WorldWideScience

Sample records for cmb anisotropies constrain

  1. Late time CMB anisotropies constrain mini-charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, C.; Redondo, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jaeckel, J. [Univ. of Durham, Inst. for Particle Physics Phenomenology (United Kingdom)

    2009-09-15

    Observations of the temperature anisotropies induced as light from the CMB passes through large scale structures in the late universe are a sensitive probe of the interactions of photons in such environments. In extensions of the Standard Model which give rise to mini-charged particles, photons propagating through transverse magnetic fields can be lost to pair production of such particles. Such a decrement in the photon flux would occur as photons from the CMB traverse the magnetic fields of galaxy clusters. Therefore late time CMB anisotropies can be used to constrain the properties of mini- charged particles. We outline how this test is constructed, and present new constraints on mini-charged particles from observations of the Sunyaev-Zel'dovich effect in the Coma cluster. (orig.)

  2. From Cavendish to PLANCK: Constraining Newton's gravitational constant with CMB temperature and polarization anisotropy

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Smoot, George F.; Zahn, Oliver

    2009-01-01

    We present new constraints on cosmic variations of Newton's gravitational constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and ACBAR experiments and independent constraints coming from big bang nucleosynthesis. We found that current CMB data provide constraints at the ∼10% level, that can be improved to ∼3% by including big bang nucleosynthesis data. We show that future data expected from the Planck satellite could constrain G at the ∼1.5% level while an ultimate, cosmic variance limited, CMB experiment could reach a precision of about 0.4%, competitive with current laboratory measurements.

  3. CMB anisotropies interpolation

    NARCIS (Netherlands)

    Zinger, S.; Delabrouille, Jacques; Roux, Michel; Maitre, Henri

    2010-01-01

    We consider the problem of the interpolation of irregularly spaced spatial data, applied to observation of Cosmic Microwave Background (CMB) anisotropies. The well-known interpolation methods and kriging are compared to the binning method which serves as a reference approach. We analyse kriging

  4. [Cosmic Microwave Background (CMB) Anisotropies

    Science.gov (United States)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  5. CMB lensing forecasts for constraining the primordial perturbations: adding to the CMB temperature and polarization information

    Energy Technology Data Exchange (ETDEWEB)

    Kasanda, Simon Muya; Moodley, Kavilan, E-mail: simon.muya.kasanda@gmail.com, E-mail: moodleyk41@ukzn.ac.za [Astrophysics and Cosmology Research Unit and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, University Road, Durban, 4041 (South Africa)

    2014-12-01

    We forecast how current (PLANCK) and future (PRISM) cosmic microwave background (CMB) experiments constrain the adiabatic mode and its admixtures with primordial isocurvature modes. The forecasts are based on measurements of the reconstructed CMB lensing potential and lensing-induced CMB B-mode polarization anisotropies in combination with the CMB temperature and E-mode polarization anisotropies. We first study the characteristic features of the CMB temperature, polarization and lensing spectra for adiabatic and isocurvature modes. We then consider how information from the CMB lensing potential and B-mode polarization induced by lensing can improve constraints on an admixture of adiabatic and three correlated isocurvature modes. We find that the CMB lensing spectrum improves constraints on isocurvature modes by at most 10% for the PLANCK and PRISM experiments. The limited improvement is a result of the low amplitude of isocurvature lensing spectra and cancellations between these spectra that render them only slightly detectable. There is a larger gain from using the lensing-induced B-mode polarization spectrum measured by PRISM. In this case constraints on isocurvature mode amplitudes improve by as much as 40% relative to the CMB temperature and E-mode polarization constraints. The addition of both lensing and lensing-induced B-mode polarization information constrains isocurvature mode amplitudes at the few percent level or better. In the case of admixtures of the adiabatic mode with one or two correlated isocurvature modes we find that constraints at the percent level or better are possible. We investigate the dependence of our results to various assumptions in our analysis, such as the inclusion of dark energy parameters, the CMB temperature-lensing correlation, and the presence of primordial tensor modes, and find that these assumptions do not significantly change our main results.

  6. Asymmetric beams and CMB statistical anisotropy

    International Nuclear Information System (INIS)

    Hanson, Duncan; Lewis, Antony; Challinor, Anthony

    2010-01-01

    Beam asymmetries result in statistically anisotropic cosmic microwave background (CMB) maps. Typically, they are studied for their effects on the CMB power spectrum, however they more closely mimic anisotropic effects such as gravitational lensing and primordial power asymmetry. We discuss tools for studying the effects of beam asymmetry on general quadratic estimators of anisotropy, analytically for full-sky observations as well as in the analysis of realistic data. We demonstrate this methodology in application to a recently detected 9σ quadrupolar modulation effect in the WMAP data, showing that beams provide a complete and sufficient explanation for the anomaly.

  7. Primordial gravitational waves measurements and anisotropies of CMB polarization rotation

    Directory of Open Access Journals (Sweden)

    Si-Yu Li

    2015-12-01

    Full Text Available Searching for the signal of primordial gravitational waves in the B-modes (BB power spectrum is one of the key scientific aims of the cosmic microwave background (CMB polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [α(nˆ] which can be separated into a background isotropic part [α¯] and a small anisotropic part [Δα(nˆ]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the “self-calibration” method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including Δα(nˆ in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial

  8. Reconstruction of CMB temperature anisotropies with primordial CMB induced polarization in galaxy clusters

    Science.gov (United States)

    Liu, Guo-Chin; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2016-07-01

    Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces polarization signals determined by the quadrupole anisotropy in the photon distribution at the location of clusters. This `remote quadrupole' derived from the measurements of the induced polarization in galaxy clusters provides an opportunity to reconstruct local CMB temperature anisotropies. In this Letter, we develop an algorithm of the reconstruction through the estimation of the underlying primordial gravitational potential, which is the origin of the CMB temperature and polarization fluctuations and CMB induced polarization in galaxy clusters. We found a nice reconstruction for the quadrupole and octopole components of the CMB temperature anisotropies with the assistance of the CMB induced polarization signals. The reconstruction can be an important consistency test on the puzzles of CMB anomalies, especially for the low-quadrupole and axis-of-evil problems reported in Wilkinson Microwave Anisotropy Probe and Planck data.

  9. CMB statistical anisotropy from noncommutative gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Maresuke; Ricciardone, Angelo [Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Mota, David F. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Arroja, Frederico, E-mail: maresuke.shiraishi@pd.infn.it, E-mail: d.f.mota@astro.uio.no, E-mail: angelo.ricciardone@pd.infn.it, E-mail: arroja@pd.infn.it [INFN, Sezione di Padova, via Marzolo 8, I-35131, Padova (Italy)

    2014-07-01

    Primordial statistical anisotropy is a key indicator to investigate early Universe models and has been probed by the cosmic microwave background (CMB) anisotropies. In this paper, we examine tensor-mode CMB fluctuations generated from anisotropic gravitational waves, parametrised by P{sub h}(k) = P{sub h}{sup (0)}(k) [ 1 + ∑{sub LM} f{sub L}(k) g{sub LM} Y{sub LM} ( k-circumflex )], where P{sub h}{sup (0)}(k) is the usual scale-invariant power spectrum. Such anisotropic tensor fluctuations may arise from an inflationary model with noncommutativity of fields. It is verified that in this model, an isotropic component and a quadrupole asymmetry with f{sub 0}(k) = f{sub 2}(k) ∝ k{sup -2} are created and hence highly red-tilted off-diagonal components arise in the CMB power spectra, namely ℓ{sub 2} = ℓ{sub 1} ± 2 in TT, TE, EE and BB, and ℓ{sub 2} = ℓ{sub 1} ± 1 in TB and EB. We find that B-mode polarisation is more sensitive to such signals than temperature and E-mode polarisation due to the smallness of large-scale cosmic variance and we can potentially measure g{sub 00} = 30 and g{sub 2M} = 58 at 68% CL in a cosmic-variance-limited experiment. Such a level of signal may be measured in a PRISM like experiment, while the instrumental noise contaminates it in the Planck experiment. These results imply that it is impossible to measure the noncommutative parameter if it is small enough for the perturbative treatment to be valid. Our formalism and methodology for dealing with the CMB tensor statistical anisotropy are general and straightforwardly applicable to other early Universe models.

  10. Measuring the cosmological lepton asymmetry through the CMB anisotropy

    CERN Document Server

    Kinney, W H; Kinney, William H.; Riotto, Antonio

    1999-01-01

    A large lepton asymmetry in the Universe is still a viable possibility and leads to many interesting phenomena such as gauge symmetry nonrestoration at high temperature. We show that a large lepton asymmetry changes the predicted cosmic microwave background (CMB) anisotropy and that any degeneracy in the relic neutrino sea will be measured to a precision of 1% or better when the CMB anisotropy is measured at the accuracy expected to result from the planned satellite missions MAP and Planck. In fact, the current measurements already put an upper limit on the lepton asymmetry of the Universe which is stronger than the one coming from considerations of primordial nucleosynthesis and structure formation.

  11. To the problem of the secondary CMB anisotropy separation

    Directory of Open Access Journals (Sweden)

    Verkhodanov Oleg

    2016-01-01

    Full Text Available We study contribution to the secondary anisotropy maps of cosmic microwave background (CMB radiation which difficult to account for faint sources. Two effects are investigated. They are the Sunyaev–Zeldovich effect connected with the inverse Compton scattering of CMB photons on hot electrons of cluster of galaxies, and contamination of the background by weak extragalctic sources. First, we study fields of the Planck CMB maps around radio sources of the RATAN-600 catalog. We see weak microwave sources which make an additional contribution to the secondary anisotropy on angular small scales (< 7′. An algorithm for selecting candidate objects with the Sunyaev–Zeldovich effect was proposed, based on the use of data on the radio spectral indices and the signal in cosmic-microwave background maps. Second, applying the stacking method, we examine the areas of the CMB maps, constructed according to the Planck Space Observatory data in the neighborhood of different populations of radio sources and giant elliptical galaxies. The samples of objects include giant radio galaxies (GRG, radio sources, selected by the radio spectral index and redshift, as well as the gammaray bursts, used as a secondary comparative sample. The signal from this objects exists on CMB maps and its difference in the neighborhood of GRGs from the other types of objects was discovered.

  12. Measuring the anisotropy in the CMB

    Science.gov (United States)

    Page, L. A.

    The CMB is perhaps the cleanest cosmological observable. Its angular spectrum may be both computed and measured to percent accuracy. The current data clearly show a rise in the angular spectrum to a peak of roughly Tl = (l(l + 1)Cl/2)1/2 80 K at l 200, and a fall at higher l. In particular, δTl at l = 400 is significantly less than at l = 200. This is shown through a combined analysis of data sets and by the TOCO data alone. For spatially flat models, a peak in the angular spectrum near l = 200 is indicated, whereas for Ω0 = 0.35 models one expects a peak near l = 400. The data clearly prefer the spatially flat models.

  13. What we learn from CMB Anisotropies

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    George Smoot shared the 2006 Nobel Prize with John Mathere for the discovery of the fluctuations of the cosmic microwave background. In this talk (which will not be the same as the Nobel lecture), he will discuss what we have learned about the universe in the recent past from these anisotropies.

  14. An estimator for statistical anisotropy from the CMB bispectrum

    International Nuclear Information System (INIS)

    Bartolo, N.; Dimastrogiovanni, E.; Matarrese, S.; Liguori, M.; Riotto, A.

    2012-01-01

    Various data analyses of the Cosmic Microwave Background (CMB) provide observational hints of statistical isotropy breaking. Some of these features can be studied within the framework of primordial vector fields in inflationary theories which generally display some level of statistical anisotropy both in the power spectrum and in higher-order correlation functions. Motivated by these observations and the recent theoretical developments in the study of primordial vector fields, we develop the formalism necessary to extract statistical anisotropy information from the three-point function of the CMB temperature anisotropy. We employ a simplified vector field model and parametrize the bispectrum of curvature fluctuations in such a way that all the information about statistical anisotropy is encoded in some parameters λ LM (which measure the anisotropic to the isotropic bispectrum amplitudes). For such a template bispectrum, we compute an optimal estimator for λ LM and the expected signal-to-noise ratio. We estimate that, for f NL ≅ 30, an experiment like Planck can be sensitive to a ratio of the anisotropic to the isotropic amplitudes of the bispectrum as small as 10%. Our results are complementary to the information coming from a power spectrum analysis and particularly relevant for those models where statistical anisotropy turns out to be suppressed in the power spectrum but not negligible in the bispectrum

  15. Constraining dark sector perturbations I: cosmic shear and CMB lensing

    International Nuclear Information System (INIS)

    Battye, Richard A.; Moss, Adam; Pearson, Jonathan A.

    2015-01-01

    We present current and future constraints on equations of state for dark sector perturbations. The equations of state considered are those corresponding to a generalized scalar field model and time-diffeomorphism invariant L(g) theories that are equivalent to models of a relativistic elastic medium and also Lorentz violating massive gravity. We develop a theoretical understanding of the observable impact of these models. In order to constrain these models we use CMB temperature data from Planck, BAO measurements, CMB lensing data from Planck and the South Pole Telescope, and weak galaxy lensing data from CFHTLenS. We find non-trivial exclusions on the range of parameters, although the data remains compatible with w=−1. We gauge how future experiments will help to constrain the parameters. This is done via a likelihood analysis for CMB experiments such as CoRE and PRISM, and tomographic galaxy weak lensing surveys, focussing in on the potential discriminatory power of Euclid on mildly non-linear scales

  16. Constraining dark sector perturbations I: cosmic shear and CMB lensing

    Science.gov (United States)

    Battye, Richard A.; Moss, Adam; Pearson, Jonathan A.

    2015-04-01

    We present current and future constraints on equations of state for dark sector perturbations. The equations of state considered are those corresponding to a generalized scalar field model and time-diffeomorphism invariant Script L(g) theories that are equivalent to models of a relativistic elastic medium and also Lorentz violating massive gravity. We develop a theoretical understanding of the observable impact of these models. In order to constrain these models we use CMB temperature data from Planck, BAO measurements, CMB lensing data from Planck and the South Pole Telescope, and weak galaxy lensing data from CFHTLenS. We find non-trivial exclusions on the range of parameters, although the data remains compatible with w=-1. We gauge how future experiments will help to constrain the parameters. This is done via a likelihood analysis for CMB experiments such as CoRE and PRISM, and tomographic galaxy weak lensing surveys, focussing in on the potential discriminatory power of Euclid on mildly non-linear scales.

  17. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    OpenAIRE

    Roldan, Omar

    2017-01-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instan...

  18. Constraining quantum collapse inflationary models with CMB data

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, Micol; Alcaniz, Jailson S. [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro, RJ (Brazil); Landau, Susana J., E-mail: micolbenetti@on.br, E-mail: slandau@df.uba.ar, E-mail: alcaniz@on.br [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, PabI, Buenos Aires 1428 (Argentina)

    2016-12-01

    The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model ΛCDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.

  19. Extracting foreground-obscured μ-distortion anisotropies to constrain primordial non-Gaussianity

    Science.gov (United States)

    Remazeilles, M.; Chluba, J.

    2018-04-01

    Correlations between cosmic microwave background (CMB) temperature, polarization and spectral distortion anisotropies can be used as a probe of primordial non-Gaussianity. Here, we perform a reconstruction of μ-distortion anisotropies in the presence of Galactic and extragalactic foregrounds, applying the so-called Constrained ILC component separation method to simulations of proposed CMB space missions (PIXIE, LiteBIRD, CORE, PICO). Our sky simulations include Galactic dust, Galactic synchrotron, Galactic free-free, thermal Sunyaev-Zeldovich effect, as well as primary CMB temperature and μ-distortion anisotropies, the latter being added as correlated field. The Constrained ILC method allows us to null the CMB temperature anisotropies in the reconstructed μ-map (and vice versa), in addition to mitigating the contaminations from astrophysical foregrounds and instrumental noise. We compute the cross-power spectrum between the reconstructed (CMB-free) μ-distortion map and the (μ-free) CMB temperature map, after foreground removal and component separation. Since the cross-power spectrum is proportional to the primordial non-Gaussianity parameter, fNL, on scales k˜eq 740 Mpc^{-1}, this allows us to derive fNL-detection limits for the aforementioned future CMB experiments. Our analysis shows that foregrounds degrade the theoretical detection limits (based mostly on instrumental noise) by more than one order of magnitude, with PICO standing the best chance at placing upper limits on scale-dependent non-Gaussianity. We also discuss the dependence of the constraints on the channel sensitivities and chosen bands. Like for B-mode polarization measurements, extended coverage at frequencies ν ≲ 40 GHz and ν ≳ 400 GHz provides more leverage than increased channel sensitivity.

  20. How CMB and large-scale structure constrain chameleon interacting dark energy

    International Nuclear Information System (INIS)

    Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y.

    2015-01-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H 0 tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H 0 value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys

  1. Large-Scale Corrections to the CMB Anisotropy from Asymptotic de Sitter Mode

    Science.gov (United States)

    Sojasi, A.

    2018-01-01

    In this study, large-scale effects from asymptotic de Sitter mode on the CMB anisotropy are investigated. Besides the slow variation of the Hubble parameter onset of the last stage of inflation, the recent observational constraints from Planck and WMAP on spectral index confirm that the geometry of the universe can not be pure de Sitter in this era. Motivated by these evidences, we use this mode to calculate the power spectrum of the CMB anisotropy on the large scale. It is found that the CMB spectrum is dependent on the index of Hankel function ν which in the de Sitter limit ν → 3/2, the power spectrum reduces to the scale invariant result. Also, the result shows that the spectrum of anisotropy is dependent on angular scale and slow-roll parameter and these additional corrections are swept away by a cutoff scale parameter H ≪ M ∗ < M P .

  2. Cross-correlation studies between CMB temperature anisotropies and 21 cm fluctuations

    International Nuclear Information System (INIS)

    Cooray, Asantha

    2004-01-01

    During the transition from a neutral to a fully reionized universe, scattering of cosmic microwave background (CMB) photons via free electrons leads to a new anisotropy contribution to the temperature distribution. If the reionization process is inhomogeneous and patchy, the era of reionization is also visible via brightness temperature fluctuations in the redshifted 21 cm line emission from neutral hydrogen. Since regions containing electrons and neutral hydrogen are expected to trace the same underlying density field, the two are (anti)correlated and this is expected to be reflected in the anisotropy maps via a correlation between arcminute-scale CMB temperature and the 21 cm background. In terms of the angular cross-power spectrum, unfortunately, this correlation is insignificant due to a geometric cancellation associated with second-order CMB anisotropies. The same cross correlation between ionized and neutral regions, however, can be studied using a bispectrum involving large-scale velocity field of ionized regions from the Doppler effect, arcminute-scale CMB anisotropies during reionization, and the 21 cm background. While the geometric cancellation is partly avoided, the signal-to-noise ratio related to this bispectrum is reduced due to the large cosmic variance related to velocity fluctuations traced by the Doppler effect. Unless the velocity field during reionization can be independently established, it is unlikely that the correlation information related to the relative distribution of ionized electrons and regions containing neutral hydrogen can be obtained with a combined study involving CMB and 21 cm fluctuations

  3. Symmetry and Antisymmetry of the CMB Anisotropy Pattern

    Directory of Open Access Journals (Sweden)

    Jaiseung Kim

    2012-01-01

    Full Text Available Given an arbitrary function, we may construct symmetric and antisymmetric functions under a certain operation. Since statistical isotropy and homogeneity of our Universe has been a fundamental assumption of modern cosmology, we do not expect any particular symmetry or antisymmetry in our Universe. Besides fundamental properties of our Universe, we may also figure our contamination and improve the quality of the CMB data products, by matching the unusual symmetries and antisymmetries of the CMB data with known contaminantions. If we let the operation to be a coordinate inversion, the symmetric and antisymmetric functions have even and odd-parity respectively. The investigation on the parity of the recent CMB data shows a large-scale odd-parity preference, which is very unlikely in the statistical isotropic and homogeneous Universe. We investigated the association of the WMAP systematics with the anomaly, but did not find a definite non-cosmological cause. Besides the parity anomaly, there is anomalous lack of large-scale correlation in CMB data. We show that the odd-parity preference at low multipoles is, in fact, phenomenologically identical with the lack of large-angle correlation.

  4. How CMB and large-scale structure constrain chameleon interacting dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Boriero, Daniel [Fakultät für Physik, Universität Bielefeld, Universitätstr. 25, Bielefeld (Germany); Das, Subinoy [Indian Institute of Astrophisics, Bangalore, 560034 (India); Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2015-07-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.

  5. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Omar, E-mail: oaroldan@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ (Brazil)

    2017-08-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can iteratively be used to obtain the lensing solution at the desired order.

  6. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    International Nuclear Information System (INIS)

    Roldan, Omar

    2017-01-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can iteratively be used to obtain the lensing solution at the desired order.

  7. Constraining the shape of the CMB: A peak-by-peak analysis

    International Nuclear Information System (INIS)

    Oedman, Carolina J.; Hobson, Michael P.; Lasenby, Anthony N.; Melchiorri, Alessandro

    2003-01-01

    The recent measurements of the power spectrum of cosmic microwave background anisotropies are consistent with the simplest inflationary scenario and big bang nucleosynthesis constraints. However, these results rely on the assumption of a class of models based on primordial adiabatic perturbations, cold dark matter and a cosmological constant. In this paper we investigate the need for deviations from the Λ-CDM scenario by first characterizing the spectrum using a phenomenological function in a 15 dimensional parameter space. Using a Monte Carlo Markov chain approach to Bayesian inference and a low curvature model template we then check for the presence of new physics and/or systematics in the CMB data. We find an almost perfect consistency between the phenomenological fits and the standard Λ-CDM models. The curvature of the secondary peaks is weakly constrained by the present data, but they are well located. The improved spectral resolution expected from future satellite experiments is warranted for a definitive test of the scenario

  8. Mapping the CMB with the Wilkinson Microwave Anisotropy Probe

    Science.gov (United States)

    Hinshaw, Gary F.

    2007-01-01

    The data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission results will be discussed and commented on. WMAP, part of NASA's Explorers program, was launched on June 30,200 1. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  9. Evidence for an inflationary phase transition from the LSS and CMB anisotropy data

    International Nuclear Information System (INIS)

    Barriga, J.; Gaztanaga, E.; Santos, M.G.; Sarkar, S.

    2001-01-01

    In the light of the recent Boomerang and Maxima observations of the CMB which show an anomalously low second acoustic peak, we reexamine the prediction by Adams et al (1997) that this would be the consequence of a 'step' in the primordial spectrum induced by a spontaneous symmetry breaking phase transition during primordial inflation. We demonstrate that a deviation from scale-invariance around k ∼ 0.1h Mpc -1 can simultaneously explain both the feature identified earlier in the APM galaxy power spectrum as well the recent CMB anisotropy data, with a baryon density consistent with the BBN value. Such a break also allows a good fit to the data on cluster abundances even for a critical density matter-dominated universe with zero cosmological constant

  10. Evidence for an inflationary phase transition from the LSS and CMB anisotropy data

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, J.; Gaztanaga, E.; Santos, M.G.; Sarkar, S

    2001-04-01

    In the light of the recent Boomerang and Maxima observations of the CMB which show an anomalously low second acoustic peak, we reexamine the prediction by Adams et al (1997) that this would be the consequence of a 'step' in the primordial spectrum induced by a spontaneous symmetry breaking phase transition during primordial inflation. We demonstrate that a deviation from scale-invariance around k {approx} 0.1h Mpc{sup -1} can simultaneously explain both the feature identified earlier in the APM galaxy power spectrum as well the recent CMB anisotropy data, with a baryon density consistent with the BBN value. Such a break also allows a good fit to the data on cluster abundances even for a critical density matter-dominated universe with zero cosmological constant.

  11. Constraining the evolution of the CMB temperature with SZ measurements from Planck data

    Energy Technology Data Exchange (ETDEWEB)

    Luzzi, G.; Petris, M. De; Lamagna, L. [Dept. of Physics, Sapienza, University of Rome, Piazzale Aldo Moro 2, Rome, I-00185 Italy (Italy); Génova-Santos, R.T. [Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, La Laguna, Tenerife (Spain); Martins, C.J.A.P., E-mail: gemma.luzzi@roma1.infn.it, E-mail: rgs@iac.es, E-mail: carlos.martins@astro.up.pt, E-mail: marco.depetris@roma1.infn.it, E-mail: luca.lamagna@roma1.infn.it [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, Porto, 4150-762 Portugal (Portugal)

    2015-09-01

    The CMB temperature-redshift relation, T{sub CMB}(z)=T{sub 0}(1+z), is a key prediction of the standard cosmology but is violated in many non-standard models. Constraining possible deviations from this law is an effective way to test the ΛCDM paradigm and to search for hints of new physics. We have determined T{sub CMB}(z), with a precision up to 3%, for a subsample (103 clusters) of the Planck SZ cluster catalog, at redshifts in the range 0.01–0.94, using measurements of the spectrum of the Sunyaev-Zel'dovich (SZ) effect obtained from Planck temperature maps at frequencies from 70 to 353 GHz. The method adopted to provide individual determinations of T{sub CMB}(z) at cluster redshift relies on the use of SZ intensity change, Δ I{sub SZ}(ν) at different frequencies and on a Monte Carlo Markov chain approach. By applying this method to the sample of 103 clusters, we limit possible deviations of the form T{sub CMB}(z)=T{sub 0}(1+z){sup 1−β} to be β= 0.012 ± 0.016, at 1σ uncertainty, consistent with the prediction of the standard model. Combining these measurements with previously published results, we get β=0.013±0.011.

  12. CMB anisotropies from patchy reionisation and diffuse Sunyaev-Zel'dovich effects

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian; Ringeval, Christophe, E-mail: christophe.ringeval@uclouvain.be, E-mail: christian.fidler@uclouvain.be [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium)

    2017-10-01

    Anisotropies in the Cosmic Microwave Background (CMB) can be induced during the later stages of cosmic evolution, and in particular during and after the Epoch of Reionisation. Inhomogeneities in the ionised fraction, but also in the baryon density, in the velocity fields and in the gravitational potentials are expected to generate correlated CMB perturbations. We present a complete relativistic treatment of all these effects, up to second order in perturbation theory, that we solve using the numerical Boltzmann code (\\SONG). The physical origin and relevance of all second order terms are carefully discussed. In addition to collisional and gravitational contributions, we identify the diffuse analogue of the blurring and kinetic Sunyaev-Zel'dovich (SZ) effects. Our approach naturally includes the correlations between the imprint from patchy reionisation and the diffuse SZ effects thereby allowing us to derive reliable estimates of the induced temperature and polarisation CMB angular power spectra. In particular, we show that the B -modes generated at intermediate length-scales (ℓ ≅ 100) have the same amplitude as the B -modes coming from primordial gravitational waves with a tensor-to-scalar ratio r =10{sup −4}.

  13. Searching for cosmic strings in CMB anisotropy maps using wavelets and curvelets

    International Nuclear Information System (INIS)

    Hergt, Lukas; Amara, Adam; Kacprzak, Tomasz; Réfrégier, Alexandre; Brandenberger, Robert

    2017-01-01

    We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10 −7 .

  14. Searching for cosmic strings in CMB anisotropy maps using wavelets and curvelets

    Energy Technology Data Exchange (ETDEWEB)

    Hergt, Lukas; Amara, Adam; Kacprzak, Tomasz; Réfrégier, Alexandre [ETH Zurich, Department of Physics, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Brandenberger, Robert, E-mail: hergtl@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: rhb@physics.mcgill.ca, E-mail: tomasz.kacprzak@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch [Physics Department, McGill University, Montreal, QC, H3A 2T8 (Canada)

    2017-06-01

    We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10{sup −7}.

  15. Constraining star formation through redshifted CO and CII emission in archival CMB data

    Science.gov (United States)

    Switzer, Eric

    LCDM is a strikingly successful paradigm to explain the CMB anisotropy and its evolution into observed galaxy clustering statistics. The formation and evolution of galaxies within this context is more complex and only partly characterized. Measurements of the average star formation and its precursors over cosmic time are required to connect theories of galaxy evolution to LCDM evolution. The fine structure transition in CII at 158 um traces star formation rates and the ISM radiation environment. Cold, molecular gas fuels star formation and is traced well by a ladder of CO emission lines. Catalogs of emission lines in individual galaxies have provided the most information about CII and CO to-date but are subject to selection effects. Intensity mapping is an alternative approach to measuring line emission. It surveys the sum of all line radiation as a function of redshift, and requires angular resolution to reach cosmologically interesting scales, but not to resolve individual sources. It directly measures moments of the luminosity function from all emitting objects. Intensity mapping of CII and CO can perform an unbiased census of stars and cold gas across cosmic time. We will use archival COBE-FIRAS and Planck data to bound or measure cosmologically redshifted CII and CO line emission through 1) the monopole spectrum, 2) cross-power between FIRAS/Planck and public galaxy survey catalogs from BOSS and the 2MASS redshift surveys, 3) auto-power of the FIRAS/Planck data itself. FIRAS is unique in its spectral range and all-sky coverage, provided by the space-borne FTS architecture. In addition to sensitivity to a particular emission line, intensity mapping is sensitive to all other contributions to surface brightness. We will remove CMB and foreground spatial and spectral templates using models from WMAP and Planck data. Interlopers and residual foregrounds additively bias the auto-power and monopole, but both can still be used to provide rigorous upper bounds. The

  16. Signature of short distance physics on inflation power spectrum and CMB anisotropy

    International Nuclear Information System (INIS)

    Das, Suratna; Mohanty, Subhendra

    2009-01-01

    The inflaton field responsible for inflation may not be a canonical fundamental scalar. It is possible that the inflaton is a composite of fermions or it may have a decay width. In these cases the standard procedure for calculating the power spectrum is not applicable and a new formalism needs to be developed to determine the effect of short range interactions of the inflaton on the power spectrum and the CMB anisotropy. We develop a general formalism for computing the power spectrum of curvature perturbations for such non-canonical cases by using the flat space Källén-Lehmann spectral function in curved quasi-de Sitter space assuming implicitly that the Bunch-Davis boundary conditions enforces the inflaton mode functions to be plane wave in the short wavelength limit and a complete set of mode functions exists in quasi-de Sitter space. It is observed that the inflaton with a decay width suppresses the power at large scale while a composite inflaton's power spectrum oscillates at large scales. These observations may be vindicated in the WMAP data and confirmed by future observations with PLANCK

  17. Compensation for large tensor modes with iso-curvature perturbations in CMB anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro; Yokoyama, Shuichiro, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: shu@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan)

    2014-05-01

    Recently, BICEP2 has reported the large tensor-to-scalar ratio r = 0.2{sup +0.07}{sub −0.05} from the observation of the cosmic microwave background (CMB) B-mode at degree-scales. Since tensor modes induce not only CMB B-mode but also the temperature fluctuations on large scales, to realize the consistent temperature fluctuations with the Planck result we should consider suppression of scalar perturbations on corresponding large scales. To realize such a suppression, we consider anti-correlated iso-curvature perturbations which could be realized in the simple curvaton model.

  18. Motion induced second order temperature and y-type anisotropies after the subtraction of linear dipole in the CMB maps

    International Nuclear Information System (INIS)

    Sunyaev, Rashid A.; Khatri, Rishi

    2013-01-01

    y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μK which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired

  19. Constraining the CMB optical depth through the dispersion measure of cosmological radio transients

    International Nuclear Information System (INIS)

    Fialkov, A.; Loeb, A.

    2016-01-01

    The dispersion measure of extragalactic radio transients can be used to measure the column density of free electrons in the intergalactic medium. The same electrons also scatter the Cosmic Microwave Background (CMB) photons, affecting precision measurements of cosmological parameters. We explore the connection between the dispersion measure of radio transients existing during the Epoch of Reionization (EoR) and the total optical depth for the CMB showing that the existence of such transients would provide a new sensitive probe of the CMB optical depth. As an example, we consider the population of FRBs. Assuming they exist during the EoR, we show that: (i) such sources can probe the reionization history by measuring the optical depth to sub-percent accuracy, and (ii) they can be detected with high significance by an instrument such as the Square Kilometer Array.

  20. Constraining the CMB optical depth through the dispersion measure of cosmological radio transients

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, A.; Loeb, A., E-mail: anastasia.fialkov@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Institute for Teory and Computation, Harvard University, 60 Garden Street, MS-51, Cambridge, MA, 02138 (United States)

    2016-05-01

    The dispersion measure of extragalactic radio transients can be used to measure the column density of free electrons in the intergalactic medium. The same electrons also scatter the Cosmic Microwave Background (CMB) photons, affecting precision measurements of cosmological parameters. We explore the connection between the dispersion measure of radio transients existing during the Epoch of Reionization (EoR) and the total optical depth for the CMB showing that the existence of such transients would provide a new sensitive probe of the CMB optical depth. As an example, we consider the population of FRBs. Assuming they exist during the EoR, we show that: (i) such sources can probe the reionization history by measuring the optical depth to sub-percent accuracy, and (ii) they can be detected with high significance by an instrument such as the Square Kilometer Array.

  1. Constraining dark photon model with dark matter from CMB spectral distortions

    Directory of Open Access Journals (Sweden)

    Ki-Young Choi

    2017-08-01

    Full Text Available Many extensions of Standard Model (SM include a dark sector which can interact with the SM sector via a light mediator. We explore the possibilities to probe such a dark sector by studying the distortion of the CMB spectrum from the blackbody shape due to the elastic scatterings between the dark matter and baryons through a hidden light mediator. We in particular focus on the model where the dark sector gauge boson kinetically mixes with the SM and present the future experimental prospect for a PIXIE-like experiment along with its comparison to the existing bounds from complementary terrestrial experiments.

  2. New constraints on variations of the fine structure constant from CMB anisotropies

    International Nuclear Information System (INIS)

    Menegoni, Eloisa; Melchiorri, Alessandro; Galli, Silvia; Bartlett, James G.; Martins, C. J. A. P.

    2009-01-01

    We demonstrate that recent measurements of cosmic microwave background temperature and polarization anisotropy made by the ACBAR, QUAD, and BICEP experiments substantially improve the cosmological constraints on possible variations of the fine structure constant in the early universe. This data, combined with the five year observations from the WMAP mission, yield the constraint α/α 0 =0.987±0.012 at 68% C.L. The inclusion of the new Hubble Space Telescope constraints on the Hubble constant further increases the accuracy to α/α 0 =1.001±0.007 at 68% C.L., bringing possible deviations from the current value below the 1% level and improving previous constraints by a factor of ∼3.

  3. Constraining the Mechanism of D" Anisotropy: Diversity of Observation Types Required

    Science.gov (United States)

    Creasy, N.; Pisconti, A.; Long, M. D.; Thomas, C.

    2017-12-01

    A variety of different mechanisms have been proposed as explanations for seismic anisotropy at the base of the mantle, including crystallographic preferred orientation of various minerals (bridgmanite, post-perovskite, and ferropericlase) and shape preferred orientation of elastically distinct materials such as partial melt. Investigations of the mechanism for D" anisotropy are usually ambiguous, as seismic observations rarely (if ever) uniquely constrain a mechanism. Observations of shear wave splitting and polarities of SdS and PdP reflections off the D" discontinuity are among our best tools for probing D" anisotropy; however, typical data sets cannot constrain a unique scenario suggested by the mineral physics literature. In this work, we determine what types of body wave observations are required to uniquely constrain a mechanism for D" anisotropy. We test multiple possible models based on both single-crystal and poly-phase elastic tensors provided by mineral physics studies. We predict shear wave splitting parameters for SKS, SKKS, and ScS phases and reflection polarities off the D" interface for a range of possible propagation directions. We run a series of tests that create synthetic data sets by random selection over multiple iterations, controlling the total number of measurements, the azimuthal distribution, and the type of phases. We treat each randomly drawn synthetic dataset with the same methodology as in Ford et al. (2015) to determine the possible mechanism(s), carrying out a grid search over all possible elastic tensors and orientations to determine which are consistent with the synthetic data. We find is it difficult to uniquely constrain the starting model with a realistic number of seismic anisotropy measurements with only one measurement technique or phase type. However, having a mix of SKS, SKKS, and ScS measurements, or a mix of shear wave splitting and reflection polarity measurements, dramatically increases the probability of uniquely

  4. Constraints on the running of the running of the scalar tilt from CMB anisotropies and spectral distortions

    NARCIS (Netherlands)

    Cabass, Giovanni; Valentino, Eleonora Di; Melchiorri, Alessandro; Pajer, Enrico|info:eu-repo/dai/nl/413315797; Silk, Joseph

    2016-01-01

    We use the recent observations of Cosmic Microwave Background temperature and polarization anisotropies provided by the Planck satellite experiment to place constraints on the running $\\alpha_\\mathrm{s} = \\mathrm{d}n_{\\mathrm{s}} / \\mathrm{d}\\log k$ and the running of the running $\\beta_{\\mathrm{s}}

  5. TESTING CPT SYMMETRY WITH CURRENT AND FUTURE CMB MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Si-Yu; Zhang, Xinmin [Theory Division, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Xia, Jun-Qing; Li, Hong [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-3, Beijing 100049 (China); Li, Mingzhe, E-mail: xiajq@ihep.ac.cn [Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-02-01

    In this paper, we use the current and future cosmic microwave background (CMB) experiments to test the Charge-Parity-Time Reversal (CPT) symmetry. We consider a CPT-violating interaction in the photon sector L{sub cs}∼p{sub μ}A{sub ν} F-tilde {sup μν}, which gives rise to a rotation of the polarization vectors of the propagating CMB photons. By combining the 9 yr WMAP, BOOMERanG 2003, and BICEP1 observations, we obtain the current constraint on the isotropic rotation angle α-bar =−2.12±1.14 (1σ), indicating that the significance of the CPT violation is about 2σ. Here, we particularly take the systematic errors of CMB measurements into account. Then, we study the effects of the anisotropies of the rotation angle [Δα( n-hat )] on the CMB polarization power spectra in detail. Due to the small effects, the current CMB polarization data cannot constrain the related parameters very well. We obtain the 95% C.L. upper limit of the variance of the anisotropies of the rotation angle C {sup α}(0) < 0.035 from all of the CMB data sets. More interestingly, including the anisotropies of rotation angle could lower the best-fit value of r and relax the tension on the constraints of r between BICEP2 and Planck. Finally, we investigate the capabilities of future Planck polarization measurements on α-bar and Δα( n-hat ). Benefited from the high precision of Planck data, the constraints of the rotation angle can be significantly improved.

  6. Universe opacity and CMB

    Science.gov (United States)

    Vavryčuk, Václav

    2018-04-01

    A cosmological model, in which the cosmic microwave background (CMB) is a thermal radiation of intergalactic dust instead of a relic radiation of the Big Bang, is revived and revisited. The model suggests that a virtually transparent local Universe becomes considerably opaque at redshifts z > 2 - 3. Such opacity is hardly to be detected in the Type Ia supernova data, but confirmed using quasar data. The opacity steeply increases with redshift because of a high proper density of intergalactic dust in the previous epochs. The temperature of intergalactic dust increases as (1 + z) and exactly compensates the change of wavelengths due to redshift, so that the dust radiation looks apparently like the radiation of the blackbody with a single temperature. The predicted dust temperature is TD = 2.776 K, which differs from the CMB temperature by 1.9% only, and the predicted ratio between the total CMB and EBL intensities is 13.4 which is close to 12.5 obtained from observations. The CMB temperature fluctuations are caused by EBL fluctuations produced by galaxy clusters and voids in the Universe. The polarization anomalies of the CMB correlated with temperature anisotropies are caused by the polarized thermal emission of needle-shaped conducting dust grains aligned by large-scale magnetic fields around clusters and voids. A strong decline of the luminosity density for z > 4 is interpreted as the result of high opacity of the Universe rather than of a decline of the global stellar mass density at high redshifts.

  7. Testing alternative theories of dark matter with the CMB

    International Nuclear Information System (INIS)

    Li Baojiu; Barrow, John D.; Mota, David F.; Zhao, HongSheng

    2008-01-01

    We propose a method to study and constrain modified gravity theories for dark matter using CMB temperature anisotropies and polarization. We assume that the theories considered here have already passed the matter power-spectrum test of large-scale structure. With this requirement met, we show that a modified gravity theory can be specified by parametrizing the time evolution of its dark-matter density contrast, which is completely controlled by the dark-matter stress history. We calculate how the stress history with a given parametrization affects the CMB observables, and a qualitative discussion of the physical effects involved is supplemented with numerical examples. It is found that, in general, alternative gravity theories can be efficiently constrained by the CMB temperature and polarization spectra. There exist, however, special cases where modified gravity cannot be distinguished from the CDM model even by using both CMB and matter power spectrum observations, nor can they be efficiently restricted by other observables in perturbed cosmologies. Our results show how the stress properties of dark matter, which determine the evolutions of both density perturbations and the gravitational potential, can be effectively investigated using just the general conservation equations and without assuming any specific theoretical gravitational theory within a wide class.

  8. Inflationary gravity waves in light of recent cosmic microwave background anisotropies data

    International Nuclear Information System (INIS)

    Melchiorri, Alessandro; Oedman, Carolina J.

    2003-01-01

    One of the major predictions of inflation is the existence of a stochastic background of cosmological gravitational waves (GW). These gravitational waves can induce significant temperature anisotropies in the cosmic microwave background (CMB) on the angular scales recently probed by the Archeops experiment. Here, we perform a combined analysis of Archeops together with information from other CMB experiments and/or cosmological data sets, in order to constrain the amplitude of the GW background. We find that, for a scale-invariant GW background, the ratio of tensor-scalar perturbations at the CMB quadrupole is now constrained to be r≤0.43 at 95% C.L., while the bound on the spectral index of primordial density fluctuations is n S =0.97 -0.12 +0.10 . We discuss the implications for future GW detections through CMB polarization measurements

  9. Recent development in CMB experiments

    International Nuclear Information System (INIS)

    Matsumura, T.

    2014-01-01

    The rich data from the measurements of the cosmic microwave background (CMB) have played a key role to establish the ΛCDM cosmology. The WMAP results combined with Type Ia Supernova and BAO constrain not only the standard cosmological parameters to a few percent level. The combination of the data such as WMAP, SPT and H 0 started constraining such as the cosmic inflation r ν <0.38, and the equation of the dark energy w=-1.087 ± 0.096. The current experimental efforts are focused to measure the CMB B-mode polarization to probe deeper to 'beyond standard model' parameters from the sky. The upcoming ground-base and balloon-borne experiments are designed for r∼0.01. This sensitivity with an arcmin scale angular resolution is also well within the detection of the lensing B-mode. I review the recent development and the prospect from the upcoming CMB experiments. (author)

  10. Present mantle flow in North China Craton constrained by seismic anisotropy and numerical modelling

    Science.gov (United States)

    Qu, W.; Guo, Z.; Zhang, H.; Chen, Y. J.

    2017-12-01

    North China Carton (NCC) has undergone complicated geodynamic processes during the Cenozoic, including the westward subduction of the Pacific plate to its east and the collision of the India-Eurasia plates to its southwest. Shear wave splitting measurements in NCC reveal distinct seismic anisotropy patterns at different tectonic blocks, that is, the predominantly NW-SE trending alignment of fast directions in the western NCC and eastern NCC, weak anisotropy within the Ordos block, and N-S fast polarization beneath the Trans-North China Orogen (TNCO). To better understand the origin of seismic anisotropy from SKS splitting in NCC, we obtain a high-resolution dynamic model that absorbs multi-geophysical observations and state-of-the-art numerical methods. We calculate the mantle flow using a most updated version of software ASPECT (Kronbichler et al., 2012) with high-resolution temperature and density structures from a recent 3-D thermal-chemical model by Guo et al. (2016). The thermal-chemical model is obtained by multi-observable probabilistic inversion using high-quality surface wave measurements, potential fields, topography, and surface heat flow (Guo et al., 2016). The viscosity is then estimated by combining the dislocation creep, diffusion creep, and plasticity, which is depended on temperature, pressure, and chemical composition. Then we calculate the seismic anisotropy from the shear deformation of mantle flow by DREX, and predict the fast direction and delay time of SKS splitting. We find that when complex boundary conditions are applied, including the far field effects of the deep subduction of Pacific plate and eastward escaping of Tibetan Plateau, our model can successfully predict the observed shear wave splitting patterns. Our model indicates that seismic anisotropy revealed by SKS is primarily resulting from the LPO of olivine due to the shear deformation from asthenospheric flow. We suggest that two branches of mantle flow may contribute to the

  11. Long memory of mantle lithosphere fabric — European LAB constrained from seismic anisotropy

    Czech Academy of Sciences Publication Activity Database

    Plomerová, Jaroslava; Babuška, Vladislav

    2010-01-01

    Roč. 120, č. 1-2 (2010), s. 131-143 ISSN 0024-4937 R&D Projects: GA AV ČR IAA300120709; GA ČR GA205/07/1088 Institutional research plan: CEZ:AV0Z30120515 Keywords : lithosphere-asthenosphere boundary * fossil anisotropy * travel - time residuals Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.121, year: 2010

  12. What do we learn from the CMB observations?

    Energy Technology Data Exchange (ETDEWEB)

    Rubakov, V. A., E-mail: rubakov@ms2.inr.ac.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Vlasov, A. D., E-mail: vlasov.ad@gmail.com [Institute for Theoretical and Experimental Physics (Russian Federation)

    2012-09-15

    We give an account, at nonexpert and quantitative level, of physics behind the CMB temperature anisotropy and polarization and their peculiar features. We discuss, in particular, how cosmological parameters are determined from the CMB measurements and their combinations with other observations. We emphasize that CMB is the major source of information on the primordial density perturbations and, possibly, gravitational waves, and discuss the implication for our understanding of the extremely early Universe.

  13. The evens and odds of CMB anomalies

    Science.gov (United States)

    Gruppuso, A.; Kitazawa, N.; Lattanzi, M.; Mandolesi, N.; Natoli, P.; Sagnotti, A.

    2018-06-01

    The lack of power of large-angle CMB anisotropies is known to increase its statistical significance at higher Galactic latitudes, where a string-inspired pre-inflationary scale Δ can also be detected. Considering the Planck 2015 data, and relying largely on a Bayesian approach, we show that the effect is mostly driven by the even - ℓ harmonic multipoles with ℓ ≲ 20, which appear sizably suppressed in a way that is robust with respect to Galactic masking, along with the corresponding detections of Δ. On the other hand, the first odd - ℓ multipoles are only suppressed at high Galactic latitudes. We investigate this behavior in different sky masks, constraining Δ through even and odd multipoles, and we elaborate on possible implications. We include low- ℓ polarization data which, despite being noise-limited, help in attaining confidence levels of about 3 σ in the detection of Δ. We also show by direct forecasts that a future all-sky E-mode cosmic-variance-limited polarization survey may push the constraining power for Δ beyond 5 σ.

  14. Can CMB Surveys Help the AGN Community?

    Directory of Open Access Journals (Sweden)

    Bruce Partridge

    2017-08-01

    Full Text Available Contemporary projects to measure anisotropies in the cosmic microwave background (CMB are now detecting hundreds to thousands of extragalactic radio sources, most of them blazars. As a member of a group of CMB scientists involved in the construction of catalogues of such sources and their analysis, I wish to point out the potential value of CMB surveys to studies of AGN jets and their polarization. Current CMB projects, for instance, reach mJy sensitivity, offer wide sky coverage, are “blind” and generally of uniform sensitivity across the sky (hence useful statistically, make essentially simultaneous multi-frequency observations at frequencies from 30 to 857 GHz, routinely offer repeated observations of sources with interesting cadences and now generally provide polarization measurements. The aim here is not to analyze in any depth the AGN science already derived from such projects, but rather to heighten awareness of their promise for the AGN community.

  15. A note on the birefringence angle estimation in CMB data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gruppuso, A. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via P. Gobetti 101, I-40129 Bologna (Italy); Maggio, G. [INAF, Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, Trieste (Italy); Molinari, D.; Natoli, P., E-mail: gruppuso@iasbo.inaf.it, E-mail: maggio@oats.inaf.it, E-mail: molinari@iasfbo.inaf.it, E-mail: ntlpla@unife.it [Dipartimento di Fisica e Scienze della Terra and INFN, Università degli Studi di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy)

    2016-05-01

    Parity violating physics beyond the standard model of particle physics induces a rotation of the linear polarization of photons. This effect, also known as cosmological birefringence (CB), can be tested with the observations of the cosmic microwave background (CMB) anisotropies which are linearly polarized at the level of 5–10%. In particular CB produces non-null CMB cross correlations between temperature and B mode-polarization, and between E- and B-mode polarization. Here we study the properties of the so called D-estimators, often used to constrain such an effect. After deriving the framework of both frequentist and Bayesian analysis, we discuss the interplay between birefringence and weak-lensing, which, albeit parity conserving, modifies pre-existing TB and EB cross correlation.

  16. Testing physical models for dipolar asymmetry with CMB polarization

    Science.gov (United States)

    Contreras, D.; Zibin, J. P.; Scott, D.; Banday, A. J.; Górski, K. M.

    2017-12-01

    The cosmic microwave background (CMB) temperature anisotropies exhibit a large-scale dipolar power asymmetry. To determine whether this is due to a real, physical modulation or is simply a large statistical fluctuation requires the measurement of new modes. Here we forecast how well CMB polarization data from Planck and future experiments will be able to confirm or constrain physical models for modulation. Fitting several such models to the Planck temperature data allows us to provide predictions for polarization asymmetry. While for some models and parameters Planck polarization will decrease error bars on the modulation amplitude by only a small percentage, we show, importantly, that cosmic-variance-limited (and in some cases even Planck) polarization data can decrease the errors by considerably better than the expectation of √{2 } based on simple ℓ-space arguments. We project that if the primordial fluctuations are truly modulated (with parameters as indicated by Planck temperature data) then Planck will be able to make a 2 σ detection of the modulation model with 20%-75% probability, increasing to 45%-99% when cosmic-variance-limited polarization is considered. We stress that these results are quite model dependent. Cosmic variance in temperature is important: combining statistically isotropic polarization with temperature data will spuriously increase the significance of the temperature signal with 30% probability for Planck.

  17. Probing primordial non Gaussianity in the BOOMERanG CMB maps: an analysis based on analytical Minkowski functionals

    International Nuclear Information System (INIS)

    Migliaccio, M.; Natoli, P.; De Troia, G.; Hikage, C.; Komatsu, E.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Contaldi, C.R.; Crill, B.P.; Bernardis, P. de; Gasperis, G. de; Oliveira-Costa, A. de; Di Stefano, G.; Hivon, E.; Kisner, T.S.; Jones, W.C.; Lange, A.E.

    2009-01-01

    Minkowski functionals are a powerful tool to constrain the Gaussianity of the Cosmic Microwave Background (CMB). In the limit of a weakly non Gaussian field, a perturbative approach can be derived [Hikage C., Komatsu E., and Matsubara T., 2006, ApJ, 653, 11] that is completely based on analytical formulae without requiring computationally intensive, dedicated Monte Carlo non Gaussian simulations of the CMB anisotropy. We apply this machinery to an intensity map derived from the 1998 and 2003 flights of BOOMERanG, analyzed here together for the first time. We set limits on the non-linear coupling parameter f NL as -1020 NL <390 at 95% CL, markedly improving the previous constraints set by [De Troia G. et al., 2007, ApJ, 670, L73] whose analysis was limited to the BOOMERanG 2003 dataset. These limits are the most stringent ever set among suborbital experiments.

  18. Probing primordial non Gaussianity in the BOOMERanG CMB maps: an analysis based on analytical Minkowski functionals

    Energy Technology Data Exchange (ETDEWEB)

    Migliaccio, M.; Natoli, P.; De Troia, G. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 1 I-00133 Roma (Italy); Hikage, C. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Komatsu, E. [Texas Cosmology Center, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States); Ade, P.A.R. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Bock, J.J. [Jet Propulsion Laboratory, Pasadena, CA (United States); Bond, J.R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario (Canada); Borrill, J. [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boscaleri, A. [IFAC-CNR, Firenze (Italy); Contaldi, C.R. [Theoretical Physics Group, Imperial College, London (United Kingdom); Crill, B.P. [Jet Propulsion Laboratory, Pasadena, CA (United States); Bernardis, P. de [Dipartimento di Fisica, Universita La Sapienza, Roma (Italy); Gasperis, G. de [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 1 I-00133 Roma (Italy); Oliveira-Costa, A. de [Department of Physics, MIT, Cambridge, MA 02139 (United States); Di Stefano, G. [Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome (Italy); Hivon, E. [Institut d' Astrophysique, Paris (France); Kisner, T.S. [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Jones, W.C. [Department of Physics, Princeton University, Princeton, NJ 0854 (United States); Lange, A.E. [Observational Cosmology, California Institute of Technology, Pasadena, CA (United States)

    2009-10-15

    Minkowski functionals are a powerful tool to constrain the Gaussianity of the Cosmic Microwave Background (CMB). In the limit of a weakly non Gaussian field, a perturbative approach can be derived [Hikage C., Komatsu E., and Matsubara T., 2006, ApJ, 653, 11] that is completely based on analytical formulae without requiring computationally intensive, dedicated Monte Carlo non Gaussian simulations of the CMB anisotropy. We apply this machinery to an intensity map derived from the 1998 and 2003 flights of BOOMERanG, analyzed here together for the first time. We set limits on the non-linear coupling parameter f{sub NL} as -1020

  19. Probing the cosmological initial conditions using the CMB

    Science.gov (United States)

    Yadav, Amit P. S.

    In the last few decades, advances in observational cosmology have given us a standard model of cosmology. The basic cosmological parameters have been laid out to high precision. Cosmologists have started asking questions about the nature of the cosmological initial conditions. Many ambitious experiments such as Planck satellite, EBEX, ACT, CAPMAP, QUaD, BICEP, SPIDER, QUIET, and GEM are underway. Experiments like these will provide us with a wealth of information about CMB polarization, CMB lensing, and polarization foregrounds. These experiments will be complemented with great observational campaigns to map the 3D structure in the Universe and new particle physics constraints from the Large Hadron Collider. In my graduate work I have made explicit how observations of the CMB temperature and E-polarization anisotropies can be combined to provide optimal constraints on models of the early universe at the highest energies. I have developed new ways of constraining models of the early universe using CMB temperature and polarization data. Inflation is one of the most promising theories of the early universe. Different inflationary models predict different amounts of non-Gaussian perturbations. Although any non-Gaussianity predicted by the canonical inflation model is very small, there exist models which can generate significant amounts of non-Gaussianities. Hence any characterization of non-Gaussianity of the primordial perturbations constrains the models of inflation. The information in the bispectrum (or higher order moments) is completely independent of the power spectrum constraints on the amplitude of primordial power spectrum (A), the scalar spectral index of the primordial power spectrum ns, and the running of the primordial power spectrum. My work has made it possible to extract the bispectrum information from large, high resolution CMB temperature and polarization data. We have demonstrated that the primordial adiabatic perturbations can be reconstructed using

  20. Effects on the CMB from magnetic field dissipation before recombination

    Science.gov (United States)

    Kunze, Kerstin E.

    2017-09-01

    Magnetic fields present before decoupling are damped due to radiative viscosity. This energy injection affects the thermal and ionization history of the cosmic plasma. The implications for the CMB anisotropies and polarization are investigated for different parameter choices of a nonhelical stochastic magnetic field. Assuming a Gaussian smoothing scale determined by the magnetic damping wave number at recombination, it is found that magnetic fields with present-day strength less than 0.1 nG and negative magnetic spectral indices have a sizable effect on the CMB temperature anisotropies and polarization.

