WorldWideScience

Sample records for cm-1 spectral resolution

  1. Accurate measurements of solar spectral irradiance between 4000-10000 cm-1

    Science.gov (United States)

    Elsey, J.; Coleman, M. D.; Gardiner, T.; Shine, K. P.

    2017-12-01

    The near-infrared solar spectral irradiance (SSI) is an important input into simulations of weather and climate; the distribution of energy throughout this region of the spectrum influences atmospheric heating rates and the global hydrological cycle through absorption and scattering by water vapour. Current measurements by a mixture of ground-based and space-based instruments show differences of around 10% in the 4000-7000 cm-1 region, with no resolution to this controversy in sight. This work presents observations of SSI taken using a ground-based Fourier Transform spectrometer between 4000-10000 cm-1 at a field site in Camborne, UK, with particular focus on a rigorously defined uncertainty budget. While there is good agreement between this work and the commonly-used ATLAS3 spectrum between 7000-10000 cm-1, the SSI is systematically lower by 10% than ATLAS3 between 4000-7000 cm-1, with no overlap within the k = 2 measurement uncertainties.

  2. Validation of HITEMP-2010 for carbon dioxide and water vapour at high temperatures and atmospheric pressures in 450-7600cm-1 spectral range

    DEFF Research Database (Denmark)

    Alberti, Michael; Weber, Roman; Mancini, Marco

    2015-01-01

    The objective of the work is validation of HITEMP-2010 at atmospheric pressures and temperatures reaching 1770K. To this end, spectral transmissivities at 1cm-1 resolution and excellent signal-to-noise-ratio have been measured for 22 CO2/H2O/N2 mixtures. In this paper we consider the 450cm-1-7600...

  3. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).

    Science.gov (United States)

    Li, Chih-Hao; Benedick, Andrew J; Fendel, Peter; Glenday, Alexander G; Kärtner, Franz X; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2008-04-03

    Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm s(-1) (ref. 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earth-like orbit, a precision of approximately 5 cm s(-1) is necessary. The combination of a laser frequency comb with a Fabry-Pérot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration, with recent encouraging results. Here we report the fabrication of such a filtered laser comb with up to 40-GHz (approximately 1-A) line spacing, generated from a 1-GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb, or 'astro-comb', is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm s(-1) in astronomical radial velocity measurements.

  4. Experimental Line List of Water Vapor Absorption Lines in the Spectral Ranges 1850 - 2280 CM-1 and 2390-4000 CM-1

    Science.gov (United States)

    Loos, Joep; Birk, Manfred; Wagner, Georg

    2017-06-01

    A new experimental line parameter list of water vapor absorption lines in the spectral ranges 1850 - 2280 cm-1 and 2390 - 4000 cm-1 is presented. The line list is based on the analysis of several transmittance spectra measured using a Bruker IFS 125 HR high resolution Fourier transform spectrometer. A total of 54 measurements of pure water and water/air-mixtures at 296 K as well as water/air-mixtures at high and low temperatures were performed. A multispectrum fitting approach was used applying a quadratic speed-dependent hard collision line shape model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation in order to retrieve line positions, intensities, self- and air-broadening parameters, their speed-dependence, self- and air-shifts as well as line mixing and in some cases collisional narrowing parameters. Additionally, temperature dependence parameters for widths, shifts and in a few cases line mixing were retrieved. For every parameter an extensive error estimation calculation was performed identifying and specifying systematic error sources. The resulting parameters are compared to the databases HITRAN12 as well as experimental values. For intensities, a detailed comparison to results of recent ab initio calculations performed at University College London was done showing an agreement within 2 % for a majority of the data. However, for some bands there are systematic deviations attributed to ab initio calculation errors. .H. Ngo et al. JQSRT 129, 89-100 (2013) doi:10.1016/j.jqsrt.2013.05.034; JQSRT 134, 105 (2014) doi:10.1016/j.jqsrt.2013.10.016. H. Tran et al. JQSRT 129, 199-203 (2013) doi:10.1016/j.jqsrt.2013.06.015; JQSRT 134, 104 (2014) doi:10.1016/j.jqsrt.2013.10.015. L.S. Rothman et al. JQSRT 130, 4-50 (2013) doi:10.1016/j.jqsrt.2013.07.002. N. Jacquinet-Husson et al. JMS 112, 2395-2445 (2016) doi:10.1016/j.jms.2016.06.007.

  5. High spectral resolution studies of gamma ray bursts on new missions

    International Nuclear Information System (INIS)

    Desai, U. D.; Acuna, M. H.; Cline, T. L.; Dennis, B. R.; Orwig, L. E.; Trombka, J. I.; Starr, R. D.

    1996-01-01

    Two new missions will be launched in 1996 and 1997, each carrying X-ray and gamma ray detectors capable of high spectral resolution at room temperature. The Argentine Satelite de Aplicaciones Cientificas (SAC-B) and the Small Spacecraft Technology Initiative (SSTI) Clark missions will each carry several arrays of X-ray detectors primarily intended for the study of solar flares and gamma-ray bursts. Arrays of small (1 cm 2 ) cadmium zinc telluride (CZT) units will provide x-ray measurements in the 10 to 80 keV range with an energy resolution of ≅6 keV. Arrays of both silicon avalanche photodiodes (APD) and P-intrinsic-N (PIN) photodiodes (for the SAC-B mission only) will provide energy coverage from 2-25 keV with ≅1 keV resolution. For SAC-B, higher energy spectral data covering the 30-300 keV energy range will be provided by CsI(Tl) scintillators coupled to silicon APDs, resulting in similar resolution but greater simplicity relative to conventional CsI/PMT systems. Because of problems with the Pegasus launch vehicle, the launch of SAC-B has been delayed until 1997. The launch of the SSTI Clark mission is scheduled for June 1996

  6. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki; Jabbour, Ghassan

    2013-01-01

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu

  7. Cochlear implant users' spectral ripple resolution.

    Science.gov (United States)

    Jeon, Eun Kyung; Turner, Christopher W; Karsten, Sue A; Henry, Belinda A; Gantz, Bruce J

    2015-10-01

    This study revisits the issue of the spectral ripple resolution abilities of cochlear implant (CI) users. The spectral ripple resolution of recently implanted CI recipients (implanted during the last 10 years) were compared to those of CI recipients implanted 15 to 20 years ago, as well as those of normal-hearing and hearing-impaired listeners from previously published data from Henry, Turner, and Behrens [J. Acoust. Soc. Am. 118, 1111-1121 (2005)]. More recently, implanted CI recipients showed significantly better spectral ripple resolution. There is no significant difference in spectral ripple resolution for these recently implanted subjects compared to hearing-impaired (acoustic) listeners. The more recently implanted CI users had significantly better pre-operative speech perception than previously reported CI users. These better pre-operative speech perception scores in CI users from the current study may be related to better performance on the spectral ripple discrimination task; however, other possible factors such as improvements in internal and external devices cannot be excluded.

  8. High Spectral Resolution Lidar Based on a Potassium Faraday Dispersive Filter for Daytime Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Abo Makoto

    2016-01-01

    Full Text Available In this paper, a new high-spectral-resolution lidar technique is proposed for measuring the profiles of atmospheric temperature in daytime. Based on the theory of high resolution Rayleigh scattering, the feasibility and advantages of using potassium (K Faraday dispersive optical filters as blocking filters for measuring atmospheric temperature are demonstrated with a numerical simulation. It was found that temperature profiles could be measured within 1K error for the height of 9 km with a 500 m range resolution in 60 min by using laser pulses with 1mJ/pulse and 1 kHz, and a 50 cm diameter telescope. Furthermore, we are developing compact pulsed laser system for temperature lidar transmitter.

  9. High resolution spectroscopy of the OsO4 stretching fundamental at 961 cm-1

    International Nuclear Information System (INIS)

    McDowell, R.S.; Radziemski, L.J.; Flicker, H.; Galbraith, H.W.; Kennedy, R.C.; Nereson, N.G.; Krohn, B.J.; Aldridge, J.P.; King, J.D.; Fox, K.

    1978-01-01

    The ν 3 bands of 187 Os 16 O 4 , 189 Os 16 O 4 , and 192 Os 16 O 4 have been recorded using both a Michelson interferometer (resolution 0.06 cm -1 ) and a tunable semiconductor diode laser (resolution limited by the Doppler width, approx.0.0007 cm -1 ). The rotational fine structure differs from that of most other spherical-top molecules, for only rotational levels of A symmetry exist. A total of 112 individual vibration--rotation lines in the P and R branches of the three isotopic species were calibrated against stimulated emission lines from a high-voltage CO 2 gain cell, and were used to determine three scalar and two tensor spectroscopic constants for each species; an additional scalar constant was obtained from an analysis of the Q branch of 192 OsO 4 . The strength of P (11) A 2 /sup ts0/ was measured for 192 OsO 4 and yields a vibrational transition moment for ν 3 of 0.17 +- 0.02 D. Transitions of all isotopic species that are expected to fall near CO 2 laser lines in the region 949--972 cm -1 are tabulated as an aid in the interpreation of saturation spectroscopy experiments. The general quadratic symmetry and valence force constants of OsO 4 were redetermined, using the isotope shifts in ν 3 as the additional constraints for the F 2 symmetry block

  10. A l% and 1cm Perspective Leads to a Novel CDOM Absorption Algorithm

    Science.gov (United States)

    Morrow, J. H.; Hooker, S. B.; Matsuoka, A.

    2012-01-01

    A next-generation in-water profiler designed to measure the apparent optical properties of seawater was developed and validated across a wide dynamic range of water properties. This new Compact-Optical Profiling System (C-OPS) design uses a novel, kite-shaped, free-falling backplane with adjustable buoyancy and is based on 19 state-of-the-art microradiometers, spanning 320-780 nm. Data collected as part of the field commissioning were of a previously unachievable quality and showed that systematic uncertainties in the sampling protocols were discernible at the 1% optical and 1cm depth resolution levels. A sensitivity analysis as a function of three water types, established by the peak in the remote sensing reflectance spectra, revealed which water types and spectral domains were the most indicative of data acquisition uncertainties. The unprecedented vertical resolution of C-OPS measurements provided near-surface data products at the spectral endpoints with a quality level that has not been obtainable. The improved data allowed development of an algorithm for predicting the spectral absorption due to chromophoric dissolved organic matter (CDOM) using ratios of diffuse attenuation coefficients with over 99% of the variance in the data explained.

  11. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    Science.gov (United States)

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  12. Optimization of a Michelson interferometer with a rotating retroreflector in opitcal design, spectral resolution, and optical throughput

    International Nuclear Information System (INIS)

    Haschberger, P.; Tank, V.

    1993-01-01

    A newly designed Michelson interferometer for Fourier spectroscopy utilizes a nutating retroreflector (cube corner mirror) to generate alterations in geometrical and optical paths. The practical optomechanical design of a Fourier-transform spectrometer incorporating a rotating retroreflector for path-length alteration is considered. (The instrument has been given the name MIROR, for Michelson Interferometer with a Rotating Retroreflector.) Two parameters of the instrument are essential: the maximum optical path difference, which yields the spectral resolution of the instrument, and the diameter of the transmitted beam, which determines the throughput and hence the achievable signal-to-noise ratio. The maximum allowable beam diameter is calculated as a function of the geometry and the orientation of the rotating retroreflector and the other optical components. The geometrical configuration and the orientation of all the optical components with respect to one another are also optimized for the maximum transmitted beam diameter when the required path difference is given. A principal investigation of different possible configurations of the optical components is presented. Then a quantitative optimization for an interferometer employing a retroreflector having a 5-in. (12.7-cm) aperture diameter requiring an optical path difference of more than 10 cm (spectral resolution better than 0.1 cm -1 ) is performed. Finally a simplified but enhanced design is described. 10 refs., 15 figs

  13. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-11-14

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu.m. The apparatus is aggregated into a unitary piece, and a user can connect the apparatus to a user provided controller and/or light source. The light source may be a supercontinuum source.

  14. Repeated 1-cm Resolution Topographic and 2.5-mm Resolution Photomosiac Surveys of Benthic Communities and Fine Scale Bedforms in Monterey Canyon

    Science.gov (United States)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Risi, M.; Troni, G.; Paull, C. K.; Rock, S.; Padial, J. A.; Hammond, M. M.

    2014-12-01

    The Monterey Bay Aquarium Research Institute has developed a low altitude, ROV-based seafloor mapping system that combines lidar laser ranging, multibeam sonar, and stereo photographic imagery. When operated at a 3-m altitude, this system maps seafloor topography with a 1-cm lateral resolution and simultaneously collects 2.5-mm resolution color photography. We have twice mapped an 80-m by 80-m area of a chemosynthetic clam community located at 2850-m depth in the Monterey Canyon axis. Both the topography and the photomosaics resolve changes in the clam community over a six-month interval. Many individual animals have moved, and tracks of those animals are visible in the lidar topography. No other changes in the seafloor at this site can be discerned. We have also performed single surveys of bedforms and scours at both 1850-m and 2850-m depths in Monterey Canyon. The highest resolution bathymetry data are collected using a 3DatDepth SL1 lidar laser scanner. This system has a 30° field of view and ranges continuously, achieving a 1 cm sounding spacing at a 3 m altitude and 0.3 m/s speed. Bathymetry data are also collected using a 400-kHz Reson 7125 multibeam sonar. This configuration produces 512 beams across a 135° wide swath; each beam has a 0.5° acrosstrack by 1.0° alongtrack angular width. At a 3-m altitude, the nadir beams have a 2.5 cm acrosstrack and 5 cm alongtrack footprint. Dual Prosilica GX1920 2.4 Mpixel color cameras provide color stereo photography of the seafloor. Illumination is provided by dual xenon strobes. The camera housings have been fitted with corrective optics achieving a 90° field of view with less than 1% distortion. At a 3-m altitude the raw image pixels have a 2.5 mm resolution. Position and attitude data are provided by a Kearfott SeaDevil Inertial Navigation System (INS) integrated with a 300 kHz Teledyne RD Instruments Doppler velocity log (DVL). A separate Paroscientific pressure sensor is mounted adjacent to the INS. The INS

  15. Infrared emission high spectral resolution atlas of the stratospheric limb

    Science.gov (United States)

    Maguire, William C.; Kunde, Virgil G.; Herath, Lawrence W.

    1989-01-01

    An atlas of high resolution infrared emission spectra identifies a number of gaseous atmospheric features significant to stratospheric chemistry in the 770-900/cm and 1100-1360/cm regions at six zenith angles from 86.7 to 95.1 deg. A balloon-borne Michelson interferometer was flown to obtain about 0.03/cm resolution spectra. Two 10/cm extracts are presented here.

  16. A high-resolution atlas of the infrared spectrum of the sun and the earth atmosphere from space. A compilation of ATMOS spectra of the region from 650 to 4800 cm-1 (2.3 to 16 microns). Volume 2: Stratosphere and mesosphere, 650 to 3350 cm-1

    Science.gov (United States)

    Farmer, Crofton B.; Norton, Robert H.

    1989-01-01

    During the period April 29 to May 2, 1985, the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment was operated for the first time, as part of the Spacelab-3 payload of the shuttle Challenger. The principal purpose of this experiment was to study the distributions of the atmosphere's minor and trace molecular constituents. The instrument, a modified Michelson interferometer covering the frequency range from 600 to 5000/cm-1 at a spectral resolution of 0.01/cm-1, recorded infrared absorption spectra of the sun and of the earth's atmosphere at times close to entry into and exit from occultation by the earth's limb. Spectra were obtained that are free from absorptions due to constituents of the atmosphere (i.e., they are pure solar spectra), as well as spectra of the atmosphere itself, covering line-of-sight tangent altitudes that span the range from the lower thermosphere to the bottom of the troposphere. This atlas presents a compilation of these spectra arranged in a hardcopy format suitable for quick-look reference purposes. Volume 2 covers the stratosphere and mesosphere (i.e., tangent altitudes from 20 to 80 km) for frequencies from 650 to 3350/cm-1.

  17. High resolution FTIR spectrum of the nu1 band of DCOOD.

    Science.gov (United States)

    Goh, K L; Ong, P P; Teo, H H; Tan, T L

    2000-04-01

    Accurate spectral information on formic acid has wide application to radioastronomy since it was the first organic acid found in interstellar space. In this work, the infrared absorption spectrum of the nu1 band of deuterated formic acid (DCOOD) has been measured on a Bomem DA3.002 Fourier transform spectrometer in the wavenumber region 2560-2690 cm(-1) with a resolution of 0.004 cm(-1). A total of 292 infrared transitions have been assigned in this hybrid type A and B band centred at 2631.8736 +/- 0.0004 cm(-1). The assigned transitions have been fitted to give a set of eight rovibrational constants for the nu1 = 1 state with a standard deviation of 0.00078 cm(-1).

  18. Polarized Redundant-Baseline Calibration for 21 cm Cosmology Without Adding Spectral Structure

    Science.gov (United States)

    Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.

    2018-04-01

    21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly-constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally-smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.

  19. High resolution measurements of Cyg X-1 from rockets

    International Nuclear Information System (INIS)

    Rothschild, R.E.; Boldt, E.A.; Holt, S.S.; Serlemitsos, P.J.

    1976-01-01

    Cyg X-1 was observed on two occasions (Oct. 4, 1973 and Oct. 3, 1974) by the Goddard x-ray rocket payload. This payload consisted of two gas proportional counters (xenon--methane with 710 cm 2 and argon--methane with 610 cm 2 ) using the same 128 channel pulse height analyzer and having 320 μs temporal resolution on the 1973 flight and 160 μs resolution on the 1974 flight. During both flights bursts of 1 ms duration were observed with very high statistical certainty. To date all 13 of these bursts have been analyzed for spectral and temporal character, and the results of this analysis are presented. The spectra of overall x-ray emission from both flights are also presented. In a source known for its variability it is remarkable that the spectra taken one year apart are virtually identical

  20. An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption within 0.1 cm-1 bins and pre-computed line tails

    Science.gov (United States)

    Berk, Alexander; Conforti, Patrick; Hawes, Fred

    2015-05-01

    A Line-By-Line (LBL) option is being developed for MODTRAN6. The motivation for this development is two-fold. Firstly, when MODTRAN is validated against an independent LBL model, it is difficult to isolate the source of discrepancies. One must verify consistency between pressure, temperature and density profiles, between column density calculations, between continuum and particulate data, between spectral convolution methods, and more. Introducing a LBL option directly within MODTRAN will insure common elements for all calculations other than those used to compute molecular transmittances. The second motivation for the LBL upgrade is that it will enable users to compute high spectral resolution transmittances and radiances for the full range of current MODTRAN applications. In particular, introducing the LBL feature into MODTRAN will enable first-principle calculations of scattered radiances, an option that is often not readily available with LBL models. MODTRAN will compute LBL transmittances within one 0.1 cm-1 spectral bin at a time, marching through the full requested band pass. The LBL algorithm will use the highly accurate, pressure- and temperature-dependent MODTRAN Padé approximant fits of the contribution from line tails to define the absorption from all molecular transitions centered more than 0.05 cm-1 from each 0.1 cm-1 spectral bin. The beauty of this approach is that the on-the-fly computations for each 0.1 cm-1 bin will only require explicit LBL summing of transitions centered within a 0.2 cm-1 spectral region. That is, the contribution from the more distant lines will be pre-computed via the Padé approximants. The status of the LBL effort will be presented. This will include initial thermal and solar radiance calculations, validation calculations, and self-validations of the MODTRAN band model against its own LBL calculations.

  1. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Mawet, Dimitri [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91106 (United States); Prato, Lisa, E-mail: ji.wang@caltech.edu [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2017-03-20

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution ( R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of high spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.

  2. Search for OH 18 cm Radio Emission from 1I/2017 U1 with the Green Bank Telescope

    Science.gov (United States)

    Park, Ryan S.; Pisano, D. J.; Lazio, T. Joseph W.; Chodas, Paul W.; Naidu, Shantanu P.

    2018-05-01

    This paper reports the first OH 18 cm line observation of the first detected interstellar object 1I/2017 U1 (‘Oumuamua) using the Green Bank Telescope. We have observed the OH lines at 1665.402, 1667.359, and 1720.53 MHz frequencies with a spectral resolution of 357 Hz (approximately 0.06 km s‑1). At the time of the observation, ‘Oumuamua was at topocentric distance and velocity of 1.07 au and 63.4 km s‑1, respectively, or at heliocentric distance and velocity of 1.8 au and 39 km s‑1, respectively. Based on a detailed data reduction and an analogy-based inversion, our final results confirm the asteroidal origin of ‘Oumuamua with an upper bound OH production of Q[OH] < 0.17 × 1028 s‑1.

  3. Evaluating the capabilities of vegetation spectral indices on chlorophyll content estimation at Sentinel-2 spectral resolutions

    Science.gov (United States)

    Sun, Qi; Jiao, Quanjun; Dai, Huayang

    2018-03-01

    Chlorophyll is an important pigment in green plants for photosynthesis and obtaining the energy for growth and development. The rapid, nondestructive and accurate estimation of chlorophyll content is significant for understanding the crops growth, monitoring the disease and insect, and assessing the yield of crops. Sentinel-2 equipped with the Multi-Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region and a spatial resolution of 20nm, which can be used to derive vegetation indices using red-edge bands. In this paper, we will focus on assessing the potential of vegetation spectral indices for retrieving chlorophyll content from Sentinel-2 at different angles. Subsequently, we used in-situ spectral data and Sentinel-2 data to test the relationship between VIs and chlorophyll content. The REP, MTCI, CIred-edge, CIgreen, Macc01, TCARI/OSAVI [705,750], NDRE1 and NDRE2 were calculated. NDRE2 index displays a strongly similar result for hyperspectral and simulated Sentinel-2 spectral bands (R2 =0.53, R2 =0.51, for hyperspectral and Sentinel-2, respectively). At different observation angles, NDRE2 has the smallest difference in performance (R2 = 0.51, R2 =0.64, at 0° and 15° , respectively).

  4. On spectral resolutions of differential vector-operators

    International Nuclear Information System (INIS)

    Ashurov, R.R.; Sokolov, M.S.

    2004-04-01

    We show that spectral resolutions of differential vector-operators may be represented as a specific direct sum integral operator with a kernel written in terms of generalized vector-operator eigenfunctions. Then we prove that a generalized eigenfunction measurable with respect to the spectral parameter may be decomposed using a set of analytical defining systems of coordinate operators. (author)

  5. High-resolution spectral analysis of light from neutral beams and ion source plasmas

    International Nuclear Information System (INIS)

    McNeill, D.H.; Kim, J.

    1980-05-01

    The spectral distributions of Balmer alpha emission from 7- and 22-cm-diam neutral hydrogen beams have been measured with a Fabry-Perot interferometer to obtain information on the beam energy, divergence, and species composition. Results of these measurements are compared with other data on the beam properties to evaluate high-resolution spectroscopy as a beam diagnostic technique. Measurements on ion source plasmas and on beam-produced background plasmas yield average neutral atom energies of approximately 0.3 and 2.5 eV, respectively

  6. Effects of NMR spectral resolution on protein structure calculation.

    Directory of Open Access Journals (Sweden)

    Suhas Tikole

    Full Text Available Adequate digital resolution and signal sensitivity are two critical factors for protein structure determinations by solution NMR spectroscopy. The prime objective for obtaining high digital resolution is to resolve peak overlap, especially in NOESY spectra with thousands of signals where the signal analysis needs to be performed on a large scale. Achieving maximum digital resolution is usually limited by the practically available measurement time. We developed a method utilizing non-uniform sampling for balancing digital resolution and signal sensitivity, and performed a large-scale analysis of the effect of the digital resolution on the accuracy of the resulting protein structures. Structure calculations were performed as a function of digital resolution for about 400 proteins with molecular sizes ranging between 5 and 33 kDa. The structural accuracy was assessed by atomic coordinate RMSD values from the reference structures of the proteins. In addition, we monitored also the number of assigned NOESY cross peaks, the average signal sensitivity, and the chemical shift spectral overlap. We show that high resolution is equally important for proteins of every molecular size. The chemical shift spectral overlap depends strongly on the corresponding spectral digital resolution. Thus, knowing the extent of overlap can be a predictor of the resulting structural accuracy. Our results show that for every molecular size a minimal digital resolution, corresponding to the natural linewidth, needs to be achieved for obtaining the highest accuracy possible for the given protein size using state-of-the-art automated NOESY assignment and structure calculation methods.

  7. High resolution polarimetry of the Sun at 3. 7 and 11. 1 cm wavelengths. [Stokes parameters, polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lang, K R [Tufts Univ., Medford, Mass. (USA). Dept. of Physics

    1977-04-01

    The four Stokes parameters are presented for interferometric observations of the Sun at wavelengths of lambda=3.7 cm and lambda=11 cm with angular resolutions between 2.7 and 36.7 seconds of arc. An H..cap alpha.. solar flare of importance SN and type C has a radio wavelength (lambda=3.7 cm) size of 5 seconds of arc, a flux density of 0.3 x 10/sup -22/Wm/sup -2/Hz/sup -1/, and a brightness temperature on the order of 10/sup 7/K. The radio flare is 30% left circularly polarized at lambda=3.7 cm, 70% left circularly polarized at lambda=11 cm, and no detectable linear polarization was observed at either wavelength. During a forty hour observation of sunspot region McMath No 13926 no substantial variations in circular polarization were observed, whereas one hour prior to the eruption of a solar flare dramatic changes in circular polarization were observed. Small scale features whose angular sizes are on the order of five seconds of arc exhibit changes of circular polarization of up to 80%. At times other than those immediately preceding flare emission, the degree of circular polarization was the same as the two wavelengths but the sign was reversed. This situation can be explained if magnetic fields of intensity H<=1000 G and electron densities of Nsub(e)>=10/sup 7/cm/sup -3/ are present.

  8. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  9. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes.

    Science.gov (United States)

    Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten

    2014-07-01

    The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm(-1) with a spectral resolution of 1 cm(-1) were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca(2+)-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca(2+) presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.

  10. The Combined ASTER MODIS Emissivity over Land (CAMEL Part 1: Methodology and High Spectral Resolution Application

    Directory of Open Access Journals (Sweden)

    E. Eva Borbas

    2018-04-01

    Full Text Available As part of a National Aeronautics and Space Administration (NASA MEaSUREs (Making Earth System Data Records for Use in Research Environments Land Surface Temperature and Emissivity project, the Space Science and Engineering Center (UW-Madison and the NASA Jet Propulsion Laboratory (JPL developed a global monthly mean emissivity Earth System Data Record (ESDR. This new Combined ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer and MODIS (Moderate Resolution Imaging Spectroradiometer Emissivity over Land (CAMEL ESDR was produced by merging two current state-of-the-art emissivity datasets: the UW-Madison MODIS Infrared emissivity dataset (UW BF and the JPL ASTER Global Emissivity Dataset Version 4 (GEDv4. The dataset includes monthly global records of emissivity and related uncertainties at 13 hinge points between 3.6–14.3 µm, as well as principal component analysis (PCA coefficients at 5-km resolution for the years 2000 through 2016. A high spectral resolution (HSR algorithm is provided for HSR applications. This paper describes the 13 hinge-points combination methodology and the high spectral resolutions algorithm, as well as reports the current status of the dataset.

  11. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: svein.mjos@kj.uib.no [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  12. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    International Nuclear Information System (INIS)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P.A.; Schmid, Adrien W.

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  13. High spectral resolution X-ray observations of AGN

    NARCIS (Netherlands)

    Kaastra, J.S.

    2008-01-01

    brief overview of some highlights of high spectral resolution X-ray observations of AGN is given, mainly obtained with the RGS of XMM-Newton. Future prospects for such observations with XMM-Newton are given.

  14. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Radiation Measurement (ARM) Program

    2016-03-01

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141 seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.

  15. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances

    Science.gov (United States)

    Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.

    2018-01-01

    In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.

  16. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    International Nuclear Information System (INIS)

    Foxley, Sean; Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-01-01

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T 2 * -weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T 2 * and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm 3 and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T 2 * -weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not

  17. Assessment of modern spectral analysis methods to improve wavenumber resolution of F-K spectra

    International Nuclear Information System (INIS)

    Shirley, T.E.; Laster, S.J.; Meek, R.A.

    1987-01-01

    The improvement in wavenumber spectra obtained by using high resolution spectral estimators is examined. Three modern spectral estimators were tested, namely the Autoregressive/Maximum Entropy (AR/ME) method, the Extended Prony method, and an eigenstructure method. They were combined with the conventional Fourier method by first transforming each trace with a Fast Fourier Transform (FFT). A high resolution spectral estimator was applied to the resulting complex spatial sequence for each frequency. The collection of wavenumber spectra thus computed comprises a hybrid f-k spectrum with high wavenumber resolution and less spectral ringing. Synthetic and real data records containing 25 traces were analyzed by using the hybrid f-k method. The results show an FFT-AR/ME f-k spectrum has noticeably better wavenumber resolution and more spectral dynamic range than conventional spectra when the number of channels is small. The observed improvement suggests the hybrid technique is potentially valuable in seismic data analysis

  18. High-resolution absorption measurements of NH3 at high temperatures: 500–2100cm1

    DEFF Research Database (Denmark)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-01-01

    High-resolution absorption spectra of NH3 in the region 500–2100 cm -1 at temperatures up to1027 1C and approximately atmospheric pressure (1013±20 mbar) are measured. NH3 concentrations of 1000 ppm,0.5% and 1% in volume fraction were used in the measurements. Spectra are recorded in high tempera...... to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. Approximately 2000 lines have been assigned, of which 851are newly assigned to mainly hot bands involving vibrational states as high as v2=5....

  19. High resolution FTIR spectroscopy of fluoroform 12CHF3 and critical analysis of the infrared spectrum from 25 to 1500 cm-1

    Science.gov (United States)

    Albert, S.; Bauerecker, S.; Bekhtereva, E. S.; Bolotova, I. B.; Hollenstein, H.; Quack, M.; Ulenikov, O. N.

    2018-05-01

    We report high-resolution (? 0.001 cm-1) Fourier Transform Infrared spectra of fluoroform (CHF3) including the pure rotational (far infrared or THz) range (28-65 cm-1), the ν3 fundamental (? = 700.099 cm-1), as well as the associated "hot' band 2ν3 - ν3 (? = 699.295 cm-1) and the 'atmospheric window' range 1100-1250 cm-1 containing the strongly coupled polyad of the levels ν2, ν5 and ν3 + ν6, at room temperature and at 120 K using the collisional cooling cell coupled to our Bruker IFS 125 HR prototype (ZP2001) spectrometer and Bruker IFS 125 HR ETH-SLS prototype at the Swiss Light Source providing intense synchrotron radiation. The pure rotational spectra provide new information about the vibrational ground state of CHF3, which is useful for further analysis of excited vibrational states. The ν3 fundamental band is re-investigated together with the corresponding 'hot' band 2ν3 - ν3 leading to an extension of the existing line lists up to 4430 transitions with ? = 66 for ν3 and 1040 transitions with ? = 43 for 2ν3 - ν3. About 6000 transitions were assigned to rovibrational levels in the polyad ν2/ν5/ν3 + ν6 with ? = 63 for ν2 (? = 1141.457 cm-1), ? = 63 for ν5 (? = 1157.335 cm-1) and ? = 59 for ν3 + ν6 (? = 1208.771 cm-1)(? = ? in each case). The resonance interactions between the ν2, ν5 and ν3 + ν6 states have been taken into account providing an accurate set of effective hamiltonian parameters, which reproduce the experimental results with an accuracy close to the experimental uncertainties (with a root mean square deviation drms = 0.00025 cm-1). The analysis is further extended to the ν4 fundamental (? = 1377.847 cm-1) interacting with 2ν3 (? = 1399.394 cm-1). The results are discussed in relation to the importance of understanding the spectra of CHF3 as a greenhouse gas and as part of our large effort to measure and understand the complete spectrum of CHF3 from the far-infrared to the near-infrared as a prototype for intramolecular

  20. Spectral model for clear sky atmospheric longwave radiation

    Science.gov (United States)

    Li, Mengying; Liao, Zhouyi; Coimbra, Carlos F. M.

    2018-04-01

    An efficient spectrally resolved radiative model is used to calculate surface downwelling longwave (DLW) radiation (0 ∼ 2500 cm-1) under clear sky (cloud free) conditions at the ground level. The wavenumber spectral resolution of the model is 0.01 cm-1 and the atmosphere is represented by 18 non-uniform plane-parallel layers with pressure in each layer determined on a pressure-based coordinate system. The model utilizes the most up-to-date (2016) HITRAN molecular spectral data for 7 atmospheric gases: H2O, CO2, O3, CH4, N2O, O2 and N2. The MT_CKD model is used to calculate water vapor and CO2 continuum absorption coefficients. Longwave absorption and scattering coefficients for aerosols are modeled using Mie theory. For the non-scattering atmosphere (aerosol free), the surface DLW agrees within 2.91% with mean values from the InterComparison of Radiation Codes in Climate Models (ICRCCM) program, with spectral deviations below 0.035 W cm m-2. For a scattering atmosphere with typical aerosol loading, the DLW calculated by the proposed model agrees within 3.08% relative error when compared to measured values at 7 climatologically diverse SURFRAD stations. This relative error is smaller than a calibrated parametric model regressed from data for those same 7 stations, and within the uncertainty (+/- 5 W m-2) of pyrgeometers commonly used for meteorological and climatological applications. The DLW increases by 1.86 ∼ 6.57 W m-2 when compared with aerosol-free conditions, and this increment decreases with increased water vapor content due to overlap with water vapor bands. As expected, the water vapor content at the layers closest to the surface contributes the most to the surface DLW, especially in the spectral region 0 ∼ 700 cm-1. Additional water vapor content (mostly from the lowest 1 km of the atmosphere) contributes to the spectral range of 400 ∼ 650 cm-1. Low altitude aerosols ( ∼ 3.46 km or less) contribute to the surface value of DLW mostly in the

  1. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  2. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    Science.gov (United States)

    Deming, Drake; Sheppard, Kyle

    2017-05-01

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar-planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope/WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

  3. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    Energy Technology Data Exchange (ETDEWEB)

    Deming, Drake; Sheppard, Kyle [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States)

    2017-05-20

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar–planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope /WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

  4. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    International Nuclear Information System (INIS)

    Deming, Drake; Sheppard, Kyle

    2017-01-01

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar–planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope /WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

  5. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  6. On the use of spectral minutiae in high-resolution palmprint recognition

    NARCIS (Netherlands)

    Wang, Ruifang; Veldhuis, Raymond N.J.; Ramos, Daniel; Spreeuwers, Lieuwe Jan; Fierrez, Julian; Xu, H.

    2013-01-01

    The spectral minutiae representation has been proposed as a novel method to minutiae-based fingerprint recognition, which can handle minutiae translation and rotation and improve matching speed. As high-resolution palmprint recognition is also mainly based on minutiae sets, we apply spectral

  7. A method of incident angle estimation for high resolution spectral recovery in filter-array-based spectrometers

    Science.gov (United States)

    Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No

    2017-02-01

    In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.

  8. Determination of channel temperature for AlGaN/GaN HEMTs by high spectral resolution micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Zhang Guangchen; Feng Shiwei; Li Jingwan; Guo Chunsheng; Zhao Yan

    2012-01-01

    Channel temperature determinations of AlGaN/GaN high electron mobility transistors (HEMTs) by high spectral resolution micro-Raman spectroscopy are proposed. The temperature dependence of the E2 phonon frequency of GaN material is calibrated by using a JYT-64000 micro-Raman system. By using the Lorentz fitting method, the measurement uncertainty for the Raman phonon frequency of ±0.035 cm1 is achieved, corresponding to a temperature accuracy of ±3.2 °C for GaN material, which is the highest temperature resolution in the published works. The thermal resistance of the tested AlGaN/GaN HEMT sample is 22.8 °C/W, which is in reasonably good agreement with a three dimensional heat conduction simulation. The difference among the channel temperatures obtained by micro-Raman spectroscopy, the pulsed electrical method and the infrared image method are also investigated quantificationally. (semiconductor devices)

  9. Spectral resolution control of acousto-optical cells operating with collimated and divergent beams

    Science.gov (United States)

    Voloshinov, Vitaly B.; Mishin, Dimitry D.

    1994-01-01

    The paper is devoted to theoretical and experimental investigations of acousto-optical interactions in crystals which may be used for spectral filtration of light in tunable acousto- optical filters. Attention is paid to spectral resolution control during operation with divergent or collimated noncoherent optical beams. In all examined cases spectral bands of anisotropic Bragg diffraction were regulated by means of novel electronical methods. Resolution control was achieved in paratellurite cells with non-collinear and quasi-collinear regimes of the diffraction. Filtration spectral bandwidths for visible light were electronically changed by a factor of 10 divided by 20 by drive electrical signals switching and drive electrical power regulations.

  10. VALIDATION OF A CLINICAL ASSESSMENT OF SPECTRAL RIPPLE RESOLUTION FOR COCHLEAR-IMPLANT USERS

    Science.gov (United States)

    Drennan, Ward. R.; Anderson, Elizabeth S.; Won, Jong Ho; Rubinstein, Jay T.

    2013-01-01

    Objectives Non-speech psychophysical tests of spectral resolution, such as the spectral-ripple discrimination task, have been shown to correlate with speech recognition performance in cochlear implant (CI) users (Henry et al., 2005; Won et al. 2007, 2011; Drennan et al. 2008; Anderson et al. 2011). However, these tests are best suited for use in the research laboratory setting and are impractical for clinical use. A test of spectral resolution that is quicker and could more easily be implemented in the clinical setting has been developed. The objectives of this study were 1) To determine if this new clinical ripple test would yield individual results equivalent to the longer, adaptive version of the ripple discrimination test; 2) To evaluate test-retest reliability for the clinical ripple measure; and 3) To examine the relationship between clinical ripple performance and monosyllabic word recognition in quiet for a group of CI listeners. Design Twenty-eight CI recipients participated in the study. Each subject was tested on both the adaptive and the clinical versions of spectral ripple discrimination, as well as CNC word recognition in quiet. The adaptive version of spectral ripple employed a 2-up, 1-down procedure for determining spectral ripple discrimination threshold. The clinical ripple test used a method of constant stimuli, with trials for each of 12 fixed ripple densities occurring six times in random order. Results from the clinical ripple test (proportion correct) were then compared to ripple discrimination thresholds (in ripples per octave) from the adaptive test. Results The clinical ripple test showed strong concurrent validity, evidenced by a good correlation between clinical ripple and adaptive ripple results (r=0.79), as well as a correlation with word recognition (r = 0.7). Excellent test-retest reliability was also demonstrated with a high test-retest correlation (r = 0.9). Conclusions The clinical ripple test is a reliable non-linguistic measure

  11. Fourier transform measurements of water vapor line parameters in the 4200-6600 cm{sup -1} region

    Energy Technology Data Exchange (ETDEWEB)

    Jenouvrier, Alain [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, UFR Sciences, Moulin de la Housse, B.P. 1039, 51067 Reims Cedex 2 (France)]. E-mail: alain.jenouvrier@univ-reims.fr; Daumont, Ludovic [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, UFR Sciences, Moulin de la Housse, B.P. 1039, 51067 Reims Cedex 2 (France); Regalia-Jarlot, Laurence [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, UFR Sciences, Moulin de la Housse, B.P. 1039, 51067 Reims Cedex 2 (France); Tyuterev, Vladimir G. [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, UFR Sciences, Moulin de la Housse, B.P. 1039, 51067 Reims Cedex 2 (France); Carleer, Michel [Service de Chimie Quantique et de Photophysique, CP 160/09, Universite Libre de Bruxelles, 50 Av. F.D. Roosevelt, B-1050 Brussels (Belgium); Vandaele, Ann Carine [Institut d' Aeronomie Spatiale de Belgique, Av. Circulaire 3, B-1180 Brussels (Belgium); Mikhailenko, Semen [Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Av. Akademichesskii, 634055 Tomsk (Russian Federation); Fally, Sophie [Service de Chimie Quantique et de Photophysique, CP 160/09, Universite Libre de Bruxelles, 50 Av. F.D. Roosevelt, B-1050 Brussels (Belgium)

    2007-06-15

    New high-resolution water vapor absorption spectra were obtained at room temperature in the 4200-6600 cm{sup -1} spectral region by combining Fourier transform spectrometers (FTS) with single and multiple reflection cells. With absorption paths from 0.3 to 1800 m in pure and air diluted water vapor, accurate measurements of about 10400 lines in an intensity range from 10{sup -29} to 10{sup -19} cm/molecule have been performed. Positions, intensities, self- and air-broadening coefficients and air-induced shifts were determined for the H{sub 2} {sup 16}O, H{sub 2} {sup 17}O, H{sub 2} {sup 18}O and HDO isotopologues. The rovibrational assignment of the observed lines was performed with the use of global variational predictions and allowed the identification of several new energy levels. One major contribution of this work consists of the identification of 3280 new weak lines. A very close agreement between the new measured parameters and those listed in the database is reported as well as between the observations and the most recent variational calculations for the positions and the intensities. The present parameters provide an extended and homogeneous data set for water vapor, which is shown to significantly improve the databases for atmospheric applications, especially in the transmission windows on both sides of the band centered at 5400 cm{sup -1}.

