contains, and Health Claims, i. e. relating to health, well-being and/or performance, including well-established nutrient function claims, enhanced function claims and disease risk reduction claims. Such health claims relate to what the food or food components does or do. The categories of health claims are closely and progressively related and are, in practice, part of a continuum. Provision is also made for "generic" or well-established, generally accepted claims and for "innovative" or "product-specific" claims. Special attention was paid to reflect the health-promoting properties of a food or food component in such a way as to facilitate the making of risk reduction claims outside the medical scope of the term prevention. The paper sets out basic principles and guidelines for communication of health claims and principles of nutritional safety. The main body of the work examines the process for the assessment of scientific support for health claims on food and emphasises an evidence-based approach consisting of: Identification of all relevant studies exploring the collection of evidence, data searches, the nature of the scientific evidence, sources of scientific data

  19. A precariedade humana e a existência estilizada Human precariousness and stylized existence

    Directory of Open Access Journals (Sweden)

    Rita Paiva

    2013-04-01

    Full Text Available Este artigo tematiza o desamparo vivenciado pela consciência ante a ausência de bases sólidas para seus anseios de felicidade e para suas representações simbólicas. Com esse propósito, toma como objeto de reflexão um dos ensaios filosóficos de Albert Camus, O mito de Sísifo, equacionando a possibilidade de uma ética que estilize a vida, sem que se minimize a dolorosa precariedade da existência humana. Posteriormente, em diálogo com alguns textos de M. Foucault, a reflexão procura estabelecer os vínculos possíveis entre a ética camusiana e a ética como uma estética da existência, tal como pensada entre os gregos antigos.This article discusses the helplessness experienced by the consciousness vis-à-vis the absence of solid bases for its longings for happiness and for its symbolic representations. For this purpose, the object of reflection of the article is one of Albert Camus' philosophical essays, The Myth of Sisyphus, and we inquire into the possibility of an ethics that stylizes life without minimizing the painful precariousness of human existence. Making reference to certain texts by Foucault, we attempt to establish possible connections between Camus' ethics and an ethics of the aesthetics of existence as found in the thinkers of ancient Greece.

  20. Existence and non-existence of solutions for a singular problem with variable potentials

    Directory of Open Access Journals (Sweden)

    Kamel Saoudi

    2017-11-01

    Full Text Available The purpose of this article is to prove some existence and nonexistence theorems for the inhomogeneous singular Dirichlet problem $$ - \\Delta_p u = \\frac{\\lambda k(x}{u^\\delta}\\pm h(x u^q. $$ For proving our results we use the sub and super solution method, and monotonicity arguments.

  1. Black Hole Caught Zapping Galaxy into Existence?

    Science.gov (United States)

    2009-11-01

    , construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  2. Existence and non-existence of solutions for a p(x-biharmonic problem

    Directory of Open Access Journals (Sweden)

    Ghasem A. Afrouzi

    2015-06-01

    Full Text Available In this article, we study the following problem with Navier boundary conditions $$\\displaylines{ \\Delta (|\\Delta u|^{p(x-2}\\Delta u+|u|^{p(x-2}u =\\lambda |u|^{q(x-2}u +\\mu|u|^{\\gamma(x-2}u\\quad \\text{in } \\Omega,\\cr u=\\Delta u=0 \\quad \\text{on } \\partial\\Omega. }$$ where $\\Omega$ is a bounded domain in $\\mathbb{R}^{N}$ with smooth boundary $\\partial \\Omega$, $N\\geq1$. $p(x,q(x$ and $\\gamma(x$ are continuous functions on $\\overline{\\Omega}$, $\\lambda$ and $\\mu$ are parameters. Using variational methods, we establish some existence and non-existence results of solutions for this problem.

  3. 40 CFR 427.34 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.34 Pretreatment standards for existing sources. Any existing source subject to...

  4. 40 CFR 427.44 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.44 Pretreatment standards for existing sources. Any existing source subject to...

  5. 40 CFR 417.84 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.84 Pretreatment standards for existing sources. Any existing source...

  6. 75 FR 45013 - Pre-Existing Condition Insurance Plan Program

    Science.gov (United States)

    2010-07-30

    ... Department of Homeland Security's U.S. Citizenship and Immigration Services (USCIS) Systematic Alien... pre-existing condition based on evidence of the existence or history of certain medical or health...

  7. EXISTENCE OF POSITIVE SOLUTIONS FOR AN ELASTIC CURVED BEAM EQUATION

    Directory of Open Access Journals (Sweden)

    Béla Kovacs

    2017-06-01

    Full Text Available This paper investigates the existence of positive solutions for a sixth-order differential equations. By using the Leggett-Williams fixed point theorem we give some new existence results.

  8. 40 CFR 406.34 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 406.34 Section 406.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 406.34 Pretreatment standards for existing sources. Any existing source subject to this subpart that...

  9. 40 CFR 406.44 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 406.44 Section 406.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 406.44 Pretreatment standards for existing sources. Any existing source subject to this subpart that...

  10. Existence of pareto equilibria for multiobjective games without compactness

    OpenAIRE

    Shiraishi, Yuya; Kuroiwa, Daishi

    2013-01-01

    In this paper, we investigate the existence of Pareto and weak Pareto equilibria for multiobjective games without compactness. By employing an existence theorem of Pareto equilibria due to Yu and Yuan([10]), several existence theorems of Pareto and weak Pareto equilibria for the multiobjective games are established in a similar way to Flores-B´azan.