  1. Working Around Cosmic Variance: Remote Quadrupole Measurements of the CMB

    Science.gov (United States)

    Adil, Arsalan; Bunn, Emory

    2018-01-01

    Anisotropies in the CMB maps continue to revolutionize our understanding of the Cosmos. However, the statistical interpretation of these anisotropies is tainted with a posteriori statistics. The problem is particularly emphasized for lower order multipoles, i.e. in the cosmic variance regime of the power spectrum. Naturally, the solution lies in acquiring a new data set – a rather difficult task given the sample size of the Universe.The CMB temperature, in theory, depends on: the direction of photon propagation, the time at which the photons are observed, and the observer’s location in space. In existing CMB data, only the first parameter varies. However, as first pointed out by Kamionkowski and Loeb, a solution lies in making the so-called “Remote Quadrupole Measurements” by analyzing the secondary polarization produced by incoming CMB photons via the Sunyaev-Zel’dovich (SZ) effect. These observations allow us to measure the projected CMB quadrupole at the location and look-back time of a galaxy cluster.At low redshifts, the remote quadrupole is strongly correlated to the CMB anisotropy from our last scattering surface. We provide here a formalism for computing the covariance and relation matrices for both the two-point correlation function on the last scattering surface of a galaxy cluster and the cross correlation of the remote quadrupole with the local CMB. We then calculate these matrices based on a fiducial model and a non-standard model that suppresses power at large angles for ~104 clusters up to z=2. We anticipate to make a priori predictions of the differences between our expectations for the standard and non-standard models. Such an analysis is timely in the wake of the CMB S4 era which will provide us with an extensive SZ cluster catalogue.

  2. Non-Gaussianity and the Cosmic Microwave Background Anisotropies

    CERN Document Server

    Bartolo, N; Riotto, A

    2010-01-01

    We review in a pedagogical way the present status of the impact of non-Gaussianity (NG) on the Cosmic Microwave Background (CMB) anisotropies. We first show how to set the initial conditions at second-order for the (gauge invariant) CMB anisotropies when some primordial NG is present. However, there are many sources of NG in CMB anisotropies, beyond the primordial one, which can contaminate the primordial signal. We mainly focus on the NG generated from the post-inflationary evolution of the CMB anisotropies at second-order in perturbation theory at large and small angular scales, such as the ones generated at the recombination epoch. We show how to derive the equations to study the second-order CMB anisotropies and provide analytical computations to evaluate their contamination to primordial NG (complemented with numerical examples). We also offer a brief summary of other secondary effects. This review requires basic knowledge of the theory of cosmological perturbations at the linear level.

  3. Non-Gaussianity and the Cosmic Microwave Background Anisotropies

    Directory of Open Access Journals (Sweden)

    N. Bartolo

    2010-01-01

    microwave background (CMB anisotropies. We first show how to set the initial conditions at second order for the CMB anisotropies when some primordial NG is present. However, there are many sources of NG in CMB anisotropies, beyond the primordial one, which can contaminate the primordial signal. We mainly focus on the NG generated from the post inflationary evolution of the CMB anisotropies at second order in perturbation theory at large and small angular scales, such as the ones generated at the recombination epoch. We show how to derive the equations to study the second-order CMB anisotropies and provide analytical computations to evaluate their contamination to primordial NG (complemented with numerical examples. We also offer a brief summary of other secondary effects. This paper requires basic knowledge of the theory of cosmological perturbations at the linear level.

  4. Detectability of the 21-cm CMB cross-correlation from the epoch of reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem; Jelic, Vibor

    The 21-cm line fluctuations and the cosmic microwave background (CMB) are powerful probes of the epoch of reionization of the Universe. We study the potential of the cross-correlation between 21-cm line fluctuations and CMB anisotropy to obtain further constraints on the reionization history. We

  5. Nonlinear electrodynamics and CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta, Herman J. Mosquera [Departmento de Física Universidade Estadual Vale do Acaraú, Avenida da Universidade 850, Campus da Betânia, CEP 62.040-370, Sobral, Ceará (Brazil); Lambiase, G., E-mail: herman@icra.it, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica ' ' E.R. Caianiello' ' , Università di Salerno, 84081 Baronissi (Italy)

    2011-03-01

    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.

  6. Impacts of dark matter particle annihilation on recombination and the anisotropies of the cosmic microwave background

    International Nuclear Information System (INIS)

    Zhang Le; Chen Xuelei; Lei Yian; Si Zongguo

    2006-01-01

    The recombination history of the Universe provides a useful tool for constraining the annihilation of dark matter particles. Even a small fraction of dark matter particles annihilated during the cosmic dark age can provide sufficient energy to affect the ionization state of the baryonic gas. Although this effect is too small for neutralinos, lighter dark matter particle candidates, e.g. with mass of 1-100 MeV, which was proposed recently to explain the observed excess of positrons in the galactic center, may generate observable differences in the cosmic microwave background (CMB) temperature and polarization anisotropies. The annihilations at the era of recombination affects mainly the CMB anisotropy at small angular scales (large l), and is distinctively different from the effect of early reionization. We perform a multiparameter analysis of the CMB data, including both the Wilkinson Microwave Anisotropy Probe (WMAP) first year and three year data, and the ACBAR, Boomerang, CBI, and VSA data. Assuming that the observed excess of e + e - pairs in the galactic center region is produced by dark matter annihilation, and that a sizable fraction of the energy produced in the annihilation is deposited in the baryonic gas during recombination, we obtain a 95% dark matter mass limit of M<8 MeV with the current data set

  7. Cosmological CPT violation and CMB polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jun-Qing, E-mail: xia@sissa.it [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)

    2012-01-01

    In this paper we study the possibility of testing Charge-Parity-Time Reversal (CPT) symmetry with cosmic microwave background (CMB) experiments. We consider two kinds of Chern-Simons (CS) term, electromagnetic CS term and gravitational CS term, and study their effects on the CMB polarization power spectra in detail. By combining current CMB polarization measurements, the seven-year WMAP, BOOMERanG 2003 and BICEP observations, we obtain a tight constraint on the rotation angle Δα = −2.28±1.02 deg (1 σ), indicating a 2.2 σ detection of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. After adding the QUaD polarization data, the constraint becomes −1.34 < Δα < 0.82 deg at 95% confidence level. When comparing with the effect of electromagnetic CS term, the gravitational CS term could only generate TB and EB power spectra with much smaller amplitude. Therefore, the induced parameter ε can not be constrained from the current polarization data. Furthermore, we study the capabilities of future CMB measurements, Planck and CMBPol, on the constraints of Δα and ε. We find that the constraint of Δα can be significantly improved by a factor of 15. Therefore, if this rotation angle effect can not be taken into account properly, the constraints of cosmological parameters will be biased obviously. For the gravitational CS term, the future Planck data still can not constrain ε very well, if the primordial tensor perturbations are small, r < 0.1. We need the more accurate CMBPol experiment to give better constraint on ε.

  8. Planck 2013 results. XXIII. Isotropy and Statistics of the CMB

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the CMB anisotropy from the \\Planck\\ satellite. The detailed results are based on studies of four independent estimates...

  9. ACTPol: Status and preliminary CMB polarization results from the Atacama Cosmology Telescope

    Science.gov (United States)

    Koopman, Brian

    2014-03-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade for the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. In summer 2013, ACTPol achieved first light with one third of the final detector configuration. The remaining two thirds of the detector array will be installed during spring 2014, enabling full sensitivity, high resolution, observations at both 90 GHz and 150 GHz. Using approximately 3,000 transition-edge sensor bolometers, ACTPol will enable measurements of small angular scale polarization anisotropies in the Cosmic Microwave Background (CMB). I will present a status update for the ACTPol receiver and some preliminary results. ACTPol measurements will allow us to probe the spectral index of inflation as well as to constrain early dark energy and the sum of neutrino masses.

  10. Planck 2015 results. XVI. Isotropy and statistics of the CMB

    CERN Document Server

    Ade, P.A.R.; Akrami, Y.; Aluri, P.K.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Casaponsa, B.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B.P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fantaye, Y.; Fergusson, J.; Fernandez-Cobos, R.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Liu, H.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Pant, N.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Rotti, A.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Souradeep, T.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zibin, J.P.; Zonca, A.

    2016-01-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The "Cold S...

  11. Preferred axis of CMB parity asymmetry in the masked maps

    International Nuclear Information System (INIS)

    Cheng, Cheng; Zhao, Wen; Huang, Qing-Guo; Santos, Larissa

    2016-01-01

    Both WMAP and Planck data show a significant odd-multipole preference in the large scales of the cosmic microwave background (CMB) temperature anisotropies. If this pattern originates from cosmological effects, then it can be considered a crucial clue for a violation in the cosmological principle. By defining various direction dependent statistics in the full-sky Planck 2015 maps (see, for instance, Naselsky et al. (2012); W. Zhao (2014)), we found that the CMB parity asymmetry has a preferred direction, which is independent of the choices of the statistics. In particular, this preferred axis is strongly aligned with those in the CMB quadrupole and octopole, as well as that in the CMB kinematic dipole, which hints to their non-cosmological origin. In realistic observations, the foreground residuals are inevitable, and should be properly masked out in order to avoid possible misinterpretation of the results. In this paper, we extend our previous analyses to the masked Planck 2015 data. By defining a similar direction dependent statistic in the masked map, we find a preferred direction of the CMB parity asymmetry, in which the axis also coincides with that found in the full-sky analysis. Therefore, our conclusions on the CMB parity violation and its directional properties are confirmed.

  12. Preferred axis of CMB parity asymmetry in the masked maps

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Cheng [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Zhao, Wen, E-mail: wzhao7@ustc.edu.cn [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Huang, Qing-Guo [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Santos, Larissa [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China)

    2016-06-10

    Both WMAP and Planck data show a significant odd-multipole preference in the large scales of the cosmic microwave background (CMB) temperature anisotropies. If this pattern originates from cosmological effects, then it can be considered a crucial clue for a violation in the cosmological principle. By defining various direction dependent statistics in the full-sky Planck 2015 maps (see, for instance, Naselsky et al. (2012); W. Zhao (2014)), we found that the CMB parity asymmetry has a preferred direction, which is independent of the choices of the statistics. In particular, this preferred axis is strongly aligned with those in the CMB quadrupole and octopole, as well as that in the CMB kinematic dipole, which hints to their non-cosmological origin. In realistic observations, the foreground residuals are inevitable, and should be properly masked out in order to avoid possible misinterpretation of the results. In this paper, we extend our previous analyses to the masked Planck 2015 data. By defining a similar direction dependent statistic in the masked map, we find a preferred direction of the CMB parity asymmetry, in which the axis also coincides with that found in the full-sky analysis. Therefore, our conclusions on the CMB parity violation and its directional properties are confirmed.

  13. Cosmological constraint on the light gravitino mass from CMB lensing and cosmic shear

    Energy Technology Data Exchange (ETDEWEB)

    Osato, Ken; Yoshida, Naoki [Department of Physics, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033 (Japan); Sekiguchi, Toyokazu [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland); Shirasaki, Masato [National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588 (Japan); Kamada, Ayuki, E-mail: ken.osato@utap.phys.s.u-tokyo.ac.jp, E-mail: toyokazu.sekiguchi@gmail.com, E-mail: masato.shirasaki@nao.ac.jp, E-mail: ayuki.kamada@ucr.edu, E-mail: naoki.yoshida@phys.s.u-tokyo.ac.jp [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States)

    2016-06-01

    Light gravitinos of mass ∼< O (10) eV are of particular interest in cosmology, offering various baryogenesis scenarios without suffering from the cosmological gravitino problem. The gravitino may contribute considerably to the total matter content of the Universe and affect structure formation from early to present epochs. After the gravitinos decouple from other particles in the early Universe, they free-stream and consequently suppress density fluctuations of (sub-)galactic length scales. Observations of structure at the relevant length-scales can be used to infer or constrain the mass and the abundance of light gravitinos. We derive constraints on the light gravitino mass using the data of cosmic microwave background (CMB) lensing from Planck and of cosmic shear from the Canada France Hawaii Lensing Survey survey, combined with analyses of the primary CMB anisotropies and the signature of baryon acoustic oscillations in galaxy distributions. The obtained constraint on the gravitino mass is m {sub 3/2} < 4.7 eV (95 % C.L.), which is substantially tighter than the previous constraint from clustering analysis of Ly-α forests.

  14. A Measurement of CMB Cluster Lensing with SPT and DES Year 1 Data

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, E.J.; et al.

    2017-08-03

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. We detect lensing of the CMB by the galaxy clusters at 6.5$\\sigma$ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly $20\\%$ precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.

  15. Signatures of graviton masses on the CMB

    Science.gov (United States)

    Brax, Philippe; Cespedes, Sebastian; Davis, Anne-Christine

    2018-03-01

    The impact of the existence of gravitons with non-vanishing masses on the B-modes of the Cosmic Microwave Background (CMB) is investigated. We also focus on putative modifications to the speed of the gravitational waves. We find that a change of the graviton speed shifts the acoustic peaks of the CMB and then could be easily constrained. For the case of massive gravity, we show analytically how the B-modes are sourced in a manner differing from the massless case leading to a plateau at low l in the CMB spectrum. We also study the case when there are more than one graviton, and when pressure instabilities are present. The latter would occur in doubly coupled bigravity in the radiation era. We focus on the case where a massless graviton becomes tachyonic in the radiation era whilst a massive one remains stable. As the unstable mode decouples from matter in the radiation era, we find that the effects of the instability is largely reduced on the spectrum of B-modes as long as the unstable graviton does not grow into the non-linear regime. In all cases when both massless and massive gravitons are present, we find that the B-mode CMB spectrum is characterised by a low l plateau together with a shifted position for the first few peaks compared to a purely massive graviton spectrum, a shift which depends on the mixing between the gravitons in their coupling to matter and could serve as a hint in favour of the existence of multiple gravitons.

  16. CMBPol Mission Concept Study: Probing Inflation with CMB Polarization

    CERN Document Server

    Baumann, Daniel; Adshead, Peter; Amblard, Alexandre; Ashoorioon, Amjad; Bartolo, Nicola; Bean, Rachel; Beltran, Maria; de Bernardis, Francesco; Bird, Simeon; Chen, Xingang; Chung, Daniel Jun Hun; Colombo, Loris; Cooray, Asantha R.; Creminelli, Paolo; Dodelson, Scott; Dunkley, Joanna; Dvorkin, Cora; Easther, Richard; Finelli, Fabio; Flauger, Raphael; Hertzberg, Mark P.; Jones-Smith, Katherine; Kachru, Shamit; Kadota, Kenji; Khoury, Justin; Kinney, William H.; Komatsu, Eiichiro; Krauss, Lawrence M.; Lesgourgues, Julien; Liddle, Andrew R.; Liguori, Michele; Lim, Eugene A.; Linde, Andrei D.; Matarrese, Sabino; Mathur, Harsh; McAllister, Liam; Melchiorri, Alessandro; Nicolis, Alberto; Pagano, Luca; Peiris, Hiranya V.; Peloso, Marco; Pogosian, Levon; Pierpaoli, Elena; Riotto, Antonio; Seljak, Uros; Senatore, Leonardo; Shandera, Sarah E.; Silverstein, Eva; Smith, Tristan; Vaudrevange, Pascal M.; Verde, Licia; Wandelt, Ben; Wands, David; Watson, Scott; Wyman, Mark; Yadav, Amit; Valkenburg, Wessel; Zaldarriaga, Matias

    2009-01-01

    We summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.

  17. Pre-Inflationary Relics in the CMB?

    CERN Document Server

    Gruppuso, A.; Mandolesi, N.; Natoli, P.; Sagnotti, A.

    String Theory and Supergravity allow, in principle, to follow the transition of the inflaton from pre-inflationary fast roll to slow roll. This introduces an infrared depression in the primordial power spectrum that might have left an imprint in the CMB anisotropy, if it occurred at accessible wavelengths. We model the effect extending $\\Lambda$CDM with a scale $\\Delta$ related to the infrared depression and explore the constraints allowed by {\\sc Planck} data, employing also more conservative, wider Galactic masks in the low resolution CMB likelihood. In an extended mask with $f_{sky}=39\\%$, we thus find $\\Delta = (0.351 \\pm 0.114) \\times 10^{-3} \\, \\mbox{Mpc}^{-1}$, at $99.4\\%$ confidence level, to be compared with a nearby value at $88.5\\%$ with the standard $f_{sky}=94\\%$ mask. With about 64 $e$--folds of inflation, these values for $\\Delta$ would translate into primordial energy scales ${\\cal O}(10^{14})$ GeV.

  18. Multiscale analysis of the CMB temperature derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain. (Spain)

    2017-02-01

    We study the Planck CMB temperature at different scales through its derivatives up to second order, which allows one to characterize the local shape and isotropy of the field. The problem of having an incomplete sky in the calculation and statistical characterization of the derivatives is addressed in the paper. The analysis confirms the existence of a low variance in the CMB at large scales, which is also noticeable in the derivatives. Moreover, deviations from the standard model in the gradient, curvature and the eccentricity tensor are studied in terms of extreme values on the data. As it is expected, the Cold Spot is detected as one of the most prominent peaks in terms of curvature, but additionally, when the information of the temperature and its Laplacian are combined, another feature with similar probability at the scale of 10{sup o} is also observed. However, the p -value of these two deviations increase above the 6% when they are referred to the variance calculated from the theoretical fiducial model, indicating that these deviations can be associated to the low variance anomaly. Finally, an estimator of the directional anisotropy for spinorial quantities is introduced, which is applied to the spinors derived from the field derivatives. An anisotropic direction whose probability is <1% is detected in the eccentricity tensor.

  19. Probing CPT violation with CMB polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xia Junqing, E-mail: xia@sissa.i [Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, I-34014 Trieste (Italy); Li Hong; Zhang Xinmin [Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China)

    2010-04-12

    The electrodynamics modified by the Chern-Simons term L{sub cs}approxp{sub m}uA{sub n}uF-tilde{sup m}u{sup n}u with a non-vanishing p{sub m}u violates the Charge-Parity-Time Reversal symmetry (CPT) and rotates the linear polarizations of the propagating Cosmic Microwave Background (CMB) photons. In this Letter we measure the rotation angle DELTAalpha by performing a global analysis on the current CMB polarization measurements from the five-year Wilkinson Microwave Anisotropy Probe (WMAP5), BOOMERanG 2003 (B03), BICEP and QUaD using a Markov Chain Monte Carlo method. Neglecting the systematic errors of these experiments, we find that the results from WMAP5, B03 and BICEP all are consistent and their combination gives DELTAalpha=-2.62+-0.87deg (68% C.L.), indicating a 3sigma detection of the CPT violation. The QUaD data alone gives DELTAalpha=0.59+-0.42deg (68% C.L.) which has an opposite sign for the central value and smaller error bar compared to that obtained from WMAP5, B03 and BICEP. When combining all the polarization data together, we find DELTAalpha=0.09+-0.36deg (68% C.L.) which significantly improves the previous constraint on DELTAalpha and test the validity of the fundamental CPT symmetry at a higher level.

  20. Punctuated inflation and the low CMB multipoles

    International Nuclear Information System (INIS)

    Jain, Rajeev Kumar; Sriramkumar, L.; Chingangbam, Pravabati; Gong, Jinn-Ouk; Souradeep, Tarun

    2009-01-01

    We investigate inflationary scenarios driven by a class of potentials which are similar in form to those that arise in certain minimal supersymmetric extensions of the standard model. We find that these potentials allow a brief period of departure from inflation sandwiched between two stages of slow roll inflation. We show that such a background behavior leads to a step like feature in the scalar power spectrum. We set the scales such that the drop in the power spectrum occurs at a length scale that corresponds to the Hubble radius today — a feature that seems necessary to explain the lower power observed in the quadrupole moment of the Cosmic Microwave Background (CMB) anisotropies. We perform a Markov Chain Monte Carlo analysis to determine the values of the model parameters that provide the best fit to the recent WMAP 5-year data for the CMB angular power spectrum. We find that an inflationary spectrum with a suppression of power at large scales that we obtain leads to a much better fit (with just one extra parameter, χ eff 2 improves by 6.62) of the observed data when compared to the best fit reference ΛCDM model with a featureless, power law, primordial spectrum

  1. What will we learn from the CMB?

    International Nuclear Information System (INIS)

    Dodelson, S.

    1997-10-01

    Within the next decade, experiments measuring the anisotropies in the cosmic microwave background (CMB) will add greatly to our knowledge of the universe. There are dozens of experiments scheduled to take data over the next several years, capped by the satellite missions of NASA (MAP) and ESA (PLANCK). What will we learn from these experiments? I argue that the potential pay-off is immense: We are quite likely to determine cosmological parameters to unprecedented accuracy. This will provide key information about the theory of structure formation and even about the physics behind inflation. If the experiments succeed, can anything spoil this pay-off? I focus on three possible spoilers - foregrounds, reionization, and defect models - and argue that we have every reason to be optimistic

  2. Observing patchy reionization with future CMB polarization experiments

    Science.gov (United States)

    Roy, A.; Lapi, A.; Spergel, D.; Baccigalupi, C.

    2018-05-01

    We study the signal from patchy reionization in view of the future high accuracy polarization measurements of the Cosmic Microwave Background (CMB). We implement an extraction procedure of the patchy reionization signal analogous to CMB lensing. We evaluate the signal to noise ratio (SNR) for the future Stage IV (S4) CMB experiment. The signal has a broad peak centered on the degree angular scales, with a long tail at higher multipoles. The CMB S4 experiment can effectively constrain the properties of reionization by measuring the signal on degree scales. The signal amplitude depends on the properties of the structure determining the reionization morphology. We describe bubbles having radii distributed log-normally. The expected S/N is sensitive to the mean bubble radius: bar R=5 Mpc implies S/N ≈ 4, bar R=10 Mpc implies S/N ≈ 20. The spread of the radii distribution strongly affects the integrated SNR, that changes by a factor of 102 when σlnr goes from ln 2 to ln 3. Future CMB experiments will thus place important constraints on the physics of reionization.

  3. CMB lensing and giant rings

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, Ben; Itzhaki, Nissan, E-mail: nitzhaki@post.tau.ac.il, E-mail: ben.rathaus@gmail.com [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  4. Cosmic string induced CMB maps

    International Nuclear Information System (INIS)

    Landriau, M.; Shellard, E. P. S.

    2011-01-01

    We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.

  5. HARMONIC IN-PAINTING OF COSMIC MICROWAVE BACKGROUND SKY BY CONSTRAINED GAUSSIAN REALIZATION

    International Nuclear Information System (INIS)

    Kim, Jaiseung; Naselsky, Pavel; Mandolesi, Nazzareno

    2012-01-01

    The presence of astrophysical emissions between the last scattering surface and our vantage point requires us to apply a foreground mask on cosmic microwave background (CMB) sky maps, leading to large cuts around the Galactic equator and numerous holes. Since many CMB analysis, in particular on the largest angular scales, may be performed on a whole-sky map in a more straightforward and reliable manner, it is of utmost importance to develop an efficient method to fill in the masked pixels in a way compliant with the expected statistical properties and the unmasked pixels. In this Letter, we consider the Monte Carlo simulation of a constrained Gaussian field and derive it CMB anisotropy in harmonic space, where a feasible implementation is possible with good approximation. We applied our method to simulated data, which shows that our method produces a plausible whole-sky map, given the unmasked pixels, and a theoretical expectation. Subsequently, we applied our method to the Wilkinson Microwave Anisotropy Probe foreground-reduced maps and investigated the anomalous alignment between quadrupole and octupole components. From our investigation, we find that the alignment in the foreground-reduced maps is even higher than the Internal Linear Combination map. We also find that the V-band map has higher alignment than other bands, despite the expectation that the V-band map has less foreground contamination than other bands. Therefore, we find it hard to attribute the alignment to residual foregrounds. Our method will be complementary to other efforts on in-painting or reconstructing the masked CMB data, and of great use to Planck surveyor and future missions.

  6. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background

    Science.gov (United States)

    the Cosmic Microwave Background Radiation Resources with Additional Information * Videos 'George Smoot anisotropy of the cosmic microwave background radiation." '1 Smoot previously won the Ernest Orlando . Smoot, blackbody, and anisotropy of the Cosmic Microwave Background (CMB) radiation is available in full

  7. Beyond CMB cosmic variance limits on reionization with the polarized Sunyaev-Zel'dovich effect

    Science.gov (United States)

    Meyers, Joel; Meerburg, P. Daniel; van Engelen, Alexander; Battaglia, Nicholas

    2018-05-01

    Upcoming cosmic microwave background (CMB) surveys will soon make the first detection of the polarized Sunyaev-Zel'dovich effect, the linear polarization generated by the scattering of CMB photons on the free electrons present in collapsed objects. Measurement of this polarization along with knowledge of the electron density of the objects allows a determination of the quadrupolar temperature anisotropy of the CMB as viewed from the space-time location of the objects. Maps of these remote temperature quadrupoles have several cosmological applications. Here we propose a new application: the reconstruction of the cosmological reionization history. We show that with quadrupole measurements out to redshift 3, constraints on the mean optical depth can be improved by an order of magnitude beyond the CMB cosmic variance limit.

  8. Cosmological birefringence constraints from CMB and astrophysical polarization data

    Energy Technology Data Exchange (ETDEWEB)

    Galaverni, M. [Studio Teologico Interdiocesano, V.le Timavo 93, Reggio Emilia, 42121 Italy (Italy); Gubitosi, G. [Dipartimento di Fisica and sez. Roma1 INFN, Università di Roma ' La Sapienza' , P.le A. Moro 2, Rome, 00185 Italy (Italy); Paci, F. [SISSA, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste, 34136 Italy (Italy); Finelli, F., E-mail: matteo.galaverni@gmail.com, E-mail: giulia.gubitosi@imperial.ac.uk, E-mail: fpaci@sissa.it, E-mail: finelli@iasfbo.inaf.it [INAF-IASF Bologna, via Gobetti 101, Bologna, I-40129 Italy (Italy)

    2015-08-01

    Cosmological birefringence is a rotation of the polarization plane of photons coming from sources of astrophysical and cosmological origin. The rotation can also depend on the energy of the photons and not only on the distance of the source and on the cosmological evolution of the underlying theoretical model. In this work, we constrain few selected models for cosmological birefringence, combining CMB and astrophysical data at radio, optical, X and γ wavelengths, taking into account the specific energy and distance dependences.

  9. Cosmology with cosmic microwave background anisotropy

    Indian Academy of Sciences (India)

    Measurements of CMB anisotropy and, more recently, polarization have played a very important role in allowing precise determination of various parameters of the `standard' cosmological model. The expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the ...

  10. Planck 2013 results. XXIII. Isotropy and Statistics of the CMB

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, M.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J.D.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Pogosyan, D.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rath, C.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rotti, A.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Souradeep, T.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the cosmic microwave background (CMB) anisotropy from the Planck satellite. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask choice and frequency dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (about 3 sigma). However, we find little evidence for non-Gaussianity, with the exception of a few statistical signatures that seem to be associated with specific anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance of the CMB signal. A power asymmetry is now found to persist to scales corresponding to about l=600, and can be described in the low-l regime by a phenomenological dipole modulation model. However, any primordial powe...

  11. Planck 2015 results: XVI. Isotropy and statistics of the CMB

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Akrami, Y.

    2016-01-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consi...

  12. Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    Our velocity relative to the rest frame of the cosmic microwave background (CMB) generates a dipole temperature anisotropy on the sky whichhas been well measured for more than 30 years, and has an accepted amplitude of v/c = 1.23 x 10-3, or v = 369 km-1. In addition to thissignal generated by Dop...

  13. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    Science.gov (United States)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  14. Large scale CMB anomalies from thawing cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Ringeval, Christophe [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Yamauchi, Daisuke; Yokoyama, Jun' ichi [Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Bouchet, François R., E-mail: christophe.ringeval@uclouvain.be, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp, E-mail: bouchet@iap.fr [Institut d' Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris (France)

    2016-02-01

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) × 10{sup −6} match the amplitude of the dipole modulation reported in the Planck satellite measurements and could be at the origin of other large scale anomalies.

  15. Power filtration of CMB observational data

    DEFF Research Database (Denmark)

    Novikov, D.I.; Naselsky, P.; Jørgensen, H.E.

    2001-01-01

    We propose a power filter Cp for linear reconstruction of the CMB signal from one-dimensional scans of observational maps. This Gp filter preserves the power spectrum of the CMB signal in contrast to the Wiener filter which diminishes the power spectrum of the reconstructed CMB signal. We demonst...

  16. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C. L.; Larson, D.; Weiland, J. L. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States); Jarosik, N.; Page, L. [Department of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544-0708 (United States); Hinshaw, G.; Halpern, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Odegard, N.; Hill, R. S. [ADNET Systems, Inc., 7515 Mission Drive, Suite A100, Lanham, MD 20706 (United States); Smith, K. M. [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Gold, B. [School of Physics and Astronomy, University of Minnesota, 116 Church Street S.E., Minneapolis, MN 55455 (United States); Komatsu, E. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, D-85741 Garching (Germany); Nolta, M. R. [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada); Spergel, D. N. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544-1001 (United States); Wollack, E.; Kogut, A. [Code 665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Dunkley, J. [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Limon, M. [Columbia Astrophysics Laboratory, 550 West 120th Street, Mail Code 5247, New York, NY 10027-6902 (United States); Meyer, S. S. [Departments of Astrophysics and Physics, KICP and EFI, University of Chicago, Chicago, IL 60637 (United States); Tucker, G. S., E-mail: cbennett@jhu.edu [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912-1843 (United States); and others

    2013-10-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail. We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground-reduced CMB maps are presented. We now implement an optimal C {sup –1} weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained ΛCDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N {sub eff} = 3.84 ± 0.40). The model fit also implies that the age of the universe is t {sub 0} = 13.772 ± 0.059 Gyr, and the fit Hubble constant is H {sub 0} = 69.32 ± 0.80 km s{sup –1} Mpc{sup –1}. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n{sub s} = 0.9608 ± 0.0080); and the universe is close to flat/Euclidean (Ω{sub k} = -0.0027{sup +0.0039}{sub -0.0038}). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor

  17. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS

    International Nuclear Information System (INIS)

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Jarosik, N.; Page, L.; Hinshaw, G.; Halpern, M.; Odegard, N.; Hill, R. S.; Smith, K. M.; Gold, B.; Komatsu, E.; Nolta, M. R.; Spergel, D. N.; Wollack, E.; Kogut, A.; Dunkley, J.; Limon, M.; Meyer, S. S.; Tucker, G. S.

    2013-01-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail. We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground-reduced CMB maps are presented. We now implement an optimal C –1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained ΛCDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N eff = 3.84 ± 0.40). The model fit also implies that the age of the universe is t 0 = 13.772 ± 0.059 Gyr, and the fit Hubble constant is H 0 = 69.32 ± 0.80 km s –1 Mpc –1 . Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n s = 0.9608 ± 0.0080); and the universe is close to flat/Euclidean (Ω k = -0.0027 +0.0039 -0.0038 ). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter ΛCDM model

  18. CMB-S4 Science Book, First Edition

    Energy Technology Data Exchange (ETDEWEB)

    Abazajian, Kevork N. [Univ. of California, Irvine, CA (United States); et al.

    2016-10-09

    This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales.

  19. A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400

    Science.gov (United States)

    Miller, A. D.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Nolta, M. R.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, H. T.

    2000-05-01

    We report on a measurement of the angular spectrum of the CMB between l 100 and l 400 made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz, taken with the same instrument observing the same section of sky, we find: 1) a rise in the angular spectrum to a maximum with δ Tl 85 μ K at l 200 and a fall at l>300, thereby localizing the peak near l 200; and 2) that the anisotropy at l 200 has the spectrum of the CMB. Cosmological implications are discussed.

  20. MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10' to 5 degrees

    Science.gov (United States)

    Ade, P.; Balbi, A.; Bock, J.; Borrill, J.; Boscaleri, A.; de Bernardis, P.; Ferreira, P. G.; Hanany, S.; Hristov, V. V.; Jaffe, A. H.; Lange, A. E.; Lee, A. T.; Mauskopf, P. D.; Netterfield, C. B.; Oh, S.; Pascale, E.; Rabii, B.; Richards, P. L.; Smoot, G. F.; Stompor, R.; Winant,C. D.; Wu, J. H. P.

    2005-06-04

    We present a map and an angular power spectrum of the anisotropy of the cosmic microwave background (CMB) from the first flight of MAXIMA. MAXIMA is a balloon-borne experiment with an array of 16 bolometric photometers operated at 100 mK. MAXIMA observed a 124 deg{sup 2} region of the sky with 10' resolution at frequencies of 150, 240 and 410 GHz. The data were calibrated using in-flight measurements of the CMB dipole anisotropy. A map of the CMB anisotropy was produced from three 150 and one 240 GHz photometer without need for foreground subtractions.

  1. CMB-S4 and the hemispherical variance anomaly

    Science.gov (United States)

    O'Dwyer, Márcio; Copi, Craig J.; Knox, Lloyd; Starkman, Glenn D.

    2017-09-01

    Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the Northern and Southern Ecliptic hemispheres, with the Northern hemisphere displaying an anomalously low variance while the Southern hemisphere appears unremarkable [consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM)]. While this is a well-established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. This will change with a proposed ground-based CMB experiment, CMB-S4. With that in mind, we generate realizations of polarization maps constrained by the temperature data and predict the distribution of the hemispherical variance in polarization considering two different sky coverage scenarios possible in CMB-S4: full Ecliptic north coverage and just the portion of the North that can be observed from a ground-based telescope at the high Chilean Atacama plateau. We find that even in the set of realizations constrained by the temperature data, the low Northern hemisphere variance observed in temperature is not expected in polarization. Therefore, observing an anomalously low variance in polarization would make the hypothesis that the temperature anomaly is simply a statistical fluke more unlikely and thus increase the motivation for physical explanations. We show, within ΛCDM, how variance measurements in both sky coverage scenarios are related. We find that the variance makes for a good statistic in cases where the sky coverage is limited, however, full northern coverage is still preferable.

  2. Anisotropies in the cosmic neutrino background after Wilkinson Microwave Anisotropy Probe five-year data

    International Nuclear Information System (INIS)

    De Bernardis, Francesco; Pagano, Luca; Melchiorri, Alessandro; Serra, Paolo; Cooray, Asantha

    2008-01-01

    We search for the presence of cosmological neutrino background (CNB) anisotropies in recent Wilkinson Microwave Anisotropy Probe (WMAP) five-year data using their signature imprinted on modifications to the cosmic microwave background (CMB) anisotropy power spectrum. By parameterizing the neutrino background anisotropies with the speed viscosity parameter c vis , we find that the WMAP five-year data alone provide only a weak indication for CNB anisotropies with c vis 2 >0.06 at the 95% confidence level. When we combine CMB anisotropy data with measurements of galaxy clustering, the SN-Ia Hubble diagram, and other cosmological information, the detection increases to c vis 2 >0.16 at the same 95% confidence level. Future data from Planck, combined with a weak lensing survey such as the one expected with DUNE from space, will be able to measure the CNB anisotropy parameter at about 10% accuracy. We discuss the degeneracy between neutrino background anisotropies and other cosmological parameters such as the number of effective neutrinos species and the dark energy equation of state

  3. Testing inflation and curvaton scenarios with CMB distortions

    International Nuclear Information System (INIS)

    Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi

    2014-01-01

    Prior to recombination, Silk damping causes the dissipation of energy from acoustic waves into the monopole of the Cosmic Microwave Background (CMB), resulting in spectral distortions. These can be used to probe the primordial scalar power spectrum on smaller scales than it is possible with CMB anisotropies. An enhancement of power on these scales is nevertheless required for the resulting distortions to be detectable by future experiments like PIXIE. In this paper, we examine all 49 single-field inflation models listed by Martin et al. in the Encyclopaedia Inflationaris [1] and find that only one of these may lead to a detectable level of distortions in a tuned region of its parameter space, namely the original hybrid model. Three effective multi-field scenarios are also studied: with softly and suddenly turning trajectories, and with a mild waterfall trajectory. Softly turning trajectories do not induce distortions at any detectable level, whereas a sudden turn in the field space or a mild waterfall trajectory predicts a peak (plus damped oscillations in the sudden turn case) in the scalar power spectrum, which can lead to an observable amount of CMB distortions. Finally, another scenario leading to potentially detectable distortions involves a curvaton whose blue spectrum is subdominant on CMB angular scales and overtakes the inflaton spectrum on smaller scales. In this case however, we show that the bounds from ultra compact minihaloes are not satisfied. Expectations for an ultimate PRISM-class experiment characterized by an improvement in sensitivity by a factor of ten are discussed for some models

  4. Testing inflation and curvaton scenarios with CMB distortions

    Science.gov (United States)

    Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi

    2014-10-01

    Prior to recombination, Silk damping causes the dissipation of energy from acoustic waves into the monopole of the Cosmic Microwave Background (CMB), resulting in spectral distortions. These can be used to probe the primordial scalar power spectrum on smaller scales than it is possible with CMB anisotropies. An enhancement of power on these scales is nevertheless required for the resulting distortions to be detectable by future experiments like PIXIE. In this paper, we examine all 49 single-field inflation models listed by Martin et al. in the Encyclopaedia Inflationaris [1] and find that only one of these may lead to a detectable level of distortions in a tuned region of its parameter space, namely the original hybrid model. Three effective multi-field scenarios are also studied: with softly and suddenly turning trajectories, and with a mild waterfall trajectory. Softly turning trajectories do not induce distortions at any detectable level, whereas a sudden turn in the field space or a mild waterfall trajectory predicts a peak (plus damped oscillations in the sudden turn case) in the scalar power spectrum, which can lead to an observable amount of CMB distortions. Finally, another scenario leading to potentially detectable distortions involves a curvaton whose blue spectrum is subdominant on CMB angular scales and overtakes the inflaton spectrum on smaller scales. In this case however, we show that the bounds from ultra compact minihaloes are not satisfied. Expectations for an ultimate PRISM-class experiment characterized by an improvement in sensitivity by a factor of ten are discussed for some models.

  5. Global universe anisotropy probed by the alignment of structures in the cosmic microwave background.

    Science.gov (United States)

    Wiaux, Y; Vielva, P; Martínez-González, E; Vandergheynst, P

    2006-04-21

    We question the global universe isotropy by probing the alignment of local structures in the cosmic microwave background (CMB) radiation. The original method proposed relies on a steerable wavelet decomposition of the CMB signal on the sphere. The analysis of the first-year Wilkinson Microwave Anisotropy Probe data identifies a mean preferred plane with a normal direction close to the CMB dipole axis, and a mean preferred direction in this plane, very close to the ecliptic poles axis. Previous statistical anisotropy results are thereby synthesized, but further analyses are still required to establish their origin.

  6. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Kashlinsky, A.

    2014-01-01

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10 4 K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources

  7. A degree scale anisotropy measurement of the cosmic microwave background near the star Gamma Ursae Minoris

    Science.gov (United States)

    Gundersen, J. O.; Clapp, A. C.; Devlin, M.; Holmes, W.; Fischer, M. L.; Meinhold, P. R.; Lange, A. E.; Lubin, P. M.; Richards, P. L.; Smoot, G. F.

    1993-01-01

    Results from a search for anisotropy in the cosmic microwave background (CMB) are presented from the third flight of the Millimeter-wave Anisotropy experiment. The CMB observation occurred over 1.37 hours and covered a 6.24 sq deg area of the sky where very little foreground emission is expected. Significant correlated structure is observed at 6 and 9/cm. At 12/cm we place an upper limit on the structure. The relative amplitudes at 6, 9, and 12/cm are consistent with a CMB spectrum. The spectrum of the structure is inconsistent with thermal emission from known forms of interstellar dust. Synchrotron and free-free emission would both require unusually flat spectral indices at cm wavelengths in order to account for the amplitude of the observed structure. Although known systematic errors are not expected to contribute significantly to any of the three optical channels, excess sidelobe contamination cannot be definitively ruled out. If all the structure is attributed to CMB anisotropy, a value of the weighted rms of the 6 and 9/cm channels of Delta T/T(CMB) = 4.7 +/- 0.8 x 10 exp -5 (+/- 1 sigma) was measured. If the CMB anisotropy is assumed to have a Gaussian autocorrelation function with a coherence angle of 25 arcmin, then the most probable value is Delta T/T(CMB) = 4.2 +1.7 or -1.1 x 10 exp -5, where the +/- refers to the 95 percent confidence limits.

  8. Slow-roll inflation and BB-mode angular power spectrum of CMB

    Energy Technology Data Exchange (ETDEWEB)

    Malsawmtluangi, N.; Suresh, P.K. [University of Hyderabad, School of Physics, Hyderabad (India)

    2016-05-15

    The BB-mode correlation angular power spectrum of CMB is obtained by considering the primordial gravitational waves in the squeezed vacuum state for various inflationary models and results are compared with the joint analysis of the BICEP2/Keck Array and Planck 353 GHz data. The present results may constrain several models of inflation. (orig.)

  9. Self-Calibration of CMB Polarimeters

    Science.gov (United States)

    Keating, Brian

    2013-01-01

    Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity "B-modes", have far-reaching implications for cosmology. To detect the B-modes generated during inflation the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement and may be inherently unstable over the (long) duration these searches require to detect the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of ~1000 TeV. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes. The calibration procedure outlined here can be used for any CMB polarimeter.

  10. Planck 2013 results. XV. CMB power spectra and likelihood

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Gaier, T.C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Laureijs, R.J.; Lawrence, C.R.; Le Jeune, M.; Leach, S.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Lindholm, V.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I.J.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We present the Planck likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations. We use this likelihood to derive the Planck CMB power spectrum over three decades in l, covering 2 = 50, we employ a correlated Gaussian likelihood approximation based on angular cross-spectra derived from the 100, 143 and 217 GHz channels. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals of a few uK^2 at l <= 1000. We compare our results with foreground-cleaned CMB maps, and with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. The best-fit LCDM cosmology is in excellent agreement with preliminary Planck polarisation spectra. The standard LCDM cosmology is well constrained b...

  11. A measurement of CMB cluster lensing with SPT and DES year 1 data

    Science.gov (United States)

    Baxter, E. J.; Raghunathan, S.; Crawford, T. M.; Fosalba, P.; Hou, Z.; Holder, G. P.; Omori, Y.; Patil, S.; Rozo, E.; Abbott, T. M. C.; Annis, J.; Aylor, K.; Benoit-Lévy, A.; Benson, B. A.; Bertin, E.; Bleem, L.; Buckley-Geer, E.; Burke, D. L.; Carlstrom, J.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Chang, C. L.; Cho, H.-M.; Crites, A. T.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Davis, C.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Everett, W. B.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; George, E. M.; Gaztanaga, E.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Halverson, N. W.; Harrington, N. L.; Hartley, W. G.; Holzapfel, W. L.; Honscheid, K.; Hrubes, J. D.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Knox, L.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lee, A. T.; Leitch, E. M.; Li, T. S.; Lima, M.; Luong-Van, D.; Manzotti, A.; March, M.; Marrone, D. P.; Marshall, J. L.; Martini, P.; McMahon, J. J.; Melchior, P.; Menanteau, F.; Meyer, S. S.; Miller, C. J.; Miquel, R.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Nord, B.; Ogando, R. L. C.; Padin, S.; Plazas, A. A.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Ruhl, J. E.; Rykoff, E.; Sako, M.; Sanchez, E.; Sayre, J. T.; Scarpine, V.; Schaffer, K. K.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Shirokoff, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Staniszewski, Z.; Stark, A.; Story, K.; Suchyta, E.; Tarle, G.; Thomas, D.; Troxel, M. A.; Vanderlinde, K.; Vieira, J. D.; Walker, A. R.; Williamson, R.; Zhang, Y.; Zuntz, J.

    2018-05-01

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. The cluster catalogue used in this analysis contains 3697 members with mean redshift of \\bar{z} = 0.45. We detect lensing of the CMB by the galaxy clusters at 8.1σ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly 17 {per cent} precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentring.

  12. CMB-8 material balance system

    International Nuclear Information System (INIS)

    Langner, D.; Canada, T.; Ensslin, N.; Atwell, T.; Baxman, H.; Cowder, L.; Speir, L.; Lyssel, T.V.; Sampson, T.

    1980-08-01

    We describe the automated nondestructive assay (NDA) system installed at the Los Alamos Scientific Laboratory (LASL) Group CMB-8 uranium recovery facility. A random driver (RD) is used to measure the 235 U content of various solids while a uranium solution assay system (USAS) measures the 235 U or total uranium content of solutions over a concentration range of a few ppM to 400 g/l. Both instruments are interfaced to and controlled by a single minicomputer. The measurement principles, mechanical specifications, system software description, and operational instructions are described

  13. CMB in a box: Causal structure and the Fourier-Bessel expansion

    International Nuclear Information System (INIS)

    Abramo, L. Raul; Reimberg, Paulo H.; Xavier, Henrique S.

    2010-01-01

    This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the sources of anisotropies inside the past light cone of the observer. This foretold manifestation of causality in position (real) space happens order by order in a series expansion in powers of the visibility γ=e -μ , where μ is the optical depth to Thomson scattering. We show that the contributions of order γ N to the cosmic microwave background (CMB) anisotropies are regulated by spacetime window functions which have support only inside the past light cone of the point of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence of the fact that the visibility function becomes exponentially small at redshifts z>>10 3 , effectively cutting off the past light cone and introducing a finite radius inside which initial conditions can affect physical observables measured at our position x-vector=0 and time t 0 . Hence, for each multipole l there is a discrete tower of momenta k il (not a continuum) which can affect physical observables, with the smallest momenta being k 1l ∼l. The Fourier-Bessel modes take into account precisely the information from the sources of anisotropies that propagates from the initial value surface to the point of observation - no more, no less. We also show that the physical observables (the temperature and polarization maps), and hence the angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel expansion is the optimal scheme with which one can compute CMB anisotropies.

  14. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results

    Science.gov (United States)

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Jaorsik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M; hide

    2013-01-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail.We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground reduced are presented.We nowimplement an optimal C(exp -1)1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained Lambda-CDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N(sub eff) = 3.84 +/- 0.40). The model fit also implies that the age of the universe is (sub 0) = 13.772 +/- 0.059 Gyr, and the fit Hubble constant is H(sub 0) = 69.32 +/- 0.80 km/s/ Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n(sub s) = 0.9608+/-0.0080); and the universe is close to flat/Euclidean (Omega = -0.0027+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six

  15. BAYESIAN INFERENCE OF CMB GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Anderes, Ethan [Department of Statistics, University of California, Davis, CA 95616 (United States); Wandelt, Benjamin D.; Lavaux, Guilhem [Sorbonne Universités, UPMC Univ Paris 06 and CNRS, UMR7095, Institut d’Astrophysique de Paris, F-75014, Paris (France)

    2015-08-01

    The Planck satellite, along with several ground-based telescopes, has mapped the cosmic microwave background (CMB) at sufficient resolution and signal-to-noise so as to allow a detection of the subtle distortions due to the gravitational influence of the intervening matter distribution. A natural modeling approach is to write a Bayesian hierarchical model for the lensed CMB in terms of the unlensed CMB and the lensing potential. So far there has been no feasible algorithm for inferring the posterior distribution of the lensing potential from the lensed CMB map. We propose a solution that allows efficient Markov Chain Monte Carlo sampling from the joint posterior of the lensing potential and the unlensed CMB map using the Hamiltonian Monte Carlo technique. The main conceptual step in the solution is a re-parameterization of CMB lensing in terms of the lensed CMB and the “inverse lensing” potential. We demonstrate a fast implementation on simulated data, including noise and a sky cut, that uses a further acceleration based on a very mild approximation of the inverse lensing potential. We find that the resulting Markov Chain has short correlation lengths and excellent convergence properties, making it promising for applications to high-resolution CMB data sets in the future.

  16. Constraints on cosmological birefringence energy dependence from CMB polarization data

    International Nuclear Information System (INIS)

    Gubitosi, G.; Paci, F.

    2013-01-01

    We study the possibility of constraining the energy dependence of cosmological birefringence by using CMB polarization data. We consider four possible behaviors, characteristic of different theoretical scenarios: energy-independent birefringence motivated by Chern-Simons interactions of the electromagnetic field, linear energy dependence motivated by a 'Weyl' interaction of the electromagnetic field, quadratic energy dependence, motivated by quantum gravity modifications of low-energy electrodynamics, and inverse quadratic dependence, motivated by Faraday rotation generated by primordial magnetic fields. We constrain the parameters associated to each kind of dependence and use our results to give constraints on the models mentioned. We forecast the sensitivity that Planck data will be able to achieve in this respect

  17. Inflation in the closed FLRW model and the CMB

    Energy Technology Data Exchange (ETDEWEB)

    Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu [Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-10-01

    Recent cosmic microwave background (CMB) observations put strong constraints on the spatial curvature via estimation of the parameter Ω{sub k} assuming an almost scale invariant primordial power spectrum. We study the evolution of the background geometry and gauge-invariant scalar perturbations in an inflationary closed FLRW model and calculate the primordial power spectrum. We find that the inflationary dynamics is modified due to the presence of spatial curvature, leading to corrections to the nearly scale invariant power spectrum at the end of inflation. When evolved to the surface of last scattering, the resulting temperature anisotropy spectrum ( C {sup TT}{sub ℓ}) shows deficit of power at low multipoles (ℓ < 20). By comparing our results with the recent Planck data we discuss the role of spatial curvature in accounting for CMB anomalies and in the estimation of the parameter Ω{sub k}. Since the curvature effects are limited to low multipoles, the Planck estimation of cosmological parameters remains robust under inclusion of positive spatial curvature.

  18. CMB Polarization B-mode Delensing with SPTpol and Herschel

    Energy Technology Data Exchange (ETDEWEB)

    Manzotti, A.; et al.

    2017-01-16

    We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg$^2$ patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the $\\textit{Herschel}$ $500\\,\\mu m$ map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range $300 < \\ell < 2300$; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at $6.9 \\sigma$. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.

  19. Weak lensing and CMB: Parameter forecasts including a running spectral index

    International Nuclear Information System (INIS)

    Ishak, Mustapha; Hirata, Christopher M.; McDonald, Patrick; Seljak, Uros

    2004-01-01

    We use statistical inference theory to explore the constraints from future galaxy weak lensing (cosmic shear) surveys combined with the current CMB constraints on cosmological parameters, focusing particularly on the running of the spectral index of the primordial scalar power spectrum, α s . Recent papers have drawn attention to the possibility of measuring α s by combining the CMB with galaxy clustering and/or the Lyman-α forest. Weak lensing combined with the CMB provides an alternative probe of the primordial power spectrum. We run a series of simulations with variable runnings and compare them to semianalytic nonlinear mappings to test their validity for our calculations. We find that a 'reference' cosmic shear survey with f sky =0.01 and 6.6x10 8 galaxies per steradian can reduce the uncertainty on n s and α s by roughly a factor of 2 relative to the CMB alone. We investigate the effect of shear calibration biases on lensing by including the calibration factor as a parameter, and show that for our reference survey, the precision of cosmological parameter determination is only slightly degraded even if the amplitude calibration is uncertain by as much as 5%. We conclude that in the near future weak lensing surveys can supplement the CMB observations to constrain the primordial power spectrum

  20. Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis

    International Nuclear Information System (INIS)

    Cabella, Paolo; Silk, Joseph; Natoli, Paolo

    2007-01-01

    We perform a wavelet analysis of the temperature and polarization maps of the cosmic microwave background (CMB) delivered by the Wilkinson Microwave Anisotropy Probe experiment in search for a parity-violating signal. Such a signal could be seeded by new physics beyond the standard model, for which the Lorentz and CPT symmetries may not hold. Under these circumstances, the linear polarization direction of a CMB photon may get rotated during its cosmological journey, a phenomenon also called cosmological birefringence. Recently, Feng et al. have analyzed a subset of the Wilkinson Microwave Anisotropy Probe and BOOMERanG 2003 angular power spectra of the CMB, deriving a constraint that mildly favors a nonzero rotation. By using wavelet transforms we set a tighter limit on the CMB photon rotation angle Δα=-2.5±3.0 (Δα=-2.5±6.0) at the one (two) σ level, consistent with a null detection

  1. What can the CMB tell about the microphysics of cosmic reheating?

    International Nuclear Information System (INIS)

    Drewes, Marco

    2016-01-01

    In inflationary cosmology, cosmic reheating after inflation sets the initial conditions for the hot big bang. We investigate how CMB data can be used to study the effective potential and couplings of the inflaton during reheating to constrain the underlying microphysics. If there is a phase of preheating that is driven by a parametric resonance or other instability, then the thermal history and expansion history during the reheating era depend on a large number of microphysical parameters in a complicated way. In this case the connection between CMB observables and microphysical parameters can only established with intense numerical studies. Such studies can help to improve CMB constraints on the effective inflaton potential in specific models, but parameter degeneracies usually make it impossible to extract meaningful best-fit values for individual microphysical parameters. If, on the other hand, reheating is driven by perturbative processes, then it can be possible to constrain the inflaton couplings and the reheating temperature from CMB data. This provides an indirect probe of fundamental microphysical parameters that most likely can never be measured directly in the laboratory, but have an immense impact on the evolution of the cosmos by setting the stage for the hot big bang

  2. D" anisotropy and slip systems in post-perovskite

    Science.gov (United States)

    Nowacki, Andy; Wookey, James; Kendall, J.-Michael

    2010-05-01

    The lowermost few hundred kilometres of the Earth's mantle-known as D″-form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a large (~2%) increase in S-wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (V S) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. The MgSiO3-post-perovskite mineral phase is the most compelling explanation for observations of anisotropy, though an outstanding question is how post-perovskite and other mineral phases may deform to produce this: different mechanisms are possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can determine the other with the seismic anisotropy which is created. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW > 5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained-only one azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The same but with a tilted axis is possible (TTI) and would be consistent with inclusions of seismically

  3. Correlated isocurvature fluctuation in quintessence and suppressed cosmic microwave background anisotropies at low multipoles.

    Science.gov (United States)

    Moroi, Takeo; Takahashi, Tomo

    2004-03-05

    We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.

  4. Observational constraint on spherical inhomogeneity with CMB and local Hubble parameter

    Science.gov (United States)

    Tokutake, Masato; Ichiki, Kiyotomo; Yoo, Chul-Moon

    2018-03-01

    We derive an observational constraint on a spherical inhomogeneity of the void centered at our position from the angular power spectrum of the cosmic microwave background (CMB) and local measurements of the Hubble parameter. The late time behaviour of the void is assumed to be well described by the so-called Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) solution. Then, we restrict the models to the asymptotically homogeneous models each of which is approximated by a flat Friedmann-Lemaȋtre-Robertson-Walker model. The late time ΛLTB models are parametrized by four parameters including the value of the cosmological constant and the local Hubble parameter. The other two parameters are used to parametrize the observed distance-redshift relation. Then, the ΛLTB models are constructed so that they are compatible with the given distance-redshift relation. Including conventional parameters for the CMB analysis, we characterize our models by seven parameters in total. The local Hubble measurements are reflected in the prior distribution of the local Hubble parameter. As a result of a Markov-Chains-Monte-Carlo analysis for the CMB temperature and polarization anisotropies, we found that the inhomogeneous universe models with vanishing cosmological constant are ruled out as is expected. However, a significant under-density around us is still compatible with the angular power spectrum of CMB and the local Hubble parameter.

  5. Cold dark matter and degree-scale cosmic microwave background anisotropy statistics after COBE

    Science.gov (United States)

    Gorski, Krzysztof M.; Stompor, Radoslaw; Juszkiewicz, Roman

    1993-01-01

    We conduct a Monte Carlo simulation of the cosmic microwave background (CMB) anisotropy in the UCSB South Pole 1991 degree-scale experiment. We examine cold dark matter cosmology with large-scale structure seeded by the Harrison-Zel'dovich hierarchy of Gaussian-distributed primordial inhomogeneities normalized to the COBE-DMR measurement of large-angle CMB anisotropy. We find it statistically implausible (in the sense of low cumulative probability F lower than 5 percent, of not measuring a cosmological delta-T/T signal) that the degree-scale cosmological CMB anisotropy predicted in such models could have escaped a detection at the level of sensitivity achieved in the South Pole 1991 experiment.