  12. Validation of a clinical assessment of spectral-ripple resolution for cochlear implant users.

    Science.gov (United States)

    Drennan, Ward R; Anderson, Elizabeth S; Won, Jong Ho; Rubinstein, Jay T

    2014-01-01

    Nonspeech psychophysical tests of spectral resolution, such as the spectral-ripple discrimination task, have been shown to correlate with speech-recognition performance in cochlear implant (CI) users. However, these tests are best suited for use in the research laboratory setting and are impractical for clinical use. A test of spectral resolution that is quicker and could more easily be implemented in the clinical setting has been developed. The objectives of this study were (1) To determine whether this new clinical ripple test would yield individual results equivalent to the longer, adaptive version of the ripple-discrimination test; (2) To evaluate test-retest reliability for the clinical ripple measure; and (3) To examine the relationship between clinical ripple performance and monosyllabic word recognition in quiet for a group of CI listeners. Twenty-eight CI recipients participated in the study. Each subject was tested on both the adaptive and the clinical versions of spectral ripple discrimination, as well as consonant-nucleus-consonant word recognition in quiet. The adaptive version of spectral ripple used a two-up, one-down procedure for determining spectral ripple discrimination threshold. The clinical ripple test used a method of constant stimuli, with trials for each of 12 fixed ripple densities occurring six times in random order. Results from the clinical ripple test (proportion correct) were then compared with ripple-discrimination thresholds (in ripples per octave) from the adaptive test. The clinical ripple test showed strong concurrent validity, evidenced by a good correlation between clinical ripple and adaptive ripple results (r = 0.79), as well as a correlation with word recognition (r = 0.7). Excellent test-retest reliability was also demonstrated with a high test-retest correlation (r = 0.9). The clinical ripple test is a reliable nonlinguistic measure of spectral resolution, optimized for use with CI users in a clinical setting. The test

  13. MERIS Level-1B Reduced Resolution

    Data.gov (United States)

    National Aeronautics and Space Administration — MERIS is a programmable, medium-spectral resolution, imaging spectrometer operating in the solar reflective spectral range. Fifteen spectral bands can be selected by...

  14. The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0

    Science.gov (United States)

    Valdes, Paul J.; Armstrong, Edward; Badger, Marcus P. S.; Bradshaw, Catherine D.; Bragg, Fran; Crucifix, Michel; Davies-Barnard, Taraka; Day, Jonathan J.; Farnsworth, Alex; Gordon, Chris; Hopcroft, Peter O.; Kennedy, Alan T.; Lord, Natalie S.; Lunt, Dan J.; Marzocchi, Alice; Parry, Louise M.; Pope, Vicky; Roberts, William H. G.; Stone, Emma J.; Tourte, Gregory J. L.; Williams, Jonny H. T.

    2017-10-01

    Understanding natural and anthropogenic climate change processes involves using computational models that represent the main components of the Earth system: the atmosphere, ocean, sea ice, and land surface. These models have become increasingly computationally expensive as resolution is increased and more complex process representations are included. However, to gain robust insight into how climate may respond to a given forcing, and to meaningfully quantify the associated uncertainty, it is often required to use either or both ensemble approaches and very long integrations. For this reason, more computationally efficient models can be very valuable tools. Here we provide a comprehensive overview of the suite of climate models based around the HadCM3 coupled general circulation model. This model was developed at the UK Met Office and has been heavily used during the last 15 years for a range of future (and past) climate change studies, but has now been largely superseded for many scientific studies by more recently developed models. However, it continues to be extensively used by various institutions, including the BRIDGE (Bristol Research Initiative for the Dynamic Global Environment) research group at the University of Bristol, who have made modest adaptations to the base HadCM3 model over time. These adaptations mean that the original documentation is not entirely representative, and several other relatively undocumented configurations are in use. We therefore describe the key features of a number of configurations of the HadCM3 climate model family, which together make up HadCM3@Bristol version 1.0. In order to differentiate variants that have undergone development at BRIDGE, we have introduced the letter B into the model nomenclature. We include descriptions of the atmosphere-only model (HadAM3B), the coupled model with a low-resolution ocean (HadCM3BL), the high-resolution atmosphere-only model (HadAM3BH), and the regional model (HadRM3B). These also include

  15. High resolution spectroscopy in the second excited torsional state of $CH_{3}/OD$ and the atlas of the Fourier transform spectrum in the range 20-205 cm$^{-1}/$...

    CERN Document Server

    Mukhopadhyay, I

    1999-01-01

    In this work, the reduced eighth order Hamiltonian that has been used for the determination of the molecular parameters-using the high resolution Fourier transform far-infrared (FIR) assigned transitions in the ground and first $9 excited torsional states of CH/sub 3/OD-has been applied to assign and refine the model for the second excited torsional state. The data set consisted of 1220 FIR transitions with the rotational angular momentum J<21 and K<7 in the $9 second excited torsional state. It should be noted that the second excited torsional states of methanol are almost at the top of the torsional barrier. Thus it was interesting to see how the large amplitude motion is taken care of by $9 the eighth order Hamiltonian. We are in the process of a global fit including all the assigned transitions up to the second excited state. Additionally, in this paper we present the detailed Fourier transform spectral map of CH/sub $9 3/OD in the range 20-205 cm/sup -1/, as was done for the parent species. This sp...

  16. Neptune's microwave spectrum from 1 mm to 20 cm

    International Nuclear Information System (INIS)

    De Pater, I.; Richmond, M.

    1989-01-01

    Total flux densities and disk-averaged brightness temperatures have been tabulated on the basis of VLA observations of Neptune at 1.3, 2, 6, and 20 cm wavelengths; a recalibration is also conducted of previous observations in order to accurately ascertain the spectral shape of this planet, which is found to have increasing brightness temperature with increasing wavelength, in contrast with that of Uranus. If all the detected emission is atmospheric thermal radiation, ammonia abundance must either be a factor of about 50 lower than the solar N value throughout the Neptune atmosphere, or the planet must emit about 0.3-0.5 mJy synchrotron radiation at 20 cm; the latter possibility is consistent with a planetary magnetic field strength of about 0.5 G at the surface. 39 refs

  17. Infrared spectrum of the simplest Criegee intermediate CH2OO at resolution 0.25 cm−1 and new assignments of bands 2ν9 and ν5

    International Nuclear Information System (INIS)

    Huang, Yu-Hsuan; Li, Jun; Guo, Hua; Lee, Yuan-Pern

    2015-01-01

    The simplest Criegee intermediate CH 2 OO is important in atmospheric chemistry. It has been detected in the reaction of CH 2 I + O 2 with various spectral methods, including infrared spectroscopy; infrared absorption of CH 2 OO was recorded at resolution 1.0 cm1 in our laboratory. We have improved our system and recorded the infrared spectrum of CH 2 OO at resolution 0.25 cm1 with rotational structures partially resolved. Observed vibrational wavenumbers and relative intensities are improved from those of the previous report and agree well with those predicted with quantum-mechanical calculations using the MULTIMODE method on an accurate potential energy surface. Observed rotational structures also agree with the simulated spectra according to theoretical predictions. In addition to derivation of critical vibrational and rotational parameters of the vibrationally excited states to confirm the assignments, the spectrum with improved resolution provides new assignments for bands 2ν 9 at 1234.2 cm1 and ν 5 at 1213.3 cm1 ; some hot bands and combination bands are also tentatively assigned

  18. Real-time generation of images with pixel-by-pixel spectra for a coded aperture imager with high spectral resolution

    International Nuclear Information System (INIS)

    Ziock, K.P.; Burks, M.T.; Craig, W.; Fabris, L.; Hull, E.L.; Madden, N.W.

    2003-01-01

    The capabilities of a coded aperture imager are significantly enhanced when a detector with excellent energy resolution is used. We are constructing such an imager with a 1.1 cm thick, crossed-strip, planar detector which has 38 strips of 2 mm pitch in each dimension followed by a large coaxial detector. Full value from this system is obtained only when the images are 'fully deconvolved' meaning that the energy spectrum is available from each pixel in the image. The large number of energy bins associated with the spectral resolution of the detector, and the fixed pixel size, present significant computational challenges in generating an image in a timely manner at the conclusion of a data acquisition. The long computation times currently preclude the generation of intermediate images during the acquisition itself. We have solved this problem by building the images on-line as each event comes in using pre-imaged arrays of the system response. The generation of these arrays and the use of fractional mask-to-detector pixel sampling is discussed

  19. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    Science.gov (United States)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  20. High resolution spectroscopy of jet cooled phenyl radical: The ν{sub 1} and ν{sub 2} a{sub 1} symmetry C–H stretching modes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chih-Hsuan; Nesbitt, David J. [JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, USA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-07-28

    A series of CH stretch modes in phenyl radical (C{sub 6}H{sub 5}) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (∼60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a{sub 1} symmetry, ν{sub 1} and ν{sub 2}, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν{sub 1} and ν{sub 2} band origins are determined to be 3073.968 50(8) cm{sup −1} and 3062.264 80(7) cm{sup −1}, respectively, which both agree within 5 cm{sup −1} with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm{sup −1} blue shift between gas phase and Ar matrix values for ν{sub 1} and ν{sub 2}. This differs substantially from the much smaller red shift (Δν ≈ − 1 cm{sup −1}) reported for the ν{sub 19} mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet

  1. Very High Spectral Resolution Imaging Spectroscopy: the Fluorescence Explorer (FLEX) Mission

    Science.gov (United States)

    Moreno, Jose F.; Goulas, Yves; Huth, Andreas; Middleton, Elizabeth; Miglietta, Franco; Mohammed, Gina; Nedbal, Ladislav; Rascher, Uwe; Verhoef, Wouter; Drusch, Matthias

    2016-01-01

    The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the FLORIS spectrometer, with a spectral resolution in the range of 0.3 nm, and is designed to fly in tandem with Copernicus Sentinel-3, in order to provide all the necessary spectral / angular information to disentangle emitted fluorescence from reflected radiance, and to allow proper interpretation of the observed fluorescence spatial and temporal dynamics.

  2. a Spatio-Spectral Camera for High Resolution Hyperspectral Imaging

    Science.gov (United States)

    Livens, S.; Pauly, K.; Baeck, P.; Blommaert, J.; Nuyts, D.; Zender, J.; Delauré, B.

    2017-08-01

    Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS) is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600-900 nm) in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots), horticulture (crop status monitoring to evaluate irrigation management in strawberry fields) and geology (meteorite detection on a grassland field). Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475-925 nm), and we discuss future work.

  3. A SPATIO-SPECTRAL CAMERA FOR HIGH RESOLUTION HYPERSPECTRAL IMAGING

    Directory of Open Access Journals (Sweden)

    S. Livens

    2017-08-01

    Full Text Available Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600–900 nm in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots, horticulture (crop status monitoring to evaluate irrigation management in strawberry fields and geology (meteorite detection on a grassland field. Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475–925 nm, and we discuss future work.

  4. A novel spectral resolution and simultaneous determination of multicomponent mixture of Vitamins B1, B6, B12, Benfotiamine and Diclofenac in tablets and capsules by derivative and MCR-ALS

    Science.gov (United States)

    Hegazy, Maha A.; Abdelwahab, Nada S.; Fayed, Ahmed S.

    2015-04-01

    A novel method was developed for spectral resolution and further determination of five-component mixture including Vitamin B complex (B1, B6, B12 and Benfotiamine) along with the commonly co-formulated Diclofenac. The method is simple, sensitive, precise and could efficiently determine the five components by a complementary application of two different techniques. The first is univariate second derivative method that was successfully applied for determination of Vitamin B12. The second is Multivariate Curve Resolution using the Alternating Least Squares method (MCR-ALS) by which an efficient resolution and quantitation of the quaternary spectrally overlapped Vitamin B1, Vitamin B6, Benfotiamine and Diclofenac sodium were achieved. The effect of different constraints was studied and the correlation between the true spectra and the estimated spectral profiles were found to be 0.9998, 0.9983, 0.9993 and 0.9933 for B1, B6, Benfotiamine and Diclofenac, respectively. All components were successfully determined in tablets and capsules and the results were compared to HPLC methods and they were found to be statistically non-significant.

  5. The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0

    Directory of Open Access Journals (Sweden)

    P. J. Valdes

    2017-10-01

    Full Text Available Understanding natural and anthropogenic climate change processes involves using computational models that represent the main components of the Earth system: the atmosphere, ocean, sea ice, and land surface. These models have become increasingly computationally expensive as resolution is increased and more complex process representations are included. However, to gain robust insight into how climate may respond to a given forcing, and to meaningfully quantify the associated uncertainty, it is often required to use either or both ensemble approaches and very long integrations. For this reason, more computationally efficient models can be very valuable tools. Here we provide a comprehensive overview of the suite of climate models based around the HadCM3 coupled general circulation model. This model was developed at the UK Met Office and has been heavily used during the last 15 years for a range of future (and past climate change studies, but has now been largely superseded for many scientific studies by more recently developed models. However, it continues to be extensively used by various institutions, including the BRIDGE (Bristol Research Initiative for the Dynamic Global Environment research group at the University of Bristol, who have made modest adaptations to the base HadCM3 model over time. These adaptations mean that the original documentation is not entirely representative, and several other relatively undocumented configurations are in use. We therefore describe the key features of a number of configurations of the HadCM3 climate model family, which together make up HadCM3@Bristol version 1.0. In order to differentiate variants that have undergone development at BRIDGE, we have introduced the letter B into the model nomenclature. We include descriptions of the atmosphere-only model (HadAM3B, the coupled model with a low-resolution ocean (HadCM3BL, the high-resolution atmosphere-only model (HadAM3BH, and the regional model (HadRM3B

  6. High spectral resolution infrared observations of V1057 Cygni

    International Nuclear Information System (INIS)

    Hartmann, L.; Kenyon, S.J.

    1987-01-01

    High-resolution near-infrared spectra of V1057 Cygni obtained in 1986 with the KPNO 4-m Fourier transform spectrometer provide support for a previously proposed accretion disk model. The model predicts that the observed rotational broadening of spectral lines should be smaller in the infrared than in the optical. The present observations show that V1057 Cyg rotates more slowly at 2.3 microns than at 6000 A by an amount quantitatively consistent with the simple disk models. The absence of any radial velocity variations in either the infrared or optical spectral regions supports the suggestion that the accreted material arises from a remnant disk of protostellar material. 19 references

  7. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users.

    Science.gov (United States)

    Anderson, Elizabeth S; Nelson, David A; Kreft, Heather; Nelson, Peggy B; Oxenham, Andrew J

    2011-07-01

    Spectral ripple discrimination thresholds were measured in 15 cochlear-implant users with broadband (350-5600 Hz) and octave-band noise stimuli. The results were compared with spatial tuning curve (STC) bandwidths previously obtained from the same subjects. Spatial tuning curve bandwidths did not correlate significantly with broadband spectral ripple discrimination thresholds but did correlate significantly with ripple discrimination thresholds when the rippled noise was confined to an octave-wide passband, centered on the STC's probe electrode frequency allocation. Ripple discrimination thresholds were also measured for octave-band stimuli in four contiguous octaves, with center frequencies from 500 Hz to 4000 Hz. Substantial variations in thresholds with center frequency were found in individuals, but no general trends of increasing or decreasing resolution from apex to base were observed in the pooled data. Neither ripple nor STC measures correlated consistently with speech measures in noise and quiet in the sample of subjects in this study. Overall, the results suggest that spectral ripple discrimination measures provide a reasonable measure of spectral resolution that correlates well with more direct, but more time-consuming, measures of spectral resolution, but that such measures do not always provide a clear and robust predictor of performance in speech perception tasks. © 2011 Acoustical Society of America

  8. High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertão

    Directory of Open Access Journals (Sweden)

    Ran Goldblatt

    2017-12-01

    Full Text Available Semi-arid ecosystems play a key role in global agricultural production, seasonal carbon cycle dynamics, and longer-run climate change. Because semi-arid landscapes are heterogeneous and often sparsely vegetated, repeated and large-scale ecosystem assessments of these regions have to date been impossible. Here, we assess the potential of high-spatial resolution visible band imagery for semi-arid ecosystem mapping. We use WorldView satellite imagery at 0.3–0.5 m resolution to develop a reference data set of nearly 10,000 labeled examples of three classes—trees, shrubs/grasses, and bare land—across 1000 km 2 of the semi-arid Sertão region of northeast Brazil. Using Google Earth Engine, we show that classification with low-spectral but high-spatial resolution input (WorldView outperforms classification with the full spectral information available from Landsat 30 m resolution imagery as input. Classification with high spatial resolution input improves detection of sparse vegetation and distinction between trees and seasonal shrubs and grasses, two features which are lost at coarser spatial (but higher spectral resolution input. Our total tree cover estimates for the study area disagree with recent estimates using other methods that may underestimate treecover because they confuse trees with seasonal vegetation (shrubs and grasses. This distinction is important for monitoring seasonal and long-run carbon cycle and ecosystem health. Our results suggest that newer remote sensing products that promise high frequency global coverage at high spatial but lower spectral resolution may offer new possibilities for direct monitoring of the world’s semi-arid ecosystems, and we provide methods that could be scaled to do so.

  9. Spectral characterization of superficial coal groups

    International Nuclear Information System (INIS)

    Ahmad, I.; Khan, M.A.; Ishaq, M.; Shakirullah; Bahadur, A.

    2004-01-01

    Spectral characterization of superficial coal groups was performed in KBr pellets. KBr Pellets were prepared for virgin and variously pretreated coal samples. Spectra of satisfactory resolution were obtained in wave number range-4000-400 cm /sup -1/. Presence of broad absorption bands corresponds to hydroxyl, carbonyl, carboxyl and phenolic functionalities in the spectra clearly define their presence in all samples understudy. Forced oxidation proved effective for oxidation of both aliphatic and aromatic configurations, which can be revealed from the respective spectra. (author)

  10. Linking structure and vibrational mode coupling using high-resolution infrared spectroscopy: A comparison of gauche and trans 1-chloro-2-fluoroethane

    Science.gov (United States)

    Miller, C. Cameron; Stone, Stephen C.; Philips, Laura A.

    1995-01-01

    The high-resolution infrared spectrum of 1-chloro-2-fluoroethane in a molecular beam was collected over the 2975-2994 cm-1 spectral region. The spectral region of 2975-2981 cm-1 contains a symmetric C-H stretching vibrational band of the gauche conformer containing the 35Cl isotope. The spectral region of 2985-2994 cm-1 contains three vibrational bands of the trans conformer. Two of the three bands are assigned as an antisymmetric C-H stretch of each of the two different chlorine isotopes. The third band is assigned as a symmetric C-H stretch of the 35Cl isotope. The gauche conformer of 1-chloro-2-fluoroethane showed doublet patterns similar to those previously observed in 1,2-difluoroethane. The model for 1,2-difluoroethane is further refined in the present work. These refinements suggest that the coupling dark state in 1,2-difluoroethane is composed of 1 quantum C-H bend, 1 quantum C-C stretch, and 12 quanta of torsion. For 1-chloro-2-fluoroethane the dark state could not be identified due to a small data set. The trans conformer of 1-chloro-2-fluoroethane showed no evidence of mode coupling in the three vibrational bands. Including 2-fluoroethanol in this series of molecules, the extent of vibrational mode coupling did not correlate with the density of states available for coupling. Therefore, density of states alone is insufficient to explain the observed trend. A correlation was observed between the degree of intramolecular interaction and vibrational mode coupling.

  11. Spectral resolution enhancement of Fourier-transform spectrometer based on orthogonal shear interference using Wollaston prism

    Science.gov (United States)

    Cong, Lin-xiao; Huang, Min; Cai, Qi-sheng

    2017-10-01

    In this paper, a multi-line interferogram stitching method based on orthogonal shear using the Wollaston prism(WP) was proposed with a 2D projection interferogram recorded through the rotation of CCD, making the spectral resolution of Fourier-Transform spectrometer(FTS) of a limited spatial size increase by at least three times. The fringes on multi-lines were linked with the pixels of equal optical path difference (OPD). Ideally, the error of sampled phase within one pixel was less than half the wavelength, ensuring consecutive values in the over-sampled dimension while aliasing in another. In the simulation, with the calibration of 1.064μm, spectral lines at 1.31μm and 1.56μm of equal intensity were tested and observed. The result showed a bias of 0.13% at 1.31μm and 1.15% at 1.56μm in amplitude, and the FWHM at 1.31μm reduced from 25nm to 8nm after the sample points increased from 320 to 960. In the comparison of reflectance spectrum of carnauba wax within near infrared(NIR) band, the absorption peak at 1.2μm was more obvious and zoom of the band 1.38 1.43μm closer to the reference, although some fluctuation was in the short-wavelength region arousing the spectral crosstalk. In conclusion, with orthogonal shear based on the rotation of the CCD relative to the axis of WP, the spectral resolution of static FTS was enhanced by the projection of fringes to the grid coordinates and stitching the interferograms into a larger OPD, which showed the advantages of cost and miniaturization in the space-constrained NIR applications.

  12. Spectral reflectance "deconstruction" of the Murchison CM2 carbonaceous chondrite and implications for spectroscopic investigations of dark asteroids

    Science.gov (United States)

    Cloutis, Edward A.; Pietrasz, Valerie B.; Kiddell, Cain; Izawa, Matthew R. M.; Vernazza, Pierre; Burbine, Thomas H.; DeMeo, Francesca; Tait, Kimberly T.; Bell, James F.; Mann, Paul; Applin, Daniel M.; Reddy, Vishnu

    2018-05-01

    Carbonaceous chondrites (CCs) are important materials for understanding the early evolution of the solar system and delivery of volatiles and organic material to the early Earth. Presumed CC-like asteroids are also the targets of two current sample return missions: OSIRIS-REx to asteroid Bennu and Hayabusa-2 to asteroid Ryugu, and the Dawn orbital mission at asteroid Ceres. To improve our ability to identify and characterize CM2 CC-type parent bodies, we have examined how factors such as particle size, particle packing, and viewing geometry affect reflectance spectra of the Murchison CM2 CC. The derived relationships have implications for disc-resolved examinations of dark asteroids and sampleability. It has been found that reflectance spectra of slabs are more blue-sloped (reflectance decreasing toward longer wavelengths as measured by the 1.8/0.6 μm reflectance ratio), and generally darker, than powdered sample spectra. Decreasing the maximum grain size of a powdered sample results in progressively brighter and more red-sloped spectra. Decreasing the average grain size of a powdered sample results in a decrease in diagnostic absorption band depths, and redder and brighter spectra. Decreasing porosity of powders and variations in surface texture result in spectral changes that may be different as a function of viewing geometry. Increasing thickness of loose dust on a denser powdered substrate leads to a decrease in absorption band depths. Changes in viewing geometry lead to different changes in spectral metrics depending on whether the spectra are acquired in backscatter or forward-scatter geometries. In backscattered geometry, increasing phase angle leads to an initial increase and then decrease in spectral slope, and a general decrease in visible region reflectance and absorption band depths, and frequent decreases in absorption band minima positions. In forward scattering geometry, increasing phase angle leads to small non-systematic changes in spectral slope

  13. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients

    Science.gov (United States)

    Orych, A.; Walczykowski, P.; Jenerowicz, A.; Zdunek, Z.

    2014-11-01

    Nowadays remote sensing plays a very important role in many different study fields, i.e. environmental studies, hydrology, mineralogy, ecosystem studies, etc. One of the key areas of remote sensing applications is water quality monitoring. Understanding and monitoring of the water quality parameters and detecting different water contaminants is an important issue in water management and protection of whole environment and especially the water ecosystem. There are many remote sensing methods to monitor water quality and detect water pollutants. One of the most widely used method for substance detection with remote sensing techniques is based on usage of spectral reflectance coefficients. They are usually acquired using discrete methods such as spectrometric measurements. These however can be very time consuming, therefore image-based methods are used more and more often. In order to work out the proper methodology of obtaining spectral reflectance coefficients from hyperspectral and multispectral images, it is necessary to verify the impact of cameras radiometric resolution on the accuracy of determination of them. This paper presents laboratory experiments that were conducted using two monochromatic XEVA video sensors (400-1700 nm spectral data registration) with two different radiometric resolutions (12 and 14 bits). In view of determining spectral characteristics from images, the research team used set of interferometric filters. All data collected with multispectral digital video cameras were compared with spectral reflectance coefficients obtained with spectroradiometer. The objective of this research is to find the impact of cameras radiometric resolution on reflectance values in chosen wavelength. The main topic of this study is the analysis of accuracy of spectral coefficients from sensors with different radiometric resolution. By comparing values collected from images acquired with XEVA sensors and with the curves obtained with spectroradiometer it

  14. An empirical spectroscopic database for acetylene in the regions of 5850-6341 cm-1 and 7000-9415 cm-1

    Science.gov (United States)

    Lyulin, O. M.; Campargue, A.

    2017-12-01

    Six studies have been recently devoted to a systematic analysis of the high-resolution near infrared absorption spectrum of acetylene recorded by Cavity Ring Down spectroscopy (CRDS) in Grenoble and by Fourier-transform spectroscopy (FTS) in Brussels and Hefei. On the basis of these works, in the present contribution, we construct an empirical database for acetylene in the 5850-9415 cm-1 region excluding the 6341-7000 cm-1 interval corresponding to the very strong ν1+ν3 manifold. Our database gathers and extends information included in our CRDS and FTS studies. In particular, the intensities of about 1700 lines measured by CRDS in the 7244-7920 cm-1 region are reported for the first time together with those of several bands of 12C13CH2 present in natural isotopic abundance in the acetylene sample. The Herman-Wallis coefficients of most of the bands are derived from a fit of the measured intensity values. A recommended line list is provided with positions calculated using empirical spectroscopic parameters of the lower and upper energy vibrational levels and intensities calculated using the derived Herman-Wallis coefficients. This approach allows completing the experimental list by adding missing lines and improving poorly determined positions and intensities. As a result the constructed line list includes a total of 11113 transitions belonging to 150 bands of 12C2H2 and 29 bands of 12C13CH2. For comparison the HITRAN database in the same region includes 869 transitions of 14 bands, all belonging to 12C2H2. Our weakest lines have an intensity on the order of 10-29 cm/molecule, about three orders of magnitude smaller than the HITRAN intensity cut off. Line profile parameters are added to the line list which is provided in HITRAN format. The comparison of the acetylene database to the HITRAN2012 line list or to results obtained using the global effective operator approach is discussed in terms of completeness and accuracy.

  15. A high-resolution atlas of the infrared spectrum of the Sun and the Earth atmosphere from space: A compilation of ATMOS spectra of the region from 650 to 4800 cm (2.3 to 16 micron). Volume 1: The Sun

    Science.gov (United States)

    Farmer, Crofton B.; Norton, Robert H.

    1989-01-01

    During the period April 29 through May 2, 1985, the Atmospheric Trace Molecular Spectroscopy experiment was operated as part of the Spacelab-3 payload of the shuttle Challenger. The instrument, a modified Michelson Interferometer covering the frequency range from 600 to 5000/cm, at a spectral resolution of 0.01/cm, recorded infrared spectra of the Sun and of the Earth's atmosphere at times close to entry into and exit from occultation by the Earth's limb as seen from the shuttle orbit of 360 km. Spectra were obtained that are free from absorptions due to constituents of the atmosphere (i.e., solar pure spectra), as well as spectra of the atmosphere itself, covering line-of-sight tangent altitudes that span the range from the lower thermosphere to the bottom of the troposphere. This atlas, believed to be the first record of observations of the continuous high resolution infrared spectrum of the Sun and the Earth's atmosphere from space, provides a compilation of these spectra arranged in a hardcopy format suitable for quick-look reference purposes; the data are also available in digital form.

  16. SWIFTS: on-chip very high spectral resolution spectrometer

    Science.gov (United States)

    le Coarer, E.; Venancio, L. G.; Kern, P.; Ferrand, J.; Puget, P.; Ayraud, M.; Bonneville, C.; Demonte, B.; Morand, A.; Boussey, J.; Barbier, D.; Blaize, S.; Gonthiez, T.

    2017-11-01

    The size and the weight of state of the art spectrometers is a serious issue regarding space applications. SWIFTS (Stationary Wave Integrated Fourier Transform Spectrometer) is a new FTS family without any moving part. This very promising technology is an original way to fully sample the Fourier interferogram obtained in a waveguide by either a reflection (SWIFTS Lippmann) or counter-propagative (SWIFTS Gabor) interference phenomenon. The sampling is simultaneously performed the optical path thanks to "nano-detectors" located in the evanescent field of the waveguide. For instance a 1.7cm long waveguide properly associated to the detector achieves directly a resolution of 0.13cm-1 on a few centimetre long instruments. Here, firstly we present the development status of this new kind of spectrometers and the first results obtained with on going development of spectrometer covering simultaneously the visible domain from 400 to 1000 nm like an Echelle spectrometer. Valuable technologies allows one to extend the concept to various wavelength domains. Secondly, we present the results obtained in the frame of an activity funded by the European Space Agency where several potential applications in space missions have been identified and studied.

  17. ANALYZING SPECTRAL CHARACTERISTICS OF SHADOW AREA FROM ADS-40 HIGH RADIOMETRIC RESOLUTION AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    Y.-T. Hsieh

    2016-06-01

    Full Text Available The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i The DN values in shadow area are much lower than in nonshadow area; (ii DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv The shadow area NIR of vegetation category also shows a strong reflection; (v Generally, vegetation indexes (NDVI still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40 is potential for the extract land cover information of shadow areas.

  18. Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution

    DEFF Research Database (Denmark)

    Hvam, Jørn Marcher

    1997-01-01

    Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from inve...... investigations of the electronic, and opto-electronic, properties of semiconductor nanostructures....

  19. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: practical development.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Zhang, Yupeng; Yang, Yongying; Zhou, Yudi; Luo, Jing; Bai, Jian; Shen, Yibing; Wang, Kaiwei; Liu, Chong; Su, Lin; Yang, Liming

    2016-04-04

    A field-widened Michelson interferometer (FWMI), which is intended as the spectroscopic discriminator in ground-based high-spectral-resolution lidar (HSRL) for atmospheric aerosol detection, is described in this paper. The structure, specifications and design of the developed prototype FWMI are introduced, and an experimental approach is proposed to optimize the FWMI assembly and evaluate its comprehensive characteristic simultaneously. Experimental results show that, after optimization process, the peak-to-valley (PV) value and root-mean-square (RMS) value of measured OPD variation for the FWMI are 0.04λ and 0.008λ respectively among the half divergent angle range of 1.5 degree. Through an active locking technique, the frequency of the FWMI can be locked to the laser transmitter with accuracy of 27 MHz for more than one hour. The practical spectral discrimination ratio (SDR) for the developed FWMI is evaluated to be larger than 86 if the divergent angle of incident beam is smaller than 0.5 degree. All these results demonstrate the great potential of the developed FWMI as the spectroscopic discriminator for HSRLs, as well as the feasibility of the proposed design and optimization process. This paper is expected to provide a good entrance for the lidar community in future HSRL developments using the FWMI technique.

  20. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    Science.gov (United States)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  1. Wide-field Spatio-Spectral Interferometry: Bringing High Resolution to the Far- Infrared

    Science.gov (United States)

    Leisawitx, David

    Wide-field spatio-spectral interferometry combines spatial and spectral interferometric data to provide integral field spectroscopic information over a wide field of view. This technology breaks through a mission cost barrier that stands in the way of resolving spatially and measuring spectroscopically at far-infrared wavelengths objects that will lead to a deep understanding of planetary system and galaxy formation processes. A space-based far-IR interferometer will combine Spitzer s superb sensitivity with a two order of magnitude gain in angular resolution, and with spectral resolution in the thousands. With the possible exception of detector technology, which is advancing with support from other research programs, the greatest challenge for far-IR interferometry is to demonstrate that the interferometer will actually produce the images and spectra needed to satisfy mission science requirements. With past APRA support, our team has already developed the highly specialized hardware testbed, image projector, computational model, and image construction software required for the proposed effort, and we have access to an ideal test facility.

  2. Automated road network extraction from high spatial resolution multi-spectral imagery

    Science.gov (United States)

    Zhang, Qiaoping

    For the last three decades, the Geomatics Engineering and Computer Science communities have considered automated road network extraction from remotely-sensed imagery to be a challenging and important research topic. The main objective of this research is to investigate the theory and methodology of automated feature extraction for image-based road database creation, refinement or updating, and to develop a series of algorithms for road network extraction from high resolution multi-spectral imagery. The proposed framework for road network extraction from multi-spectral imagery begins with an image segmentation using the k-means algorithm. This step mainly concerns the exploitation of the spectral information for feature extraction. The road cluster is automatically identified using a fuzzy classifier based on a set of predefined road surface membership functions. These membership functions are established based on the general spectral signature of road pavement materials and the corresponding normalized digital numbers on each multi-spectral band. Shape descriptors of the Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects (e.g., crop fields, parking lots, and buildings). An iterative and localized Radon transform is developed for the extraction of road centerlines from the classified images. The purpose of the transform is to accurately and completely detect the road centerlines. It is able to find short, long, and even curvilinear lines. The input image is partitioned into a set of subset images called road component images. An iterative Radon transform is locally applied to each road component image. At each iteration, road centerline segments are detected based on an accurate estimation of the line parameters and line widths. Three localization approaches are implemented and compared using qualitative and quantitative methods. Finally, the road centerline segments are grouped into a

  3. Infrared spectroscopy of the NO3 radical from 2000 to 3000 cm-1

    Science.gov (United States)

    Kawaguchi, Kentarou; Fujimori, Ryuji; Tang, Jian; Ishiwata, Takashi

    2018-02-01

    The present paper reports high-resolution spectroscopic study of the 14NO3 radical in the 2000-3000 cm-1 region, where eight E‧-A2‧ bands from the ground state are observed. Three bands at 2206, 2246, and 2377 cm-1 are analyzed for the first time, and assigned to the ν1 + 3ν4, 2ν2 + 2ν4, and ν3 + 3ν4 bands, respectively. Bands at 2024, 2155, 2518, and 2585 cm-1 are reassigned to the ν1 + ν3, 2ν3, ν1 + ν3 + ν4, and 2ν3 + ν4 bands, respectively, by adopting the new ν3 vibrational frequency of 1055 cm-1 lower than the previous ν3 = 1492 cm-1. The band at 2902 cm-1 is observed for the first time and assigned to the ν1 + ν3 + 2ν4 band which is the ν1 combined band with the 1927 cm-1 band. Band intensities observed in the 2000-3000 cm-1 region are attributed to the intensity borrowing from the B˜2E‧ -X˜2 A2‧ electronic transition through the vibronic interaction. Although the ν3 fundamental band has not been observed due to the cancelation of vibrational intensity and borrowed intensity, the 2ν3 band becomes stronger than ν3 by a factor of more than 50. Perturbation effects are recognized for the bands observed except for the 2206 cm-1 and 2377 cm-1 bands, and are analyzed by taking into account the Coriolis interaction in the most cases. However, the 2024 cm-1 band is free from the Coriolis interaction, and the v1-v3 interaction is incorporated in the analysis, leading to the 2ν1 frequency of 2008.8 cm-1, which is close to the energy value of 2010 cm-1 observed by a laser induced fluorescence study.

  4. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains Central Facility

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Sally A.; Gaustad, Krista L.; Mlawer, Eli J.; Long, Charles N.; Delamere, Jennifer

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  5. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    Science.gov (United States)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  6. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    Directory of Open Access Journals (Sweden)

    J. Delamere

    2011-09-01

    Full Text Available We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM facility at the Southern Great Plains (SGP site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs, four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated can be identified. A normalized difference vegetation index (NDVI is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  7. ROV seafloor surveys combining 5-cm lateral resolution multibeam bathymetry with color stereo photographic imagery

    Science.gov (United States)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Rock, S. M.; Risi, M.; Padial, J. A.

    2013-12-01

    The Monterey Bay Aquarium Research Institute is developing a low altitude, high-resolution seafloor mapping capability that combines multibeam sonar with stereo photographic imagery. The goal is to obtain spatially quantitative, repeatable renderings of the seafloor with fidelity at scales of 5 cm or better from altitudes of 2-3 m. The initial test surveys using this sensor system are being conducted from a remotely operated vehicle (ROV). Ultimately we intend to field this survey system from an autonomous underwater vehicle (AUV). This presentation focuses on the current sensor configuration, methods for data processing, and results from recent test surveys. Bathymetry data are collected using a 400-kHz Reson 7125 multibeam sonar. This configuration produces 512 beams across a 135° wide swath; each beam has a 0.5° acrosstrack by 1.0° alongtrack angular width. At a 2-m altitude, the nadir beams have a 1.7-cm acrosstrack and 3.5 cm alongtrack footprint. Dual Allied Vision Technology GX1920 2.8 Mpixel color cameras provide color stereo photography of the seafloor. The camera housings have been fitted with corrective optics achieving a 90° field of view through a dome port. Illumination is provided by dual 100J xenon strobes. Position, depth, and attitude data are provided by a Kearfott SeaDevil Inertial Navigation System (INS) integrated with a 300 kHz RDI Doppler velocity log (DVL). A separate Paroscientific pressure sensor is mounted adjacent to the INS. The INS Kalman filter is aided by the DVL velocity and pressure data, achieving navigational drift rates less than 0.05% of the distance traveled during surveys. The sensors are mounted onto a toolsled fitted below MBARI's ROV Doc Ricketts with the sonars, cameras and strobes all pointed vertically down. During surveys the ROV flies at a 2-m altitude at speeds of 0.1-0.2 m/s. During a four-day R/V Western Flyer cruise in June 2013, we successfully collected multibeam and camera survey data from a 2-m altitude

  8. Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols.

    Science.gov (United States)

    Hayman, Matthew; Spuler, Scott

    2017-11-27

    We present a demonstration of a diode-laser-based high spectral resolution lidar. It is capable of performing calibrated retrievals of aerosol and cloud optical properties at a 150 m range resolution with less than 1 minute integration time over an approximate range of 12 km during day and night. This instrument operates at 780 nm, a wavelength that is well established for reliable semiconductor lasers and detectors, and was chosen because it corresponds to the D2 rubidium absorption line. A heated vapor reference cell of isotopic rubidium 87 is used as an effective and reliable aerosol signal blocking filter in the instrument. In principle, the diode-laser-based high spectral resolution lidar can be made cost competitive with elastic backscatter lidar systems, yet delivers a significant improvement in data quality through direct retrieval of quantitative optical properties of clouds and aerosols.

  9. High-resolution quantization based on soliton self-frequency shift and spectral compression in a bi-directional comb-fiber architecture

    Science.gov (United States)

    Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong

    2018-03-01

    We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.

  10. Interferometer map of Virgo A at 1.3 cm lambda

    International Nuclear Information System (INIS)

    Forster, J.R.