  11. Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions. Part II: source contribution assessment using the Chemical Mass Balance (CMB) model.

    Science.gov (United States)

    Badol, Caroline; Locoge, Nadine; Galloo, Jean-Claude

    2008-01-25

    In Part I of this study (Badol C, Locoge N, Leonardis T, Gallo JC. Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions, Part I: Study area description, data set acquisition and qualitative data analysis of the data set. Sci Total Environ 2007; submitted as companion manuscript.) the study area, acquisition of the one-year data set and qualitative analysis of the data set have been described. In Part II a source profile has been established for each activity present in the study area: 6 profiles (urban heating, solvent use, natural gas leakage, biogenic emissions, gasoline evaporation and vehicle exhaust) have been extracted from literature to characterise urban sources, 7 industrial profiles have been established via canister sampling around industrial plants (hydrocarbon cracking, oil refinery, hydrocarbon storage, lubricant storage, lubricant refinery, surface treatment and metallurgy). The CMB model is briefly described and its implementation is discussed through the selection of source profiles and fitting species. Main results of CMB modellings for the Dunkerque area are presented. (1) The daily evolution of source contributions for the urban wind sector shows that the vehicle exhaust source contribution varies between 40 and 55% and its relative increase at traffic rush hours is hardly perceptible. (2) The relative contribution of vehicle exhaust varies from 55% in winter down to 30% in summer. This decrease is due to the increase of the relative contribution of hydrocarbon storage source reaching up to 20% in summer. (3) The evolution of source contributions with wind directions has confirmed that in urban wind sectors the contribution of vehicle exhaust dominate with around 45-55%. For the other wind sectors that include some industrial plants, the contribution of industrial sources is around 60% and could reach 80% for the sector 280-310 degrees , which corresponds to the most dense

  12. Method and refrigerants for replacing existing refrigerants in centrifugal compressors

    International Nuclear Information System (INIS)

    Kopko, W.L.

    1991-01-01

    This patent describes a method for replacing an existing refrigerant in a centrifugal compressor. It comprises selecting a desired impeller Mach number for the centrifugal compressor; selecting a base refrigerant constituent; combining at least one additive refrigerant constituent with the base refrigerant constituent to form a replacement refrigerant having at least one physical or chemical property different from the existing refrigerant and substantially providing the desired impeller Mach number in the centrifugal compressor; and replacing the existing refrigerant with the replacement refrigerant

  13. Magnetic nesting and co-existence of ferromagnetism and superconductivity

    International Nuclear Information System (INIS)

    Elesin, V.F.; Kapaev, V.V.; Kopaev, Yu.V.

    2004-01-01

    In the case of providing for the magnetic nesting conditions of the electron spin dispersion law the co-existence of ferromagnetism and superconductivity is possible by any high magnetization. The co-existence of ferromagnetism and superconductivity in the layered cuprate compounds of the RuSr 2 GdCu 2 O 8 -type is explained on this basis, wherein due to the nonstrict provision of the magnetic nesting condition there exists the finite but sufficiently high critical magnetization [ru

  14. The global existence problem and cosmic censorship in general relativity

    International Nuclear Information System (INIS)

    Moncrief, V.; Eardley, D.M.

    1981-01-01

    Two global existence conjectures for the Einstein equations are formulated and their relevance to the cosmic censorship conjecture discussed. It is argued that the reformulation of the cosmic censorship conjecture as a global existence problem renders it more amenable to direct analytical attack. To demonstrate the facility of this approach the cosmological version of the global existence conjecture is proved for the Gowdy spacetimes on T 3 X R. (author)

  15. 40 CFR 407.74 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and Preserved Vegetables Subcategory § 407.74 Pretreatment standards for existing sources...

  16. INFORMATION SECURITY RISK ASSESSMENT USING EXISTING LEGAL AND METHODOLOGICAL BASE

    Directory of Open Access Journals (Sweden)

    A. I. Trubei

    2015-01-01

    Full Text Available The article provides a survey of the existing regulatory framework for information security riskmanagement. Practical methods for information security risk and vulnerability assessment are proposed.

  17. Expandable External Payload Carrier for Existing Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerous existing launch vehicles have excess performance that is not being optimized. By taking advantage of excess, unused, performance, additional NASA...

  18. Tachyons imply the existence of a privileged frame

    Energy Technology Data Exchange (ETDEWEB)

    Sjoedin, T.; Heylighen, F.

    1985-12-16

    It is shown that the existence of faster-than-light signals (tachyons) would imply the existence (and detectability) of a privileged inertial frame and that one can avoid all problems with reversed-time order only by using absolute synchronization instead of the standard one. The connection between these results and the EPR-paradox is discussed.

  19. Safety assessment of existing highway bridges and viaducts

    NARCIS (Netherlands)

    Maljaars, J.; Steenbergen, R.; Abspoel, L.; Kolstein, M.H.

    2012-01-01

    The assessment of the structural safety of existing br idges and viaducts becomes increasingly important in many countries owing to an increase in traffic loads. Most existing standards, however, are developed for the design of new structures. For this reason, an assessment method for determining

  20. Neural Network for Optimization of Existing Control Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1995-01-01

    The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....