  6. Small-scale cosmic microwave background anisotropies as probe of the geometry of the universe

    Science.gov (United States)

    Kamionkowski, Marc; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We perform detailed calculations of cosmic microwave background (CMB) anisotropies in a cold dark matter (CDM)-dominated open universe with primordial adiabatic density perturbations for a variety of reionization histories. The CMB anisotropies depend primarily on the geometry of the universe, which in a matter-dominated universe is determined by Omega and the optical depth to the surface of last scattering. In particular, the location on the primary Doppler peak depends primarily on Omega and is fairly insensitive to the other unknown parameters, such as Omega(sub b), h, Lambda, and the shape of the power spectrum. Therefore, if the primordial density perturbations are adiabatic, measurements of CMB anisotropies on small scales may be used to determine Omega.

  7. Confronting hybrid inflation in supergravity with CMB data

    International Nuclear Information System (INIS)

    Jeannerot, Rachel; Postma, Marieke

    2005-01-01

    F-term GUT inflation coupled to N = 1 supergravity is confronted with CMB data. Corrections to the string mass-per-unit-length away from the Bogomolny limit are taken into account. We find that a superpotential coupling 10 -7 /N∼ -2 /N, with N the dimension of the Higgs-representation, is still compatible with the data. The parameter space is enlarged in warm inflation, as well as in the curvaton and inhomogeneous reheat scenario. F-strings formed at the end of P-term inflation are also considered. Because these strings satisfy the Bogomolny bound the bounds are stronger: the gauge coupling is constrained to the range 10 -7 -4

  8. Analysing the Effect on CMB in a Parity and Charge Parity Violating Varying Alpha Theory

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Debaprasad; /NCTS, Taipei /Taiwan, Natl. Taiwan U.; Chen, Pisin; /NCTS, Taipei /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2012-09-14

    In this paper we study in detail the effect of our recently proposed model of parity and charge-parity (PCP) violating varying alpha on the Cosmic Microwave Background (CMB) photon passing through the intra galaxy-cluster medium (ICM). The ICM is well known to be composed of magnetized plasma. According to our model, the polarization and intensity of the CMB would be affected when traversing through the ICM due to non-trivial scalar photon interactions. We have calculated the evolution of such polarization and intensity collectively, known as the stokes parameters of the CMB photon during its journey through the ICM and tested our results against the Sunyaev-Zel'dovich (SZ) measurement on Coma galaxy cluster. Our model contains a PCP violating parameter, {beta}, and a scale of alpha variation {omega}. Using the derived constrained on the photon-to-scalar conversion probability, {bar P}{sub {gamma}{yields}{phi}}, for Coma cluster in ref.[34] we found a contour plot in the ({omega},{beta}) parameter plane. The {beta} = 0 line in this parameter space corresponds to well-studied Maxwell-dilaton type models which has lower bound on {omega} {approx}> 6.4 x 10{sup 9} GeV. In general, as the absolute value of {beta} increases, lower bound on {omega} also increases. Our model in general predicts the modification of the CMB polarization with a non-trivial dependence on the parity violating coupling parameter {beta}. However, it is unconstrained in this particular study. We show that this effect can in principle be detected in the future measurements on CMB polarization such that {beta} can also be constrained.

  9. CMB constraints on running non-Gaussianity

    OpenAIRE

    Oppizzi, Filippo; Liguori, Michele; Renzi, Alessandro; Arroja, Frederico; Bartolo, Nicola

    2017-01-01

    We develop a complete set of tools for CMB forecasting, simulation and estimation of primordial running bispectra, arising from a variety of curvaton and single-field (DBI) models of Inflation. We validate our pipeline using mock CMB running non-Gaussianity realizations and test it on real data by obtaining experimental constraints on the $f_{\\rm NL}$ running spectral index, $n_{\\rm NG}$, using WMAP 9-year data. Our final bounds (68\\% C.L.) read $-0.3< n_{\\rm NG}

  10. Probing the BSM physics with CMB precision cosmology: an application to supersymmetry

    Science.gov (United States)

    Dalianis, Ioannis; Watanabe, Yuki

    2018-02-01

    The cosmic history before the BBN is highly determined by the physics that operates beyond the Standard Model (BSM) of particle physics and it is poorly constrained observationally. Ongoing and future precision measurements of the CMB observables can provide us with significant information about the pre-BBN era and hence possibly test the cosmological predictions of different BSM scenarios. Supersymmetry is a particularly motivated BSM theory and it is often the case that different superymmetry breaking schemes require different cosmic histories with specific reheating temperatures or low entropy production in order to be cosmologically viable. In this paper we quantify the effects of the possible alternative cosmic histories on the n s and r CMB observables assuming a generic non-thermal stage after cosmic inflation. We analyze TeV and especially multi-TeV super-symmetry breaking schemes assuming the neutralino and gravitino dark matter scenarios. We complement our analysis considering the Starobinsky R 2 inflation model to exemplify the improved CMB predictions that a unified description of the early universe cosmic evolution yields. Our analysis underlines the importance of the CMB precision measurements that can be viewed, to some extend, as complementary to the laboratory experimental searches for supersymmetry or other BSM theories.

  11. A two-fluid approximation for calculating the cosmic microwave background anisotropies

    Science.gov (United States)

    Seljak, Uros

    1994-01-01

    We present a simplified treatment for calculating the cosmic microwave background anisotropy power spectrum in adiabatic models. It consists of solving for the evolution of a two-fluid model until the epoch of recombination and then integrating over the sources to obtain the cosmic microwave background (CMB) anisotropy power spectrum. The approximation is useful both for a physical understanding of CMB anisotropies as well as for a quantitative analysis of cosmological models. Comparison with exact calculations shows that the accuracy is typically 10%-20% over a large range of angles and cosmological models, including those with curvature and cosmological constant. Using this approximation we investigate the dependence of the CMB anisotropy on the cosmological parameters. We identify six dimensionless parameters that uniquely determine the anisotropy power spectrum within our approximation. CMB experiments on different angular scales could in principle provide information on all these parameters. In particular, mapping of the Doppler peaks would allow an independent determination of baryon mass density, matter mass density, and the Hubble constant.

  12. Tensor Minkowski Functionals: first application to the CMB

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Vidhya [Indian Institute of Astrophysics, Koramangala II Block, Bangalore 560 034 (India); Chingangbam, Pravabati, E-mail: vidhya@iiap.res.in, E-mail: prava@iiap.res.in [Indian Institute of Science, C.V. Raman Ave, Bangalore 560 012 (India)

    2017-06-01

    Tensor Minkowski Functionals (TMFs) are tensor generalizations of the usual Minkowski Functionals which are scalar quantities. We introduce them here for use in cosmological analysis, in particular to analyze the Cosmic Microwave Background (CMB) radiation. They encapsulate information about the shapes of structures and the orientation of distributions of structures. We focus on one of the TMFs, namely W {sub 2}{sup 1,1}, which is the (1,1) rank tensor generalization of the genus. The ratio of the eigenvalues of the average of W {sub 2}{sup 1,1} over all structures, α, encodes the net orientation of the structures; and the average of the ratios of the eigenvalues of W {sub 2}{sup 1,1} for each structure, β, encodes the net intrinsic anisotropy of the structures. We have developed a code that computes W {sub 2}{sup 1,1}, and from it α and β, for a set of structures on the 2-dimensional Euclidean plane. We use it to compute α and β as functions of chosen threshold levels for simulated Gaussian and isotropic CMB temperature and E mode fields. We obtain the value of α to be one for both temperature and E mode, which means that we recover the statistical isotropy of density fluctuations that we input in the simulations. We find that the standard ΛCDM model predicts a charateristic shape of β for temperature and E mode as a function of the threshold, and the average over thresholds is β∼ 0.62 for temperature and β∼ 0.63 for E mode. Accurate measurements of α and β can be used to test the standard model of cosmology and to search for deviations from it. For this purpose we compute α and β for temperature and E mode data of various data sets from PLANCK mission. We compare the values measured from observed data with those obtained from simulations to which instrument beam and noise characteristics of the 44GHz frequency channel have been added (which are provided as part of the PLANCK data release). We find very good agreement of β and α between all

  13. A CMB/Dark Energy Cosmic Duality

    DEFF Research Database (Denmark)

    Enqvist, Kari; Sloth, Martin Snoager

    2004-01-01

    We investigate a possible connection between the suppression of the power at low multipoles in the CMB spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon...

  14. Exhaustive Study of Cosmic Microwave Background Anisotropies in Quintessential Scenarios

    CERN Document Server

    Brax, P; Riazuelo, A; Brax, Philippe; Martin, Jerome; Riazuelo, Alain

    2000-01-01

    Recent high precision measurements of the CMB anisotropies performed by the BOOMERanG and MAXIMA-1 experiments provide an unmatched set of data allowing to probe different cosmological models. Among these scenarios, motivated by the recent measurements of the luminosity distance versus redshift relation for type Ia supernovae, is the quintessence hypothesis. It consists in assuming that the acceleration of the Universe is due to a scalar field whose final evolution is insensitive to the initial conditions. Within this framework we investigate the cosmological perturbations for two well-motivated potentials: the Ratra-Peebles and the SUGRA tracking potentials. We show that the solutions of the perturbed equations possess an attractor and that, as a consequence, the insensitivity to the initial conditions is preserved at the perturbed level. Then, we study the predictions of these two models for structure formation and CMB anisotropies and investigate the general features of the multipole moments in the presenc...

  15. Halo Pressure Profile through the Skew Cross-power Spectrum of the Sunyaev–Zel’dovich Effect and CMB Lensing in Planck

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Nicholas; Cooray, Asantha; Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Keating, Brian [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States)

    2017-11-01

    We measure the cosmic microwave background (CMB) skewness power spectrum in Planck , using frequency maps of the HFI instrument and the Sunyaev–Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing–SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gas pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck .

  16. Anisotropies in the cosmic microwave background: Theory

    International Nuclear Information System (INIS)

    Dodelson, S.

    1998-02-01

    Anisotropies in the Cosmic Microwave Background (CMB) contain a wealth of information about the past history of the universe and the present values of cosmological parameters. I online some of the theoretical advances of the last few years. In particular, I emphasize that for a wide class of cosmological models, theorists can accurately calculate the spectrum to better than a percent. The spectrum of anisotropies today is directly related to the pattern of inhomogeneities present at the time of recombination. This recognition leads to a powerful argument that will enable us to distinguish inflationary models from other models of structure formation. If the inflationary models turn out to be correct, the free parameters in these models will be determined to unprecedented accuracy by the upcoming satellite missions

  17. Microwave background anisotropies in quasiopen inflation

    Science.gov (United States)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1999-10-01

    Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.

  18. Planck 2013 results. XV. CMB power spectra and likelihood

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, ℓ, covering 2 ≤ ℓ ≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ℓs. For ℓ impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-ℓ cross-spectra with residuals below a few μK2 at ℓ ≲ 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ΛCDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ΛCDM cosmology is well constrained by Planck from the measurements at ℓ ≲ 1500. One specific example is the spectral index of scalar perturbations, for which we report a 5.4σ deviation from scale invariance, ns = 1. Increasing the multipole range beyond ℓ ≃ 1500 does not increase our accuracy for the ΛCDM parameters, but instead allows us to study extensions beyond the standard model. We find no indication of significant departures from the ΛCDM framework. Finally, we report a tension between the Planck best-fit ΛCDM model and the low-ℓ spectrum in the form of a power deficit of 5-10% at ℓ ≲ 40, with a statistical significance of 2.5-3σ. Without a theoretically motivated model for

  19. Multitracer CMB delensing maps from Planck and WISE data

    Science.gov (United States)

    Yu, Byeonghee; Hill, J. Colin; Sherwin, Blake D.

    2017-12-01

    Delensing, the removal of the limiting lensing B -mode background, is crucial for the success of future cosmic microwave background (CMB) surveys in constraining inflationary gravitational waves (IGWs). In recent work, delensing with large-scale structure tracers has emerged as a promising method both for improving constraints on IGWs and for testing delensing methods for future use. However, the delensing fractions (i.e., the fraction of the lensing-B mode power removed) achieved by recent efforts have been only 20%-30%. In this work, we provide a detailed characterization of a full-sky, dust-cleaned cosmic infrared background (CIB) map for delensing and construct a further-improved delensing template by adding additional tracers to increase delensing performance. In particular, we build a multitracer delensing template by combining the dust-cleaned Planck CIB map with a reconstructed CMB lensing map from Planck and a galaxy number density map from the Wide-field Infrared Survey Explorer (WISE) satellite. For this combination, we calculate the relevant weightings by fitting smooth templates to measurements of all the cross-spectra and autospectra of these maps. On a large fraction of the sky (fsky=0.43 ), we demonstrate that our maps are capable of providing a delensing factor of 43 ±1 % ; using a more restrictive mask (fsky=0.11 ), the delensing factor reaches 48 ±1 % . For low-noise surveys, our delensing maps, which cover much of the sky, can thus improve constraints on the tensor-to-scalar ratio (r ) by nearly a factor of 2. The delensing tracer maps are made publicly available, and we encourage their use in ongoing and upcoming B -mode surveys.

  20. Impact of calibration errors on CMB component separation using FastICA and ILC

    Science.gov (United States)

    Dick, Jason; Remazeilles, Mathieu; Delabrouille, Jacques

    2010-01-01

    The separation of emissions from different astrophysical processes is an important step towards the understanding of observational data. This topic of component separation is of particular importance in the observation of the relic cosmic microwave background (CMB) radiation, as performed by the Wilkinson Microwave Anisotropy Probe satellite and the more recent Planck mission, launched on 2009 May 14 from Kourou and currently taking data. When performing any sort of component separation, some assumptions about the components must be used. One assumption that many techniques typically use is knowledge of the frequency scaling of one or more components. This assumption may be broken in the presence of calibration errors. Here we compare, in the context of imperfect calibration, the recovery of a clean map of emission of the CMB from observational data with two methods: FastICA (which makes no assumption of the frequency scaling of the components) and an `Internal Linear Combination' (ILC), which explicitly extracts a component with a given frequency scaling. We find that even in the presence of small calibration errors (less than 1 per cent) with a Planck-style mission, the ILC method can lead to inaccurate CMB reconstruction in the high signal-to-noise ratio regime, because of partial cancellation of the CMB emission in the recovered map. While there is no indication that the failure of the ILC will translate to other foreground cleaning or component separation techniques, we propose that all methods which assume knowledge of the frequency scaling of one or more components be careful to estimate the effects of calibration errors.

  1. Cosmology with clusters in the CMB

    International Nuclear Information System (INIS)

    Majumdar, Subhabrata

    2008-01-01

    Ever since the seminal work by Sunyaev and Zel'dovich describing the distortion of the CMB spectrum, due to photons passing through the hot inter cluster gas on its way to us from the surface of last scattering (the so called Sunyaev-Zel'dovich effect (SZE)), small scale distortions of the CMB by clusters has been used to detect clusters as well as to do cosmology with clusters. Cosmology with clusters in the CMB can be divided into three distinct regimes: a) when the clusters are completely unresolved and contribute to the secondary CMB distortions power spectrum at small angular scales; b) when we can just about resolve the clusters so as to detect the clusters through its total SZE flux such that the clusters can be tagged and counted for doing cosmology and c) when we can completely resolve the clusters so as to measure their sizes and other cluster structural properties and their evolution with redshift. In this article, we take a look at these three aspects of SZE cluster studies and their implication for using clusters as cosmological probes. We show that clusters can be used as effective probes of cosmology, when in all of these three cases, one explores the synergy between cluster physics and cosmology as well take clues about cluster physics from the latest high precision cluster observations (for example, from Chandra and XMM - Newton). As a specific case, we show how an observationally motivated cluster SZ template can explain the CBI-excess without the need for a high σ 8 . We also briefly discuss 'self-calibration' in cluster surveys and the prospect of using clusters as an ensemble of cosmic rulers to break degeneracies arising in cluster cosmology.

  2. Adapted Method for Separating Kinetic SZ Signal from Primary CMB Fluctuations

    Directory of Open Access Journals (Sweden)

    Forni Olivier

    2005-01-01

    Full Text Available In this first attempt to extract a map of the kinetic Sunyaev-Zel'dovich (KSZ temperature fluctuations from the cosmic microwave background (CMB anisotropies, we use a method which is based on simple and minimal assumptions. We first focus on the intrinsic limitations of the method due to the cosmological signal itself. We demonstrate using simulated maps that the KSZ reconstructed maps are in quite good agreement with the original input signal with a correlation coefficient between original and reconstructed maps of on average, and an error on the standard deviation of the reconstructed KSZ map of only % on average. To achieve these results, our method is based on the fact that some first-step component separation provides us with (i a map of Compton parameters for the thermal Sunyaev-Zel'dovich (TSZ effect of galaxy clusters, and (ii a map of temperature fluctuations which is the sum of primary CMB and KSZ signals. Our method takes benefit from the spatial correlation between KSZ and TSZ effects which are both due to the same galaxy clusters. This correlation allows us to use the TSZ map as a spatial template in order to mask, in the map, the pixels where the clusters must have imprinted an SZ fluctuation. In practice, a series of TSZ thresholds is defined and for each threshold, we estimate the corresponding KSZ signal by interpolating the CMB fluctuations on the masked pixels. The series of estimated KSZ maps is finally used to reconstruct the KSZ map through the minimisation of a criterion taking into account two statistical properties of the KSZ signal (KSZ dominates over primary anisotropies at small scales, KSZ fluctuations are non-Gaussian distributed. We show that the results are quite sensitive to the effect of beam convolution, especially for large beams, and to the corruption by instrumental noise.

  3. Probing neutrino masses with CMB lensing extraction

    International Nuclear Information System (INIS)

    Lesgourgues, Julien; Perotto, Laurence; Pastor, Sergio; Piat, Michel

    2006-01-01

    We evaluate the ability of future cosmic microwave background (CMB) experiments to measure the power spectrum of large scale structure using quadratic estimators of the weak lensing deflection field. We calculate the sensitivity of upcoming CMB experiments such as BICEP, QUaD, BRAIN, ClOVER and Planck to the nonzero total neutrino mass M ν indicated by current neutrino oscillation data. We find that these experiments greatly benefit from lensing extraction techniques, improving their one-sigma sensitivity to M ν by a factor of order four. The combination of data from Planck and the SAMPAN mini-satellite project would lead to σ(M ν )∼0.1 eV, while a value as small as σ(M ν )∼0.035 eV is within the reach of a space mission based on bolometers with a passively cooled 3-4 m aperture telescope, representative of the most ambitious projects currently under investigation. We show that our results are robust not only considering possible difficulties in subtracting astrophysical foregrounds from the primary CMB signal but also when the minimal cosmological model (Λ Mixed Dark Matter) is generalized in order to include a possible scalar tilt running, a constant equation-of-state parameter for the dark energy and/or extra relativistic degrees of freedom

  4. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, Srinivasan; Patil, Sanjaykumar; Bianchini, Federico; Reichardt, Christian L. [School of Physics, University of Melbourne, 313 David Caro building, Swanston St and Tin Alley, Parkville VIC 3010 (Australia); Baxter, Eric J. [Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA 19104 (United States); Bleem, Lindsey E. [Argonne National Laboratory, High-Energy Physics Division, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Crawford, Thomas M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Holder, Gilbert P. [Department of Astronomy and Department of Physics, University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Manzotti, Alessandro, E-mail: srinivasan.raghunathan@unimelb.edu.au, E-mail: s.patil2@student.unimelb.edu.au, E-mail: ebax@sas.upenn.edu, E-mail: federico.bianchini@unimelb.edu.au, E-mail: bleeml@uchicago.edu, E-mail: tcrawfor@kicp.uchicago.edu, E-mail: gholder@illinois.edu, E-mail: manzotti@uchicago.edu, E-mail: christian.reichardt@unimelb.edu.au [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-08-01

    We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.

  5. Experiments on the CMB Spectrum, Big Jets Model and Their Implications for the Missing Half of the Universe

    Directory of Open Access Journals (Sweden)

    Hsu Leonardo

    2018-01-01

    Full Text Available Based on the limiting continuation of Lorentz-Poincaré invariance, we propose an alternative formulation of the generalized Planck distribution for inertial and noninertial frames. The Lorentz invariant Planck distribution law leads to a new physical interpretation of the dipole anisotropy of the Cosmic Microwave Background. The Big Jets model predicts a distant ‘antimatter blackbody,’ whose radiations could make 50% of the sky very slightly warmer than the isotropic CMB temperature TCMB with a cosine function. The other 50% of the sky has the same isotropic temperature TCMB. Thus, we could have a pseudo-dipole anisotropy because the microwaves emitted from the antimatter blackbody are totally absorbed by our matter blackbody. We suggest that accurate data of satellite experiments might be used to search for the pseudo-dipole anisotropy and the missing half of the antimatter universe.

  6. Architectures and assessment of next-generation CMB polarization instruments

    Data.gov (United States)

    National Aeronautics and Space Administration — Cosmological inflation predicts a background of gravitational waves that imprint a characteristic polarized pattern on the CMB. This signal is degraded by...

  7. Development of Optics and Detectors for Advanced CMB Polarization Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Measurements of the cosmic microwave background (CMB) have been essential to the development of modern cosmology. Future observations will provide cosmological...

  8. Using the CMB angular power spectrum to study Dark Matter-photon interactions

    International Nuclear Information System (INIS)

    Wilkinson, Ryan J.; Boehm, Céline; Lesgourgues, Julien

    2014-01-01

    In this paper, we explore the impact of Dark Matter-photon interactions on the CMB angular power spectrum. Using the one-year data release of the Planck satellite, we derive an upper bound on the Dark Matter-photon elastic scattering cross section of σ DM−γ ≤ 8 × 10 −31 (m DM /GeV) cm 2 (68% CL) if the cross section is constant and a present-day value of σ DM−γ ≤ 6 × 10 −40 (m DM /GeV) cm 2 (68% CL) if it scales as the temperature squared. For such a limiting cross section, both the B-modes and the TT angular power spectrum are suppressed with respect to ΛCDM predictions for ℓ∼>500 and ℓ∼>3000 respectively, indicating that forthcoming data from CMB polarisation experiments and Planck could help to constrain and characterise the physics of the dark sector. This essentially initiates a new type of dark matter search that is independent of whether dark matter is annihilating, decaying or asymmetric. Thus, any CMB experiment with the ability to measure the temperature and/or polarisation power spectra at high ℓ should be able to investigate the potential interactions of dark matter and contribute to our fundamental understanding of its nature

  9. Constraints on the CMB temperature-redshift dependence from SZ and distance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Luzzi, G. [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France); Martins, C.J.A.P.; Monteiro, A.M.R.V.L., E-mail: A.Avgoustidis@damtp.cam.ac.uk, E-mail: gluzzi@lal.in2p3.fr, E-mail: Carlos.Martins@astro.up.pt, E-mail: up090322024@alunos.fc.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-02-01

    The relation between redshift and the CMB temperature, T{sub CMB}(z) = T{sub 0}(1+z) is a key prediction of standard cosmology, but is violated in many non-standard models. Constraining possible deviations to this law is an effective way to test the ΛCDM paradigm and search for hints of new physics. We present state-of-the-art constraints, using both direct and indirect measurements. In particular, we point out that in models where photons can be created or destroyed, not only does the temperature-redshift relation change, but so does the distance duality relation, and these departures from the standard behaviour are related, providing us with an opportunity to improve constraints. We show that current datasets limit possible deviations of the form T{sub CMB}(z) = T{sub 0}(1+z){sup 1−β} to be β = 0.004±0.016 up to a redshift z ∼ 3. We also discuss how, with the next generation of space and ground-based experiments, these constraints can be improved by more than one order of magnitude.

  10. Constraints on the CMB temperature-redshift dependence from SZ and distance measurements

    International Nuclear Information System (INIS)

    Avgoustidis, A.; Luzzi, G.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.

    2012-01-01

    The relation between redshift and the CMB temperature, T CMB (z) = T 0 (1+z) is a key prediction of standard cosmology, but is violated in many non-standard models. Constraining possible deviations to this law is an effective way to test the ΛCDM paradigm and search for hints of new physics. We present state-of-the-art constraints, using both direct and indirect measurements. In particular, we point out that in models where photons can be created or destroyed, not only does the temperature-redshift relation change, but so does the distance duality relation, and these departures from the standard behaviour are related, providing us with an opportunity to improve constraints. We show that current datasets limit possible deviations of the form T CMB (z) = T 0 (1+z) 1−β to be β = 0.004±0.016 up to a redshift z ∼ 3. We also discuss how, with the next generation of space and ground-based experiments, these constraints can be improved by more than one order of magnitude

  11. Planck 2015 results: XI. CMB power spectra, likelihoods, and robustness of parameters

    DEFF Research Database (Denmark)

    Aghanim, N.; Arnaud, M.; Ashdown, M.

    2016-01-01

    on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (ℓ data and of Planck polarization......This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based...... information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck...

  12. Testing chirality of primordial gravitational waves with Planck and future CMB data: no hope from angular power spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gerbino, Martina [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Gruppuso, Alessandro [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via P. Gobetti 101, I-40129 Bologna (Italy); Natoli, Paolo [Dipartimento di Fisica e Scienze della Terra and INFN, Università degli Studi di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); Shiraishi, Maresuke [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, 277-8583 (Japan); Melchiorri, Alessandro, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: paolo.natoli@gmail.com, E-mail: maresuke.shiraishi@ipmu.jp, E-mail: alessandro.melchiorri@roma1.infn.it [Physics Department and INFN, Università di Roma ' La Sapienza' , P.le Aldo Moro 2, 00185, Rome (Italy)

    2016-07-01

    We use the 2015 Planck likelihood in combination with the Bicep2/Keck likelihood (BKP and BK14) to constrain the chirality, χ, of primordial gravitational waves in a scale-invariant scenario. In this framework, the parameter χ enters theory always coupled to the tensor-to-scalar ratio, r , e.g. in combination of the form χ ⋅ r . Thus, the capability to detect χ critically depends on the value of r . We find that with present data sets χ is de facto unconstrained. We also provide forecasts for χ from future CMB experiments, including COrE+, exploring several fiducial values of r . We find that the current limit on r is tight enough to disfavor a neat detection of χ. For example, in the unlikely case in which r ∼0.1(0.05), the maximal chirality case, i.e. χ = ±1, could be detected with a significance of ∼2.5(1.5)σ at best. We conclude that the two-point statistics at the basis of CMB likelihood functions is currently unable to constrain chirality and may only provide weak limits on χ in the most optimistic scenarios. Hence, it is crucial to investigate the use of other observables, e.g. provided by higher order statistics, to constrain these kinds of parity violating theories with the CMB.

  13. Semianalytic calculation of cosmic microwave background anisotropies from wiggly and superconducting cosmic strings

    Science.gov (United States)

    Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-11-01

    We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.

  14. Cosmic microwave background anisotropies in multiconnected flat spaces

    International Nuclear Information System (INIS)

    Riazuelo, Alain; Weeks, Jeffrey; Uzan, Jean-Philippe; Lehoucq, Roland; Luminet, Jean-Pierre

    2004-01-01

    This article investigates the signature of the seventeen multiconnected flat spaces in cosmic microwave background (CMB) maps. For each such space it recalls a fundamental domain and a set of generating matrices, and then goes on to find an orthonormal basis for the set of eigenmodes of the Laplace operator on that space. The basis eigenmodes are expressed as linear combinations of eigenmodes of the simply connected Euclidean space. A preceding work, which provides a general method for implementing multiconnected topologies in standard CMB codes, is then applied to simulate CMB maps and angular power spectra for each space. Unlike in the 3-torus, the results in most multiconnected flat spaces depend on the location of the observer. This effect is discussed in detail. In particular, it is shown that the correlated circles on a CMB map are generically not back to back, so that negative search of back-to-back circles in the Wilkinson Microwave Anisotropy Probe data does not exclude a vast majority of flat or nearly flat topologies

  15. A Guide to Designing Future Ground-based CMB Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W. L.K. [Stanford Univ., CA (United States); Kavli Inst. for Particle Astrophysics and Cosmology, Menlo, Park, CA (United States); Errard, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Dvorkin, C. [Inst. for Advanced Study, Princeton, NJ (United States); Kuo, C. L. [Stanford Univ., CA (United States); Kavli Inst. for Particle Astrophysics and Cosmology, Menlo, Park, CA (United States); Lee, A. T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDonald, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Slosar, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zahn, O. [Univ. of California, Berkeley and Lawrence Berkeley National Lab. (LBNL), CA (United States)

    2014-02-18

    In this follow-up work to the High Energy Physics Community Summer Study 2013 (HEP CSS 2013, a.k.a. Snowmass), we explore the scientific capabilities of a future Stage-IV Cosmic Microwave Background polarization experiment (CMB-S4) under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties in cosmological parameters in vΛCDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark-energy equation of state, dark-matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the Baryon Acoustic Oscillation (BAO) signal as measured by DESI to constrain parameters that would benefit from low redshift information. We find the following best 1-σ constraints: σ(Mv ) = 15 meV, σ(Neff ) = 0.0156, Dark energy Figure of Merit = 303, σ(pann) = 0.00588 x 3 x 10-26 cm3/s/GeV, σ( ΩK) = 0.00074, σ(ns) = 0.00110, σ( αs) = 0.00145, and σ(r) = 0.00009. We also detail the dependences of the parameter constraints on detector count, resolution, and sky coverage.

  16. A Guide to Designing Future Ground-based CMB Experiments

    International Nuclear Information System (INIS)

    Wu, W. L.K.; Errard, J.; Dvorkin, C.; Kuo, C. L.; Lee, A. T.; McDonald, P.; Slosar, A.; Zahn, O.

    2014-01-01

    In this follow-up work to the High Energy Physics Community Summer Study 2013 (HEP CSS 2013, a.k.a. Snowmass), we explore the scientific capabilities of a future Stage-IV Cosmic Microwave Background polarization experiment (CMB-S4) under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties in cosmological parameters in vΛCDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark-energy equation of state, dark-matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the Baryon Acoustic Oscillation (BAO) signal as measured by DESI to constrain parameters that would benefit from low redshift information. We find the following best 1-δ constraints: δ(M_v ) = 15 meV, δ(N_e_f_f ) = 0.0156, Dark energy Figure of Merit = 303, δ(p_a_n_n) = 0.00588 x 3 x 10"-"2"6 cm"3/s/GeV, δ(Ω_K) = 0.00074, δ(n_s) = 0.00110, δ(α_s) = 0.00145, and δ(r) = 0.00009. We also detail the dependences of the parameter constraints on detector count, resolution, and sky coverage.

  17. When can preheating affect the CMB?

    Science.gov (United States)

    Tsujikawa, Shinji; Bassett, Bruce A.

    2002-05-01

    We discuss the principles governing the selection of inflationary models for which preheating can affect the CMB. This is a (fairly small) subset of those models which have nonnegligible entropy/isocurvature perturbations on large scales during inflation. We study new models which belong to this class-two-field inflation with negative nonminimal coupling and hybrid/double/supernatural inflation models where the tachyonic growth of entropy perturbations can lead to the variation of the curvature perturbation, /R, on super-Hubble scales. Finally, we present evidence against recent claims for the variation of /R in the absence of substantial super-Hubble entropy perturbations.

  18. Working Group Report: Dark Energy and CMB

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S.; Honscheid, K.; Abazajian, K.; Carlstrom, J.; Huterer, D.; Jain, B.; Kim, A.; Kirkby, D.; Lee, A.; Padmanabhan, N.; Rhodes, J.; Weinberg, D.

    2013-09-20

    The American Physical Society's Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the community's long term aspirations. The sub-group "Dark Energy and CMB" prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv.

  19. Creation of the CMB spectrum: precise analytic solutions for the blackbody photosphere

    Energy Technology Data Exchange (ETDEWEB)

    Khatri, Rishi; Sunyaev, Rashid A., E-mail: khatri@mpa-garching.mpg.de, E-mail: sunyaev@mpa-Garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2012-06-01

    The blackbody spectrum of CMB was created in the blackbody photosphere at redshifts z∼>2 × 10{sup 6}. At these early times, the Universe was dense and hot enough that complete thermal equilibrium between baryonic matter (electrons and ions) and photons could be established on time scales much shorter than the age of the Universe. Any perturbation away from the blackbody spectrum was suppressed exponentially. New physics, for example annihilation and decay of dark matter, can add energy and photons to CMB at redshifts z∼>10{sup 5} and result in a Bose-Einstein spectrum with a non-zero chemical potential (μ). Precise evolution of the CMB spectrum around the critical redshift of z ≅ 2 × 10{sup 6} is required in order to calculate the μ-type spectral distortion and constrain the underlying new physics. Although numerical calculation of important processes involved (double Compton process, comptonization and bremsstrahlung) is not difficult with present day computers, analytic solutions are much faster and easier to calculate and provide valuable physical insights. We provide precise (better than 1%) analytic solutions for the decay of μ, created at an earlier epoch, including all three processes, double Compton, Compton scattering on thermal electrons and bremsstrahlung in the limit of small distortions. This is a significant improvement over the existing solutions with accuracy ∼ 10% or worse. We also give a census of important sources of energy injection into CMB in standard cosmology. In particular, calculations of distortions from electron-positron annihilation and primordial nucleosynthesis illustrate in a dramatic way the strength of the equilibrium restoring processes in the early Universe. Finally, we point out the triple degeneracy in standard cosmology, i.e., the μ and y distortions from adiabatic cooling of baryons and electrons, Silk damping and annihilation of thermally produced WIMP dark matter are of similar order of magnitude ( ∼ 10{sup

  20. A MEASUREMENT OF ARCMINUTE ANISOTROPY IN THE COSMIC MICROWAVE BACKGROUND WITH THE SUNYAEV-ZEL'DOVICH ARRAY

    International Nuclear Information System (INIS)

    Sharp, Matthew K.; Marrone, Daniel P.; Carlstrom, John E.; Culverhouse, Thomas; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Loh, Michael; Pryke, Clem; Hawkins, David; Lamb, James W.; Muchovej, Stephen; Woody, David; Joy, Marshall; Miller, Amber; Mroczkowski, Tony

    2010-01-01

    We present 30 GHz measurements of the angular power spectrum of the cosmic microwave background (CMB) obtained with the Sunyaev-Zel'dovich Array. The measurements are sensitive to arcminute angular scales, where secondary anisotropy from the Sunyaev-Zel'dovich effect (SZE) is expected to dominate. For a broad bin centered at multipole 4066, we find 67 +77 -50 μK 2 ; of which 26 ± 5 μK 2 is the expected contribution from primary CMB anisotropy and 80 ± 54 μK 2 is the expected contribution from undetected radio sources. These results imply an upper limit of 155 μK 2 (95% CL) on the secondary contribution to the anisotropy in our maps. This level of SZE anisotropy power is consistent with expectations based on recent determinations of the normalization of the matter power spectrum, i.e., σ 8 ∼ 0.8.

  1. On the impact of large angle CMB polarization data on cosmological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lattanzi, Massimiliano; Mandolesi, Nazzareno; Natoli, Paolo [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara (Italy); Burigana, Carlo; Gruppuso, Alessandro; Trombetti, Tiziana [Istituto Nazionale di Astrofisica, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, Via Piero Gobetti 101, I-40129 Bologna (Italy); Gerbino, Martina [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Polenta, Gianluca [Agenzia Spaziale Italiana Science Data Center, Via del Politecnico snc, 00133, Roma (Italy); Salvati, Laura, E-mail: lattanzi@fe.infn.it, E-mail: burigana@iasfbo.inaf.it, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: nazzareno.mandolesi@unife.it, E-mail: paolo.natoli@unife.it, E-mail: gianluca.polenta@asdc.asi.it, E-mail: laura.salvati@ias.u-psud.fr, E-mail: trombetti@iasfbo.inaf.it [Dipartimento di Fisica, Università La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma (Italy)

    2017-02-01

    We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the ΛCDM model. To complement large-angle polarization, we consider the high resolution (or 'high-ℓ') CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck 's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ, roughly of order 2σ, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ = 0.066 {sup +0.012}{sub −0.013}, again very stable against the particular choice for high-ℓ data. We find that the amplitude of primordial fluctuations A {sub s} , notoriously degenerate with τ, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1σ. In particular, cleaning dust with Planck 's 353 GHz data imposes a 1σ downward shift in the value of the Hubble constant H {sub 0}, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low ℓ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-ℓ dataset employed.

  2. Impact of stochastic primordial magnetic fields on the scalar contribution to cosmic microwave background anisotropies

    International Nuclear Information System (INIS)

    Finelli, Fabio; Paci, Francesco; Paoletti, Daniela

    2008-01-01

    We study the impact of a stochastic background of primordial magnetic fields on the scalar contribution of cosmic microwave background (CMB) anisotropies and on the matter power spectrum. We give the correct initial conditions for cosmological perturbations and the exact expressions for the energy density and Lorentz force associated to the stochastic background of primordial magnetic fields, given a power-law for their spectra cut at a damping scale. The dependence of the CMB temperature and polarization spectra on the relevant parameters of the primordial magnetic fields is illustrated.

  3. Primordial anisotropies in gauged hybrid inflation

    Science.gov (United States)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  4. Primordial anisotropies in gauged hybrid inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjahi, Hassan

    2014-01-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations

  5. Gravitational lensing of the CMB: A Feynman diagram approach

    Directory of Open Access Journals (Sweden)

    Elizabeth E. Jenkins

    2014-09-01

    Full Text Available We develop a Feynman diagram approach to calculating correlations of the Cosmic Microwave Background (CMB in the presence of distortions. As one application, we focus on CMB distortions due to gravitational lensing by Large Scale Structure (LSS. We study the Hu–Okamoto quadratic estimator for extracting lensing from the CMB and derive the noise of the estimator up to O(ϕ4 in the lensing potential ϕ. By identifying the diagrams responsible for the previously noted large O(ϕ4 term, we conclude that the lensing expansion does not break down. The convergence can be significantly improved by a reorganization of the ϕ expansion. Our approach makes it simple to obtain expressions for quadratic estimators based on any CMB channel, including many previously unexplored cases. We briefly discuss other applications to cosmology of this diagrammatic approach, such as distortions of the CMB due to patchy reionization, or due to Faraday rotation from primordial axion fields.

  6. Precision epoch of reionization studies with next-generation CMB experiments

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Erminia; Louis, Thibaut [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Hložek, Renée; Hil, J. Colin [Department of Astrophysical Science, Peyton Hall, 4 Ivy Lane, Princeton, NJ, 08544 (United States); Battaglia, Nick [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213 (United States); Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, ON, M5S 3H8 Canada (Canada); De Bernardis, Francesco; Henderson, Shawn; Niemack, Michael D. [Department of Physics, Cornell University, 109 Clark Hall, Ithaca, NY, 14853 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 315 Allen Hall, Pittsburgh, PA, 15260 (United States); McMahon, Jeff [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI, 48109 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4041 South Africa (South Africa); Newburgh, Laura [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON, M5S 3H4 Canada (Canada); Page, Lyman A. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Washington Road, Princeton, NJ, 08544 (United States); Partridge, Bruce [Department of Physics and Astronomy, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041 (United States); Sehgal, Neelima, E-mail: erminia.calabrese@astro.ox.ac.uk, E-mail: rhlozek@astro.princeton.edu [Physics and Astronomy Department, Stony Brook University, Stony Brook, NY, 11794 (United States); and others

    2014-08-01

    Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of reionization near ℓ=1500 in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range 300<ℓ<3000 with simulated temperature data from the full Planck mission in the low and intermediate ℓ region, 2<ℓ<2000. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than 1% accuracy. Assuming an efficient cleaning from multi-frequency channels of most foregrounds in the temperature data, we investigate the sensitivity to the only residual secondary component, the kinematic Sunyaev-Zel'dovich (kSZ) term. The CMB polarization is used to break degeneracies between primordial and secondary terms present in temperature and, in effect, to remove from the temperature data all but the residual kSZ term. We estimate a 15σ detection of the diffuse homogeneous kSZ signal from expected AdvACT temperature data at ℓ>1500, leading to a measurement of the amplitude of matter density fluctuations, σ{sub 8}, at 1% precision. Alternatively, by exploring the reionization signal encoded in the patchy kSZ measurements, we bound the time and duration of the reionization with σ(z{sub re})=1.1 and σ(Δz{sub re})=0.2. We find that these constraints degrade rapidly with large beam sizes, which highlights the importance of arcminute-scale resolution for future CMB surveys.

  7. Elastic anisotropy of crystals

    Directory of Open Access Journals (Sweden)

    Christopher M. Kube

    2016-09-01

    Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  8. Forecasts for CMB μ and i-type spectral distortion constraints on the primordial power spectrum on scales 8∼4 Mpc−1 with the future Pixie-like experiments

    International Nuclear Information System (INIS)

    Khatri, Rishi; Sunyaev, Rashid A.

    2013-01-01

    Silk damping at redshifts 1.5 × 10 4 ∼ 6 erases CMB anisotropies on scales corresponding to the comoving wavenumbers 8∼ 4 Mpc −1 (10 5 ∼ 8 ). This dissipated energy is gained by the CMB monopole, creating distortions from a blackbody in the CMB spectrum of the μ-type and the i-type. We study, using Fisher matrices, the constraints we can get from measurements of these spectral distortions on the primordial power spectrum from future experiments such as Pixie, and how these constraints change as we change the frequency resolution and the sensitivity of the experiment. We show that the additional information in the shape of the i-type distortions, in combination with the μ-type distortions, allows us to break the degeneracy between the amplitude and the spectral index of the power spectrum on these scales and leads to much tighter constraints. We quantify the information contained in both the μ-type distortions and the i-type distortions taking into account the partial degeneracy with the y-type distortions and the temperature of the blackbody part of the CMB. We also calculate the constraints possible on the primordial power spectrum when the spectral distortion information is combined with the CMB anisotropies measured by the WMAP, SPT, ACT and Planck experiments

  9. Quantum Gravity, Information Theory and the CMB

    Science.gov (United States)

    Kempf, Achim

    2018-04-01

    We review connections between the metric of spacetime and the quantum fluctuations of fields. We start with the finding that the spacetime metric can be expressed entirely in terms of the 2-point correlator of the fluctuations of quantum fields. We then discuss the open question whether the knowledge of only the spectra of the quantum fluctuations of fields also suffices to determine the spacetime metric. This question is of interest because spectra are geometric invariants and their quantization would, therefore, have the benefit of not requiring the modding out of diffeomorphisms. Further, we discuss the fact that spacetime at the Planck scale need not necessarily be either discrete or continuous. Instead, results from information theory show that spacetime may be simultaneously discrete and continuous in the same way that information can. Finally, we review the recent finding that a covariant natural ultraviolet cutoff at the Planck scale implies a signature in the cosmic microwave background (CMB) that may become observable.

  10. Reionization history and CMB parameter estimation

    International Nuclear Information System (INIS)

    Dizgah, Azadeh Moradinezhad; Kinney, William H.; Gnedin, Nickolay Y.

    2013-01-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case

  11. Real Space Approach to CMB deboosting

    CERN Document Server

    Yoho, Amanda; Starkman, Glenn D.; Pereira, Thiago S.

    2013-01-01

    The effect of our Galaxy's motion through the Cosmic Microwave Background rest frame, which aberrates and Doppler shifts incoming photons measured by current CMB experiments, has been shown to produce mode-mixing in the multipole space temperature coefficients. However, multipole space determinations are subject to many difficulties, and a real-space analysis can provide a straightforward alternative. In this work we describe a numerical method for removing Lorentz- boost effects from real-space temperature maps. We show that to deboost a map so that one can accurately extract the temperature power spectrum requires calculating the boost kernel at a finer pixelization than one might naively expect. In idealized cases that allow for easy comparison to analytic results, we have confirmed that there is indeed mode mixing among the spherical harmonic coefficients of the temperature. We find that using a boost kernel calculated at Nside=8192 leads to a 1% bias in the binned boosted power spectrum at l~2000, while ...

  12. Reionization history and CMB parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Dizgah, Azadeh Moradinezhad; Gnedin, Nickolay Y.; Kinney, William H.

    2013-05-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case.

  13. Local properties of the large-scale peaks of the CMB temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander (Spain)

    2017-05-01

    In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks is performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.

  14. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    Directory of Open Access Journals (Sweden)

    Dai G. Yamazaki

    2010-01-01

    Full Text Available Magnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF would be expected to manifest itself in the cosmic microwave background (CMB temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude Bλ and the power spectral index nB which have been deduced from the available CMB observational data by using our computational framework.

  15. Fast and accurate CMB computations in non-flat FLRW universes

    Science.gov (United States)

    Lesgourgues, Julien; Tram, Thomas

    2014-09-01

    We present a new method for calculating CMB anisotropies in a non-flat Friedmann universe, relying on a very stable algorithm for the calculation of hyperspherical Bessel functions, that can be pushed to arbitrary precision levels. We also introduce a new approximation scheme which gradually takes over in the flat space limit and leads to significant reductions of the computation time. Our method is implemented in the Boltzmann code class. It can be used to benchmark the accuracy of the camb code in curved space, which is found to match expectations. For default precision settings, corresponding to 0.1% for scalar temperature spectra and 0.2% for scalar polarisation spectra, our code is two to three times faster, depending on curvature. We also simplify the temperature and polarisation source terms significantly, so the different contributions to the Cl 's are easy to identify inside the code.

  16. Fast and accurate CMB computations in non-flat FLRW universes

    CERN Document Server

    Lesgourgues, Julien

    2014-01-01

    We present a new method for calculating CMB anisotropies in a non-flat Friedmann universe, relying on a very stable algorithm for the calculation of hyperspherical Bessel functions, that can be pushed to arbitrary precision levels. We also introduce a new approximation scheme which gradually takes over in the flat space limit, and significant speeds-up calculations. Our method is implemented in the Boltzmann code CLASS. It can be used to benchmark the accuracy of the CAMB code in curved space, which is found to match expectations. For default precision settings, corresponding to 0.1% for scalar temperature spectra and 0.2% for scalar polarisation spectra, our code is two to three times faster, depending on curvature. We also simplify the temperature and polarisation source terms significantly, so the different contributions to the $C_\\ell$'s are easy to identify inside the code.

  17. Fast and accurate CMB computations in non-flat FLRW universes

    International Nuclear Information System (INIS)

    Lesgourgues, Julien; Tram, Thomas

    2014-01-01

    We present a new method for calculating CMB anisotropies in a non-flat Friedmann universe, relying on a very stable algorithm for the calculation of hyperspherical Bessel functions, that can be pushed to arbitrary precision levels. We also introduce a new approximation scheme which gradually takes over in the flat space limit and leads to significant reductions of the computation time. Our method is implemented in the Boltzmann code class. It can be used to benchmark the accuracy of the camb code in curved space, which is found to match expectations. For default precision settings, corresponding to 0.1% for scalar temperature spectra and 0.2% for scalar polarisation spectra, our code is two to three times faster, depending on curvature. We also simplify the temperature and polarisation source terms significantly, so the different contributions to the C ℓ  's are easy to identify inside the code

  18. The information content of cosmic microwave background anisotropies

    Science.gov (United States)

    Scott, Douglas; Contreras, Dagoberto; Narimani, Ali; Ma, Yin-Zhe

    2016-06-01

    The cosmic microwave background (CMB) contains perturbations that are close to Gaussian and isotropic. This means that its information content, in the sense of the ability to constrain cosmological models, is closely related to the number of modes probed in CMB power spectra. Rather than making forecasts for specific experimental setups, here we take a more pedagogical approach and ask how much information we can extract from the CMB if we are only limited by sample variance. We show that, compared with temperature measurements, the addition of E-mode polarization doubles the number of modes available out to a fixed maximum multipole, provided that all of the TT, TE, and EE power spectra are measured. However, the situation in terms of constraints on particular parameters is more complicated, as we explain and illustrate graphically. We also discuss the enhancements in information that can come from adding B-mode polarization and gravitational lensing. We show how well one could ever determine the basic cosmological parameters from CMB data compared with what has been achieved with Planck, which has already probed a substantial fraction of the TT information. Lastly, we look at constraints on neutrino mass as a specific example of how lensing information improves future prospects beyond the current 6-parameter model.

  19. The information content of cosmic microwave background anisotropies

    International Nuclear Information System (INIS)

    Scott, Douglas; Contreras, Dagoberto; Narimani, Ali; Ma, Yin-Zhe

    2016-01-01

    The cosmic microwave background (CMB) contains perturbations that are close to Gaussian and isotropic. This means that its information content, in the sense of the ability to constrain cosmological models, is closely related to the number of modes probed in CMB power spectra. Rather than making forecasts for specific experimental setups, here we take a more pedagogical approach and ask how much information we can extract from the CMB if we are only limited by sample variance. We show that, compared with temperature measurements, the addition of E -mode polarization doubles the number of modes available out to a fixed maximum multipole, provided that all of the TT , TE , and EE power spectra are measured. However, the situation in terms of constraints on particular parameters is more complicated, as we explain and illustrate graphically. We also discuss the enhancements in information that can come from adding B -mode polarization and gravitational lensing. We show how well one could ever determine the basic cosmological parameters from CMB data compared with what has been achieved with Planck , which has already probed a substantial fraction of the TT information. Lastly, we look at constraints on neutrino mass as a specific example of how lensing information improves future prospects beyond the current 6-parameter model.

  20. New ALMA and Fermi /LAT Observations of the Large-scale Jet of PKS 0637−752 Strengthen the Case Against the IC/CMB Model

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Eileen T.; Breiding, Peter; Georganopoulos, Markos [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Oteo, Iván; Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Zwaan, Martin A.; Laing, Robert [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching-bei-München (Germany); Godfrey, Leith, E-mail: meyer@umbc.edu [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands)

    2017-02-01

    The Chandra X-ray observatory has discovered several dozen anomalously X-ray-bright jets associated with powerful quasars. A popular explanation for the X-ray flux from the knots in these jets is that relativistic synchrotron-emitting electrons inverse-Compton scatter cosmic microwave background (CMB) photons to X-ray energies (the IC/CMB model). This model predicts a high gamma-ray flux that should be detectable by the Fermi /Large Area Telescope (LAT) for many sources. GeV-band upper limits from Fermi /LAT for the well-known anomalous X-ray jet in PKS 0637−752 were previously shown in Meyer et al. to violate the predictions of the IC/CMB model. Previously, measurements of the jet synchrotron spectrum, important for accurately predicting the gamma-ray flux level, were lacking between radio and infrared wavelengths. Here, we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations of the large-scale jet at 100, 233, and 319 GHz, which further constrain the synchrotron spectrum, supporting the previously published empirical model. We also present updated limits from the Fermi /LAT using the new “Pass 8” calibration and approximately 30% more time on source. With these deeper limits, we rule out the IC/CMB model at the 8.7 σ level. Finally, we demonstrate that complete knowledge of the synchrotron SED is critical in evaluating the IC/CMB model.

  1. Big bang nucleosynthesis, cosmic microwave background anisotropies and dark energy

    International Nuclear Information System (INIS)

    Signore, Monique; Puy, Denis

    2002-01-01

    Over the last decade, cosmological observations have attained a level of precision which allows for very detailed comparison with theoretical predictions. We are beginning to learn the answers to some fundamental questions, using information contained in Cosmic Microwave Background Anisotropy (CMBA) data. In this talk, we briefly review some studies of the current and prospected constraints imposed by CMBA measurements on the neutrino physics and on the dark energy. As it was already announced by Scott, we present some possible new physics from the Cosmic Microwave Background (CMB)

  2. Measuring CMB polarization from ISS: the SPOrt experiment

    International Nuclear Information System (INIS)

    Colombo, L.P.L.

    2004-01-01

    The SPOrt (Sky Polarization Observatory) experiment aims to measure CMBP (cosmic microwave background polarization) on about 80% of the sky from space. Selected by ESA to fly on board the ISS in 2006, it is funded by the Italian Space Agency (ASI). As shown also by the recent WMAP release, CMBP data, besides of removing various degeneracies among cosmological parameters, provided new and important information on the cosmic opacity τ and, therefore, on very early cosmic objects which reionized the world at z ∼ 15. Most such information is obtained from low-l spectral components, that SPOrt, with its HPBW resolution of 7 degrees will explore with a high level of sensitivity. The 4 polarimeters of SPOrt work at 22, 32 and (2x) 90 GHz. At lower frequencies they will provide a (nearly) all-sky survey of Galactic synchrotron polarized emission, while data at the higher frequency will measure the CMBP signal. Correlating SPOrt with anisotropy data, by other experiments, shall therefore provide significant cosmological information. We performed a number of simulations of SPOrt performance, aimed to determine how far τ and/or other parameter(s) concerning reionization are constrained by the expected data. We also considered a possible interplay between reionization histories and Dark Energy nature. Besides of information on technological developments for systematics reduction, long term stability and observing time efficiency, we report here recent outputs on the expected SPOrt performance in constraining cosmological models

  3. Beyond y and μ: the shape of the CMB spectral distortions in the intermediate epoch, 1.5 × 104∼5

    International Nuclear Information System (INIS)

    Khatri, Rishi; Sunyaev, Rashid A.

    2012-01-01

    We calculate numerical solutions and analytic approximations for the intermediate-type spectral distortions. Detection of a μ-type distortion (saturated comptonization) in the CMB will constrain the time of energy injection to be at a redshift 2 × 10 6 ∼>z∼>2 × 10 5 , while a detection of a y-type distortion (minimal comptonization) will mean that there was heating of CMB at redshift z∼ 4 . We point out that the partially comptonized spectral distortions, generated in the redshift range 1.5 × 10 4 ∼ 5 , are much richer in information than the pure y and μ-type distortions. The spectrum created during this period is intermediate between y and μ-type distortions and depends sensitively on the redshift of energy injection. These intermediate-type distortions cannot be mimicked by a mixture of y and μ-type distortions at all frequencies and vice versa. The measurement of these intermediate-type CMB spectral distortions has the possibility to constrain precisely not only the amount of energy release in the early Universe but also the mechanism, for example, particle annihilation and Silk damping can be distinguished from particle decay. The intermediate-type distortion templates and software code using these templates to calculate the CMB spectral distortions for user-defined energy injection rate is made publicly available

  4. CMB probes on the correlated axion isocurvature perturbation

    International Nuclear Information System (INIS)

    Kadota, Kenji; Gong, Jinn-Ouk; Ichiki, Kiyotomo; Matsubara, Takahiko

    2015-01-01

    We explore the possible cosmological consequence of the gravitational coupling between the inflaton and axion-like fields. In view of the forthcoming cosmic microwave background (CMB) polarization and lensing data, we study the sensitivity of the CMB data on the cross-correlation between the curvature and axion isocurvature perturbations. Through a concrete example, we illustrate the explicit dependence of the scale dependent cross-correlation power spectrum on the axion parameters

  5. CMB-S4 Technology Book, First Edition

    Energy Technology Data Exchange (ETDEWEB)

    Abitbol, Maximilian H. [Columbia Univ., New York, NY (United States); et al.

    2017-06-08

    CMB-S4 is a proposed experiment to map the polarization of the Cosmic Microwave Background (CMB) to nearly the cosmic variance limit for the angular scales that are accessible from the ground. The science goals and capabilities of CMB-S4 in illuminating cosmic inflation, measuring the sum of neutrino masses, searching for relativistic relics in the early universe, characterizing dark energy and dark matter, and mapping the matter distribution in the universe have been described in the CMB-S4 Science Book. This Technology Book is a companion volume to the Science Book. The ambitious science goals of the proposed "Stage-IV" CMB-S4 will require a step forward in experimental capability from the current Stage-III experiments. To guide this process, the community summarized the current state of the technology and identify R&D efforts necessary to advance it for possible use in CMB-S4. The book focused on the technical challenges in four broad areas: Telescope Design; Receiver Optics; Focal-Plane Optical Coupling; and Focal-Plane Sensor and Readout.