    1978-01-01

    The radio galaxy Virgo A (M87, 3C274, NGC 4486) was mapped at 23 GHz (1.3 cm) by use of the University of California's earth-rotation synthesis interferometer at Hat Creek. Full polarization maps with 6 by 12 arc second resolution are presented and compared to the 5 GHz maps made with the 5 KM telescope at Cambridge, England. The linear polarization data are interpreted with the aid of a model consisting of a turbulent low-density plasma containing both random and systematic magnetic fields and radiating by the synchrotron process. Distributions over the core object are derived for the spectral index, rotation measure, line-of-sight, systematic field strength, turbulent-to-systematic field ratio, thermal electron density and intrinsic transverse systematic field direction. The derived distributions suggest an explosive origin at the position of the galactic nucleus and continuing particle acceleration at sites within the extended components. The optical knots and morphology of the continuum radiation are interpreted in terms of particle acceleration by massive objects ejected in the explosion, and the observed large-scale magnetic field is explained by entrapment and stretching of magnetic fields in the central regions by ejected plasma. An age of 7 to 10 4 years is derived for the core object since the most recent explosive outburst, and an age of 2 to 10 7 years is estimated for the low-frequency halo surrounding the core. The theory and technique of synthesis interferometry and the observations and data reduction procedures are also described in detail

  11. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  12. Carma 1 CM Line Survey of Orion-Kl

    Science.gov (United States)

    Friedel, Douglas; Looney, Leslie; Corby, Joanna F.; Remijan, Anthony

    2015-06-01

    We have conducted the first 1 cm (27-35 GHz) line survey of the Orion-KL region by an array. With a primary beam of ˜4.5 arcminutes, the survey looks at a region ˜166,000 AU (0.56 pc) across. The data have a resolution of ˜6 arcseconds on the sky and 97.6 kHz(1.07-0.84 km/s) in frequency. This region of frequency space is much less crowded than at 3mm or 1mm frequencies and contains the fundamental transitions of several complex molecular species, allowing us to probe the largest extent of the molecular emission. We present the initial results, and comparison to 3mm results, from several species including, dimethyl ether [(CH_3)_2O], ethyl cyanide [C_2H_5CN], acetone [(CH_3)_2CO], SO, and SO_2.

  13. TES Level 1 Algorithms: Interferogram Processing, Geolocation, Radiometric, and Spectral Calibration

    Science.gov (United States)

    Worden, Helen; Beer, Reinhard; Bowman, Kevin W.; Fisher, Brendan; Luo, Mingzhao; Rider, David; Sarkissian, Edwin; Tremblay, Denis; Zong, Jia

    2006-01-01

    The Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite measures the infrared radiance emitted by the Earth's surface and atmosphere using Fourier transform spectrometry. The measured interferograms are converted into geolocated, calibrated radiance spectra by the L1 (Level 1) processing, and are the inputs to L2 (Level 2) retrievals of atmospheric parameters, such as vertical profiles of trace gas abundance. We describe the algorithmic components of TES Level 1 processing, giving examples of the intermediate results and diagnostics that are necessary for creating TES L1 products. An assessment of noise-equivalent spectral radiance levels and current systematic errors is provided. As an initial validation of our spectral radiances, TES data are compared to the Atmospheric Infrared Sounder (AIRS) (on EOS Aqua), after accounting for spectral resolution differences by applying the AIRS spectral response function to the TES spectra. For the TES L1 nadir data products currently available, the agreement with AIRS is 1 K or better.

  14. The 590 cm-1 B_1g feature in underdoped Bi_2Sr_2CaCu_2O_8+δ

    Science.gov (United States)

    Hewitt, Kevin C.; Wang, N. L.; Irwin, J. C.; Pooke, D. M.; Pantoja, A. E.; Trodahl, H. J.

    1999-05-01

    Raman scattering studies have been performed on underdoped Bi_2Sr_2CaCu_2O_8+δ. In single crystals underdoped by oxygen removal, a 590 cm-1 peak is observed in the B_1g spectrum. The feature is observed to soften in frequency by 3.8% with isotopic exchange of ^16O by ^18O. In contrast, the 590 cm-1 peak is not observed in crystals underdoped by Y substitution which suggests that it corresponds to a disorder induced vibrational mode. We have also found that underdoping leads to a depletion of low energy spectral weight from regions of the Fermi surface located near the Brillouin zone axes.

  15. Accurate atmospheric parameters at moderate resolution using spectral indices: Preliminary application to the marvels survey

    International Nuclear Information System (INIS)

    Ghezzi, Luan; Da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; Ge, Jian; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Cargile, Phillip; Pepper, Joshua; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Wang, Ji

    2014-01-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff , metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ∼ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff , 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test

  16. Pristine Survey : High-Resolution Spectral Analyses of New Metal-poor Stars

    Science.gov (United States)

    Venn, Kim; Starkenburg, Else; Martin, Nicolas; Kielty, Collin; Youakim, Kris; Arnetsen, Anke

    2018-06-01

    The Pristine survey (Starkenburg et al. 2017) is a new and very successful metal-poor star survey. Combining high-quality narrow-band CaHK CFHT/MegaCam photometry with existing broadband photometry from SDSS, then very metal-poor stars have been found as confirmed from low-resolution spectroscopy (Youakim et al. 2017). Furthermore, we have extended this survey towards the Galactic bulge in a pilot program to test the capabilities in the highly crowded and (inhomogeneously) extincted bulge (Arentsen et al. 2018). High resolution spectral follow-up analyses have been initiated at the CFHT with Espadons (Vevolution or changes in the IMF, e.g., carbon enrichment, high [alpha/Fe] ratios vs alpha-challenged stars, and details in the neutron capture element ratios. While these early studies are being carried out using classical model atmospheres and synthetic spectral fitting (Venn et al. 2017, 2018), we are also exploring the use of a neural network for the fast, efficient, and precise determination of these stellar parameters and chemical abundances (e.g., StarNet, Fabbro et al. 2018).

  17. A Concept of Multi-Mode High Spectral Resolution Lidar Using Mach-Zehnder Interferometer

    Directory of Open Access Journals (Sweden)

    Jin Yoshitaka

    2016-01-01

    Full Text Available In this paper, we present the design of a High Spectral Resolution Lidar (HSRL using a laser that oscillates in a multi-longitudinal mode. Rayleigh and Mie scattering components are separated using a Mach-Zehnder Interferometer (MZI with the same free spectral range (FSR as the transmitted laser. The transmitted laser light is measured as a reference signal with the same MZI. By scanning the MZI periodically with a scanning range equal to the mode spacing, we can identify the maximum Mie and the maximum Rayleigh signals using the reference signal. The cross talk due to the spectral width of each laser mode can also be estimated.

  18. Comparison of inversion accuracy of soil copper content from vegetation indices under different spectral resolution

    Science.gov (United States)

    Sun, Zhongqing; Shang, Kun; Jia, Lingjun

    2018-03-01

    Remote sensing inversion of heavy metal in vegetation leaves is generally based on the physiological characteristics of vegetation spectrum under heavy metal stress, and empirical models with vegetation indices are established to inverse the heavy metal content of vegetation leaves. However, the research of inversion of heavy metal content in vegetation-covered soil is still rare. In this study, Pulang is chosen as study area. The regression model of a typical heavy metal element, copper (Cu), is established with vegetation indices. We mainly investigate the inversion accuracies of Cu element in vegetation-covered soil by different vegetation indices according to specific spectral resolutions of ASD (Analytical Spectral Device) and Hyperion data. The inversion results of soil copper content in the vegetation-covered area shows a good accuracy, and the vegetation indices under ASD spectral resolution correspond to better results.

  19. Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    Science.gov (United States)

    Ghezzi, Luan; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Cargile, Phillip; Ge, Jian; Pepper, Joshua; Wang, Ji; Paegert, Martin

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ~ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test was

  20. High Spectral Resolution Observation of the Soft Diffuse X-ray Background in the Direction of the Galactic Anti-Center

    Science.gov (United States)

    Wulf, Dallas; Eckart, Mega E.; Galeazzi, Massimiliano; Jaeckel, Felix; Kelley, Richard L.; Kilbourne, Caroline A.; McCammon, Dan; Morgan, Kelsey M.; Porter, Frederick S.; Szymkowiak, Andrew E.

    2018-01-01

    High spectral resolution observations in the soft x-rays are necessary for understanding and modelling the hot component of the interstellar medium and its contribution to the Soft X-ray Background (SXRB). This extended source emission cannot be resolved with most wavelength dispersive spectrometers, making energy dispersive microcalorimeters the ideal choice for these observations. We present here the analysis of the most recent sounding rocket flight of the University of Wisconsin-Madison/Goddard Space Flight Center X-ray Quantum Calorimeter (XQC), a large area silicon thermistor microcalorimeter. This 111 second observation integrates a nearly 1 steradian field of view in the direction of the galactic anti-center (l, b = 165°, -5°) and features ~5 eV spectral resolution below 1 keV. Direct comparison will also be made to the previous, high-latitude observations.

  1. Optimisation of chromatographic resolution using objective functions including both time and spectral information.

    Science.gov (United States)

    Torres-Lapasió, J R; Pous-Torres, S; Ortiz-Bolsico, C; García-Alvarez-Coque, M C

    2015-01-16

    The optimisation of the resolution in high-performance liquid chromatography is traditionally performed attending only to the time information. However, even in the optimal conditions, some peak pairs may remain unresolved. Such incomplete resolution can be still accomplished by deconvolution, which can be carried out with more guarantees of success by including spectral information. In this work, two-way chromatographic objective functions (COFs) that incorporate both time and spectral information were tested, based on the peak purity (analyte peak fraction free of overlapping) and the multivariate selectivity (figure of merit derived from the net analyte signal) concepts. These COFs are sensitive to situations where the components that coelute in a mixture show some spectral differences. Therefore, they are useful to find out experimental conditions where the spectrochromatograms can be recovered by deconvolution. Two-way multivariate selectivity yielded the best performance and was applied to the separation using diode-array detection of a mixture of 25 phenolic compounds, which remained unresolved in the chromatographic order using linear and multi-linear gradients of acetonitrile-water. Peak deconvolution was carried out using the combination of orthogonal projection approach and alternating least squares. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.

    Science.gov (United States)

    Yan, Rui; Moon, Seonah; Kenny, Samuel J; Xu, Ke

    2018-03-20

    As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples. In this Account, we summarize the rationale, design, and results of our recent efforts toward the integration of the spectral dimension of single-molecule fluorescence with SMLM to achieve spectrally resolved SMLM (SR-SMLM) and functional SRM ( f-SRM). By developing a wide-field scheme for spectral measurement and implementing single-molecule fluorescence on-off switching typical of SMLM, we first showed that in densely labeled (bio)samples it is possible to record the fluorescence spectra and positions of millions of single molecules synchronously within minutes, giving rise to ultrahigh-throughput single-molecule spectroscopy and SR-SMLM. This allowed us to first show statistically that for many dyes, single molecules of the same species exhibit near identical emission in fixed cells. This narrow distribution of emission wavelengths, which contrasts markedly with previous results at solid surfaces, allowed us to unambiguously identify single molecules of spectrally similar dyes. Crosstalk-free, multiplexed SRM was thus achieved for four dyes that were merely 10 nm apart in emission spectrum, with the three-dimensional SRM images of all four dyes being automatically aligned within one image channel. The ability to incorporate single-molecule fluorescence measurement with

  3. Absolute measurements of fluxes from Cassiopeia A, Cygnus A, Taurus A, Virgo A at seven wavelengths in the 1.8-4.2 cm band

    International Nuclear Information System (INIS)

    Dmitrenko, L.V.; Snegireva, V.V.; Turchin, V.I.; Tsejtlin, N.M.; Voronkov, L.A.; Dmitrenko, D.A.; Kuznetsova, N.A.; Kholodilov, N.N.

    1981-01-01

    Results of absolute measurements of fluxes from Cassiopeia A, Cygnus A, Taurus A, Virgo A at 1.8-4.17 cm wavelengths are presented. Spectra are built in the wave range of 1.8-100 cm with the use of results obtained earlier. Variability has been detected in radiation of Taurus A as well as ''steps'' in the spectrum of Taurus A with the spectral index α=0 in the region of 2 cm and 3-4 cm [ru

  4. Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar

    Directory of Open Access Journals (Sweden)

    Hair Johnathan

    2016-01-01

    Full Text Available First of its kind combined atmospheric and ocean profile data were collected by the recently upgraded NASA Langley Research Center’s (LaRC High Spectral Resolution Lidar (HSRL-1 during the 17 July – 7 August 2014 Ship-Aircraft Bio-Optical Research Experiment (SABOR. This mission sampled over a region that covered the Gulf of Maine, open-ocean near Bermuda, and coastal waters from Virginia to Rhode Island. The HSRL-1 and the Research Scanning Polarimeter from NASA Goddard Institute for Space Studies collected data onboard the NASA LaRC King Air aircraft and flight operations were closely coordinated with the Research Vessel Endeavor that made in situ ocean optical measurements. The lidar measurements provided profiles of atmospheric backscatter and particulate depolarization at 532nm, 1064nm, and extinction (532nm from approximately 9km altitude. In addition, for the first time HSRL seawater backscatter, depolarization, and diffuse attenuation data at 532nm were collected and compared to both the ship measurements and the Moderate Resolution Imaging Spectrometer (NASA MODIS-Aqua satellite ocean retrievals.

  5. Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Yang, Yongying; Yang, Liming; Huang, Hanlu

    2013-11-10

    Thanks to wavelength flexibility, interferometric filters such as Fabry-Perot interferometers (FPIs) and field-widened Michelson interferometers (FWMIs) have shown great convenience for spectrally separating the molecule and aerosol scattering components in the high-spectral-resolution lidar (HSRL) return signal. In this paper, performance comparisons between the FPI and FWMI as a spectroscopic discrimination filter in HSRL are performed. We first present a theoretical method for spectral transmission analysis and quantitative evaluation on the spectral discrimination. Then the process in determining the parameters of the FPI and FWMI for the performance comparisons is described. The influences from the incident field of view (FOV), the cumulative wavefront error induced by practical imperfections, and the frequency locking error on the spectral discrimination performance of the two filters are discussed in detail. Quantitative analyses demonstrate that FPI can produce higher transmittance while the remarkable spectral discrimination is one of the most appealing advantages of FWMI. As a result of the field-widened design, the FWMI still performs well even under the illumination with large FOV while the FPI is only qualified for a small incident angle. The cumulative wavefront error attaches a great effect on the spectral discrimination performance of the interferometric filters. We suggest if a cumulative wavefront error is less than 0.05 waves RMS, it is beneficial to employ the FWMI; otherwise, FPI may be more proper. Although the FWMI shows much more sensitivity to the frequency locking error, it can outperform the FPI given a locking error less than 0.1 GHz is achieved. In summary, the FWMI is very competent in HSRL applications if these practical engineering and control problems can be solved, theoretically. Some other estimations neglected in this paper can also be carried out through the analytical method illustrated herein.

  6. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  7. Analysis of X-ray Spectra of High-Z Elements obtained on Nike with high spectral and spatial resolution

    Science.gov (United States)

    Aglitskiy, Yefim; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.

    2014-10-01

    The spectra of multi-charged ions of Hf, Ta, W, Pt, Au and Bi have been studied on Nike krypton-fluoride laser facility with the help of two kinds of X-ray spectrometers. First, survey instrument covering a spectral range from 0.5 to 19.5 angstroms which allows simultaneous observation of both M- and N- spectra of above mentioned elements with high spectral resolution. Second, an imaging spectrometer with interchangeable spherically bent Quartz crystals that added higher efficiency, higher spectral resolution and high spatial resolution to the qualities of the former one. Multiple spectral lines with X-ray energies as high as 4 keV that belong to the isoelectronic sequences of Fe, Co, Ni, Cu and Zn were identified with the help of NOMAD package developed by Dr. Yu. Ralchenko and colleagues. In our continuous effort to support DOE-NNSA's inertial fusion program, this campaign covered a wide range of plasma conditions that result in production of relatively energetic X-rays. Work supported by the US DOE/NNSA.

  8. Herschel observations of extraordinary sources: Analysis of the HIFI 1.2 THz wide spectral survey toward orion KL. I. method

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, Nathan R.; Bergin, Edwin A.; Neill, Justin L.; Favre, Cécile [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Schilke, Peter [Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany); Lis, Dariusz C.; Emprechtinger, Martin; Phillips, Thomas G. [Cahill Center for Astronomy and Astrophysics 301-17, California Institute of Technology, Pasadena, CA 91125 (United States); Bell, Tom A.; Cernicharo, José; Esplugues, Gisela B. [Centro de Astrobiología (CSIC/INTA), Laboratiorio de Astrofísica Molecular, Ctra. de Torrejón a Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Blake, Geoffrey; Kleshcheva, Maria [Division of Geological and Planetary Sciences, California Institute of Technology, MS 150-21, Pasadena, CA 91125 (United States); Gupta, Harshal; Pearson, John [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lord, Steven [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Marcelino, Nuria [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); McGuire, Brett A. [Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, CA 91125 (United States); Plume, Rene [Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 (Canada); Van der Tak, Floris [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV Groningen (Netherlands); and others

    2014-06-01

    We present a comprehensive analysis of a broadband spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this high-mass star-forming region in the submillimeter with high spectral resolution and include frequencies >1 THz, where the Earth's atmosphere prevents observations from the ground. In all, we detect emission from 39 molecules (79 isotopologues). Combining this data set with ground-based millimeter spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission from the millimeter to the far-IR using the XCLASS program, which assumes local thermodynamic equilibrium (LTE). Several molecules are also modeled with the MADEX non-LTE code. Because of the wide frequency coverage, our models are constrained by transitions over an unprecedented range in excitation energy. A reduced χ{sup 2} analysis indicates that models for most species reproduce the observed emission well. In particular, most complex organics are well fit by LTE implying gas densities are high (>10{sup 6} cm{sup –3}) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H{sub 2} column densities also derived from the HIFI survey. The distribution of rotation temperatures, T {sub rot}, for molecules detected toward the hot core is significantly wider than the compact ridge, plateau, and extended ridge T {sub rot} distributions, indicating the hot core has the most complex thermal structure.

  9. Comb-assisted cavity ring down spectroscopy of 17O enriched water between 7443 and 7921 cm-1

    Science.gov (United States)

    Mondelain, D.; Mikhailenko, S. N.; Karlovets, E. V.; Béguier, S.; Kassi, S.; Campargue, A.

    2017-12-01

    The room temperature absorption spectrum of water vapor highly enriched in 17O has been recorded by Cavity Ring Down Spectroscopy (CRDS) between 7443 and 7921 cm-1. Three series of recordings were performed with pressure values around 0.1, 1 and 10 Torr. The frequency calibration of the present spectra benefited of the combination of the CRDS spectrometer to a self-referenced frequency comb. The resulting CRD spectrometer combines excellent frequency accuracy over a broad spectral region with a high sensitivity (Noise Equivalent Absorption, αmin∼ 10-11-10-10 cm-1). The investigated spectral region corresponds to the high energy range of the first hexade. The assignments were performed using known experimental energy levels as well as calculated line lists based on the results of Partridge and Schwenke. Overall about 4150 lines were measured and assigned to 4670 transitions of six water isotopologues (H216O, H217O, H218O, HD16O, HD17O and HD18O). Their intensities span six orders of magnitude from 10-28 to 10-22 cm/molecule. Most of the new results concern the H217O and HD17O isotopologues for which about 1600 and 400 transitions were assigned leading to the determination of 329 and 207 new energy levels, respectively. For comparison only about 300 and four transitions of H217O and HD17O were previously known in the region, respectively. By comparison to highly accurate H216O line positions available in the literature, the average accuracy on our line centers is checked to be on the order of 3 MHz (10-4 cm-1) or better for not weak well isolated lines. This small uncertainty represents a significant improvement of the line center determination of many H216O lines included in the experimental list provided as Supplementary Material.

  10. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  11. High-Resolution Spectral Measurement of High Temperature CO2 and H2O.

    Science.gov (United States)

    1980-12-01

    a major constituent which critically controls the infrared radiative transfer in the telluric atmosphere. Their absorption bands are distributed over... movement to prevent cracking. Also, the continuous Q = s/) spectrum spectral coverage filament ceramic fiber, brand AB-312 manufactured by resolution the 3M

  12. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    Science.gov (United States)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational

  13. Atmospheric-water absorption features near 2.2 micrometers and their importance in high spectral resolution remote sensing

    Science.gov (United States)

    Kruse, F. A.; Clark, R. N.

    1986-01-01

    Selective absorption of electromagnetic radiation by atmospheric gases and water vapor is an accepted fact in terrestrial remote sensing. Until recently, only a general knowledge of atmospheric effects was required for analysis of remote sensing data; however, with the advent of high spectral resolution imaging devices, detailed knowledge of atmospheric absorption bands has become increasingly important for accurate analysis. Detailed study of high spectral resolution aircraft data at the U.S. Geological Survey has disclosed narrow absorption features centered at approximately 2.17 and 2.20 micrometers not caused by surface mineralogy. Published atmospheric transmission spectra and atmospheric spectra derived using the LOWTRAN-5 computer model indicate that these absorption features are probably water vapor. Spectral modeling indicates that the effects of atmospheric absorption in this region are most pronounced in spectrally flat materials with only weak absorption bands. Without correction and detailed knowledge of the atmospheric effects, accurate mapping of surface mineralogy (particularly at low mineral concentrations) is not possible.

  14. Annealing as grown large volume CZT single crystals for increased spectral resolution

    International Nuclear Information System (INIS)

    Li, Longxia

    2008-01-01

    The spectroscopic performance of current large-volume Cadmium 10% Zinc Telluride, Cd 0.9 Zn 0.1 Te, (CZT) detectors is impaired by cumulative effect of tellurium precipitates (secondary phases) presented in CZT single-crystal grown by low-pressure Bridgman techniques(1). This statistical effect may limit the energy resolution of large-volume CZT detectors (typically 2-5% at 662 keV for 12-mm thick devices). The stochastic nature of the interaction prevents the use of any electronic or digital charge correction techniques without a significant reduction in the detector efficiency. This volume constraint hampers the utility of CZT since the detectors are inefficient at detecting photons >1MeV and/or in low fluency situations. During the project, seven runs CZT ingots have been grown, in these ingots the indium dopant concentrations have been changed in the range between 0.5ppm to 6ppm. The I-R mapping imaging method has been employed to study the Te-precipitates. The Teprecipitates in as-grown CZT wafers, and after annealing wafers have been systematically studied by using I-R mapping system (home installed, resolution of 1.5 (micro)m). We employed our I-R standard annealing CZT (Zn=4%) procedure or two-steps annealing into radiation CZT (Zn=10%), we achieved the 'non'-Te precipitates (size 10 9-10 (Omega)-cm. We believe that the Te-precipitates are the p-type defects, its reducing number causes the CZT became n+-type, therefore we varied or reduced the indium dapant concentration during the growth and changed the Te-precipitates size and density by using different Cd-temperature and different annealing procedures. We have made the comparisons among Te-precipitates size, density and Indium dopant concentrations, and we found that the CZT with smaller size of Te-precipitates is suitable for radiation uses but non-Te precipitates is impossible to be used in the radiation detectors, because the CZT would became un-dopant or 'intrinsic' with non radiation affection (we

  15. Geo-oculus: high resolution multi-spectral earth imaging mission from geostationary orbit

    Science.gov (United States)

    Vaillon, L.; Schull, U.; Knigge, T.; Bevillon, C.

    2017-11-01

    Geo-Oculus is a GEO-based Earth observation mission studied by Astrium for ESA in 2008-2009 to complement the Sentinel missions, the space component of the GMES (Global Monitoring for Environment & Security). Indeed Earth imaging from geostationary orbit offers new functionalities not covered by existing LEO observation missions, like real-time monitoring and fast revisit capability of any location within the huge area in visibility of the satellite. This high revisit capability is exploited by the Meteosat meteorogical satellites, but with a spatial resolution (500 m nadir for the third generation) far from most of GMES needs (10 to 100 m). To reach such ground resolution from GEO orbit with adequate image quality, large aperture instruments (> 1 m) and high pointing stability (challenges of such missions. To address the requirements from the GMES user community, the Geo-Oculus mission is a combination of routine observations (daily systematic coverage of European coastal waters) with "on-demand" observation for event monitoring (e.g. disasters, fires and oil slicks). The instrument is a large aperture imaging telescope (1.5 m diameter) offering a nadir spatial sampling of 10.5 m (21 m worst case over Europe, below 52.5°N) in a PAN visible channel used for disaster monitoring. The 22 multi-spectral channels have resolutions over Europe ranging from 40 m in UV/VNIR (0.3 to 1 μm) to 750 m in TIR (10-12 μm).

  16. Spectroscopic investigations of hard x-ray emission from 120 ps laser-produced plasmas at intensities near 1017 W cm-2

    International Nuclear Information System (INIS)

    Dunn, J.; Young, B.K.F.; Osterheld, A.L.; Foord, M.E.; Walling, R.S.; Stewart, R.E.; Faenov, A.Y.

    1995-11-01

    Spectroscopic investigations of the x-ray emission of plasmas heated by 120 ps, frequency doubled pulses from the JANUS Nd: glass laser are presented. High Z K-shell spectra emitted from slab targets heated to near 10 17 W cm -2 intensity are investigated. High resolution (γ/Δγ>5000) x-ray spectra of multicharged ions of H-like Ti, Co, Ni, Cu, and also H-like Sc in the spectral range 1.5--3.0 angstrom are obtained in single laser shots using a spherically bent Mica crystal spectrograph with a 186 mm radius of curvature. The spectra- have one dimensional spatial resolution of about 25μm and indicate that the size of the emission zone of the resonance, transitions is 2 keV and density∼10 22 cm -3 . These experiments demonstrate that with modest laser energy, plasmas heated by high-intensity 120 ps lasers provide a very bright source of hard ∼8 keV x-ray emission

  17. High resolution spectroscopy of 1,2-difluoroethane in a molecular beam: A case study of vibrational mode-coupling

    Science.gov (United States)

    Mork, Steven W.; Miller, C. Cameron; Philips, Laura A.

    1992-09-01

    The high resolution infrared spectrum of 1,2-difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1 spectral region. This region corresponds to the symmetric combination of asymmetric C-H stretches in DFE. Observed rotational fine structure indicates that this C-H stretch is undergoing vibrational mode coupling to a single dark mode. The dark mode is split by approximately 19 cm-1 due to tunneling between the two identical gauche conformers. The mechanism of the coupling is largely anharmonic with a minor component of B/C plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. Analysis of the fine structure identifies the dark state as being composed of C-C torsion, CCF bend, and CH2 rock. Coupling between the C-H stretches and the C-C torsion is of particular interest because DFE has been observed to undergo vibrationally induced isomerization from the gauche to trans conformer upon excitation of the C-H stretch.

  18. Pre-physical treatment: an important procedure to improve spectral resolution in polymers microstructure studies using 13C solution NMR

    International Nuclear Information System (INIS)

    Pedroza, Oscar J.O.; Tavares, Maria I.B.

    2004-01-01

    Changes in physical properties of polymeric materials can be evaluated from their microstructures, which can be investigated using solution carbon-13 nuclear magnetic resonance (NMR). In this type of study spectral resolution is very important, which obviously depend on the sample and solvent. A pre physical treatment allows for an improvement in the spectral resolution. Consequently, more information on chain linking can be obtained, thus facilitating the determination of the stereo sequences. (author)

  19. New High-Resolution Absorption Cross-Section Measurements of HCFC-142B in the Mid-Ir

    Science.gov (United States)

    Le Bris, Karine; Strong, Kimberly; Melo, Stella

    2009-06-01

    HCFC-142b (1-chloro-1,1-difluoroethane) is a temporary substitute for ozone-depleting chlorofluorocarbons (CFCs). However, due to its high absorption cross-sections in the mid-IR, HCFC-142b is also a highly potent greenhouse gas, now detectable from space by satellite missions. So far, the accuracy of the retrieval has been limited by the lack of reference data in a range of temperatures compatible with atmospheric observations. We present new absorption cross section measurements of HCFC-142b at high-resolution (0.02 cm^{-1}) from 223 K to 283 K in the 600 cm^{-1}- 4000 cm^{-1} spectral window. The composite spectra are calculated for each temperature from a set of acquisitions at different pressures by Fourier transform spectroscopy.

  20. GOSAT TIR spectral validation with High/Low temperature target using Aircraft base-FTS S-HIS

    Science.gov (United States)

    Kataoka, F.; Knuteson, R.; Taylor, J. K.; Kuze, A.; Shiomi, K.; Suto, H.; Yoshida, J.

    2017-12-01

    The Greenhouse gases Observing SATellite (GOSAT) was launched on January 2009. The GOSAT is equipped with TANSO-FTS (Fourier-Transform Spectrometer), which observe reflected solar radiation from the Earth's surface with shortwave infrared (SWIR) band and thermal emission from the Earth's surface and atmosphere with thermal infrared (TIR) band. The TIR band cover wide spectral range (650 - 1800 [cm-1]) with a high spectral resolution (0.2 [cm-1]). The TIR spectral information provide vertical distribution of CO2 and CH4. GOSAT has been operation more than eight years. In this long operation, GOSAT had experienced two big accidents; Rotation of one of the solar paddles stopped and sudden TANSO-FTS operation stop in May 2014 and cryocooler shutdown and restart in August - September 2015. These events affected the operation condition of the TIR photo-conductive (PC)-MCT detector. FTS technology using multiplex wide spectra needs wide dynamic range. PC detector has nonlinearity. Its correction needs accurate estimation of time-dependent offset. In current TIR Level 1B product version (V201), the non-photon level offset (Vdc_offset) estimated from on-orbit deep space calibration data and pre-launch background radiation model. But the background radiation and detector temperature have changed after cryocooler shutdown events. These changes are too small to detect from onboard temperature sensors. The next TIR Level 1B product uses cross calibration data together with deep space calibration data and instrument radiation model has been updated. This work describes the evaluation of new TIR Level 1B spectral quality with aircraft-based FTS; Scanning High-resolution Interferometer Sounder (S-HIS). The S-HIS mounted on the high-altitude ER-2 aircraft and flew at about 20km altitude. Because the observation geometry of GOSAT and S-HIS are quite different, we used the double difference method using atmospheric transfer model. GOSAT TIR band cover wide dynamic range, so we check

  1. Effects of electron irradiation and temperature on 1 ohm-cm and 10 ohm-cm silicon solar cells

    Science.gov (United States)

    Nicoletta, C. A.

    1973-01-01

    One OHM-cm and 10 OHM-cm silicon solar cells were exposed to 1.0 MeV electrons at a fixed flux of 10 to the 11th power e/sq cm/sec and fluences of 10 to the 13th power, 10 to the 14th power and 10 to the 15th power e/sq.cm. 1-V curves of the cells were made at room temperature, - 63 C and + or - 143 C after each irradiation. A value of 139.5 mw/sq cm was used as AMO incident energy rate per unit area. The 10 OHM-cm cells appear more efficient than 1 OHM-cm cells after exposure to a fluence greater than 10 to the 14th power e/sq cm. The 1.0 MeV electron damage coefficients for both 1 OHM-cm and 10 OHM-cm cells are somewhat less than those for previously irradiated cells at room temperature. The values of the damage coefficients increase as the cell temperatures decrease. Efficiencies pertaining to maximum power output are about the same as those of n on p silicon cells evaluated previously.

  2. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Luo, Jing; Yang, Yongying; Zhou, Yudi; Zhang, Yupeng; Duan, Lulin; Su, Lin; Yang, Liming; Shen, Yibing; Wang, Kaiwei; Bai, Jian

    2015-05-04

    A field-widened Michelson interferometer (FWMI) is developed to act as the spectral discriminator in high-spectral-resolution lidar (HSRL). This realization is motivated by the wide-angle Michelson interferometer (WAMI) which has been used broadly in the atmospheric wind and temperature detection. This paper describes an independent theoretical framework about the application of the FWMI in HSRL for the first time. In the framework, the operation principles and application requirements of the FWMI are discussed in comparison with that of the WAMI. Theoretical foundations for designing this type of interferometer are introduced based on these comparisons. Moreover, a general performance estimation model for the FWMI is established, which can provide common guidelines for the performance budget and evaluation of the FWMI in the both design and operation stages. Examples incorporating many practical imperfections or conditions that may degrade the performance of the FWMI are given to illustrate the implementation of the modeling. This theoretical framework presents a complete and powerful tool for solving most of theoretical or engineering problems encountered in the FWMI application, including the designing, parameter calibration, prior performance budget, posterior performance estimation, and so on. It will be a valuable contribution to the lidar community to develop a new generation of HSRLs based on the FWMI spectroscopic filter.

  3. Detection of wine grape nutrient levels using visible and near infrared 1nm spectral resolution remote sensing

    Science.gov (United States)

    Anderson, Grant; van Aardt, Jan; Bajorski, Peter; Vanden Heuvel, Justine

    2016-05-01

    The grape industry relies on regular crop assessment to aid in the day-to-day and seasonal management of their crop. More specifically, there are six key nutrients of interest to viticulturists in the growing of wine grapes, namely nitrogen, potassium, phosphorous, magnesium, zinc and boron. Traditional methods of determining the levels of these nutrients are through collection and chemical analysis of petiole samples from the grape vines themselves. We collected ground-level observations of the spectra of the grape vines, using a hyperspectral spectrometer (0.4-2.5um), at the same time that petioles samples were harvested. We then interpolated the data into a consistent 1 nm spectral resolution before comparing it to the nutrient data collected. This nutrient data came from both the industry standard petiole analysis, as well as an additional leaf-level analysis. The data were collected for two different grape cultivars, both during bloom and veraison periods to provide variability, while also considering the impact of temporal/seasonal change. A narrow-band NDI (Normalized Difference Index) approach, as well as a simple ratio index, was used to determine the correlation of the reflectance data to the nutrient data. This analysis was limited to the silicon photodiode range to increase the utility of our approach for wavelength-specific cameras (via spectral filters) in a low cost drone platform. The NDI generated correlation coefficients were as high as 0.80 and 0.88 for bloom and veraison, respectively. The ratio index produced correlation coefficient results that are the same at two decimal places with 0.80 and 0.88. These results bode well for eventual non-destructive, accurate and precise assessment of vineyard nutrient status.

  4. Spectro-spatial relationship between UAV derived high resolution DEM and SWIR hyperspectral data: application to an ombrotrophic peatland

    Science.gov (United States)

    Arroyo-Mora, J. Pablo; Kalacska, Margaret; Lucanus, Oliver; Soffer, Raymond; Leblanc, George

    2017-10-01

    Peatlands cover 3% of the globe and are key ecosystems for climate regulation. To better understand the potential effects of climate change in peatlands, a major challenge is to determine the complex relationship between hydrology, microtopography, vegetation patterns, and gas exchange. Here we study the spectral and spatial relationship of microtopographic features (e.g. hollows and hummocks) and near-surface water through narrow-band spectral indices derived from hyperspectral imagery. We used a very high resolution digital elevation model (2.5 cm horizontal, 2.2 cm vertical resolution) derived from an UAV based Structure from Motion photogrammetry to map hollows and hummocks in the peatland area. We also created a 2 cm spatial resolution orthophoto mosaic to enhance the visual identification of these hollows and hummocks. Furthermore, we collected SWIR airborne hyperspectral (880-2450 nm) imagery at 1 m pixel resolution over four time periods, from April to June 2016 (phenological gradient: vegetation greening). Our results revealed an increase in the water indices values (NDWI1640 and NDWI2130) and a decrease in the moisture stress index (MSI) between April and June. In addition, for the same period the NDWI2130 shows a bimodal distribution indicating potential to quantitatively assess moisture differences between mosses and vascular plants. Our results, using the digital surface model to extract NDWI2130 values, showed significant differences between hollows and hummocks for each time period, with higher moisture values for hollows (i.e. moss dominated). However, for June, the water index for hummocks approximated the values found in hollows. Our study shows the advantages of using fine spatial and spectral scales to detect temporal trends in near surface water in a peatland.

  5. Accuracy of free energies of hydration using CM1 and CM3 atomic charges.

    Science.gov (United States)

    Udier-Blagović, Marina; Morales De Tirado, Patricia; Pearlman, Shoshannah A; Jorgensen, William L

    2004-08-01

    Absolute free energies of hydration (DeltaGhyd) have been computed for 25 diverse organic molecules using partial atomic charges derived from AM1 and PM3 wave functions via the CM1 and CM3 procedures of Cramer, Truhlar, and coworkers. Comparisons are made with results using charges fit to the electrostatic potential surface (EPS) from ab initio 6-31G* wave functions and from the OPLS-AA force field. OPLS Lennard-Jones parameters for the organic molecules were used together with the TIP4P water model in Monte Carlo simulations with free energy perturbation theory. Absolute free energies of hydration were computed for OPLS united-atom and all-atom methane by annihilating the solutes in water and in the gas phase, and absolute DeltaGhyd values for all other molecules were computed via transformation to one of these references. Optimal charge scaling factors were determined by minimizing the unsigned average error between experimental and calculated hydration free energies. The PM3-based charge models do not lead to lower average errors than obtained with the EPS charges for the subset of 13 molecules in the original study. However, improvement is obtained by scaling the CM1A partial charges by 1.14 and the CM3A charges by 1.15, which leads to average errors of 1.0 and 1.1 kcal/mol for the full set of 25 molecules. The scaled CM1A charges also yield the best results for the hydration of amides including the E/Z free-energy difference for N-methylacetamide in water. Copyright 2004 Wiley Periodicals, Inc.

  6. Methodes spectrales paralleles et applications aux simulations de couches de melange compressibles

    OpenAIRE

    Male , Jean-Michel; Fezoui , Loula ,

    1993-01-01

    La resolution des equations de Navier-Stokes en methodes spectrales pour des ecoulements compressibles peut etre assez gourmande en temps de calcul. On etudie donc ici la parallelisation d'un tel algorithme et son implantation sur une machine massivement parallele, la connection-machine CM-2. La methode spectrale s'adapte bien aux exigences du parallelisme massif, mais l'un des outils de base de cette methode, la transformee de Fourier rapide (lorsqu'elle doit etre appliquee sur les deux dime...

  7. Mutual information registration of multi-spectral and multi-resolution images of DigitalGlobe's WorldView-3 imaging satellite

    Science.gov (United States)

    Miecznik, Grzegorz; Shafer, Jeff; Baugh, William M.; Bader, Brett; Karspeck, Milan; Pacifici, Fabio

    2017-05-01

    WorldView-3 (WV-3) is a DigitalGlobe commercial, high resolution, push-broom imaging satellite with three instruments: visible and near-infrared VNIR consisting of panchromatic (0.3m nadir GSD) plus multi-spectral (1.2m), short-wave infrared SWIR (3.7m), and multi-spectral CAVIS (30m). Nine VNIR bands, which are on one instrument, are nearly perfectly registered to each other, whereas eight SWIR bands, belonging to the second instrument, are misaligned with respect to VNIR and to each other. Geometric calibration and ortho-rectification results in a VNIR/SWIR alignment which is accurate to approximately 0.75 SWIR pixel at 3.7m GSD, whereas inter-SWIR, band to band registration is 0.3 SWIR pixel. Numerous high resolution, spectral applications, such as object classification and material identification, require more accurate registration, which can be achieved by utilizing image processing algorithms, for example Mutual Information (MI). Although MI-based co-registration algorithms are highly accurate, implementation details for automated processing can be challenging. One particular challenge is how to compute bin widths of intensity histograms, which are fundamental building blocks of MI. We solve this problem by making the bin widths proportional to instrument shot noise. Next, we show how to take advantage of multiple VNIR bands, and improve registration sensitivity to image alignment. To meet this goal, we employ Canonical Correlation Analysis, which maximizes VNIR/SWIR correlation through an optimal linear combination of VNIR bands. Finally we explore how to register images corresponding to different spatial resolutions. We show that MI computed at a low-resolution grid is more sensitive to alignment parameters than MI computed at a high-resolution grid. The proposed modifications allow us to improve VNIR/SWIR registration to better than ¼ of a SWIR pixel, as long as terrain elevation is properly accounted for, and clouds and water are masked out.

  8. CIRS High-Resolution Thermal Scans and the Structure of Saturn's B Ring

    Science.gov (United States)

    Brooks, S. M.; Spilker, L. J.; Showalter, M.; Pilorz, S.; Edgington, S. G.