  6. Big bang nucleosynthesis, the CMB, and the origin of matter and space-time

    Science.gov (United States)

    Mathews, Grant J.; Gangopadhyay, Mayukh; Sasankan, Nishanth; Ichiki, Kiyotomo; Kajino, Toshitaka

    2018-04-01

    We summarize some applications of big bang nucleosythesis (BBN) and the cosmic microwave background (CMB) to constrain the first moments of the creation of matter in the universe. We review the basic elements of BBN and how it constraints physics of the radiation-dominated epoch. In particular, how the existence of higher dimensions impacts the cosmic expansion through the projection of curvature from the higher dimension in the "dark radiation" term. We summarize current constraints from BBN and the CMB on this brane-world dark radiation term. At the same time, the existence of extra dimensions during the earlier inflation impacts the tensor to scalar ratio and the running spectral index as measured in the CMB. We summarize how the constraints on inflation shift when embedded in higher dimensions. Finally, one expects that the universe was born out of a complicated multiverse landscape near the Planck time. In these moments the energy scale of superstrings was obtainable during the early moments of chaotic inflation. We summarize the quest for cosmological evidence of the birth of space-time out of the string theory landscape. We will explore the possibility that a superstring excitations may have made itself known via a coupling to the field of inflation. This may have left an imprint of "dips" in the power spectrum of temperature fluctuations in the cosmic microwave background. The identification of this particle as a superstring is possible because there may be evidence for different oscillator states of the same superstring that appear on different scales on the sky. It will be shown that from this imprint one can deduce the mass, number of oscillations, and coupling constant for the superstring. Although the evidence is marginal, this may constitute the first observation of a superstring in Nature.

  7. Constrained consequence

    CSIR Research Space (South Africa)

    Britz, K

    2011-09-01

    Full Text Available their basic properties and relationship. In Section 3 we present a modal instance of these constructions which also illustrates with an example how to reason abductively with constrained entailment in a causal or action oriented context. In Section 4 we... of models with the former approach, whereas in Section 3.3 we give an example illustrating ways in which C can be de ned with both. Here we employ the following versions of local consequence: De nition 3.4. Given a model M = hW;R;Vi and formulas...

  8. CMB seen through random Swiss Cheese

    Energy Technology Data Exchange (ETDEWEB)

    Lavinto, Mikko; Räsänen, Syksy, E-mail: mikko.lavinto@helsinki.fi, E-mail: syksy.rasanen@iki.fi [Physics Department, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FIN-00014, University of Helsinki (Finland)

    2015-10-01

    We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius r{sub b}=50 h{sup −1} Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude below the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ D{sub A}/ D-bar {sub A}|∼< 10{sup −4}. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.

  9. Modeling CMB lensing cross correlations with CLEFT

    Energy Technology Data Exchange (ETDEWEB)

    Modi, Chirag; White, Martin [Department of Physics, University of California, Berkeley, CA 94720 (United States); Vlah, Zvonimir, E-mail: modichirag@berkeley.edu, E-mail: mwhite@berkeley.edu, E-mail: zvlah@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States)

    2017-08-01

    A new generation of surveys will soon map large fractions of sky to ever greater depths and their science goals can be enhanced by exploiting cross correlations between them. In this paper we study cross correlations between the lensing of the CMB and biased tracers of large-scale structure at high z . We motivate the need for more sophisticated bias models for modeling increasingly biased tracers at these redshifts and propose the use of perturbation theories, specifically Convolution Lagrangian Effective Field Theory (CLEFT). Since such signals reside at large scales and redshifts, they can be well described by perturbative approaches. We compare our model with the current approach of using scale independent bias coupled with fitting functions for non-linear matter power spectra, showing that the latter will not be sufficient for upcoming surveys. We illustrate our ideas by estimating σ{sub 8} from the auto- and cross-spectra of mock surveys, finding that CLEFT returns accurate and unbiased results at high z . We discuss uncertainties due to the redshift distribution of the tracers, and several avenues for future development.

  10. Shape anisotropy: tensor distance to anisotropy measure

    Science.gov (United States)

    Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.

    2011-03-01

    Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.

  11. Constraints on early dark energy from CMB lensing and weak lensing tomography

    International Nuclear Information System (INIS)

    Hollenstein, Lukas; Crittenden, Robert; Sapone, Domenico; Schäfer, Björn Malte

    2009-01-01

    Dark energy can be studied by its influence on the expansion of the Universe as well as on the growth history of the large-scale structure. In this paper, we follow the growth of the cosmic density field in early dark energy cosmologies by combining observations of the primary CMB temperature and polarisation power spectra at high redshift, of the CMB lensing deflection field at intermediate redshift and of weak cosmic shear at low redshifts for constraining the allowed amount of early dark energy. We present these forecasts using the Fisher matrix formalism and consider the combination of Planck data with the weak lensing survey of Euclid. We find that combining these data sets gives powerful constraints on early dark energy and is able to break degeneracies in the parameter set inherent to the various observational channels. The derived statistical 1σ-bound on the early dark energy density parameter is σ(Ω e d ) = 0.0022 which suggests that early dark energy models can be well examined in our approach. In addition, we derive the dark energy figure of merit for the considered dark energy parameterisation and comment on the applicability of the growth index to early dark energy cosmologies

  12. Constraints on reconstructed dark energy model from SN Ia and BAO/CMB observations

    Energy Technology Data Exchange (ETDEWEB)

    Mamon, Abdulla Al [Manipal University, Manipal Centre for Natural Sciences, Manipal (India); Visva-Bharati, Department of Physics, Santiniketan (India); Bamba, Kazuharu [Fukushima University, Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima (Japan); Das, Sudipta [Visva-Bharati, Department of Physics, Santiniketan (India)

    2017-01-15

    The motivation of the present work is to reconstruct a dark energy model through the dimensionless dark energy function X(z), which is the dark energy density in units of its present value. In this paper, we have shown that a scalar field φ having a phenomenologically chosen X(z) can give rise to a transition from a decelerated to an accelerated phase of expansion for the universe. We have examined the possibility of constraining various cosmological parameters (such as the deceleration parameter and the effective equation of state parameter) by comparing our theoretical model with the latest Type Ia Supernova (SN Ia), Baryon Acoustic Oscillations (BAO) and Cosmic Microwave Background (CMB) radiation observations. Using the joint analysis of the SN Ia+BAO/CMB dataset, we have also reconstructed the scalar potential from the parametrized X(z). The relevant potential is found, a polynomial in φ. From our analysis, it has been found that the present model favors the standard ΛCDM model within 1σ confidence level. (orig.)

  13. Probing features in inflaton potential and reionization history with future CMB space observations

    Science.gov (United States)

    Hazra, Dhiraj Kumar; Paoletti, Daniela; Ballardini, Mario; Finelli, Fabio; Shafieloo, Arman; Smoot, George F.; Starobinsky, Alexei A.

    2018-02-01

    We consider the prospects of probing features in the primordial power spectrum with future Cosmic Microwave Background (CMB) polarization measurements. In the scope of the inflationary scenario, such features in the spectrum can be produced by local non-smooth pieces in an inflaton potential (smooth and quasi-flat in general) which in turn may originate from fast phase transitions during inflation in other quantum fields interacting with the inflaton. They can fit some outliers in the CMB temperature power spectrum which are unaddressed within the standard inflationary ΛCDM model. We consider Wiggly Whipped Inflation (WWI) as a theoretical framework leading to improvements in the fit to the Planck 2015 temperature and polarization data in comparison with the standard inflationary models, although not at a statistically significant level. We show that some type of features in the potential within the WWI models, leading to oscillations in the primordial power spectrum that extend to intermediate and small scales can be constrained with high confidence (at 3σ or higher confidence level) by an instrument as the Cosmic ORigins Explorer (CORE). In order to investigate the possible confusion between inflationary features and footprints from the reionization era, we consider an extended reionization history with monotonic increase of free electrons with decrease in redshift. We discuss the present constraints on this model of extended reionization and future predictions with CORE. We also project, to what extent, this extended reionization can create confusion in identifying inflationary features in the data.

  14. Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Errard, Josquin [Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris (France); Feeney, Stephen M.; Jaffe, Andrew H. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Peiris, Hiranya V., E-mail: josquin.errard@lpnhe.in2p3.fr, E-mail: s.feeney@imperial.ac.uk, E-mail: h.peiris@ucl.ac.uk, E-mail: a.jaffe@imperial.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-03-01

    Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)∼1.3×10{sup −4}, σ(n{sub t})∼0

  15. CMB B-mode auto-bispectrum produced by primordial gravitational waves

    Science.gov (United States)

    Tahara, Hiroaki W. H.; Yokoyama, Jun'ichi

    2018-01-01

    Gravitational waves from inflation induce polarization patterns in the cosmic microwave background (CMB). It is known that there are only two types of non-Gaussianities of the gravitational waves in the most general covariant scalar field theory having second-order field equations, namely, generalized G-inflation. One originates from the inherent non-Gaussianity in general relativity, and the other from a derivative coupling between the Einstein tensor and the scalar field. We calculate polarization bispectra induced by these non-Gaussianities by transforming them into separable forms by virtue of the Laplace transformation. It is shown that future experiments can constrain the new one but cannot detect the general relativistic one.

  16. Cosmology from CMB Polarization with POLARBEAR and the Simons Array

    Science.gov (United States)

    Barron, Darcy; POLARBEAR Collaboration

    2018-01-01

    POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012, and the POLARBEAR team has published a series of results from its first season of observations, including the first measurement of a non-zero B-mode polarization angular power spectrum, measured at sub-degree scales where the dominant signal is gravitational lensing of the CMB. Recently, we released an improved measurement of the B-mode polarization power spectrum, improving our band-power uncertainties by a factor of two, by adding new data from our second observing season and re-analyzing the combined data set.To further improve on these measurements, POLARBEAR is expanding to include an additional two telescopes with multi-chroic receivers observing at 95, 150, 220, and 270 GHz, known as the Simons Array. With high sensitivity and large sky coverage, the Simons Array will create a detailed survey of B-mode polarization, and its spectral information will be used to extract the CMB signal from astrophysical foregrounds. We will present the latest POLARBEAR results, as well as the status of development of the Simons Array and its expected capabilities.

  17. Decoupling in an expanding universe: backreaction barely constrains short distance effects in the cosmic microwave background

    CERN Document Server

    Greene, B R; Shiu, G; Van der Schaar, J P; Greene, Brian R.; Schalm, Koenraad; Shiu, Gary; Schaar, Jan Pieter van der

    2005-01-01

    We clarify the status of transplanckian effects on the cosmic microwave background (CMB) anisotropy. We do so using the boundary effective action formalism of hep-th/0401164 which accounts quantitatively for the cosmological vacuum ambiguity. In this formalism we can clearly 1) delineate the validity of cosmological effective actions in an expanding universe. The corollary of the initial state ambiguity is the existence of an earliest time. The inability of an effective action to describe physics before this time demands that one sets initial conditions on the earliest time hypersurface. A calculation then shows that CMB anisotropy measurements are generically sensitive to high energy corrections to the initial conditions. 2) We compute the one-loop contribution to the stress-tensor due to high-energy physics corrections to an arbitrary cosmological initial state. We find that phenomenological bounds on the backreaction do not lead to strong constraints on the coefficient of the leading boundary irrelevant op...

  18. Deformation, crystal preferred orientations, and seismic anisotropy in the Earth's D″ layer

    Science.gov (United States)

    Tommasi, Andréa; Goryaeva, Alexandra; Carrez, Philippe; Cordier, Patrick; Mainprice, David

    2018-06-01

    We use a forward multiscale model that couples atomistic modeling of intracrystalline plasticity mechanisms (dislocation glide ± twinning) in MgSiO3 post-perovskite (PPv) and periclase (MgO) at lower mantle pressures and temperatures to polycrystal plasticity simulations to predict crystal preferred orientations (CPO) development and seismic anisotropy in D″. We model the CPO evolution in aggregates of 70% PPv and 30% MgO submitted to simple shear, axial shortening, and along corner-flow streamlines, which simulate changes in flow orientation similar to those expected at the transition between a downwelling and flow parallel to the core-mantle boundary (CMB) within D″ or between CMB-parallel flow and upwelling at the borders of the large low shear wave velocity provinces (LLSVP) in the lowermost mantle. Axial shortening results in alignment of PPv [010] axes with the shortening direction. Simple shear produces PPv CPO with a monoclinic symmetry that rapidly rotates towards parallelism between the dominant [100](010) slip system and the macroscopic shear. These predictions differ from MgSiO3 post-perovskite textures formed in diamond-anvil cell experiments, but agree with those obtained in simple shear and compression experiments using CaIrO3 post-perovskite. Development of CPO in PPv and MgO results in seismic anisotropy in D″. For shear parallel to the CMB, at low strain, the inclination of ScS, Sdiff, and SKKS fast polarizations and delay times vary depending on the propagation direction. At moderate and high shear strains, all S-waves are polarized nearly horizontally. Downwelling flow produces Sdiff, ScS, and SKKS fast polarization directions and birefringence that vary gradually as a function of the back-azimuth from nearly parallel to inclined by up to 70° to CMB and from null to ∼5%. Change in the flow to shear parallel to the CMB results in dispersion of the CPO, weakening of the anisotropy, and strong azimuthal variation of the S-wave splitting

  19. Reconstruction of a direction-dependent primordial power spectrum from Planck CMB data

    Science.gov (United States)

    Durakovic, Amel; Hunt, Paul; Mukherjee, Suvodip; Sarkar, Subir; Souradeep, Tarun

    2018-02-01

    We consider the possibility that the primordial curvature perturbation is direction-dependent. To first order this is parameterised by a quadrupolar modulation of the power spectrum and results in statistical anisotropy of the CMB, which can be quantified using `bipolar spherical harmonics'. We compute these for the Planck DR2-2015 SMICA map and estimate the noise covariance from Planck Full Focal Plane 9 simulations. A constant quadrupolar modulation is detected with 2.2 σ significance, dropping to 2σ when the primordial power is assumed to scale with wave number k as a power law. Going beyond previous work we now allow the spectrum to have arbitrary scale-dependence. Our non-parametric reconstruction then suggests several spectral features, the most prominent at k ~ 0.006 Mpc‑1. When a constant quadrupolar modulation is fitted to data in the range 0.005 <= k/Mpc‑1 <= 0.008, its preferred directions are found to be related to the cosmic hemispherical asymmetry and the CMB dipole. To determine the significance we apply two test statistics to our reconstructions of the quadrupolar modulation from data, against reconstructions of realisations of noise only. With a test statistic sensitive only to the amplitude of the modulation, the reconstructions from the multipole range 30 <= l <= 1200 are unusual with 2.1σ significance. With the second test statistic, sensitive also to the direction, the significance rises to 6.9σ. Our approach is easily generalised to include other data sets such as polarisation, large-scale structure and forthcoming 21-cm line observations which will enable these anomalies to be investigated further.

  20. The Kolmogorov-Smirnov test for the CMB

    International Nuclear Information System (INIS)

    Frommert, Mona; Durrer, Ruth; Michaud, Jérôme

    2012-01-01

    We investigate the statistics of the cosmic microwave background using the Kolmogorov-Smirnov test. We show that, when we correctly de-correlate the data, the partition function of the Kolmogorov stochasticity parameter is compatible with the Kolmogorov distribution and, contrary to previous claims, the CMB data are compatible with Gaussian fluctuations with the correlation function given by standard ΛCDM. We then use the Kolmogorov-Smirnov test to derive upper bounds on residual point source power in the CMB, and indicate the promise of this statistics for further datasets, especially Planck, to search for deviations from Gaussianity and for detecting point sources and Galactic foregrounds

  1. How sensitive is the CMB to a single lens?

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, Ben; Fialkov, Anastasia; Itzhaki, Nissan, E-mail: ben.rathaus@gmail.com, E-mail: nitzhaki@post.tau.ac.il, E-mail: anastasia.fialkov@gmail.com [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2011-06-01

    We study the imprints of a single lens, that breaks statistical isotropy, on the CMB and calculate the signal to noise ratio (S/N) for its detection. We emphasize the role of non-Gaussianities induced by ΛCDM weak lensing in this calculation and show that typically the S/N is much smaller than expected. In particular we find that the hypothesis that a void (texture) is responsible for the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB.

  2. How sensitive is the CMB to a single lens?

    International Nuclear Information System (INIS)

    Rathaus, Ben; Fialkov, Anastasia; Itzhaki, Nissan

    2011-01-01

    We study the imprints of a single lens, that breaks statistical isotropy, on the CMB and calculate the signal to noise ratio (S/N) for its detection. We emphasize the role of non-Gaussianities induced by ΛCDM weak lensing in this calculation and show that typically the S/N is much smaller than expected. In particular we find that the hypothesis that a void (texture) is responsible for the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB

  3. Constraining Dark Energy with X-ray Clusters, SNe Ia and the CMB

    International Nuclear Information System (INIS)

    Rapetti, D

    2005-01-01

    In [1] we present new constraints on the evolution of dark energy from an analysis of Cosmic Microwave Background, supernova and X-ray galaxy cluster data. From a combined analysis of all three data sets and assuming that the Universe is at, we examine a series of dark energy models with up to three free parameters: the current dark energy equation of state w 0 , the early time equation of state w et and the scale factor at transition, a t . Allowing the transition scale factor to vary over the range 0.5 t 0 = -1.27 -0.39 +0.33 and w et = -0.66 -0.62 +0.44 . They find no significant evidence for evolution in the dark energy equation of state parameter with redshift. The complementary nature of the data sets leads to a tight constraint on the mean matter density, (Omega) m , alleviates a number of other parameter degeneracies, including that between the scalar spectral index n s , the physical baryon density (Omega) b h 2 and the optical depth τ and also allows us to examine models dropping the flatness prior. As required for the energy-momentum conservation our analysis includes spatial perturbations in the dark energy component. We show that not including them leads to spuriously tighter constraints on w 0 and especially on wet

  4. Finding the chiral gravitational wave background of an axion-S U (2 ) inflationary model using CMB observations and laser interferometers

    Science.gov (United States)

    Thorne, Ben; Fujita, Tomohiro; Hazumi, Masashi; Katayama, Nobuhiko; Komatsu, Eiichiro; Shiraishi, Maresuke

    2018-02-01

    A detection of B-mode polarization of the cosmic microwave background (CMB) anisotropies would confirm the presence of a primordial gravitational wave background (GWB). In the inflation paradigm, this would be an unprecedented probe of the energy scale of inflation as it is directly proportional to the power spectrum of the GWB. However, similar tensor perturbations can be produced by the matter fields present during inflation, breaking the simple relationship between energy scale and the tensor-to-scalar ratio r . It is therefore important to find ways of distinguishing between the generation mechanisms of the GWB. Without doing a full model selection, we analyze the detectability of a new axion-S U (2 ) gauge field model by calculating the signal-to-noise ratio of future CMB and interferometer observations sensitive to the chirality of the tensor spectrum. We forecast the detectability of the resulting CMB temperature and B-mode (TB) or E-mode and B-mode (EB) cross-correlation by the LiteBIRD satellite, considering the effects of residual foregrounds, gravitational lensing, and assess the ability of such an experiment to jointly detect primordial TB and EB spectra and self-calibrate its polarimeter. We find that LiteBIRD will be able to detect the chiral signal for r*>0.03 , with r* denoting the tensor-to-scalar ratio at the peak scale, and that the maximum signal-to-noise ratio for r*advanced stage of a LISA-like mission, which is designed to be sensitive to the intensity and polarization of the GWB. We find that such experiments would complement CMB observations as they would be able to detect the chirality of the GWB with high significance on scales inaccessible to the CMB. We conclude that CMB two-point statistics are limited in their ability to distinguish this model from a conventional vacuum fluctuation model of GWB generation, due to the fundamental limits on their sensitivity to parity violation. In order to test the predictions of such a model as

  5. Structure in the lowermost mantle from seismic anisotropy

    Science.gov (United States)

    Walpole, J.; Wookey, J. M.; Nowacki, A.; Walker, A.; Kendall, J. M.; Masters, G.; Forte, A. M.

    2017-12-01

    Anisotropy is well established in D'' and places important constraints on the nature and dynamics of this elusive region. We present the results of a recent study probing anisotropy in D'', over a large area, using shear wave splitting on core-reflected ScS phases. Our dataset contains laterally continuous coverage beneath a large swath of east Asia - extending about 3000 km along the CMB - from south-east Asia to the north-east Pacific. The centre of this area represents a large down-welling core for subduction that has occurred over several super-continent cycles. In the centre of this region we observe a clear VSV}>V{SH fabric, in direct conflict with the prevailing view that fast, `cold', regions are associated with VSH}>V{SV fabric. Furthermore, systematic rotation of the fast axis traces out an apparent dome-like feature extending over thousands of km, albeit complicated by some short-scale variability. The dataset also samples regions where slab material may be actively impinging on the CMB; and a region corresponding to the edge of the Pacific LLSVP. We interpret our results in light of a combined computational geodynamic-petrofabric-seismic study designed to test the possibility that anisotropy is caused by the lattice preferred orientation of post-perovskite. We take into account the important finite-frequency effects of wave propagation in our synthetics by using the SPECFEM3D_GLOBE code; this can lead to drastically different results when compared to the less accurate ray theory.

  6. Quantum inflaton, primordial perturbations, and CMB fluctuations

    International Nuclear Information System (INIS)

    Cao, F.J.; Vega, H.J. de; Sanchez, N.G.

    2004-01-01

    We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow-roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current Wilkinson Microwave Anisotropy Probe observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of (m 2 /NH 2 ), where m is the inflaton mass and H the Hubble constant at the moment of horizon crossing. An upper estimate turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it

  7. A New Limit on CMB Circular Polarization from SPIDER

    Science.gov (United States)

    Nagy, J. M.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bergman, A. S.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Doré, O.; Duivenvoorden, A. J.; Eriksen, H. K.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Freese, K.; Galloway, M.; Gambrel, A. E.; Gandilo, N. N.; Ganga, K.; Gudmundsson, J. E.; Halpern, M.; Hartley, J.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Huang, Z.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; Kermish, Z. D.; Li, S.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Morford, T. A.; Netterfield, C. B.; Nolta, M.; Padilla, I. L.; Racine, B.; Rahlin, A. S.; Reintsema, C.; Ruhl, J. E.; Runyan, M. C.; Ruud, T. M.; Shariff, J. A.; Soler, J. D.; Song, X.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; Van Der List, J. F.; Weber, A. C.; Wehus, I. K.; Wiebe, D. V.; Young, E. Y.

    2017-08-01

    We present a new upper limit on cosmic microwave background (CMB) circular polarization from the 2015 flight of Spider, a balloon-borne telescope designed to search for B-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the nonzero circular-to-linear polarization coupling of the half-wave plate polarization modulators, data from Spider's 2015 Antarctic flight provide a constraint on Stokes V at 95 and 150 GHz in the range 33< {\\ell }< 307. No other limits exist over this full range of angular scales, and Spider improves on the previous limit by several orders of magnitude, providing 95% C.L. constraints on {\\ell }({\\ell }+1){C}{\\ell }{VV}/(2π ) ranging from 141 to 255 μK2 at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain even stronger constraints on circular polarization.

  8. FSD: Frequency Space Differential measurement of CMB spectral distortions

    Science.gov (United States)

    Mukherjee, Suvodip; Silk, Joseph; Wandelt, Benjamin D.

    2018-04-01

    Although the Cosmic Microwave Background agrees with a perfect blackbody spectrum within the current experimental limits, it is expected to exhibit certain spectral distortions with known spectral properties. We propose a new method, Frequency Space Differential (FSD) to measure the spectral distortions in the CMB spectrum by using the inter-frequency differences of the brightness temperature. The difference between the observed CMB temperature at different frequencies must agree with the frequency derivative of the blackbody spectrum, in the absence of any distortion. However, in the presence of spectral distortions, the measured inter-frequency differences would also exhibit deviations from blackbody which can be modeled for known sources of spectral distortions like y & μ. Our technique uses FSD information for the CMB blackbody, y, μ or any other sources of spectral distortions to model the observed signal. Successful application of this method in future CMB missions can provide an alternative method to extract spectral distortion signals and can potentially make it feasible to measure spectral distortions without an internal blackbody calibrator.

  9. Adiabatic CMB perturbations in pre-big bang string cosmology

    DEFF Research Database (Denmark)

    Enqvist, Kari; Sloth, Martin Snoager

    2001-01-01

    We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations...

  10. Planck 2013 results. XV. CMB power spectra and likelihood

    DEFF Research Database (Denmark)

    Tauber, Jan; Bartlett, J.G.; Bucher, M.

    2014-01-01

    This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best...

  11. A New Limit on CMB Circular Polarization from SPIDER

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, J. M.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bergman, A. S.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Doré, O.; Duivenvoorden, A. J.; Eriksen, H. K.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Freese, K.; Galloway, M.; Gambrel, A. E.; Gandilo, N. N.; Ganga, K.; Gudmundsson, J. E.; Halpern, M.; Hartley, J.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Huang, Z.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; Kermish, Z. D.; Li, S.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Morford, T. A.; Netterfield, C. B.; Nolta, M.; Padilla, I. L.; Racine, B.; Rahlin, A. S.; Reintsema, C.; Ruhl, J. E.; Runyan, M. C.; Ruud, T. M.; Shariff, J. A.; Soler, J. D.; Song, X.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; List, J. F. Van Der; Weber, A. C.; Wehus, I. K.; Wiebe, D. V.; Young, E. Y.

    2017-08-01

    We present a new upper limit on CMB circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search for $B$-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the non-zero circular-to-linear polarization coupling of the HWP polarization modulators, data from SPIDER's 2015 Antarctic flight provides a constraint on Stokes $V$ at 95 and 150 GHz from $33<\\ell<307$. No other limits exist over this full range of angular scales, and SPIDER improves upon the previous limit by several orders of magnitude, providing 95% C.L. constraints on $\\ell (\\ell+1)C_{\\ell}^{VV}/(2\\pi)$ ranging from 141 $\\mu K ^2$ to 203 $\\mu K ^2$ at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain stronger constraints on circular polarization.

  12. The gravitational wave contribution to cosmic microwave background anisotropies and the amplitude of mass fluctuations from COBE results

    Science.gov (United States)

    Lucchin, Francesco; Matarrese, Sabino; Mollerach, Silvia

    1992-01-01

    A stochastic background of primordial gravitational waves may substantially contribute, via the Sachs-Wolfe effect, to the large-scale cosmic microwave background (CMB) anisotropies recently detected by COBE. This implies a bias in any resulting determination of the primordial amplitude of density fluctuations. We consider the constraints imposed on n is less than 1 ('tilted') power-law fluctuation spectra, taking into account the contribution from both scalar and tensor waves, as predicted by power-law inflation. The gravitational wave contribution to CMB anisotropies generally reduces the required rms level of mass fluctuation, thereby increasing the linear bias parameter, even in models where the spectral index is close to the Harrison-Zel'dovich value n = 1. This 'gravitational wave bias' helps to reconcile the predictions of CDM models with observations on pairwise galaxy velocity dispersion on small scales.

  13. General quadrupolar statistical anisotropy: Planck limits

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, S. [Gran Sasso Science Institute (INFN), Viale Francesco Crispi 7, I-67100 L' Aquila (Italy); Rubtsov, G. [Institute for Nuclear Research of the Russian Academy of Sciences, Prospect of the 60th Anniversary of October 7a, 117312 Moscow (Russian Federation); Thorsrud, M. [Faculty of Engineering, Østfold University College, P.O. Box 700, 1757 Halden (Norway); Urban, F.R., E-mail: sabir.ramazanov@gssi.infn.it, E-mail: grisha@ms2.inr.ac.ru, E-mail: mikjel.thorsrud@hiof.no, E-mail: federico.urban@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia)

    2017-03-01

    Several early Universe scenarios predict a direction-dependent spectrum of primordial curvature perturbations. This translates into the violation of the statistical isotropy of cosmic microwave background radiation. Previous searches for statistical anisotropy mainly focussed on a quadrupolar direction-dependence characterised by a single multipole vector and an overall amplitude g {sub *}. Generically, however, the quadrupole has a more complicated geometry described by two multipole vectors and g {sub *}. This is the subject of the present work. In particular, we limit the amplitude g {sub *} for different shapes of the quadrupole by making use of Planck 2015 maps. We also constrain certain inflationary scenarios which predict this kind of more general quadrupolar statistical anisotropy.

  14. Foreground removal from CMB temperature maps using an MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik; Jørgensen, H.E.

    2008-01-01

    the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over...... CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting...

  15. Large-angle cosmic microwave background anisotropies in an open universe

    Science.gov (United States)

    Kamionkowski, Marc; Spergel, David N.

    1994-01-01

    If the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.

  16. Galileon gravity in light of ISW, CMB, BAO and H {sub 0} data

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Janina [The Oskar Klein Centre for Cosmoparticle Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Zumalacárregui, Miguel [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Montanari, Francesco [Physics Department, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, 00014, University of Helsinki (Finland); Barreira, Alexandre, E-mail: janina.renk@fysik.su.se, E-mail: miguelzuma@berkeley.edu, E-mail: francesco.montanari@helsinki.fi, E-mail: barreira@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-10-01

    Cosmological models with Galileon gravity are an alternative to the standard ΛCDM paradigm with testable predictions at the level of its self-accelerating solutions for the expansion history, as well as large-scale structure formation. Here, we place constraints on the full parameter space of these models using data from the cosmic microwave background (CMB) (including lensing), baryonic acoustic oscillations (BAO) and the Integrated Sachs-Wolfe (ISW) effect. We pay special attention to the ISW effect for which we use the cross-spectra, C {sub ℓ}{sup Tg}, of CMB temperature maps and foreground galaxies from the WISE survey. The sign of C {sub ℓ}{sup Tg} is set by the time evolution of the lensing potential in the redshift range of the galaxy sample: it is positive if the potential decays (like in ΛCDM), negative if it deepens. We constrain three subsets of Galileon gravity separately known as the Cubic, Quartic and Quintic Galileons. The cubic Galileon model predicts a negative C {sub ℓ}{sup Tg} and exhibits a 7.8σ tension with the data, which effectively rules it out. For the quartic and quintic models the ISW data also rule out a significant portion of the parameter space but permit regions where the goodness-of-fit is comparable to ΛCDM. The data prefers a non zero sum of the neutrino masses (∑ m {sub ν} ≈ 0.5eV) with ∼ 5σ significance in these models. The best-fitting models have values of H {sub 0} consistent with local determinations, thereby avoiding the tension that exists in ΛCDM. We also identify and discuss a ∼ 2σ tension that Galileon gravity exhibits with recent BAO measurements. Our analysis shows overall that Galileon cosmologies cannot be ruled out by current data but future lensing, BAO and ISW data hold strong potential to do so.

  17. CMB spectral distortion constraints on thermal inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kihyun; Stewart, Ewan D. [Department of Physics, KAIST, Daejeon 34141 (Korea, Republic of); Hong, Sungwook E. [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Zoe, Heeseung, E-mail: cho_physics@kaist.ac.kr, E-mail: heezoe@dgist.ac.kr, E-mail: jcap@profstewart.org, E-mail: heezoe@dgist.ac.kr [School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988 (Korea, Republic of)

    2017-08-01

    Thermal inflation is a second epoch of exponential expansion at typical energy scales V {sup 1/4} ∼ 10{sup 6} {sup ∼} {sup 8} GeV. If the usual primordial inflation is followed by thermal inflation, the primordial power spectrum is only modestly redshifted on large scales, but strongly suppressed on scales smaller than the horizon size at the beginning of thermal inflation, k > k {sub b} = a {sub b} H {sub b}. We calculate the spectral distortion of the cosmic microwave background generated by the dissipation of acoustic waves in this context. For k {sub b} || 10{sup 3} Mpc{sup −1}, thermal inflation results in a large suppression of the μ-distortion amplitude, predicting that it falls well below the standard value of μ ≅ 2× 10{sup −8}. Thus, future spectral distortion experiments, similar to PIXIE, can place new limits on the thermal inflation scenario, constraining k {sub b} ∼> 10{sup 3} Mpc{sup −1} if μ ≅ 2× 10{sup −8} were found.

  18. Detection of CMB lensing in Planck-HFI data

    International Nuclear Information System (INIS)

    Lavabre, Alexis

    2011-01-01

    The Planck satellite is the third generation experiment dedicated to the observation of the cosmic microwave background (CMB). The resolution and sensibility of its instruments allow for the first time the detection of the weak lensing effect on CMB. This thesis present a original detection method of this effect in the data of the HFI instrument of Planck.The first part give a general description of the standard model of cosmology et the physics of the CMB. The part then presents the details of the weak lensing effect, concentrating on its impact on the CMB observables. This part ends with a description of the Planck satellite and its instruments.The second part, describes the set of simulations and analysis tools that I have developed allowing me to make the first measurement of the weak lensing effect on CMB. It presents the original method that I used which is based on a patch analysis of the full sky data, that is able to only take into account the less contaminated regions. This part also present the characterisation of the lensing potential estimator for masked maps in the presence of inhomogeneous noise and introduce a method, based on Monte-Carlo simulations, that is used to correct for the bias produced by the analysis method.The last part, concentrates on the work on HFI data. The first chapter presents the application of the above method to the maps of the combined observations at 143 GHz and 217 GHz and the maps from component separation using GMCA algorithm. The results show a deflection power spectrum compatible with the one expect in a lambda CMB universe, calculated with the cosmological parameters estimated by WMAP including seven years of observations. Using the points, from the combined estimation from the 143 GHz and 217 GHz maps, for multipole smaller than 500, gives a 1.26 Chi2 by degree of freedom. Finally, the last chapter presents the compression algorithm used onboard to compression HFI data. It gives the details of the tuning and the

  19. A Bayesian method to quantify azimuthal anisotropy model uncertainties: application to global azimuthal anisotropy in the upper mantle and transition zone

    Science.gov (United States)

    Yuan, K.; Beghein, C.

    2018-04-01

    Seismic anisotropy is a powerful tool to constrain mantle deformation, but its existence in the deep upper mantle and topmost lower mantle is still uncertain. Recent results from higher mode Rayleigh waves have, however, revealed the presence of 1 per cent azimuthal anisotropy between 300 and 800 km depth, and changes in azimuthal anisotropy across the mantle transition zone boundaries. This has important consequences for our understanding of mantle convection patterns and deformation of deep mantle material. Here, we propose a Bayesian method to model depth variations in azimuthal anisotropy and to obtain quantitative uncertainties on the fast seismic direction and anisotropy amplitude from phase velocity dispersion maps. We applied this new method to existing global fundamental and higher mode Rayleigh wave phase velocity maps to assess the likelihood of azimuthal anisotropy in the deep upper mantle and to determine whether previously detected changes in anisotropy at the transition zone boundaries are robustly constrained by those data. Our results confirm that deep upper-mantle azimuthal anisotropy is favoured and well constrained by the higher mode data employed. The fast seismic directions are in agreement with our previously published model. The data favour a model characterized, on average, by changes in azimuthal anisotropy at the top and bottom of the transition zone. However, this change in fast axes is not a global feature as there are regions of the model where the azimuthal anisotropy direction is unlikely to change across depths in the deep upper mantle. We were, however, unable to detect any clear pattern or connection with surface tectonics. Future studies will be needed to further improve the lateral resolution of this type of model at transition zone depths.

  20. Effects on the CMB from compactification before inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kontou, Eleni-Alexandra [Physics Program, Bard College, 30 Campus Rd, Annandale-on-Hudson, NY 12504 (United States); Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Hertzberg, Mark P.; Masoumi, Ali, E-mail: elenikontou@cosmos.phy.tufts.edu, E-mail: josejuan.blanco@ehu.es, E-mail: mark.hertzberg@tufts.edu, E-mail: ali@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-04-01

    Many theories beyond the Standard Model include extra dimensions, though these have yet to be directly observed. In this work we consider the possibility of a compactification mechanism which both allows extra dimensions and is compatible with current observations. This compactification is predicted to leave a signature on the CMB by altering the amplitude of the low l multipoles, dependent on the amount of inflation. Recently discovered CMB anomalies at low multipoles may be evidence for this. In our model we assume the spacetime is the product of a four-dimensional spacetime and flat extra dimensions. Before the compactification, both the four-dimensional spacetime and the extra dimensions can either be expanding or contracting independently. Taking into account physical constraints, we explore the observational consequences and the plausibility of these different models.

  1. Does the small CMB quadrupole moment suggest new physics?

    CERN Document Server

    Cline, J M; Lesgourgues, Julien; Cline, James M.; Crotty, Patrick; Lesgourgues, Julien

    2003-01-01

    Motivated by WMAP's confirmation of an anomalously low value of the quadrupole moment of the CMB temperature fluctuations, we investigate the effects on the CMB of cutting off the primordial power spectrum P(k) at low wave numbers. This could arise, for example, from a break in the inflaton potential, a prior period of matter or radiation domination, or an oscillating scalar field which couples to the inflaton. We reanalyze the full WMAP parameter space supplemented by a low-k cutoff for P(k). The temperature correlations by themselves are better fit by a cutoff spectrum, but including the TE temperature-polarization spectrum reduces this preference to a 1.4 sigma effect. Inclusion of large scale structure data does not change the conclusion. If taken seriously, the low-k cutoff is correlated with optical depth so that reionization occurs even earlier than indicated by the WMAP analysis.

  2. SPIDER: CMB Polarimetry from the Edge of Space

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, R.; et al.

    2017-11-28

    SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. SPIDER's first longduration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled Transition Edge Sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the SPIDER instrument, with a particular focus on the measured performance of the detectors and instrument in a space-like loading and radiation environment. SPIDER's second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.

  3. CMB constraints on β-exponential inflationary models

    Science.gov (United States)

    Santos, M. A.; Benetti, M.; Alcaniz, J. S.; Brito, F. A.; Silva, R.

    2018-03-01

    We analyze a class of generalized inflationary models proposed in ref. [1], known as β-exponential inflation. We show that this kind of potential can arise in the context of brane cosmology, where the field describing the size of the extra-dimension is interpreted as the inflaton. We discuss the observational viability of this class of model in light of the latest Cosmic Microwave Background (CMB) data from the Planck Collaboration through a Bayesian analysis, and impose tight constraints on the model parameters. We find that the CMB data alone prefer weakly the minimal standard model (ΛCDM) over the β-exponential inflation. However, when current local measurements of the Hubble parameter, H0, are considered, the β-inflation model is moderately preferred over the ΛCDM cosmology, making the study of this class of inflationary models interesting in the context of the current H0 tension.

  4. Large-Angle CMB Suppression and Polarisation Predictions

    CERN Document Server

    Copi, C.J.; Schwarz, D.J.; Starkman, G.D.

    2013-01-01

    The anomalous lack of large angle temperature correlations has been a surprising feature of the CMB since first observed by COBE-DMR and subsequently confirmed and strengthened by WMAP. This anomaly may point to the need for modifications of the standard model of cosmology or may show that our Universe is a rare statistical fluctuation within that model. Further observations of the temperature auto-correlation function will not elucidate the issue; sufficiently high precision statistical observations already exist. Instead, alternative probes are required. In this work we explore the expectations for forthcoming polarisation observations. We define a prescription to test the hypothesis that the large-angle CMB temperature perturbations in our Universe represent a rare statistical fluctuation within the standard cosmological model. These tests are based on the temperature-Q Stokes parameter correlation. Unfortunately these tests cannot be expected to be definitive. However, we do show that if this TQ-correlati...

  5. Deformation in D″ Beneath North America From Anisotropy

    Science.gov (United States)

    Nowacki, A. J.; Wookey, J.; Kendall, J. M.

    2009-12-01

    The lowermost few hundred kilometres of the Earth's mantle—known as D″—form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a strong heterogeneity in seismic wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (VS) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. A phase change of MgSiO3-perovskite (pv) to a post-perovskite (ppv) structure at near-core-mantle boundary (CMB) conditions is a compelling mechanism to explain the seismic features of D″. An outstanding question is how this and other mineral phases may deform to produce anisotropy, with different mechanisms possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can potentially determine the other with observations of the resulting seismic anisotropy. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW>5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained—a single azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The

  6. Plasma sheet pressure anisotropies

    International Nuclear Information System (INIS)

    Stiles, G.S.; Hones, E.W. Jr; Bame, S.J.; Asbridge, J.R.

    1978-01-01

    The ecliptic plane components of the pressure tensors for low-energy ( or =1.2 approximately 25% of the time. Due to the low energy density of the electrons, however, this anisotropy is not itself sufficient to balance the tension of the magnetic field

  7. The signal of mantle anisotropy in the coupling of normal modes

    Science.gov (United States)

    Beghein, Caroline; Resovsky, Joseph; van der Hilst, Robert D.

    2008-12-01

    We investigate whether the coupling of normal mode (NM) multiplets can help us constrain mantle anisotropy. We first derive explicit expressions of the generalized structure coefficients of coupled modes in terms of elastic coefficients, including the Love parameters describing radial anisotropy and the parameters describing azimuthal anisotropy (Jc, Js, Kc, Ks, Mc, Ms, Bc, Bs, Gc, Gs, Ec, Es, Hc, Hs, Dc and Ds). We detail the selection rules that describe which modes can couple together and which elastic parameters govern their coupling. We then focus on modes of type 0Sl - 0Tl+1 and determine whether they can be used to constrain mantle anisotropy. We show that they are sensitive to six elastic parameters describing azimuthal anisotropy, in addition to the two shear-wave elastic parameters L and N (i.e. VSV and VSH). We find that neither isotropic nor radially anisotropic mantle models can fully explain the observed degree two signal. We show that the NM signal that remains after correction for the effect of the crust and mantle radial anisotropy can be explained by the presence of azimuthal anisotropy in the upper mantle. Although the data favour locating azimuthal anisotropy below 400km, its depth extent and distribution is still not well constrained by the data. Consideration of NM coupling can thus help constrain azimuthal anisotropy in the mantle, but joint analyses with surface-wave phase velocities is needed to reduce the parameter trade-offs and improve our constraints on the individual elastic parameters and the depth location of the azimuthal anisotropy.

  8. Constraining monodromy inflation

    International Nuclear Information System (INIS)

    Peiris, Hiranya V.; Easther, Richard; Flauger, Raphael

    2013-01-01

    We use cosmic microwave background (CMB) data from the 9-year WMAP release to derive constraints on monodromy inflation, which is characterized by a linear inflaton potential with a periodic modulation. We identify two possible periodic modulations that significantly improve the fit, lowering χ 2 by approximately 10 and 20. However, standard Bayesian model selection criteria assign roughly equal odds to the modulated potential and the unmodulated case. A modulated inflationary potential can generate substantial primordial non-Gaussianity with a specific and characteristic form. For the best-fit parameters to the WMAP angular power spectrum, the corresponding non-Gaussianity might be detectable in upcoming CMB data, allowing nontrivial consistency checks on the predictions of a modulated inflationary potential

  9. Constraining the break of spatial diffeomorphism invariance with Planck data

    Science.gov (United States)

    Graef, L. L.; Benetti, M.; Alcaniz, J. S.

    2017-07-01

    The current most accepted paradigm for the early universe cosmology, the inflationary scenario, shows a good agreement with the recent Cosmic Microwave Background (CMB) and polarization data. However, when the inflation consistency relation is relaxed, these observational data exclude a larger range of red tensor tilt values, prevailing the blue ones which are not predicted by the minimal inflationary models. Recently, it has been shown that the assumption of spatial diffeomorphism invariance breaking (SDB) in the context of an effective field theory of inflation leads to interesting observational consequences. Among them, the possibility of generating a blue tensor spectrum, which can recover the specific consistency relation of the String Gas Cosmology, for a certain choice of parameters. We use the most recent CMB data to constrain the SDB model and test its observational viability through a Bayesian analysis assuming as reference an extended ΛCDM+tensor perturbation model, which considers a power-law tensor spectrum parametrized in terms of the tensor-to-scalar ratio, r, and the tensor spectral index, nt. If the inflation consistency relation is imposed, r=-8 nt, we obtain a strong evidence in favor of the reference model whereas if such relation is relaxed, a weak evidence in favor of the model with diffeomorphism breaking is found. We also use the same CMB data set to make an observational comparison between the SDB model, standard inflation and String Gas Cosmology.

  10. Constraining the break of spatial diffeomorphism invariance with Planck data

    Energy Technology Data Exchange (ETDEWEB)

    Graef, L.L.; Benetti, M.; Alcaniz, J.S., E-mail: leilagraef@on.br, E-mail: micolbenetti@on.br, E-mail: alcaniz@on.br [Departamento de Astronomia, Observatório Nacional, R. Gen. José Cristino, 77—São Cristóvão, 20921-400, Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The current most accepted paradigm for the early universe cosmology, the inflationary scenario, shows a good agreement with the recent Cosmic Microwave Background (CMB) and polarization data. However, when the inflation consistency relation is relaxed, these observational data exclude a larger range of red tensor tilt values, prevailing the blue ones which are not predicted by the minimal inflationary models. Recently, it has been shown that the assumption of spatial diffeomorphism invariance breaking (SDB) in the context of an effective field theory of inflation leads to interesting observational consequences. Among them, the possibility of generating a blue tensor spectrum, which can recover the specific consistency relation of the String Gas Cosmology, for a certain choice of parameters. We use the most recent CMB data to constrain the SDB model and test its observational viability through a Bayesian analysis assuming as reference an extended ΛCDM+tensor perturbation model, which considers a power-law tensor spectrum parametrized in terms of the tensor-to-scalar ratio, r , and the tensor spectral index, n {sub t} . If the inflation consistency relation is imposed, r =−8 n {sub t} , we obtain a strong evidence in favor of the reference model whereas if such relation is relaxed, a weak evidence in favor of the model with diffeomorphism breaking is found. We also use the same CMB data set to make an observational comparison between the SDB model, standard inflation and String Gas Cosmology.

  11. Novel calibration system with sparse wires for CMB polarization receivers

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, O.; /KEK, Tsukuba /Chicago U., KICP; Nguyen, H.; /Fermilab; Bischoff, C.; /Chicago U., KICP /Harvard-Smithsonian Ctr. Astrophys.; Brizius, A.; Buder, I.; Kusaka, A. /Chicago U., KICP

    2011-07-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature ({approx}10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  12. Planck-scale sensitivity of CMB polarization data

    Energy Technology Data Exchange (ETDEWEB)

    Gubitosi, Giulia; Pagano, Luca [Physics Department, University of Rome ' La Sapienza' , and Sezione Roma1 INFN P.le Aldo Moro 2, 00185 Rome (Italy)

    2009-10-15

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by xi, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate xiapprox =-0.097+-0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to xi achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-sigma confidence of 8.5x10{sup -4} (PLANCK), 6.1x10{sup -3} (Spider), and 1.0x10{sup -5} (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1x10{sup -6}.

  13. Planck-scale sensitivity of CMB polarization data

    International Nuclear Information System (INIS)

    Gubitosi, Giulia; Pagano, Luca

    2009-01-01

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ξ, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ξ≅-0.097±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ξ achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ confidence of 8.5x10 -4 (PLANCK), 6.1x10 -3 (Spider), and 1.0x10 -5 (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1x10 -6 .

  14. Novel calibration system with sparse wires for CMB polarization receivers

    International Nuclear Information System (INIS)

    Tajima, O.; Nguyen, H.; Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.

    2011-01-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature (∼10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  15. A Bayesian framework for cosmic string searches in CMB maps

    Energy Technology Data Exchange (ETDEWEB)

    Ciuca, Razvan; Hernández, Oscar F., E-mail: razvan.ciuca@mail.mcgill.ca, E-mail: oscarh@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 (Canada)

    2017-08-01

    There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension G μ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this framework with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of G μ=5 ×10{sup −9} and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that G μ≤2.3×10{sup −9}.

  16. Limits on Arcminute-Scale Cosmic Microwave Background Anisotropy at 28.5 GHz

    Science.gov (United States)

    Holzapfel, W. L.; Carlstrom, J. E.; Grego, L.; Holder, G.; Joy, M.; Reese, E. D.

    2000-01-01

    We have used the Berkeley-Illinois-Maryland Association (BIMA) millimeter array outfitted with sensitive centimeter-wave receivers to search for cosmic microwave background (CMB) anisotropies on arcminute scales. The interferometer was placed in a compact configuration that produces high brightness sensitivity, while providing discrimination against point sources. Operating at a frequency of 28.5 GHz, the FWHM primary beam of the instrument is approximately 6'.6. We have made sensitive images of seven fields, four of which where chosen specifically to have low infrared dust contrast and to be free of bright radio sources. Additional observations with the Owens Valley Radio Observatory (OVRO) millimeter array were used to assist in the location and removal of radio point sources. Applying a Bayesian analysis to the raw visibility data, we place limits on CMB anisotropy flat-band power of Q(sub flat) = 5.6(sub -5.6)(exp 3.0) microK and Q(sub flat) < 14.1 microK at 68% and 95% confidence, respectively. The sensitivity of this experiment to flat-band power peaks at a multipole of I = 5470, which corresponds to an angular scale of approximately 2'. The most likely value of Q(sub flat) is similar to the level of the expected secondary anisotropies.

  17. Limits on Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    Science.gov (United States)

    Holzapfel, W. L.; Carlstrom, J. E.; Grego, L.; Holder, G. P.; Joy, M. K.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) millimeter array outfitted with sensitive cm-wave receivers to search for Cosmic Microwave Background (CMB) anisotropies on arcminute scales. The interferometer was placed in a compact configuration which produces high brightness sensitivity, while providing discrimination against point sources. Operating at a frequency of 28.5 GHz, the FWHM primary beam of the instrument is 6.6 arcminutes. We have made sensitive images of seven fields, five of which where chosen specifically to have low IR dust contrast and be free of bright radio sources. Additional observations with the Owens Valley Radio Observatory (OVRO) millimeter array were used to assist in the location and removal of radio point sources. Applying a Bayesian analysis to the raw visibility data, we place limits on CMB anisotropy flat-band power Q_flat = 5.6 (+3.0, -5.6) uK and Q_flat < 14.1 uK at 68% and 95% confidence. The sensitivity of this experiment to flat band power peaks at a multipole of l = 5470, which corresponds to an angular scale of approximately 2 arcminutes The most likely value of Q_flat is similar to the level of the expected secondary anisotropies.

  18. A Preliminary Detection of Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    Science.gov (United States)

    Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) array outfitted with sensitive cm-wave receivers to expand our search for minute scale anisotropy of the Cosmic Microwave Background (CMB). The interferometer was placed in a compact configuration to obtain high brightness sensitivity on arcminute scales over its 6.6' FWHM field of view. The sensitivity of this experiment to flat band power peaks at a multipole of 1 = 5530 which corresponds to an angular scale of -2'. We present the analysis of a total of 470 hours of on-source integration time on eleven independent fields which were selected based on their low IR contrast and lack of bright radio sources. Applying a Bayesian analysis to the visibility data, we find CMB anisotropy flat band power Q_flat = 6.1(+2.8/-4.8) microKelvin at 68% confidence. The confidence of a nonzero signal is 76% and we find an upper limit of Q_flat < 12.4 microKelvin at 95% confidence. We have supplemented our BIMA observations with concurrent observations at 4.8 GHz with the VLA to search for and remove point sources. We find the point sources make an insignificant contribution to the observed anisotropy.

  19. Exploring cosmic origins with CORE: Gravitational lensing of the CMB

    Science.gov (United States)

    Challinor, A.; Allison, R.; Carron, J.; Errard, J.; Feeney, S.; Kitching, T.; Lesgourgues, J.; Lewis, A.; Zubeldía, Í.; Achucarro, A.; Ade, P.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Baumann, D.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, G.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; d'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; De Zotti, G.; Delabrouille, J.; Di Valentino, E.; Diego, J.-M.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hervías-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Liguori, M.; Lindholm, V.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Martinez-González, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rubino-Martin, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    Lensing of the cosmic microwave background (CMB) is now a well-developed probe of the clustering of the large-scale mass distribution over a broad range of redshifts. By exploiting the non-Gaussian imprints of lensing in the polarization of the CMB, the CORE mission will allow production of a clean map of the lensing deflections over nearly the full-sky. The number of high-S/N modes in this map will exceed current CMB lensing maps by a factor of 40, and the measurement will be sample-variance limited on all scales where linear theory is valid. Here, we summarise this mission product and discuss the science that will follow from its power spectrum and the cross-correlation with other clustering data. For example, the summed mass of neutrinos will be determined to an accuracy of 17 meV combining CORE lensing and CMB two-point information with contemporaneous measurements of the baryon acoustic oscillation feature in the clustering of galaxies, three times smaller than the minimum total mass allowed by neutrino oscillation measurements. Lensing has applications across many other science goals of CORE, including the search for B-mode polarization from primordial gravitational waves. Here, lens-induced B-modes will dominate over instrument noise, limiting constraints on the power spectrum amplitude of primordial gravitational waves. With lensing reconstructed by CORE, one can "delens" the observed polarization internally, reducing the lensing B-mode power by 60 %. This can be improved to 70 % by combining lensing and measurements of the cosmic infrared background from CORE, leading to an improvement of a factor of 2.5 in the error on the amplitude of primordial gravitational waves compared to no delensing (in the null hypothesis of no primordial B-modes). Lensing measurements from CORE will allow calibration of the halo masses of the tens of thousands of galaxy clusters that it will find, with constraints dominated by the clean polarization-based estimators. The 19

  20. Elastic Anisotropy of Basalt

    Science.gov (United States)

    Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.

    2005-12-01

    Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are

  1. Quarkonium dissociation by anisotropy

    Science.gov (United States)

    Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego

    2013-01-01

    We compute the screening length for quarkonium mesons moving through an anisotropic, strongly coupled mathcal{N} = 4 super Yang-Mills plasma by means of its gravity dual. We present the results for arbitrary velocities and orientations of the mesons, as well as for arbitrary values of the anisotropy. The anisotropic screening length can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. For generic motion we find that: (i) mesons dissociate above a certain critical value of the anisotropy, even at zero temperature; (ii) there is a limiting velocity for mesons in the plasma, even at zero temperature; (iii) in the ultra-relativistic limit the screening length scales as (1 - v 2)ɛ with ɛ = 1 /2, in contrast with the isotropic result ɛ = 1 /4.

  2. Supernovae anisotropy power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Ghodsi, Hoda; Baghram, Shant [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Habibi, Farhang, E-mail: h.ghodsi@mehr.sharif.ir, E-mail: baghram@sharif.edu, E-mail: habibi@lal.in2p3.fr [LAL-IN2P3/CNRS, BP 34, 91898 Orsay Cedex (France)

    2017-10-01

    We contribute another anisotropy study to this field of research using Type Ia supernovae (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Using the Union2.1 data set at all redshifts, we compare the spectrum of the residuals of the observed distance moduli to that expected from an isotropic universe affected by the Union2.1 observational uncertainties at low multipoles. Through this comparison we find a dipolar anisotropy with tension of less that 2σ towards l = 171° ± 21° and b = −26° ± 28° which is mainly induced by anisotropic spatial distribution of the SNe with z > 0.2 rather than being a cosmic effect. Furthermore, we find a tension of ∼ 4σ at ℓ = 4 between the two spectra. Our simulations are constructed with the characteristics of the upcoming surveys like the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipolar anisotropy that would be detectable by future SNe Ia surveys.

  3. Cosmic microwave background anisotropies in cold dark matter models with cosmological constant: The intermediate versus large angular scales

    Science.gov (United States)

    Stompor, Radoslaw; Gorski, Krzysztof M.

    1994-01-01

    We obtain predictions for cosmic microwave background anisotropies at angular scales near 1 deg in the context of cold dark matter models with a nonzero cosmological constant, normalized to the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) detection. The results are compared to those computed in the matter-dominated models. We show that the coherence length of the Cosmic Microwave Background (CMB) anisotropy is almost insensitive to cosmological parameters, and the rms amplitude of the anisotropy increases moderately with decreasing total matter density, while being most sensitive to the baryon abundance. We apply these results in the statistical analysis of the published data from the UCSB South Pole (SP) experiment (Gaier et al. 1992; Schuster et al. 1993). We reject most of the Cold Dark Matter (CDM)-Lambda models at the 95% confidence level when both SP scans are simulated together (although the combined data set renders less stringent limits than the Gaier et al. data alone). However, the Schuster et al. data considered alone as well as the results of some other recent experiments (MAX, MSAM, Saskatoon), suggest that typical temperature fluctuations on degree scales may be larger than is indicated by the Gaier et al. scan. If so, CDM-Lambda models may indeed provide, from a point of view of CMB anisotropies, an acceptable alternative to flat CDM models.

  4. Bias of damped Lyman-α systems from their cross-correlation with CMB lensing

    Science.gov (United States)

    Alonso, D.; Colosimo, J.; Font-Ribera, A.; Slosar, A.

    2018-04-01

    We cross-correlate the positions of damped Lyman-α systems (DLAs) and their parent quasar catalog with a convergence map derived from the Planck cosmic microwave background (CMB) temperature data. We make consistent measurements of the lensing signal of both samples in both Fourier and configuration space. By interpreting the excess signal present in the DLA catalog with respect to the parent quasar catalog as caused by the large scale structure traced by DLAs, we are able to infer the bias of these objects: bDLA=2.6±0.9. These results are consistent with previous measurements made in cross-correlation with the Lyman-α forest, although the current noise in the lensing data and the low number density of DLAs limits the constraining power of this measurement. We discuss the robustness of the analysis with respect to a number different systematic effects and forecast prospects of carrying out this measurement with data from future experiments.

  5. Effects of electrons on the solar wind proton temperature anisotropy

    International Nuclear Information System (INIS)

    Michno, M. J.; Lazar, M.; Schlickeiser, R.; Yoon, P. H.

    2014-01-01

    Among the kinetic microinstabilities, the firehose instability is one of the most efficient mechanisms to restrict the unlimited increase of temperature anisotropy in the direction of an ambient magnetic field as predicted by adiabatic expansion of collision-poor solar wind. Indeed, the solar wind proton temperature anisotropy detected near 1 AU shows that it is constrained by the marginal firehose condition. Of the two types of firehose instabilities, namely, parallel and oblique, the literature suggests that the solar wind data conform more closely to the marginal oblique firehose condition. In the present work, however, it is shown that the parallel firehose instability threshold is markedly influenced by the presence of anisotropic electrons, such that under some circumstances, the cumulative effects of both electron and proton anisotropies could describe the observation without considering the oblique firehose mode.

  6. Flow stress anisotropy

    DEFF Research Database (Denmark)

    Winther, G.

    1996-01-01

    stress Variation in the rolling plane, which may be as high as 20%, are presented. The traditional Taylor model is applied to the data to account for the effect of texture. However, texture effects alone are not enough to explain all of the observed anisotropy. New models which take the combined effects...... of texture and deformation microstructure into account are presented. The models are based on the Taylor and Sachs models but modified with an anisotropic critical shear stress to account for the effect of the microstructure. The agreement between experimental data and model predictions is definitely better...

  7. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup

    Science.gov (United States)

    Barnes, C.; Hill, R. S.; Hinshaw, G.; Page, L.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.; Wright, E. L.

    2003-09-01

    Since the Galactic center is ~1000 times brighter than fluctuations in the cosmic microwave background (CMB), CMB experiments must carefully account for stray Galactic pickup. We present the level of contamination due to sidelobes for the first-year CMB maps produced by the Wilkinson Microwave Anisotropy Probe (WMAP) observatory. For each radiometer, full 4π sr antenna gain patterns are determined from a combination of numerical prediction and ground-based and space-based measurements. These patterns are convolved with the WMAP first-year sky maps and observatory scan pattern to generate the expected sidelobe signal contamination, for both intensity and polarized microwave sky maps. When the main beams are outside of the Galactic plane, we find rms values for the expected sidelobe pickup of 15, 2.1, 2.0, 0.3, and 0.5 μK for the K, Ka, Q, V, and W bands, respectively. Except for at the K band, the rms polarized contamination is the Galactic pickup are presented. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  8. Measurement of Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    Science.gov (United States)

    Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Miller, A.; Nagai, D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We report the results of our continued study of arcminute scale anisotropy in the Cosmic Microwave Background (CMB) with the Berkeley-Illinois-Maryland Association (BIMA) array. The survey consists of ten independent fields selected for low infrared dust emission and lack of bright radio point sources. With observations from the VLA (Very Large Array) at 4.8 GHz, we have identified point sources which could act as contaminants in estimates of the CMB power spectrum and removed them in the analysis. Modeling the observed power spectrum with a single. flat band power with average multipole of l(sub eff) = 6864, we find Delta T = 14.2((sup +4.8)(sub -6.0)) micro K at 68% confidence. The signal in the visibility data exceeds the expected contribution from instrumental noise with 96.5% confidence. We have also divided the data into two bins corresponding to different spatial resolutions in the power spectrum. We find Delta T(sub 1) = 16.6((sup +5.3)(sub -5.9)) micro K at 68% confidence for CMB flat band power described by an average multipole of l(sub eff) = 5237 and Delta T(sub 2) is less than 26.5 micro K at 95% confidence for l(sub eff) = 8748.

  9. The QMAP and MAT/TOCO Experiments for Measuring Anisotropy in the Cosmic Microwave Background

    Science.gov (United States)

    Miller, A.; Beach, J.; Bradley, S.; Caldwell, R.; Chapman, H.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Jones, D.; Monnelly, G.; Netterfield, C. B.; Nolta, M.; Page, L. A.; Puchalla, J.; Robertson, T.; Torbet, E.; Tran, H. T.; Vinje, W. E.

    2002-06-01

    We describe two related experiments that measured the anisotropy in the cosmic microwave background (CMB). QMAP was a balloon-borne telescope that flew twice in 1996, collecting data on degree angular scales with an array of six high electron mobility transistor-based amplifiers (HEMTs). QMAP used an interlocking scan strategy to directly produce high signal-to-noise ratio CMB maps over a limited region of sky. The QMAP gondola was then refitted for ground-based work as the MAT/TOCO experiment. Observations were made from 5200 m on Cerro Toco in Northern Chile in 1997 and 1998 using time domain beam synthesis. MAT/TOCO measured the rise and fall of the CMB angular spectrum, thereby localizing the position of the first peak to lpeak=216+/-14. In addition to describing the instruments, we discuss the data selection methods, check for systematic errors, and compare the MAT/TOCO results to those from recent experiments. The previously reported data are updated to account for a small calibration shift and corrected to account for a small contribution from known sources of foreground emission. The resulting amplitude of the first peak for 160

  10. Fermat Potentials of Embedded Lensing, the Integrated Sachs-Wolfe Effect, and Weak-Lensing of CMB by Cosmic Voids

    Science.gov (United States)

    Chen, Bin; Kantowski, R.; Dai, X.

    2014-01-01

    We have developed an accurate gravitational lens theory for an inhomogeneity embedded in an otherwise homogeneous universe, which to the lowest order is applicable to any mass distribution. We derive the Fermat potential for a spherically symmetric lens embedded in a FLRW cosmology and use it to investigate the late-time integrated Sachs-Wolfe effect (ISW) caused by individual large scale inhomogeneities, in particular, cosmic voids. We present a simple analytical expression for the CMB temperature fluctuation across such a lens as the derivative of the lens Fermat potential. Our formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. Our results are particularly useful for modeling ISW effects extracted through stacking large numbers of cosmic voids and clusters (that is, the aperture photometry method). For structures co-expanding with the background cosmology, i.e., for time-independent density contrasts, we find that the gravitational lensing time delay alone can produce fluctuations of the order of seen in recent observations by WMAP and Planck. We revisit the possibility of explaining the non-Gaussian cold spot on the south hemisphere via the Rees-Sciama effect of a large cosmic void using constraints obtained from the most recent void catalogs and our new void-lensing formalism, and compare it with other explanations such as a collapsing cosmic texture. We also study the remapping of primordial CMB anisotropies, the weak-lensing shear, and magnification caused by void lensing.

  11. Millimeter Wavelength Observations of Galactic Sources with the Mobile Anisotropy Telescope (MAT)

    Science.gov (United States)

    Cruz, K. L.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L. A.; Puchalla, J. L.; Torbet, E.; Tran, H. T.

    1999-12-01

    The Mobile Anisotropy Telescope (MAT) has completed two observing seasons (1997 and 1998) in Chile from the Cerro Toco site. Although the primary goal of MAT was to measure anisotropy in the Cosmic Microwave Background (CMB) radiation, the chosen observation scheme also allowed daily viewing of the Galactic Plane. We present filtered maps at 30, 40 and 144 GHz of a region of the Galactic Plane which contains several millimeter-bright regions including the Carinae nebula and IRAS 11097-6102. We report the best fit brightness temperatures as well as the total flux densities in the MAT beams (0.9, 0.6 and 0.2 degrees FWHM) . The data are calibrated with respect to Jupiter whose flux is known to better than 8% in all frequency bands. This work was funded by the National Science Foundation and the Packard Foundation.

  12. Limits on cold dark matter cosmologies from new anisotropy bounds on the cosmic microwave background

    International Nuclear Information System (INIS)

    Vittorio, N.; Meinhold, P.; Lubin, P.; Muciaccia, P.F.; Silk, J.

    1991-01-01

    A self-consistent method is presented for comparing theoretical predictions of and observational upper limits on CMB anisotropy. New bounds on CDM cosmologies set by the UCSB South Pole experiment on the 1 deg angular scale are presented. An upper limit of 4.0 x 10 to the -5th is placed on the rms differential temperature anisotropy to a 95 percent confidence level and a power of the test beta = 55 percent. A lower limit of about 0.6/b is placed on the density parameter of cold dark matter universes with greater than about 3 percent baryon abundance and a Hubble constant of 50 km/s/Mpc, where b is the bias factor, equal to unity only if light traces mass. 22 refs

  13. Correlated mixture between adiabatic and isocurvature fluctuations and recent CMB observations

    International Nuclear Information System (INIS)

    Andrade, Ana Paula A.; Wuensche, Carlos Alexandre; Ribeiro, Andre Luis Batista

    2005-01-01

    This work presents a reduced χ ν 2 test to search for non-Gaussian signals in the cosmic microwave background radiation (CMBR) TT power spectrum of recent CMBR data, Wilkinson Anisotropy Microwave Probe, Arcminute Cosmology Bolometer Array Receiver, and Cosmic Background Imager data sets, assuming a mixed density field including adiabatic and isocurvature fluctuations. We assume a skew positive mixed model with adiabatic inflation perturbations plus additional isocurvature perturbations possibly produced by topological defects. The joint probability distribution used in this context is a weighted combination of Gaussian and non-Gaussian random fields. Results from simulations of CMBR temperature for the mixed field show a distinct signature in CMB power spectrum for very small deviations (∼0.1%) from a pure Gaussian field, and can be used as a direct test for the nature of primordial fluctuations. A reduced χ ν 2 test applied on the most recent CMBR observations reveals that an isocurvature fluctuations field is not ruled out and indeed permits a very good description for a flat geometry Λ-CDM Universe, χ 930 2 ∼1.5, rather than the simple inflationary standard model with χ 930 2 ∼2.3. This result may looks is particular discrepant with the reduced χ 2 of 1.07 obtained with the same model in Spergel et al. [Astrophys. J. 148, 175 (2003)] for temperature only, however, our work is restricted to a region of the parameter space that does not include the best fit model for TT only of Spergel et al.

  14. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Errard, J.; Borrill, J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff CF10 3XQ (United Kingdom); Akiba, Y.; Chinone, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T. [Department of Physics, University of California, San Diego, CA 92093-0424 (United States); Baccigalupi, C.; Fabbian, G. [International School for Advanced Studies (SISSA), Trieste I-34014 (Italy); Boettger, D. [Department of Astronomy, Pontifica Universidad Catolica de Chile (Chile); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Cukierman, A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Delabrouille, J. [AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité (France); Dobbs, M.; Gilbert, A. [Physics Department, McGill University, Montreal, QC H3A 0G4 (Canada); Ducout, A.; Feeney, S. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Feng, C. [Department of Physics and Astronomy, University of California, Irvine (United States); and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  15. Hidden in the background: a local approach to CMB anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, Juan C. Bueno, E-mail: juan.c.bueno@correounivalle.edu.co [Centro de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Cra 3 Este # 47A-15, Bogotá D.C. 110231 (Colombia)

    2016-09-01

    We investigate a framework aiming to provide a common origin for the large-angle anomalies detected in the Cosmic Microwave Background (CMB), which are hypothesized as the result of the statistical inhomogeneity developed by different isocurvature fields of mass m ∼ H present during inflation. The inhomogeneity arises as the combined effect of ( i ) the initial conditions for isocurvature fields (obtained after a fast-roll stage finishing many e -foldings before cosmological scales exit the horizon), ( ii ) their inflationary fluctuations and ( iii ) their coupling to other degrees of freedom. Our case of interest is when these fields (interpreted as the precursors of large-angle anomalies) leave an observable imprint only in isolated patches of the Universe. When the latter intersect the last scattering surface, such imprints arise in the CMB. Nevertheless, due to their statistically inhomogeneous nature, these imprints are difficult to detect, for they become hidden in the background similarly to the Cold Spot. We then compute the probability that a single isocurvature field becomes inhomogeneous at the end of inflation and find that, if the appropriate conditions are given (which depend exclusively on the preexisting fast-roll stage), this probability is at the percent level. Finally, we discuss several mechanisms (including the curvaton and the inhomogeneous reheating) to investigate whether an initial statistically inhomogeneous isocurvature field fluctuation might give rise to some of the observed anomalies. In particular, we focus on the Cold Spot, the power deficit at low multipoles and the breaking of statistical isotropy.

  16. Conformal Invariance, Dark Energy, and CMB Non-Gaussianity

    CERN Document Server

    Antoniadis, Ignatios; Mottola, Emil

    2012-01-01

    We show that in addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial R^3 sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the S^2 horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the sym...

  17. Internal delensing of Planck CMB temperature and polarization

    Energy Technology Data Exchange (ETDEWEB)

    Carron, Julien [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Lewis, Antony; Challinor, Anthony, E-mail: j.carron@sussex.ac.uk, E-mail: Antony.Lewis@sussex.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-05-01

    We present a first internal delensing of CMB maps, both in temperature and polarization, using the public foreground-cleaned (SMICA) Planck 2015 maps. After forming quadratic estimates of the lensing potential, we use the corresponding displacement field to undo the lensing on the same data. We build differences of the delensed spectra to the original data spectra specifically to look for delensing signatures. After taking into account reconstruction noise biases in the delensed spectra, we find an expected sharpening of the power spectrum acoustic peaks with a delensing efficiency of 29 % ( TT ) 25 % ( TE ) and 22 % ( EE ). The detection significance of the delensing effects is very high in all spectra: 12 σ in EE polarization; 18 σ in TE ; and 20 σ in TT . The null hypothesis of no lensing in the maps is rejected at 26 σ. While direct detection of the power in lensing B -modes themselves is not possible at high significance at Planck noise levels, we do detect (at 4.5 σ (under the null hypothesis)) delensing effects in the B -mode map, with 7 % reduction in lensing power. Our results provide a first demonstration of polarization delensing, and generally of internal CMB delensing, and stand in agreement with the baseline ΛCDM Planck 2015 cosmology expectations.

  18. Planck 2015 results. IX. Diffuse component separation: CMB maps

    CERN Document Server

    Adam, R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Casaponsa, B.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Falgarone, E.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Racine, B.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-01-01

    We present foreground-reduced CMB maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales $\\ell\\gtrsim40$. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with $\\ell < 20$ are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with re...

  19. Challenges and prospects for better measurements of the CMB intensity spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Sironi, Giorgio, E-mail: giorgio.sironi@unimb.it [Physics Department, University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy)

    2017-02-01

    Spectral distortions of the Cosmic Microwave Background (CMB) offer the possibility of probing processes which occurred during the evolution of our Universe going back up to Z≅ 10{sup 7}. Unfortunately all the attempts so far carried out for detecting distortions failed. All of them were based on comparisons among absolute measurements of the CMB temperature at different frequencies. We suggest a different approach: measurements of the frequency derivative of the CMB temperature over large frequency intervals instead of observations of the absolute temperature at few, well separated, frequencies as frequently done in the past, and, direct measurements of the foregrounds which hinder observations, at the same site and with the same radiometer prepared for the search of CMB distortions. We discuss therefore the perspectives of new observations in the next years from the ground, at very special sites, or in space as independent missions or part of other CMB projects.

  20. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    Science.gov (United States)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  1. Anisotropic cosmological constant and the CMB quadrupole anomaly

    International Nuclear Information System (INIS)

    Rodrigues, Davi C.

    2008-01-01

    There are evidences that the cosmic microwave background (CMB) large-angle anomalies imply a departure from statistical isotropy and hence from the standard cosmological model. We propose a ΛCDM model extension whose dark energy component preserves its nondynamical character but wields anisotropic vacuum pressure. Exact solutions for the cosmological scale factors are presented, upper bounds for the deformation parameter are evaluated and its value is estimated considering the elliptical universe proposal to solve the quadrupole anomaly. This model can be constructed from a Bianchi I cosmology with a cosmological constant from two different ways: (i) a straightforward anisotropic modification of the vacuum pressure consistently with energy-momentum conservation; (ii) a Poisson structure deformation between canonical momenta such that the dynamics remain invariant under scale factors rescalings

  2. Minkowski Functionals and Cluster Analysis for CMB Maps

    Science.gov (United States)

    Novikov, D.; Feldman, Hume A.; Shandarin, Sergei F.

    We suggest novel statistics for the CMB maps that are sensitive to non-Gaussian features. These statistics are natural generalizations of the geometrical and topological methods that have been already used in cosmology such as the cumulative distribution function and genus. We compute the distribution functions of the Partial Minkowski Functionals for the excursion set above or bellow a constant temperature threshold. Minkowski Functionals are additive and are translationally and rotationally invariant. Thus, they can be used for patchy and/or incomplete coverage. The technique is highly efficient computationally (it requires only O(N) operations, where N is the number of pixels per one threshold level). Further, the procedure makes it possible to split large data sets into smaller subsets. The full advantage of these statistics can be obtained only on very large data sets. We apply it to the 4-year DMR COBE data corrected for the Galaxy contamination as an illustration of the technique.

  3. Contribution of domain wall networks to the CMB power spectrum

    International Nuclear Information System (INIS)

    Lazanu, A.; Martins, C.J.A.P.; Shellard, E.P.S.

    2015-01-01

    We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined

  4. Contribution of domain wall networks to the CMB power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Lazanu, A., E-mail: A.Lazanu@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2015-07-30

    We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  5. Low-l CMB power loss in string inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, Francisco G.; Westphal, Alexander

    2013-09-15

    The lack of power on large scales (l CMB 2-point function power at low l, finding that the potential derived from string loops is not steep enough for this purpose. We introduce a steeper contribution to the potential, that dominates away from the inflationary region, and show that if properly tuned it can indeed lead to a spectrum with lack of power at large scales.

  6. Constraints on Inflation from Polarization and CMB Spectral Distortions

    Science.gov (United States)

    Kamionkowski, Marc

    2014-01-01

    This talk will summarize some things we can do with future CMB experiments to study the early Universe. An obvious first is to map the polarization from density perturbations to the cosmic-variance limit to improve upon the types of things (cosmological-parameter determination, lensing, etc.) that have been done so far with the temperature. Another direction, which already has considerable momentum, is the pursuit of the characteristic polarization signature of inflationary gravitational waves. But there is also a strong case, which I will review, now being assembled for a space mission to seek the tiny but nonzero departures from a blackbody spectrum that are expected in the standard cosmological model and that may arise from several interesting exotic mechanisms.

  7. Loop quantum gravity effects on inflation and the CMB

    International Nuclear Information System (INIS)

    Tsujikawa, Shinji; Singh, Parampreet; Maartens, Roy

    2004-01-01

    In loop quantum cosmology, the universe avoids a big bang singularity and undergoes an early and short super-inflation phase. During super-inflation, non-perturbative quantum corrections to the dynamics drive an inflaton field up its potential hill, thus setting the initial conditions for standard inflation. We show that this effect can raise the inflaton high enough to achieve sufficient e-foldings in the standard inflation era. We analyse the cosmological perturbations generated when slow-roll is violated after super-inflation and show that loop quantum effects can in principle leave an indirect signature on the largest scales in the CMB, with some loss of power and running of the spectral index

  8. Planck 2015 results IX. Diffuse component separation: CMB maps

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.

    2016-01-01

    We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz......, and between 4.5 and 6.1μK averaged over pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1σ level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description...... of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses...

  9. The effective gravitational decoupling between dark matter and the CMB

    CERN Document Server

    Voruz, Luc; Tram, Thomas

    2014-01-01

    We present a detailed and self-contained analytical derivation of the evolution of sub-horizon cosmological perturbations before decoupling, based on previous work by S. Weinberg. These solutions are valid in the minimal LCDM scenario, to first order in perturbation theory, in the tight-coupling limit and neglecting neutrino shear stress. We compare them to exact numerical solutions computed by a Boltzmann code, and we find the two to be in very good agreement. The analytic solutions show explicitly that CDM and the baryon-photon fluid effectively behave as separate self-gravitating fluids until the epoch of baryon drag. This in turn leads to the surprising conclusion that the CMB is much less sensitive to the clustering properties of minimally coupled Dark Matter models than what would be naively expected.

  10. Contribution of domain wall networks to the CMB power spectrum

    Directory of Open Access Journals (Sweden)

    A. Lazanu

    2015-07-01

    Full Text Available We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  11. Future CMB cosmological constraints in a dark coupled universe

    CERN Document Server

    Martinelli, Matteo; Melchiorri, Alessandro; Mena, Olga

    2010-01-01

    Cosmic Microwave Background satellite missions as the on-going Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.

  12. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  13. Gravity with free initial conditions: A solution to the cosmological constant problem testable by CMB B -mode polarization

    Science.gov (United States)

    Totani, Tomonori

    2017-10-01

    In standard general relativity the universe cannot be started with arbitrary initial conditions, because four of the ten components of the Einstein's field equations (EFE) are constraints on initial conditions. In the previous work it was proposed to extend the gravity theory to allow free initial conditions, with a motivation to solve the cosmological constant problem. This was done by setting four constraints on metric variations in the action principle, which is reasonable because the gravity's physical degrees of freedom are at most six. However, there are two problems about this theory; the three constraints in addition to the unimodular condition were introduced without clear physical meanings, and the flat Minkowski spacetime is unstable against perturbations. Here a new set of gravitational field equations is derived by replacing the three constraints with new ones requiring that geodesic paths remain geodesic against metric variations. The instability problem is then naturally solved. Implications for the cosmological constant Λ are unchanged; the theory converges into EFE with nonzero Λ by inflation, but Λ varies on scales much larger than the present Hubble horizon. Then galaxies are formed only in small Λ regions, and the cosmological constant problem is solved by the anthropic argument. Because of the increased degrees of freedom in metric dynamics, the theory predicts new non-oscillatory modes of metric anisotropy generated by quantum fluctuation during inflation, and CMB B -mode polarization would be observed differently from the standard predictions by general relativity.

  14. Needlet estimation of cross-correlation between CMB lensing maps and LSS

    Energy Technology Data Exchange (ETDEWEB)

    Bianchini, Federico [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Renzi, Alessandro; Marinucci, Domenico, E-mail: fbianchini@sissa.it, E-mail: renzi@mat.uniroma2.it, E-mail: marinucc@mat.uniroma2.it [Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2016-11-01

    In this paper we develop a novel needlet-based estimator to investigate the cross-correlation between cosmic microwave background (CMB) lensing maps and large-scale structure (LSS) data. We compare this estimator with its harmonic counterpart and, in particular, we analyze the bias effects of different forms of masking. In order to address this bias, we also implement a MASTER-like technique in the needlet case. The resulting estimator turns out to have an extremely good signal-to-noise performance. Our analysis aims at expanding and optimizing the operating domains in CMB-LSS cross-correlation studies, similarly to CMB needlet data analysis. It is motivated especially by next generation experiments (such as Euclid) which will allow us to derive much tighter constraints on cosmological and astrophysical parameters through cross-correlation measurements between CMB and LSS.

  15. Developing Advanced Broadband Microwave Detectors for Next-Generation CMB Polarization Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — The photons of the cosmic microwave background (CMB) stream toward us from the boundary of the observable universe and arrive with information about both their point...

  16. CMB polarization at large angular scales: Data analysis of the POLAR experiment

    International Nuclear Information System (INIS)

    O'Dell, Christopher W.; Keating, Brian G.; Oliveira-Costa, Angelica de; Tegmark, Max; Timbie, Peter T.

    2003-01-01

    The coming flood of cosmic microwave background (CMB) polarization experiments, spurred by the recent detection of CMB polarization by the DASI and WMAP instruments, will be confronted by many new analysis tasks specific to polarization. For the analysis of CMB polarization data sets, the devil is truly in the details. With this in mind, we present details of the data analysis for the POLAR experiment, which recently led to the tightest upper limits on the polarization of the cosmic microwave background radiation at large angular scales. We discuss the data selection process, map-making algorithms, offset removal, and likelihood analysis which were used to find upper limits on the polarization. Stated using the modern convention for reporting CMB Stokes parameters, these limits are 5.0 μK on both E- and B-type polarization at 95% confidence. Finally, we discuss simulations used to test our analysis techniques and to probe the fundamental limitations of the experiment

  17. Foreground removal from CMB temperature maps using an MLP neural network

    Science.gov (United States)

    Nørgaard-Nielsen, H. U.; Jørgensen, H. E.

    2008-12-01

    One of the main obstacles for extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from Galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over more than 80 per cent of the sky that are to a high degree uncorrelated with the foreground signals. A single network will be able to cover the dynamic range of the Planck noise level over the entire sky.

  18. Constraints on spacetime anisotropy and Lorentz violation from the GRAAL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Zhe [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Center for Science Facilities, Beijing (China); Wang, Sai [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2013-02-15

    The GRAAL experiment could constrain the variations of the speed of light. The anisotropy of the speed of light may imply that the spacetime is anisotropic. Finsler geometry is a reasonable candidate to deal with the spacetime anisotropy. In this paper, the Lorentz invariance violation (LIV) of the photon sector is investigated in the locally Minkowski spacetime. The locally Minkowski spacetime is a class of flat Finsler spacetime and refers a metric with the anisotropic departure from the Minkowski one. The LIV matrices used to fit the experimental data are represented in terms of these metric deviations. The GRAAL experiment constrains the spacetime anisotropy to be less than 10{sup -14}. In addition, we find that the simplest Finslerian photon sector could be viewed as a geometric representation of the photon sector in the minimal standard model extension (SME). (orig.)

  19. Measurements of anisotropy in the cosmic microwave background radiation at degree angular scales near the stars Sigma Herculis and Iota Draconis

    Science.gov (United States)

    Clapp, A. C.; Devlin, M. J.; Gundersen, J. O.; Hagmann, C. A.; Hristov, V. V.; Lange, A. E.; Lim, M.; Lubin, P. M.; Mauskopf, P. D.; Meinhold, P. R.

    1994-01-01

    We present results from two four-frequency observations centered near the stars Sigma Herculis and Iota Draconis during the fourth flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observations were made of 6 deg x 0.6 deg strips of the sky with a 1.4 deg peak to peak sinusoidal chop in all bands. The full width at half maximum (FWHM) beam sizes were calculated 0.55 deg +/- 0.05 deg at 3.5/cm and a 0.75 deg +/- 0.05 deg at 6, 9, and 14/cm. Significant correlated structures were observed at 3.5, 6, and 9/cm. The spectra of these signals are inconsistent with thermal emission from known interstellar dust populations. The extrapolated amplitudes of synchrotron and free-free emission are too small to account for the amplitude of the observed structures. If the observed structures are attributed to cosmic microwave background (CMB) anisotropy with a Gaussian autocorrelation function and a coherence angle of 25 min, then the most probable values at Delta T/T(sub CMB) = 3.1 (sup +1.7 sub -1.3) x 10(exp -5) for the Sigma Herculis scan, and Delta T/T(sub CMB) = 3.3(sup +1.1 sub -1.1) x 10(exp -5) for the Iota Draconis scan (95% confidence upper, lower limits).

  20. Oscillations in the CMB from Axion Monodromy Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael; /Texas U.; McAllister, Liam; Pajer, Enrico; /Cornell U., Phys. Dept.; Westphal, Alexander; /SLAC /Stanford U., Phys. Dept.; Xu, Gang; /Cornell U., Phys. Dept.

    2011-12-01

    We study the CMB observables in axion monodromy inflation. These well-motivated scenarios for inflation in string theory have monomial potentials over super-Planckian field ranges, with superimposed sinusoidal modulations from instanton effects. Such periodic modulations of the potential can drive resonant enhancements of the correlation functions of cosmological perturbations, with characteristic modulations of the amplitude as a function of wavenumber. We give an analytical result for the scalar power spectrum in this class of models, and we determine the limits that present data places on the amplitude and frequency of modulations. Then, incorporating an improved understanding of the realization of axion monodromy inflation in string theory, we perform a careful study of microphysical constraints in this scenario. We find that detectable modulations of the scalar power spectrum are commonplace in well-controlled examples, while resonant contributions to the bispectrum are undetectable in some classes of examples and detectable in others. We conclude that resonant contributions to the spectrum and bispectrum are a characteristic signature of axion monodromy inflation that, in favorable cases, could be detected in near-future experiments.

  1. Dark matter CMB constraints and likelihoods for poor particle physicists

    Energy Technology Data Exchange (ETDEWEB)

    Cline, James M.; Scott, Pat, E-mail: jcline@physics.mcgill.ca, E-mail: patscott@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 (Canada)

    2013-03-01

    The cosmic microwave background provides constraints on the annihilation and decay of light dark matter at redshifts between 100 and 1000, the strength of which depends upon the fraction of energy ending up in the form of electrons and photons. The resulting constraints are usually presented for a limited selection of annihilation and decay channels. Here we provide constraints on the annihilation cross section and decay rate, at discrete values of the dark matter mass m{sub χ}, for all the annihilation and decay channels whose secondary spectra have been computed using PYTHIA in arXiv:1012.4515 (''PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection''), namely e, μ, τ, V → e, V → μ, V → τ, u, d s, c, b, t, γ, g, W, Z and h. By interpolating in mass, these can be used to find the CMB constraints and likelihood functions from WMAP7 and Planck for a wide range of dark matter models, including those with annihilation or decay into a linear combination of different channels.

  2. Dark matter CMB constraints and likelihoods for poor particle physicists

    International Nuclear Information System (INIS)

    Cline, James M.; Scott, Pat

    2013-01-01

    The cosmic microwave background provides constraints on the annihilation and decay of light dark matter at redshifts between 100 and 1000, the strength of which depends upon the fraction of energy ending up in the form of electrons and photons. The resulting constraints are usually presented for a limited selection of annihilation and decay channels. Here we provide constraints on the annihilation cross section and decay rate, at discrete values of the dark matter mass m χ , for all the annihilation and decay channels whose secondary spectra have been computed using PYTHIA in arXiv:1012.4515 (''PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection''), namely e, μ, τ, V → e, V → μ, V → τ, u, d s, c, b, t, γ, g, W, Z and h. By interpolating in mass, these can be used to find the CMB constraints and likelihood functions from WMAP7 and Planck for a wide range of dark matter models, including those with annihilation or decay into a linear combination of different channels

  3. String Theory clues for the low-$\\ell$ CMB ?

    CERN Document Server

    Kitazawa, N.

    2015-05-29

    "Brane Supersymmetry Breaking" is a peculiar string-scale mechanism that can unpair Bose and Fermi excitations in orientifold models. It results from the simultaneous presence, in the vacuum, of collections of D-branes and orientifolds that are not mutually BPS, and is closely tied to the scale of string excitations. It also leaves behind, for a mixing of dilaton and internal breathing mode, an exponential potential that is just too steep for a scalar to emerge from the initial singularity while descending it. As a result, in this class of models the scalar can generically bounce off the exponential wall, and this dynamics brings along, in the power spectrum, an infrared depression typically followed by a pre-inflationary peak. We elaborate on a possible link between this type of bounce and the low-$\\ell$ end of the CMB angular power spectrum. For the first 32 multipoles, one can reach a 50 % reduction in $\\chi^{\\,2}$ with respect to the standard $\\Lambda$CDM setting.

  4. Exploring Constrained Creative Communication

    DEFF Research Database (Denmark)

    Sørensen, Jannick Kirk

    2017-01-01

    Creative collaboration via online tools offers a less ‘media rich’ exchange of information between participants than face-to-face collaboration. The participants’ freedom to communicate is restricted in means of communication, and rectified in terms of possibilities offered in the interface. How do...... these constrains influence the creative process and the outcome? In order to isolate the communication problem from the interface- and technology problem, we examine via a design game the creative communication on an open-ended task in a highly constrained setting, a design game. Via an experiment the relation...... between communicative constrains and participants’ perception of dialogue and creativity is examined. Four batches of students preparing for forming semester project groups were conducted and documented. Students were asked to create an unspecified object without any exchange of communication except...

  5. Choosing health, constrained choices.

    Science.gov (United States)

    Chee Khoon Chan

    2009-12-01

    In parallel with the neo-liberal retrenchment of the welfarist state, an increasing emphasis on the responsibility of individuals in managing their own affairs and their well-being has been evident. In the health arena for instance, this was a major theme permeating the UK government's White Paper Choosing Health: Making Healthy Choices Easier (2004), which appealed to an ethos of autonomy and self-actualization through activity and consumption which merited esteem. As a counterpoint to this growing trend of informed responsibilization, constrained choices (constrained agency) provides a useful framework for a judicious balance and sense of proportion between an individual behavioural focus and a focus on societal, systemic, and structural determinants of health and well-being. Constrained choices is also a conceptual bridge between responsibilization and population health which could be further developed within an integrative biosocial perspective one might refer to as the social ecology of health and disease.

  6. Searching for primordial non-Gaussianity in Planck CMB maps using a combined estimator

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, C.P.; Wuensche, C.A. [Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, São José dos Campos 12227-010, SP (Brazil); Bernui, A. [Observatório Nacional, Rua General José Cristino 77, São Cristóvão, 20921-400, Rio de Janeiro, RJ (Brazil); Ferreira, I.S., E-mail: camilapnovaes@gmail.com, E-mail: bernui@on.br, E-mail: ivan@fis.unb.br, E-mail: ca.wuensche@inpe.br [Instituto de Física, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70919-970, Brasília, DF (Brazil)

    2014-01-01

    The extensive search for deviations from Gaussianity in cosmic microwave background radiation (CMB) data is very important due to the information about the very early moments of the universe encoded there. Recent analyses from Planck CMB data do not exclude the presence of non-Gaussianity of small amplitude, although they are consistent with the Gaussian hypothesis. The use of different techniques is essential to provide information about types and amplitudes of non-Gaussianities in the CMB data. In particular, we find interesting to construct an estimator based upon the combination of two powerful statistical tools that appears to be sensitive enough to detect tiny deviations from Gaussianity in CMB maps. This estimator combines the Minkowski functionals with a Neural Network, maximizing a tool widely used to study non-Gaussian signals with a reinforcement of another tool designed to identify patterns in a data set. We test our estimator by analyzing simulated CMB maps contaminated with different amounts of local primordial non-Gaussianity quantified by the dimensionless parameter f{sub  NL}. We apply it to these sets of CMB maps and find ∼> 98% of chance of positive detection, even for small intensity local non-Gaussianity like f{sub  NL} = 38±18, the current limit from Planck data for large angular scales. Additionally, we test the suitability to distinguish between primary and secondary non-Gaussianities: first we train the Neural Network with two sets, one of nearly Gaussian CMB maps (|f{sub  NL}| ≤ 10) but contaminated with realistic inhomogeneous Planck noise (i.e., secondary non-Gaussianity) and the other of non-Gaussian CMB maps, that is, maps endowed with weak primordial non-Gaussianity (28 ≤ f{sub  NL} ≤ 48); after that we test an ensemble composed of CMB maps either with one of these non-Gaussian contaminations, and find out that our method successfully classifies ∼ 95% of the tested maps as being CMB maps containing primordial or

  7. Anisotropy in the deep Earth

    Science.gov (United States)

    Romanowicz, Barbara; Wenk, Hans-Rudolf

    2017-08-01

    Seismic anisotropy has been found in many regions of the Earth's interior. Its presence in the Earth's crust has been known since the 19th century, and is due in part to the alignment of anisotropic crystals in rocks, and in part to patterns in the distribution of fractures and pores. In the upper mantle, seismic anisotropy was discovered 50 years ago, and can be attributed for the most part, to the alignment of intrinsically anisotropic olivine crystals during large scale deformation associated with convection. There is some indication for anisotropy in the transition zone, particularly in the vicinity of subducted slabs. Here we focus on the deep Earth - the lower mantle and core, where anisotropy is not yet mapped in detail, nor is there consensus on its origin. Most of the lower mantle appears largely isotropic, except in the last 200-300 km, in the D″ region, where evidence for seismic anisotropy has been accumulating since the late 1980s, mostly from shear wave splitting measurements. Recently, a picture has been emerging, where strong anisotropy is associated with high shear velocities at the edges of the large low shear velocity provinces (LLSVPs) in the central Pacific and under Africa. These observations are consistent with being due to the presence of highly anisotropic MgSiO3 post-perovskite crystals, aligned during the deformation of slabs impinging on the core-mantle boundary, and upwelling flow within the LLSVPs. We also discuss mineral physics aspects such as ultrahigh pressure deformation experiments, first principles calculations to obtain information about elastic properties, and derivation of dislocation activity based on bonding characteristics. Polycrystal plasticity simulations can predict anisotropy but models are still highly idealized and neglect the complex microstructure of polyphase aggregates with strong and weak components. A promising direction for future progress in understanding the origin of seismic anisotropy in the deep mantle

  8. Surface energy anisotropy of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R; Grenga, H E [Georgia Inst. of Tech., Atlanta (USA). School of Chemical Engineering

    1976-10-01

    Field-ion microscopy was used to study the faceting behavior and/or surface energy anisotropy of tungsten in vacuum and in hydrogen. In vacuum below 1700 K the activation energy for (110) facet growth agreed with values previously reported for surface diffusion on tungsten. The observed anisotropy values at 0.5 Tsub(m), where Tsub(m) is the absolute melting temperature of tungsten (approximately 3680 K), were different from those previously reported at higher temperatures and more nearly agreed with broken bond calculations based on Mie potential using m=5, n=8, and a 1.5% lattice expansion. Hydrogen appeared to have a negligible effect on surface energy anisotropy, but did preferentially increase surface diffusion rates on (310) regions.

  9. Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements

    International Nuclear Information System (INIS)

    Stern, Daniel; Jimenez, Raul; Verde, Licia; Kamionkowski, Marc; Stanford, S. Adam

    2010-01-01

    We present new determinations of the cosmic expansion history from red-envelope galaxies. We have obtained for this purpose high-quality spectra with the Keck-LRIS spectrograph of red-envelope galaxies in 24 galaxy clusters in the redshift range 0.2 −1 Mpc −1 at z ≅ 0.5 and H(z) = 90±40 km sec −1 Mpc −1 at z ≅ 0.9. We discuss the uncertainty in the expansion history determination that arises from uncertainties in the synthetic stellar-population models. We then use these new measurements in concert with cosmic-microwave-background (CMB) measurements to constrain cosmological parameters, with a special emphasis on dark-energy parameters and constraints to the curvature. In particular, we demonstrate the usefulness of direct H(z) measurements by constraining the dark-energy equation of state parameterized by w 0 and w a and allowing for arbitrary curvature. Further, we also constrain, using only CMB and H(z) data, the number of relativistic degrees of freedom to be 4±0.5 and their total mass to be < 0.2 eV, both at 1σ

  10. Constrained superfields in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dall’Agata, Gianguido; Farakos, Fotis [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-02-16

    We analyze constrained superfields in supergravity. We investigate the consistency and solve all known constraints, presenting a new class that may have interesting applications in the construction of inflationary models. We provide the superspace Lagrangians for minimal supergravity models based on them and write the corresponding theories in component form using a simplifying gauge for the goldstino couplings.

  11. Minimal constrained supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-01-10

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  12. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  13. Minimal constrained supergravity

    International Nuclear Information System (INIS)

    Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.

    2017-01-01

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  14. Momentum anisotropy at freeze out

    International Nuclear Information System (INIS)

    Feld, S.; Borghini, N.; Lang, C.

    2017-01-01

    The transition from a hydrodynamical modeling to a particle-based approach is a crucial element of the description of high-energy heavy-ion collisions. Assuming this “freeze out” happens instantaneously at each point of the expanding medium, we show that the local phase-space distribution of the emitted particles is asymmetric in momentum space. This suggests the use of anisotropic hydrodynamics for the last stages of the fluid evolution. We discuss how observables depend on the amount of momentum-space anisotropy at freeze out and how smaller or larger anisotropies allow for different values of the freeze-out temperature. (paper)

  15. B polarization of the CMB from Faraday rotation

    International Nuclear Information System (INIS)

    Scoccola, Claudia; Harari, Diego; Mollerach, Silvia

    2004-01-01

    We study the effect of Faraday rotation due to a uniform magnetic field on the polarization of the cosmic microwave background. Scalar fluctuations give rise only to parity-even E-type polarization of the cosmic microwave background. However in the presence of a magnetic field, a nonvanishing parity-odd B-type polarization component is produced through Faraday rotation. We derive the exact solution for the E and B modes generated by scalar perturbations including the Faraday rotation effect of a uniform magnetic field, and evaluate their cross correlations with temperature anisotropies. We compute the angular autocorrelation function of the B-modes in the limit that the Faraday rotation is small. We find that uniform primordial magnetic fields of present strength around B 0 =10 -9 G rotate E-modes into B-modes with amplitude comparable to those due to the weak gravitational lensing effect at frequencies around ν=30 GHz. The strength of B-modes produced by Faraday rotation scales as B 0 /ν 2 . We evaluate also the depolarizing effect of Faraday rotation upon the cross correlation between temperature anisotropy and E-type polarization

  16. Cosmological implications of the MAXIMA-1 high-resolution cosmic microwave background anisotropy measurement

    International Nuclear Information System (INIS)

    Stompor, R.; Abroe, M.; Ade, P.; Balbi, A.; Barbosa, D.; Bock, J.; Borrill, J.; Boscaleri, A.; de Bernardis, P.; Ferreira, P.G.; Hanany, S.; Hristov, V.; Jaffe, A.H.; Lee, A.T.; Pascale, E.; Rabii, B.; Richards, P.L.; Smoot, G.F.; Winant, C.D.; Wu, J.H.P.

    2001-01-01

    We discuss the cosmological implications of the new constraints on the power spectrum of the cosmic microwave background (CMB) anisotropy derived from a new high-resolution analysis of the MAXIMA-1 measurement. The power spectrum indicates excess power at lsimilar to 860 over the average level of power at 411 less than or equal to l less than or equal to 785. This excess is statistically significant at the similar to 95 percent confidence level. Its position coincides with that of the third acoustic peak, as predicted by generic inflationary models selected to fit the first acoustic peak as observed in the data. The height of the excess power agrees with the predictions of a family of inflationary models with cosmological parameters that are fixed to fit the CMB data previously provided by BOOMERANG-LDB and MAXIMA-1 experiments. Our results therefore lend support for inflationary models and more generally for the dominance of adiabatic coherent perturbations in the structure formation of the universe. At the same time, they seem to disfavor a large variety of the nonstandard (but inflation-based) models that have been proposed to improve the quality of fits to the CMB data and the consistency with other cosmological observables. Within standard inflationary models, our results combined with the COBE/Differential Microwave Radiometer data give best-fit values and 95 percent confidence limits for the baryon density, Omega (b)h(2)similar or equal to 0.033 +/- 0.013, and the total density, Omega =0.9(-0.16)(+0.18). The primordial spectrum slope (n(s)) and the optical depth to the last scattering surface (tau (c)) are found to be degenerate and to obey the relation n(s) similar or equal to (0.99 +/- 0.14) + 0.46tau (c), for tau (c) less than or equal to 0.5 (all at 95 percent confidence levels)

  17. Flow stress anisotropy in aluminium

    DEFF Research Database (Denmark)

    Juul Jensen, D.; Hansen, N.

    1990-01-01

    The plastic anisotropy of cold-rolled high purity aluminum (99.996%) and commercially pure aluminum (99.6%) has been investigated. Sample parameters were the initial grain size and the degree of plastic strain (ϵ < 3.00). Flow stresses (0.2% offset) were measured at room temperature by uniaxial t...

  18. The Cosmic Microwave Background Anisotropy

    Science.gov (United States)

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  19. Joint QSO – CMB constraints on reionization history

    International Nuclear Information System (INIS)

    Mitra, S

    2014-01-01

    We have tried to give an overview of model-independent semi-analytical approach to study the observational constraints on reionization. We have implemented and investigated a method to do a detailed statistical analysis using principal component analysis (PCA) technique. We have also discussed different observations related to reionization and shown how to use PCA for constraining the reionization history. Using Markov Chain Monte Carlo methods, we have found that all the quantities related to reionization can be severely constrained at z < 6, whereas a broad range of reionization histories at z > 6 are still permitted by the current data sets. We have shown that with the forthcoming PLANCK data on large-scale polarization, the z > 6 constraints will be improved considerably

  20. CMB lensing constraints on dark energy and modified gravity scenarios

    International Nuclear Information System (INIS)

    Calabrese, Erminia; Cooray, Asantha; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Slosar, Anze; Smoot, George F.

    2009-01-01

    Weak gravitational lensing leaves a characteristic imprint on the cosmic microwave background temperature and polarization angular power spectra. Here, we investigate the possible constraints on the integrated lensing potential from future cosmic microwave background angular spectra measurements expected from Planck and EPIC. We find that Planck and EPIC will constrain the amplitude of the integrated projected potential responsible for lensing at 6% and 1% level, respectively, with very little sensitivity to the shape of the lensing potential. We discuss the implications of such a measurement in constraining dark energy and modified gravity scalar-tensor theories. We then discuss the impact of a wrong assumption on the weak lensing potential amplitude on cosmological parameter inference.

  1. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  2. Constrained noninformative priors

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1994-10-01

    The Jeffreys noninformative prior distribution for a single unknown parameter is the distribution corresponding to a uniform distribution in the transformed model where the unknown parameter is approximately a location parameter. To obtain a prior distribution with a specified mean but with diffusion reflecting great uncertainty, a natural generalization of the noninformative prior is the distribution corresponding to the constrained maximum entropy distribution in the transformed model. Examples are given

  3. Anisotropy of acoustic properties in paratellurite

    International Nuclear Information System (INIS)

    Parygin, Vladimir N.

    1996-01-01

    One of the peculiarities of the TeO 2 crystal consists of its strong acoustic anisotropy. This anisotropy demonstrates itself by acoustic energy walk-off and anisotropic distortion of an acoustic beam. Four constants completely characterise the acoustic anisotropy of the medium. In this paper these constants are calculated for various directions of the acoustic beam in crystal. (authors)

  4. Strong CMB constraint on P-wave annihilating dark matter

    Directory of Open Access Journals (Sweden)

    Haipeng An

    2017-10-01

    Full Text Available We consider a dark sector consisting of dark matter that is a Dirac fermion and a scalar mediator. This model has been extensively studied in the past. If the scalar couples to the dark matter in a parity conserving manner then dark matter annihilation to two mediators is dominated by the P-wave channel and hence is suppressed at very low momentum. The indirect detection constraint from the anisotropy of the Cosmic Microwave Background is usually thought to be absent in the model because of this suppression. In this letter we show that dark matter annihilation via bound state formation occurs through the S-wave and hence there is a constraint on the parameter space of the model from the Cosmic Microwave Background.

  5. Constraining N=1 supergravity inflation with non-minimal Kähler operators using δN formalism

    International Nuclear Information System (INIS)

    Choudhury, Sayantan

    2014-01-01

    In this paper I provide a general framework based on δN formalism to study the features of unavoidable higher dimensional non-renormalizable Kähler operators for N=1 supergravity (SUGRA) during primordial inflation from the combined constraint on non-Gaussianity, sound speed and CMB dipolar asymmetry as obtained from the recent Planck data. In particular I study the nonlinear evolution of cosmological perturbations on large scales which enables us to compute the curvature perturbation, ζ, without solving the exact perturbed field equations. Further I compute the non-Gaussian parameters f NL , τ NL and g NL for local type of non-Gaussianities and CMB dipolar asymmetry parameter, A CMB , using the δN formalism for a generic class of sub-Planckian models induced by the Hubble-induced corrections for a minimal supersymmetric D-flat direction where inflation occurs at the point of inflection within the visible sector. Hence by using multi parameter scan I constrain the non-minimal couplings appearing in non-renormalizable Kähler operators within, O(1), for the speed of sound, 0.02≤c s ≤1, and tensor to scalar, 10 −22 ≤r ⋆ ≤0.12. Finally applying all of these constraints I will fix the lower as well as the upper bound of the non-Gaussian parameters within, O(1−5)≤f NL ≤8.5, O(75−150)≤τ NL ≤2800 and O(17.4−34.7)≤g NL ≤648.2, and CMB dipolar asymmetry parameter within the range, 0.05≤A CMB ≤0.09

  6. Constraining N=1 supergravity inflation with non-minimal Kähler operators using δN formalism

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sayantan [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700 108 (India)

    2014-04-15

    In this paper I provide a general framework based on δN formalism to study the features of unavoidable higher dimensional non-renormalizable Kähler operators for N=1 supergravity (SUGRA) during primordial inflation from the combined constraint on non-Gaussianity, sound speed and CMB dipolar asymmetry as obtained from the recent Planck data. In particular I study the nonlinear evolution of cosmological perturbations on large scales which enables us to compute the curvature perturbation, ζ, without solving the exact perturbed field equations. Further I compute the non-Gaussian parameters f{sub NL} , τ{sub NL} and g{sub NL} for local type of non-Gaussianities and CMB dipolar asymmetry parameter, A{sub CMB}, using the δN formalism for a generic class of sub-Planckian models induced by the Hubble-induced corrections for a minimal supersymmetric D-flat direction where inflation occurs at the point of inflection within the visible sector. Hence by using multi parameter scan I constrain the non-minimal couplings appearing in non-renormalizable Kähler operators within, O(1), for the speed of sound, 0.02≤c{sub s}≤1, and tensor to scalar, 10{sup −22}≤r{sub ⋆}≤0.12. Finally applying all of these constraints I will fix the lower as well as the upper bound of the non-Gaussian parameters within, O(1−5)≤f{sub NL}≤8.5, O(75−150)≤τ{sub NL}≤2800 and O(17.4−34.7)≤g{sub NL}≤648.2, and CMB dipolar asymmetry parameter within the range, 0.05≤A{sub CMB}≤0.09.

  7. Detecting relic gravitational waves in the CMB: The contamination caused by the cosmological birefringence

    Directory of Open Access Journals (Sweden)

    Wen Zhao

    2014-10-01

    Full Text Available The B-mode polarization of the cosmic microwave background (CMB radiation is an excellent information channel for the detection of relic gravitational waves. However, the detection is contaminated by the B-mode polarization generated by some other effects. In this paper, we discuss the contaminations caused by the cosmological birefringence, which converts the CMB E-mode to the B-mode, and forms the effective noise for the detection of gravitational waves. We find that this contamination is significant, if the rotation angle is large. However, this kind of B-mode can be properly de-rotated, and the effective noises can be greatly reduced. We find that, comparing with the contaminations caused by cosmic weak lensing, the residual polarization generated by the cosmological birefringence is negligible for the detection of relic gravitational waves in the CMB.

  8. Determination of neutrino mass hierarchy by 21 cm line and CMB B-mode polarization observations

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yoshihiko, E-mail: oyamayo@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Shimizu, Akie [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Kohri, Kazunori [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2013-01-29

    We focus on the ongoing and future observations for both the 21 cm line and the CMB B-mode polarization produced by a CMB lensing, and study their sensitivities to the effective number of neutrino species, the total neutrino mass, and the neutrino mass hierarchy. We find that combining the CMB observations with future square kilometer arrays optimized for 21 cm line such as Omniscope can determine the neutrino mass hierarchy at 2{sigma}. We also show that a more feasible combination of Planck + POLARBEAR and SKA can strongly improve errors of the bounds on the total neutrino mass and the effective number of neutrino species to be {Delta}{Sigma}m{sub {nu}}{approx}0.12 eV and {Delta}N{sub {nu}}{approx}0.38 at 2{sigma}, respectively.

  9. Total CMB analysis of streaker aerosol samples by PIXE, PIGE, beta- and optical-absorption analyses

    International Nuclear Information System (INIS)

    Annegarn, H.J.; Przybylowicz, W.J.

    1993-01-01

    Multielemental analyses of aerosol samples are widely used in air pollution receptor modelling. Specifically, the chemical mass balance (CMB) model has become a powerful tool in urban air quality studies. Input data required for the CMB includes not only the traditional X-ray fluorescence (and hence PIXE) detected elements, but also total mass, organic and inorganic carbon, and other light elements including Mg, Na and F. The circular streaker sampler, in combination with PIXE analysis, has developed into a powerful tool for obtaining time-resolved, multielemental aerosol data. However, application in CMB modelling has been limited by the absence of total mass and complementary light element data. This study reports on progress in using techniques complementary to PIXE to obtain additional data from circular streaker samples, maintaining the nondestructive, instrumental approach inherent in PIXE: Beta-gauging using a 147 Pm source for total mass; optical absorption for inorganic carbon; and PIGE to measure the lighter elements. (orig.)

  10. Constraints on the coupling between dark energy and dark matter from CMB data

    International Nuclear Information System (INIS)

    Murgia, R.; Gariazzo, S.; Fornengo, N.

    2016-01-01

    We investigate a phenomenological non-gravitational coupling between dark energy and dark matter, where the interaction in the dark sector is parameterized as an energy transfer either from dark matter to dark energy or the opposite. The models are constrained by a whole host of updated cosmological data: cosmic microwave background temperature anisotropies and polarization, high-redshift supernovae, baryon acoustic oscillations, redshift space distortions and gravitational lensing. Both models are found to be compatible with all cosmological observables, but in the case where dark matter decays into dark energy, the tension with the independent determinations of H 0 and σ 8 , already present for standard cosmology, increases: this model in fact predicts lower H 0 and higher σ 8 , mostly as a consequence of the higher amount of dark matter at early times, leading to a stronger clustering during the evolution. Instead, when dark matter is fed by dark energy, the reconstructed values of H 0 and σ 8 nicely agree with their local determinations, with a full reconciliation between high- and low-redshift observations. A non-zero coupling between dark energy and dark matter, with an energy flow from the former to the latter, appears therefore to be in better agreement with cosmological data

  11. The basic components of residual migration in VTI media using anisotropy continuation

    KAUST Repository

    Alkhalifah, Tariq Ali; Fomel, S.

    2011-01-01

    We introduce anisotropy continuation as a process which relates changes in seismic images to perturbations in the anisotropic medium parameters. This process is constrained by two kinematic equations, one for perturbations in the normal-moveout (NMO) velocity and the other for perturbations in the dimensionless anisotropy parameter ?. We consider separately the case of post-stack migration and show that the kinematic equations in this case can be solved explicitly by converting them to ordinary differential equations using the method of characteristics. When comparing the results of kinematic analytical computations with synthetic numerical experiments confirms the theoretical accuracy of the method.