    2017-12-01

    The flyby of Titan on November 29, 2016, sent the Cassini spacecraft on a trajectory that would take it within 10,000 kilometers of Saturn's F ring multiple times before a subsequent Titan encounter on April 22, 2017, would send it on ballistic trajectory carrying it between Saturn's cloud tops and the planet's D ring for several flybys. This geometry has proven beneficial for high-resolution studies of the rings, not just because of Cassini's proximity to the rings, but also because of the spacecraft's high elevation angle above the rings, which reduces the foreshortening that tends to degrade resolution in the ring plane. We will report on several observations of Saturn's main rings at the high spatial resolutions enabled by the end-of-mission geometry, particulary the B ring, with the Composite Infrared Spectrometer onboard Cassini during the F-ring and proximal orbits. CIRS' three infrared detectors cover a combined spectral range of 10 to 1400 cm-1 (1 mm down to 7 microns). We focus on data from Focal Plane 1, which covers the 10 to 600 cm-1 range (1 mm to 16 microns). The apodized spectral resolution of the instrument can be varied from 15 cm-1 to 0.5 cm-1 (Flasar et al. 2004). FP1's wavelength range makes it well-suited to sensing thermal emission from objects at temperatures typical of Saturn's rings. Correlating ring optical depth with temperatures retrieved from scans of the face of the rings exposed to direct solar illumination (the lit face) and the opposite (unlit) face suggests differences in ring structure or particle transport between the lit and unlit sides of the rings in different regions of the B ring. Lit side temperatures in the core of the B ring range between 82 and 87 K; temperatures on the unlit side of the core vary from 66 K up to 74 K. Ferrari and Reffet (2013) and Pilorz et al. (2015) published thorough analyses of the thermal throughput across this optically thick ring. We will discuss these recent CIRS rings observations and their

  9. Effects of proton irradiation and temperature on 1 ohm-cm and 10 ohm-cm silicon solar cells

    Science.gov (United States)

    Nicoletta, C. A.

    1973-01-01

    The 1 ohm-cm and 10 ohm-cm silicon solar cells were exposed to 1.0 MeV protons at a fixed flux of 10 to the 9th power P/sq cm-sec and fluences of 10 to the 10th power, 10 to the 11th power, 10 to the 12th power and 3 X 10 to the 12th power P/sq cm. I-V curves of the cells were made at room temperature, 65 C and 165 C after each irradiation. A value of 139.5 mw/sq cm was taken as AMO incident energy rate per unit area. Degradation occurred for both uncovered 1 ohm-cm and 10 ohm-cm cells. Efficiencies are generally higher than those of comparable U.S. cells tested earlier. Damage (loss in maximum power efficiency) with proton fluence is somewhat higher for 10 ohm-cm cells, measured at the three temperatures, for fluences above 2 X 10 to the 11th power P/sq cm. Cell efficiency, as expected, changes drastically with temperature.

  10. Applying aerial digital photography as a spectral remote sensing technique for macrophytic cover assessment in small rural streams

    Science.gov (United States)

    Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.

    2011-12-01

    Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB classification and the in-situ transects indicates that: A. Stream vegetation classification resolution is about 4 cm by the SRGB method compared to about 1 m by HSR. Moreover, this resolution is also higher than of the manual grid transect classification. B. The SRGB method is by far the most cost-efficient. The combination of spectral information (rather than the cognitive color) and high spatial resolution of aerial photography provides noise filtration and better sub-water detection capabilities than the HSR technique. C. Only the SRGB method applies for habitat and

  11. Fourier transform infrared spectroscopy of D212CO in the 2500-4500 cm-1 region and the first rovibrational analysis of its v2 = 2 state

    Science.gov (United States)

    A'dawiah, Rabia'tul; Tan, T. L.; Ng, L. L.

    2018-03-01

    A low-resolution (0.5 cm-1) Fourier transform infrared (FTIR) spectrum of formaldehyde-d2 (D212CO) in the 2500-4500 cm-1 region was recorded to study the combination bands in this region. The bands ν2 +ν4,ν2 +ν6 , ν2 +ν3 , ν1 +ν2 , ν2 +ν5 , 3ν3 , 2ν2 and 2ν5 were identified and their band centers (with an uncertainty of ± 0.1 cm-1) and band types were determined. Furthermore, the high-resolution FTIR spectrum of the 2ν2 overtone band (3315-3440 cm-1) of D212CO was recorded at an unapodized resolution of 0.0063 cm-1 and its infrared lines were analyzed. A total of 970 rovibrational transitions have been assigned and fitted up to J‧ = 35 and Ka‧ = 14 using the Watson's A-reduced Hamiltonian in the Ir representation. Upper state (v2 = 2) rovibrational constants inclusive of three rotational and five quartic centrifugal distortion constants were accurately determined for the first time. The band center of the 2ν2 band was determined as 3385.200666 ± 0.000035 cm-1. The rms deviation of the rovibrational fit was 0.00093 cm-1. From the fitting of 451 ground state combination differences (GSCDs) of D212CO which were derived from the infrared transitions of the 2ν2 band of this work, together with 360 microwave frequencies from a previous study, new and accurate ground state constants of D212CO up to three octic terms were obtained. The combination and overtone bands and the newly assigned high-resolution infrared lines of the 2ν2 band in the 2500-4500 cm-1 region can be used to detect D212CO in this infrared region. In addition, the results derived from this study give information on the rovibrational molecular structure of D212CO.

  12. High-Resolution Laser Photoacoustic Spectroscopy of OCS in the 12 000-13 000 cm -1 Region

    Science.gov (United States)

    Tranchart, S.; Hadj Bachir, I.; Huet, T. R.; Olafsson, A.; Destombes, J.-L.; Naı¨m, S.; Fayt, A.

    1999-08-01

    A spectrum of natural OCS has been recorded in the near-infrared region using the laser photoacoustic technique. The source is a titanium-sapphire laser pumped by an Ar+ laser. The tunable 1.5 W beam was sent through the photoacoustic cell. This windowless longitudinal resonant cell was designed with two λ/4 buffer volumes at both ends in order to reduce the noise and so to increase the sensitivity (αmin ≈ 10-9 cm-1). The spectrum of OCS, at a pressure of 90 Torr, has been recorded in the regions 11 953-12 084, 12 829-12 890, and 12 998-13 001 cm-1. In addition to the 0006-0000 band of 16O12C32S recently identified by Ch. Hornberger, B. Boor, R. Stuber, W. Demtröder, S. Naı̈m, and A. Fayt, J. Mol. Spectrosc. 179, 237-245, 1996, new weaker bands have been observed: 0405-0000, 1 1003-0000, 1006-0000, 1405-0000, 0206-0000, and 0116-0110, and also the 0006-0000 band of 16O12C34S. Effective state parameters are deduced from the band-by-band least-squares fits. The new data have also been introduced in the global analysis which takes into account the l-type resonance and the main anharmonic interactions and so allows a full understanding of the perturbations and the intensity transfers.

  13. Choice of Surgical Procedure for Patients With Non-Small-Cell Lung Cancer ≤ 1 cm or > 1 to 2 cm Among Lobectomy, Segmentectomy, and Wedge Resection

    DEFF Research Database (Denmark)

    Dai, Chenyang; Shen, Jianfei; Ren, Yijiu

    2016-01-01

    PURPOSE: According to the lung cancer staging project, T1a (≤ 2 cm) non-small-cell lung cancer (NSCLC) should be additionally classified into ≤ 1 cm and > 1 to 2 cm groups. This study aimed to investigate the surgical procedure for NSCLC ≤ 1 cm and > 1 to 2 cm. METHODS: We identified 15...... multiple prognostic factors. RESULTS: OS and LCSS favored lobectomy compared with segmentectomy or wedge resection in patients with NSCLC ≤ 1 cm and > 1 to 2 cm. Multivariable analysis showed that segmentectomy and wedge resection were independently associated with poorer OS and LCSS than lobectomy...... for NSCLC ≤ 1 cm and > 1 to 2 cm. With sublobar resection, lower OS and LCSS emerged for NSCLC > 1 to 2 cm after wedge resection, whereas similar survivals were observed for NSCLC ≤ 1 cm. Multivariable analyses showed that wedge resection is an independent risk factor of survival for NSCLC > 1 to 2 cm...

  14. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    International Nuclear Information System (INIS)

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.; Meszaros, Szabolcs; Allende Prieto, Carlos; Bizyaev, Dmitry; Garcìa Pèrez, Ana; Majewski, Steven R.; Schiavon, Ricardo; Holtzman, Jon; Johnson, Jennifer A.

    2013-01-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants (α Boo and μ Leo), two M-giants (β And and δ Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes 12 C, 13 C, 14 N, and 16 O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of 12 C synthesized during 4 He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to ∼0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  15. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Verne V.; Cunha, Katia [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Shetrone, Matthew D. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Meszaros, Szabolcs; Allende Prieto, Carlos [Instituto d' Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Garcia Perez, Ana; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Schiavon, Ricardo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5UX (United Kingdom); Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, Jennifer A., E-mail: vsmith@noao.edu [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  16. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device.

    Science.gov (United States)

    Hahn, Paul; Migacz, Justin; O'Donnell, Rachelle; Day, Shelley; Lee, Annie; Lin, Phoebe; Vann, Robin; Kuo, Anthony; Fekrat, Sharon; Mruthyunjaya, Prithvi; Postel, Eric A; Izatt, Joseph A; Toth, Cynthia A

    2013-01-01

    The authors have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging. Before human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. Microscope-integrated spectral domain OCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective institutional review board-approved study. Microscope-integrated spectral domain OCT images were obtained before and at pauses in surgical maneuvers and were compared based on predetermined diagnostic criteria to images obtained with a high-resolution spectral domain research handheld OCT system (HHOCT; Bioptigen, Inc) at the same time point. Cohorts of five consecutive patients were imaged. Successful end points were predefined, including ≥80% correlation in identification of pathology between MIOCT and HHOCT in ≥80% of the patients. Microscope-integrated spectral domain OCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made before MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. Microscope-integrated spectral domain OCT imaging in normal human volunteers demonstrated high resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. Microscope-integrated spectral domain OCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole

  17. Spectral dependence of the refractive index of single-crystalline GaAs for optical applications

    International Nuclear Information System (INIS)

    Plotnichenko, V G; Nazaryants, V O; Kryukova, E B; Dianov, E M

    2010-01-01

    The refractive index of crystalline GaAs is measured by the method of interference refractometry in the wavenumber range from 10 500 to 540 cm -1 (or the wavelength range from 0.9 to 18.6 μm) with a resolution of 0.1 cm -1 . The measurement results are approximated by the generalized Cauchy dispersion formula of the 8th power. Spectral wavelength dependences of the first- and second-order derivatives of the refractive index are calculated, and the zero material dispersion wavelength is found to be λ 0 = 6.61 μm. Using three GaAs plates of different thicknesses we managed to raise the refractive index measurement accuracy up to 4 x 10 -4 or 0.02%, being nearly by an order of magnitude better than the data available.

  18. The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements

    Directory of Open Access Journals (Sweden)

    W. Gurlit

    2005-01-01

    Full Text Available Within the framework of the ENVISAT/-SCIAMACHY satellite validation, solar irradiance spectra are absolutely measured at moderate resolution in the UV/visible spectral range (in the UV from 316.7-418 nm and the visible from 400-652 nm at a full width half maximum resolution of 0.55 nm and 1.48 nm, respectively from aboard the azimuth-controlled LPMA/DOAS balloon gondola at around 32 km balloon float altitude. After accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption (O3 and NO2, the measured solar spectra are compared with previous observations. Our solar irradiance spectrum perfectly agrees within +0.03% with the re-calibrated Kurucz et al. (1984 solar spectrum (Fontenla et al., 1999, called MODTRAN 3.7 in the visible spectral range (415-650 nm, but it is +2.1% larger in the (370-415 nm wavelength interval, and -4% smaller in the UV-A spectral range (316.7-370 nm, when the Kurucz spectrum is convolved to the spectral resolution of our instrument. Similar comparisons of the SOLSPEC (Thuillier et al., 1997, 1998a, b and SORCE/SIM (Harder et al., 2000 solar spectra with MODTRAN 3.7 confirms our findings with the values being -0.5%, +2%, and -1.4% for SOLSPEC -0.33%, -0.47%, and -6.2% for SORCE/SIM, respectively. Comparison of the SCIAMACHY solar spectrum from channels 1 to 4 (- re-calibrated by the University of Bremen - with MODTRAN 3.7 indicates an agreement within -0.4% in the visible spectral range (415-585 nm, -1.6% within the 370-415 nm, and -5.7% within 325-370 nm wavelength interval, in agreement with the results of the other sensors. In agreement with findings of Skupin et al. (2002 our study emphasizes that the present ESA SCIAMACHY level 1 calibration is systematically +15% larger in the considered wavelength intervals when compared to all available other solar irradiance measurements.

  19. High-resolution MR imaging of the carpal tunnel and the wrist. Application of a 5-cm surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, J.; Bleschkowski, A.; Tempka, A.; Felix, R. [Medical Faculty of the Humboldt Univ., Berlin (Germany). Dept. of Radiology

    2000-07-01

    In order to make a comparative analysis of transversal tomograms obtained by high-resolution MR imaging with frozen cross-sections of an anatomical forearm specimen, twenty-two healthy volunteers were also examined using the same coil system to test for a range of possible clinical applications and for the depiction of morphological and morphometrical values of normal anatomy in vivo. MR images of the carpal tunnel of 22 healthy volunteers were obtained with a 1.5-T whole-body system with a 5-cm surface coil. Measurements were recorded with a field-of-view between 50x50 mm{sup 2} and 60x60 mm{sup 2} in a 256x256 pixel matrix for the T1 sequence. A slice thickness of 2 mm was used. The images were acquired using a T1-weighted SE sequence (TR/TE 500/38 ms) and a T2-weighted SE sequence (TR/TE 2000/70 ms). Additionally, a formalin-fixed anatomical forearm specimen was imaged for anatomic correlation. The imaged transversal cross-section levels in the specimen were subsequently freeze-sectioned. The anatomical structures of the MR findings were identified and compared with the macroscopical sections of the specimen. Based on the good depiction of details at this coil system with a pixel size in T1 of 0.195x0.195 mm, high-resolution MR imaging enabled identification of the interior structures of the carpal tunnel, as well as delineation of connective tissue. The clinical value of high-resolution MR includes the diagnosis of carpal tunnel syndrome and inflammatory disorders of the wrist. Our results support the feasibility of high-resolution MR imaging of the carpal tunnel and the wrist using small surface coils.

  20. High-resolution MR imaging of the carpal tunnel and the wrist. Application of a 5-cm surface coil

    International Nuclear Information System (INIS)

    Maurer, J.; Bleschkowski, A.; Tempka, A.; Felix, R.

    2000-01-01

    In order to make a comparative analysis of transversal tomograms obtained by high-resolution MR imaging with frozen cross-sections of an anatomical forearm specimen, twenty-two healthy volunteers were also examined using the same coil system to test for a range of possible clinical applications and for the depiction of morphological and morphometrical values of normal anatomy in vivo. MR images of the carpal tunnel of 22 healthy volunteers were obtained with a 1.5-T whole-body system with a 5-cm surface coil. Measurements were recorded with a field-of-view between 50x50 mm 2 and 60x60 mm 2 in a 256x256 pixel matrix for the T1 sequence. A slice thickness of 2 mm was used. The images were acquired using a T1-weighted SE sequence (TR/TE 500/38 ms) and a T2-weighted SE sequence (TR/TE 2000/70 ms). Additionally, a formalin-fixed anatomical forearm specimen was imaged for anatomic correlation. The imaged transversal cross-section levels in the specimen were subsequently freeze-sectioned. The anatomical structures of the MR findings were identified and compared with the macroscopical sections of the specimen. Based on the good depiction of details at this coil system with a pixel size in T1 of 0.195x0.195 mm, high-resolution MR imaging enabled identification of the interior structures of the carpal tunnel, as well as delineation of connective tissue. The clinical value of high-resolution MR includes the diagnosis of carpal tunnel syndrome and inflammatory disorders of the wrist. Our results support the feasibility of high-resolution MR imaging of the carpal tunnel and the wrist using small surface coils

  1. Analysis of the Herschel/HIFI 1.2 THz Wide Spectral Survey of the Orion Kleinmann-Low Nebula

    Science.gov (United States)

    Crockett, Nathan R.

    This dissertation presents a comprehensive analysis of a broad band spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this massive star forming region in the sub-mm with high spectral resolution, and include frequencies >1 THz where the Earth's atmosphere prevents observations from the ground. In all, we detect emission from 36 molecules (76 isotopologues). Combining this dataset with ground based mm spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission assuming local thermodynamic equilibrium (LTE). Because of the wide frequency coverage, our models are constrained over an unprecedented range in excitation energy, including states at or close to ground up to energies where emission is no longer detected. A χ2 analysis indicates that most of our models reproduce the observed emission well. In particular complex organics, some with thousands of transitions, are well fit by LTE models implying that gas densities are high (>10^6 cm^-3) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H2 column densities also derived from the HIFI survey. The rotation temperature distribution of molecules detected toward the hot core is much wider relative to the compact ridge, plateau, and extended ridge. We find that complex N-bearing species, cyanides in particular, systematically probe hotter gas than complex O-bearing species. This indicates complex N-bearing molecules may be more difficult to remove from grain surfaces or that hot gas phase formation routes are important for these species. We also present a detailed non-LTE analysis of H2S emission toward the hot core which suggests

  2. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for {sup 32}S{sup 16}O{sub 2} up to 8000 cm{sup −1}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xinchuan, E-mail: Xinchuan.Huang-1@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov [SETI Institute, 189 Bernardo Ave, Suite No. 100, Mountain View, California 94043 (United States); Schwenke, David W., E-mail: David.W.Schwenke@nasa.gov [MS T27B-1, NAS Facility, NASA Ames Research Center, Moffett Field, California 94035 (United States); Lee, Timothy J., E-mail: Xinchuan.Huang-1@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov [MS 245-1, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, California 94035 (United States)

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected {sup 32}S{sup 16}O{sub 2} HITRAN data. Compared to HITRAN, the root-mean-squares error (σ{sub RMS}) for all J = 0–80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm{sup −1}. Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm{sup −1}. Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%–90%. Our predictions for {sup 34}S{sup 16}O{sub 2} band origins, higher energy {sup 32}S{sup 16}O{sub 2} band origins and missing {sup 32}S{sup 16}O{sub 2} IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict {sup 32/34}S{sup 16}O{sub 2} band origins below 5500 cm{sup −1} with 0.01–0.03 cm{sup −1} uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K{sub a}-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO{sub 2} IR spectral experimental analysis, as well as elimination of SO{sub 2} lines in high-resolution astronomical observations.

  3. In-vivo assessment of microvascular functional dynamics by combination of cmOCT and wavelet transform

    Science.gov (United States)

    Smirni, Salvatore; MacDonald, Michael P.; Robertson, Catherine P.; McNamara, Paul M.; O'Gorman, Sean; Leahy, Martin J.; Khan, Faisel

    2018-02-01

    The cutaneous microcirculation represents an index of the health status of the cardiovascular system. Conventional methods to evaluate skin microvascular function are based on measuring blood flow by laser Doppler in combination with reactive tests such as post-occlusive reactive hyperaemia (PORH). Moreover, the spectral analysis of blood flow signals by continuous wavelet transform (CWT) reveals nonlinear oscillations reflecting the functionality of microvascular biological factors, e.g. endothelial cells (ECs). Correlation mapping optical coherence tomography (cmOCT) has been previously described as an efficient methodology for the morphological visualisation of cutaneous micro-vessels. Here, we show that cmOCT flow maps can also provide information on the functional components of the microcirculation. A spectral domain optical coherence tomography (SD-OCT) imaging system was used to acquire 90 sequential 3D OCT volumes from the forearm of a volunteer, while challenging the micro-vessels with a PORH test. The volumes were sampled in a temporal window of 25 minutes, and were processed by cmOCT to obtain flow maps at different tissue depths. The images clearly show changes of flow in response to the applied stimulus. Furthermore, a blood flow signal was reconstructed from cmOCT maps intensities to investigate the microvascular nonlinear dynamics by CWT. The analysis revealed oscillations changing in response to PORH, associated with the activity of ECs and the sympathetic innervation. The results demonstrate that cmOCT may be potentially used as diagnostic tool for the assessment of microvascular function, with the advantage of also providing spatial resolution and structural information compared to the traditional laser Doppler techniques.

  4. Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings.

    Science.gov (United States)

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P

    2017-09-15

    Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze the spatial resolution effects of different remote sensing images on soil prediction models in two smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State), and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (K ex ) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m), RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from multiple images showed relatively strong correlations with soil K ex in two study areas. The research also suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based soil prediction models would not necessarily have higher prediction performance than coarse spatial resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings need select the appropriate spectral indices and consider different factors such as the spatial resolution, band width, spectral resolution, temporal frequency, cost, and processing time of different remote sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to smallholder farm settings all over the world and help smallholder farmers implement sustainable and field-specific soil nutrient management scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. JUNO E/J/SS WAVES CALIBRATED SURVEY FULL RESOLUTION V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Juno Waves calibrated full resolution survey data set includes all low rate science electric spectral densities from 50Hz to 41MHz and magnetic spectral...

  6. The development of a modified spectral ripple test.

    Science.gov (United States)

    Aronoff, Justin M; Landsberger, David M

    2013-08-01

    Poor spectral resolution can be a limiting factor for hearing impaired listeners, particularly for complex listening tasks such as speech understanding in noise. Spectral ripple tests are commonly used to measure spectral resolution, but these tests contain a number of potential confounds that can make interpretation of the results difficult. To measure spectral resolution while avoiding those confounds, a modified spectral ripple test with dynamically changing ripples was created, referred to as the spectral-temporally modulated ripple test (SMRT). This paper describes the SMRT and provides evidence that it is sensitive to changes in spectral resolution.

  7. High-resolution measurements and multichannel quantum defect analysis of spectral line shapes of autoionizing Rydberg series

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    1997-01-01

    Spectral line shapes for autoionizing Rydberg series are briefly reviewed within the framework of multichannel quantum defect theory (MQDT). Recent high-resolution measurements and MQDT analysis for the spectra line shapes are reviewed for the mp 5 ( 2 P 1/2 )ns ' and nd ' J=1 odd spectra of the Ar, Kr, and Xe atoms (m=3,4,5 for Ar, Kr, and Xe) and the 3p 5 ( 2 P 1/2 )nd ' J=2 and 3 odd spectra of Ar*3p 5 4p excited atoms. Some results are also discussed for the Ca 4p( 2 P 1/2,3/2 )ns and nd J=1 odd spectrum and the Ba 5d( 2 P 5/2 )nd J=1 odd spectrum

  8. Addition of a 5/cm Spectral Resolution Band Model Option to LOWTRAN5.

    Science.gov (United States)

    1980-10-01

    THETA-PHI CEO 880 SALP -RX*SPHI CEO 890 IF (SPHIl.GT.1 .E-10) DS-(RE+2)*SIN(BET*CA)ISPHI CEO 900 BETA-BETA+BET CEO 910 PSI-BETA+PHI-ANGLE CEO 920 PHI...9,I+1 )/EH(9,I) CEO 1250 SPHI-SPHI*RX/RN CEO 1260 IF (SALP.CE .RN) SFRI- SALP CEO 1270 -J75 CONTINUE CEO 1280 GO TO 190 CEO 1290 C HORIZONTAL PATH CEO...ABS(X2-NM).CT.1.OE-5) ALP-ASfI( SALP )/CA CEO 2120 IET-ALP-THET CEO 2130 17 (SPEI...-10) DS-(RE+X2)*SIN(BET*Ch)/SBI CEO 2140 THETAmI 80. 0-TE CEO 2150

  9. Isotope shift of the 590-cm-1 Raman feature in underdoped Bi2Sr2CaCu2O8+δ

    Science.gov (United States)

    Hewitt, K. C.; Wang, N. L.; Irwin, J. C.; Pooke, D. M.; Pantoja, A. E.; Trodahl, H. J.

    1999-10-01

    Raman-scattering studies have been performed on underdoped Bi2Sr2CaCu2O8+δ. In single crystals underdoped by oxygen removal, a 590-cm-1 peak is observed in the B1g spectrum. The feature is observed to soften in frequency by 3.8% with isotopic exchange of 16O by 18O. In contrast, the 590-cm-1 peak is not observed in crystals underdoped by Y substitution which suggests that it is a vibrational mode activated by oxygen deficency. We have also found that underdoping leads to a depletion of low-energy spectral weight from regions of the Fermi surface located near the Brillouin-zone axes.

  10. Spectral dependence of the refractive index of single-crystalline GaAs for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Plotnichenko, V G; Nazaryants, V O; Kryukova, E B; Dianov, E M, E-mail: victor@fo.gpi.ac.r [Fibre Optics Research Center of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119333 (Russian Federation)

    2010-03-17

    The refractive index of crystalline GaAs is measured by the method of interference refractometry in the wavenumber range from 10 500 to 540 cm{sup -1} (or the wavelength range from 0.9 to 18.6 {mu}m) with a resolution of 0.1 cm{sup -1}. The measurement results are approximated by the generalized Cauchy dispersion formula of the 8th power. Spectral wavelength dependences of the first- and second-order derivatives of the refractive index are calculated, and the zero material dispersion wavelength is found to be {lambda}{sub 0} = 6.61 {mu}m. Using three GaAs plates of different thicknesses we managed to raise the refractive index measurement accuracy up to 4 x 10{sup -4} or 0.02%, being nearly by an order of magnitude better than the data available.

  11. Effective line strengths of trans-nitrous acid near 1275 cm−1 and cis-nitrous acid at 1660 cm−1

    International Nuclear Information System (INIS)

    Lee, B.H.; Wood, E.C.; Wormhoudt, J.; Shorter, J.H.; Herndon, S.C.; Zahniser, M.S.; Munger, J.W.

    2012-01-01

    We determined the effective line strengths of the trans conformer of nitrous acid (HONO) near 1275 cm1 (R-branch of ν 3 mode, N---O---H bend) and of the cis conformer at 1660 cm1 (R-branch of ν 2 mode, N=O stretch), both at a spectral resolution of 0.001 cm1 by tunable infrared laser differential absorption spectroscopy (TILDAS) utilizing continuous-wave quantum cascade (cw-QC) lasers. Absorbance of one conformer was measured while simultaneously quantifying the mixing ratio of total HONO by catalytic conversion to nitric oxide (NO) followed by calibrated absorption spectroscopy. Line strengths obtained here are consistent with previously reported band strengths for the trans conformer but are lower by a factor of approximately 2.4 for the cis conformer. -- Highlights: ► Effective line strengths for the cis-HONO at 1660 cm1 was quantified. ► Effective line strengths for the trans conformer near 1275 cm1 was also quantified. ► Results for trans-HONO are in agreement with previously published band strength. ► Previous cis band strength is high by factor of 2.4 due to spectral interference.

  12. Revisiting the Short-term X-ray Spectral Variability of NGC 4151 with Chandra

    Science.gov (United States)

    Wang, Junfeng; Risaliti, G.; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.

    2010-05-01

    We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ~200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 × 10-11 erg s-1 cm-2 and 10-10 erg s-1 cm-2 (L 2-10 keV ~ 1.3-2.1 × 1042 erg s-1). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ~ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ~ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ~ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH}˜ 4.6× 10^7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r <~ 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.

  13. REVISITING THE SHORT-TERM X-RAY SPECTRAL VARIABILITY OF NGC 4151 WITH CHANDRA

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.; Risaliti, G.

    2010-01-01

    We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ∼200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 x 10 -11 erg s -1 cm -2 and 10 -10 erg s -1 cm -2 (L 2-10 k eV ∼ 1.3-2.1 x 10 42 erg s -1 ). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ∼ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ∼ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ∼ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA 'long look' observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ∼ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M BH ∼4.6x10 7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r ∼< 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.

  14. A high-resolution two-pulse coherent anti-Stokes Raman scattering spectrum using a spectral amplitude modulation

    International Nuclear Information System (INIS)

    Lu, Chenhui; Zhang, Shian; Wu, Meizhen; Jia, Tianqing; Sun, Zhenrong; Qiu, Jianrong

    2013-01-01

    Femtosecond coherent anti-Stokes Raman scattering (CARS) spectra suffer from low spectral resolution because of the broadband laser spectrum. In this paper, we propose a feasible scheme to achieve a high-resolution two-pulse CARS spectrum by shaping both the pump and probe pulses using rectangular amplitude modulation. We show that a narrowband hole in the CARS spectrum can be created by the amplitude-shaped laser pulse, the position of which is correlated with the Raman resonant frequency of the molecule. Thus, by observing holes in the CARS spectrum, we are able to obtain a high-resolution CARS spectrum and the energy-level diagram of the molecule. (paper)

  15. Performance characterization of a pressure-tuned wide-angle Michelson interferometric spectral filter for high spectral resolution lidar

    Science.gov (United States)

    Seaman, Shane T.; Cook, Anthony L.; Scola, Salvatore J.; Hostetler, Chris A.; Miller, Ian; Welch, Wayne

    2015-09-01

    High Spectral Resolution Lidar (HSRL) is typically realized using an absorption filter to separate molecular returns from particulate returns. NASA Langley Research Center (LaRC) has designed and built a Pressure-Tuned Wide-Angle Michelson Interferometer (PTWAMI) as an alternate means to separate the two types of atmospheric returns. While absorption filters only work at certain wavelengths and suffer from low photon efficiency due to light absorption, an interferometric spectral filter can be designed for any wavelength and transmits nearly all incident photons. The interferometers developed at LaRC employ an air spacer in one arm, and a solid glass spacer in the other. Field widening is achieved by specific design and selection of the lengths and refractive indices of these two arms. The principal challenge in using such an interferometer as a spectral filter for HSRL aboard aircraft is that variations in glass temperature and air pressure cause changes in the interferometer's optical path difference. Therefore, a tuning mechanism is needed to actively accommodate for these changes. The pressure-tuning mechanism employed here relies on changing the pressure in an enclosed, air-filled arm of the interferometer to change the arm's optical path length. However, tuning using pressure will not adjust for tilt, mirror warpage, or thermally induced wavefront error, so the structural, thermal, and optical behavior of the device must be well understood and optimized in the design and manufacturing process. The PTWAMI has been characterized for particulate transmission ratio, wavefront error, and tilt, and shows acceptable performance for use in an HSRL instrument.

  16. Stark broadening of several Bi IV spectral lines of astrophysical interest

    Science.gov (United States)

    Colón, C.; Moreno-Díaz, C.; de Andrés-García, I.; Alonso-Medina, A.

    2017-09-01

    The presence of spectral lines of bismuth in stellar atmospheres has been reported in different stars. The anomalous values of the spectral intensities of Bi II and Bi III, compared to the theoretical Local Termodinamic Equilibrium (LTE) standards of Bi I/Bi II/Bi III, have been reported in the spectra obtained with the High Resolution Spectrograph of the Hubble/Goddard Space Telescope in the chemically peculiar stars HgMn stars χ Lupi and HR 7775. Spectral lines of 1436.8, 1902.3, 2630.9 and 2936.7 Å of Bi II and 1423.4 Å of Bi III were reported and their relative intensities were measured in these studies Litzén & Wahlgren 2002. These lines are overlapped with spectral lines of 1437.65, 2630.1 and 2937.1 Å of Bi IV. A study of the Stark broadening parameters of Bi IV spectral lines can help to study these overlaps. In this paper, using the Griem semi-empirical approach, we report calculated values of the Stark parameters for 64 spectral lines of Bi IV. The matrix elements used in these calculations have been determined from 17 configurations of Bi IV. They were calculated using the cowan code including core polarization effects. Data are displayed for an electron density of 1017 cm-3 and temperatures T = 10 000-160 000 K. Also calculated radiative lifetimes for 12 levels with experimental lifetime are presented, in order to test the goodness of our calculations. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed.

  17. Raman Microspectroscopic Mapping with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) Applied to the High-Pressure Polymorph of Titanium Dioxide, TiO2-II.

    Science.gov (United States)

    Smith, Joseph P; Smith, Frank C; Ottaway, Joshua; Krull-Davatzes, Alexandra E; Simonson, Bruce M; Glass, Billy P; Booksh, Karl S

    2017-08-01

    The high-pressure, α-PbO 2 -structured polymorph of titanium dioxide (TiO 2 -II) was recently identified in micrometer-sized grains recovered from four Neoarchean spherule layers deposited between ∼2.65 and ∼2.54 billion years ago. Several lines of evidence support the interpretation that these layers represent distal impact ejecta layers. The presence of shock-induced TiO 2 -II provides physical evidence to further support an impact origin for these spherule layers. Detailed characterization of the distribution of TiO 2 -II in these grains may be useful for correlating the layers, estimating the paleodistances of the layers from their source craters, and providing insight into the formation of the TiO 2 -II. Here we report the investigation of TiO 2 -II-bearing grains from these four spherule layers using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping. Raman spectra provide evidence of grains consisting primarily of rutile (TiO 2 ) and TiO 2 -II, as shown by Raman bands at 174 cm -1 (TiO 2 -II), 426 cm -1 (TiO 2 -II), 443 cm -1 (rutile), and 610 cm -1 (rutile). Principal component analysis (PCA) yielded a predominantly three-phase system comprised of rutile, TiO 2 -II, and substrate-adhesive epoxy. Scanning electron microscopy (SEM) suggests heterogeneous grains containing polydispersed micrometer- and submicrometer-sized particles. Multivariate curve resolution-alternating least squares applied to the Raman microspectroscopic mapping yielded up to five distinct chemical components: three phases of TiO 2 (rutile, TiO 2 -II, and anatase), quartz (SiO 2 ), and substrate-adhesive epoxy. Spectral profiles and spatially resolved chemical maps of the pure chemical components were generated using MCR-ALS applied to the Raman microspectroscopic maps. The spatial resolution of the Raman microspectroscopic maps was enhanced in comparable, cost-effective analysis times by limiting spectral resolution

  18. Physics at 1034 cm-2 s-1

    International Nuclear Information System (INIS)

    Diebold, R.; Wagner, R.

    1984-01-01

    Most of the detector studies at Snowmass-84 have rightfully concentrated on detailed studies of individual interactions - their rates, signatures, and backgrounds. Depending on the physics and the detector components, there seems to be agreement that general-purpose detectors will likely be able to accept luminosities up to 10 32-33 cm -2 s -1 . The purpose of this paper is to show how the physics reach of the SSC is extended by going to a luminosity of 10 34 cm -2 s -1 , to take a first look at what sort of detector could be used at this luminosity, and to discuss how one might trigger on interesting events in the presence of many overlapping minimum bias events. We will assume that the SSC turns on at 10 31 or 10 32 cm -2 s -1 , with an increase of luminosity to 10 33 over a period of a few years as the machine and detectors become better understood. Thus, the lower mass scale will have been explored and we can set our thresholds high when running 10 34

  19. High spatial and spectral resolution measurements of Jupiter's auroral regions using Gemini-North-TEXES

    Science.gov (United States)

    Sinclair, J. A.; Orton, G. S.; Greathouse, T. K.; Lacy, J.; Giles, R.; Fletcher, L. N.; Vogt, M.; Irwin, P. G.

    2017-12-01

    Jupiter exhibits auroral emission at a multitude of wavelengths. Auroral emission at X-ray, ultraviolet and near-infrared wavelengths demonstrate the precipitation of ion and electrons in Jupiter's upper atmosphere, at altitudes exceeding 250 km above the 1-bar level. Enhanced mid-infrared emission of CH4, C2H2, C2H4 and further hydrocarbons is also observed coincident with Jupiter's auroral regions. Retrieval analyses of infrared spectra from IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph on NASA's Infrared Telescope Facility) indicate strong heating at the 1-mbar level and evidence of ion-neutral chemistry, which enriches the abundances of unsaturated hydrocarbons (Sinclair et al., 2017b, doi:10.1002/2017GL073529, Sinclair et al., 2017c (under review)). The extent to which these phenomena in the stratosphere are correlated and coupled physically with the shorter-wavelength auroral emission originating from higher altitudes has been a challenge due to the limited spatial resolution available on the IRTF. Smaller-scale features observed in the near-infrared and ultraviolet emission, such as the main `oval', transient `swirls' and dusk-active regions within the main oval (e.g. Stallard et al., 2014, doi:10.1016/j/Icarus.2015.12.044, Nichols et al., 2017, doi: 10.1002/2017GL073029) are potentially being blurred in the mid-infrared by the diffraction-limited resolution (0.7") of IRTF's 3-metre primary aperture. However, on March 17-19th 2017, we obtained spectral measurements of H2 S(1), CH4, C2H2, C2H4 and C2H6 emission of Jupiter's high latitudes using TEXES on Gemini-North, which has a 8-metre primary aperture. This rare opportunity combines the superior spectral resolving power of TEXES and the high spatial resolution provided by Gemini-North's 8-metre aperture. We will perform a retrieval analyses to determine the 3D distributions of temperature, C2H2, C2H4 and C2H6. The morphology will be compared with near-contemporaneous measurements of H3+ emission from

  20. Fourier Transform Spectroscopy of Carbonyl Sulfide from 3700 to 4800 cm -1and Selection of a Line-Pointing Program

    Science.gov (United States)

    Naı̈m, S.; Fayt, A.; Bredohl, H.; Blavier, J.-F.; Dubois, I.

    1998-11-01

    We have measured the Fourier transform spectrum of natural OCS from 3700 to 4800 cm-1with a near Doppler resolution and a line-position accuracy between 4 and 8 × 10-5cm-1. For the normal isotopic species, 37 vibrational transitions have been analyzed for both frequencies and intensities. We also report 15 bands of OC34S, eight bands of O13CS, nine bands of OC33S, and two bands of18OCS. Important effective Herman-Wallis terms are explained on the basis of eigenvectors. A comparison of different line-pointing programs is also presented.

  1. One year of downwelling spectral radiance measurements from 100 to 1400 cm-1 at Dome Concordia: Results in clear conditions

    Science.gov (United States)

    Rizzi, R.; Arosio, C.; Maestri, T.; Palchetti, L.; Bianchini, G.; Del Guasta, M.

    2016-09-01

    The present work examines downwelling radiance spectra measured at the ground during 2013 by a Far Infrared Fourier Transform Spectrometer at Dome C, Antarctica. A tropospheric backscatter and depolarization lidar is also deployed at same site, and a radiosonde system is routinely operative. The measurements allow characterization of the water vapor and clouds infrared properties in Antarctica under all sky conditions. In this paper we specifically discuss cloud detection and the analysis in clear sky condition, required for the discussion of the results obtained in cloudy conditions. First, the paper discusses the procedures adopted for the quality control of spectra acquired automatically. Then it describes the classification procedure used to discriminate spectra measured in clear sky from cloudy conditions. Finally a selection is performed and 66 clear cases, spanning the whole year, are compared to simulations. The computation of layer molecular optical depth is performed with line-by-line techniques and a convolution to simulate the Radiation Explorer in the Far InfraRed-Prototype for Applications and Development (REFIR-PAD) measurements; the downwelling radiance for selected clear cases is computed with a state-of-the-art adding-doubling code. The mean difference over all selected cases between simulated and measured radiance is within experimental error for all the selected microwindows except for the negative residuals found for all microwindows in the range 200 to 400 cm-1, with largest values around 295.1 cm-1. The paper discusses possible reasons for the discrepancy and identifies the incorrect magnitude of the water vapor total absorption coefficient as the cause of such large negative radiance bias below 400 cm-1.

  2. Development of high resolution vacuum ultraviolet beam line at Indus-1 synchrotron source

    International Nuclear Information System (INIS)

    Shukla, R.P.; Das, N.C.; Udupa, D.V.; Saraswathy, P.; Sunanda, K.; Jha, S.N.; Shastri, Aparna; Singh, Paramjeet; Mallick, Manika; Mishra, A.P.; Sahoo, N.K.; Sinha, A.K.; Bhatt, S.; Sahni, V.C.