  12. The basic components of residual migration in VTI media using anisotropy continuation

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-03-24

    We introduce anisotropy continuation as a process which relates changes in seismic images to perturbations in the anisotropic medium parameters. This process is constrained by two kinematic equations, one for perturbations in the normal-moveout (NMO) velocity and the other for perturbations in the dimensionless anisotropy parameter ?. We consider separately the case of post-stack migration and show that the kinematic equations in this case can be solved explicitly by converting them to ordinary differential equations using the method of characteristics. When comparing the results of kinematic analytical computations with synthetic numerical experiments confirms the theoretical accuracy of the method.

  13. Magnetic anisotropy of lecithin membranes. A new anisotropy susceptometer

    OpenAIRE

    Scholz, F.; Boroske, E.; Helfrich, W.

    1984-01-01

    Cylindrical giant vesicles prepared from egg lecithin and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are oriented in an external magnetic field and observed by phase contrast microscopy. The anisotropic part of the diamagnetic susceptibility of the lecithin membrane is determined from the distribution of angles between the magnetic field and the long cylinder axis due to thermal fluctuations. The anisotropy of DMPC is found to be larger by a factor of 2 than that of egg lecithin. This...

  14. The cross-correlation of the CMB polarization and the 21-cm line fluctuations from cosmic reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem

    2008-01-01

    The cosmic microwave background (CMB) polarization and the 21-cm line fluctuations are powerful probes of cosmological reionization. We study how the cross-correlation between the CMB polarization (E modes) and the 21-cm line fluctuations can be used to gain further understanding of the reionization

  15. Anisotropy of domain wall resistance

    Science.gov (United States)

    Viret; Samson; Warin; Marty; Ott; Sondergard; Klein; Fermon

    2000-10-30

    The resistive effect of domain walls in FePd films with perpendicular anisotropy was studied experimentally as a function of field and temperature. The films were grown directly on MgO substrates, which induces an unusual virgin magnetic configuration composed of 60 nm wide parallel stripe domains. This allowed us to carry out the first measurements of the anisotropy of domain wall resistivity in the two configurations of current perpendicular and parallel to the walls. At 18 K, we find 8.2% and 1.3% for the domain wall magnetoresistance normalized to the wall width (8 nm) in these two respective configurations. These values are consistent with the predictions of Levy and Zhang.

  16. Bayesian Markov Chain Monte Carlo inversion for weak anisotropy parameters and fracture weaknesses using azimuthal elastic impedance

    Science.gov (United States)

    Chen, Huaizhen; Pan, Xinpeng; Ji, Yuxin; Zhang, Guangzhi

    2017-08-01

    A system of aligned vertical fractures and fine horizontal shale layers combine to form equivalent orthorhombic media. Weak anisotropy parameters and fracture weaknesses play an important role in the description of orthorhombic anisotropy (OA). We propose a novel approach of utilizing seismic reflection amplitudes to estimate weak anisotropy parameters and fracture weaknesses from observed seismic data, based on azimuthal elastic impedance (EI). We first propose perturbation in stiffness matrix in terms of weak anisotropy parameters and fracture weaknesses, and using the perturbation and scattering function, we derive PP-wave reflection coefficient and azimuthal EI for the case of an interface separating two OA media. Then we demonstrate an approach to first use a model constrained damped least-squares algorithm to estimate azimuthal EI from partially incidence-phase-angle-stack seismic reflection data at different azimuths, and then extract weak anisotropy parameters and fracture weaknesses from the estimated azimuthal EI using a Bayesian Markov Chain Monte Carlo inversion method. In addition, a new procedure to construct rock physics effective model is presented to estimate weak anisotropy parameters and fracture weaknesses from well log interpretation results (minerals and their volumes, porosity, saturation, fracture density, etc.). Tests on synthetic and real data indicate that unknown parameters including elastic properties (P- and S-wave impedances and density), weak anisotropy parameters and fracture weaknesses can be estimated stably in the case of seismic data containing a moderate noise, and our approach can make a reasonable estimation of anisotropy in a fractured shale reservoir.

  17. Ring-constrained Join

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Karras, Panagiotis; Mamoulis, Nikos

    2008-01-01

    . This new operation has important applications in decision support, e.g., placing recycling stations at fair locations between restaurants and residential complexes. Clearly, RCJ is defined based on a geometric constraint but not on distances between points. Thus, our operation is fundamentally different......We introduce a novel spatial join operator, the ring-constrained join (RCJ). Given two sets P and Q of spatial points, the result of RCJ consists of pairs (p, q) (where p ε P, q ε Q) satisfying an intuitive geometric constraint: the smallest circle enclosing p and q contains no other points in P, Q...

  18. Geomechanical Anisotropy and Rock Fabric in Shales

    Science.gov (United States)

    Huffman, K. A.; Connolly, P.; Thornton, D. A.

    2017-12-01

    Digital rock physics (DRP) is an emerging area of qualitative and quantitative scientific analysis that has been employed on a variety of rock types at various scales to characterize petrophysical, mechanical, and hydraulic rock properties. This contribution presents a generic geomechanically focused DRP workflow involving image segmentation by geomechanical constituents, generation of finite element (FE) meshes, and application of various boundary conditions (i.e. at the edge of the domain and at boundaries of various components such as edges of individual grains). The generic workflow enables use of constituent geological objects and relationships in a computational based approach to address specific questions in a variety of rock types at various scales. Two examples are 1) modeling stress dependent permeability, where it occurs and why it occurs at the grain scale; 2) simulating the path and complexity of primary fractures and matrix damage in materials with minerals or intervals of different mechanical behavior. Geomechanical properties and fabric characterization obtained from 100 micron shale SEM images using the generic DRP workflow are presented. Image segmentation and development of FE simulation composed of relatively simple components (elastic materials, frictional contacts) and boundary conditions enable the determination of bulk static elastic properties. The procedure is repeated for co-located images at pertinent orientations to determine mechanical anisotropy. The static moduli obtained are benchmarked against lab derived measurements since material properties (esp. frictional ones) are poorly constrained at the scale of investigation. Once confidence in the input material parameters is gained, the procedure can be used to characterize more samples (i.e. images) than is possible from rock samples alone. Integration of static elastic properties with grain statistics and geologic (facies) conceptual models derived from core and geophysical logs

  19. Low CMB quadrupole from dark energy isocurvature perturbations

    International Nuclear Information System (INIS)

    Gordon, Christopher; Hu, Wayne

    2004-01-01

    We explicate the origin of the temperature quadrupole in the adiabatic dark energy model and explore the mechanism by which scale invariant isocurvature dark energy perturbations can lead to its sharp suppression. The model requires anticorrelated curvature and isocurvature fluctuations and is favored by the Wilkinson Microwave Anisotropy Probe data at about the 95% confidence level in a flat scale invariant model. In an inflationary context, the anticorrelation may be established if the curvature fluctuations originate from a variable decay rate of the inflaton; such models however tend to overpredict gravitational waves. This isocurvature model can in the future be distinguished from alternatives involving a reduction in large scale power or modifications to the sound speed of the dark energy through the polarization and its cross correlation with the temperature. The isocurvature model retains the same polarization fluctuations as its adiabatic counterpart but reduces the correlated temperature fluctuations. We present a pedagogical discussion of dark energy fluctuations in a quintessence and k-essence context in the Appendix

  20. Cysteine-mediated gene expression and characterization of the CmbR regulon in Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Muhammad Afzal

    2016-12-01

    Full Text Available In this study, we investigated the transcriptomic response of Streptococcus pneumoniae D39 to cysteine. Transcriptome comparison of the D39 wild-type strain grown at a restricted concentration of cysteine (0.03 mM to one grown at a high concentration of cysteine (50 mM in chemically-define medium (CDM revealed elevated expression of various genes/operons, i.e. spd-0150, metQ, spd-0431, metEF, gshT, spd-0618, fhs, tcyB, metB-csd, metA, spd-1898, yvdE, and cysK, likely to be involved in the transport and utilization of cysteine and/or methionine. Microarray-based data were further confirmed by quantitative RT-PCR. Promoter lacZ-fusion studies and quantitative RT-PCR data showed that the transcriptional regulator CmbR acts as a transcriptional repressor of spd-0150, metEF, gshT, spd-0618, tcyB, metA, and yvdE, putatively involved in cysteine uptake and utilization. The operator site of CmbR in the promoter regions of CmbR-regulated genes is predicted and confirmed by mutating or deleting CmbR operator sites from the promoter regions of these genes.

  1. Revisiting the EC/CMB model for extragalactic large scale jets

    Science.gov (United States)

    Lucchini, M.; Tavecchio, F.; Ghisellini, G.

    2017-04-01

    One of the most outstanding results of the Chandra X-ray Observatory was the discovery that AGN jets are bright X-ray emitters on very large scales, up to hundreds of kpc. Of these, the powerful and beamed jets of flat-spectrum radio quasars are particularly interesting, as the X-ray emission cannot be explained by an extrapolation of the lower frequency synchrotron spectrum. Instead, the most common model invokes inverse Compton scattering of photons of the cosmic microwave background (EC/CMB) as the mechanism responsible for the high-energy emission. The EC/CMB model has recently come under criticism, particularly because it should predict a significant steady flux in the MeV-GeV band which has not been detected by the Fermi/LAT telescope for two of the best studied jets (PKS 0637-752 and 3C273). In this work, we revisit some aspects of the EC/CMB model and show that electron cooling plays an important part in shaping the spectrum. This can solve the overproduction of γ-rays by suppressing the high-energy end of the emitting particle population. Furthermore, we show that cooling in the EC/CMB model predicts a new class of extended jets that are bright in X-rays but silent in the radio and optical bands. These jets are more likely to lie at intermediate redshifts and would have been missed in all previous X-ray surveys due to selection effects.

  2. Searching for a holographic connection between dark energy and the low-l CMB multipoles

    DEFF Research Database (Denmark)

    Enqvist, Kari; Hannestad, Steen; Sloth, Martin Snoager

    2004-01-01

    We consider the angular power spectrum in a finite universe with different boundary conditions and perform a fit to the CMB, LSS and supernova data. A finite universe could be the consequence of a holographic constraint, giving rise to an effective IR cutoff at the future event horizon...

  3. Shaping the solar wind electron temperature anisotropy by the interplay of core and suprathermal populations

    Science.gov (United States)

    Shaaban Hamd, S. M.; Lazar, M.; Poedts, S.; Pierrard, V.; Štverák

    2017-12-01

    We present the results of an advanced parametrization of the temperature anisotropy of electrons in the slow solar wind and the electromagnetic instabilities resulting from the interplay of their thermal core and suprathermal halo populations. A large set of observational data (from the Ulysses, Helios and Cluster missions) is used to parametrize these components and establish their correlations. Comparative analysis demonstrates for the first time a particular implication of the suprathermal electrons which are less dense but hotter than thermal electrons. The instabilities are significantly stimulated by the interplay of the core and halo populations, leading to lower thresholds which shape the observed limits of the temperature anisotropy for both the core and halo populations. This double agreement strongly suggests that the selfgenerated instabilities play the major role in constraining the electron anisotropy.

  4. Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes

    Science.gov (United States)

    Lythgoe, K.; Deuss, A. F.

    2017-12-01

    The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.

  5. Sharp spatially constrained inversion

    DEFF Research Database (Denmark)

    Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes...... inversions are compared against classical smooth results and available boreholes. With the focusing approach, the obtained blocky results agree with the underlying geology and allow for easier interpretation by the end-user....

  6. CMB aberration and Doppler effects as a source of hemispherical asymmetries

    International Nuclear Information System (INIS)

    Notari, Alessio; Quartin, Miguel; Catena, Riccardo

    2014-01-01

    Our peculiar motion with respect to the CMB rest frame represents a preferred direction in the observed CMB sky since it induces an apparent deflection of the observed CMB photons (aberration) and a shift in their frequency (Doppler). Both effects distort the multipoles a ℓm 's at all ℓ's. Such effects are real as it has been recently measured for the first time by Planck according to what was forecast in some recent papers. However, the common lore when estimating a power spectrum from CMB is to consider that Doppler affects only the ℓ = 1 multipole, neglecting any other corrections. In this work we use simulations of the CMB sky in a boosted frame with a peculiar velocity β≡v/c = 1.23 × 10 −3 in order to assess the impact of such effect on power spectrum estimations in different regions of the sky. We show that the boost induces a north-south asymmetry in the power spectrum which is highly significant and non-negligible, of about (0.58±0.10)% for half-sky cuts when going up to ℓ ≈ 2500. We suggest that these effects are relevant and may account for some of the north-south asymmetries seen in the Planck data, being especially important at small scales. Finally we analyze the particular case of the ACT experiment, which observed only a small fraction of the sky and show that it suffers a bias of about 1% on the power spectrum and of similar size on some cosmological parameters: for example the position of the peaks shifts by 0.5% and the overall amplitude of the spectrum is about 0.4% lower than a full-sky case

  7. Anisotropy of the cosmic background radiation

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The characteristics of the cosmic microwave background radiation (CBR) are reviewed, focusing on intrinsic anisotropies caused by primordial matter fluctuations. The basic elements of the CBR are outlined and the contributions to anisotropy at different angular scales are discussed. Possible fluctuation spectra that can generate the observed large-scale structure of the universe through gravitational instability and nonlinear evolution are examined and compared with observational searches for cosmic microwave anisotropies. 21 refs

  8. Magnetic anisotropy of Ni/Cr multilayers

    International Nuclear Information System (INIS)

    Kang, S.; Xia, H.

    1997-01-01

    The magnetic anisotropy of Ni/Cr multilayers has been investigated by using vibrating sample magnetometer (VSM) and ferromagnetic resonance techniques (FMR). The FMR spectra are obtained as a function of the orientation of the applied magnetic field from in-plane to out-of-plane. The results are fitted theoretically to determine the magnetic anisotropy. From VSM and FMR, a positive value for Ni/Cr interface anisotropy is obtained, which favours a perpendicular easy axis. The possible mechanism for the perpendicular anisotropy has been discussed and it may be attributed to the magnetostriction, caused by intrinsic stress due to lattice mismatch. (orig.). With 005 figs., 001 tabs

  9. Whole-mantle P-wave velocity structure and azimuthal anisotropy

    Science.gov (United States)

    Yamamoto, Y.; Zhao, D.

    2009-12-01

    There are some hotspot volcanoes on Earth, such as Hawaii and Iceland. The mantle plume hypothesis was proposed forty years ago to explain hotspot volcanoes (e.g., Wilson, 1963; Morgan, 1971). Seismic tomography is a powerful technique to detect mantle plumes and determine their detailed structures. We determined a new whole-mantle 3-D P-wave velocity model (Tohoku model) using a global tomography method (Zhao, 2004, 2009). A flexible-grid approach with a grid interval of ~200 km is adopted to conduct the tomographic inversion. Our model shows that low-velocity (low-V) anomalies with diameters of several hundreds of kilometers are visible from the core-mantle boundary (CMB) to the surface under the major hotspot regions. Under South Pacific where several hotspots including Tahiti exist, there is a huge low-V anomaly from the CMB to the surface. This feature is consistent with the previous models. We conducted extensive resolution tests in order to understand whether this low-V anomaly shows a single superplume or a plume cluster. Unfortunately this problem is still not resolved because the ray path coverage in the mantle under South Pacific is not good enough. A network of ocean bottom seismometers is necessary to solve this problem. To better understand the whole-mantle structure and dynamics, we also conducted P-wave tomographic inversions for the 3-D velocity structure and azimuthal anisotropy. At each grid node there are three unknown parameters: one represents the isotropic velocity, the other two represent the azimuthal anisotropy. Our results show that in the shallow part of the mantle (Japan trench axis. In the Tonga subduction zone, the FVD is also perpendicular to the trench axis. Under the Tibetan region the FVD is NE-SW, which is parallel to the direction of the India-Asia collision. In the deeper part of the upper mantle and in the lower mantle, the amplitude of anisotropy is reduced. One interesting feature is that the FVD aligns in a radiated fashion

  10. Cosmic 21 cm delensing of microwave background polarization and the minimum detectable energy scale of inflation.

    Science.gov (United States)

    Sigurdson, Kris; Cooray, Asantha

    2005-11-18

    We propose a new method for removing gravitational lensing from maps of cosmic microwave background (CMB) polarization anisotropies. Using observations of anisotropies or structures in the cosmic 21 cm radiation, emitted or absorbed by neutral hydrogen atoms at redshifts 10 to 200, the CMB can be delensed. We find this method could allow CMB experiments to have increased sensitivity to a background of inflationary gravitational waves (IGWs) compared to methods relying on the CMB alone and may constrain models of inflation which were heretofore considered to have undetectable IGW amplitudes.

  11. Azimuthal anisotropy measurements by STAR

    Science.gov (United States)

    Yi, Li

    2014-06-01

    The recent study of centrality and transverse momentum (pT) dependence of inclusive charged hardron elliptic anisotropy (v2) at midrapidity (|η|<1.0) in Au+Au collision at √{sNN}=7.7,11.5,19.6,27, and 39 GeV in STAR Beam Energy Scan program is presented. We show that the observed increase of inclusive v2 is mainly due to the average pT increase with energy. In Au+Au 200 GeV collisions, the triangular anisotropy (v3) measurements highly depend on measurement methods; v3 is strongly dependent on Δη. The difference between two- and four-particle cumulants v2{2} and v2{4} for Au+Au and Cu+Cu collision at √{sNN}=62.4 and 200 GeV is used to explore flow fluctuations. Furthermore, by exploiting the symmetry of average flow in pseudorapidity η about midrapidity, the Δη-dependent and independent components are separated using v2{2} and v2{4}.

  12. Azimuthal anisotropy measurements by STAR

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Li

    2014-06-15

    The recent study of centrality and transverse momentum (p{sub T}) dependence of inclusive charged hardron elliptic anisotropy (v{sub 2}) at midrapidity (|η|<1.0) in Au+Au collision at √(s{sub NN})=7.7,11.5,19.6,27, and39 GeV in STAR Beam Energy Scan program is presented. We show that the observed increase of inclusive v{sub 2} is mainly due to the average p{sub T} increase with energy. In Au+Au 200 GeV collisions, the triangular anisotropy (v{sub 3}) measurements highly depend on measurement methods; v{sub 3} is strongly dependent on Δη. The difference between two- and four-particle cumulants v{sub 2}{2} and v{sub 2}{4} for Au+Au and Cu+Cu collision at √(s{sub NN})=62.4 and 200 GeV is used to explore flow fluctuations. Furthermore, by exploiting the symmetry of average flow in pseudorapidity η about midrapidity, the Δη-dependent and independent components are separated using v{sub 2}{2} and v{sub 2}{4}.

  13. Azimuthal anisotropy measurements by STAR

    International Nuclear Information System (INIS)

    Yi, Li

    2014-01-01

    The recent study of centrality and transverse momentum (p T ) dependence of inclusive charged hardron elliptic anisotropy (v 2 ) at midrapidity (|η|<1.0) in Au+Au collision at √(s NN )=7.7,11.5,19.6,27, and39 GeV in STAR Beam Energy Scan program is presented. We show that the observed increase of inclusive v 2 is mainly due to the average p T increase with energy. In Au+Au 200 GeV collisions, the triangular anisotropy (v 3 ) measurements highly depend on measurement methods; v 3 is strongly dependent on Δη. The difference between two- and four-particle cumulants v 2 {2} and v 2 {4} for Au+Au and Cu+Cu collision at √(s NN )=62.4 and 200 GeV is used to explore flow fluctuations. Furthermore, by exploiting the symmetry of average flow in pseudorapidity η about midrapidity, the Δη-dependent and independent components are separated using v 2 {2} and v 2 {4}

  14. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

    International Nuclear Information System (INIS)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Vidal, J. Muñoz; Peña-Garay, C.

    2013-01-01

    The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Σm ν = (0.32±0.11) eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m ββ involved in neutrinoless double beta decay (ββ0ν) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based ββ0ν experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg·year, could already have a sizeable opportunity to observe ββ0ν events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton·year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely

  15. Early cosmology constrained

    Energy Technology Data Exchange (ETDEWEB)

    Verde, Licia; Jimenez, Raul [Institute of Cosmos Sciences, University of Barcelona, IEEC-UB, Martí Franquès, 1, E08028 Barcelona (Spain); Bellini, Emilio [University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Pigozzo, Cassio [Instituto de Física, Universidade Federal da Bahia, Salvador, BA (Brazil); Heavens, Alan F., E-mail: liciaverde@icc.ub.edu, E-mail: emilio.bellini@physics.ox.ac.uk, E-mail: cpigozzo@ufba.br, E-mail: a.heavens@imperial.ac.uk, E-mail: raul.jimenez@icc.ub.edu [Imperial Centre for Inference and Cosmology (ICIC), Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2017-04-01

    We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the ΛCDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter Ω{sub MR} < 0.006 and extra radiation parameterised as extra effective neutrino species 2.3 < N {sub eff} < 3.2 when imposing flatness. Our constraints thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond ΛCDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way that does not depend on late-time Universe assumptions, but depends strongly on early-time physics and in particular on additional components that behave like radiation. We find that the standard ruler length determined in this way is r {sub s} = 147.4 ± 0.7 Mpc if the radiation and neutrino components are standard, but the uncertainty increases by an order of magnitude when non-standard dark radiation components are allowed, to r {sub s} = 150 ± 5 Mpc.

  16. Thermodynamics of SU(2) quantum Yang-Mills theory and CMB anomalies

    Science.gov (United States)

    Hofmann, Ralf

    2014-04-01

    A brief review of effective SU(2) Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field φ, based on non-propagating (anti)selfdual field configurations of topological charge unity. We also discuss kinematic constraints on interacting propagating gauge fields implied by the according spatial coarse-graining, and we explain why the screening physics of an SU(2) photon is subject to an electric-magnetically dual interpretation. This argument relies on the fact that only (anti)calorons of scale parameter ρ ˜ |φ|-1 contribute to the coarse-graining required for thermal-ground-state emergence at temperature T. Thus, use of the effective gauge coupling e in the (anti)caloron action is justified, yielding the value ħ for the latter at almost all temperatures. As a consequence, the indeterministic transition of initial to final plane waves caused by an effective, pointlike vertex is fundamentally mediated in Euclidean time by a single (anti)caloron being part of the thermal ground state. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB) determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2) Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2) photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planck collaboration. Finally, six relativistic polarisations residing in the SU(2) vector modes roughly match the number of degrees of freedom in cosmic neutrinos (Planck) which would disqualify the latter as radiation. Indeed, if interpreted as single center-vortex loops in

  17. Thermodynamics of SU(2 quantum Yang-Mills theory and CMB anomalies

    Directory of Open Access Journals (Sweden)

    Hofmann Ralf

    2014-04-01

    Full Text Available A brief review of effective SU(2 Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field φ, based on non-propagating (antiselfdual field configurations of topological charge unity. We also discuss kinematic constraints on interacting propagating gauge fields implied by the according spatial coarse-graining, and we explain why the screening physics of an SU(2 photon is subject to an electric-magnetically dual interpretation. This argument relies on the fact that only (anticalorons of scale parameter ρ ∼ |φ|−1 contribute to the coarse-graining required for thermal-ground-state emergence at temperature T. Thus, use of the effective gauge coupling e in the (anticaloron action is justified, yielding the value ħ for the latter at almost all temperatures. As a consequence, the indeterministic transition of initial to final plane waves caused by an effective, pointlike vertex is fundamentally mediated in Euclidean time by a single (anticaloron being part of the thermal ground state. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2 Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2 photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planck collaboration. Finally, six relativistic polarisations residing in the SU(2 vector modes roughly match the number of degrees of freedom in cosmic neutrinos (Planck which would disqualify the latter as radiation. Indeed, if interpreted as single center

  18. Constraining neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Dorame, L.; Meloni, D.; Morisi, S.; Peinado, E.; Valle, J.W.F.

    2012-01-01

    A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.

  19. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    International Nuclear Information System (INIS)

    Rezania, H.

    2017-01-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  20. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, H., E-mail: rezania.hamed@gmail.com

    2017-02-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  1. Higher-order anisotropies in the blast-wave model: Disentangling flow and density field anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Cimerman, Jakub [Czech Technical University in Prague, FNSPE, Prague (Czech Republic); Comenius University, FMPI, Bratislava (Slovakia); Tomasik, Boris [Czech Technical University in Prague, FNSPE, Prague (Czech Republic); Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia); Csanad, Mate; Loekoes, Sandor [Eoetvoes Lorand University, Budapest (Hungary)

    2017-08-15

    We formulate a generalisation of the blast-wave model which is suitable for the description of higher-order azimuthal anisotropies of the hadron production. The model includes anisotropy in the density profile as well as an anisotropy in the transverse expansion velocity field. We then study how these two kinds of anisotropies influence the single-particle distributions and the correlation radii of two-particle correlation functions. Particularly we focus on the third-order anisotropy and consideration is given averaging over different orientations of the event plane. (orig.)

  2. Testing non-minimally coupled inflation with CMB data: a Bayesian analysis

    International Nuclear Information System (INIS)

    Campista, Marcela; Benetti, Micol; Alcaniz, Jailson

    2017-01-01

    We use the most recent cosmic microwave background (CMB) data to perform a Bayesian statistical analysis and discuss the observational viability of inflationary models with a non-minimal coupling, ξ, between the inflaton field and the Ricci scalar. We particularize our analysis to two examples of small and large field inflationary models, namely, the Coleman-Weinberg and the chaotic quartic potentials. We find that ( i ) the ξ parameter is closely correlated with the primordial amplitude ; ( ii ) although improving the agreement with the CMB data in the r − n s plane, where r is the tensor-to-scalar ratio and n s the primordial spectral index, a non-null coupling is strongly disfavoured with respect to the minimally coupled standard ΛCDM model, since the upper bounds of the Bayes factor (odds) for ξ parameter are greater than 150:1.

  3. The Atacama Cosmology Telescope: Likelihood for Small-Scale CMB Data

    Science.gov (United States)

    Dunkley, J.; Calabrese, E.; Sievers, J.; Addison, G. E.; Battaglia, N.; Battistelli, E. S.; Bond, J. R.; Das, S.; Devlin, M. J.; Dunner, R.; hide

    2013-01-01

    The Atacama Cosmology Telescope has measured the angular power spectra of microwave fluctuations to arcminute scales at frequencies of 148 and 218 GHz, from three seasons of data. At small scales the fluctuations in the primordial Cosmic Microwave Background (CMB) become increasingly obscured by extragalactic foregounds and secondary CMB signals. We present results from a nine-parameter model describing these secondary effects, including the thermal and kinematic Sunyaev-Zel'dovich (tSZ and kSZ) power; the clustered and Poisson-like power from Cosmic Infrared Background (CIB) sources, and their frequency scaling; the tSZ-CIB correlation coefficient; the extragalactic radio source power; and thermal dust emission from Galactic cirrus in two different regions of the sky. In order to extract cosmological parameters, we describe a likelihood function for the ACT data, fitting this model to the multi-frequency spectra in the multipole range 500 cosmological parameter estimation

  4. Extraction Of Cobalt From Spent CMB Catalyst Using Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Joo S.-H.

    2015-06-01

    Full Text Available The metal extraction from spent CMB catalyst using supercritical CO2(scCO2 was investigated with single organic system, binary organic system and ternary organic system to extract metal ions. Leaching solution of spent CMB catalyst containing 389 mg L−1 Co2+, 187 mg L−1 Mn2+, 133 mg L−1 Na+, 14.97 mg L−1 Ca2+ and 13.2 mg L−1 Mg2+. The method consists of scCO2/ligands complexation process and metal extraction process at 60°C and 200bar. The result showed the Co and Mn was selectively extracted from Mg, Ca and Na in the ternary system of mixture of Cyanex272, DEA and Alamine304-I.

  5. Multiverse effects on the CMB angular correlation function in the framework of NCG

    Science.gov (United States)

    Arabzadeh, Sahar; Kaviani, Kamran

    Following many theories that predict the existence of the multiverse and by conjecture that our space-time may have a generalized geometrical structure at the fundamental level, we are interested in using a non-commutative geometry (NCG) formalism to study a suggested two-layer space that contains our 4-dimensional (4D) universe and a re-derived photon propagator. It can be shown that the photon propagator and a cosmic microwave background (CMB) angular correlation function are comparable, and if there exists such a multiverse system, the distance between the two layers can be estimated to be within the observable universe’s radius. Furthermore, this study revealed that our results are not limited to CMB but can be applied to many other types of radiation, such as X-rays.

  6. Testing non-minimally coupled inflation with CMB data: a Bayesian analysis

    Energy Technology Data Exchange (ETDEWEB)

    Campista, Marcela; Benetti, Micol; Alcaniz, Jailson, E-mail: campista@on.br, E-mail: micolbenetti@on.br, E-mail: alcaniz@on.br [Observatório Nacional, Rua General José Cristino 77, Rio de Janeiro, RJ, 20921-400 Brazil (Brazil)

    2017-09-01

    We use the most recent cosmic microwave background (CMB) data to perform a Bayesian statistical analysis and discuss the observational viability of inflationary models with a non-minimal coupling, ξ, between the inflaton field and the Ricci scalar. We particularize our analysis to two examples of small and large field inflationary models, namely, the Coleman-Weinberg and the chaotic quartic potentials. We find that ( i ) the ξ parameter is closely correlated with the primordial amplitude ; ( ii ) although improving the agreement with the CMB data in the r − n {sub s} plane, where r is the tensor-to-scalar ratio and n {sub s} the primordial spectral index, a non-null coupling is strongly disfavoured with respect to the minimally coupled standard ΛCDM model, since the upper bounds of the Bayes factor (odds) for ξ parameter are greater than 150:1.

  7. MAPCUMBA: A fast iterative multi-grid map-making algorithm for CMB experiments

    Science.gov (United States)

    Doré, O.; Teyssier, R.; Bouchet, F. R.; Vibert, D.; Prunet, S.

    2001-07-01

    The data analysis of current Cosmic Microwave Background (CMB) experiments like BOOMERanG or MAXIMA poses severe challenges which already stretch the limits of current (super-) computer capabilities, if brute force methods are used. In this paper we present a practical solution for the optimal map making problem which can be used directly for next generation CMB experiments like ARCHEOPS and TopHat, and can probably be extended relatively easily to the full PLANCK case. This solution is based on an iterative multi-grid Jacobi algorithm which is both fast and memory sparing. Indeed, if there are Ntod data points along the one dimensional timeline to analyse, the number of operations is of O (Ntod \\ln Ntod) and the memory requirement is O (Ntod). Timing and accuracy issues have been analysed on simulated ARCHEOPS and TopHat data, and we discuss as well the issue of the joint evaluation of the signal and noise statistical properties.

  8. Comparison of distance information given by SN Ia, BAO and CMB

    International Nuclear Information System (INIS)

    Li Hong

    2011-01-01

    The observations of Type Ia supernovae (SN Ia), Baryon Acoustic Oscillations (BAO) and Cosmic Microwave Background radiation (CMB) provide powerful tools for the measurement of cosmological parameters. One of the most useful information encodes in the distance measured by those probes. In this Letter, we test the coherence of the observational information provided by SN Ia, BAO and CMB experiments. We make two kinds of comparison: the first is the constraints on cosmological parameters of the equation of state parameter (EoS) of dark energy (DE) and matter budget parameter Ω m from the latest data by global fitting, and we find the large discrepancy from those different probes. The second comparison is performed among the derived distance information from these observations at certain appointed redshift, the results show that the distance provided by WMAP5 are larger than those from SN Ia and BAO on the whole.

  9. Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking

    International Nuclear Information System (INIS)

    Rassat, A.; Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J.

    2014-01-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html

  10. Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking

    Energy Technology Data Exchange (ETDEWEB)

    Rassat, A. [Laboratoire d' Astrophysique (LASTRO), École Polytechnique Fédérale de Lausanne (EPFL), 51 Chemin des Maillettes, Observatoire de Sauverny, Versoix, CH-1290 (Switzerland); Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J., E-mail: anais.rassat@epfl.ch, E-mail: jstarck@cea.fr, E-mail: paniez.paykari@cea.fr, E-mail: florent.sureau@cea.fr, E-mail: jbobin@cea.fr [Laboratoire AIM, UMR CEA-CNRS-Paris, Irfu, SAp, CEA Saclay, Gif-Sur-Yvette Cedex, F-91191 France (France)

    2014-08-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.

  11. Cosmological parameters from CMB and other data: A Monte Carlo approach

    International Nuclear Information System (INIS)

    Lewis, Antony; Bridle, Sarah

    2002-01-01

    We present a fast Markov chain Monte Carlo exploration of cosmological parameter space. We perform a joint analysis of results from recent cosmic microwave background (CMB) experiments and provide parameter constraints, including σ 8 , from the CMB independent of other data. We next combine data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae type Ia and big-bang nucleosynthesis. The Monte Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and 9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include constraints on the neutrino mass (m ν < or approx. 3 eV), equation of state of the dark energy, and the tensor amplitude, as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of appendixes we describe the many uses of importance sampling, including computing results from new data and accuracy correction of results generated from an approximate method. We also discuss the different ways of converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and consistency, and describe the use of analytic marginalization over normalization parameters

  12. A constraint on Planck-scale modifications to electrodynamics with CMB polarization data

    Energy Technology Data Exchange (ETDEWEB)

    Gubitosi, Giulia; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro [Physics Department, University of Rome ' ' La Sapienza' ' and Sezione Roma1 INFN, P.le Aldo Moro 2, 00185 Rome (Italy); Cooray, Asantha, E-mail: giulia.gubitosi@roma1.infn.it, E-mail: luca.pagano@roma1.infn.it, E-mail: giovanni.amelino-camelia@roma1.infn.it, E-mail: alessandro.melchiorri@roma1.infn.it, E-mail: acooray@uci.edu [Center for Cosmology, Dept. of Physics and Astronomy, University of California Irvine, Irvine, CA 92697 (United States)

    2009-08-01

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ξ, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ξ ≅ −0.110±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ξ achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ confidence of 8.5 × 10{sup −4} (PLANCK), 6.1 × 10{sup −3} (Spider), and 1.0 × 10{sup −5} (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1 × 10{sup −6}.

  13. A constraint on Planck-scale modifications to electrodynamics with CMB polarization data

    International Nuclear Information System (INIS)

    Gubitosi, Giulia; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Cooray, Asantha

    2009-01-01

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ξ, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ξ ≅ −0.110±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ξ achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ confidence of 8.5 × 10 −4 (PLANCK), 6.1 × 10 −3 (Spider), and 1.0 × 10 −5 (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1 × 10 −6

  14. Echoes of inflationary first-order phase transitions in the CMB

    Directory of Open Access Journals (Sweden)

    Hongliang Jiang

    2017-02-01

    Full Text Available Cosmological phase transitions (CPTs, such as the Grand Unified Theory (GUT and the electroweak (EW ones, play a significant role in both particle physics and cosmology. In this letter, we propose to probe the first-order CPTs, by detecting gravitational waves (GWs which are generated during the phase transitions through the cosmic microwave background (CMB. If happened around the inflation era, the first-order CPTs may yield low-frequency GWs due to bubble dynamics, leaving imprints on the CMB. In contrast to the nearly scale-invariant primordial GWs caused by vacuum fluctuation, these bubble-generated GWs are scale dependent and have non-trivial B-mode spectra. If decoupled from inflaton, the EWPT during inflation may serve as a probe for the one after reheating where the baryon asymmetry could be generated via EW baryogenesis (EWBG. The CMB thus provides a potential way to test the feasibility of the EWBG, complementary to the collider measurements of Higgs potential and the direct detection of GWs generated during EWPT.

  15. Echoes of inflationary first-order phase transitions in the CMB

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongliang, E-mail: hjiangag@connect.ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Liu, Tao, E-mail: taoliu@ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Sun, Sichun, E-mail: sichun@uw.edu [Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Wang, Yi, E-mail: phyw@ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong)

    2017-02-10

    Cosmological phase transitions (CPTs), such as the Grand Unified Theory (GUT) and the electroweak (EW) ones, play a significant role in both particle physics and cosmology. In this letter, we propose to probe the first-order CPTs, by detecting gravitational waves (GWs) which are generated during the phase transitions through the cosmic microwave background (CMB). If happened around the inflation era, the first-order CPTs may yield low-frequency GWs due to bubble dynamics, leaving imprints on the CMB. In contrast to the nearly scale-invariant primordial GWs caused by vacuum fluctuation, these bubble-generated GWs are scale dependent and have non-trivial B-mode spectra. If decoupled from inflaton, the EWPT during inflation may serve as a probe for the one after reheating where the baryon asymmetry could be generated via EW baryogenesis (EWBG). The CMB thus provides a potential way to test the feasibility of the EWBG, complementary to the collider measurements of Higgs potential and the direct detection of GWs generated during EWPT.

  16. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    Science.gov (United States)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  17. INTRODUCING MEXICAN NEEDLETS FOR CMB ANALYSIS: ISSUES FOR PRACTICAL APPLICATIONS AND COMPARISON WITH STANDARD NEEDLETS

    International Nuclear Information System (INIS)

    Scodeller, S.; Rudjord, Oe.; Hansen, F. K.; Marinucci, D.; Geller, D.; Mayeli, A.

    2011-01-01

    Over the last few years, needlets have emerged as a useful tool for the analysis of cosmic microwave background (CMB) data. Our aim in this paper is first to introduce into the CMB literature a different form of needlets, known as Mexican needlets, first discussed in the mathematical literature by Geller and Mayeli. We then proceed with an extensive study of the properties of both standard and Mexican needlets; these properties depend on some parameters which can be tuned in order to optimize the performance for a given application. Our second aim in this paper is then to give practical advice on how to adjust these parameters for WMAP and Planck data in order to achieve the best properties for a given problem in CMB data analysis. In particular, we investigate localization properties in real and harmonic space and propose a recipe for quantifying the influence of galactic and point-source masks on the needlet coefficients. We also show that for certain parameter values, the Mexican needlets provide a close approximation to the Spherical Mexican Hat Wavelets (whence their name), with some advantages concerning their numerical implementation and derivation of their statistical properties.

  18. Constrained evolution in numerical relativity

    Science.gov (United States)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  19. Evaluation of electrical resistivity anisotropy in geological mapping ...

    African Journals Online (AJOL)

    user

    Key words: Electrical resistivity anisotropy, radial vertical electrical sounding, anisotropy polygons. INTRODUCTION ... electrical resistivity survey in the geological interpretation ... resistivity and other electrical or electromagnetic based.

  20. Optimization study for the experimental configuration of CMB-S4

    Science.gov (United States)

    Barron, Darcy; Chinone, Yuji; Kusaka, Akito; Borril, Julian; Errard, Josquin; Feeney, Stephen; Ferraro, Simone; Keskitalo, Reijo; Lee, Adrian T.; Roe, Natalie A.; Sherwin, Blake D.; Suzuki, Aritoki

    2018-02-01

    The CMB Stage 4 (CMB-S4) experiment is a next-generation, ground-based experiment that will measure the cosmic microwave background (CMB) polarization to unprecedented accuracy, probing the signature of inflation, the nature of cosmic neutrinos, relativistic thermal relics in the early universe, and the evolution of the universe. CMB-S4 will consist of O(500,000) photon-noise-limited detectors that cover a wide range of angular scales in order to probe the cosmological signatures from both the early and late universe. It will measure a wide range of microwave frequencies to cleanly separate the CMB signals from galactic and extra-galactic foregrounds. To advance the progress towards designing the instrument for CMB-S4, we have established a framework to optimize the instrumental configuration to maximize its scientific output. The framework combines cost and instrumental models with a cosmology forecasting tool, and evaluates the scientific sensitivity as a function of various instrumental parameters. The cost model also allows us to perform the analysis under a fixed-cost constraint, optimizing for the scientific output of the experiment given finite resources. In this paper, we report our first results from this framework, using simplified instrumental and cost models. We have primarily studied two classes of instrumental configurations: arrays of large-aperture telescopes with diameters ranging from 2–10 m, and hybrid arrays that combine small-aperture telescopes (0.5-m diameter) with large-aperture telescopes. We explore performance as a function of telescope aperture size, distribution of the detectors into different microwave frequencies, survey strategy and survey area, low-frequency noise performance, and balance between small and large aperture telescopes for hybrid configurations. Both types of configurations must cover both large (~ degree) and small (~ arcmin) angular scales, and the performance depends on assumptions for performance vs. angular scale

  1. Lightweight cryptography for constrained devices

    DEFF Research Database (Denmark)

    Alippi, Cesare; Bogdanov, Andrey; Regazzoni, Francesco

    2014-01-01

    Lightweight cryptography is a rapidly evolving research field that responds to the request for security in resource constrained devices. This need arises from crucial pervasive IT applications, such as those based on RFID tags where cost and energy constraints drastically limit the solution...... complexity, with the consequence that traditional cryptography solutions become too costly to be implemented. In this paper, we survey design strategies and techniques suitable for implementing security primitives in constrained devices....

  2. A perturbative DFT approach for magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, Khoong Hong; Laskowski, Robert, E-mail: rolask@ihpc.a-star.edu.sg

    2017-04-15

    We develop a perturbative formalism for computing magnetocrystalline anisotropy within density functional theory and the magnetic force theorem. Instead of computing eigenvalues of the spin–orbit Hamiltonian for selected spin polarizations, as in the conventional “force theorem” approach, we show that the effect can be cast into a redefined form of the spin–orbit operator. This allows to separate the large eigenvalue shift due to spin-orbit interaction common for both polarizations from the much smaller magnetic anisotropy splitting. As a consequence the anisotropy splitting may by considered as a perturbation.

  3. Crustal Seismic Anisotropy: Implications for Understanding Crustal Dynamics

    Science.gov (United States)

    Meltzer, A.; Christensen, N.; Okaya, D.

    2003-12-01

    variation in % anisotropy, changes in orientation of the regional foliation within the massif, and velocity (splitting) variance due to non-axial propagation through a wide range of event-station azimuths. Because the composition of the massif is basically homogeneous, the rock fabric is well developed, and the structure well constrained, this data set is ideal for studying and quantifying the affect of non-axial propagation through regional foliation. This type of analysis has important implications for understanding crustal dynamics. Vp, Vs, and Vp/Vs ratios are typically used to infer both lithology and rheology of subsurface materials and to provide constraints for thermo-mechanical models of deformation. Current tomography codes do not generally account for anisotropic effects and may potentially under or over estimate velocity structure in the crust. At Nanga Parbat, a prominent low-velocity zone is mapped beneath the core of the massif. The magnitude and extent of this zone constrains crustal flow paths focusing crustal strain, exhumation, and potential zones of partial melting in the crust. Accurate determination of velocity structure is clearly important to understand crustal structure and modification during orogenesis.

  4. Heterogeneous seismic anisotropy in the transition zone and uppermost lower mantle: evidence from South America, Izu-Bonin and Japan

    Science.gov (United States)

    Lynner, Colton; Long, Maureen D.

    2015-06-01

    Measurements of seismic anisotropy are commonly used to constrain deformation in the upper mantle. Observations of anisotropy at mid-mantle depths are, however, relatively sparse. In this study we probe the anisotropic structure of the mid-mantle (transition zone and uppermost lower mantle) beneath the Japan, Izu-Bonin, and South America subduction systems. We present source-side shear wave splitting measurements for direct teleseismic S phases from earthquakes deeper than 300 km that have been corrected for the effects of upper mantle anisotropy beneath the receiver. In each region, we observe consistent splitting with delay times as large as 1 s, indicating the presence of anisotropy at mid-mantle depths. Clear splitting of phases originating from depths as great as ˜600 km argues for a contribution from anisotropy in the uppermost lower mantle as well as the transition zone. Beneath Japan, fast splitting directions are perpendicular or oblique to the slab strike and do not appear to depend on the propagation direction of the waves. Beneath South America and Izu-Bonin, splitting directions vary from trench-parallel to trench-perpendicular and have an azimuthal dependence, indicating lateral heterogeneity. Our results provide evidence for the presence of laterally variable anisotropy and are indicative of variable deformation and dynamics at mid-mantle depths in the vicinity of subducting slabs.

  5. Inversion for Double-Layer Anisotropy in the Mantle Beneath the Middle America and Izu-Bonin Subduction Zones

    Science.gov (United States)

    Kuo, B. Y.

    2017-12-01

    We measured shear wave splitting for the intraslab events in the Middle America and Izu-Bonin subduction zones recorded at Pacific stations to infer the anisotropic structure in the subslab mantle. The receiver-side anisotropy is accounted for by considering both azimuthal anisotropy determined by SKS splitting and radial anisotropy given in global tomographic model, although the latter does not change the overall pattern of subslab anisotropy. By removing the anisotropy effects from both receiver and source sides, the initial polarization directions (p) of the shear waves used were recovered, most of which are in reasonable agreement with that predicted form the CMT solutions. For both subduction zones, the polarization-splitting plots strongly suggest the presence of two layers of anisotropy. To constrain the two-layer model, we perform inversions which minimize the misfit in both the splitting parameters and p. In the MASZ, the best model contains an upper layer with the fast direction in parallel with the absolute plate motion of the Cocos plate and a lower layer 40-60 degree clockwise from the APM. The delay times are 1.5 and 1.9 s respectively. The interference of the double layer produced dts in excess of 3 s at a certain range of p. The SKS splitting were also inverted for a two-layer model, yielding similar splitting characters and the clockwise rotation. We are investigating why this rotation takes place and how this observation is related to the dynamics of the asthenosphere.

  6. Fermi-LAT γ-ray anisotropy and intensity explained by unresolved radio-loud active galactic nuclei

    International Nuclear Information System (INIS)

    Mauro, Mattia Di; Cuoco, Alessandro; Donato, Fiorenza; Siegal-Gaskins, Jennifer M.

    2014-01-01

    Radio-loud active galactic nuclei (AGN) are expected to contribute substantially to both the intensity and anisotropy of the isotropic γ-ray background (IGRB). In turn, the measured properties of the IGRB can be used to constrain the characteristics of proposed contributing source classes. We consider individual subclasses of radio-loud AGN, including low-, intermediate-, and high-synchrotron-peaked BL Lacertae objects, flat-spectrum radio quasars, and misaligned AGN. Using updated models of the γ-ray luminosity functions of these populations, we evaluate the energy-dependent contribution of each source class to the intensity and anisotropy of the IGRB. We find that collectively radio-loud AGN can account for the entirety of the IGRB intensity and anisotropy as measured by the Fermi Large Area Telescope (LAT). Misaligned AGN provide the bulk of the measured intensity but a negligible contribution to the anisotropy, while high-synchrotron-peaked BL Lacertae objects provide the dominant contribution to the anisotropy. In anticipation of upcoming measurements with the Fermi-LAT and the forthcoming Cherenkov Telescope Array, we predict the anisotropy in the broader energy range that will be accessible to future observations

  7. Fermi-LAT γ-ray anisotropy and intensity explained by unresolved radio-loud active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, Mattia Di; Cuoco, Alessandro; Donato, Fiorenza [Dipartimento di Fisica, Università di Torino, via P. Giuria 1, Torino, 10125 Italy (Italy); Siegal-Gaskins, Jennifer M., E-mail: mattia.dimauro@to.infn.it, E-mail: alessandro.cuoco@to.infn.it, E-mail: donato@to.infn.it, E-mail: jsg@tapir.caltech.edu [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125 (United States)

    2014-11-01

    Radio-loud active galactic nuclei (AGN) are expected to contribute substantially to both the intensity and anisotropy of the isotropic γ-ray background (IGRB). In turn, the measured properties of the IGRB can be used to constrain the characteristics of proposed contributing source classes. We consider individual subclasses of radio-loud AGN, including low-, intermediate-, and high-synchrotron-peaked BL Lacertae objects, flat-spectrum radio quasars, and misaligned AGN. Using updated models of the γ-ray luminosity functions of these populations, we evaluate the energy-dependent contribution of each source class to the intensity and anisotropy of the IGRB. We find that collectively radio-loud AGN can account for the entirety of the IGRB intensity and anisotropy as measured by the Fermi Large Area Telescope (LAT). Misaligned AGN provide the bulk of the measured intensity but a negligible contribution to the anisotropy, while high-synchrotron-peaked BL Lacertae objects provide the dominant contribution to the anisotropy. In anticipation of upcoming measurements with the Fermi-LAT and the forthcoming Cherenkov Telescope Array, we predict the anisotropy in the broader energy range that will be accessible to future observations.

  8. Primary and Secondary Anisotropies of Cosmic Microwave Background

    Science.gov (United States)

    Seljak, Uros

    2002-01-01

    The three main topics we proposed to do are linear calculations (continuing development of CMBFAST), nonlinear calculations of gas physics relevant to Cosmic Microwave Background (CMB) (Sunyaev-Zeldovich effect, etc.) and nonlinear effects on CMB due to dark matter (gravitational lensing, etc.). We describe each of these topics, as well as additional topics PI and his group worked on that are related to the topics in the proposal.

  9. Solvent induced supramolecular anisotropy in molecular gels

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Michael A., E-mail: mroger09@uoguelph.ca [Department of Food Science, University of Guelph, Guelph, Ontario, N3C3X9 (Canada); Corradini, Maria G. [Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003 (United States); Emge, Thomas [Department of Chemistry and Biochemistry, Rutgers University, New Brunswick, NJ, 08901 (United States)

    2017-06-15

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  10. Solvent induced supramolecular anisotropy in molecular gels

    International Nuclear Information System (INIS)

    Rogers, Michael A.; Corradini, Maria G.; Emge, Thomas

    2017-01-01

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  11. Texture and anisotropy analysis of Qusaiba shales

    KAUST Repository

    Kanitpanyacharoen, Waruntorn; Wenk, Hans-Rudolf; Kets, Frans; Lehr, Christian; Wirth, Richard

    2011-01-01

    Scanning and transmission electron microscopy, synchrotron X-ray diffraction, microtomography and ultrasonic velocity measurements were used to characterize microstructures and anisotropy of three deeply buried Qusaiba shales from the Rub

  12. Cellulose and the Control of Growth Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Tobias I. Baskin

    2004-04-01

    The authors research aims to understand morphogenesis, focusing on growth anisotropy, a process that is crucial to make organs with specific and heritable shapes. For the award, the specific aims were to test hypotheses concerning how growth anisotropy is controlled by cell wall structure, particularly by the synthesis and alignment of cellulose microfibrils, the predominant mechanical element in the cell wall. This research has involved characterizing the basic physiology of anisotropic expansion, including measuring it at high resolution; and second, characterizing the relationship between growth anisotropy, and cellulose microfibrils. Important in this relationship and also to the control of anisotropic expansion are structures just inside the plasma membrane called cortical microtubules, and the research has also investigated their contribution to controlling anisotropy and microfibril alignment. In addition to primary experimental papers, I have also developed improved methods relating to these objectives as well as written relevant reviews. Major accomplishments in each area will now be described.

  13. Higher-order anisotropies in the Buda-Lund model: Disentangling flow and density field anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Loekoes, Sandor [Eoetvoes Lorand University, Budapest (Hungary); Csanad, Mate [Eoetvoes Lorand University, Budapest (Hungary); Stony Brook University, Stony Brook, NY (United States); Tomasik, Boris [Univerzita Mateja Bela, Banska Bystrica (Slovakia); Czech Technical University in Prague, FNSPE, Prague (Czech Republic); Csoergo, Tamas [Wigner RCP, Budapest (Hungary); KRF, Gyoengyoes (Hungary)

    2016-10-15

    The Buda-Lund hydro model describes an expanding ellipsoidal fireball, and fits the observed elliptic flow and oscillating HBT radii successfully. Due to fluctuations in energy depositions, the fireball shape however fluctuates on an event-by-event basis. The transverse plane asymmetry can be translated into a series of multipole anisotropy coefficients. These anisotropies then result in measurable momentum-space anisotropies, to be measured with respect to their respective symmetry planes. In this paper we detail an extension of the Buda-Lund model to multipole anisotropies and investigate the resulting flow coefficients and oscillations of HBT radii. (orig.)

  14. Slow electron contribution to inelastic reflection anisotropy

    International Nuclear Information System (INIS)

    Podsvirov, O.A.; Kuznetsov, Yu.A.

    1980-01-01

    Investigated is electron contribution with low energy (up to 1 keV) to the anisotropy of electron inelastic reflection (IRE) from silicon monocrystal (111) within 12-50 keV energy range of primary electrons. Experimental data on IRE anisotropy are presented: delay curves for silicon monocrystal, permitting to separate electrons with the energy up to 1 keV, dependences of IRE anisotropy on the energy of primary electrons for the systems - monocrystalline silicon-amorphous silicon film and delay curves for such systems (film thickness varies from 20 to 2000 A). Suggested is a phenomenologic model, permitting to take into account the contribution of slow electrons to IRE anisotropy: it is supposed, that three groups of electrons take part in the formation of the latter: elastic and inelastic reflected electrons, slow electrons, excited by primary electrons and slow electrons, generated by the reverse flow of the scattered electrons. Contribution of electrons, different by origin, to IRE anisotropy is evaluated in accordance with the experimental data on the basis of this model. It is stated, that slow electrons constitute approximately one half of the IRE anisotropy value, the contribution of both groups of slow electrons being approximately equal

  15. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  16. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  17. Lowermost mantle anisotropy near the eastern edge of the Pacific LLSVP: constraints from SKS-SKKS splitting intensity measurements

    Science.gov (United States)

    Deng, Jie; Long, Maureen D.; Creasy, Neala; Wagner, Lara; Beck, Susan; Zandt, George; Tavera, Hernando; Minaya, Estela

    2017-08-01

    Seismic anisotropy has been documented in many portions of the lowermost mantle, with particularly strong anisotropy thought to be present along the edges of large low shear velocity provinces (LLSVPs). The region surrounding the Pacific LLSVP, however, has not yet been studied extensively in terms of its anisotropic structure. In this study, we use seismic data from southern Peru, northern Bolivia and Easter Island to probe lowermost mantle anisotropy beneath the eastern Pacific Ocean, mostly relying on data from the Peru Lithosphere and Slab Experiment and Central Andean Uplift and Geodynamics of High Topography experiments. Differential shear wave splitting measurements from phases that have similar ray paths in the upper mantle but different ray paths in the lowermost mantle, such as SKS and SKKS, are used to constrain anisotropy in D″. We measured splitting for 215 same station-event SKS-SKKS pairs that sample the eastern Pacific LLSVP at the base of the mantle. We used measurements of splitting intensity(SI), a measure of the amount of energy on the transverse component, to objectively and quantitatively analyse any discrepancies between SKS and SKKS phases. While the overall splitting signal is dominated by the upper-mantle anisotropy, a minority of SKS-SKKS pairs (∼10 per cent) exhibit strongly discrepant splitting between the phases (i.e. the waveforms require a difference in SI of at least 0.4), indicating a likely contribution from lowermost mantle anisotropy. In order to enhance lower mantle signals, we also stacked waveforms within individual subregions and applied a waveform differencing technique to isolate the signal from the lowermost mantle. Our stacking procedure yields evidence for substantial splitting due to lowermost mantle anisotropy only for a specific region that likely straddles the edge of Pacific LLSVP. Our observations are consistent with the localization of deformation and anisotropy near the eastern boundary of the Pacific LLSVP

  18. Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking

    Science.gov (United States)

    Rassat, Anais

    2016-07-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes are available online.

  19. The Role of the CMB in Redshift Related Departures from the Gao–Solomon Relation

    International Nuclear Information System (INIS)

    Tunnard, R.; Greve, T. R.