    2005-07-01

    High resolution vacuum ultraviolet beamline at Indus-1 450 MeV synchrotron source has been developed for carrying out absorption spectral studies of atoms and molecules. The beamline consists of three major parts i.e. a focusing optical system, an absorption cell and a high resolution 6.65 m vacuum ultraviolet spectrometer in Eagle mount. The wavelength range of the spectrometer is from 700 A to 2000 A and the resolution of the spectrometer is 0.01 A. Using the synchrotron source Indus-1, the absorption spectra of oxygen, ammonia and carbon disulphide have been recorded at the wavelength band of 1750 A, 1881 A and 3100 A respectively. Details of different aspects of design and development of the high resolution VUV beamline are described in this report. (author)

  3. Construction of a High Temporal-spectral Resolution Spectrometer for Detection of Fast Transients from Observations of the Sun at 1.4 GHz.

    Science.gov (United States)

    Casillas-Perez, G. A.; Jeyakumar, S.; Perez-Enriquez, R.

    2014-12-01

    Transients explosive events with time durations from nanoseconds to several hours, are observed in the Sun at high energy bands such as gamma ray and xray. In the radio band, several types of radio bursts are commonly detected from the ground. A few observations of the Sun in the past have also detected a new class of fast transients which are known to have short-live electromagnetic emissions with durations less than 100 ms. The mechanisms that produce such fast transiets remain unclear. Observations of such fast transients over a wide bandwidth is necessary to uderstand the underlying physical process that produce such fast transients. Due to their very large flux densities, fast radio transients can be observed at high time resolution using small antennas in combination with digital signal processing techniques. In this work we report the progress of an spectrometer that is currently in construction at the Observatorio de la Luz of the Universidad de Guanajuato. The instrument which will have the purpose of detecting solar fast radio transients, involves the use of digital devices such as FPGA and ADC cards, in addition with a receiver with high temporal-spectral resolution centered at 1.4 GHz and a pair of 2.3 m satellite dish.

  4. The "+" for CRIRES: enabling better science at infrared wavelength and high spectral resolution at the ESO VLT

    Science.gov (United States)

    Dorn, Reinhold J.; Follert, Roman; Bristow, Paul; Cumani, Claudio; Eschbaumer, Siegfried; Grunhut, Jason; Haimerl, Andreas; Hatzes, Artie; Heiter, Ulrike; Hinterschuster, Renate; Ives, Derek J.; Jung, Yves; Kerber, Florian; Klein, Barbara; Lavaila, Alexis; Lizon, Jean Louis; Löwinger, Tom; Molina-Conde, Ignacio; Nicholson, Belinda; Marquart, Thomas; Oliva, Ernesto; Origlia, Livia; Pasquini, Luca; Paufique, Jérôme; Piskunov, Nikolai; Reiners, Ansgar; Seemann, Ulf; Stegmeier, Jörg; Stempels, Eric; Tordo, Sebastien

    2016-08-01

    The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory.

  5. Development of a high-resolution Thomson scattering system for plasma interactions with molten salt (FLiNaK)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. Y. [National Fusion Research Institute, Gunsan (Korea, Republic of)

    2014-10-15

    A high-resolution Thomson scattering system is presently being developed to measure the electron temperature and density profile during plasma interaction with molten salt. The system uses a 20-Hz Nd:YAG laser operating at the second harmonic (532 nm). The collection lens, having a 1:10 magnification ratio, measures 63 points along the 10-cm profile. The scattered light is transmitted by using an optical-fiber bundle, and is analyzed with a triple-grating spectrometer to further reduce stray light. Its spectral resolution is expected to be 0.03 nm. An intensified charge-coupled device (ICCD) camera consisting of a gated image intensifier coupled to the CCD camera is used to record the spectral distribution of the scattered light. An additional feature of operating the ICCD camera at 40-Hz to record the background signal is incorporated.

  6. Longwave thermal infrared spectral variability in individual rocks

    Energy Technology Data Exchange (ETDEWEB)

    Balick, Lee K [Los Alamos National Laboratory; Gillespie, Alan [UN. WASHINGTON; French, Andrew [USDA-ARS; Danilina, Iryna [UN. WASHINGTON

    2008-01-01

    A hyperspectral imaging spectrometer measuring in the longwave thermal infrared (7.6-11.6 {micro}m) with a spatial resolution less than 4 mm was used in the field to observe the variability of emissivity spectra within individual rocks. The rocks were obtained commercially, were on the order of 20 cm in size and were selected to have distinct spectral features: they include alabaster (gypsum), soapstone (steatite with talc), obsidian (volcanic glass), norite (plagioclase and orthopyroxene), and 'jasper' (silica with iron oxides). The advantages of using an imaging spectrometer to spectrally characterize these rocks are apparent. Large spectral variations were observed within individual rocks that may be attributed to roughness, surface geometry, and compositional variation. Non-imaging spectrometers would normally miss these variations as would small samples used in laboratory measurements, spatially averaged spectra can miss the optimum spectra for identification materials and spatially localized components of the rock can be obscured.

  7. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    Science.gov (United States)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  8. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar.

    Science.gov (United States)

    Liu, Dong; Hostetler, Chris; Miller, Ian; Cook, Anthony; Hair, Johnathan

    2012-01-16

    High spectral resolution lidars (HSRLs) have shown great value in aircraft aerosol remote sensing application and are planned for future satellite missions. A compact, robust, quasi-monolithic tilted field-widened Michelson interferometer is being developed as the spectral discrimination filter for an second-generation HSRL(HSRL-2) at NASA Langley Research Center. The Michelson interferometer consists of a cubic beam splitter, a solid arm and an air arm. Piezo stacks connect the air arm mirror to the body of the interferometer and can tune the interferometer within a small range. The whole interferometer is tilted so that the standard Michelson output and the reflected complementary output can both be obtained. In this paper, the transmission ratio is proposed to evaluate the performance of the spectral filter for HSRL. The transmission ratios over different types of system imperfections, such as cumulative wavefront error, locking error, reflectance of the beam splitter and anti-reflection coatings, system tilt, and depolarization angle are analyzed. The requirements of each imperfection for good interferometer performance are obtained.

  9. Spectral Line Shapes in the ν_3 Q Branch of ^{12}CH_4 Near 3.3 μm

    Science.gov (United States)

    Devi, V. Malathy; Benner, D. Chris; Gamache, Robert R.; Smith, Mary Ann H.; Sams, Robert L.

    2017-06-01

    Detailed knowledge of spectroscopic parameters for prominent Q branches of methane is necessary for interpretation and modeling of high resolution infrared spectra of terrestrial and planetary atmospheres. We have measured air-broadened line shape parameters in the Q branch of ^{12}CH_4 in the ν_3 fundamental band for a large number of transitions in the 3000 to 3023 cm^{-1} region by analyzing 13 room-temperature laboratory absorption spectra. Twelve of these spectra were recorded with 0.01 cm^{-1} resolution using the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory (NSO) on Kitt Peak, and one higher-resolution (˜0.0011 cm^{-1}) low pressure (˜1 Torr) spectrum of methane was obtained using the Bruker IFS 120HR FTS at the Pacific Northwest National Laboratory (PNNL) in Richland, WA. The air-broadened spectra were recorded using various absorption cells with path lengths of 5, 20, 25, and 150 cm, total sample pressures between 50 and 500 Torr, and CH_4 volume mixing ratios of 0.01 or less. All 13 spectra were fit simultaneously covering the 3000-3023 cm^{-1} spectral region using a multispectrum nonlinear least squares technique to retrieve accurate line positions, absolute intensities, Lorentz air-broadened widths and pressure-shift coefficients. Line mixing using the off-diagonal relaxation matrix element formalism was measured for a number of pairs of transitions for the CH_4-air collisional system. The results will be compared to values reported in the literature. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith, D. Atkins, JQSRT 53 (1995) 705-721. A. Levy, N. Lacome, C. Chackerian, Collisional line mixing, in Spectroscopy of the Earth's Atmosphere and Interstellar Medium, Academic Press, Inc., Boston (1992) 261-337.

  10. GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics

    Science.gov (United States)

    Delworth, T.L.; Broccoli, A.J.; Rosati, A.; Stouffer, R.J.; Balaji, V.; Beesley, J.A.; Cooke, W.F.; Dixon, K.W.; Dunne, J.; Dunne, K.A.; Durachta, J.W.; Findell, K.L.; Ginoux, P.; Gnanadesikan, A.; Gordon, C.T.; Griffies, S.M.; Gudgel, R.; Harrison, M.J.; Held, I.M.; Hemler, R.S.; Horowitz, L.W.; Klein, S.A.; Knutson, T.R.; Kushner, P.J.; Langenhorst, A.R.; Lee, H.-C.; Lin, S.-J.; Lu, J.; Malyshev, S.L.; Milly, P.C.D.; Ramaswamy, V.; Russell, J.; Schwarzkopf, M.D.; Shevliakova, E.; Sirutis, J.J.; Spelman, M.J.; Stern, W.F.; Winton, M.; Wittenberg, A.T.; Wyman, B.; Zeng, F.; Zhang, R.

    2006-01-01

    The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved. Tw o versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2?? latitude ?? 2.5?? longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1?? in latitude and longitude, with meridional resolution equatorward of 30?? becoming progressively finer, such that the meridional resolution is 1/3?? at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments. The co ntrol simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and

  11. Observations of three bright extragalactic radiosources at the 1.38 cm wavelength with the resolution up to 8''

    International Nuclear Information System (INIS)

    Berlin, A.B.; Korenev, Yu.V.; Lesovoj, V.Yu.; Parijskij, Yu.N.; Smirnov, V.I.; Soboleva, N.S.

    1980-01-01

    New observations of radiogalaxies in the shortest wavelength region of the RATAN-600 radiotelescope were performed using the 1.38-cm radiometer. One-dimentional radiobrightness distribution of 3C 405 (Cyg A) and Cen A as well as instantaneous spectra of the nuclear sources in 3C 111, 3C 405 and Cen A are presented. Spectra of nuclear components in radiosources 3C 111 and Cen A show marked variations at the time scale of the order of three years. Fluxes for the nuclear component of Cyg A at the wavelengths greater than 3.9 cm have decreased during the last 5 years. Wavelength independence is pointed out for brightness distribution in the main components of all sources. This contradicts to some extragalactic radiosources models in which radiation losses of relativistic electrons when moving from the hot ''spots'' to ''tails'' are suggested

  12. Atlas of high resolution infrared spectra of carbon dioxide

    Science.gov (United States)

    Rinsland, C. P.; Benner, D. C.; Devi, V. M.; Ferry, P. S.; Sutton, C. H.; Richardson, D. J.

    1984-01-01

    A long path, low pressure laboratory spectrum of carbon dioxide is presented for the spectral region 1830 to 2010/cm. The data were recorded at 0.01/cm resolution and room temperature with the Fourier transform spectrometer in the McMath solar telescope complex at Kitt Peak National Observatory. A list of positions and assignments is given for the 1038 lines observed in this region. A total of 30 bands and subbands of 12C1602, 13C1602, 12C160180, 12C160170, and 13C160180 were observed. Previously announced in STAR as N83-19598

  13. High spectral resolution measurements of a solar flare hard X-ray burst

    International Nuclear Information System (INIS)

    Lin, R.P.; Schwartz, R.A.; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1987-01-01

    Observations are reported of an intense solar flare hard X-ray burst on June 27, 1980, made with a balloon-borne array of liquid nitrogen-cooled Ge detector which provided unprecedented spectral resolution (no more than 1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 0.1-1 billion K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting about 3-15 sec, which have a hard spectrum and a break energy of 30-65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 kev to at least 100 keV through the event. The double power-law shape indicates that DC electric field acceleration, similar to that occurring in the earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. 39 references

  14. Determination of the resolution of the x-ray microscope XM-1 at beamline 6.1

    Energy Technology Data Exchange (ETDEWEB)

    Heck, J.M.; Meyer-Ilse, W.; Attwood, D.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Resolution determination in x-ray microscopy is a complex issue which depends on many factors. Many different criteria and experimental setups are used to characterize resolution. Some of the important factors affecting resolution include the partial coherence and spectrum of the illumination. The purpose of this research has been to measure the resolution of XM-1 at beamline 6.1 taking into account these factors, and to compare the measurements to theoretical calculations. The x-ray microscope XM-1, built by the Center for X-ray Optics (CXRO), has been operational since 1994 at the Advanced Light Source at E.O. Lawrence Berkeley National Laboratory. It is of the conventional (i.e. full-field) type, utilizing zone plate optics. ALS bending magnet radiation is focused by a condenser zone plate onto a monochromator pinhole immediately in front of the sample. X-rays transmitted through the sample are focused by a micro-zone plate onto a CCD camera. The pinhole and the condenser with a central stop constitute a linear monochromator. The spectral distribution of the light illuminating the sample has been calculated assuming geometrical optics.

  15. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.

    Science.gov (United States)

    Winn, Matthew B; Won, Jong Ho; Moon, Il Joon

    This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). The authors hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. The authors further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. Nineteen cochlear implant listeners and 10 listeners with normal hearing participated in a suite of tasks that included spectral ripple discrimination, temporal modulation detection, and syllable categorization, which was split into a spectral cue-based task (targeting the /ba/-/da/ contrast) and a timing cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for cochlear implant listeners. Cochlear implant users were generally less successful at utilizing both spectral and temporal cues for categorization compared with listeners with normal hearing. For the cochlear implant listener group, spectral ripple discrimination was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. Temporal modulation detection using 100- and 10-Hz-modulated noise was not correlated either with the cochlear implant subjects' categorization of

  16. Development and features of an X-ray detector with high spatial resolution

    International Nuclear Information System (INIS)

    Hartmann, H.

    1979-09-01

    A laboratory model of an X-ray detector with high spatial resolution was developed and constructed. It has no spectral resolution, but a local resolution of 20 μm which is about ten times as high as that of position-sensitive proportional counters and satisfies the requirements of the very best Wolter telescopes with regard to spatial resolution. The detector will be used for laboratory tests of the 80 cm Wolter telescope which is being developed for Spacelab flights. The theory of the wire grid detector and the physics of the photoelectric effect has been developed, and model calculations and numerical calculations have been carried out. (orig./WB) [de

  17. Spectral Ripple Discrimination in Normal-Hearing Infants.

    Science.gov (United States)

    Horn, David L; Won, Jong Ho; Rubinstein, Jay T; Werner, Lynne A

    Spectral resolution is a correlate of open-set speech understanding in postlingually deaf adults and prelingually deaf children who use cochlear implants (CIs). To apply measures of spectral resolution to assess device efficacy in younger CI users, it is necessary to understand how spectral resolution develops in normal-hearing children. In this study, spectral ripple discrimination (SRD) was used to measure listeners' sensitivity to a shift in phase of the spectral envelope of a broadband noise. Both resolution of peak to peak location (frequency resolution) and peak to trough intensity (across-channel intensity resolution) are required for SRD. SRD was measured as the highest ripple density (in ripples per octave) for which a listener could discriminate a 90° shift in phase of the sinusoidally-modulated amplitude spectrum. A 2 × 3 between-subjects design was used to assess the effects of age (7-month-old infants versus adults) and ripple peak/trough "depth" (10, 13, and 20 dB) on SRD in normal-hearing listeners (experiment 1). In experiment 2, SRD thresholds in the same age groups were compared using a task in which ripple starting phases were randomized across trials to obscure within-channel intensity cues. In experiment 3, the randomized starting phase method was used to measure SRD as a function of age (3-month-old infants, 7-month-old infants, and young adults) and ripple depth (10 and 20 dB in repeated measures design). In experiment 1, there was a significant interaction between age and ripple depth. The infant SRDs were significantly poorer than the adult SRDs at 10 and 13 dB ripple depths but adult-like at 20 dB depth. This result is consistent with immature across-channel intensity resolution. In contrast, the trajectory of SRD as a function of depth was steeper for infants than adults suggesting that frequency resolution was better in infants than adults. However, in experiment 2 infant performance was significantly poorer than adults at 20 d

  18. Spectral Ripple Discrimination in Normal Hearing Infants

    Science.gov (United States)

    Horn, David L.; Won, Jong Ho; Rubinstein, Jay T.; Werner, Lynne A.

    2016-01-01

    Objectives Spectral resolution is a correlate of open-set speech understanding in post-lingually deaf adults as well as pre-lingually deaf children who use cochlear implants (CIs). In order to apply measures of spectral resolution to assess device efficacy in younger CI users, it is necessary to understand how spectral resolution develops in NH children. In this study, spectral ripple discrimination (SRD) was used to measure listeners’ sensitivity to a shift in phase of the spectral envelope of a broadband noise. Both resolution of peak to peak location (frequency resolution) and peak to trough intensity (across-channel intensity resolution) are required for SRD. Design SRD was measured as the highest ripple density (in ripples per octave) for which a listener could discriminate a 90 degree shift in phase of the sinusoidally-modulated amplitude spectrum. A 2X3 between subjects design was used to assess the effects of age (7-month-old infants versus adults) and ripple peak/trough “depth” (10, 13, and 20 dB) on SRD in normal hearing listeners (Experiment 1). In Experiment 2, SRD thresholds in the same age groups were compared using a task in which ripple starting phases were randomized across trials to obscure within-channel intensity cues. In Experiment 3, the randomized starting phase method was used to measure SRD as a function of age (3-month-old infants, 7-month-old infants, and young adults) and ripple depth (10 and 20 dB in repeated measures design). Results In Experiment 1, there was a significant interaction between age and ripple depth. The Infant SRDs were significantly poorer than the adult SRDs at 10 and 13 dB ripple depths but adult-like at 20 dB depth. This result is consistent with immature across-channel intensity resolution. In contrast, the trajectory of SRD as a function of depth was steeper for infants than adults suggesting that frequency resolution was better in infants than adults. However, in Experiment 2 infant performance was

  19. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  20. A New High-Resolution Spectral Approach to Noninvasively Evaluate Wall Deformations in Arteries

    Directory of Open Access Journals (Sweden)

    Ivonne Bazan

    2014-01-01

    Full Text Available By locally measuring changes on arterial wall thickness as a function of pressure, the related Young modulus can be evaluated. This physical magnitude has shown to be an important predictive factor for cardiovascular diseases. For evaluating those changes, imaging segmentation or time correlations of ultrasonic echoes, coming from wall interfaces, are usually employed. In this paper, an alternative low-cost technique is proposed to locally evaluate variations on arterial walls, which are dynamically measured with an improved high-resolution calculation of power spectral densities in echo-traces of the wall interfaces, by using a parametric autoregressive processing. Certain wall deformations are finely detected by evaluating the echoes overtones peaks with power spectral estimations that implement Burg and Yule Walker algorithms. Results of this spectral approach are compared with a classical cross-correlation operator, in a tube phantom and “in vitro” carotid tissue. A circulating loop, mimicking heart periods and blood pressure changes, is employed to dynamically inspect each sample with a broadband ultrasonic probe, acquiring multiple A-Scans which are windowed to isolate echo-traces packets coming from distinct walls. Then the new technique and cross-correlation operator are applied to evaluate changing parietal deformations from the detection of displacements registered on the wall faces under periodic regime.

  1. A New High-Resolution Spectral Approach to Noninvasively Evaluate Wall Deformations in Arteries

    Science.gov (United States)

    Bazan, Ivonne; Negreira, Carlos; Ramos, Antonio; Brum, Javier; Ramirez, Alfredo

    2014-01-01

    By locally measuring changes on arterial wall thickness as a function of pressure, the related Young modulus can be evaluated. This physical magnitude has shown to be an important predictive factor for cardiovascular diseases. For evaluating those changes, imaging segmentation or time correlations of ultrasonic echoes, coming from wall interfaces, are usually employed. In this paper, an alternative low-cost technique is proposed to locally evaluate variations on arterial walls, which are dynamically measured with an improved high-resolution calculation of power spectral densities in echo-traces of the wall interfaces, by using a parametric autoregressive processing. Certain wall deformations are finely detected by evaluating the echoes overtones peaks with power spectral estimations that implement Burg and Yule Walker algorithms. Results of this spectral approach are compared with a classical cross-correlation operator, in a tube phantom and “in vitro” carotid tissue. A circulating loop, mimicking heart periods and blood pressure changes, is employed to dynamically inspect each sample with a broadband ultrasonic probe, acquiring multiple A-Scans which are windowed to isolate echo-traces packets coming from distinct walls. Then the new technique and cross-correlation operator are applied to evaluate changing parietal deformations from the detection of displacements registered on the wall faces under periodic regime. PMID:24688596

  2. Spectral characterization in deep UV of an improved imaging KDP acousto-optic tunable filter

    International Nuclear Information System (INIS)

    Gupta, Neelam; Voloshinov, Vitaly

    2014-01-01

    Recently, we developed a number of high quality noncollinear acousto-optic tunable filter (AOTF) cells in different birefringent materials with UV imaging capability. Cells based on a single crystal of KDP (potassium dihydrophosphate) had the best transmission efficiency and the optical throughput needed to acquire high quality spectral images at wavelengths above 220 nm. One of the main limitations of these imaging filters was their small angular aperture in air, limited to about 1.0°. In this paper, we describe an improved imaging KDP AOTF operating from the deep UV to the visible region of the spectrum. The linear and angular apertures of the new filter are 10 × 10 mm 2 and 1.8°, respectively. The spectral tuning range is 205–430 nm with a 60 cm1 spectral resolution. We describe the filter and present experimental results on imaging using both a broadband source and a number of light emitting diodes (LEDs) in the UV, and include the measured spectra of these LEDs obtained with a collinear SiO 2 filter-based spectrometer operating above 255 nm. (paper)

  3. Near-infrared spectral imaging Michelson interferometer for astronomical applications

    Science.gov (United States)

    Wells, C. W.; Potter, A. E.; Morgan, T. H.

    1980-01-01

    The design and operation of an imaging Michelson interferometer-spectrometer used for near-infrared (0.8 micron to 2.5 microns) spectral imaging are reported. The system employs a rapid scan interferometer modified for stable low resolution (250/cm) performance and a 42 element PbS linear detector array. A microcomputer system is described which provides data acquisition, coadding, and Fourier transformation for near real-time presentation of the spectra of all 42 scene elements. The electronic and mechanical designs are discussed and telescope performance data presented.

  4. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    Science.gov (United States)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  5. ICLAS of water in the 770 nm transparency window (12 746-13 558 cm-1). Comparison with current experimental and calculated databases

    International Nuclear Information System (INIS)

    Campargue, A.; Mikhailenko, S.; Liu, A.W.

    2008-01-01

    The absorption spectrum of water vapor has been investigated by intracavity laser spectroscopy (ICLAS) in the 12 746-13 558 cm -1 spectral region corresponding to an interesting transparency window of the atmosphere, partly obscured by the A band of molecular oxygen. The achieved sensitivity-in the order of α min ∼10 -9 cm -1 -has allowed one to measure 1062 water lines with intensities ranging from 1.6x10 -28 to 2.35x10 -24 cm/molecule at 296 K. A total of 169 new and improved energy levels belonging to 21 vibrational states could be determined from 374 newly measured transitions. The retrieved experimental line list is compared with the spectra calculated by Schwenke and Partridge, and Barber and Tennyson. Comparison with the available experimental databases shows that the obtained results represent a significant improvement of the knowledge of the water absorption in the considered region, in particular in the region of the oxygen A band

  6. Characterization of cucurbita maxima phloem serpin-1 (CmPS-1). A developmentally regulated elastase inhibitor.

    Science.gov (United States)

    Yoo, B C; Aoki, K; Xiang, Y; Campbell, L R; Hull, R J; Xoconostle-Cázares, B; Monzer, J; Lee, J Y; Ullman, D E; Lucas, W J

    2000-11-10

    We report on the molecular, biochemical, and functional characterization of Cucurbita maxima phloem serpin-1 (CmPS-1), a novel 42-kDa serine proteinase inhibitor that is developmentally regulated and has anti-elastase properties. CmPS-1 was purified to near homogeneity from C. maxima (pumpkin) phloem exudate and, based on microsequence analysis, the cDNA encoding CmPS-1 was cloned. The association rate constant (k(a)) of phloem-purified and recombinant His(6)-tagged CmPS-1 for elastase was 3.5 +/- 1.6 x 10(5) and 2.7 +/- 0.4 x 10(5) m(-)(1) s(-)(1), respectively. The fraction of complex-forming CmPS-1, X(inh), was estimated at 79%. CmPS-1 displayed no detectable inhibitory properties against chymotrypsin, trypsin, or thrombin. The elastase cleavage sites within the reactive center loop of CmPS-1 were determined to be Val(347)-Gly(348) and Val(350)-Ser(351) with a 3:2 molar ratio. In vivo feeding assays conducted with the piercing-sucking aphid, Myzus persicae, established a close correlation between the developmentally regulated increase in CmPS-1 within the phloem sap and the reduced ability of these insects to survive and reproduce on C. maxima. However, in vitro feeding experiments, using purified phloem CmPS-1, failed to demonstrate a direct effect on aphid survival. Likely roles of this novel phloem serpin in defense against insects/pathogens are discussed.

  7. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision and hobbyist unmanned aerial vehicles

    Science.gov (United States)

    Dandois, J. P.; Ellis, E. C.

    2013-12-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing system enabling routine and inexpensive aerial 3D measurements of canopy structure and spectral attributes, with properties similar to those of LIDAR, but with RGB (red-green-blue) spectral attributes for each point, enabling high frequency observations within a single growing season. This 'Ecosynth' methodology applies photogrammetric ''Structure from Motion'' computer vision algorithms to large sets of highly overlapping low altitude (USA. Ecosynth canopy height maps (CHMs) were strong predictors of field-measured tree heights (R2 0.63 to 0.84) and were highly correlated with a LIDAR CHM (R 0.87) acquired 4 days earlier, though Ecosynth-based estimates of aboveground biomass densities included significant errors (31 - 36% of field-based estimates). Repeated scanning of a 0.25 ha forested area at six different times across a 16 month period revealed ecologically significant dynamics in canopy color at different heights and a structural shift upward in canopy density, as demonstrated by changes in vertical height profiles of point density and relative RGB brightness. Changes in canopy relative greenness were highly correlated (R2 = 0.88) with MODIS NDVI time series for the same area and vertical differences in canopy color revealed the early green up of the dominant canopy species, Liriodendron tulipifera, strong evidence that Ecosynth time series measurements capture vegetation structural and spectral dynamics at the spatial scale of individual trees. Observing canopy phenology in 3D at high temporal resolutions represents a breakthrough in forest ecology. Inexpensive user-deployed technologies for

  8. True resolution enhancement for optical spectroscopy

    Science.gov (United States)

    Cooper, Justin T.; Oleske, Jeffrey B.

    2018-02-01

    Resolving spectrally adjacent peaks is important for techniques, such as tracking small shifts in Raman or fluorescence spectra, quantifying pharmaceutical polymorph ratios, or molecular orientation studies. Thus, suitable spectral resolution is a vital consideration when designing most spectroscopic systems. Most parameters that influence spectral resolution are fixed for a given system (spectrometer length, grating groove density, excitation source, CCD pixel size, etc.). Inflexible systems are non-problematic if the spectrometer is dedicated for a single purpose; however, these specifications cannot be optimized for different applications with wider range resolution requirements. Data processing techniques, including peak fitting, partial least squares, or principal component analysis, are typically used to achieve sub-optical resolution information. These techniques can be plagued by spectral artifacts introduced by post-processing as well as the subjective implementation of statistical parameters. TruRes™, from Andor Technology, uses an innovative optical means to greatly improve and expand the range of spectral resolutions accessible on a single setup. True spectral resolution enhancement of >30% is achieved without mathematical spectral alteration, dataprocessing, or spectrometer component changes. Discreet characteristic spectral lines from Laser-Induced Breakdown Spectroscopy (LIBS) and atomic calibration sources are now fully resolved from spectrally-adjacent peaks under otherwise identical configuration. TruRes™ has added advantage of increasing the spectral resolution without sacrificing bandpass. Using TruRes™ the Kymera 328i resolution can approach that of a 500 mm focal spectrometer. Furthermore, the bandpass of a 500 mm spectrograph with would be 50% narrower than the Kymera 328i with all other spectrometer components constant. However, the Kymera 328i with TruRes™ is able to preserve a 50% wider bandpass.

  9. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    Science.gov (United States)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  10. Nancay "blind" 21 cm line survey of the Canes Venatici group region

    NARCIS (Netherlands)

    Kraan-Korteweg, RC; van Driel, W; Briggs, F; Binggeli, B; Mostefaoui, TI

    A radio spectroscopic driftscan survey in the 21 cm line with the Nancay decimetric radio telescope of 0.08 steradians of sky in the direction of the constellation Canes Venatici covering a heliocentric velocity range of -350 1) produced 53 spectral features, which was further

  11. Breast density estimation from high spectral and spatial resolution MRI

    Science.gov (United States)

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.

    2016-01-01

    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (pdensity estimations. An interclass correlation coefficient of 0.99 (pdensity estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  12. Spectral Longwave Cloud Radiative Forcing as Observed by AIRS

    Science.gov (United States)

    Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2016-01-01

    AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.

  13. Rapid spectral and flux time variations in a solar burst observed at various dm-mm wavelengths and at hard x rays

    International Nuclear Information System (INIS)

    Zodivaz, A.M.; Kaufmann, P.; Correia, E.; Costa, J.E.R.; Takakura, T.; Cliver, E.W.; Tapping, K.F.; Air Force Geophysics Lab., Hanscom AFB, MA; National Research Council of Canada, Ottawa, Ontario)

    1986-01-01

    A solar burst was observed with high sensitivity and time resolution at cm-mm wavelengths by two different radio observatories (Itapetinga and Algonquin), with high spectral time resolution at dm-mm wavelengths by patrol instruments (Sagamore Hill), and at hard x rays (HXM Hinotori). At the onset of the major burst time structure there was a rapid rise in the spectral turnover frequency (from 5 to 15 GHz), in about 10s, coincident to a reduction of the spectral index in the optically thin part of the spectrum. The burst maxima were not time coincident at the optically thin radio frequencies and at the different hard x ray energy ranges. The profiles at higher radio frequencies exhibited better time coincidence to the high energy x rays. The hardest x ray spectrum (-3) coincided with peak radio emission at the higher frequency (44 GHz). The event appeared to be built up by a first major injection of softer particles followed by other injections of harder particles. Ultrafast time structures were identified as superimposed on the burst emission at the cm-mm high sensitivity data at x rays, with predominant repetition rates ranging from 2.0 to 3.5 Hz

  14. Line Intensity Measurements in 14N 216O and Their Treatment Using the Effective Dipole Moment Approach . I. The 4300- to 5200-cm -1 Region

    Science.gov (United States)

    Daumont, L.; Auwera, J. Vander; Teffo, J.-L.; Perevalov, V. I.; Tashkun, S. A.

    2001-08-01

    This work continues a series of publications devoted to the application of the effective operator approach to the vibrational-rotational treatment of linear triatomic molecules, aiming at the analysis and prediction of their infrared spectra. In that frame work, we have started a large-scale work aiming at the global description of line intensities of cold and hot bands of 14N216O in its ground electronic state in the spectral range above 3600 cm-1. In 14N216O, vibrational interacting levels group in polyads as a result of the relation 2ω1≈4ω2≈ω3 existing between the harmonic frequencies. The polyads are identified by the so-called polyad number P=2V1+V2+4V3. The work described in the present paper concerns bands associated with transitions corresponding to ΔP=7, 8, and 9. The absorption spectra of N2O at room temperature have been recorded at a resolution of 0.007 cm-1 in the range from 4300 to 5200 cm-1 using a Bruker IFS120HR Fourier transform spectrometer. Sample pressure/absorption path length products ranging from 7 to 1753 mbar × m have been used. More than 3000 absolute line intensities have been measured in 66 different bands belonging to the ΔP=7, 8, and 9 series. Dicke narrowing has been observed in the high-pressure spectra. Using wavefunctions previously determined from a global fit of an effective Hamiltonian to about 18,000 line positions (S. A. Tashkun, V. I. Perevalov, and J.-L. Teffo to be published), the experimental intensities measured in this work and by R. A. Toth (J. Mol. Spectrosc.197, 158-187 (1999)) were fitted to 47 parameters of a corresponding effective dipole moment, with residuals very close to the experimental uncertainty. Exa mples are given showing that the modeling reproduces intensities of perturbed lines well.

  15. SPECTRAL RECONSTRUCTION BASED ON SVM FOR CROSS CALIBRATION

    Directory of Open Access Journals (Sweden)

    H. Gao

    2017-05-01

    Full Text Available Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor’s passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF, SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.

  16. Gain and time resolution of 45 μm thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 1015 neq/cm2

    International Nuclear Information System (INIS)

    Lange, J.; Cavallaro, E.; Förster, F.; Grinstein, S.; Carulla, M.; Flores, D.; Hidalgo, S.; Merlos, A.; Pellegrini, G.; Quirion, D.; Chytka, L.; Komarek, T.; Nozka, L.; Davis, P.M.; Kramberger, G.; Mandić, I.; Sykora, T.

    2017-01-01

    Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolutions. LGADs with an active thickness of about 45 μm were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to 10 15 n eq /cm 2 . The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3×10 14 n eq /cm 2 , similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At 10 15 n eq /cm 2 , the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.

  17. High-resolution measurement, line identification, and spectral modeling of the Kβ spectrum of heliumlike argon emitted by a laser-produced plasma using a gas-puff target

    International Nuclear Information System (INIS)

    Skobelev, I.Y.; Faenov, A.Y.; Dyakin, V.M.; Fiedorowicz, H.; Bartnik, A.; Szczurek, M.; Beiersdorfer, P.; Nilsen, J.; Osterheld, A.L.

    1997-01-01

    We present an analysis of the spectrum of satellite transitions to the He-β line in ArXVII. High-resolution measurements of the spectra from laser-heated Ar-gas-puff targets are made with spectral resolution of 10000 and spatial resolution of better than 50 μm. These are compared with tokamak measurements. Several different lines are identified in the spectra and the spectral analysis is used to determine the plasma parameters in the gas-puff laser-produced plasma. The data complement those from tokamak measurements to provide more complete information on the satellite spectra. copyright 1997 The American Physical Society

  18. Technical Note: Continuity of MIPAS-ENVISAT operational ozone data quality from full- to reduced-spectral-resolution operation mode

    Directory of Open Access Journals (Sweden)

    S. Ceccherini

    2008-04-01

    Full Text Available MIPAS (Michelson Interferometer for Passive Atmospheric Sounding is operating on the ENVIronmental SATellite (ENVISAT since March 2002. After two years of nearly continuous limb scanning measurements, at the end of March 2004, the instrument was stopped due to problems with the mirror drive of the interferometer. Operations with reduced maximum path difference, corresponding to both a reduced-spectral-resolution and a shorter measurement time, were resumed on January 2005. In order to exploit the reduction in measurement time, the measurement scenario was changed adopting a finer vertical limb scanning. The change of spectral resolution and of measurement scenario entailed an update of the data processing strategy. The aim of this paper is the assessment of the differences in the quality of the MIPAS ozone data acquired before and after the stop of the operations. Two sets of MIPAS ozone profiles acquired in 2003–2004 (full-resolution measurements and in 2005–2006 (reduced-resolution measurements are compared with collocated ozone profiles obtained by GOMOS (Global Ozone Monitoring by Occultation of Stars, itself also onboard ENVISAT. The continuity of the GOMOS data quality allows to assess a possible discontinuity of the MIPAS performances. The relative bias and precision of MIPAS ozone profiles with respect to the GOMOS ones have been compared for the measurements acquired before and after the stop of the MIPAS operations. The results of the comparison show that, in general, the quality of the MIPAS ozone profiles retrieved from reduced-resolution measurements is comparable or better than that obtained from the full-resolution dataset. The only significant change in MIPAS performances is observed at pressures around 2 unit{hPa}, where the relative bias of the instruments increases by a factor of 2 from the 2003–2004 to 2005–2006 measurements.

  19. Assessing the Impact of Spectral Resolution on Classification of Lowland Native Grassland Communities Based on Field Spectroscopy in Tasmania, Australia

    Directory of Open Access Journals (Sweden)

    Bethany Melville

    2018-02-01

    Full Text Available This paper presents a case study for the analysis of endangered lowland native grassland communities in the Tasmanian Midlands region using field spectroscopy and spectral convolution techniques. The aim of the study was to determine whether there was significant improvement in classification accuracy for lowland native grasslands and other vegetation communities based on hyperspectral resolution datasets over multispectral equivalents. A spectral dataset was collected using an ASD Handheld-2 spectroradiometer at Tunbridge Township Lagoon. The study then employed a k-fold cross-validation approach for repeated classification of a full hyperspectral dataset, a reduced hyperspectral dataset, and two convoluted multispectral datasets. Classification was performed on each of the four datasets a total of 30 times, based on two different class configurations. The classes analysed were Themeda triandra grassland, Danthonia/Poa grassland, Wilsonia rotundifolia/Selliera radicans, saltpan, and a simplified C3 vegetation class. The results of the classifications were then tested for statistically significant differences using ANOVA and Tukey’s post-hoc comparisons. The results of the study indicated that hyperspectral resolution provides small but statistically significant increases in classification accuracy for Themeda and Danthonia grasslands. For other classes, differences in classification accuracy for all datasets were not statistically significant. The results obtained here indicate that there is some potential for enhanced detection of major lowland native grassland community types using hyperspectral resolution datasets, and that future analysis should prioritise good performance in these classes over others. This study presents a method for identification of optimal spectral resolution across multiple datasets, and constitutes an important case study for lowland native grassland mapping in Tasmania.

  20. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use

    Energy Technology Data Exchange (ETDEWEB)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale [Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Manceron, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Laboratoire MONARIS, CNRS-Université Pierre et Marie Curie, UMR 8233, 4 Place Jussieu, F-75252 Paris Cedex (France)

    2016-06-15

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6–20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  1. Foreground and Sensitivity Analysis for Broadband (2D) 21 cm-Lyα and 21 cm-Hα Correlation Experiments Probing the Epoch of Reionization

    Science.gov (United States)

    Neben, Abraham R.; Stalder, Brian; Hewitt, Jacqueline N.; Tonry, John L.

    2017-11-01

    A detection of the predicted anticorrelation between 21 cm and either Lyα or Hα from the epoch of reionization (EOR) would be a powerful probe of the first galaxies. While 3D intensity maps isolate foregrounds in low-{k}\\parallel modes, infrared surveys cannot yet match the field of view and redshift resolution of radio intensity mapping experiments. In contrast, 2D (I.e., broadband) infrared intensity maps can be measured with current experiments and are limited by foregrounds instead of photon or thermal noise. We show that 2D experiments can measure most of the 3D fluctuation power at klimit on residual foregrounds of the 21 cm-Lyα cross-power spectrum at z˜ 7 of {{{Δ }}}2text{kJy sr}}-1 {{mK}}) (95%) at {\\ell }˜ 800. We predict levels of foreground correlation and sample variance noise in future experiments, showing that higher-resolution surveys such as LOFAR, SKA-LOW, and the Dark Energy Survey can start to probe models of the 21 cm-Lyα EOR cross spectrum.

  2. Investigations on Important Properties of the 10 cm x 10 cm GEM Prototype

    CERN Document Server

    Saenboonruang, Kiadtisak; Kulasri, Kittipong; Ritthirong, Anawat

    2015-01-01

    The Gas Electron Multiplier (GEM) detector is one of promising particle and radiation detectors that has been improved greatly from previous gas detectors. The improvement includes better spatial resolutions, higher detection rate capabilities, and flexibilities in designs. In particular, the 10 cm x 10 cm GEM prototype is designed and provided by the Gas Detectors Development group (GDD) at CERN, Switzerland. With its simplicity in operations and designs, while still maintaining high qualities, the GEM prototype is suitable for both start-up and advanced researches. This article aims to report the investigations on some important properties of the 10 cm x 10 cm GEM detector using current measurement and signal counting. Results have shown that gains of the GEM prototype exponentially increase as voltage supplied to the detector increases, while the detector reaches full efficiency (plateau region) when the voltage is greater than 4100 V. In terms of signal sharing between X and Y strips of the readout, X str...

  3. Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit.

    Science.gov (United States)

    Zhuang, Leimeng; Zhu, Chen; Corcoran, Bill; Burla, Maurizio; Roeloffzen, Chris G H; Leinse, Arne; Schröder, Jochen; Lowery, Arthur J

    2016-03-21

    Modern optical communications rely on high-resolution, high-bandwidth filtering to maximize the data-carrying capacity of fiber-optic networks. Such filtering typically requires high-speed, power-hungry digital processes in the electrical domain. Passive optical filters currently provide high bandwidths with low power consumption, but at the expense of resolution. Here, we present a passive filter chip that functions as an optical Nyquist-filtering interleaver featuring sub-GHz resolution and a near-rectangular passband with 8% roll-off. This performance is highly promising for high-spectral-efficiency Nyquist wavelength division multiplexed (N-WDM) optical super-channels. The chip provides a simple two-ring-resonator-assisted Mach-Zehnder interferometer, which has a sub-cm2 footprint owing to the high-index-contrast Si3N4/SiO2 waveguide, while manifests low wavelength-dependency enabling C-band (> 4 THz) coverage with more than 160 effective free spectral ranges of 25 GHz. This device is anticipated to be a critical building block for spectrally-efficient, chip-scale transceivers and ROADMs for N-WDM super-channels in next-generation optical communication networks.

  4. CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank

    International Nuclear Information System (INIS)

    Tashkun, S.A.; Perevalov, V.I.

    2011-01-01

    We present a high-resolution, high-temperature version of the Carbon Dioxide Spectroscopic Databank called CDSD-4000. The databank contains the line parameters (positions, intensities, air- and self-broadened half-widths, coefficients of temperature dependence of air- and self-broadened half-widths, and air-broadened pressure shifts) of the four most abundant isotopologues of CO 2 . A reference temperature is 296 K and an intensity cutoff is 10 -27 cm -1 /molecule cm -2 at 4000 K. The databank has 628,324,454 entries, covers the 226-8310 cm -1 spectral range and designed for the temperature range 2500-5000 K. Format of CDSD-4000 is similar to that of HITRAN-2008. The databank has been generated within the framework of the method of effective operators and based on the global fittings of spectroscopic parameters (parameters of the effective Hamiltonians and effective dipole moment operators) to observed data collected from the literature. The databank is useful for studying high-temperature radiative properties of CO 2 , including exoplanets atmospheres, aerothemal modeling for Mars entry missions, high-temperature laboratory spectra, and industrial applications. CDSD-4000 is freely accessible via the Internet site (ftp://ftp.iao.ru/pub/CDSD-4000).

  5. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index

    Science.gov (United States)

    Yang, Dedi; Chen, Jin; Zhou, Yuan; Chen, Xiang; Chen, Xuehong; Cao, Xin

    2017-06-01

    Plastic greenhouses (PGs) are an important agriculture development technique to protect and control the growing environment for food crops. The extensive use of PGs can change the agriculture landscape and affects the local environment. Accurately mapping and estimating the coverage of PGs is a necessity to the strategic planning of modern agriculture. Unfortunately, PG mapping over large areas is methodologically challenging, as the medium spatial resolution satellite imagery (such as Landsat data) used for analysis lacks spatial details and spectral variations. To fill the gap, the paper proposes a new plastic greenhouse index (PGI) based on the spectral, sensitivity, and separability analysis of PGs using medium spatial resolution images. In the context of the Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, the paper examines the effectiveness and capability of the proposed PGI. The results indicate that PGs in Landsat ETM+ image can be successfully detected by the PGI if the PG fraction is greater than 12% in a mixed pixel. A kappa coefficient of 0.83 and overall accuracy of 91.2% were achieved when applying the proposed PGI in the case of Weifang District, Shandong, China. These results show that the proposed index can be applied to identifying transparent PGs in atmospheric corrected Landsat image and has the potential for the digital mapping of plastic greenhouse coverage over a large area.

  6. High resolution soft X-Ray spectrometer with 5-picosecond time-resolution for laser-produced plasma diagnostics

    International Nuclear Information System (INIS)

    Mexmain, J.M.; Bourgade, J.L.; Louis-Jacquet, M.; Mascureau, J. de; Sauneuf, R.; Schwob, J.L.

    1987-01-01

    A new XUV spectrometer designed to have a time-resolution of 3 ps and a spectral resolution of 0.1 A is described. It is basically a modified version of a Schwob-Fraenkel spectrometer, which is coupled to a new ultrafast electronic streak camera

  7. Feasibility of microwave interferometry and fourier-transform spectrometry for high-spectral-resolution sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.; Cooke, B.; Jacobson, A.; Love, S.; Zardecki, A.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The primary objective of this project was to perform the necessary research and development to determine the feasibility of new ideas that, if successful, could lead to the development of future new programs in high-spectral resolution remote sensing. In active remote sensing systems, the solar illumination of a scene is replaced by a man-made source, preferably a laser beam. However, when laser beams are propagated through a scattering medium, like air, random optical path fluctuations comparable to the optical wavelength are generated giving rise to the speckle effect, which is the most severe perturbation in active remote sensing systems. The limitations introduced by the speckle effect degrade or negate the data interpretation. We sought to introduce better physical models of beam scattering that allow a more realistic simulation environment to be developed that, when applied to experimental data sets, improve their interpretability and increase the information content. Improved beam propagation models require improved knowledge of the spatio-temporal distribution of the scattering and absorbing medium. In the free atmosphere the largest contributor is water vapor in the lower troposphere. We tested the feasibility of using microwave interferometry to measure water-vapor irregularities in the boundary layer. Knowledge of these distributions enable much improved atmospheric correction algorithms for satellite imagery of the earth`s surface to be developed. For hyperspectral active remote sensing systems it is necessary to perform very high-resolution spectral measurements of the reflected laser light. Such measurements are possible with optical interferometers.

  8. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: karol.kowalski@pnnl.gov; Bhaskaran-Nair, K.; Shelton, W. A. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352 (United States)

    2014-09-07

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function.

  9. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA; Bhaskaran-Nair, K. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA; Shelton, W. A. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA

    2014-09-07

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N - 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N - 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. Finally, as a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function.

  10. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    International Nuclear Information System (INIS)

    Kowalski, K.; Bhaskaran-Nair, K.; Shelton, W. A.

    2014-01-01

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function

  11. Exploiting High Resolution Multi-Seasonal Textural Measures and Spectral Information for Reedbed Mapping

    Directory of Open Access Journals (Sweden)

    Alex Okiemute Onojeghuo

    2016-02-01

    Full Text Available Reedbeds across the UK are amongst the most important habitats for rare and endangered birds, wildlife and organisms. However, over the past century, this valued wetland habitat has experienced a drastic reduction in quality and spatial coverage due to pressures from human related activities. To this end, conservation organisations across the UK have been charged with the task of conserving and expanding this threatened habitat. With this backdrop, the study aimed to develop a methodology for accurate reedbed mapping through the combined use of multi-seasonal texture measures and spectral information contained in high resolution QuickBird satellite imagery. The key objectives were to determine the most effective single-date (autumn or summer and multi-seasonal QuickBird imagery suitable for reedbed mapping over the study area; to evaluate the effectiveness of combining multi-seasonal texture measures and spectral information for reedbed mapping using a variety of combinations; and to evaluate the most suitable classification technique for reedbed mapping from three selected classification techniques, namely maximum likelihood classifier, spectral angular mapper and artificial neural network. Using two selected grey-level co-occurrence textural measures (entropy and angular second moment, a series of experiments were conducted using varied combinations of single-date and multi-seasonal QuickBird imagery. Overall, the results indicate the multi-seasonal pansharpened multispectral bands (eight layers combined with all eight grey level co-occurrence matrix texture measures (entropy and angular second moment computed using windows 3 × 3 and 7 × 7 produced the optimal reedbed (76.5% and overall classification (78.1% accuracies using the maximum likelihood classifier technique. Using the optimal 16 layer multi-seasonal pansharpened multispectral and texture combined image dataset, a total reedbed area of 9.8 hectares was successfully mapped over the

  12. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    Science.gov (United States)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  13. WHY IS NON-THERMAL LINE BROADENING OF SPECTRAL LINES IN THE LOWER TRANSITION REGION OF THE SUN INDEPENDENT OF SPATIAL RESOLUTION?

    International Nuclear Information System (INIS)

    De Pontieu, B.; Martinez-Sykora, J.; McIntosh, S.; Peter, H.; Pereira, T. M. D.

    2015-01-01

    Spectral observations of the solar transition region (TR) and corona show broadening of spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (5–30 km s −1 ) and correlated with intensity. Here we study spectra of the TR Si iv 1403 Å line obtained at high resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.″33) of IRIS compared to previous spectrographs (2″) does not resolve the non-thermal line broadening which, in most regions, remains at pre-IRIS levels of about 20 km s −1 . This invariance to spatial resolution indicates that the processes behind the broadening occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the TR and can lead to significant non-thermal line broadening. This scenario is supported by MHD simulations. While these do not show enough non-thermal line broadening, they do reproduce the long-known puzzling correlation between non-thermal line broadening and intensity. This correlation is caused by the shocks, but only if non-equilibrium ionization is taken into account. In regions where the LOS is more perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and correlation with intensity. (letters)

  14. Spectral ellipsometry of nanodiamond composite

    International Nuclear Information System (INIS)

    Yastrebov, S.G.; Ivanov-Omskij, V.I.; Gordeev, S.K.; Garriga, M.; Alonso, I.A.

    2006-01-01

    Methods of spectral ellipsometry were applied for analysis of optical properties of nanodiamond based composite in spectral region 1.4-5 eV. The nanocomposite was synthesized by molding of ultradispersed nanodiamond powder in the course of heterogeneous chemical reaction of decomposition of methane, forming pyrocarbon interconnecting nanodiamond grains. The energy of σ + π plasmon of pyrocarbon component of nanodiamond composite was restored which proves to be ∼ 24 eV; using this value, an estimation was done of pyrocarbon matrix density, which occurs to be 2 g/cm 3 [ru

  15. GOSAT-2014 methane spectral line list

    International Nuclear Information System (INIS)

    Nikitin, A.V.; Lyulin, O.M.; Mikhailenko, S.N.; Perevalov, V.I.; Filippov, N.N.; Grigoriev, I.M.; Morino, I.; Yoshida, Y.; Matsunaga, T.

    2015-01-01

    The updated methane spectral line list GOSAT-2014 for the 5550–6240 cm1 region with the intensity cutoff of 5×10 –25 cm/molecule at 296 K is presented. The line list is based on the extensive measurements of the methane spectral line parameters performed at different temperatures and pressures of methane without and with buffer gases N 2 , O 2 and air. It contains the following spectral line parameters of about 12150 transitions: line position, line intensity, energy of lower state, air-induced and self-pressure-induced broadening and shift coefficients and temperature exponent of air-broadening coefficient. The accuracy of the line positions and intensities are considerably improved in comparison with the previous version GOSAT-2009. The improvement of the line list is done mainly due to the involving to the line position and intensity retrieval of six new spectra recorded with short path way (8.75 cm). The air-broadening and air-shift coefficients for the J-manifolds of the 2ν 3 (F 2 ) band are refitted using the new more precise values of the line positions and intensities. The line assignment is considerably extended. The lower state J-value was assigned to 6397 lines representing 94.4% of integrated intensity of the considering wavenumber region. The complete assignment was done for 2750 lines. - Highlights: • The upgrade of the GOSAT methane line list in the 5550–6240 cm1 region is done. • 12,146 experimental methane line positions and intensities are retrieved. • 6376 lower energy levels for methane lines are determined

  16. Heat-induced changes to lipid molecular structure in Vimy flaxseed: Spectral intensity and molecular clustering

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav

    2011-06-01

    Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed ( Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH 3 asymmetric (ca. 2959 cm -1), CH 2 asymmetric (ca. 2928 cm -1), CH 3 symmetric (ca. 2871 cm -1) and CH 2 symmetric (ca. 2954 cm -1) functional groups, lipid carbonyl C dbnd O ester group (ca. 1745 cm -1), lipid unsaturation group (CH attached to C dbnd C) (ca. 3010 cm -1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120 °C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease ( P 0.05) on lipid carbonyl C dbnd O ester group and lipid unsaturation group (CH attached to C dbnd C) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH 3 and CH 2 asymmetric and symmetric region (ca. 2988-2790 cm -1). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study is needed to quantify the relationship between lipid molecular structure changes and functionality/availability.

  17. Ames S-32 O-16 O-18 Line List for High-Resolution Experimental IR Analysis

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2016-01-01

    By comparing to the most recent experimental data and spectra of the SO2 628 ?1/?3 bands (see Ulenikov et al., JQSRT 168 (2016) 29-39), this study illustrates the reliability and accuracy of the Ames-296K SO2 line list, which is accurate enough to facilitate such high-resolution spectroscopic analysis. The SO2 628 IR line list is computed on a recently improved potential energy surface (PES) refinement, denoted Ames-Pre2, and the published purely ab initio CCSD(T)/aug-cc-pVQZ dipole moment surface. Progress has been made in both energy level convergence and rovibrational quantum number assignments agreeing with laboratory analysis models. The accuracy of the computed 628 energy levels and line list is similar to what has been achieved and reported for SO2 626 and 646, i.e. 0.01-0.03 cm(exp -1) for bands up to 5500 cm(exp -1). During the comparison, we found some discrepancies in addition to overall good agreements. The three-IR-list based feature-by-feature analysis in a 0.25 cm(exp -1) spectral window clearly demonstrates the power of the current Ames line lists with new assignments, correction of some errors, and intensity contributions from varied sources including other isotopologues. We are inclined to attribute part of detected discrepancies to an incomplete experimental analysis and missing intensity in the model. With complete line position, intensity, and rovibrational quantum numbers determined at 296 K, spectroscopic analysis is significantly facilitated especially for a spectral range exhibiting such an unusually high density of lines. The computed 628 rovibrational levels and line list are accurate enough to provide alternatives for the missing bands or suspicious assignments, as well as helpful to identify these isotopologues in various celestial environments. The next step will be to revisit the SO2 828 and 646 spectral analyses.

  18. Object-based assessment of burn severity in diseased forests using high-spatial and high-spectral resolution MASTER airborne imagery

    Science.gov (United States)

    Chen, Gang; Metz, Margaret R.; Rizzo, David M.; Dillon, Whalen W.; Meentemeyer, Ross K.

    2015-04-01

    Forest ecosystems are subject to a variety of disturbances with increasing intensities and frequencies, which may permanently change the trajectories of forest recovery and disrupt the ecosystem services provided by trees. Fire and invasive species, especially exotic disease-causing pathogens and insects, are examples of disturbances that together could pose major threats to forest health. This study examines the impacts of fire and exotic disease (sudden oak death) on forests, with an emphasis on the assessment of post-fire burn severity in a forest where trees have experienced three stages of disease progression pre-fire: early-stage (trees retaining dried foliage and fine twigs), middle-stage (trees losing fine crown fuels), and late-stage (trees falling down). The research was conducted by applying Geographic Object-Based Image Analysis (GEOBIA) to MASTER airborne images that were acquired immediately following the fire for rapid assessment and contained both high-spatial (4 m) and high-spectral (50 bands) resolutions. Although GEOBIA has gradually become a standard tool for analyzing high-spatial resolution imagery, high-spectral resolution data (dozens to hundreds of bands) can dramatically reduce computation efficiency in the process of segmentation and object-based variable extraction, leading to complicated variable selection for succeeding modeling. Hence, we also assessed two widely used band reduction algorithms, PCA (principal component analysis) and MNF (minimum noise fraction), for the delineation of image objects and the subsequent performance of burn severity models using either PCA or MNF derived variables. To increase computation efficiency, only the top 5 PCA and MNF and top 10 PCA and MNF components were evaluated, which accounted for 10% and 20% of the total number of the original 50 spectral bands, respectively. Results show that if no band reduction was applied the models developed for the three stages of disease progression had relatively

  19. Spectral L2/L1 norm: A new perspective for spectral kurtosis for characterizing non-stationary signals

    Science.gov (United States)

    Wang, Dong

    2018-05-01

    Thanks to the great efforts made by Antoni (2006), spectral kurtosis has been recognized as a milestone for characterizing non-stationary signals, especially bearing fault signals. The main idea of spectral kurtosis is to use the fourth standardized moment, namely kurtosis, as a function of spectral frequency so as to indicate how repetitive transients caused by a bearing defect vary with frequency. Moreover, spectral kurtosis is defined based on an analytic bearing fault signal constructed from either a complex filter or Hilbert transform. On the other hand, another attractive work was reported by Borghesani et al. (2014) to mathematically reveal the relationship between the kurtosis of an analytical bearing fault signal and the square of the squared envelope spectrum of the analytical bearing fault signal for explaining spectral correlation for quantification of bearing fault signals. More interestingly, it was discovered that the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum corresponds to the raw 4th order moment. Inspired by the aforementioned works, in this paper, we mathematically show that: (1) spectral kurtosis can be decomposed into squared envelope and squared L2/L1 norm so that spectral kurtosis can be explained as spectral squared L2/L1 norm; (2) spectral L2/L1 norm is formally defined for characterizing bearing fault signals and its two geometrical explanations are made; (3) spectral L2/L1 norm is proportional to the square root of the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum; (4) some extensions of spectral L2/L1 norm for characterizing bearing fault signals are pointed out.

  20. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    Science.gov (United States)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat

  1. PCA determination of the radiometric noise of high spectral resolution infrared observations from spectral residuals: Application to IASI

    Science.gov (United States)

    Serio, C.; Masiello, G.; Camy-Peyret, C.; Jacquette, E.; Vandermarcq, O.; Bermudo, F.; Coppens, D.; Tobin, D.

    2018-02-01

    The problem of characterizing and estimating the instrumental or radiometric noise of satellite high spectral resolution infrared spectrometers directly from Earth observations is addressed in this paper. An approach has been developed, which relies on the Principal Component Analysis (PCA) with a suitable criterion to select the optimal number of PC scores. Different selection criteria have been set up and analysed, which is based on the estimation theory of Least Squares and/or Maximum Likelihood Principle. The approach is independent of any forward model and/or radiative transfer calculations. The PCA is used to define an orthogonal basis, which, in turn, is used to derive an optimal linear reconstruction of the observations. The residual vector that is the observation vector minus the calculated or reconstructed one is then used to estimate the instrumental noise. It will be shown that the use of the spectral residuals to assess the radiometric instrumental noise leads to efficient estimators, which are largely independent of possible departures of the true noise from that assumed a priori to model the observational covariance matrix. Application to the Infrared Atmospheric Sounder Interferometer (IASI) has been considered. A series of case studies has been set up, which make use of IASI observations. As a major result, the analysis confirms the high stability and radiometric performance of IASI. The approach also proved to be efficient in characterizing noise features due to mechanical micro-vibrations of the beam splitter of the IASI instrument.

  2. Atlas of high resolution infrared spectra of carbon dioxide, February 1983

    Science.gov (United States)

    Benner, D. C.; Rinslad, C. P.; Richardson, D. J.; Soo, T. H.; Smith, M. A. H.

    1983-01-01

    A long path, low pressure laboratory spectrum of carbon dioxide is presented for the spectral region 1830 to 2010/cm. The data were recorded at 0.01/cm resolution and room temperature with the Fourier transform spectrometer in the McMath solar telescope complex at Kitt Peak National Observatory. A list of positions and assignments is given for the 1038 lines observed in this region. A total of 30 bands and subbands of 12C16O2, 13C16O2, 12C16O18O, 12C16O17O, and 13C16O18O were observed.

  3. Skill Assessment of a Spectral Ocean-Atmosphere Radiative Model

    Science.gov (United States)

    Gregg, Watson, W.; Casey, Nancy W.

    2009-01-01

    Ocean phytoplankton, detrital material, and water absorb and scatter light spectrally. The Ocean- Atmosphere Spectral Irradiance Model (OASIM) is intended to provide surface irradiance over the oceans with sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient duration to support inter-annual and decadal investigations. OASIM total surface irradiance (integrated 200 nm to 4 microns) was compared to in situ data and three publicly available global data products at monthly 1-degree resolution. OASIM spectrally-integrated surface irradiance had root mean square (RMS) difference= 20.1 W/sq m (about 11%), bias=1.6 W/sq m (about 0.8%), regression slope= 1.01 and correlation coefficient= 0.89, when compared to 2322 in situ observations. OASIM had the lowest bias of any of the global data products evaluated (ISCCP-FD, NCEP, and ISLSCP 11), and the best slope (nearest to unity). It had the second best RMS, and the third best correlation coefficient. OASIM total surface irradiance compared well with ISCCP-FD (RMS= 20.7 W/sq m; bias=-11.4 W/sq m, r=0.98) and ISLSCP II (RMS =25.2 W/sq m; bias= -13.8 W/sq m; r=0.97), but less well with NCEP (RMS =43.0 W/sq m ;bias=-22.6 W/sq m; x=0.91). Comparisons of OASIM photosynthetically available radiation (PAR) with PAR derived from SeaWiFS showed low bias (-1.8 mol photons /sq m/d, or about 5%), RMS (4.25 mol photons /sq m/d ' or about 12%), near unity slope (1.03) and high correlation coefficient (0.97). Coupled with previous estimates of clear sky spectral irradiance in OASIM (6.6% RMS at 1 nm resolution), these results suggest that OASIM provides reasonable estimates of surface broadband and spectral irradiance in the oceans, and can support studies on ocean ecosystems, carbon cycling, and heat exchange.

  4. Far-infrared Spectral Radiance Observations and Modeling of Arctic Cirrus: Preliminary Results From RHUBC

    Science.gov (United States)

    Humpage, Neil; Green, Paul D.; Harries, John E.

    2009-03-01

    Recent studies have highlighted the important contribution of the far-infrared (electromagnetic radiation with wavelengths greater than 12 μm) to the Earth's radiative energy budget. In a cloud-free atmosphere, a significant fraction of the Earth's cooling to space from the mid- and upper troposphere takes place via the water vapor pure rotational band between 17 and 33 μm. Cirrus clouds also play an important role in the Earth's outgoing longwave radiation. The effect of cirrus on far-infrared radiation is of particular interest, since the refractive index of ice depends strongly on wavelength in this spectral region. The scattering properties of ice crystals are directly related to the refractive index, so consequently the spectral signature of cirrus measured in the FIR is sensitive to the cloud microphysical properties [1, 2]. By examining radiances measured at wavelengths between the strong water vapor absorption lines in the FIR, the understanding of the relationship between cirrus microphysics and the radiative transfer of thermal energy through cirrus may be improved. Until recently, very few observations of FIR spectral radiances had been made. The Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) was developed by Imperial College to address this lack of observational data. TAFTS observes both zenith and nadir radiances at 0.1 cm-1 resolution, between 80 and 600 cm-1. During February and March 2007, TAFTS was involved in RHUBC (the Radiative Heating in Under-explored Bands Campaign), an ARM funded field campaign based at the ACRF-North Slope of Alaska site near Barrow, situated at 71° latitude. Infrared zenith spectral observations were taken by both TAFTS and the AERI-ER (spectral range 400-3300 cm-1) from the ground during both cloud-free and cirrus conditions. A wide range of other instrumentation was also available at the site, including a micropulse lidar, 35 GHz radar and the University of Colorado/NOAA Ground-based Scanning Radiometer

  5. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank

    Science.gov (United States)

    Lyulin, O. M.; Perevalov, V. I.

    2017-11-01

    We present a high-resolution, high-temperature version of the Acetylene Spectroscopic Databank called ASD-1000. The databank contains the line parameters (position, intensity, Einstein coefficient for spontaneous emission, term value of the lower states, self- and air-broadening coefficients, temperature dependence exponents of the self- and air-broadening coefficients) of the principal isotopologue of C2H2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-27 cm-1/(molecule cm-2) at 1000 K. The databank has 33,890,981 entries and covers the 3-10,000 cm-1 spectral range. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as their temperature dependence exponents were calculated using the empirical equations. The databank is useful for studying high-temperature radiative properties of C2H2. ASD-1000 is freely accessible via the Internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/ASD1000/.

  6. Simulating return signals of a spaceborne high-spectral resolution lidar channel at 532 nm

    Science.gov (United States)

    Xiao, Yu; Binglong, Chen; Min, Min; Xingying, Zhang; Lilin, Yao; Yiming, Zhao; Lidong, Wang; Fu, Wang; Xiaobo, Deng

    2018-06-01

    High spectral resolution lidar (HSRL) system employs a narrow spectral filter to separate the particulate (cloud/aerosol) and molecular scattering components in lidar return signals, which improves the quality of the retrieved cloud/aerosol optical properties. To better develop a future spaceborne HSRL system, a novel simulation technique was developed to simulate spaceborne HSRL return signals at 532 nm using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud/aerosol extinction coefficients product and numerical weather prediction data. For validating simulated data, a mathematical particulate extinction coefficient retrieval method for spaceborne HSRL return signals is described here. We compare particulate extinction coefficient profiles from the CALIPSO operational product with simulated spaceborne HSRL data. Further uncertainty analysis shows that relative uncertainties are acceptable for retrieving the optical properties of cloud and aerosol. The final results demonstrate that they agree well with each other. It indicates that the return signals of the spaceborne HSRL molecular channel at 532 nm will be suitable for developing operational algorithms supporting a future spaceborne HSRL system.

  7. Acoustic Event Detection in Multichannel Audio Using Gated Recurrent Neural Networks with High‐Resolution Spectral Features

    Directory of Open Access Journals (Sweden)

    Hyoung‐Gook Kim

    2017-12-01

    Full Text Available Recently, deep recurrent neural networks have achieved great success in various machine learning tasks, and have also been applied for sound event detection. The detection of temporally overlapping sound events in realistic environments is much more challenging than in monophonic detection problems. In this paper, we present an approach to improve the accuracy of polyphonic sound event detection in multichannel audio based on gated recurrent neural networks in combination with auditory spectral features. In the proposed method, human hearing perception‐based spatial and spectral‐domain noise‐reduced harmonic features are extracted from multichannel audio and used as high‐resolution spectral inputs to train gated recurrent neural networks. This provides a fast and stable convergence rate compared to long short‐term memory recurrent neural networks. Our evaluation reveals that the proposed method outperforms the conventional approaches.

  8. DEEP 21 cm H I OBSERVATIONS AT z ∼ 0.1: THE PRECURSOR TO THE ARECIBO ULTRA DEEP SURVEY

    International Nuclear Information System (INIS)

    Freudling, Wolfram; Zwaan, Martin; Staveley-Smith, Lister; Meyer, Martin; Catinella, Barbara; Minchin, Robert; Calabretta, Mark; Momjian, Emmanuel; O'Neil, Karen

    2011-01-01

    The 'ALFA Ultra Deep Survey' (AUDS) is an ongoing 21 cm spectral survey with the Arecibo 305 m telescope. AUDS will be the most sensitive blind survey undertaken with Arecibo's 300 MHz Mock spectrometer. The survey searches for 21 cm H I line emission at redshifts between 0 and 0.16. The main goals of the survey are to investigate the H I content and probe the evolution of H I gas within that redshift region. In this paper, we report on a set of precursor observations with a total integration time of 53 hr. The survey detected a total of eighteen 21 cm emission lines at redshifts between 0.07 and 0.15 in a region centered around α 2000 ∼ 0 h , δ ∼ 15 0 42'. The rate of detection is consistent with the one expected from the local H I mass function. The derived relative H I density at the median redshift of the survey is ρ H I [z = 0.125] = (1.0 ± 0.3)ρ 0 , where ρ 0 is the H I density at zero redshift.

  9. SPECTRAL FILTRATION OF IMAGES BY MEANS OF DISPERSIVE SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. M. Gulis

    2016-01-01

    Full Text Available Instruments for spectral filtration of images are an important element of the systems used in remote sensing, medical diagnostics, in-process measurements. The aim of this study is analysis of the functional features and characteristics of the proposed two image monochromator versions which are based on dispersive spectral filtering. The first is based on the use of a dispersive monochromator, where collimating and camera lenses form a telescopic system, the dispersive element of which is within the intermediate image plane. The second version is based on an imaging double monochromator with dispersion subtraction by back propagation. For the telescopic system version, the spectral and spatial resolutions are estimated, the latter being limited by aberrations and diffraction from the entrance slit. The device has been numerically simulated and prototyped. It is shown that for the spectral bandwidth 10 nm (visible spectral range, the aberration-limited spot size is from 10–20 μm at the image center to about 30 μm at the image periphery for the image size 23–27 mm. The monochromator with dispersion subtraction enables one to vary the spectral resolution (up to 1 nm and higher by changing the intermediate slit width. But the distinctive feature is a significant change in the selected central wavelength over the image field. The considered designs of dispersive image monochromators look very promising due to the particular advantages over the systems based on tunable filters as regards the spectral resolution, fast tuning, and the spectral contrast. The monochromator based on a telescopic system has a simple design and a rather large image field but it also has a limited light throughput due to small aperture size. The monochromator with dispersion subtraction has higher light throughput, can provide high spectral resolution when recording a full data cube in a series of measuring acts for different dispersive element positions. 

  10. High resolution photoemission study of Nd1-xSrxMnO3

    International Nuclear Information System (INIS)

    Togashi, T.; Osawa, H.; Shin, S.; Tanaka, K.; Isozumi, Y.; Iwazumi, T.; Nozawa, S.

    2004-01-01

    Full text:Nd 1-x SrxMnO 3 shows the negative colossal magnetoresistance and various electronic phases. In order to reveal their states, we have performed a high- resolution Mn 2p-3d resonance photoemission (RPES) study of Nd 1-x SrxMnO 3 with an energy resolution of 100 meV at BL25SU in SPring-8. Figure 1 shows the Mn 2p-3d RPES spectra of Nd 1-x SrxMnO 3 . It is found that the spectral line shape in the ground-state phases (GS) at low temperatures is closely related to the shape of MnO 6 octahedra depending on x due to a static Jahn- Teller (JT) effect while the line shape in the paramagnetic insulator (PI) phase near room temperature is qualitatively similar to each other irrespective of x. These results strongly suggest that the dynamical and static JT effects are responsible for the 3d electronic states at high and low temperatures, respectively

  11. Resolving fine spectral features in lattice vibrational modes using femtosecond coherent spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Card

    2016-02-01

    Full Text Available We show resolution of fine spectral features within several Raman active vibrational modes in potassium titanyl phosphate (KTP crystal. Measurements are performed using a femtosecond time-domain coherent anti-Stokes Raman scattering spectroscopy technique that is capable of delivering equivalent spectral resolution of 0.1 cm−1. The Raman spectra retrieved from our measurements show several spectral components corresponding to vibrations of different symmetry with distinctly different damping rates. In particular, linewidths for unassigned optical phonon mode triplet centered at around 820 cm−1 are found to be 7.5 ± 0.2 cm−1, 9.1 ± 0.3 cm−1, and 11.2 ± 0.3 cm−1. Results of our experiments will ultimately help to design an all-solid-state source for sub-optical-wavelength waveform generation that is based on stimulated Raman scattering.

  12. High-resolution absorption measurements of NH3 at high temperatures: 2100–5500 cm1

    DEFF Research Database (Denmark)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2017-01-01

    Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm−1. The spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. 2308 lines have been assigned to 45 different bands, of which 1755 and 15 have been...

  13. Satellite-based climate data records of surface solar radiation from the CM SAF

    Science.gov (United States)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  14. VizieR Online Data Catalog: Spectral properties of 441 radio pulsars (Jankowski+, 2018)

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-03-01

    We present spectral parameters for 441 radio pulsars. These were obtained from observations centred at 728, 1382 and 3100MHz using the 10-50cm and the 20cm multibeam receiver at the Parkes radio telescope. In particular, we list the pulsar names (J2000), the calibrated, band-integrated flux densities at 728, 1382 and 3100MHz, the spectral classifications, the frequency ranges the spectral classifications were performed over, the spectral indices for pulsars with simple power-law spectra and the robust modulation indices at all three centre frequencies for pulsars of which we have at least six measurement epochs. The flux density uncertainties include scintillation and a systematic contribution, in addition to the statistical uncertainty. Upper limits are reported at the 3σ level and all other uncertainties at the 1σ level. (1 data file).

  15. Non-invasive material discrimination using spectral x-ray radiography

    International Nuclear Information System (INIS)

    Gilbert, Andrew J.; McDonald, Benjamin S.; Robinson, Sean M.; Jarman, Ken D.; White, Tim A.; Deinert, Mark R.

    2014-01-01

    Current radiographic methods are limited in their ability to determine the presence of nuclear materials in containers or composite objects. A central problem is the inability to distinguish the attenuation pattern of high-density metals from those with a greater thickness of a less dense material. Here, we show that spectrally sensitive detectors can be used to discriminate plutonium from multiple layers of other materials using a single-view radiograph. An inverse algorithm with adaptive regularization is used. The algorithm can determine the presence of plutonium in simulated radiographs with a mass resolution per unit area of at least 0.07 g cm −2

  16. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  17. Preliminary evaluation of vector flow and spectral velocity estimation

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    Spectral estimation is considered as the golden standard in ultrasound velocity estimation. For spectral velocity estimation the blood flow angle is set by the ultrasound operator. Vector flow provides temporal and spatial estimates of the blood flow angle and velocity. A comparison of vector flow...... line covering the vessel diameter. A commercial ultrasound scanner (ProFocus 2202, BK Medical, Denmark) and a 7.6 MHz linear transducer was used (8670, BK Medical). The mean vector blood flow angle estimations were calculated {52(18);55(23);60(16)}°. For comparison the fixed angles for spectral...... estimation were obtained {52;56;52}°. The mean vector velocity estimates at PS {76(15);95(17);77(16)}cm/s and at end diastole (ED) {17(6);18(6);24(6)}cm/s were calculated. For comparison spectral velocity estimates at PS {77;110;76}cm/s and ED {18;18;20}cm/s were obtained. The mean vector angle estimates...

  18. High Spectral Resolution SOFIA/EXES Observations of C2H2 toward Orion IRc2

    Science.gov (United States)

    Rangwala, Naseem; Colgan, Sean W. J.; Le Gal, Romane; Acharyya, Kinsuk; Huang, Xinchuan; Lee, Timothy J.; Herbst, Eric; deWitt, Curtis; Richter, Matt; Boogert, Adwin; McKelvey, Mark

    2018-03-01

    We present high spectral resolution observations from 12.96 to 13.33 microns toward Orion IRc2 using the mid-infrared spectrograph, Echelon-Cross-Echelle Spectrograph (EXES), at Stratospheric Observatory for Infrared Astronomy (SOFIA). These observations probe the physical and chemical conditions of the Orion hot core, which is sampled by a bright, compact, mid-infrared background continuum source in the region, IRc2. All 10 of the rovibrational C2H2 transitions expected in our spectral coverage are detected with high signal-to-noise ratios (S/Ns), yielding continuous coverage of the R-branch lines from J = 9–8 to J = 18–17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. The isotopologue, 13CCH2, is clearly detected with a high S/N. This enabled a direct measurement of the 12C/13C isotopic ratio for the Orion hot core of 14 ± 1 and an estimated maximum value of 21. We also detected several HCN rovibrational lines. The ortho and para C2H2 ladders are clearly separate, and tracing two different temperatures, 226 K and 164 K, respectively, with a non-equilibrium ortho to para ratio (OPR) of 1.7 ± 0.1. Additionally, the ortho and para V LSR values differ by about 1.8 ± 0.2 km s‑1, while the mean line widths differ by 0.7 ± 0.2 km s‑1, suggesting that these species are not uniformly mixed along the line of sight to IRc2. We propose that the abnormally low C2H2 OPR could be a remnant from an earlier, colder phase, before the density enhancement (now the hot core) was impacted by shocks generated from an explosive event 500 years ago.

  19. The EUV dayglow at high spectral resolution

    International Nuclear Information System (INIS)

    Morrison, M.D.; Bowers, C.W.; Feldman, P.D.; Meier, R.R.

    1990-01-01

    Rocket observations of the dayglow spectrum of the terrestrial atmosphere between 840 angstrom and 1860 angstrom at 2 angstrom resolution were obtained with a sounding rocket payload flown on January 17, 1985. Additionally, spectra were also obtained using a 0.125-m focal length scanning Ebert-Fastie monochromator covering the wavelength interval of 1150-1550 angstrom at 7 angstrom resolution on this flight and on a sounding rocket flight on August 29, 1983, under similar viewing geometries and solar zenith angles. Three bands of the N 2 c' 4 system are seen clearly resolved in the dayglow. Analysis of high-resolution N 2 Lyman-Birge-Hopfield data shows no anomalous vibrational distribution as has been reported from other observations. The altitude profiles of the observed O and N 2 emissions demonstrate that the MSIS-83 model O and N 2 densities are appropriate for the conditions of both the 1983 and 1985 rocket flights. A reduction of a factor of 2 in the model O 2 density is required for both flights to reproduce the low-altitude atomic oxygen emission profiles. The volume excitation rates calculated using the Hinteregger et al. (1981) SC number-sign 21REFW solar reference spectrum and the photoelectron flux model of Strickland and Meier (1982) need to be scaled upward by a factor of 1.4 for both fights to match the observations

  20. WE-FG-207B-12: Quantitative Evaluation of a Spectral CT Scanner in a Phantom Study: Results of Spectral Reconstructions

    International Nuclear Information System (INIS)

    Duan, X; Arbique, G; Guild, J; Anderson, J; Yagil, Y

    2016-01-01

    Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluated by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips

  1. WE-FG-207B-12: Quantitative Evaluation of a Spectral CT Scanner in a Phantom Study: Results of Spectral Reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X; Arbique, G; Guild, J; Anderson, J [UT Southwestern Medical Center, Dallas, TX (United States); Yagil, Y [Philips Healthcare, Haifa (Israel)

    2016-06-15

    Purpose: To evaluate the quantitative image quality of spectral reconstructions of phantom data from a spectral CT scanner. Methods: The spectral CT scanner (IQon Spectral CT, Philips Healthcare) is equipped with a dual-layer detector and generates conventional 80-140 kVp images and variety of spectral reconstructions, e.g., virtual monochromatic (VM) images, virtual non-contrast (VNC) images, iodine maps, and effective atomic number (Z) images. A cylindrical solid water phantom (Gammex 472, 33 cm diameter and 5 cm thick) with iodine (2.0-20.0 mg I/ml) and calcium (50-600 mg/ml) rod inserts was scanned at 120 kVp and 27 mGy CTDIvol. Spectral reconstructions were evaluated by comparing image measurements with theoretical values calculated from nominal rod compositions provided by the phantom manufacturer. The theoretical VNC was calculated using water and iodine basis material decomposition, and the theoretical Z was calculated using two common methods, the chemical formula method (Z1) and the dual-energy ratio method (Z2). Results: Beam-hardening-like artifacts between high-attenuation calcium rods (≥300 mg/ml, >800 HU) influenced quantitative measurements, so the quantitative analysis was only performed on iodine rods using the images from the scan with all the calcium rods removed. The CT numbers of the iodine rods in the VM images (50∼150 keV) were close to theoretical values with average difference of 2.4±6.9 HU. Compared with theoretical values, the average difference for iodine concentration, VNC CT number and effective Z of iodine rods were −0.10±0.38 mg/ml, −0.1±8.2 HU, 0.25±0.06 (Z1) and −0.23±0.07 (Z2). Conclusion: The results indicate that the spectral CT scanner generates quantitatively accurate spectral reconstructions at clinically relevant iodine concentrations. Beam-hardening-like artifacts still exist when high-attenuation objects are present and their impact on patient images needs further investigation. YY is an employee of Philips

  2. Using RPAS Multi-Spectral Imagery to Characterise Vigour, Leaf Development, Yield Components and Berry Composition Variability within a Vineyard

    Directory of Open Access Journals (Sweden)

    Clara Rey-Caramés

    2015-10-01

    Full Text Available Implementation of precision viticulture techniques requires the use of emerging sensing technologies to assess the vineyard spatial variability. This work shows the capability of multispectral imagery acquired from a remotely piloted aerial system (RPAS, and the derived spectral indices to assess the vegetative, productive, and berry composition spatial variability within a vineyard (Vitis vinifera L.. Multi-spectral imagery of 17 cm spatial resolution was acquired using a RPAS. Classical vegetation spectral indices and two newly defined normalised indices, NVI1 = (R802 − R531/(R802 + R531 and NVI2 = (R802 − R570/(R802 + R570, were computed. Their spatial distribution and relationships with grapevine vegetative, yield, and berry composition parameters were studied. Most of the spectral indices and field data varied spatially within the vineyard, as showed through the variogram parameters. While the correlations were significant but moderate among the spectral indices and the field variables, the kappa index showed that the spatial pattern of the spectral indices agreed with that of the vegetative variables (0.38–0.70 and mean cluster weight (0.40. These results proved the utility of the multi-spectral imagery acquired from a RPAS to delineate homogeneous zones within the vineyard, allowing the grapegrower to carry out a specific management of each subarea.