    2017-01-01

    A strong correlation between the far-IR and HCN(1−0) line luminosities, known as the Gao–Solomon relation, has been observed to hold over more than 10 orders of magnitude in the local universe. Departures from this relation at redshifts ≳1.5 have been interpreted as evidence for increased dense gas star formation efficiency in luminous galaxies during the period of peak of star formation in the history of the universe. We examine whether the offsets from the relation can be explained by the hotter Cosmic Microwave Background (CMB) at high redshift, which, due to a loss of contrast against the hotter background, reduces the observable molecular-line flux far more significantly than the far-IR continuum bands. Simple line-of-sight modeling argues for highly significant departures from the Gao–Solomon relation at high redshift for kinetic temperatures ∼15 K, while more complex toy-galaxy models based on NGC 1068 suggest a much weaker effect with the galaxy integrated HCN line flux falling by only 10% at z = 3, within the intrinsic scatter of the relation. We conclude that, while the CMB is unlikely to explain the deviations reported in the literature, it may introduce a second-order effect on the relation by raising the low-luminosity end of the Gao–Solomon relation in cooler galaxies. A similar examination of the CO-IR relation finds tantalizing signs of the CMB having a measurable effect on the integrated CO emission in high-redshift galaxies, but these signs cannot be confirmed with the current data.

  20. The Role of the CMB in Redshift Related Departures from the Gao–Solomon Relation

    Energy Technology Data Exchange (ETDEWEB)

    Tunnard, R.; Greve, T. R., E-mail: richard.tunnard.13@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2017-11-01

    A strong correlation between the far-IR and HCN(1−0) line luminosities, known as the Gao–Solomon relation, has been observed to hold over more than 10 orders of magnitude in the local universe. Departures from this relation at redshifts ≳1.5 have been interpreted as evidence for increased dense gas star formation efficiency in luminous galaxies during the period of peak of star formation in the history of the universe. We examine whether the offsets from the relation can be explained by the hotter Cosmic Microwave Background (CMB) at high redshift, which, due to a loss of contrast against the hotter background, reduces the observable molecular-line flux far more significantly than the far-IR continuum bands. Simple line-of-sight modeling argues for highly significant departures from the Gao–Solomon relation at high redshift for kinetic temperatures ∼15 K, while more complex toy-galaxy models based on NGC 1068 suggest a much weaker effect with the galaxy integrated HCN line flux falling by only 10% at z = 3, within the intrinsic scatter of the relation. We conclude that, while the CMB is unlikely to explain the deviations reported in the literature, it may introduce a second-order effect on the relation by raising the low-luminosity end of the Gao–Solomon relation in cooler galaxies. A similar examination of the CO-IR relation finds tantalizing signs of the CMB having a measurable effect on the integrated CO emission in high-redshift galaxies, but these signs cannot be confirmed with the current data.

  1. SU(2)CMB at high redshifts and the value of H0

    Science.gov (United States)

    Hahn, Steffen; Hofmann, Ralf

    2017-07-01

    We investigate a high-z cosmological model to compute the comoving sound horizon rs at baryon-velocity freeze-out towards the end of hydrogen recombination. This model assumes a replacement of the conventional cosmic microwave background (CMB) photon gas by deconfining SU(2) Yang-Mills thermodynamics, three flavours of massless neutrinos (Nν = 3) and a purely baryonic matter sector [no cold dark-matter (CDM)]. The according SU(2) temperature-redshift relation of the CMB is contrasted with recent measurements appealing to the thermal Sunyaev-Zel'dovich effect and CMB-photon absorption by molecular rotation bands or atomic hyperfine levels. Relying on a realistic simulation of the ionization history throughout recombination, we obtain z* = 1693.55 ± 6.98 and zdrag = 1812.66 ± 7.01. Due to considerable widths of the visibility functions in the solutions to the associated Boltzmann hierarchy and Euler equation, we conclude that z* and zdrag overestimate the redshifts for the respective photon and baryon-velocity freeze-out. Realistic decoupling values turn out to be zlf,* = 1554.89 ± 5.18 and zlf, drag = 1659.30 ± 5.48. With rs(zlf, drag) = (137.19 ± 0.45) Mpc and the essentially model independent extraction of rsH0 = constant from low-z data in Bernal, Verde & Riess, we obtain a good match with the value H0 = (73.24 ± 1.74) km s-1 Mpc-1 extracted in Riess et al. by appealing to Cepheid-calibrated Type Ia supernovae, new parallax measurements, stronger constraints on the Hubble flow and a refined computation of distance to NGC 4258 from maser data. We briefly comment on a possible interpolation of our high-z model, invoking percolated and unpercolated U(1) topological solitons of a Planck-scale axion field, to the phenomenologically successful low-z ΛCDM cosmology.

  2. Using Big Bang Nucleosynthesis to extend CMB probes of neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Shimon, M.; Miller, N.J.; Fuller, G.M.; Keating, B.G. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA, 92093 (United States); Kishimoto, C.T. [Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095 (United States); Smith, C.J., E-mail: meirs@mamacass.ucsd.edu, E-mail: nmiller@physics.ucsd.edu, E-mail: ckishimo@physics.ucsd.edu, E-mail: christel.smith@asu.edu, E-mail: gfuller@ucsd.edu, E-mail: bkeating@ucsd.edu [Department of Physics, Arizona State University, Tempe, AZ, 85287 (United States)

    2010-05-01

    We present calculations showing that upcoming Cosmic Microwave Background (CMB) experiments will have the power to improve on current constraints on neutrino masses and provide new limits on neutrino degeneracy parameters. The latter could surpass those derived from Big Bang Nucleosynthesis (BBN) and the observationally-inferred primordial helium abundance. These conclusions derive from our Monte Carlo Markov Chain (MCMC) simulations which incorporate a full BBN nuclear reaction network. This provides a self-consistent treatment of the helium abundance, the baryon number, the three individual neutrino degeneracy parameters and other cosmological parameters. Our analysis focuses on the effects of gravitational lensing on CMB constraints on neutrino rest mass and degeneracy parameter. We find for the PLANCK experiment that total (summed) neutrino mass M{sub ν} > 0.29 eV could be ruled out at 2σ or better. Likewise neutrino degeneracy parameters ξ{sub ν{sub e}} > 0.11 and |ξ{sub ν{sub μ{sub /{sub τ}}}}| > 0.49 could be detected or ruled out at 2σ confidence, or better. For POLARBEAR we find that the corresponding detectable values are M{sub ν} > 0.75 eV, ξ{sub ν{sub e}} > 0.62, and |ξ{sub ν{sub μ{sub /{sub τ}}}}| > 1.1, while for EPIC we obtain M{sub ν} > 0.20 eV, ξ{sub ν{sub e}} > 0.045, and |ξ{sub ν{sub μ{sub /{sub τ}}}}| > 0.29. Our forcast for EPIC demonstrates that CMB observations have the potential to set constraints on neutrino degeneracy parameters which are better than BBN-derived limits and an order of magnitude better than current WMAP-derived limits.

  3. Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation

    Science.gov (United States)

    Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.

    2015-11-01

    We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.

  4. Anisoft - Advanced Treatment of Magnetic Anisotropy Data

    Science.gov (United States)

    Chadima, M.

    2017-12-01

    Since its first release, Anisoft (Anisotropy Data Browser) has gained a wide popularity in magnetic fabric community mainly due to its simple and user-friendly interface enabling very fast visualization of magnetic anisotropy tensors. Here, a major Anisoft update is presented transforming a rather simple data viewer into a platform offering an advanced treatment of magnetic anisotropy data. The updated software introduces new enlarged binary data format which stores both in-phase and out-of-phase (if measured) susceptibility tensors (AMS) or tensors of anisotropy of magnetic remanence (AMR) together with their respective confidence ellipses and values of F-tests for anisotropy. In addition to the tensor data, a whole array of specimen orientation angles, orientation of mesoscopic foliation(s) and lineation(s) is stored for each record enabling later editing or corrections. The input data may be directly acquired by AGICO Kappabridges (AMS) or Spinner Magnetometers (AMR); imported from various data formats, including the long-time standard binary ran-format; or manually created. Multiple anisotropy files can be combined together or split into several files by manual data selection or data filtering according to their values. Anisotropy tensors are conventionally visualized as principal directions (eigenvectors) in equal-area projection (stereoplot) together with a wide array of quantitative anisotropy parameters presented in histograms or in color-coded scatter plots showing mutual relationship of up to three quantitative parameters. When dealing with AMS in variable low fields, field-independent and field-dependent components of anisotropy can be determined (Hrouda 2009). For a group of specimens, individual principal directions can be contoured, or a mean tensor and respective confidence ellipses of its principal directions can be calculated using either the Hext-Jelinek (Jelinek 1978) statistics or the Bootstrap method (Constable & Tauxe 1990). Each graphical

  5. Primordial helium abundance from CMB: A constraint from recent observations and a forecast

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Sekiguchi, Toyokazu; Takahashi, Tomo

    2008-01-01

    We studied a constraint on the primordial helium abundance Y p from current and future observations of CMB. Using the currently available data from WMAP, ACBAR, CBI, and BOOMERANG, we obtained the constraint as Y p =0.25 -0.07 +0.10 at 68% confidence level. We also provide a forecast for the Planck experiment using the Markov chain Monte Carlo approach. In addition to forecasting the constraint on Y p , we investigate how assumptions for Y p affect constraints on the other cosmological parameters.

  6. CMB constraints on the inflaton couplings and reheating temperature in α-attractor inflation

    Science.gov (United States)

    Drewes, Marco; Kang, Jin U.; Mun, Ui Ri

    2017-11-01

    We study reheating in α-attractor models of inflation in which the inflaton couples to other scalars or fermions. We show that the parameter space contains viable regions in which the inflaton couplings to radiation can be determined from the properties of CMB temperature fluctuations, in particular the spectral index. This may be the only way to measure these fundamental microphysical parameters, which shaped the universe by setting the initial temperature of the hot big bang and contain important information about the embedding of a given model of inflation into a more fundamental theory of physics. The method can be applied to other models of single field inflation.

  7. Modeling elastic anisotropy in strained heteroepitaxy.

    Science.gov (United States)

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2017-09-20

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.

  8. Modeling elastic anisotropy in strained heteroepitaxy

    Science.gov (United States)

    Krishna Dixit, Gopal; Ranganathan, Madhav

    2017-09-01

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to facets on the surface.

  9. On the determination of neutrino masses and dark energy evolution from the cross-correlation of CMB and LSS

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Takahashi, Tomo

    2008-01-01

    We discuss the possibilities of the simultaneous determination of the neutrino masses and the evolution of dark energy from future cosmological observations such as cosmic microwave background (CMB), large scale structure (LSS) and the cross-correlation between them. Recently it has been discussed that there is a degeneracy between the neutrino masses and the equation of state for dark energy. It is also known that there are some degeneracies among the parameters describing the dark energy evolution. We discuss the implications of these for the cross-correlation of CMB with LSS in some detail. Then we consider to what extent we can determine the neutrino masses and the dark energy evolution using the expected data from CMB, LSS and their cross-correlation

  10. Global Transition Zone Anisotropy and Consequences for Mantle Flow and Earth's Deep Water Cycle

    Science.gov (United States)

    Beghein, C.; Yuan, K.

    2011-12-01

    The transition zone has long been at the center of the debate between multi- and single-layered convection models that directly relate to heat transport and chemical mixing throughout the mantle. It has also been suggested that the transition zone is a reservoir that collects water transported by subduction of the lithosphere into the mantle. Since water lowers mantle minerals density and viscosity, thereby modifying their rheology and melting behavior, it likely affects global mantle dynamics and the history of plate tectonics. Constraining mantle flow is therefore important for our understanding of Earth's thermochemical evolution and deep water cycle. Because it can result from deformation by dislocation creep during convection, seismic anisotropy can help us model mantle flow. It is relatively well constrained in the uppermost mantle, but its presence in the transition zone is still debated. Its detection below 250 km depth has been challenging to date because of the poor vertical resolution of commonly used datasets. In this study, we used global Love wave overtone phase velocity maps, which are sensitive to structure down to much larger depths than fundamental modes alone, and have greater depth resolution than shear wave-splitting data. This enabled us to obtain a first 3-D model of azimuthal anisotropy for the upper 800km of the mantle. We inverted the 2Ψ terms of anisotropic phase velocity maps [Visser, et al., 2008] for the first five Love wave overtones between 35s and 174s period. The resulting model shows that the average anisotropy amplitude for vertically polarized shear waves displays two main stable peaks: one in the uppermost mantle and, most remarkably, one in the lower transition zone. F-tests showed that the presence of 2Ψ anisotropy in the transition zone is required to improve the third, fourth, and fifth overtones fit. Because of parameter trade-offs, however, we cannot exclude that the anisotropy is located in the upper transition zone as

  11. Fermi Non-detections of Four X-Ray Jet Sources and Implications for the IC/CMB Mechanism

    Science.gov (United States)

    Breiding, Peter; Meyer, Eileen T.; Georganopoulos, Markos; Keenan, M. E.; DeNigris, N. S.; Hewitt, Jennifer

    2017-11-01

    Since its launch in 1999, the Chandra X-ray observatory has discovered several dozen X-ray jets associated with powerful quasars. In many cases, the X-ray spectrum is hard and appears to come from a second spectral component. The most popular explanation for the kpc-scale X-ray emission in these cases has been inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by relativistic electrons in the jet (the IC/CMB model). Requiring the IC/CMB emission to reproduce the observed X-ray flux density inevitably predicts a high level of gamma-ray emission, which should be detectable with the Fermi Large Area Telescope (LAT). In previous work, we found that gamma-ray upper limits from the large-scale jets of 3C 273 and PKS 0637-752 violate the predictions of the IC/CMB model. Here, we present Fermi/LAT flux density upper limits for the X-ray jets of four additional sources: PKS 1136-135, PKS 1229-021, PKS 1354+195, and PKS 2209+080. We show that these limits violate the IC/CMB predictions at a very high significance level. We also present new Hubble Space Telescope observations of the quasar PKS 2209+080 showing a newly detected optical jet, and Atacama Large Millimeter/submillimeter Array band 3 and 6 observations of all four sources, which provide key constraints on the spectral shape that enable us to rule out the IC/CMB model.

  12. Constraining walking and custodial technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; Sannino, Francesco

    2008-01-01

    We show how to constrain the physical spectrum of walking technicolor models via precision measurements and modified Weinberg sum rules. We also study models possessing a custodial symmetry for the S parameter at the effective Lagrangian level-custodial technicolor-and argue that these models...

  13. Transformation of the angular power spectrum of the Cosmic Microwave Background (CMB) radiation into reciprocal spaces and consequences of this approach

    Czech Academy of Sciences Publication Activity Database

    Červinka, Ladislav

    2011-01-01

    Roč. 2, č. 11 (2011), s. 1331-1347 ISSN 2153-120X Institutional research plan: CEZ:AV0Z10100521 Keywords : CMB radiation * analysis of CMB spectrum * radial distribution function of objects * early universe cluster structure * density of ordinary matter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  14. Micromechanical anisotropy and heterogeneity of the meniscus extracellular matrix.

    Science.gov (United States)

    Li, Qing; Qu, Feini; Han, Biao; Wang, Chao; Li, Hao; Mauck, Robert L; Han, Lin

    2017-05-01

    To understand how the complex biomechanical functions of the meniscus are endowed by the nanostructure of its extracellular matrix (ECM), we studied the anisotropy and heterogeneity in the micromechanical properties of the meniscus ECM. We used atomic force microscopy (AFM) to quantify the time-dependent mechanical properties of juvenile bovine meniscus at deformation length scales corresponding to the diameters of collagen fibrils. At this scale, anisotropy in the elastic modulus of the circumferential fibers, the major ECM structural unit, can be attributed to differences in fibril deformation modes: uncrimping when normal to the fiber axis, and laterally constrained compression when parallel to the fiber axis. Heterogeneity among different structural units is mainly associated with their variations in microscale fiber orientation, while heterogeneity across anatomical zones is due to alterations in collagen fibril diameter and alignment at the nanoscale. Unlike the elastic modulus, the time-dependent properties are more homogeneous and isotropic throughout the ECM. These results enable a detailed understanding of the meniscus structure-mechanics at the nanoscale, and can serve as a benchmark for understanding meniscus biomechanical functions, documenting disease progression and designing tissue repair strategies. Meniscal damage is a common cause of joint injury, which can lead to the development of post-traumatic osteoarthritis among young adults. Restoration of meniscus function requires repairing its highly heterogeneous and complex extracellular matrix. Employing AFM, this study quantifies the anisotropic and heterogeneous features of the meniscus ECM structure and mechanics. The micromechanical properties are interpreted within the context of the collagen fibril nanostructure and its variation with tissue anatomical locations. These results provide a fundamental structure-mechanics knowledge benchmark, against which, repair and regeneration strategies can

  15. Shape-induced anisotropy in antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Gomonay, O.; Kondovych, S.; Loktev, V.

    2014-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces

  16. Impact of theoretical assumptions in the determination of the neutrino effective number from future CMB measurements

    Science.gov (United States)

    Capparelli, Ludovico; Di Valentino, Eleonora; Melchiorri, Alessandro; Chluba, Jens

    2018-03-01

    One of the major goals of future cosmic microwave background (CMB) measurements is the accurate determination of the effective number of neutrinos Neff. Reaching an experimental sensitivity of Δ Neff=0.013 could indeed falsify the presence of any nonstandard relativistic particles at 95% C.L. In this paper, we test how this future constraint can be affected by the removal of two common assumptions: a negligible running of the inflationary spectral index nrun and a precise determination of the neutron lifetime τn. We first show that the constraints on Neff could be significantly biased by the unaccounted presence of a running of the spectral index. Considering the Stage-IV experiment, a negative running of d n /d ln k =-0.002 could mimic a positive variation of Δ Neff=0.03 . Moreover, given the current discrepancies between experimental measurements of the neutron lifetime τn, we show that the assumption of a conservative error of Δ τn˜10 s could cause a systematic error of Δ Neff=0.02 . Complementary cosmological constraints on the running of the spectral index and a solution to the neutron lifetime discrepancy are therefore needed for an accurate and reliable future CMB bound of Neff at the percent level.

  17. The CMB neutrino mass/vacuum energy degeneracy: a simple derivation of the degeneracy slopes

    Science.gov (United States)

    Sutherland, Will

    2018-06-01

    It is well known that estimating cosmological parameters from cosmic microwave background (CMB) data alone results in a significant degeneracy between the total neutrino mass and several other cosmological parameters, especially the Hubble constant H0 and the matter density parameter Ωm. Adding low-redshift measurements such as baryon acoustic oscillations (BAOs) breaks this degeneracy and greatly improves the constraints on neutrino mass. The sensitivity is surprisingly high, for example, adding the ˜1 percent measurement of the BAO ratio rs/DV from the BOSS survey leads to a limit Σ mν matter ratio (xν ≡ ων/ωcb) and the shifts in other cosmological parameters. The resulting multipliers are substantially larger than 1: conserving the CMB sound horizon angle requires parameter shifts δln H0 ≈ -2 δxν, δln Ωm ≈ +5 δxν, δln ωΛ ≈ -6.2 δxν, and most notably δωΛ ≈ -14 δων. These multipliers give an intuitive derivation of the degeneracy direction, which agrees well with the numerical likelihood results from the Planck team.

  18. On the Origins of the CMB: Insight from the COBE, WMAP, and Relikt-1 Satellites

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available The powerful “Cosmic Microwave Background (CMB” signal currently associated with the origins of the Universe is examined from a historical perspective and relative to the experimental context in which it was measured. Results from the COBE satellite are reviewed, with particular emphasis on the systematic error observed in determining the CMB temperature. The nature of the microwave signal emanating from the oceans is also discussed. From this analysis, it is demonstrated that it is improper for the COBE team to model the Earth as a 285 K blackbody source. The assignment of temperatures to objects that fail to meet the requirements set forth in Kirchhoff’s law constitutes a serious overextension of the laws of thermal emission. Using this evidence, and the general rule that powerful signals are associated with proximal sources, the CMB monopole signal is reassigned to the oceans. In turn, through the analysis of COBE, WMAP, and Relikt-1 data, the dipole signal is attributed to motion through a much weaker microwave field present both at the position of the Earth and at the second Lagrange point.

  19. CMB scale dependent non-Gaussianity from massive gravity during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Domènech, Guillem; Hiramatsu, Takashi; Lin, Chunshan; Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 (Japan); Shiraishi, Maresuke [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, 277-8583 (Japan); Wang, Yi, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: chunshan.lin@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: shiraishi-m@t.kagawa-nct.ac.jp, E-mail: phyw@ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2017-05-01

    We consider a cosmological model in which the tensor mode becomes massive during inflation, and study the Cosmic Microwave Background (CMB) temperature and polarization bispectra arising from the mixing between the scalar mode and the massive tensor mode during inflation. The model assumes the existence of a preferred spatial frame during inflation. The local Lorentz invariance is already broken in cosmology due to the existence of a preferred rest frame. The existence of a preferred spatial frame further breaks the remaining local SO(3) invariance and in particular gives rise to a mass in the tensor mode. At linear perturbation level, we minimize our model so that the vector mode remains non-dynamical, while the scalar mode is the same as the one in single-field slow-roll inflation. At non-linear perturbation level, this inflationary massive graviton phase leads to a sizeable scalar-scalar-tensor coupling, much greater than the scalar-scalar-scalar one, as opposed to the conventional case. This scalar-scalar-tensor interaction imprints a scale dependent feature in the CMB temperature and polarization bispectra. Very intriguingly, we find a surprizing similarity between the predicted scale dependence and the scale-dependent non-Gaussianities at low multipoles hinted in the WMAP and Planck results.

  20. Sensitivity of molecular marker-based CMB models to biomass burning source profiles

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Zheng, Mei; Wang, Bo

    To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30-50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30-50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.

  1. Gravitational waves in axion inflation: implications for CMB and small-scales interferometer measurements

    Science.gov (United States)

    Unal, Caner; Peloso, Marco; Sorbo, Lorenzo; Garcia-Bellido, Juan

    2017-01-01

    A strong experimental effort is ongoing to detect the primordial gravitational waves (GW) generated during inflation from their impact on the Cosmic Microwave Background (CMB). This effort is motivated by the direct relation between the amplitude of GW signal and the energy scale of inflation, in the standard case of GW production from vacuum. I will discuss the robustness of this relation and the conditions under which particle production mechanisms during inflation can generate a stronger GW signal than the vacuum one. I will present a concrete model employing a coupling between a rolling axion and a gauge field, that can produce a detectable GW signal for an arbitrarily small inflation scale, respecting bounds from back-reaction, perturbativity, and the gaussianity of the measured density perturbations. I will show how the GW produced by this mechanism can be distinguished from the vacuum ones by their spectral dependence and statistical properties. I will finally discuss the possibility of detecting an inflationary GW signal at terrestrial (AdvLIGO) and space (LISA) interferometers. Such experiments are sensitive to the modes much smaller than the ones corresponding to CMB and Large Scale Structure, presenting a unique observational window on the final stages of inflation. The work of C.U. is s supported by a Doctoral Dissertation Fellowship from the Graduate School of the University of Minnesota.

  2. Spider: Probing the Early Universe with a Large-Scale CMB Polarization Survey

    Science.gov (United States)

    Jones, William

    The standard dark-matter and dark-energy dominated cosmological model (LCDM) has proven to be remarkably successful in describing the current state and past evolution of the Universe. However, there remain significant uncertainties regarding the physical mechanisms that established the initial conditions upon which the LCDM predictions rely. Theories of cosmic genesis - the extremely high energy mechanisms that established these conditions - should be expected to provide a natural description of the nearly flat geometry of the Universe, the existence of super-horizon density correlations, and the adiabatic, Gaussian and nearly scale-invariant nature of the observed primordial density perturbations. The primary objective of Spider is to subject models of the early Universe to observational test, probing fundamental physics at energy scales far beyond the reach of terrestrial particle accelerators. The main scientific result will be to characterize, or place stringent upper limits on the level of the odd-parity polarization of the CMB. In the context of the inflationary paradigm, Spider will confirm or exclude the predictions of the simplest single-field inflationary models near the Lyth bound, characterized by tensor to scalar ratios r 0.03. While viable alternatives to the inflationary paradigm are an active and important area of investigation, including string cosmologies and cyclic models, early Universe models described by inflationary periods are now widely accepted as the underlying cause behind much of what we observe in cosmology today. Nevertheless, we know very little about the mechanism that would drive inflation or the energy scale at which it occurred, and the paradigm faces significant questions about the viability of the framework as a scientific theory. Fortunately, inflationary paradigms and alternative theories offer distinct predictions regarding the statistical properties of the Cosmic Microwave Background radiation. Spider will use measurements

  3. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Beam Maps and Window Functions

    Science.gov (United States)

    Hill, R. S.; Weiland, J. L.; Odegard, N.; Wollack, E.; Hinshaw, G.; Larson, D.; Bennett, C. L.; Halpern, M.; Page, L.; Dunkley, J.; Gold, B.; Jarosik, N.; Kogut, A.; Limon, M.; Nolta, M. R.; Spergel, D. N.; Tucker, G. S.; Wright, E. L.

    2009-02-01

    Cosmology and other scientific results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have significantly improved the beam determination as part of the five-year data release. Physical optics fits are done on both the A and the B sides for the first time. The cutoff scale of the fitted distortions on the primary mirror is reduced by a factor of ~2 from previous analyses. These changes enable an improvement in the hybridization of Jupiter data with beam models, which is optimized with respect to error in the main beam solid angle. An increase in main-beam solid angle of ~1% is found for the V2 and W1-W4 differencing assemblies. Although the five-year results are statistically consistent with previous ones, the errors in the five-year beam transfer functions are reduced by a factor of ~2 as compared to the three-year analysis. We present radiometry of the planet Jupiter as a test of the beam consistency and as a calibration standard; for an individual differencing assembly, errors in the measured disk temperature are ~0.5%. WMAP is the result of a partnership between Princeton University and NASA's Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  4. Long-Duration, Balloon-Borne Observations of Cosmic Microwave Background Anisotropy

    Science.gov (United States)

    1997-01-01

    Funds from this grant were used to support the continuing development of BOOMERANG, a 1.3 m, balloon-borne, attitude-stabilized telescope designed to measure the anisotropy of the Cosmic Microwave Background (CMB) on angular scales of 12 min to 10 degrees. By the end of the funding period covered by this grant, the fabrication of most of the BOOMERANG sub-systems was completed, and integration and test of the payload at Caltech had begun. The project was continued under a new grant from NASA and continuing funding from the NSF. Payload integration and test was completed in April, 1997. A campaign to Palestine, Texas, resulted in two test flights during 1997. A flight on August 12, 1997 was terminated on ascent due to a leaky balloon. The payload was successfully recovered, refurbished, and flown again on August 29, 1997. The second flight was completely successful, and qualified the payload for an LDB flight from McMurdo Stn., Antarctica, in December 1998.

  5. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-01-01

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  6. Measurements of magnetic anisotropy in sickle cells

    International Nuclear Information System (INIS)

    Salvo Souza, L.H. de.

    1982-03-01

    Room temperature magnetic measurements in deoxigenated sickle cells showed the existence of magnetic anisotropy, Δchi=1,29 x 10 -3 . This effect was supposed paramagnetic and considered to be due to the iron atoms of the hemoglobin molecules which are one over the other, forming ordered chains inside the erythrocytes. Low temperature (liquid He - 4,2K) measurements of the magnetic anisotropy of sickle cells and normal red blood cells diluted in a cryoprotector was made to confirm the paramagnetic origin of the fenomena. For that purpose it was used a superconductor magnetometer coupled to a SQUID, developed in the 'Laboratorio do Estado Solido do Departamento de Fisica da PUC-RJ'. The results obtained seem to confirm the expected paramagnetic anisotropy and, furthermore, suggest the presence of magnetic interactions among the iron atoms in the sickle cells samples. (Author) [pt

  7. COSMIC-RAY TRANSPORT AND ANISOTROPIES

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L. [MPI for Radioastronomy, Auf dem Huegel 69, D-53121 Bonn (Germany); Becker Tjus, Julia; Mandelartz, Matthias [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Theoretische Physik I, D-44780 Bochum (Germany); Seo, Eun-Suk [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2013-05-10

    We show that the large-scale cosmic-ray anisotropy at {approx}10 TeV can be explained by a modified Compton-Getting effect in the magnetized flow field of old supernova remnants. Cosmic rays arrive isotropically to the flow field and are then carried along with the flow to produce a large-scale anisotropy in the arrival direction. This approach suggests an optimum energy scale for detecting the anisotropy. Two key assumptions are that propagation is based on turbulence following a Kolmogorov law and that cosmic-ray interactions are dominated by transport via cosmic-ray-excited magnetic irregularities through the stellar wind of an exploding star and its shock shell. A prediction is that the amplitude is smaller at lower energies due to incomplete sampling of the velocity field and also smaller at larger energies due to smearing.

  8. Anisotropy of dilepton emission from nuclear collisions

    International Nuclear Information System (INIS)

    Bratkovskaya, E.L.; Teryaev, O.V.; Toneev, V.D.; Joint Inst. for Nuclear Research, Dubna

    1994-01-01

    Attention is paid to studying the angular characteristics of e + e - pairs created in collisions with nuclear targets at intermediate and relativistic energies. Arising due to general spin and angular momentum constraints, the dilepton anisotropy seems to be quite sensitive to the contribution of different sources and may be used for disentangling these sources (or models) as well as an additional signature of a possible chiral symmetry restoration and phase transition of hadrons into the quark-gluon plasma. An anisotropy estimate for some dilepton sources is given and its relevance to the problems mentioned is discussed

  9. Anisotropy of dilepton emission from nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bratkovskaya, E.L.; Teryaev, O.V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Bogolubov Lab. of Theoretical Physics; Toneev, V.D. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Joint Inst. for Nuclear Research, Dubna (Russian Federation). Bogolubov Lab. of Theoretical Physics

    1994-11-07

    Attention is paid to studying the angular characteristics of e{sup +}e{sup {minus}} pairs created in collisions with nuclear targets at intermediate and relativistic energies. Arising due to general spin and angular momentum constraints, the dilepton anisotropy seems to be quite sensitive to the contribution of different sources and may be used for disentangling these sources (or models) as well as an additional signature of a possible chiral symmetry restoration and phase transition of hadrons into the quark-gluon plasma. An anisotropy estimate for some dilepton sources is given and its relevance to the problems mentioned is discussed.

  10. Anisotropy of the Topopah Spring Member Tuff

    International Nuclear Information System (INIS)

    Martin, R.J. III; Boyd, P.J.; Haupt, R.W.; Price, R.H.

    1992-07-01

    Mechanical properties of the tuffaceous rocks within Yucca Mountain are needed for near and far-field modeling of the potential nuclear waste repository. If the mechanical properties are significantly anisotropic (i.e., direction-dependent), a more complex model is required. Relevant data from tuffs tested in earlier studies indicate that elastic and strength properties are anisotropic. This scoping study confirms the elastic anisotropy and concludes some tuffs are transversely isotropic. An approach for sampling and testing the rock to determine the magnitude of the anisotropy is proposed

  11. Magnetocrystalline and configurational anisotropies in Fe nanostructures

    International Nuclear Information System (INIS)

    Vavassori, P.; Bisero, D.; Carace, F.; Liberati, M.; Di Bona, A.; Gazzadi, G.C.; Valeri, S.

    2005-01-01

    Arrays of single-crystal Fe micron and submicron squares and disks, have been fabricated using a focused ion beam apparatus from a film epitaxially grown on MgO. The hysteresis loops of the patterned areas differ from those of the continuous film as a consequence of the different reversal determined by the lateral confinement of the Fe film. By means of modulated field magneto-optical anisometry measurements we studied the symmetry and the strength of the overall anisotropy. For the smaller square elements we observed a higher-order term in the overall anisotropy with eightfold symmetry arising from the configurational contribution

  12. Crustal anisotropy from Moho converted Ps wave splitting and geodynamic implications in Northeastern margin of Tibetan Plateau

    Science.gov (United States)

    Xie, Z.; Wu, Q.; Zhang, R.

    2017-12-01

    Collision between Indian and Eurasian result in intense deformation and crustal shortening in the Tibetan Plateau. NE margin of Tibetan Plateau experienced complex deformation between Qilian orogen and its adjacent blocks, Alxa Block in the north and Ordos Block in the east. We focus on if there any evidences exist in the NE margin of Tibetan Plateau, which can support crustal channel flow model. China Earthquake Administration had deployed temporary seismic array which is called ChinaArray Phase Ⅱ, dense seismic stations covered NE margin of Tibetan Plateau. Seismic data recorded by 81 seismic stations is applied in this research. We calculated receiver functions with time-domain deconvolution. We selected RFs which have clear Ps phase both in radial and transverse components to measure Ps splitting owing to crustal anisotropy, and 130 pairs of anisotropy parameters of 51 seismic stations were obtained. We would like to discuss about dynamic mechanism of this area using crustal anisotropy associated with the result of SKS-splitting and surface constrains like GPS velocity. The result can be summarized as follows. The large scale of delay time imply that the crustal anisotropy mainly derives from middle to lower crust rather than upper crust. In the southeastern part of the research area, crustal anisotropy is well agree with the result computed form SKS-splitting and GPS velocity directions trending NWW-SEE or E-W direction. This result imply a vertically coherent deformation in the area as the directions of crustal anisotropy trend to be perpendicular to the direction of normal stress. In the middle and north part of the research area, the fast polarization direction of crustal anisotropy is NEE-SWW or E-W direction, parallels with direction of GPS velocity, but differ to the direction of the result of SKS-splitting. This result may imply that decoupled deformation in this area associated with middle to lower crustal flow.

  13. Measurements of anisotropy in the cosmic microwave background radiation at 0.5 deg angular scales near the star gamma ursae minoris

    Science.gov (United States)

    Devlin, M. J.; Clapp, A. C.; Gundersen, J. O.; Hagmann, C. A.; Hristov, V. V.; Lange, A. E.; Lim, M. A.; Lubin, P. M.; Mauskopf, P. D.; Meinhold, P. R.

    1994-01-01

    We present results from a four-frequency observation of a 6 deg x 0.6 deg strip of the sky centered near the star Gamma Ursae Minoris (GUM) during the fourth flight of the Millimeter-wave Anistropy experiment(MAX). The observation was made with a 1.4 deg peak-to-peak sinusoidal chop in all bands. The FWHM beam sizes were 0.55 deg +/- 0.05 deg at 3.5 per cm and 0.75 deg +/- 0.05 deg at 6, 9, and 14 per cm. During this observation significant correlated structure was observed at 3.5, 6 and 9 per cm with amplitudes similar to those observed in the GUM region during the second and third fligts of MAX. The frequency spectrum is consistent with cosmic microwave background (CMB) and inconsistent with thermal emission from interstellar dust. The extrapolated amplitudes of synchrotron and free-free emission are too small to account for the amplitude of the observed structure, If all of the structure is attributed to CMB anisotropy with a Gaussian autocorrelation function and a coherence angle of 25 min, then the most probable values of delta T/T(sub CMB) in the 3.5, 6 and 9 per cm bads are (4.3 +2.7/-1.6) x 10(exp -5), 2.8 (+4.3/-1/1) x 10(exp -5), and 3.5 (+3.0/-1.6) x 10(exp -5) (95% confidence upper and lower limits), respectively.

  14. Trends in PDE constrained optimization

    CERN Document Server

    Benner, Peter; Engell, Sebastian; Griewank, Andreas; Harbrecht, Helmut; Hinze, Michael; Rannacher, Rolf; Ulbrich, Stefan

    2014-01-01

    Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics.   The book is divided into five sections on “Constrained Optimization, Identification and Control”...

  15. Acoustic axes in weak triclinic anisotropy

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2005-01-01

    Roč. 163, č. 2 (2005), s. 629-638 ISSN 0956-540X R&D Projects: GA AV ČR IAA3012309 Institutional research plan: CEZ:AV0Z30120515 Keywords : elastic-wave theory * perturbation methods * seismic anisotropy Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.826, year: 2005

  16. Empirical evidence for inertial mass anisotropy

    International Nuclear Information System (INIS)

    Heller, M.; Siemieniec, G.

    1985-01-01

    A several attempts at measuring the possible deviations from inertial mass isotropy caused by a non-uniform distribution of matter are reviewed. A simple model of the inertial mass anisotropy and the results of the currently performed measurements concerning this effect are presented. 34 refs. (author)

  17. Anisotropy of Wood in the Microwave Region

    Science.gov (United States)

    Ziherl, Sasa; Bajc, Jurij; Urankar, Bernarda; Cepic, Mojca

    2010-01-01

    Wood is transparent for microwaves and due to its anisotropic structure has anisotropic dielectric properties. A laboratory experiment that allows for the qualitative demonstration and quantitative measurements of linear dichroism and birefringence in the microwave region is presented. As the proposed experiments are based on the anisotropy (of…

  18. Pseudospin anisotropy classification of quantum Hall ferromagnets

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; MacDonald, A. H.

    2000-01-01

    Roč. 63, č. 3 (2000), s. 035305-1 - 035305-9 ISSN 0163-1829 R&D Projects: GA ČR GA202/98/0085 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnets * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.065, year: 2000

  19. Magnetic anisotropy in rare-earth metals

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans; Lindgård, Per-Anker

    1970-01-01

    The magnetic field dependence of the energy of long- wavelength magnons in Tb-10%Ho has been studied by inelastic neutron scattering. The results agree with the `frozen-lattice' model, provided that the second-order magnetoelastic effect is taken into account. The planar anisotropy is almost...

  20. Azimuthal anisotropy of jet quenching at LHC

    Indian Academy of Sciences (India)

    Abstract. We analyze the azimuthal anisotropy of jet spectra due to energy loss of hard partons in quark–gluon plasma, created initially in nuclear overlap zone in collisions with non-zero impact parameter. The calculations are performed for semi-central Pb–Pb collisions at LHC energy.

  1. Relative sensitivity of formability to anisotropy

    International Nuclear Information System (INIS)

    Logan, R.W.; Maker, B.N.

    1997-01-01

    This work compares the relative importance of material anisotropy in sheet forming as compared to other material and process variables. The comparison is made quantitative by the use of normalized dependencies of depth to failure (forming limit is reached) on various measures of anisotropy, as well as strain and rate sensitivity, friction, and tooling. Comparisons are made for a variety of forming processes examined previously in the literature as well as two examples of complex stampings in this work. 7 The examples rover a range from nearly pure draw to nearly pure stretch situations, and show that for materials following a quadratic yield criterion, anisotropy is among the most sensitive parameters influencing formability. For materials following higher-exponent yield criteria, the dependency is milder but is still of the order of most other process parameters. However, depending on the particular forming operation, it is shown that in some cases anisotropy may be ignored, whereas in others its consideration is crucial to a good quality analysis

  2. Effective anisotropy through traveltime and amplitude matching

    KAUST Repository

    Wang, Hui

    2014-08-05

    Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.

  3. The BAHAMAS project: the CMB-large-scale structure tension and the roles of massive neutrinos and galaxy formation

    Science.gov (United States)

    McCarthy, Ian G.; Bird, Simeon; Schaye, Joop; Harnois-Deraps, Joachim; Font, Andreea S.; van Waerbeke, Ludovic

    2018-05-01

    Recent studies have presented evidence for tension between the constraints on Ωm and σ8 from the cosmic microwave background (CMB) and measurements of large-scale structure (LSS). This tension can potentially be resolved by appealing to extensions of the standard model of cosmology and/or untreated systematic errors in the modelling of LSS, of which baryonic physics has been frequently suggested. We revisit this tension using, for the first time, carefully calibrated cosmological hydrodynamical simulations, which thus capture the backreaction of the baryons on the total matter distribution. We have extended the BAryons and HAloes of MAssive Sysmtes simulations to include a treatment of massive neutrinos, which currently represents the best-motivated extension to the standard model. We make synthetic thermal Sunyaev-Zel'dovich effect, weak galaxy lensing, and CMB lensing maps and compare to observed auto- and cross-power spectra from a wide range of recent observational surveys. We conclude that: (i) in general, there is tension between the primary CMB and LSS when adopting the standard model with minimal neutrino mass; (ii) after calibrating feedback processes to match the gas fractions of clusters, the remaining uncertainties in the baryonic physics modelling are insufficient to reconcile this tension; and (iii) if one accounts for internal tensions in the Planck CMB data set (by allowing the lensing amplitude, ALens, to vary), invoking a non-minimal neutrino mass, typically of 0.2-0.4 eV, can resolve the tension. This solution is fully consistent with separate constraints from the primary CMB and baryon acoustic oscillations.

  4. Do joint CMB and HST data support a scale invariant spectrum?

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, Micol; Graef, Leila L.; Alcaniz, Jailson S., E-mail: micolbenetti@on.br, E-mail: leilagraef@on.br, E-mail: alcaniz@on.br [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro, RJ (Brazil)

    2017-04-01

    We combine current measurements of the local expansion rate, H {sub 0}, and Big Bang Nucleosynthesis (BBN) estimates of helium abundance with the latest cosmic microwave background (CMB) data from the Planck Collaboration to discuss the observational viability of the scale invariant Harrison-Zeldovch-Peebles (HZP) spectrum. We also analyze some of its extensions, namely, HZP + Y {sub P} and HZP + N {sub eff}, where Y {sub P} is the primordial helium mass fraction and N {sub eff} is the effective number of relativistic degrees of freedom. We perform a Bayesian analysis and show that the latter model is favored with respect to the standard cosmology for values of N {sub eff} lying in the interval 3.70 ± 0.13 (1σ), which is currently allowed by some independent analyses.

  5. Constraints on hidden photons from current and future observations of CMB spectral distortions

    International Nuclear Information System (INIS)

    Kunze, Kerstin E.; Vázquez-Mozo, Miguel Á.

    2015-01-01

    A variety of beyond the standard model scenarios contain very light hidden sector U(1) gauge bosons undergoing kinetic mixing with the photon. The resulting oscillation between ordinary and hidden photons leads to spectral distortions of the cosmic microwave background. We update the bounds on the mixing parameter χ 0 and the mass of the hidden photon m γ' for future experiments measuring CMB spectral distortions, such as PIXIE and PRISM/COrE. For 10 −14  eV∼< m γ' ∼< 10 −13  eV, we find the kinetic mixing angle χ 0 has to be less than 10 −8 at 95% CL. These bounds are more than an order of magnitude stronger than those derived from the COBE/FIRAS data

  6. Impact of reionization on CMB polarization tests of slow-roll inflation

    International Nuclear Information System (INIS)

    Mortonson, Michael J.; Hu, Wayne

    2008-01-01

    Estimates of inflationary parameters from the CMB B-mode polarization spectrum on the largest scales depend on knowledge of the reionization history, especially at low tensor-to-scalar ratio. Assuming an incorrect reionization history in the analysis of such polarization data can strongly bias the inflationary parameters. One consequence is that the single-field slow-roll consistency relation between the tensor-to-scalar ratio and tensor tilt might be excluded with high significance even if this relation holds in reality. We explain the origin of the bias and present case studies with various tensor amplitudes and noise characteristics. A more model-independent approach can account for uncertainties about reionization, and we show that parametrizing the reionization history by a set of its principal components with respect to E-mode polarization removes the bias in inflationary parameter measurement with little degradation in precision

  7. Multichroic Antenna-Coupled Bolometers for CMB Polarization and Sub-mm Observations

    Science.gov (United States)

    Lee, Adrian

    We propose to develop planar antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization log-periodic antenna with a 4:1-bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. The advantages of this approach, compared with those using conventional single-color pixels, include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands. These advantages have the potential to greatly reduce the cost and/or increase the performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization measurements, a wide frequency range of roughly 30 to 300 GHz is required to subtract galactic foregrounds. The multichroic architecture we propose enables a relatively low-cost 30-cm aperture space mission to have sufficient sensitivity to probe below the tensor-to-scalar ratio r = 0.01. For a larger aperture mission, such as the EPIC-IM concept, the proposed technology could reduce the focal-plane mass by a factor of 2-3, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR ground-based CMB polarization experiment now operating in Chile. That experiment uses a single-band planar antenna and produces excellent beam properties and optical efficiency. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Building on these accomplishments, the deliverables for the proposed work include: *Two pixel types that together cover the range from 30 to 300 GHz. The low-frequency pixel will have bands centered at 35, 50, and 80 GHz and the high frequency pixel will have bands centered at 120, 180, and 270

  8. Studying Heavy Ion Collisions Using Methods From Cosmic Microwave Background (CMB Analysis

    Directory of Open Access Journals (Sweden)

    Gaardhøje J. J.

    2014-04-01

    Full Text Available We present and discuss a framework for studying the morphology of high-multiplicity events from relativistic heavy ion collisions using methods commonly employed in the analysis of the photons from the Cosmic Microwave Background (CMB. The analysis is based on the decomposition of the distribution of the number density of (charged particles expressed in polar and azimuthal coordinates into a sum of spherical harmonic functions. We present an application of the method exploting relevant symmetries to the study of azimuthal correlations arizing from collective flow among charged particles produced in relativistic heavy ion collisions. We discuss perspectives for event-by- event analyses, which with increasing collision energy will eventually open entirely new dimensions in the study of ultrarelaticistic heavy ion reactions.

  9. CMB anomalies and the effects of local features of the inflaton potential

    Energy Technology Data Exchange (ETDEWEB)

    Cadavid, Alexander Gallego [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); ICRANet, Pescara (Italy); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Romano, Antonio Enea [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); University of Torino, Department of Physics, Turin (Italy); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Gariazzo, Stefano [University of Torino, Department of Physics, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Paterna, Valencia (Spain)

    2017-04-15

    Recent analysis of the WMAP and Planck data have shown the presence of a dip and a bump in the spectrum of primordial perturbations at the scales k = 0.002 Mpc{sup -1}, respectively. We analyze for the first time the effects of a local feature in the inflaton potential to explain the observed deviations from scale invariance in the primordial spectrum. We perform a best-fit analysis of the cosmic microwave background (CMB) radiation temperature and polarization data. The effects of the features can improve the agreement with observational data respect to the featureless model. The best-fit local feature affects the primordial curvature spectrum mainly in the region of the bump, leaving the spectrum unaffected on other scales. (orig.)

  10. Strongly scale-dependent CMB dipolar asymmetry from super-curvature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Christian [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Domènech, Guillem; Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Takahashi, Tomo, E-mail: C.Byrnes@sussex.ac.uk, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: tomot@cc.saga-u.ac.jp [Department of Physics, Saga University, Saga 840-8502 (Japan)

    2016-12-01

    We reconsider the observed CMB dipolar asymmetry in the context of open inflation, where a supercurvature mode might survive the bubble nucleation. If such a supercurvature mode modulates the amplitude of the curvature power spectrum, it would easily produce an asymmetry in the power spectrum. We show that current observational data can be accommodated in a three-field model, with simple quadratic potentials and a non-trivial field-space metric. Despite the presence of three fields, we believe this model is so far the simplest that can match current observations. We are able to match the observed strong scale dependence of the dipolar asymmetry, without a fine tuning of initial conditions, breaking slow roll or adding a feature to the evolution of any field.

  11. Atacama Cosmology Telescope: Polarization calibration analysis for CMB measurements with ACTPol and Advanced ACTPol

    Science.gov (United States)

    Koopman, Brian; ACTPol Collaboration

    2015-04-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade for the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. Achieving first light in 2013, ACTPol is entering its third observation season. Advanced ACTPol is a next generation upgrade for ACTPol, with additional frequencies, polarization modulation, and new detector arrays, that will begin in 2016. I will first present an overview of the two projects and then focus on describing the methods used for polarization angle calibration of the ACTPol detectors. These methods utilize polarization ray tracing in the optical design software CODEV together with detector positions determined from planet observations and represent a critical input for mapping the polarization of the CMB.

  12. Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters

    CERN Document Server

    Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombo, L.P.L.; Combet, C.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Di Valentino, E.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Giard, M.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Holmes, W.A.; Hornstrup, A.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Lilley, M.; Linden-Vornle, M.; Lindholm, V.; Lopez-Caniego, M.; Macias-Perez, J.F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Meinhold, P.R.; Melchiorri, A.; Migliaccio, M.; Millea, M.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J.A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G.W.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; d'Orfeuil, B.Rouille; Rubino-Martin, J.A.; Rusholme, B.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Serra, P.; Spencer, L.D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-01-01

    This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of CMB temperature and polarization. They use the hybrid approach employed previously: pixel-based at low multipoles, $\\ell$, and a Gaussian approximation to the distribution of cross-power spectra at higher $\\ell$. The main improvements are the use of more and better processed data and of Planck polarization data, and more detailed foreground and instrumental models. More than doubling the data allows further checks and enhanced immunity to systematics. Progress in foreground modelling enables a larger sky fraction, contributing to enhanced precision. Improvements in processing and instrumental models further reduce uncertainties. Extensive tests establish robustness and accuracy, from temperature, from polarization, and from their combination, and show that the {\\Lambda}CDM model continues to offer a very good fit. We further validate the likelihood against specific extensions to this baseline, suc...

  13. Emission-angle and polarization-rotation effects in the lensed CMB

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Antony [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Hall, Alex [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-08-01

    Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Born field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.

  14. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    George, E. M.; Reichardt, C. L.; Aird, K. A.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H-M.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Dudley, J.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Lueker, M.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Montroy, T. E.; Padin, S.; Plagge, T.; Pryke, C.; Ruhl, J. E.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Spieler, H. G.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zahn, O.

    2015-01-28

    We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South Pole Telescope (SPT) covering the complete 2540 deg(2) SPT-SZ survey area. Data in the three SPT-SZ frequency bands centered at 95, 150, and 220 GHz, are used to produce six angular power spectra (three single-frequency auto-spectra and three cross-spectra) covering the multipole range 2000 < ℓ < 11, 000 (angular scales 5' gsim θ gsim 1'). These are the most precise measurements of the angular power spectra at ℓ > 2500 at these frequencies. The main contributors to the power spectra at these angular scales and frequencies are the primary CMB, CIB, thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ), and radio galaxies. We include a constraint on the tSZ power from a measurement of the tSZ bispectrum from 800 deg(2) of the SPT-SZ survey. We measure the tSZ power at 143  GHz to be $D^{\\rm tSZ}_{3000} = 4.08^{+0.58}_{-0.67}\\,\\mu {\\rm K}^2{}$ and the kSZ power to be $D^{\\rm kSZ}_{3000} = 2.9 \\pm 1.3\\, \\mu {\\rm K}^2{}$. The data prefer positive kSZ power at 98.1% CL. We measure a correlation coefficient of $\\xi = 0.113^{+0.057}_{-0.054}$ between sources of tSZ and CIB power, with ξ < 0 disfavored at a confidence level of 99.0%. The constraint on kSZ power can be interpreted as an upper limit on the duration of reionization. When the post-reionization homogeneous kSZ signal is accounted for, we find an upper limit on the duration Δz < 5.4  at 95% CL.

  15. Cosmic microwave background radiation anisotropies in brane worlds.

    Science.gov (United States)

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.

  16. Nested Sampling with Constrained Hamiltonian Monte Carlo

    OpenAIRE

    Betancourt, M. J.

    2010-01-01

    Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.

  17. What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Gabriel A De Erausquin

    2013-03-01

    Full Text Available Schizophrenia is a common, severe and chronically disabling mental illness of unknown cause. Recent MRI studies have focused attention on white matter abnormalities in schizophrenia using diffusion tensor imaging (DTI. Indices commonly derived from DTI include (a mean diffusivity, independent of direction, (b fractional anisotropy (FA or relative anisotropy (RA, (c axial diffusivity, and (d radial diffusivity. In cerebral white matter, contributions to these indices come from fiber arrangements, degree of myelination, and axonal integrity. Relatively pure deficits in myelin result in a modest increase in radial diffusivity, without affecting axial diffusivity and with preservation of anisotropy. Although schizophrenia is not characterized by gross abnormalities of white matter, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths. Since each oligodendrocyte myelinates as many as 40 axon segments, changes in the number of oligodendrocytes, and/or in the integrity of myelin sheaths, and/or axoglial contacts can have a profound impact on signal propagation and the integrity of neuronal circuits. Whereas a number of studies have revealed inconsistent decreases in anisotropy in schizophrenia, we and others have found increased fractional anisotropy in key subcortical tracts associated with the circuits underlying symptom generation in schizophrenia. We review data revealing increased anisotropy in dopaminergic tracts in the mesencephalon of schizophrenics and their unaffected relatives, and discuss the possible biological underpinnings and physiological significance of this finding.

  18. Fabrication of large NbSi bolometer arrays for CMB applications

    International Nuclear Information System (INIS)

    Ukibe, M.; Belier, B.; Camus, Ph.; Dobrea, C.; Dumoulin, L.; Fernandez, B.; Fournier, T.; Guillaudin, O.; Marnieros, S.; Yates, S.J.C.

    2006-01-01

    Future cosmic microwave background experiments for high-resolution anisotropy mapping and polarisation detection require large arrays of bolometers at low temperature. We have developed a process to build arrays of antenna-coupled bolometers for that purpose. With adjustment of the Nb x Si 1-x alloy composition, the array can be made of high impedance or superconductive (TES) sensors

  19. PMF5.0 vs. CMB8.2: An inter-comparison study based on the new European SPECIEUROPE database

    Science.gov (United States)

    Bove, Maria Chiara; Massabò, Dario; Prati, Paolo

    2018-03-01

    Receptor Models are tools widely adopted in source apportionment studies. We describe here an experiment in which we integrated two different approaches, i.e. Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB) to apportion a set of PM10 (i.e. Particulate Matter with aerodynamic diameter lower than 10 μm) concentration values. The study was performed in the city of Genoa (Italy): a sampling campaign was carried out collecting daily PM10 samples for about two months in an urban background site. PM10 was collected on Quartz fiber filters by a low-volume sampler. A quite complete speciation of PM samples was obtained via Energy Dispersive-X Ray Fluorescence (ED-XRF, for elements), Ionic Chromatography (IC, for major ions and levoglucosan), thermo-optical Analysis (TOT, for organic and elemental carbon). The chemical analyses provided the input database for source apportionment by both PMF and CMB. Source profiles were directly calculated from the input data by PMF while in the CMB runs they were first calculated by averaging the profiles of similar sources collected in the European database SPECIEUROPE. Differences between the two receptor models emerged in particular with PM10 sources linked to very local processes. For this reason, PMF source profiles were adopted in refined CMB runs thus testing a new hybrid approach. Finally, PMF and the "tuned" CMB showed a better agreement even if some discrepancies could not completely been resolved. In this work, we compared the results coming from the last available PMF and CMB versions applied on a set of PM10 samples. Input profiles used in CMB analysis were obtained by averaging the profiles of the new European SPECIEUROPE database. The main differences between PMF and CMB results were linked to very local processes: we obtained the best solution by integrating the two different approaches with the implementation of some output PMF profiles to CMB runs.

  20. Constrained minimization in C ++ environment

    International Nuclear Information System (INIS)

    Dymov, S.N.; Kurbatov, V.S.; Silin, I.N.; Yashchenko, S.V.

    1998-01-01

    Based on the ideas, proposed by one of the authors (I.N.Silin), the suitable software was developed for constrained data fitting. Constraints may be of the arbitrary type: equalities and inequalities. The simplest of possible ways was used. Widely known program FUMILI was realized to the C ++ language. Constraints in the form of inequalities φ (θ i ) ≥ a were taken into account by change into equalities φ (θ i ) = t and simple inequalities of type t ≥ a. The equalities were taken into account by means of quadratic penalty functions. The suitable software was tested on the model data of the ANKE setup (COSY accelerator, Forschungszentrum Juelich, Germany)

  1. Coherent states in constrained systems

    International Nuclear Information System (INIS)

    Nakamura, M.; Kojima, K.