  3. VizieR Online Data Catalog: The Fermi-GBM three-year X-ray burst catalog (Jenke+, 2016)

    Science.gov (United States)

    Jenke, P. A.; Linares, M.; Connaughton, V.; Beklen, E.; Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.

    2018-03-01

    Gamma-ray Burst Monitor (GBM) is an all-sky monitor whose primary objective is to extend the energy range over which gamma-ray bursts are observed in the Large Area Telescope on Fermi (Meegan et al. 2009ApJ...702..791M). GBM consists of 12 NaI detectors with a diameter of 12.7 cm and a thickness of 1.27 cm and two bismuth germanate (BGO) detectors with a diameter and thickness of 12.7 cm. GBM has three continuous data types: CTIME data with nominal 0.256 s time resolution and 8-channel spectral resolution used for event detection and localization, CSPEC data with nominal 4.096 s time resolution and 128-channel spectral resolution, which are used for spectral modeling, and CTTE (continuous-time tagged event) data with time stamps (2 μs precision) on individual events at full 128-channel spectral resolution, which were made available in 2012 November. The Fermi-GBM X-ray Burst Monitor relies on daily inspection of CTIME channel 1 (12-25 keV) data and began operations on 2010 March 12. (3 data files).

  4. Spectral quality requirements for effluent identification

    Science.gov (United States)

    Czerwinski, R. N.; Seeley, J. A.; Wack, E. C.

    2005-11-01

    We consider the problem of remotely identifying gaseous materials using passive sensing of long-wave infrared (LWIR) spectral features at hyperspectral resolution. Gaseous materials are distinguishable in the LWIR because of their unique spectral fingerprints. A sensor degraded in capability by noise or limited spectral resolution, however, may be unable to positively identify contaminants, especially if they are present in low concentrations or if the spectral library used for comparisons includes materials with similar spectral signatures. This paper will quantify the relative importance of these parameters and express the relationships between them in a functional form which can be used as a rule of thumb in sensor design or in assessing sensor capability for a specific task. This paper describes the simulation of remote sensing datacontaining a gas cloud.In each simulation, the spectra are degraded in spectral resolution and through the addition of noise to simulate spectra collected by sensors of varying design and capability. We form a trade space by systematically varying the number of sensor spectral channels and signal-to-noise ratio over a range of values. For each scenario, we evaluate the capability of the sensor for gas identification by computing the ratio of the F-statistic for the truth gas tothe same statistic computed over the rest of the library.The effect of the scope of the library is investigated as well, by computing statistics on the variability of the identification capability as the library composition is varied randomly.

  5. Characterizing transport current defects in 1-cm-wide YBa[sub 2]Cu[sub 3]O[sub 7-delta] coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G. W. (Geoffrey W.); Hawley, M. E. (Marilyn E.); Peterson, E. J. (Eric J.); Coulter, J. Y. (James Y.); Dowden, P. C. (Paul C.); Arendt, P. N. (Paul N.); Foltyn, S. R. (Stephen R.); Mueller, F. M. (Fred M.)

    2001-01-01

    We have used a low temperature magnetic imaging system to determine current pathways in 5 cm long 'good' and 'bad' regions of a 1-cm-wide YBa2Cu3O7-{delta} coated conductor. The good and bad regions were identified with 4 point probe measurements taken at 1 cm intervals along the tape length. The current density map from the good region showed the expected edge peaked structure, similar to that seen in previous work on high quality test samples grown on single crystal substrates. The structure was also consistent with theoretical understanding of thin film superconductors where demagnetizing effects are strong. The maps from the bad region showed that the current was primarily confined to the right half of the sample. The left half carried only a small current that reached saturation quickly. Effectively halving the sample width quantitatively explains the critical current measured in that section. Spatially resolved xray analysis with 1 mm resolution was used to further characterize the bad section and suggested an abnormally large amount of a-axis YBCO present. This may be the result of non-uniform heating leading to a low deposition temperature in that area.

  6. Temporal measurement and analysis of high-resolution spectral signatures of plants and relationships to biophysical characteristics

    Science.gov (United States)

    Bostater, Charles R., Jr.; Rebbman, Jan; Hall, Carlton; Provancha, Mark; Vieglais, David

    1995-11-01

    Measurements of temporal reflectance signatures as a function of growing season for sand live oak (Quercus geminata), myrtle oak (Q. myrtifolia, and saw palmetto (Serenoa repens) were collected during a two year study period. Canopy level spectral reflectance signatures, as a function of 252 channels between 368 and 1115 nm, were collected using near nadir viewing geometry and a consistent sun illumination angle. Leaf level reflectance measurements were made in the laboratory using a halogen light source and an environmental optics chamber with a barium sulfate reflectance coating. Spectral measurements were related to several biophysical measurements utilizing optimal passive ambient correlation spectroscopy (OPACS) technique. Biophysical parameters included percent moisture, water potential (MPa), total chlorophyll, and total Kjeldahl nitrogen. Quantitative data processing techniques were used to determine optimal bands based on the utilization of a second order derivative or inflection estimator. An optical cleanup procedure was then employed that computes the double inflection ratio (DIR) spectra for all possible three band combinations normalized to the previously computed optimal bands. These results demonstrate a unique approach to the analysis of high spectral resolution reflectance signatures for estimation of several biophysical measures of plants at the leaf and canopy level from optimally selected bands or bandwidths.

  7. The 1.5 Ms Observing Campaign on IRAS 13224-3809: X-ray Spectral Analysis I.

    Science.gov (United States)

    Jiang, J.; Parker, M. L.; Fabian, A. C.; Alston, W. N.; Buisson, D. J. K.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; Gallo, L. C.; García, J. A.; Harrison, F. A.; Lohfink, A. M.; De Marco, B.; Kara, E.; Miller, J. M.; Miniutti, G.; Pinto, C.; Walton, D. J.; Wilkins, D. R.

    2018-03-01

    We present a detailed spectral analysis of the recent 1.5 Ms XMM-Newton observing campaign on the narrow line Seyfert 1 galaxy IRAS 13224-3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray lightcurve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time scale of kiloseconds. The spectra are well fit with a primary powerlaw continuum, two relativistic-blurred reflection components from the inner accretion disk with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.263 and 0.229 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disk electron density ne > 1018.7 cm-3 and lowers the iron abundance from Z_Fe=24^{+3}_{-4}Z_⊙ with ne ≡ 1015 cm-3 to Z_Fe=6.6^{+0.8}_{-2.1}Z_⊙.

  8. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users.

    Science.gov (United States)

    Anderson, Elizabeth S; Oxenham, Andrew J; Nelson, Peggy B; Nelson, David A

    2012-12-01

    Measures of spectral ripple resolution have become widely used psychophysical tools for assessing spectral resolution in cochlear-implant (CI) listeners. The objective of this study was to compare spectral ripple discrimination and detection in the same group of CI listeners. Ripple detection thresholds were measured over a range of ripple frequencies and were compared to spectral ripple discrimination thresholds previously obtained from the same CI listeners. The data showed that performance on the two measures was correlated, but that individual subjects' thresholds (at a constant spectral modulation depth) for the two tasks were not equivalent. In addition, spectral ripple detection was often found to be possible at higher rates than expected based on the available spectral cues, making it likely that temporal-envelope cues played a role at higher ripple rates. Finally, spectral ripple detection thresholds were compared to previously obtained speech-perception measures. Results confirmed earlier reports of a robust relationship between detection of widely spaced ripples and measures of speech recognition. In contrast, intensity difference limens for broadband noise did not correlate with spectral ripple detection measures, suggesting a dissociation between the ability to detect small changes in intensity across frequency and across time.

  9. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  10. Implications of sensor design for coral reef detection: Upscaling ground hyperspectral imagery in spatial and spectral scales

    Science.gov (United States)

    Caras, Tamir; Hedley, John; Karnieli, Arnon

    2017-12-01

    Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.

  11. Fission-product yields for thermal-neutron fission of 243Cm determined from measurements with a high-resolution low-energy germanium gamma-ray detector

    International Nuclear Information System (INIS)

    Merriman, L.D.

    1984-04-01

    Cumulative fission-product yields have been determined for 13 gamma rays emitted during the decay of 12 fission products created by thermal-neutron fission of 243 Cm. A high-resolution low-energy germanium detector was used to measure the pulse-height spectra of gamma rays emitted from a 77-nanogram sample of 243 Cm after the sample had been irradiated by thermal neutrons. Analysis of the data resulted in the identification and matching of gamma-ray energies and half-lives to individual radioisotopes. From these results, 12 cumulative fission product yields were deduced for radionuclides with half-lives between 4.2 min and 84.2 min. 7 references

  12. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    Science.gov (United States)

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  13. Investigation of 1-cm dose equivalent for photons behind shielding materials

    International Nuclear Information System (INIS)

    Hirayama, Hideo; Tanaka, Shun-ichi

    1991-03-01

    The ambient dose equivalent at 1-cm depth, assumed equivalent to the 1-cm dose equivalent in practical dose estimations behind shielding slabs of water, concrete, iron or lead for normally incident photons having various energies was calculated by using conversion factors for a slab phantom. It was compared with the 1-cm depth dose calculated with the Monte Carlo code EGS4. It was concluded from this comparison that the ambient dose equivalent calculated by using the conversion factors for the ICRU sphere could be used for the evaluation of the 1-cm dose equivalent for the sphere phantom within 20% errors. Average and practical conversion factors are defined as the conversion factors from exposure to ambient dose equivalent in a finite slab or an infinite one, respectively. They were calculated with EGS4 and the discrete ordinates code PALLAS. The exposure calculated with simple estimation procedures such as point kernel methods can be easily converted to ambient dose equivalent by using these conversion factors. The maximum value between 1 and 30 mfp can be adopted as the conversion factor which depends only on material and incident photon energy. This gives the ambient dose equivalent on the safe side. 13 refs., 7 figs., 2 tabs

  14. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    Science.gov (United States)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  15. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    International Nuclear Information System (INIS)

    Emami, Sanaz; Fan Ying; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S.

    2013-01-01

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ( 13 C/ 15 N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  16. Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution.

    Science.gov (United States)

    Raschke, Markus B; Molina, Leopoldo; Elsaesser, Thomas; Kim, Dong Ha; Knoll, Wolfgang; Hinrichs, Karsten

    2005-10-14

    Nanodomains formed by microphase separation in thin films of the diblock copolymers poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) and poly(styrene-b-ethyleneoxide) (PS-b-PEO) were imaged by means of infrared scattering-type near-field microscopy. When probing at 3.39 mum (2950 cm(-1)), contrast is obtained due to spectral differences between the C--H stretching vibrational resonances of the respective polymer constituents. An all-optical spatial resolution better than 10 nm was achieved, which corresponds to a sensitivity of just several thousand C--H groups facilitated by the local-field enhancement at the sharp metallic probe tips. The results demonstrate that infrared spectroscopy with access to intramolecular dimensions is within reach.

  17. [Identification of Dendrobium varieties by Fourier transform infrared spectroscopy combined with spectral retrieval].

    Science.gov (United States)

    Liu, Fei; Wang, Yuan-zhong; Deng, Xing-yan; Jin, Hang; Yang, Chun-yan

    2014-06-01

    The infrared spectral of stems of 165 trees of 23 Dendrobium varieties were obtained by means of Fourier transform infrared spectroscopy technique. The spectra show that the spectra of all the samples were similar, and the main components of stem of Dendrobium is cellulose. By the spectral professional software Omnic8.0, three spectral databases were constructed. Lib01 includes of the average spectral of the first four trees of every variety, while Lib02 and Lib03 are constructed from the first-derivative spectra and the second-derivative spectra of average spectra, separately. The correlation search, the square difference retrieval and the square differential difference retrieval of the spectra are performed with the spectral database Lib01 in the specified range of 1 800-500 cm(-1), and the yield correct rate of 92.7%, 74.5% and 92.7%, respectively. The square differential difference retrieval of the first-derivative spectra and the second-derivative spectra is carried out with Lib02 and Lib03 in the same specified range 1 800-500 cm(-1), and shows correct rate of 93.9% for the former and 90.3% for the later. The results show that the first-derivative spectral retrieval of square differential difference algorithm is more suitabe for discerning Dendrobium varieties, and FTIR combining with the spectral retrieval method can identify different varieties of Dendrobium, and the correlation retrieval, the square differential retrieval, the first-derivative spectra and second-derivative spectra retrieval in the specified spectral range are effective and simple way of distinguishing different varieties of Dendrobium.

  18. Spectral analysis of allogeneic hydroxyapatite powders

    Science.gov (United States)

    Timchenko, P. E.; Timchenko, E. V.; Pisareva, E. V.; Vlasov, M. Yu; Red'kin, N. A.; Frolov, O. O.

    2017-01-01

    In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm-1 ((PO4)3- (ν1) vibration) and 1065-1075 cm-1 ((CO3)2-(ν1) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy.

  19. Spectral analysis of allogeneic hydroxyapatite powders

    International Nuclear Information System (INIS)

    Timchenko, P E; Timchenko, E V; Pisareva, E V; Vlasov, M Yu; Red’kin, N A; Frolov, O O

    2017-01-01

    In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm -1 ((PO 4 ) 3- (ν 1 ) vibration) and 1065-1075 cm -1 ((CO 3 ) 2- (ν 1 ) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy. (paper)

  20. HIGH-RESOLUTION 8 mm AND 1 cm POLARIZATION OF IRAS 4A FROM THE VLA NASCENT DISK AND MULTIPLICITY (VANDAM) SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.; Segura-Cox, Dominique M. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Tobin, John [Leiden Observatory, Leiden University, P.O. Box 9513, 2000-RA Leiden (Netherlands); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Tychoniec, Łukasz [Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, PL-60-268 Poznań (Poland); Chandler, Claire J.; Perez, Laura M. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Kratter, Kaitlin [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Melis, Carl [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093 (United States); Sadavoy, Sarah I., E-mail: egcox2@illinois.edu [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany)

    2015-12-01

    Magnetic fields can regulate disk formation, accretion, and jet launching. Until recently, it has been difficult to obtain high-resolution observations of the magnetic fields of the youngest protostars in the critical region near the protostar. The VANDAM survey is observing all known protostars in the Perseus Molecular Cloud. Here we present the polarization data of IRAS 4A. We find that with ∼0.″2 (50 AU) resolution at λ = 8.1 and 10.3 mm, the inferred magnetic field is consistent with a circular morphology, in marked contrast with the hourglass morphology seen on larger scales. This morphology is consistent with frozen-in field lines that were dragged in by rotating material entering the infall region. The field morphology is reminiscent of rotating circumstellar material near the protostar. This is the first polarization detection of a protostar at these wavelengths. We conclude from our observations that the dust emission is optically thin with β ∼ 1.3, suggesting that millimeter-/centimeter-sized grains have grown and survived in the short lifetime of the protostar.

  1. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.

    Science.gov (United States)

    Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing

    2014-04-01

    Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.

  2. Sparse spectral deconvolution algorithm for noncartesian MR spectroscopic imaging.

    Science.gov (United States)

    Bhave, Sampada; Eslami, Ramin; Jacob, Mathews

    2014-02-01

    To minimize line shape distortions and spectral leakage artifacts in MR spectroscopic imaging (MRSI). A spatially and spectrally regularized non-Cartesian MRSI algorithm that uses the line shape distortion priors, estimated from water reference data, to deconvolve the spectra is introduced. Sparse spectral regularization is used to minimize noise amplification associated with deconvolution. A spiral MRSI sequence that heavily oversamples the central k-space regions is used to acquire the MRSI data. The spatial regularization term uses the spatial supports of brain and extracranial fat regions to recover the metabolite spectra and nuisance signals at two different resolutions. Specifically, the nuisance signals are recovered at the maximum resolution to minimize spectral leakage, while the point spread functions of metabolites are controlled to obtain acceptable signal-to-noise ratio. The comparisons of the algorithm against Tikhonov regularized reconstructions demonstrates considerably reduced line-shape distortions and improved metabolite maps. The proposed sparsity constrained spectral deconvolution scheme is effective in minimizing the line-shape distortions. The dual resolution reconstruction scheme is capable of minimizing spectral leakage artifacts. Copyright © 2013 Wiley Periodicals, Inc.

  3. The Copernicus ultraviolet spectral atlas of Iota Herculis

    Science.gov (United States)

    Upson, W. L., II; Rogerson, J. B., Jr.

    1980-01-01

    An ultraviolet spectral atlas is presented for the B3 IV star Iota Herculis, which has been scanned from 999 to 1467 A by the Princeton spectrometer aboard the Copernicus satellite. From 999 to 1422 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths the resolution is 0.1 A. The atlas is presented in graphs. Lines identified in the spectrum are also listed.

  4. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  5. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  6. Comparison of 1.5T and 3T 1H MR Spectroscopy for Human Brain Tumors

    International Nuclear Information System (INIS)

    Kim, Ji hoon; Chang, Kee Hyun; Na, Dong Gyu; Song, In Chan; Kim, Seung Ja; Kwon, Bae Ju; Han, Moon Hee

    2006-01-01

    We wanted to estimate the practical improvements of 3T proton MR spectroscopy (1H MRS) as compared with 1.5T 1H MRS for the evaluation of human brain tumors. Single voxel 1H MRS was performed at both 1.5T and 3T in 13 patients suffering with brain tumors. Using the same data acquisition parameters at both field strengths, the 1H MRS spectra were obtained with a short echo time (TE) (35 msec) and an intermediate TE (144 msec) with the voxel size ranging from 2.0 cm 3 to 8.7 cm 3 . The signal to noise ratios (SNRs) of the metabolites (myoinositol [MI], choline compounds [Cho], creatine /phosphocreatine [Cr], N-acetyl-aspartate [NAA], lipid and lactate [LL]) and the metabolite ratios of MI/Cr, Cho/Cr, Cho/NAA and LL/Cr were compared at both TEs between the two field strengths in each brain tumor. The degrees 70f spectral resolution between the Cho and Cr peaks were qualitatively compared between the two field strengths in each brain tumor. The SNRs of the metabolites at 3T demonstrated 49-73% increase at a short TE (p 0.05) compared with those of 1.5T. The SNR of inverted lactate at an intermediate TE decreased down to 49% with poorer inversion at 3T (p 1 H MRS demonstrated 49-73% SNR increase in the cerebral metabolites and slightly superior spectral resolution only at a short TE, but little at an intermediate TE, in the brain tumors. There was no significant difference in the metabolite ratios between the two field strengths

  7. GFDL CM2.1 Global Coupled Ocean-Atmosphere Model Water ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. GFDL CM2.1 Global Coupled Ocean-Atmosphere Model Water Hosing Experiment with 1 Sv equivalent of Freshening Control Expt: 100 yrs After Hosing: 300 yrs.

  8. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    Science.gov (United States)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  9. Constraining Cosmic Dawn and Cosmological Reionization via the global redshifted 21-cm signal

    Science.gov (United States)

    Singh, Saurabh

    2018-01-01

    The formation of first stars and consequent thermal evolution in baryons during Cosmic Dawn and the Epoch of Reionization (EoR) is poorly constrained. The 21-cm line transition of neutral hydrogen is one of the richest probes of the astrophysics during this era. The signal has the potential to reveal the nature and timing of the emergence of first stars, first light, and the consequent evolution in thermal and ionization state of the baryons.The detection of the global redshifted 21-cm signal, which represents the mean thermal history of the gas, is challenging since it is extremely faint and seen through orders of magnitude stronger contributions from Galactic and extragalactic foregrounds. Man-made terrestrial Radio Frequency Interference (RFI) and the exacting tolerances required on instrument systematics make the detection even more daunting.The design considerations for a precision spectral radiometer are first listed, and a comparison is made of different radiometer configurations, including short and zero baseline interferometers along with methods to enhance the response. We discuss the relative merits of different methods.We then describe SARAS 2, a spectral radiometer custom-designed for precision measurement of the global 21-cm signal. SARAS 2 has been designed to have a system transfer function and internal systematics – both multiplicative and additive – to be spectrally smooth so as to allow a separation of foregrounds and systematics from plausible and predicted global cosmological 21-cm signals. The algorithms for calibration and RFI mitigation are carefully developed so that they do not introduce spectral features that may confuse the detection of the 21-cm signal.We present the outcomes for cosmology from analysis of 60 hr observing with the radiometer deployed at the Timbaktu Collective in Southern India. The detailed analysis of the data reveals an RMS noise level of 11 mK, without being limited by systematic structures. The likelihood

  10. EXPLORING DATA-DRIVEN SPECTRAL MODELS FOR APOGEE M DWARFS

    Science.gov (United States)

    Lua Birky, Jessica; Hogg, David; Burgasser, Adam J.; Jessica Birky

    2018-01-01

    The Cannon (Ness et al. 2015; Casey et al. 2016) is a flexible, data-driven spectral modeling and parameter inference framework, demonstrated on high-resolution Apache Point Galactic Evolution Experiment (APOGEE; λ/Δλ~22,500, 1.5-1.7µm) spectra of giant stars to estimate stellar labels (Teff, logg, [Fe/H], and chemical abundances) to precisions higher than the model-grid pipeline. The lack of reliable stellar parameters reported by the APOGEE pipeline for temperatures less than ~3550K, motivates extension of this approach to M dwarf stars. Using a training set of 51 M dwarfs with spectral types ranging M0-M9 obtained from SDSS optical spectra, we demonstrate that the Cannon can infer spectral types to a precision of +/-0.6 types, making it an effective tool for classifying high-resolution near-infrared spectra. We discuss the potential for extending this work to determine the physical stellar labels Teff, logg, and [Fe/H].This work is supported by the SDSS Faculty and Student (FAST) initiative.

  11. Simultaneous Confocal Scanning Laser Ophthalmoscopy Combined with High-Resolution Spectral-Domain Optical Coherence Tomography: A Review

    Directory of Open Access Journals (Sweden)

    Verônica Castro Lima

    2011-01-01

    Full Text Available We aimed to evaluate technical aspects and the clinical relevance of a simultaneous confocal scanning laser ophthalmoscope and a high-speed, high-resolution, spectral-domain optical coherence tomography (SDOCT device for retinal imaging. The principle of confocal scanning laser imaging provides a high resolution of retinal and choroidal vasculature with low light exposure. Enhanced contrast, details, and image sharpness are generated using confocality. The real-time SDOCT provides a new level of accuracy for assessment of the angiographic and morphological correlation. The combined system allows for simultaneous recordings of topographic and tomographic images with accurate correlation between them. Also it can provide simultaneous multimodal imaging of retinal pathologies, such as fluorescein and indocyanine green angiographies, infrared and blue reflectance (red-free images, fundus autofluorescence images, and OCT scans (Spectralis HRA + OCT; Heidelberg Engineering, Heidelberg, Germany. The combination of various macular diagnostic tools can lead to a better understanding and improved knowledge of macular diseases.

  12. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    Science.gov (United States)

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  13. Feasibility study for Japanese Air Quality Mission from Geostationary Satellite: Infrared Imaging Spectrometer

    Science.gov (United States)

    Sagi, K.; Kasai, Y.; Philippe, B.; Suzuki, K.; Kita, K.; Hayashida, S.; Imasu, R.; Akimoto, H.

    2009-12-01

    A Geostationary Earth Orbit (GEO) satellite is potentially able to monitor the regional distribution of pollution with good spatial and temporal resolution. The Japan Society of Atmospheric Chemistry (JSAC) and the Japanese Space Exploration Agency (JAXA) initiated a concept study for air quality measurements from a GEO satellite targeting the Asian region [1]. This work presents the results of sensitivity studies for a Thermal Infrared (TIR) (650-2300cm-1) candidate instrument. We performed a simulation study and error analysis to optimize the instrumental operating frequencies and spectral resolution. The scientific requirements, in terms of minimum precision (or error) values, are 10% for tropospheric O3 and CO and total column of HN3 and nighttime HNO2 and 25% for O3 and CO with separating 2 or 3 column in troposphere. Two atmospheric scenarios, one is Asian background, second is polluted case, were assumed for this study. The forward calculations and the retrieval error analysis were performed with the AMATERASU model [2] developed within the NICT-THz remote sensing project. Retrieval error analysis employed the Optimal Estimation Method [3]. The geometry is off-nadir observation on Tokyo from the geostationary satellite at equator. Fine spectral resolution will allow to observe boundary layer O3 and CO. We estimate the observation precision in the spectral resolution from 0.1cm-1 to 1cm-1 for 0-2km, 2-6km, and 6-12km. A spectral resolution of 0.3 cm-1 gives good sensitivity for all target molecules (e.g. tropospheric O3 can be detected separated 2 column with error 30%). A resolution of 0.6 cm-1 is sufficient to detect tropospheric column amount of O3 and CO (in the Asian background scenario), which is within the required precision and with acceptable instrumental SNR values of 100 for O3 and 30 for CO. However, with this resolution, the boundary layer ozone will be difficult to detect in the background abundance. In addition, a spectral resolution of 0.6 cm

  14. Imaging Optical Frequencies with 100 μ Hz Precision and 1.1 μ m Resolution

    Science.gov (United States)

    Marti, G. Edward; Hutson, Ross B.; Goban, Akihisa; Campbell, Sara L.; Poli, Nicola; Ye, Jun

    2018-03-01

    We implement imaging spectroscopy of the optical clock transition of lattice-trapped degenerate fermionic Sr in the Mott-insulating regime, combining micron spatial resolution with submillihertz spectral precision. We use these tools to demonstrate atomic coherence for up to 15 s on the clock transition and reach a record frequency precision of 2.5 ×10-19. We perform the most rapid evaluation of trapping light shifts and record a 150 mHz linewidth, the narrowest Rabi line shape observed on a coherent optical transition. The important emerging capability of combining high-resolution imaging and spectroscopy will improve the clock precision, and provide a path towards measuring many-body interactions and testing fundamental physics.

  15. Supercontinuum generation in optimized photonic crystal fiber at 1.3 μm for optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Ferhat M. L.

    2016-01-01

    Full Text Available In this paper, we have designed a high nonlinear photonic crystal fiber (HN-PCF based on square-lattice geometry with the zero dispersion wavelength (ZDW around 1300 nm. The exploitation of different nonlinear mechanisms in the pulse propagation allows supercontinuum generation, which is used to enhance the axial resolution of the optical coherence tomography (OCT systems. First mechanism demonstrated is the soliton self-compression, we came up to realize pulse compression of 28.4 fs around 1300 nm by the generation of solitons of different orders to obtain ultrashort pulses of about 4 fs pulses in a PCF length of 66cm, then, we improved the pulse compression until 1.2 fs in a PCF length of 26 cm.The exploitation of the interplay between many nonlinear effects as self-phase modulation, intrapulse Raman scattering and self-steepening as second mechanism allows a generation of supercontinuum with a spectral bandwith of SBW=260 nm. The obtained spectral bandwidth could contribute to enhance the OCwith OCT imaging axial resolution which can be evaluated to 2.8 μm in air, working at 1.3 μm center wavelength which is widely used in several fields.

  16. [An improved low spectral distortion PCA fusion method].

    Science.gov (United States)

    Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong

    2013-10-01

    Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.

  17. SARAS 2: a spectral radiometer for probing cosmic dawn and the epoch of reionization through detection of the global 21-cm signal

    Science.gov (United States)

    Singh, Saurabh; Subrahmanyan, Ravi; Shankar, N. Udaya; Rao, Mayuri Sathyanarayana; Girish, B. S.; Raghunathan, A.; Somashekar, R.; Srivani, K. S.

    2018-04-01

    The global 21-cm signal from Cosmic Dawn (CD) and the Epoch of Reionization (EoR), at redshifts z ˜ 6-30, probes the nature of first sources of radiation as well as physics of the Inter-Galactic Medium (IGM). Given that the signal is predicted to be extremely weak, of wide fractional bandwidth, and lies in a frequency range that is dominated by Galactic and Extragalactic foregrounds as well as Radio Frequency Interference, detection of the signal is a daunting task. Critical to the experiment is the manner in which the sky signal is represented through the instrument. It is of utmost importance to design a system whose spectral bandpass and additive spurious signals can be well calibrated and any calibration residual does not mimic the signal. Shaped Antenna measurement of the background RAdio Spectrum (SARAS) is an ongoing experiment that aims to detect the global 21-cm signal. Here we present the design philosophy of the SARAS 2 system and discuss its performance and limitations based on laboratory and field measurements. Laboratory tests with the antenna replaced with a variety of terminations, including a network model for the antenna impedance, show that the gain calibration and modeling of internal additive signals leave no residuals with Fourier amplitudes exceeding 2 mK, or residual Gaussians of 25 MHz width with amplitudes exceeding 2 mK. Thus, even accounting for reflection and radiation efficiency losses in the antenna, the SARAS 2 system is capable of detection of complex 21-cm profiles at the level predicted by currently favoured models for thermal baryon evolution.

  18. Role of resolution in regional climate change projections over China

    Science.gov (United States)

    Shi, Ying; Wang, Guiling; Gao, Xuejie

    2017-11-01

    This paper investigates the sensitivity of projected future climate changes over China to the horizontal resolution of a regional climate model RegCM4.4 (RegCM), using RCP8.5 as an example. Model validation shows that RegCM performs better in reproducing the spatial distribution and magnitude of present-day temperature, precipitation and climate extremes than the driving global climate model HadGEM2-ES (HadGEM, at 1.875° × 1.25° degree resolution), but little difference is found between the simulations at 50 and 25 km resolutions. Comparison with observational data at different resolutions confirmed the added value of the RCM and finer model resolutions in better capturing the probability distribution of precipitation. However, HadGEM and RegCM at both resolutions project a similar pattern of significant future warming during both winter and summer, and a similar pattern of winter precipitation changes including dominant increase in most areas of northern China and little change or decrease in the southern part. Projected precipitation changes in summer diverge among the three models, especially over eastern China, with a general increase in HadGEM, little change in RegCM at 50 km, and a mix of increase and decrease in RegCM at 25 km resolution. Changes of temperature-related extremes (annual total number of daily maximum temperature > 25 °C, the maximum value of daily maximum temperature, the minimum value of daily minimum temperature in the three simulations especially in the two RegCM simulations are very similar to each other; so are the precipitation-related extremes (maximum consecutive dry days, maximum consecutive 5-day precipitation and extremely wet days' total amount). Overall, results from this study indicate a very low sensitivity of projected changes in this region to model resolution. While fine resolution is critical for capturing the spatial variability of the control climate, it may not be as important for capturing the climate response to

  19. Fourier Transform Spectroscopy of Carbonyl Sulfide from 4800 to 8000 cm -1and New Global Analysis of 16O 12C 32S

    Science.gov (United States)

    Rbaihi, E.; Belafhal, A.; Vander Auwera, J.; Naı̈m, S.; Fayt, A.

    1998-09-01

    We have measured the FT spectrum of natural OCS from 4800 to 8000 cm-1with a near Doppler resolution and a line-position accuracy between 2 and 8 × 10-4cm-1. For the normal isotopic species16O12C32S, 37 vibrational transitions have been analyzed for both frequencies and intensities. We also report six bands of16O12C34S, five bands of16O13C32S, two bands of16O12C33S, and two bands of18O12C32S. Important effective Herman-Wallis terms are explained by the anharmonic resonances between closely spaced states. As those results complete the study of the Fourier transform spectra of natural carbonyl sulfide from 1800 to 8000 cm-1, a new global rovibrational analysis of16O12C32S has been performed. We have determined a set of 148 molecular parameters, and a statistical agreement is obtained with all the available experimental data.

  20. Metallographic study of reconstitution welding in inserts of 1 cm{sup 3}; Estudio metalografico de soldaduras de reconstitucion en insertos de 1 cm{sup 3}

    Energy Technology Data Exchange (ETDEWEB)

    Romero C, J.; Garcia R, R.; Fernandez T, F.; Perez R, N.; Rocamontes A, M. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    In this article, the welding metallographic study carried out in Charpy test tubes reconstituted with notch in 'V', used in the surveillance programs of the vessel in nucleo electric plants is described. Inserts of 1 cm{sup 3} are used, where the inserts are usually rectangular of minimum 18 millimeters of length. The importance of using inserts of 1 cm{sup 3} is that the mechanical properties can be measured in another direction of the vessel steel, when changing the direction or sense of the notch in 'V' or the face where this notch is made in the insert. (Author)

  1. The X-Shooter spectral library

    NARCIS (Netherlands)

    Chen, Y. P.; Trager, S. C.; Peletier, R. F.; Lançon, A.; Prugniel, Ph.; Koleva, M.

    2012-01-01

    We are building a new spectral library with the X-Shooter instrument on ESO's VLT: XSL, the X-Shooter Spectral Library. We present our progress in building XSL, which covers the wavelength range from the near-UV to the near-IR with a resolution of R˜10000. As of now we have collected spectra for

  2. Conformational analysis and global warming potentials of 1,1,1,3,3,3-hexafluoro-2-propanol from absorption spectroscopy

    Science.gov (United States)

    Godin, Paul J.; Le Bris, Karine; Strong, Kimberly

    2017-12-01

    Absorption cross-sections of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) were derived from Fourier transform infrared spectra recorded from 530 to 3400 cm-1 with a resolution of 0.1 cm-1 over a temperature range of 300-362 K. These results were compared to previously published experimental measurements made at room temperature and to a theoretical spectrum from density functional theory (DFT) calculations. Good agreement is found between the experimentally derived results, DFT calculations, and previously published data. The only temperature dependence observed was in the amplitude of some of the absorption peaks due to the changing ratio of the stable conformations of HFIP. This temperature dependence does not result in a significant trend in integrated band strength as a function of temperature. The average value for integrated band strength is found to be (2.649 ± 0.065)x10-16 cm molecule-1 for HFIP over the spectral range of 595 to 3010 cm-1. Radiative efficiency (RE) and the global warming potential (GWP) for HFIP were also derived. A RE of 0.293 ± 0.059 Wm-2ppbv-1 is derived, which leads to a GWP100 of 188 in the range of 530 to 3000 cm-1. The DFT calculation is linearly adjusted to match the experimental spectrum. Using this adjusted DFT spectrum to expand the range below 530 to 0 cm-1 , increases the RE to 0.317 ± 0.063 Wm-2ppbv-1 and the GWP100 to 203.

  3. MERIS Level-2 Reduced Resolution - OBPG Processing

    Data.gov (United States)

    National Aeronautics and Space Administration — MERIS is a programmable, medium-spectral resolution, imaging spectrometer operating in the solar reflective spectral range. Fifteen spectral bands can be selected by...

  4. WE-FG-207B-11: Objective Image Characterization of Spectral CT with a Dual-Layer Detector

    International Nuclear Information System (INIS)

    Ozguner, O; Halliburton, S; Dhanantwari, A; Utrup, S; Wen, G; Jordan, D

    2016-01-01

    Purpose: To obtain objective reference data for the spectral performance on a dual-layer detector CT platform (IQon, Philips) and compare virtual monoenergetic to conventional CT images. Methods: Scanning was performed using the hospital’s clinical adult body protocol: helical acquisition at 120kVp, with CTDIvol=15mGy. Multiple modules (591, 515, 528) of a CATPHAN 600 phantom and a 20 cm diameter cylindrical water phantom were scanned. No modifications to the standard protocol were necessary to enable spectral imaging. Both conventional and virtual monoenergetic images were generated from acquired data. Noise characteristics were assessed through Noise Power Spectra (NPS) and pixel standard deviation from water phantom images. Spatial resolution was evaluated using Modulation Transfer Functions (MTF) of a tungsten wire as well as resolution bars. Low-contrast detectability was studied using contrast-to-noise ratio (CNR) of a low contrast object. Results: MTF curves of monoenergetic and conventional images were almost identical. MTF 50%, 10%, and 5% levels for monoenergetic images agreed with conventional images within 0.05lp/cm. These observations were verified by the resolution bars, which were clearly resolved at 7lp/cm but started blurring at 8lp/cm for this protocol in both conventional and 70 keV images. NPS curves indicated that, compared to conventional images, the noise power distribution of 70 keV monoenergetic images is similar (i.e. noise texture is similar) but exhibit a low frequency peak at keVs higher and lower than 70 keV. Standard deviation measurements show monoenergetic images have lower noise except at 40 keV where it is slightly higher. CNR of monoenergetic images is mostly flat across keV values and is superior to that of conventional images. Conclusion: Values for standard image quality metrics are the same or better for monoenergetic images compared to conventional images. Results indicate virtual monoenergetic images can be used without

  5. WE-FG-207B-11: Objective Image Characterization of Spectral CT with a Dual-Layer Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ozguner, O [Case Western Reserve University, Cleveland, OH (United States); Halliburton, S; Dhanantwari, A; Utrup, S [Philips Healthcare, Highland Heights, OH (United States); Wen, G [The University of Texas at Austin, Austin, TX (United States); Jordan, D [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2016-06-15

    Purpose: To obtain objective reference data for the spectral performance on a dual-layer detector CT platform (IQon, Philips) and compare virtual monoenergetic to conventional CT images. Methods: Scanning was performed using the hospital’s clinical adult body protocol: helical acquisition at 120kVp, with CTDIvol=15mGy. Multiple modules (591, 515, 528) of a CATPHAN 600 phantom and a 20 cm diameter cylindrical water phantom were scanned. No modifications to the standard protocol were necessary to enable spectral imaging. Both conventional and virtual monoenergetic images were generated from acquired data. Noise characteristics were assessed through Noise Power Spectra (NPS) and pixel standard deviation from water phantom images. Spatial resolution was evaluated using Modulation Transfer Functions (MTF) of a tungsten wire as well as resolution bars. Low-contrast detectability was studied using contrast-to-noise ratio (CNR) of a low contrast object. Results: MTF curves of monoenergetic and conventional images were almost identical. MTF 50%, 10%, and 5% levels for monoenergetic images agreed with conventional images within 0.05lp/cm. These observations were verified by the resolution bars, which were clearly resolved at 7lp/cm but started blurring at 8lp/cm for this protocol in both conventional and 70 keV images. NPS curves indicated that, compared to conventional images, the noise power distribution of 70 keV monoenergetic images is similar (i.e. noise texture is similar) but exhibit a low frequency peak at keVs higher and lower than 70 keV. Standard deviation measurements show monoenergetic images have lower noise except at 40 keV where it is slightly higher. CNR of monoenergetic images is mostly flat across keV values and is superior to that of conventional images. Conclusion: Values for standard image quality metrics are the same or better for monoenergetic images compared to conventional images. Results indicate virtual monoenergetic images can be used without

  6. Analysis of cirrus cloud spectral signatures in the far infrared

    International Nuclear Information System (INIS)

    Maestri, T.; Rizzi, R.; Tosi, E.; Veglio, P.; Palchetti, L.; Bianchini, G.; Di Girolamo, P.; Masiello, G.; Serio, C.; Summa, D.