    2001-01-01

    When quantizing the constrained systems, there often arise the quantum corrections due to the non-commutativity in the re-ordering of constraint operators in the products of operators. In the bosonic second-class constraints, furthermore, the quantum corrections caused by the uncertainty principle should be taken into account. In order to treat these corrections simultaneously, the alternative projection technique of operators is proposed by introducing the available minimal uncertainty states of the constraint operators. Using this projection technique together with the projection operator method (POM), these two kinds of quantum corrections were investigated

  2. Progress in Precision Measurements of the Cosmic Microwave Background

    Energy Technology Data Exchange (ETDEWEB)

    Bernardis, P. de; Calvo, M.; Coppolecchia, A.; Cruciani, A.; Giordano, C.; Masi, S.; Nati, F.; Salatino, M.; Schillaci, A. [Dipartimento di Fisica, Universita La Sapienza, P.le A. Moro 2, 00185 Roma (Italy)

    2011-08-15

    High precision measurements of the Cosmic Microwave Background (CMB) represent one of the most difficult challenges in observational cosmology, but promise to unveil the mysteries of the very early Universe and of the birth of structures. Three observables are available. The small polarized CMB signal is probably carrying a signature of the early inflationary dynamics of the Universe. It is, however, embedded in overwhelming noise, systematic effects, and polarized foreground. The imprint of the large scale structure in the universe is present in the small-scale anisotropy of the CMB and in its spectral signatures (secondary anisotropy), again mixed with foreground contaminants. Low-level non-Gaussian components of CMB anisotropy and polarization also provide a very promising way to constrain inflation and the physics of ultra-high energies, if foregrounds can be efficiently separated from the measured signal. If measured with high precision, as required by the science issues above, the spectra of CMB anisotropy and polarization also constrain efficiently neutrino properties, hence their interest in this conference. Here we summarize the current status of CMB measurements, dominated by the Planck survey, and delineate the forthcoming activities, needed to exploit the huge scientific potential of precision measurements of the CMB, including the detection of neutrino masses.

  3. Friction Anisotropy with Respect to Topographic Orientation

    Science.gov (United States)

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  4. Destabilization of TAE modes by particle anisotropy

    International Nuclear Information System (INIS)

    Wong, H.V.; Berk, H.L.

    1998-01-01

    Plasmas heated by ICRF produce energetic particle distribution functions which are sharply peaked in pitch-angle, and the authors show that at moderate toroidal mode numbers, this anisotropy is a competitive and even dominant instability drive when compared with the universal instability drive due to spatial gradient. The universal drive, acting along, destabilizes only co-propagating waves (i.e., waves propagating in the same toroidal direction as the diamagnetic flow of the energetic particles), but stabilizes counter-propagating waves (i.e., waves propagating in the opposite toroidal direction as the diamagnetic flow of the energetic particles). Nonetheless, the authors show that in a tokamak, it is possible that particle anisotropy can produce a larger linear growth rate for counter-propagating waves, and provide a mechanism for preferred destabilization of the counter-propagating TAE modes that are sometimes experimentally observed

  5. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  6. Experimental investigation of ultrasonic velocity anisotropy in ...

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/pram/077/02/0345-0355. Keywords. Magnetic fluids; ultrasonic wave; sound velocity; anisotropy. Abstract. Magnetic field-induced dispersion of ultrasonic velocity in a Mn0.7Zn0.3Fe2O4 fluid (applied magnetic field is perpendicular to the ultrasonic propagation vector) is ...

  7. Transfer anisotropy effect in a turbulent plasma

    International Nuclear Information System (INIS)

    Bychenkov, V.Yu.; Gradov, O.M.; Silin, V.P.

    1982-01-01

    A theory is developed of transfer phenomena with pronounced ion-sound turbulence. A transfer anisotropy effect is observed which is due to the temperature gradient. The corresponding fluxes across the effective force vector generating the turbulence are found to be considerably greater than the longitudinal fluxes in a plasma with a comparatively low degree of nonisothermality. In a strongly nonisothermal plasma the suppression of transverse fluxes occurs, corresponding to the growth of thermal insulation of the current-carrying plasma filaments

  8. Ultrasonic evaluation of local human skin anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tokar, Daniel; Převorovský, Zdeněk; Hradilová, Jana

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : anisotropy * ultrasonic testing * human skin in-vivo * fabric-fiber composite * signal processing Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Paper/324_Tokar.pdf

  9. Anisotropy of dark matter velocity distribution

    OpenAIRE

    Nagao, Keiko I.

    2018-01-01

    Direct detection of dark matter with directional sensitivity has the potential to discriminate the dark matter velocity distribution. Especially, it will be suitable to discriminate isotropic distribution from anisotropic one. Analyzing data produced with Monte-Carlo simulation, required conditions for the discrimination is estimated. If energy threshold of detector is optimized, $O(10^3-10^4)$ event number is required to discriminate the anisotropy.

  10. Assessment of velocity anisotropy in rocks

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Goel, R. K.; Rudajev, Vladimír; Dwivedi, R.D.

    2013-01-01

    Roč. 57, January (2013), s. 142-152 ISSN 1365-1609 R&D Projects: GA ČR(CZ) GA205/08/0676; GA AV ČR IAA300130906; GA ČR(CZ) GAP104/12/0915 Institutional research plan: CEZ:AV0Z30130516 Keywords : elastic anisotropy * acoustic emission * uniaxial loading * hydrostatic loading Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.424, year: 2013

  11. Engineering functional anisotropy in fibrocartilage neotissues.

    Science.gov (United States)

    MacBarb, Regina F; Chen, Alison L; Hu, Jerry C; Athanasiou, Kyriacos A

    2013-12-01

    The knee meniscus, intervertebral disc, and temporomandibular joint (TMJ) disc all possess complex geometric shapes and anisotropic matrix organization. While these characteristics are imperative for proper tissue function, they are seldom recapitulated following injury or disease. Thus, this study's objective was to engineer fibrocartilages that capture both gross and molecular structural features of native tissues. Self-assembled TMJ discs were selected as the model system, as the disc exhibits a unique biconcave shape and functional anisotropy. To drive anisotropy, 50:50 co-cultures of meniscus cells and articular chondrocytes were grown in biconcave, TMJ-shaped molds and treated with two exogenous stimuli: biomechanical (BM) stimulation via passive axial compression and bioactive agent (BA) stimulation via chondroitinase-ABC and transforming growth factor-β1. BM + BA synergistically increased Col/WW, Young's modulus, and ultimate tensile strength 5.8-fold, 14.7-fold, and 13.8-fold that of controls, respectively; it also promoted collagen fibril alignment akin to native tissue. Finite element analysis found BM stimulation to create direction-dependent strains within the neotissue, suggesting shape plays an essential role toward driving in vitro anisotropic neotissue development. Methods used in this study offer insight on the ability to achieve physiologic anisotropy in biomaterials through the strategic application of spatial, biomechanical, and biochemical cues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia.

    Science.gov (United States)

    Alba-Ferrara, L M; de Erausquin, Gabriel A

    2013-01-01

    Schizophrenia is a common, severe, and chronically disabling mental illness of unknown cause. Recent MRI studies have focused attention on white matter abnormalities in schizophrenia using diffusion tensor imaging (DTI). Indices commonly derived from DTI include (1) mean diffusivity, independent of direction, (2) fractional anisotropy (FA) or relative anisotropy (RA), (3) axial diffusivity, and (4) radial diffusivity. In cerebral white matter, contributions to these indices come from fiber arrangements, degree of myelination, and axonal integrity. Relatively pure deficits in myelin result in a modest increase in radial diffusivity, without affecting axial diffusivity and with preservation of anisotropy. Although schizophrenia is not characterized by gross abnormalities of white matter, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths. Since each oligodendrocyte myelinates as many as 40 axon segments, changes in the number of oligodendrocytes (OLG), and/or in the integrity of myelin sheaths, and/or axoglial contacts can have a profound impact on signal propagation and the integrity of neuronal circuits. Whereas a number of studies have revealed inconsistent decreases in anisotropy in schizophrenia, we and others have found increased FA in key subcortical tracts associated with the circuits underlying symptom generation in schizophrenia. We review data revealing increased anisotropy in dopaminergic tracts in the mesencephalon of schizophrenics and their unaffected relatives, and discuss the possible biological underpinnings and physiological significance of this finding.

  13. Formal language constrained path problems

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, C.; Jacob, R.; Marathe, M.

    1997-07-08

    In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.

  14. Fabrication of large NbSi bolometer arrays for CMB applications

    Energy Technology Data Exchange (ETDEWEB)

    Ukibe, M. [AIST, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568 (Japan); CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Belier, B. [CNRS-IEF, Bat 220, Orsay Campus F-91405 (France); Camus, Ph. [CNRS-CRTBT, 25 avenue des Martyrs, Grenoble F-38042 (France)]. E-mail: philippe.camus@grenoble.cnrs.fr; Dobrea, C. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Dumoulin, L. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Fernandez, B. [CNRS-CRTBT, 25 avenue des Martyrs, Grenoble F-38042 (France); Fournier, T. [CNRS-CRTBT, 25 avenue des Martyrs, Grenoble F-38042 (France); Guillaudin, O. [CNRS-LPSC, 53 avenue des Martyrs, Grenoble F-38042 (France); Marnieros, S. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Yates, S.J.C. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France)

    2006-04-15

    Future cosmic microwave background experiments for high-resolution anisotropy mapping and polarisation detection require large arrays of bolometers at low temperature. We have developed a process to build arrays of antenna-coupled bolometers for that purpose. With adjustment of the Nb{sub x}Si{sub 1-x} alloy composition, the array can be made of high impedance or superconductive (TES) sensors.

  15. Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol

    Science.gov (United States)

    Koopman, Brian; Austermann, Jason; Cho, Hsiao-Mei; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D.; Li, Dale; McMahon, Jeff; Nati, Federico; Niemack, Michael D.; Newburgh, Laura; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Vavagiakis, Eve M.; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. ACTPol uses transition edge sensor bolometers coupled to orthomode transducers to measure both the temperature and polarization of the Cosmic Microwave Background (CMB). Calibration of the detector angles is a critical step in producing polarization maps of the CMB. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We calibrate the ACTPol detector angles by ray tracing the designed detector angle through the entire optical chain to determine the projection of each detector angle on the sky. The distribution of calibrated detector polarization angles are consistent with a global offset angle from zero when compared to the EB-nulling offset angle, the angle required to null the EB cross-correlation power spectrum. We present the optical modeling process. The detector angles can be cross checked through observations of known polarized sources, whether this be a galactic source or a laboratory reference standard. To cross check the ACTPol detector angles, we use a thin film polarization grid placed in front of the receiver of the telescope, between the receiver and the secondary reflector. Making use of a rapidly rotating half-wave plate (HWP) mount we spin the polarizing grid at a constant speed, polarizing and rotating the incoming atmospheric signal. The resulting sinusoidal signal is used to determine the detector angles. The optical modeling calibration was shown to be consistent with a global offset angle of zero when compared to EB nulling in the first ACTPol results and will continue to be a part of our calibration implementation. The first

  16. Estimation of inflation parameters for Perturbed Power Law model using recent CMB measurements

    International Nuclear Information System (INIS)

    Mukherjee, Suvodip; Das, Santanu; Souradeep, Tarun; Joy, Minu

    2015-01-01

    Cosmic Microwave Background (CMB) is an important probe for understanding the inflationary era of the Universe. We consider the Perturbed Power Law (PPL) model of inflation which is a soft deviation from Power Law (PL) inflationary model. This model captures the effect of higher order derivative of Hubble parameter during inflation, which in turn leads to a non-zero effective mass m eff for the inflaton field. The higher order derivatives of Hubble parameter at leading order sources constant difference in the spectral index for scalar and tensor perturbation going beyond PL model of inflation. PPL model have two observable independent parameters, namely spectral index for tensor perturbation ν t and change in spectral index for scalar perturbation ν st to explain the observed features in the scalar and tensor power spectrum of perturbation. From the recent measurements of CMB power spectra by WMAP, Planck and BICEP-2 for temperature and polarization, we estimate the feasibility of PPL model with standard ΛCDM model. Although BICEP-2 claimed a detection of r=0.2, estimates of dust contamination provided by Planck have left open the possibility that only upper bound on r will be expected in a joint analysis. As a result we consider different upper bounds on the value of r and show that PPL model can explain a lower value of tensor to scalar ratio (r<0.1 or r<0.01) for a scalar spectral index of n s =0.96 by having a non-zero value of effective mass of the inflaton field m 2 eff /H 2 . The analysis with WP + Planck likelihood shows a non-zero detection of m 2 eff /H 2 with 5.7 σ and 8.1 σ respectively for r<0.1 and r<0.01. Whereas, with BICEP-2 likelihood m 2 eff /H 2  = −0.0237 ± 0.0135 which is consistent with zero

  17. A 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck Data

    International Nuclear Information System (INIS)

    Omori, Y.; Chown, R.; Simard, G.; Story, K. T.; University of Chicago, IL

    2017-01-01

    Here, we present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and Planck temperature data. The 150 GHz temperature data from the 2500 deg 2 SPT-SZ survey is combined with the Planck 143 GHz data in harmonic space to obtain a temperature map that has a broader ℓ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential C L ϕϕ , and compare it to the theoretical prediction for a ΛCDM cosmology consistent with the Planck 2015 data set, finding a best-fit amplitude of 0.95 −0.06 +0.06 (stat.) −0.01 +0.01 (sys.). The null hypothesis of no lensing is rejected at a significance of 24σ. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, C L ϕG , between the SPT+Planck lensing map and Wide-field Infrared Survey Explorer (WISE) galaxies. We fit C L ϕG to a power law of the form p L =a(L/L 0 ) −b with a, L 0, and b fixed, and find η ϕG =C L ϕG /p L =0.94 −0.04 +0.04 , which is marginally lower, but in good agreement with η ϕG =1.00 −0.01 +0.02 , the best-fit amplitude for the cross-correlation of Planck-2015 CMB lensing and WISE galaxies over ~67% of the sky. Finally, the lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey, whose footprint nearly completely covers the SPT 2500 deg 2 field.

  18. Cross-correlating CMB temperature fluctuations with high-energy γ-ray from Dark-Matter annihilation

    International Nuclear Information System (INIS)

    Pieri, L.

    2013-01-01

    In this paper we compute the Integrated Sachs-Wolfe effect due to the presence of dark-matter structures on cosmological scale. We cross-correlate the CMB temperature fluctuations with the extragalactic high-energy γ-ray flux map obtained with FERMI-LAT. We find a null signal consistent with the theory and conclude that the presence of halos and subhalos at galactic and extragalactic scale, if not excluded, will be hardly discoverable.

  19. The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion

    Science.gov (United States)

    Sarkar, Abir; Sethi, Shiv. K.; Das, Subinoy

    2017-07-01

    After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y-parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift zf = 105 (7%); WDM for mass mwdm = 1 keV (2%); CHDM for decay redshift zdecay = 105 (5%); ULA for mass ma = 10-24 eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y-distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from the pre-recombination phase.

  20. Imitating intrinsic alignments: a bias to the CMB lensing-galaxy shape cross-correlation power spectrum induced by the large-scale structure bispectrum

    Science.gov (United States)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2017-10-01

    Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.

  1. Thermal analysis of a prototype cryogenic polarization modulator for use in a space-borne CMB polarization experiment

    Science.gov (United States)

    Iida, T.; Sakurai, Y.; Matsumura, T.; Sugai, H.; Imada, H.; Kataza, H.; Ohsaki, H.; Hazumi, M.; Katayama, N.; Yamamoto, R.; Utsunomiya, S.; Terao, Y.

    2017-12-01

    We report a thermal analysis of a polarization modulator unit (PMU) for use in a space-borne cosmic microwave background (CMB) project. A measurement of the CMB polarization allows us to probe the physics of early universe, and that is the best method to test the cosmic inflation experimentally. One of the key instruments for this science is to use a halfwave plate (HWP) based polarization modulator. The HWP is required to rotate continuously at about 1 Hz below 10 K to minimize its own thermal emission to a detector system. The rotating HWP system at the cryogenic environment can be realized by using a superconducting magnetic bearing (SMB) without significant heat dissipation by mechanical friction. While the SMB achieves the smooth rotation due to the contactless bearing, an estimation of a levitating HWP temperature becomes a challenge. We manufactured a one-eighth scale prototype model of PMU and built a thermal model. We verified our thermal model with the experimental data. We forecasted the projected thermal performance of PMU for a full-scale model based on the thermal model. From this analysis, we discuss the design requirement toward constructing the full-scale model for use in a space environment such as a future CMB satellite mission, LiteBIRD.

  2. Dark matter implications of Fermi-LAT measurement of anisotropies in the diffuse gamma-ray background

    International Nuclear Information System (INIS)

    Gómez-Vargas, G.A.; Cuoco, A.; Linden, T.; Sánchez-Conde, M.A.; Siegal-Gaskins, J.M.; Delahaye, T.; Fornasa, M.; Komatsu, E.

    2014-01-01

    The detailed origin of the diffuse gamma-ray background is still unknown. However, the contribution of unresolved sources is expected to induce small-scale anisotropies in this emission, which may provide a way to identify and constrain the properties of its contributors. Recent studies have predicted the contributions to the angular power spectrum (APS) from extragalactic and galactic dark matter (DM) annihilation or decay. The Fermi-LAT collaboration reported detection of angular power with a significance larger than 3σ in the energy range from 1 GeV to 10 GeV on 22 months of data (Ackermann et al., 2012 [2]). For these preliminary results the already published Fermi-LAT APS measurements (Ackermann et al., 2012 [2]) are compared to the accurate predictions for DM anisotropies from state-of-the-art cosmological simulations as presented in Fornasa et al. (2013) [1] to derive constraints on different DM candidates

  3. Dark matter implications of Fermi-LAT measurement of anisotropies in the diffuse gamma-ray background

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Vargas, G.A., E-mail: germanarturo.gomez@uam.es [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Instituto de Física Teórica IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid (Spain); Istituto Nazionale di Fisica Nucleare, Sez. Roma Tor Vergata, Roma (Italy); Cuoco, A. [The Oskar Klein Centre for Cosmo Particle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Linden, T. [Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Sánchez-Conde, M.A. [SLAC National Accelerator Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Menlo Park, CA 94025 (United States); Siegal-Gaskins, J.M. [California Institute of Technology, Pasadena, CA 91125 (United States); Delahaye, T. [LAPTh, Universit e de Savoie, CNRS, 9 chemin de Bellevue, BP110, F-74941 Annecy-le-Vieux Cedex (France); Institut d' Astrophysique de Paris, UMR 7095 – CNRS, Universit e Pierre and Marie Curie, 98 bis boulevard Arago, 75014 Paris (France); Instituto de Física Teórica IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid (Spain); Fornasa, M. [School of Physics and Astronomy, University of Nottingham, NG7 2RD Nottingham (United Kingdom); Komatsu, E. [Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild Str. 1, 85741 Garching (Germany); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); Texas Cosmology Center and the Department of Astronomy, The University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States); and others

    2014-04-01

    The detailed origin of the diffuse gamma-ray background is still unknown. However, the contribution of unresolved sources is expected to induce small-scale anisotropies in this emission, which may provide a way to identify and constrain the properties of its contributors. Recent studies have predicted the contributions to the angular power spectrum (APS) from extragalactic and galactic dark matter (DM) annihilation or decay. The Fermi-LAT collaboration reported detection of angular power with a significance larger than 3σ in the energy range from 1 GeV to 10 GeV on 22 months of data (Ackermann et al., 2012 [2]). For these preliminary results the already published Fermi-LAT APS measurements (Ackermann et al., 2012 [2]) are compared to the accurate predictions for DM anisotropies from state-of-the-art cosmological simulations as presented in Fornasa et al. (2013) [1] to derive constraints on different DM candidates.

  4. Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement

    International Nuclear Information System (INIS)

    Zavala, Jesus; White, Simon D. M.; Vogelsberger, Mark

    2010-01-01

    We calculate how the relic density of dark matter particles is altered when their annihilation is enhanced by the Sommerfeld mechanism due to a Yukawa interaction between the annihilating particles. Maintaining a dark matter abundance consistent with current observational bounds requires the normalization of the s-wave annihilation cross section to be decreased compared to a model without enhancement. The level of suppression depends on the specific parameters of the particle model, with the kinetic decoupling temperature having the most effect. We find that the cross section can be reduced by as much as an order of magnitude for extreme cases. We also compute the μ-type distortion of the CMB energy spectrum caused by energy injection from such Sommerfeld-enhanced annihilation. Our results indicate that in the vicinity of resonances, associated with bound states, distortions can be large enough to be excluded by the upper limit |μ|≤9.0x10 -5 found by the FIRAS (Far Infrared Absolute Spectrophotometer) instrument on the COBE (Cosmic Background Explorer) satellite.

  5. Testing string vacua in the lab. From a hidden CMB to dark forces in flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele; Goodsell, Mark; Ringwald, Andreas [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenolgy

    2011-03-15

    We perform a detailed analysis of the phenomenological properties of hidden Abelian gauge bosons with a kinetic mixing with the ordinary photon within type IIB flux compactifications. We study the interplay between moduli stabilisation and the Green-Schwarz mechanism that gives mass to the hidden photon paying particular attention to the role of D-terms. We present two generic classes of explicit Calabi-Yau examples with an isotropic and an anisotropic shape of the extra dimensions showing how the last case turns out to be very promising to make contact with current experiments. In fact, anisotropic compactifications lead naturally to a GeV-scale hidden photon (''dark forces'' that can be searched for in beam dump experiments) for an intermediate string scale; or even to an meV-scale hidden photon (which could lead to a ''hidden CMB'' and can be tested by light-shining-through-a-wall experiments) in the case of TeV-scale strings. (orig.)

  6. An analytical approach to the CMB polarization in a spatially closed background

    Science.gov (United States)

    Niazy, Pedram; Abbassi, Amir H.

    2018-03-01

    The scalar mode polarization of the cosmic microwave background is derived in a spatially closed universe from the Boltzmann equation using the line of sight integral method. The EE and TE multipole coefficients have been extracted analytically by considering some tolerable approximations such as considering the evolution of perturbation hydrodynamically and sudden transition from opacity to transparency at the time of last scattering. As the major advantage of analytic expressions, CEE,ℓS and CTE,ℓ explicitly show the dependencies on baryon density ΩB, matter density ΩM, curvature ΩK, primordial spectral index ns, primordial power spectrum amplitude As, Optical depth τreion, recombination width σt and recombination time tL. Using a realistic set of cosmological parameters taken from a fit to data from Planck, the closed universe EE and TE power spectrums in the scalar mode are compared with numerical results from the CAMB code and also latest observational data. The analytic results agree with the numerical ones on the big and moderate scales. The peak positions are in good agreement with the numerical result on these scales while the peak heights agree with that to within 20% due to the approximations have been considered for these derivations. Also, several interesting properties of CMB polarization are revealed by the analytic spectra.

  7. Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole?

    International Nuclear Information System (INIS)

    Roldan, Omar; Quartin, Miguel; Notari, Alessio

    2016-01-01

    The aberration and Doppler coupling effects of the Cosmic Microwave Background (CMB) were recently measured by the Planck satellite. The most straightforward interpretation leads to a direct detection of our peculiar velocity β, consistent with the measurement of the well-known dipole. In this paper we discuss the assumptions behind such interpretation. We show that Doppler-like couplings appear from two effects: our peculiar velocity and a second order large-scale effect due to the dipolar part of the gravitational potential. We find that the two effects are exactly degenerate but only if we assume second-order initial conditions from single-field Inflation. Thus, detecting a discrepancy in the value of β from the dipole and the Doppler couplings implies the presence of a primordial non-Gaussianity. We also show that aberration-like signals likewise arise from two independent effects: our peculiar velocity and lensing due to a first order large-scale dipolar gravitational potential, independently on Gaussianity of the initial conditions. In general such effects are not degenerate and so a discrepancy between the measured β from the dipole and aberration could be accounted for by a dipolar gravitational potential. Only through a fine-tuning of the radial profile of the potential it is possible to have a complete degeneracy with a boost effect. Finally we discuss that we also expect other signatures due to integrated second order terms, which may be further used to disentangle this scenario from a simple boost.

  8. Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole?

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Omar; Quartin, Miguel [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ (Brazil); Notari, Alessio, E-mail: oaroldan@if.ufrj.br, E-mail: notari@ffn.ub.es, E-mail: mquartin@if.ufrj.br [Departament de Física Fondamental i Institut de Ciéncies del Cosmos, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona (Spain)

    2016-06-01

    The aberration and Doppler coupling effects of the Cosmic Microwave Background (CMB) were recently measured by the Planck satellite. The most straightforward interpretation leads to a direct detection of our peculiar velocity β, consistent with the measurement of the well-known dipole. In this paper we discuss the assumptions behind such interpretation. We show that Doppler-like couplings appear from two effects: our peculiar velocity and a second order large-scale effect due to the dipolar part of the gravitational potential. We find that the two effects are exactly degenerate but only if we assume second-order initial conditions from single-field Inflation. Thus, detecting a discrepancy in the value of β from the dipole and the Doppler couplings implies the presence of a primordial non-Gaussianity. We also show that aberration-like signals likewise arise from two independent effects: our peculiar velocity and lensing due to a first order large-scale dipolar gravitational potential, independently on Gaussianity of the initial conditions. In general such effects are not degenerate and so a discrepancy between the measured β from the dipole and aberration could be accounted for by a dipolar gravitational potential. Only through a fine-tuning of the radial profile of the potential it is possible to have a complete degeneracy with a boost effect. Finally we discuss that we also expect other signatures due to integrated second order terms, which may be further used to disentangle this scenario from a simple boost.

  9. A String-Inspired Model for the Low-$\\ell$ CMB

    CERN Document Server

    Kitazawa, N.

    2015-07-09

    We present a semi--analytic exploration of some low--$\\ell$ angular power spectra inspired by "Brane Supersymmetry Breaking". This mechanism splits Bose and Fermi excitations in String Theory, leaving behind an exponential potential that is just too steep for the inflaton to emerge from the initial singularity while descending it. As a result, the scalar generically bounces against the exponential wall, which typically introduces an infrared depression and a pre--inflationary peak in the power spectrum of scalar perturbations. We elaborate on a possible link between this phenomenon and the low--$\\ell$ CMB. For the first 32 multipoles, combining the hard exponential with a milder one leading to $n_s\\simeq 0.96$ and with a small gaussian bump we have attained a reduction of $\\chi^{\\,2}$ to about 46% of the standard $\\Lambda$CDM setting, with both WMAP9 and PLANCK 2013 data. This result corresponds to a $\\chi^{\\,2}/DOF$ of about 0.45, to be compared with a $\\Lambda$CDM value of about 0.85. The preferred choices ...

  10. Bayesian `hyper-parameters' approach to joint estimation: the Hubble constant from CMB measurements

    Science.gov (United States)

    Lahav, O.; Bridle, S. L.; Hobson, M. P.; Lasenby, A. N.; Sodré, L.

    2000-07-01

    Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalize this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint χ2 function a set of `hyper-parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the hyper-parameters, is very simple: instead of minimizing \\sum \\chi_j2 (where \\chi_j2 is per data set j) we propose to minimize \\sum Nj (\\chi_j2) (where Nj is the number of data points per data set j). We illustrate the method by estimating the Hubble constant H0 from different sets of recent cosmic microwave background (CMB) experiments (including Saskatoon, Python V, MSAM1, TOCO and Boomerang). The approach can be generalized for combinations of cosmic probes, and for other priors on the hyper-parameters.

  11. Constraining the time evolution of dark energy, curvature and neutrino properties with cosmic chronometers

    Energy Technology Data Exchange (ETDEWEB)

    Moresco, Michele; Cimatti, Andrea [ALMA Mater Studiorum—Università degli Studi di Bologna, Dipartimento di Astronomia, via Ranzani 1, Bologna, I-40127 Italy (Italy); Jimenez, Raul; Verde, Licia [ICREA, Pg. Lluis Companys 23, Barcelona, 08010 Spain (Spain); Pozzetti, Lucia [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, Bologna, 40127 Italy (Italy); Maraston, Claudia; Thomas, Daniel, E-mail: michele.moresco@unibo.it, E-mail: raul.jimenez@icc.ub.edu, E-mail: liciaverde@icc.ub.edu, E-mail: a.cimatti@unibo.it, E-mail: lucia.pozzetti@oabo.inaf.it, E-mail: claudia.maraston@port.ac.uk, E-mail: daniel.thomas@port.ac.uk [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3FX U.K. (United Kingdom)

    2016-12-01

    We use the latest compilation of observational Hubble parameter measurements estimated with the differential evolution of cosmic chronometers , in the redshift range 0< z <2, to place constraints on cosmological parameters. We used a Markov-Chain Monte-Carlo approach to sample the parameter space for the cosmic chronometers dataset alone and in combination with other state-of-the art cosmological measurements: CMB data from the latest Planck 2015 release, the most recent estimate of the Hubble constant H {sub 0}, a compilation of recent baryon acoustic oscillation data, and the latest type Ia cosmological supernovae sample. From late-Universe probes alone ( z <2) we find that w {sub 0} = −0.9 ± 0.18 and w {sub a} = −0.5 ± 1.7, and when combining also Planck 2015 data we obtain w {sub 0}=−0.98± 0.11 and w {sub a} =−0.30±0.4. These new constraints imply that nearly all quintessence models are disfavoured by the data; only phantom models or a pure cosmological constant are favoured. This is a remarkable finding as it imposes severe constraints on the nature of dark energy. For the curvature our constraints are Ω {sub k} = 0.003 ± 0.003, considering also CMB data. We also find that H ( z ) data from cosmic chronometers are important to constrain parameters that do no affect directly the expansion history, by breaking or reducing degeneracies with other parameters. We find that N {sub eff} = 3.17 ± 0.15, thus excluding the possibility of an extra (sterile) neutrino at more than 5 σ, and put competitive limits on the sum of neutrino masses, Σ m {sub ν}< 0.27 eV at 95% confidence level. Finally, we constrain the redshift evolution of dark energy by exploring separately the early and late-Universe, and find a dark energy equation of state evolution w ( z ) consistent with that in the ΛCDM model at the ± 0.4 level over the entire redshift range 0 < z < 2.

  12. Scanning anisotropy parameters in horizontal transversely isotropic media

    KAUST Repository

    Masmoudi, Nabil

    2016-10-12

    The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor\\'s series expansion of the travel-time solution (of the eikonal equation) as a function of parameter η and azimuth angle ϕ. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non-linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ϕ, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ϕ reveals that travel times are more sensitive to η than to the symmetry axis azimuth ϕ. Thus, η is better constrained from travel times than the azimuth. Moreover, the two-parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ϕ differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ϕ, on the other hand, depend on the background model errors. We also propose a layer-stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.

  13. Anisotropy effect on strengths of metamorphic rocks

    Directory of Open Access Journals (Sweden)

    Ahmet Özbek

    2018-02-01

    Full Text Available This paper aims to study the effect of anisotropy on strengths of several metamorphic rocks of southern (Çine submassif of Menderes metamorphic massif in southwest Turkey. Four different metamorphic rocks including foliated phyllite, schist, gneiss and marble (calcschist were selected and examined. Discontinuity surveys were made along lines for each rock and evaluated with DIPS program. L-type Schmidt hammer was applied in the directions parallel and perpendicular to foliation during the field study. Several hand samples and rock blocks were collected during the field study for measurements of dry and saturated densities, dry and saturated unit weights and porosity, and for petrographic analysis and strength determination in laboratory. L- and N-type Schmidt hammers were applied in the directions perpendicular (anisotropy angle of 0° and parallel (anisotropy angle of 90° to the foliation on selected blocks of phyllite, schist, gneiss and marble (calcschist. The phyllite and schist have higher porosity and lower density values than the other rocks. However, coarse crystalline gneiss and marble (calcschist have higher rebound values and strengths, and they are classified as strong–very strong rocks. Generally, the rebound values in the direction perpendicular to the foliation are slightly higher than that in the direction parallel to foliation. Rebound values of N-type Schmidt hammer are higher than the L-type values except for phyllite. Sometimes, the rebound values of laboratory and field applications gave different results. This may result from variable local conditions such as minerals differentiation, discontinuities, water content, weathering degree and thickness of foliated structure.

  14. Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding.

    Science.gov (United States)

    Lampinen, Björn; Szczepankiewicz, Filip; Mårtensson, Johan; van Westen, Danielle; Sundgren, Pia C; Nilsson, Markus

    2017-02-15

    In diffusion MRI (dMRI), microscopic diffusion anisotropy can be obscured by orientation dispersion. Separation of these properties is of high importance, since it could allow dMRI to non-invasively probe elongated structures such as neurites (axons and dendrites). However, conventional dMRI, based on single diffusion encoding (SDE), entangles microscopic anisotropy and orientation dispersion with intra-voxel variance in isotropic diffusivity. SDE-based methods for estimating microscopic anisotropy, such as the neurite orientation dispersion and density imaging (NODDI) method, must thus rely on model assumptions to disentangle these features. An alternative approach is to directly quantify microscopic anisotropy by the use of variable shape of the b-tensor. Along those lines, we here present the 'constrained diffusional variance decomposition' (CODIVIDE) method, which jointly analyzes data acquired with diffusion encoding applied in a single direction at a time (linear tensor encoding, LTE) and in all directions (spherical tensor encoding, STE). We then contrast the two approaches by comparing neurite density estimated using NODDI with microscopic anisotropy estimated using CODIVIDE. Data were acquired in healthy volunteers and in glioma patients. NODDI and CODIVIDE differed the most in gray matter and in gliomas, where NODDI detected a neurite fraction higher than expected from the level of microscopic diffusion anisotropy found with CODIVIDE. The discrepancies could be explained by the NODDI tortuosity assumption, which enforces a connection between the neurite density and the mean diffusivity of tissue. Our results suggest that this assumption is invalid, which leads to a NODDI neurite density that is inconsistent between LTE and STE data. Using simulations, we demonstrate that the NODDI assumptions result in parameter bias that precludes the use of NODDI to map neurite density. With CODIVIDE, we found high levels of microscopic anisotropy in white matter

  15. The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Abir; Sethi, Shiv K. [Raman Research Institute, CV Raman Ave Sadashivnagar, Bengaluru, Karnataka 560080 (India); Das, Subinoy, E-mail: abir@rri.res.in, E-mail: sethi@rri.res.in, E-mail: subinoy@iiap.res.in [Indian Institute of Astrophysics, 100 Feet Rd, Madiwala, 2nd Block, Koramangala, Bengaluru, Karnataka 560034 (India)

    2017-07-01

    After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc < k < 10{sup 4} Mpc{sup −1}, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as a probe of the small-scale power. We consider four suggested alternative dark matter candidates—Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y -parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift z {sub f} = 10{sup 5} (7%); WDM for mass m {sub wdm} = 1 keV (2%); CHDM for decay redshift z {sub decay} = 10{sup 5} (5%); ULA for mass m {sub a} = 10{sup −24} eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y -distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from

  16. Wavelet library for constrained devices

    Science.gov (United States)

    Ehlers, Johan Hendrik; Jassim, Sabah A.

    2007-04-01

    The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.

  17. Anisotropy in cohesive, frictional granular media

    International Nuclear Information System (INIS)

    Luding, Stefan

    2005-01-01

    The modelling of cohesive, frictional granular materials with a discrete particle molecular dynamics is reviewed. From the structure of the quasi-static granular solid, the fabric, stress, and stiffness tensors are determined, including both normal and tangential forces. The influence of the material properties on the flow behaviour is also reported, including relations between the microscopic attractive force and the macroscopic cohesion as well as the dependence of the macroscopic friction on the microscopic contact friction coefficient. Related to the dynamics, the anisotropy of both structure and stress are exponentially approaching the maximum

  18. Influence of spin on fission fragments anisotropy

    Directory of Open Access Journals (Sweden)

    Ghodsi Omid N.

    2005-01-01

    Full Text Available An analysis of selected fission fragment angular distribution when at least one of the spins of the projectile or target is appreciable in induced fission was made by using the statistical scission model. The results of this model predicate that the spins of the projectile or target are affected on the nuclear level density of the compound nucleus. The experimental data was analyzed by means of the couple channel spin effect formalism. This formalism suggests that the projectile spin is more effective on angular anisotropies within the limits of energy near the fusion barrier.

  19. Transfer anisotropy in a turbulent plasma

    International Nuclear Information System (INIS)

    Bychenkov, V.Y.; Gradov, O.M.; Silin, V.P.

    1982-01-01

    We formulate a theory for transfer phenomena in a plasma with developed ion-sound turbulence. A transfer anisotropy effect caused by a temperature gradient is revealed. The corresponding fluxes transverse to the effective force vector (1) which generates the turbulence turn out to be considerably larger than the longitudinal fluxes in a plasma with a relatively small degree of nonisothermality. For a strongly nonisothermal plasma a suppression of the transverse fluxes takes place and corresponds to a growth of the thermal insulation of the current-carrying plasma filaments

  20. Fusion barrier distributions and fission anisotropies

    International Nuclear Information System (INIS)

    Hinde, D.J.; Morton, C.R.; Dasgupta, M.; Leigh, J.R.; Lestone, J.P.; Lemmon, R.C.; Mein, J.C.; Newton, J.O.; Timmers, H.; Rowley, N.; Kruppa, A.T.

    1995-01-01

    Fusion excitation functions for 16,17 O+ 144 Sm have been measured to high precision. The extracted fusion barrier distributions show a double-peaked structure interpreted in terms of coupling to inelastic collective excitations of the target. The effect of the positive Q-value neutron stripping channel is evident in the reaction with 17 O. Fission and evaporation residue cross-sections and excitation functions have been measured for the reaction of 16 O+ 208 Pb and the fusion barrier distribution and fission anisotropies determined. It is found that the moments of the fusion l-distribution determined from the fusion and fission measurements are in good agreement. ((orig.))

  1. Cosmic anisotropy with reduced relativistic gas

    Energy Technology Data Exchange (ETDEWEB)

    Castardelli dos Reis, Simpliciano [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Shapiro, Ilya L. [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Tomsk State Pedagogical University, Tomsk (Russian Federation); Tomsk State University, Tomsk (Russian Federation)

    2018-02-15

    The dynamics of cosmological anisotropies is investigated for Bianchi type I universe filled by a relativistic matter represented by the reduced relativistic gas model (RRG), with equation of state interpolating between radiation and matter. Previously it was shown that the interpolation is observed in the background cosmological solutions for homogeneous and isotropic universe and also for the linear cosmological perturbations. We extend the application of RRG to the Bianchi type I anisotropic model and find that the solutions evolve to the isotropic universe with the pressureless matter contents. (orig.)

  2. Absorption anisotropy studies of polymethine dyes

    International Nuclear Information System (INIS)

    Lepkowicz, Richard S.; Cirloganu, Claudiu M.; Przhonska, Olga V.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.; Mayboroda, Elena I.

    2004-01-01

    The determination of the spectral position of the excited states and orientation of the transition dipole moments of polymethine molecules is experimentally measured using two methods: the steady-state fluorescence anisotropy method, and a two-color polarization-resolved pump-probe method. This novel use of the pump-probe method is described in detail and a comparison to the fluorescence method is given. Quantum-chemical modeling on the effects of the bridge structure in the polymethine chromophore on the linear absorption spectrum is also discussed

  3. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  4. Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.

    Science.gov (United States)

    Yeboah-Forson, Albert; Whitman, Dean

    2014-01-01

    Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer. © 2013, National Ground Water Association.

  5. Origin of perpendicular magnetic anisotropy in Co/Ni multilayers

    Science.gov (United States)

    Arora, M.; Hübner, R.; Suess, D.; Heinrich, B.; Girt, E.

    2017-07-01

    We studied the variation in perpendicular magnetic anisotropy of (111) textured Au /N ×[Co /Ni ]/Au films as a function of the number of bilayer repeats N . The ferromagnetic resonance and superconducting quantum interference device magnetometer measurements show that the perpendicular magnetic anisotropy of Co/Ni multilayers first increases with N for N ≤10 and then moderately decreases for N >10 . The model we propose reveals that the decrease of the anisotropy for N reduction in the magnetoelastic and magnetocrystalline anisotropies. A moderate decrease in the perpendicular magnetic anisotropy for N >10 is due to the reduction in the magnetocrystalline and the surface anisotropies. To calculate the contribution of magnetoelastic anisotropy in the Co/Ni multilayers, in-plane and out-of-plane x-ray diffraction measurements are performed to determine the spacing between Co/Ni (111) and (220) planes. The magnetocrystalline bulk anisotropy is estimated from the difference in the perpendicular and parallel g factors of Co/Ni multilayers that are measured using the in-plane and out-of-plane ferromagnetic resonance measurements. Transmission electron microscopy has been used to estimate the multilayer film roughness. These values are used to calculate the roughness-induced surface and magnetocrystalline anisotropy coefficients as a function of N .

  6. Middle-energy electron anisotropies in the auroral region

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2004-01-01

    Full Text Available Field-aligned anisotropic electron distribution functions of T > T type are observed on auroral field lines at both low and high altitudes. We show that typically the anisotropy is limited to a certain range of energies, often below 1keV, although sometimes extending to slightly higher energies as well. Almost always there is simultaneously an isotropic electron distribution at higher energies. Often the anisotropies are up/down symmetrical, although cases with net upward or downward electron flow also occur. For a statistical analysis of the anisotropies we divide the energy range into low (below 100eV, middle (100eV–1keV and high (above 1keV energies and develop a measure of anisotropy expressed in density units. The statistical magnetic local time and invariant latitude distribution of the middle-energy anisotropies obeys that of the average auroral oval, whereas the distributions of the low and high energy anisotropies are more irregular. This suggests that it is specifically the middle-energy anisotropies that have something to do with auroral processes. The anisotropy magnitude decreases monotonically with altitude, as one would expect, because electrons have high mobility along the magnetic field and thus, the anisotropy properties spread rapidly to different altitudes.

    Key words. Magnetospheric physics (auroral phenomena. Space plasma physics (wave-particle interactions; changed particle motion and acceleration

  7. Submicron scale tissue multifractal anisotropy in polarized laser light scattering

    Science.gov (United States)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-03-01

    The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes.

  8. Texture and Elastic Anisotropy of Mantle Olivine

    Science.gov (United States)

    Nikitin, A. N.; Ivankina, T. I.; Bourilitchev, D. E.; Klima, K.; Locajicek, T.; Pros, Z.

    Eight olivine rock samples from different European regions were collected for neu- tron texture analyses and for P-wave velocity measurements by means of ultrasonic sounding at various confining pressures. The orientation distribution functions (ODFs) of olivine were determined and pole figures of the main crystallographic planes were calculated. The spatial P-wave velocity distributions were determined at confining pressures from 0.1 to 400 MPa and modelled from the olivine textures. In dependence upon the type of rock (xenolith or dunite) different behavior of both the P-wave veloc- ity distributions and the anisotropy coefficients with various confining pressures was observed. In order to explain the interdependence of elastic anisotropy and hydrostatic pressure, a model for polycrystalline olivine rocks was suggested, which considers the influence of the crystallographic and the mechanical textures on the elastic behaviour of the polycrystal. Since the olivine texture depends upon the active slip systems and the deformation temperature, neutron texture analyses enable us to estimate depth and thermodynamical conditions during texture formation.

  9. Texture and anisotropy analysis of Qusaiba shales

    KAUST Repository

    Kanitpanyacharoen, Waruntorn

    2011-02-17

    Scanning and transmission electron microscopy, synchrotron X-ray diffraction, microtomography and ultrasonic velocity measurements were used to characterize microstructures and anisotropy of three deeply buried Qusaiba shales from the Rub\\'al-Khali basin, Saudi Arabia. Kaolinite, illite-smectite, illite-mica and chlorite show strong preferred orientation with (001) pole figure maxima perpendicular to the bedding plane ranging from 2.4-6.8 multiples of a random distribution (m.r.d.). Quartz, feldspars and pyrite crystals have a random orientation distribution. Elastic properties of the polyphase aggregate are calculated by averaging the single crystal elastic properties over the orientation distribution, assuming a nonporous material. The average calculated bulk P-wave velocities are 6.2 km/s (maximum) and 5.5 km/s (minimum), resulting in a P-wave anisotropy of 12%. The calculated velocities are compared with those determined from ultrasonic velocity measurements on a similar sample. In the ultrasonic experiment, which measures the effects of the shale matrix as well as the effects of porosity, velocities are smaller (P-wave maximum 5.3 km/s and minimum 4.1 km/s). The difference between calculated and measured velocities is attributed to the effects of anisotropic pore structure and to microfractures present in the sample, which have not been taken into account in the matrix averaging. © 2011 European Association of Geoscientists & Engineers.

  10. The Anisotropy of Replicated Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Eugeny L. Furman

    2014-01-01

    Full Text Available The replication casting process gives the open-cell aluminum foams that can be used in many industrial applications as well as in filtering technology. The essential requirement for filters is the uniformity of filtering degree which is defined by the minimal pore size. However the structure of replication castings is often inhomogeneous and the minimal pore radius is decreasing in the direction of melt infiltration. The objective of this investigation is to study the dynamics of melt impregnation of the porous medium by vacuum suction to identify the possibility of reducing the anisotropy. Theoretical data illustrate the processes at the boundary between melt and gas medium. The experiments were carried out using the replication aluminum samples produced according to commercial technology. It was found that the permeability coefficient varies throughout the height of castings. A method for estimation of pressure on the line of melt movement was proposed. The resistance of NaCl layer and circular vents of the mold causes the inhomogeneity of castings. Finally the ways of minimizing the anisotropy were offered.

  11. Effects of pressure anisotropy on plasma transport

    International Nuclear Information System (INIS)

    Zawaideh, E.; Najmabadi, F.; Conn, R.W.

    1986-03-01

    In a recent paper a new set of generalized two-field equations is derived which describes plasma transport along the field lines of a space and time dependent magnetic field. These equations are valid for collisional to weakly collisional plasmas; they reduce to the conventional fluid equations of Braginskii for highly collisional plasmas. An important feature of these equations is that the anisotropy in the ion pressure is explicitly included. In this paper, these generalized transport equations are applied to a model problem of plasma flow through a magnetic mirror field. The profiles of the plasma parameters (density, flow speed, and pressures) are numerically calculated for plasma in different collisionality regimes. These profiles are explained by examining the competing terms in the transport equation. The pressure anisotropy is found to profoundly impact the plasma flow behavior. As a result, the new generalized equations predict flow behavior more accurately than the conventional transport equations. A large density and pressure drop is predicted as the flow passes through a magnetic mirror. Further, the new equations uniquely predict oscillations in the density profile, an effect missing in results from the conventional equations

  12. Cosmic ray anisotropy along with interplanetary transients

    Science.gov (United States)

    Mishra, Rajesh Kumar

    The present work deals with the study of first three harmonics of low amplitude anisotropic wave trains of cosmic ray intensity over the period 1991-1994 for Deep River neutron monitoring station. It is observed that the diurnal time of maximum remains in the corotational direction; whereas, the time of maximum for both diurnal and semi-diurnal anisotropy has significantly shifted towards later hours as compared to the quiet day annual average for majority of the LAE events. It is noticed that these events are not caused either by the high-speed solar wind streams or by the sources on the Sun responsible for producing these streams; such as, polar coronal holes. The direction of the tri-diurnal anisotropy shows a good negative correlation with Bz component of interplanetary magnetic field. The occurrence of low amplitude events is dominant for positive polarity of Bz. The Disturbance Storm Time index i.e. Dst remains consistently negative only throughout the entire low amplitude wave train event.

  13. Scanning anisotropy parameters in complex media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-03-21

    Parameter estimation in an inhomogeneous anisotropic medium offers many challenges; chief among them is the trade-off between inhomogeneity and anisotropy. It is especially hard to estimate the anisotropy anellipticity parameter η in complex media. Using perturbation theory and Taylor’s series, I have expanded the solutions of the anisotropic eikonal equation for transversely isotropic (TI) media with a vertical symmetry axis (VTI) in terms of the independent parameter η from a generally inhomogeneous elliptically anisotropic medium background. This new VTI traveltime solution is based on a set of precomputed perturbations extracted from solving linear partial differential equations. The traveltimes obtained from these equations serve as the coefficients of a Taylor-type expansion of the total traveltime in terms of η. Shanks transform is used to predict the transient behavior of the expansion and improve its accuracy using fewer terms. A homogeneous medium simplification of the expansion provides classical nonhyperbolic moveout descriptions of the traveltime that are more accurate than other recently derived approximations. In addition, this formulation provides a tool to scan for anisotropic parameters in a generally inhomogeneous medium background. A Marmousi test demonstrates the accuracy of this approximation. For a tilted axis of symmetry, the equations are still applicable with a slightly more complicated framework because the vertical velocity and δ are not readily available from the data.

  14. Scanning anisotropy parameters in complex media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Parameter estimation in an inhomogeneous anisotropic medium offers many challenges; chief among them is the trade-off between inhomogeneity and anisotropy. It is especially hard to estimate the anisotropy anellipticity parameter η in complex media. Using perturbation theory and Taylor’s series, I have expanded the solutions of the anisotropic eikonal equation for transversely isotropic (TI) media with a vertical symmetry axis (VTI) in terms of the independent parameter η from a generally inhomogeneous elliptically anisotropic medium background. This new VTI traveltime solution is based on a set of precomputed perturbations extracted from solving linear partial differential equations. The traveltimes obtained from these equations serve as the coefficients of a Taylor-type expansion of the total traveltime in terms of η. Shanks transform is used to predict the transient behavior of the expansion and improve its accuracy using fewer terms. A homogeneous medium simplification of the expansion provides classical nonhyperbolic moveout descriptions of the traveltime that are more accurate than other recently derived approximations. In addition, this formulation provides a tool to scan for anisotropic parameters in a generally inhomogeneous medium background. A Marmousi test demonstrates the accuracy of this approximation. For a tilted axis of symmetry, the equations are still applicable with a slightly more complicated framework because the vertical velocity and δ are not readily available from the data.

  15. Order-constrained linear optimization.

    Science.gov (United States)

    Tidwell, Joe W; Dougherty, Michael R; Chrabaszcz, Jeffrey S; Thomas, Rick P

    2017-11-01

    Despite the fact that data and theories in the social, behavioural, and health sciences are often represented on an ordinal scale, there has been relatively little emphasis on modelling ordinal properties. The most common analytic framework used in psychological science is the general linear model, whose variants include ANOVA, MANOVA, and ordinary linear regression. While these methods are designed to provide the best fit to the metric properties of the data, they are not designed to maximally model ordinal properties. In this paper, we develop an order-constrained linear least-squares (OCLO) optimization algorithm that maximizes the linear least-squares fit to the data conditional on maximizing the ordinal fit based on Kendall's τ. The algorithm builds on the maximum rank correlation estimator (Han, 1987, Journal of Econometrics, 35, 303) and the general monotone model (Dougherty & Thomas, 2012, Psychological Review, 119, 321). Analyses of simulated data indicate that when modelling data that adhere to the assumptions of ordinary least squares, OCLO shows minimal bias, little increase in variance, and almost no loss in out-of-sample predictive accuracy. In contrast, under conditions in which data include a small number of extreme scores (fat-tailed distributions), OCLO shows less bias and variance, and substantially better out-of-sample predictive accuracy, even when the outliers are removed. We show that the advantages of OCLO over ordinary least squares in predicting new observations hold across a variety of scenarios in which researchers must decide to retain or eliminate extreme scores when fitting data. © 2017 The British Psychological Society.

  16. Magnetic anisotropies in SmCo thin films

    International Nuclear Information System (INIS)

    Chen, K.

    1993-01-01

    A systemic study of the deposition processes and magnetic properties for the Sm-Co film system has been carried out. Films of Sm-Co system with various magnetic anisotropies have been synthesized through sputter deposition in both crystalline and amorphous phases. The origins of various anisotropies have been studied. Thermalized sputter deposition process control was used to synthesize Fe enriched Sm-Co films with rhombohedral Th 2 Zn 17 type structure. The film exhibited unusually strong textures with the crystallographic c axes of the crystallites aligned in the film plane. A large anisotropy was resulted with easy axis in the film plane. A well defined and large in-the-film-plane anisotropy of exceptionally high value of 3.3 x 10 6 erg/cm 3 has been obtained in the amorphous SmCo films by applying a magnetic field in the film plane during deposition. It was found that the in-the-film-plane anisotropy depended essentially on the applied field and Sm concentration. For films not synthesized through thermallized sputtering, the easy axis of the film could reoriented. A perpendicular anisotropy was also presented in the film synthesized through thermallized sputtering deposition. A large in-plane anisotropy was obtained in films deposited above ambient temperatures. It was concluded that the surface induced short range ordering was the origin of the in-the-film-phase anisotropy observed in amorphous film deposited in the presence of a magnetic field. The formation mechanism was different from that of the short range ordering induced by field annealing. The perpendicular anisotropy was shown to be growth induced. Large in-plane anisotropy in amorphous films was resulted form partial crystallization in the film. Both the formation of growth induced structure and partial crystallization in the film prevented the formation of the pair ordering and decreased in-the-film-plane anisotropy

  17. Surface anisotropy of iron oxide nanoparticles and slabs from first principles: Influence of coatings and ligands as a test of the Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Brymora, Katarzyna; Calvayrac, Florent, E-mail: Florent.Calvayrac@univ-lemans.fr

    2017-07-15

    Highlights: • A new method is given to extract surface anisotropies from ab initio calculations. • Heisenberg model for magnetic clusters and surfaces is validated in simple cases. • Ligands, metallic clusters, or coatings degrade the validity of the Heisenberg model. • Values for surface anisotropies, volume anisotropies, exchange constants are computed. • Results are in agreement with experimental data, previous theoretical findings. - Abstract: We performed ab initio computations of the magnetic properties of simple iron oxide clusters and slabs. We considered an iron oxide cluster functionalized by a molecule or glued to a gold cluster of the same size. We also considered a magnetite slab coated by cobalt oxide or a mixture of iron oxide and cobalt oxide. The changes in magnetic behavior were explored using constrained magnetic calculations. A possible value for the surface anisotropy was estimated from the fit of a classical Heisenberg model on ab initio results. The value was found to be compatible with estimations obtained by other means, or inferred from experimental results. The addition of a ligand, coating, or of a metallic nanoparticle to the systems degraded the quality of the description by the Heisenberg Hamiltonian. Proposing a change in the anisotropies allowing for the proportion of each transition atom we could get a much better description of the magnetism of series of hybrid cobalt and iron oxide systems.

  18. The Atacama Cosmology Telescope: CMB polarization at 200 < ℓ < 9000

    Energy Technology Data Exchange (ETDEWEB)

    Naess, Sigurd; Allison, Rupert; Calabrese, Erminia [Sub-Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Hasselfield, Matthew [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); McMahon, Jeff; Coughlin, Kevin; Datta, Rahul [Department of Physics, University of Michigan, Ann Arbor 48103 (United States); Niemack, Michael D.; De Bernardis, Francesco [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Addison, Graeme E.; Amiri, Mandana [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Ade, Peter A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales CF24 3AA (United Kingdom); Battaglia, Nick [McWilliams Center for Cosmology, Carnegie Mellon University, Department of Physics, 5000 Forbes Ave., Pittsburgh PA 15213 (United States); Beall, James A.; Britton, Joe; Cho, Hsiao-mei [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Bond, J Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Crichton, Devin [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Das, Sudeep [Department of High Energy Physics, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439 (United States); Devlin, Mark J., E-mail: sigurd.naess@astro.ox.ac.uk [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); and others

    2014-10-01

    We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of 1.3'. The map noise levels in the four regions are between 11 and 17 μK-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range 200 < ℓ < 3000, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at ℓ < 9000, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than 2.4 μ {sup 2} at ℓ = 3000 at 95% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7% polarization with an angle of 150.7{sup o} ± 0.6{sup o} when smoothed with a 5' Gaussian beam.

  19. Nonparametric test of consistency between cosmological models and multiband CMB measurements

    Energy Technology Data Exchange (ETDEWEB)

    Aghamousa, Amir [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Shafieloo, Arman, E-mail: amir@apctp.org, E-mail: shafieloo@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-06-01

    We present a novel approach to test the consistency of the cosmological models with multiband CMB data using a nonparametric approach. In our analysis we calibrate the REACT (Risk Estimation and Adaptation after Coordinate Transformation) confidence levels associated with distances in function space (confidence distances) based on the Monte Carlo simulations in order to test the consiste