    2014-01-01

    This paper analyses high spectral resolution downwelling radiance measurements in the far infrared in the presence of cirrus clouds taken by the REFIR-PAD interferometer, deployed at 3500 m above the sea level at the Testa Grigia station (Italy), during the Earth COoling by WAter vapouR emission (ECOWAR) campaign. Atmospheric state and cloud geometry are characterised by the co-located millimeter-wave spectrometer GBMS and by radiosonde profile data, an interferometer (I-BEST) and a Raman lidar system deployed at a nearby location (Cervinia). Cloud optical depth and effective diameter are retrieved from REFIR-PAD data using a limited number of channels in the 820–960 cm1 interval. The retrieved cloud parameters are the input data for simulations covering the 250–1100 cm1 band in order to test our ability to reproduce the REFIR-PAD spectra in the presence of ice clouds. Inverse and forward simulations are based on the same radiative transfer code. A priori information concerning cloud ice vertical distribution is used to better constrain the simulation scheme and an analysis of the degree of approximation of the phase function within the radiative transfer codes is performed to define the accuracy of computations. Simulation-data residuals over the REFIR-PAD spectral interval show an excellent agreement in the window region, but values are larger than total measurement uncertainties in the far infrared. Possible causes are investigated. It is shown that the uncertainties related to the water vapour and temperature profiles are of the same order as the sensitivity to the a priori assumption on particle habits for an up-looking configuration. In case of a down-looking configuration, errors due to possible incorrect description of the water vapour profile would be drastically reduced. - Highlights: • We analyze down-welling spectral radiances in the far infrared (FIR) spectrum. • Discuss the scattering in the fir and the ice crystals phase function

  7. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    Science.gov (United States)

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study.

  8. High spectral resolution observations of the H2 2.12 micron line in Herbig-Haro objects

    International Nuclear Information System (INIS)

    Zinnecker, H.; Mundt, R.; Geballe, T.R.; Zealey, W.J.

    1989-01-01

    High-spectral-resolution Fabry-Perot observations of the H 2 2.12-micron line emissions of several Herbig-Haro (HH) objects are discussed. It is shown that H 2 emission by the shock heating of external molecular gas in the wings of the bow shock associated with the working surface of a high-velocity jet may occur for HH objects associated with the jet's end. The shock heating of external molecular gas entrained in the flow by internal shocks occurring in the jet itself and/or in its boundary layer may be the H 2 emission mechanism for HH objects observed along the flow axis. 59 refs

  9. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF LANTHANUM IN Ar DISCHARGE IN THE NEAR-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Güzelçimen, F.; Başar, Gö. [Faculty of Science, Physics Department, Istanbul University, Tr-34134 Vezneciler, Istanbul (Turkey); Tamanis, M.; Kruzins, A.; Ferber, R. [Laser Centre, The University of Latvia, Rainis Boulevard 19, LV-1586 Riga (Latvia); Windholz, L. [Institut für Experimentalphysik, Technische Universität Graz, A-8010 Graz, Petersgasse 16 (Austria); Kröger, S., E-mail: gbasar@istanbul.edu.tr, E-mail: sophie.kroeger@htw-berlin.de [Hochschule für Technik und Wirtschaft Berlin, Wilhelminenhofstr. 75A, D-12459 Berlin (Germany)

    2013-10-01

    A high-resolution spectrum of lanthanum has been recorded by a Fourier Transform spectrometer in the wavelength range from 833 nm to 1666 nm (6000 cm{sup –1} to 12,000 cm{sup –1}) using as light source a hollow cathode lamp operated with argon as the discharge carrier gas. In total, 2386 spectral lines were detected in this region, of which 555 lines could be classified as La I transitions and 10 lines as La II transitions. All La II transitions and 534 of these La I transitions were classified for the first time, and 6 of the La II transitions and 433 of the classified La I transitions appear to be new lines, which could not be found in the literature. The corresponding energy level data of classified lines are given. Additionally, 430 lines are assigned as Ar I lines and 394 as Ar II lines, of which 179 and 77, respectively, were classified for the first time. All 77 classified Ar II transitions as well as 159 of the classified Ar I transitions are new lines. Furthermore, the wavenumbers of 997 unclassified spectral lines were determined, 235 of which could be assigned as La lines, because of their hyperfine pattern. The remaining 762 lines may be either unclassified Ar lines or unresolved and unclassified La lines with only one symmetrical peak with an FWHM in the same order of magnitude as the Ar lines. The accuracy of the wavenumber for the classified lines with signal-to-noise-ratio higher than four is better than 0.006 cm{sup –1} which corresponds to an accuracy of 0.0004 nm at 830 nm and 0.0017 nm at 1660 nm, respectively.

  10. Assessing and monitoring of urban vegetation using multiple endmember spectral mixture analysis

    Science.gov (United States)

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.

    2013-08-01

    During last years urban vegetation with significant health, biological and economical values had experienced dramatic changes due to urbanization and human activities in the metropolitan area of Bucharest in Romania. We investigated the utility of remote sensing approaches of multiple endmember spectral mixture analysis (MESMA) applied to IKONOS and Landsat TM/ETM satellite data for estimating fractional cover of urban/periurban forest, parks, agricultural vegetation areas. Because of the spectral heterogeneity of same physical features of urban vegetation increases with the increase of image resolution, the traditional spectral information-based statistical method may not be useful to classify land cover dynamics from high resolution imageries like IKONOS. So we used hierarchy tree classification method in classification and MESMA for vegetation land cover dynamics assessment based on available IKONOS high-resolution imagery of Bucharest town. This study employs thirty two endmembers and six hundred and sixty spectral models to identify all Earth's features (vegetation, water, soil, impervious) and shade in the Bucharest area. The mean RMS error for the selected vegetation land cover classes range from 0.0027 to 0.018. The Pearson correlation between the fraction outputs from MESMA and reference data from all IKONOS images 1m panchromatic resolution data for urban/periurban vegetation were ranging in the domain 0.7048 - 0.8287. The framework in this study can be applied to other urban vegetation areas in Romania.

  11. Production of highly polarized 3He using spectrally narrowed diode laser array bars

    International Nuclear Information System (INIS)

    Chann, B.; Babcock, E.; Anderson, L.W.; Walker, T.G.; Chen, W.C.; Smith, T.B.; Thompson, A.K.; Gentile, T.R.

    2003-01-01

    We have produced 70%-75% 3 He polarization by spin-exchange optical pumping in cells ≅100 cm 3 in volume. The polarization achieved is consistent with known spin-exchange and spin-relaxation rates, but only when the recently discovered temperature dependence of 3 He relaxation is included. Absolute 3 He polarization measurements were performed using two different methods in two different laboratories. The results were obtained with either a spectrally narrowed laser or one type of broadband laser. Based on tests of several larger cells at pressures near 1 bar, we find that the power required to reach the same polarization is typically three times lower for the spectrally narrowed laser. This last result indicates that spectrally narrowed lasers will be important for obtaining the highest polarization in large volume neutron spin filters. Polarization in excess of 55% as obtained in cells up to 640 cm 3 in volume and 70% polarization is anticipated with available increases in spectrally narrowed laser power

  12. A sub-cm micromachined electron microscope

    Science.gov (United States)

    Feinerman, A. D.; Crewe, D. A.; Perng, D. C.; Shoaf, S. E.; Crewe, A. V.

    1993-01-01

    A new approach for fabricating macroscopic (approximately 10x10x10 mm(exp 3)) structures with micron accuracy has been developed. This approach combines the precision of semiconductor processing and fiber optic technologies. A (100) silicon wafer is anisotropically etched to create four orthogonal v-grooves and an aperture on each 10x12 mm die. Precision 308 micron optical fibers are sandwiched between the die to align the v-grooves. The fiber is then anodically bonded to the die above and below it. This procedure is repeated to create thick structures and a stack of 5 or 6 die will be used to create a miniature scanning electron microscope (MSEM). Two die in the structure will have a segmented electrode to deflect the beam and correct for astigmatism. The entire structure is UHV compatible. The performance of an SEM improves as its length is reduced and a sub-cm 2 keV MSEM with a field emission source should have approximately 1 nm resolution. A low voltage high resolution MSEM would be useful for the examination of biological specimens and semiconductors with a minimum of damage. The first MSEM will be tested with existing 6 micron thermionic sources. In the future a micromachined field emission source will be used. The stacking technology presented in this paper can produce an array of MSEMs 1 to 30 mm in length with a 1 mm or larger period. A key question being addressed by this research is the optimum size for a low voltage MSEM which will be determined by the required spatial resolution, field of view, and working distance.

  13. Spectral Resolution for Five-Element, Filtered, X-Ray Detector (XRD) Arrays Using the Methods of Backus and Gilbert

    International Nuclear Information System (INIS)

    FEHL, DAVID LEE; BIGGS, F.; CHANDLER, GORDON A.; STYGAR, WILLIAM A.

    2000-01-01

    The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD's). This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ((le)2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with the unfold method currently in use. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV black-body) and the unfold. This function may be used as an initial trial function for iterative methods or a regularization model

  14. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100-300 Å spectral banda)

    Science.gov (United States)

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-01

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li+ or Li2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV for the 135 Å Li2 + lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  15. Auroral radar measurements at 16-cm wavelength with high range and time resolution

    International Nuclear Information System (INIS)

    Schlegel, K.; Turunen, T.; Moorcroft, D.R.

    1990-01-01

    Auroral radar measurements performed with the EISCAT facility are presented. Backscatter cross sections of the irregularities produced by the two-stream (Farley-Buneman) or gradient drift plasma instabilities have been recorded with a range separation of 1.5 km, corresponding to a spacing of successive values in height of about 0.4 km. The apparent height profiles of the backscatter have a width of about 5-6 km and occur between 95 and 112 km altitude, with a mean at 104 km. Very often, fast motions of the backscatter layers are observed which can be explained as fast moving ionospheric structures controlled by magnetospheric convection. The maximal time resolution of the measurements is 12.5 ms. The statistics of the backscatter amplitudes at this time resolution is close to a Rice distribution with a Rice parameter a ∼ 3.7. The observed backscatter spectra do not change significantly in shape when the integration time is reduced from 5 s to 100 ms

  16. A high resolution solar atlas for fluorescence calculations

    Science.gov (United States)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  17. THz Induced Nonlinear Effects in Materials at Intensities above 26 GW/cm2

    Science.gov (United States)

    Woldegeorgis, A.; Kurihara, T.; Beleites, B.; Bossert, J.; Grosse, R.; Paulus, G. G.; Ronneberger, F.; Gopal, A.

    2018-04-01

    Nonlinear refractive index and absorption coefficient are measured for common semiconductor material such as silicon and organic molecule such as lactose in the terahertz (THz) spectral regime extending from 0.1 to 3 THz. Terahertz pulses with field strengths in excess of 4.4 MV/cm have been employed. Transmittance and the transmitted spectrum were measured with Z-scan and single shot noncollinear electro-optic pump-probe techniques. The THz-induced change in the refractive index (Δn) shows frequency-dependence and a maximum change of - 0.128 at 1.37 THz in lactose and up to + 0.169 at 0.15 THz in silicon was measured for a peak incident THz intensity of 26 GW/cm2. Furthermore, the refractive index variation shows a quadratic dependence on the incident THz field, implying the dominance of third-order nonlinearity.

  18. Remote spectral measurements of the blood volume pulse with applications for imaging photoplethysmography

    Science.gov (United States)

    Blackford, Ethan B.; Estepp, Justin R.; McDuff, Daniel J.

    2018-02-01

    Imaging photoplethysmography uses camera image sensors to measure variations in light absorption related to the delivery of the blood volume pulse to peripheral tissues. The characteristics of the measured BVP waveform depends on the spectral absorption of various tissue components including melanin, hemoglobin, water, and yellow pigments. Signal quality and artifact rejection can be enhanced by taking into account the spectral properties of the BVP waveform and surrounding tissue. The current literature regarding the spectral relationships of remote PPG is limited. To supplement this fundamental data, we present an analysis of remotely-measured, visible and near-infrared spectroscopy to better understand the spectral signature of remotely measured BVP signals. To do so, spectra were measured from the right cheek of 25, stationary participants whose heads were stabilized by a chinrest. A collimating lens was used to collect reflected light from a region of 3 cm in diameter. The spectrometer provided 3 nm resolution measurements from 500-1000 nm. Measurements were acquired at a rate of 50 complete spectra per second for a period of five minutes. Reference physiology, including electrocardiography was simultaneously and synchronously acquired. The spectral data were analyzed to determine the relationship between light wavelength and the resulting remote-BVP signal-to-noise ratio and to identify those bands best suited for pulse rate measurement. To our knowledge this is the most comprehensive dataset of remotely-measured spectral iPPG data. In due course, we plan to release this dataset for research purposes.

  19. Simulation of 1.5-mm-thick and 15-cm-diameter gated silicon drift X-ray detector operated with a single high-voltage source

    Science.gov (United States)

    Matsuura, Hideharu

    2015-04-01

    High-resolution silicon X-ray detectors with a large active area are required for effectively detecting traces of hazardous elements in food and soil through the measurement of the energies and counts of X-ray fluorescence photons radially emitted from these elements. The thicknesses and areas of commercial silicon drift detectors (SDDs) are up to 0.5 mm and 1.5 cm2, respectively. We describe 1.5-mm-thick gated SDDs (GSDDs) that can detect photons with energies up to 50 keV. We simulated the electric potential distributions in GSDDs with a Si thickness of 1.5 mm and areas from 0.18 to 168 cm2 at a single high reverse bias. The area of a GSDD could be enlarged simply by increasing all the gate widths by the same multiple, and the capacitance of the GSDD remained small and its X-ray count rate remained high.

  20. Metallographic study of reconstitution welding in inserts of 1 cm3

    International Nuclear Information System (INIS)

    Romero C, J.; Garcia R, R.; Fernandez T, F.; Perez R, N.; Rocamontes A, M.

    2007-01-01

    In this article, the welding metallographic study carried out in Charpy test tubes reconstituted with notch in 'V', used in the surveillance programs of the vessel in nucleo electric plants is described. Inserts of 1 cm 3 are used, where the inserts are usually rectangular of minimum 18 millimeters of length. The importance of using inserts of 1 cm 3 is that the mechanical properties can be measured in another direction of the vessel steel, when changing the direction or sense of the notch in 'V' or the face where this notch is made in the insert. (Author)

  1. Calculation of isotope selective excitation of uranium isotopes using spectral simulation method

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.

    2009-06-01

    Isotope ratio enhancement factor and isotope selectivity of 235 U in five excitation schemes (I: 0→10069 cm - 1 →IP, II: 0 →10081 cm - 1 →IP, III: 0 →25349 cm - 1→ IP, IV: 0→28650 cm - 1 →IP, V: 0→16900 cm - 1 →34659 cm - 1 →IP), were computed by a spectral simulation approach. The effect of laser bandwidth and Doppler width on the isotope ratio enhancement factor and isotope selectivity of 235 U has been studied. The photoionization scheme V gives the highest isotope ratio enhancement factor. The main factors which effect the separation possibility are the isotope shift and the relative intensity of the transitions between hyperfine levels. The isotope ratio enhancement factor decreases exponentially by increasing the Doppler width and the laser bandwidth, where the effect of Doppler width is much greater than the effect of the laser bandwidth. (author)

  2. Coincidence measurements on detectors for microPET II: A 1 mm3 resolution PET scanner for small animal imaging

    CERN Document Server

    Chatziioannou, A; Shao, Y; Doshi, N K; Silverman, B; Meadors, K; Cherry, SR

    2000-01-01

    We are currently developing a small animal PET scanner with a design goal of 1 mm3 image resolution. We have built three pairs of detectors and tested performance in terms of crystal identification, spatial, energy and timing resolution. The detectors consisted of 12 multiplied by 12 arrays of 1 multiplied by 1 multiplied by 10mm LSO crystals (1.15 mm pitch) coupled to Hamamatsu H7546 64 channel PMTs via 5cm long coherent glass fiber bundles. Optical fiber connection is necessary to allow high packing fraction in a ring geometry scanner. Fiber bundles with and without extramural absorber (EMA) were tested. The results demonstrated an intrinsic spatial resolution of 1.12 mm (direct coupled LSO array), 1.23 mm (bundle without EMA) and 1.27 mm (bundle with EMA) using a similar to 500 micron diameter Na-22 source. Using a 330 micron line source filled with F-18, intrinsic resolution for the EMA bundle improved to 1.05 mm. The respective timing and energy resolution values were 1.96 ns, 21% (direct coupled), 2.20 ...

  3. Recent progress of push-broom infrared hyper-spectral imager in SITP

    Science.gov (United States)

    Wang, Yueming; Hu, Weida; Shu, Rong; Li, Chunlai; Yuan, Liyin; Wang, Jianyu

    2017-02-01

    In the past decades, hyper-spectral imaging technologies were well developed in SITP, CAS. Many innovations for system design and key parts of hyper-spectral imager were finished. First airborne hyper-spectral imager operating from VNIR to TIR in the world was emerged in SITP. It is well known as OMIS(Operational Modular Imaging Spectrometer). Some new technologies were introduced to improve the performance of hyper-spectral imaging system in these years. A high spatial space-borne hyper-spectral imager aboard Tiangong-1 spacecraft was launched on Sep.29, 2011. Thanks for ground motion compensation and high optical efficiency prismatic spectrometer, a large amount of hyper-spectral imagery with high sensitivity and good quality were acquired in the past years. Some important phenomena were observed. To diminish spectral distortion and expand field of view, new type of prismatic imaging spectrometer based curved prism were proposed by SITP. A prototype of hyper-spectral imager based spherical fused silica prism were manufactured, which can operate from 400nm 2500nm. We also made progress in the development of LWIR hyper-spectral imaging technology. Compact and low F number LWIR imaging spectrometer was designed, manufactured and integrated. The spectrometer operated in a cryogenically-cooled vacuum box for background radiation restraint. The system performed well during flight experiment in an airborne platform. Thanks high sensitivity FPA and high performance optics, spatial resolution and spectral resolution and SNR of system are improved enormously. However, more work should be done for high radiometric accuracy in the future.

  4. High Spectral Resolution LIDAR as a Tool for Air Quality Research

    Science.gov (United States)

    Eloranta, E. W.; Spuler, S.; Hayman, M. M.

    2017-12-01

    Many aspects of air quality research require information on the vertical distribution of pollution. Traditional measurements, obtained from surface based samplers, or passive satellite remote sensing, do not provide vertical profiles. Lidar can provide profiles of aerosol properties. However traditional backscatter lidar suffers from uncertain calibrations with poorly constrained algorithms. These problems are avoided using High Spectral Resolution Lidar (HSRL) which provides absolutely calibrated vertical profiles of aerosol properties. The University of Wisconsin HSRL systems measure 532 nm wavelength aerosol backscatter cross-sections, extinction cross-sections, depolarization, and attenuated 1064 nm backscatter. These instruments are designed for long-term deployment at remote sites with minimal local support. Processed data is provided for public viewing and download in real-time on our web site "http://hsrl.ssec.wisc.edu". Air pollution applications of HSRL data will be illustrated with examples acquired during air quality field programs including; KORUS-AQ, DISCOVER-AQ, LAMOS and FRAPPE. Observations include 1) long range transport of dust, air pollution and smoke. 2) Fumigation episodes where elevated pollution is mixed down to the surface. 3) visibility restrictions by aerosols and 4) diurnal variations in atmospheric optical depth. While HSRL is powerful air quality research tool, its application in routine measurement networks is hindered by the high cost of current systems. Recent technical advances promise a next generation HSRL using telcom components to greatly reduce system cost. This paper will present data generated by a prototype low cost system constructed at NCAR. In addition to lower cost, operation at a non-visible near 780 nm infrared wavelength removes all FAA restrictions on the operation.

  5. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  6. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei

    2014-06-04

    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  7. Cross-calibration of Medium Resolution Earth Observing Satellites by Using EO-1 Hyperion-derived Spectral Surface Reflectance from "Lunar Cal Sites"

    Science.gov (United States)

    Ungar, S.

    2017-12-01

    Over the past 3 years, the Earth Observing-one (EO-1) Hyperion imaging spectrometer was used to slowly scan the lunar surface at a rate which results in up to 32X oversampling to effectively increase the SNR. Several strategies, including comparison against the USGS RObotic Lunar Observatory (ROLO) mode,l are being employed to estimate the absolute and relative accuracy of the measurement set. There is an existing need to resolve discrepancies as high as 10% between ROLO and solar based calibration of current NASA EOS assets. Although the EO-1 mission was decommissioned at the end of March 2017, the development of a well-characterized exoatmospheric spectral radiometric database, for a range of lunar phase angles surrounding the fully illuminated moon, continues. Initial studies include a comprehensive analysis of the existing 17-year collection of more than 200 monthly lunar acquisitions. Specific lunar surface areas, such as a lunar mare, are being characterized as potential "lunar calibration sites" in terms of their radiometric stability in the presence of lunar nutation and libration. Site specific Hyperion-derived lunar spectral reflectance are being compared against spectrographic measurements made during the Apollo program. Techniques developed through this activity can be employed by future high-quality orbiting imaging spectrometers (such as HyspIRI and EnMap) to further refine calibration accuracies. These techniques will enable the consistent cross calibration of existing and future earth observing systems (spectral and multi-spectral) including those that do not have lunar viewing capability. When direct lunar viewing is not an option for an earth observing asset, orbiting imaging spectrometers can serve as transfer radiometers relating that asset's sensor response to lunar values through near contemporaneous observations of well characterized stable CEOS test sites. Analysis of this dataset will lead to the development of strategies to ensure more

  8. Material inhomogeneities in Cd1-xZnxTe and their effects on large volume gamma-ray detectors

    International Nuclear Information System (INIS)

    Scyoc, J.M. Van; Lund, J.C.; Morse, D.H.

    1997-01-01

    Cadmium zinc telluride (Cd 1-x Zn x Te or CZT) has shown great promise as a material for room-temperature x-ray and gamma-ray detectors. In particular, polycrystalline material grown by the High Pressure Bridgman method with nominal Zn fraction (x) from 0.1 to 0.2 has been used to fabricate high resolution gamma-ray spectrometers with resolution approaching that of cooled high-purity Ge. For increased sensitivity, large areas (> 1 cm 2 ) are required, and for good sensitivity to high energy gamma photons, thick detectors (on the order of 1 cm) are required. Thus there has been a push for the development of CZT detectors with a volume greater than 1 cm 3 . However, nonuniformities in the material over this scale degrade the performance of the detectors. Variations in the zinc fraction, and thus the bandgap, and changes in the impurity distributions, both of which arise from the selective segregation of elements during crystal growth, result in spectral distortions. In this work several materials characterization techniques were combined with detector evaluations to determine the materials properties limiting detector performance. Materials measurements were performed on detectors found to have differing performance. Measurements conducted include infrared transmission (IR), particle induced x-ray emission (PIXE), photoluminescence (PL), and triaxial x-ray diffraction (TAXRD). To varying degrees, these measurements reveal that poor-performance detectors exhibit higher nonuniformities than spectrometer-grade detectors. This is reasonable, as regions of CZT material with different properties will give different localized spectral responses, which combine to result in a degraded spectrum for the total device

  9. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y. L.; Yu, D. L., E-mail: yudl@swip.ac.cn; Liu, L.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong [Southwestern Institute of Physics, Chengdu 610041 (China); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Hellermann, M. von [ITER Diagnostic Team, IO, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); FOM-Institute for Plasma physics “Rijnhuizen,” Association EURATOM, Trilateral Euregio Cluster, 3430 BE Nieuwegein (Netherlands)

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ~1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8–7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode)

  10. Energy resolution of a lead scintillating fiber electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chirikov-Zorin, I.; Glagolev, V.

    1993-01-01

    A calorimeter module was fabricated using profiled lead plates and scintillating fibers with diameter 1 mm and attenuation length about 80 cm. The absorber-to-fiber volume ratio was 1.17 and the module average radiation length X 0 = 1.05 cm. The energy resolution of the module was investigated using the electron beams of U-70 at Serpukhov and of the SPS at CERN in the energy range 5-70 GeV. The energy resolution at θ = 3 0 (the angle between the fiber axis and the beam direction) may be expressed by the formula σ/E(%) = 13.1/√E ± 1.7. The energy resolution was also simulated by Monte Carlo and good agreement with the experiment has been achieved. 12 refs.; 13 figs.; 4 tabs

  11. A postprocessing method based on high-resolution spectral estimation for FDTD calculation of phononic band structures

    Energy Technology Data Exchange (ETDEWEB)

    Su Xiaoxing, E-mail: xxsu@bjtu.edu.c [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li Jianbao; Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-05-15

    If the energy bands of a phononic crystal are calculated by the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT), good estimation of the eigenfrequencies can only be ensured by the postprocessing of sufficiently long time series generated by a large number of FDTD iterations. In this paper, a postprocessing method based on the high-resolution spectral estimation via the Yule-Walker method is proposed to overcome this difficulty. Numerical simulation results for three-dimensional acoustic and two-dimensional elastic systems show that, compared with the classic FFT-based postprocessing method, the proposed method can give much better estimation of the eigenfrequencies when the FDTD is run with relatively few iterations.

  12. A postprocessing method based on high-resolution spectral estimation for FDTD calculation of phononic band structures

    International Nuclear Information System (INIS)

    Su Xiaoxing; Li Jianbao; Wang Yuesheng

    2010-01-01

    If the energy bands of a phononic crystal are calculated by the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT), good estimation of the eigenfrequencies can only be ensured by the postprocessing of sufficiently long time series generated by a large number of FDTD iterations. In this paper, a postprocessing method based on the high-resolution spectral estimation via the Yule-Walker method is proposed to overcome this difficulty. Numerical simulation results for three-dimensional acoustic and two-dimensional elastic systems show that, compared with the classic FFT-based postprocessing method, the proposed method can give much better estimation of the eigenfrequencies when the FDTD is run with relatively few iterations.

  13. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  14. A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Bakker, Erin; Achenbach, Ute; Bakker, Jeroen; van Vliet, Joke; Peleman, Johan; Segers, Bart; van der Heijden, Stefan; van der Linde, Piet; Graveland, Robert; Hutten, Ronald; van Eck, Herman; Coppoolse, Eric; van der Vossen, Edwin; Bakker, Jaap; Goverse, Aska

    2004-06-01

    The resistance gene H1 confers resistance to the potato cyst nematode Globodera rostochiensis and is located at the distal end of the long arm of chromosome V of potato. For marker enrichment of the H1 locus, a bulked segregant analysis (BSA) was carried out using 704 AFLP primer combinations. A second source of markers tightly linked to H1 is the ultra-high-density (UHD) genetic map of the potato cross SH x RH. This map has been produced with 387 AFLP primer combinations and consists of 10,365 AFLP markers in 1,118 bins (http://www.dpw.wageningen-ur.nl/uhd/). Comparing these two methods revealed that BSA resulted in one marker/cM and the UHD map in four markers/cM in the H1 interval. Subsequently, a high-resolution genetic map of the H1 locus has been developed using a segregating F(1) SH x RH population consisting of 1,209 genotypes. Two PCR-based markers were designed at either side of the H1 gene to screen the 1,209 genotypes for recombination events. In the high-resolution genetic map, two of the four co-segregating AFLP markers could be separated from the H1 gene. Marker EM1 is located at a distance of 0.2 cM, and marker EM14 is located at a distance of 0.8 cM. The other two co-segregating markers CM1 (in coupling) and EM15 (in repulsion) could not be separated from the H1 gene.

  15. Observation of hard X-rays line emission from Her X-1

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; la Padula, C.; Ubertini, P.; Vialetto, G.; Manchanda, R.K.; Damle, S.V.

    1982-04-01

    We present the results of a hard X-ray measurement of the binary source Her X-1, carried out with a balloon borne X-ray telescope consisting of two Multiwire Proportional Counters, having 900 cm/sup 2/ sensitive area each and spectral resolution of 15% and 24% FWHM respectively at 60 keV. The source was observed during the 'Mid-on' state. Our data confirm the previously reported high energy emission line overimposed on the low energy thermal spectrum.

  16. High-resolution 3-μm spectra of Jupiter: Latitudinal spectral variations influenced by molecules, clouds, and haze

    Science.gov (United States)

    Kim, Sang J.; Geballe, T. R.; Kim, J. H.; Jung, A.; Seo, H. J.; Minh, Y. C.

    2010-08-01

    We present latitudinally-resolved high-resolution ( R = 37,000) pole-to-pole spectra of Jupiter in various narrow longitudinal ranges, in spectral intervals covering roughly half of the spectral range 2.86-3.53 μm. We have analyzed the data with the aid of synthetic spectra generated from a model jovian atmosphere that included lines of CH 4, CH 3D, NH 3, C 2H 2, C 2H 6, PH 3, and HCN, as well as clouds and haze. Numerous spectral features of many of these molecular species are present and are individually identified for the first time, as are many lines of H3+ and a few unidentified spectral features. In both polar regions the 2.86-3.10-μm continuum is more than 10 times weaker than in spectra at lower latitudes, implying that in this wavelength range the single-scattering albedos of polar haze particles are very low. In contrast, the 3.24-3.53 μm the weak polar and equatorial continua are of comparable intensity. We derive vertical distributions of NH 3, C 2H 2 and C 2H 6, and find that the mixing ratios of NH 3 and C 2H 6 show little variation between equatorial and polar regions. However, the mixing ratios of C 2H 2 in the northern and southern polar regions are ˜6 and ˜3 times, respectively, less than those in the equatorial regions. The derived mixing ratio curves of C 2H 2 and C 2H 6 extend up to the 10 -6 bar level, a significantly higher altitude than most previous results in the literature. Further ground-based observations covering other longitudes are needed to test if these mixing ratios are representative values for the equatorial and polar regions.

  17. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, K., E-mail: widmann1@llnl.gov; Beiersdorfer, P.; Magee, E. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boyle, D. P.; Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li{sup +} and 65 eV for the 135 Å Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  18. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams

    International Nuclear Information System (INIS)

    Alejo, A.; Kar, S.; Ahmed, H.; Doria, D.; Borghesi, M.; Tebartz, A.; Ding, J.; Neumann, N.; Astbury, S.; Carroll, D. C.; Scott, G. G.; Higginson, A.; McKenna, P.; Wagner, F.; Roth, M.

    2016-01-01

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  19. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, A.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Doria, D.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Tebartz, A.; Ding, J.; Neumann, N. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt (Germany); Astbury, S.; Carroll, D. C.; Scott, G. G. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Higginson, A.; McKenna, P. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Wagner, F. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany)

    2016-08-15

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  20. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams

    Science.gov (United States)

    Alejo, A.; Kar, S.; Tebartz, A.; Ahmed, H.; Astbury, S.; Carroll, D. C.; Ding, J.; Doria, D.; Higginson, A.; McKenna, P.; Neumann, N.; Scott, G. G.; Wagner, F.; Roth, M.; Borghesi, M.

    2016-08-01

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  1. Effects of spectral smearing on performance of the spectral ripple and spectro-temporal ripple tests.

    Science.gov (United States)

    Narne, Vijaya Kumar; Sharma, Mridula; Van Dun, Bram; Bansal, Shalini; Prabhu, Latika; Moore, Brian C J

    2016-12-01

    The main aim of this study was to use spectral smearing to evaluate the efficacy of a spectral ripple test (SRt) using stationary sounds and a recent variant with gliding ripples called the spectro-temporal ripple test (STRt) in measuring reduced spectral resolution. In experiment 1 the highest detectable ripple density was measured using four amounts of spectral smearing (unsmeared, mild, moderate, and severe). The thresholds worsened with increasing smearing and were similar for the SRt and the STRt across the three conditions with smearing. For unsmeared stimuli, thresholds were significantly higher (better) for the STRt than for the SRt. An amplitude fluctuation at the outputs of simulated (gammatone) auditory filters centered above 6400 Hz was identified as providing a potential detection cue for the STRt stimuli. Experiment 2 used notched noise with energy below and above the passband of the SRt and STRt stimuli to reduce confounding cues in the STRt. Thresholds were almost identical for the STRt and SRt for both unsmeared and smeared stimuli, indicating that the confounding cue for the STRt was eliminated by the notched noise. Thresholds obtained with notched noise present could be predicted reasonably accurately using an excitation-pattern model.

  2. Alignment and experiment of the HL-1 X-ray bent-crystal spectrometer

    International Nuclear Information System (INIS)

    Chen Jiefu; Yuan Chengji; Zhang Shuxun; Lu Jie; Yie Gaoying; Zhang Li

    1993-04-01

    An X-ray bent-crystal spectrometer, which is developed by Southwestern Institute of Physics, has been aligned and experimental on the HL-1 Tokamak device. It has been used to acquire experimental spectrum. This spectrometer has time resolution function and is a high through-put and high resolution Bragg crystal spectrometer with Johann configuration. It uses a large quartz lamina, its effective area is 11 x 5 cm 2 , with a radius of curvature of 377 cm as the dispersion element. The detector is a large size (10 x 10 cm 2 ) one-dimensional resolving multiwire proportional counter, and the spectral resolving power is R ≅ 18000. Under the injection of Ar into hydrogen plasma, the He-like Ar ion satellite spectra at some wavelength ranges are obtained. The central ion temperature has been given out from the Doppler broadening of He-like Ar x VII 3.9457 angstrom resonance line. This shows the success of spectrometer developed. The experimental results and the further improvement of this spectrometer are also discussed

  3. USGS Spectral Library Version 7

    Science.gov (United States)

    Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.

    2017-04-10

    We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and

  4. Herschel/HIFI spectral line survey of the Orion Bar. Temperature and density differentiation near the PDR surface

    Science.gov (United States)

    Nagy, Z.; Choi, Y.; Ossenkopf-Okada, V.; van der Tak, F. F. S.; Bergin, E. A.; Gerin, M.; Joblin, C.; Röllig, M.; Simon, R.; Stutzki, J.

    2017-03-01

    Context. Photon dominated regions (PDRs) are interfaces between the mainly ionized and mainly molecular material around young massive stars. Analysis of the physical and chemical structure of such regions traces the impact of far-ultraviolet radiation of young massive stars on their environment. Aims: We present results on the physical and chemical structure of the prototypical high UV-illumination edge-on Orion Bar PDR from an unbiased spectral line survey with a wide spectral coverage which includes lines of many important gas coolants such as [Cii], [Ci], and CO and other key molecules such as H2CO, H2O, HCN, HCO+, and SO. Methods: A spectral scan from 480-1250 GHz and 1410-1910 GHz at 1.1 MHz resolution was obtained by the HIFI instrument on board the Herschel Space Observatory. We obtained physical parameters for the observed molecules. For molecules with multiple transitions we used rotational diagrams to obtain excitation temperatures and column densities. For species with a single detected transition we used an optically thin LTE approximation. In the case of species with available collisional rates, we also performed a non-LTE analysis to obtain kinetic temperatures, H2 volume densities, and column densities. Results: About 120 lines corresponding to 29 molecules (including isotopologues) have been detected in the Herschel/HIFI line survey, including 11 transitions of CO, 7 transitions of 13CO, 6 transitions of C18O, 10 transitions of H2CO, and 6 transitions of H2O. The rotational temperatures are in the range between 22 and 146 K and the column densities are in the range between 1.8 × 1012 cm-2 and 4.5 × 1017 cm-2. For species with at least three detected transitions and available collisional excitation rates we derived a best fit kinetic temperature and H2 volume density. Most species trace kinetic temperatures in the range between 100 and 150 K and H2 volume densities in the range between 105 and 106 cm-3. The species with temperatures and

  5. High resolution analysis of three bands of the electronic transition A{sup 2}Σ{sup +}-X{sup 2}Π of N{sub 2}O{sup +} radical: 100-000, 000-001, and 001-001

    Energy Technology Data Exchange (ETDEWEB)

    Lessa, L. L.; Cândido, S. D. de; Fellows, C. E., E-mail: fellows@if.uff.br [Departamento de Física, Instituto de Ciências Exatas – ICEx, Universidade Federal Fluminense, Campus do Aterrado, Volta Redonda, RJ 27213-415 (Brazil)

    2014-06-07

    In this article three vibrational bands of the electronic transition A{sup 2}Σ{sup +}-X{sup 2}Π of the N{sub 2}O{sup +} radical (100-000, 000-001, and 001-001) are analysed through high resolution Fourier transform spectroscopy. The N{sub 2}O{sup +} radical was produced by Penning ionization of N{sub 2}O by colliding with metastable atoms of He(2{sup 3}S) in a reaction chamber. The spectra was recorded in a spectral range of 24 500–30 000 cm{sup −1} and obtained from 200 coadded interferograms recorded at an apodized resolution of 0.08 cm{sup −1}. Through a recursive way, the wavenumbers of the correspondent rotational transitions were reduced into molecular constants, improving the values previously reported. New values for the first vibrational energies ν{sub 1}{sup ′}, ν{sub 3}{sup ″}, and ν{sub 3}{sup ′} are also obtained and compared with previous values reported in the literature.

  6. A Wide Spectral Range Reflectance and Luminescence Imaging System

    Directory of Open Access Journals (Sweden)

    Tapani Hirvonen

    2013-10-01

    Full Text Available In this study, we introduce a wide spectral range (200–2500 nm imaging system with a 250 μm minimum spatial resolution, which can be freely modified for a wide range of resolutions and measurement geometries. The system has been tested for reflectance and luminescence measurements, but can also be customized for transmittance measurements. This study includes the performance results of the developed system, as well as examples of spectral images. Discussion of the system relates it to existing systems and methods. The wide range spectral imaging system that has been developed is however highly customizable and has great potential in many practical applications.

  7. In-plane optical spectral weight redistribution in the optimally doped Ba0.6 K0.4Fe2As2 superconductor

    International Nuclear Information System (INIS)

    Xu Bing; Dai Yao-Min; Xiao Hong; Qiu Xiang-Gang; Lobo, R. P. S. M.

    2014-01-01

    We performed detailed temperature-dependent optical measurements on optimally doped Ba 0.6 K 0.4 Fe 2 As 2 single crystal. We examine the changes of the in-plane optical conductivity spectral weight in the normal state and the evolution of the superconducting condensate in the superconducting state. In the normal state, the low-frequency spectral weight shows a metallic response with an arctan (T) dependence, indicating a T-linear scattering rate behavior for the carriers. A high energy spectral weight transfer associated with the Hund's coupling occurs from the low frequencies below 4000 cm1 ∼ 5000 cm1 to higher frequencies up to at least 10 cm1 . Its temperature dependence analysis suggests that the Hund's coupling strength is continuously enhanced as the temperature is reduced. In the superconducting state, the FGT sum rule is conserved according to the spectral weight estimation within the conduction bands, only about 40% of the conduction bands participates in the superconducting condensate indicating that Ba 0.6 K 0.4 Fe 2 As 2 is in dirty limit. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Comparative high-resolution mapping of the wax inhibitors Iw1 and Iw2 in hexaploid wheat.

    Directory of Open Access Journals (Sweden)

    Haibin Wu

    Full Text Available The wax (glaucousness on wheat leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2 and non-glaucousness loci (Iw1 and Iw2. The non-glaucousness (Iw loci act as inhibitors of the glaucousness loci (W. High-resolution comparative genetic linkage maps of the wax inhibitors Iw1 originating from Triticum dicoccoides, and Iw2 from Aegilops tauschii were developed by comparative genomics analyses of Brachypodium, sorghum and rice genomic sequences corresponding to the syntenic regions of the Iw loci in wheat. Eleven Iw1 and eight Iw2 linked EST markers were developed and mapped to linkage maps on the distal regions of chromosomes 2BS and 2DS, respectively. The Iw1 locus mapped within a 0.96 cM interval flanked by the BE498358 and CA499581 EST markers that are collinear with 122 kb, 202 kb, and 466 kb genomic regions in the Brachypodium 5S chromosome, the sorghum 6S chromosome and the rice 4S chromosome, respectively. The Iw2 locus was located in a 4.1 to 5.4-cM interval in chromosome 2DS that is flanked by the CJ886319 and CJ519831 EST markers, and this region is collinear with a 2.3 cM region spanning the Iw1 locus on chromosome 2BS. Both Iw1 and Iw2 co-segregated with the BF474014 and CJ876545 EST markers, indicating they are most likely orthologs on 2BS and 2DS. These high-resolution maps can serve as a framework for chromosome landing, physical mapping and map-based cloning of the wax inhibitors in wheat.

  9. Study of the amplified spontaneous emission spectral width and gain coefficient for a KrF laser in unsaturated and saturated conditions

    International Nuclear Information System (INIS)

    Hariri, A; Sarikhani, S

    2014-01-01

    On the basis of a model of a geometrically dependent gain coefficient, the amplified spontaneous emission (ASE) spectral width was calculated analytically for the nearly resonant transition of ν ∼ ν 0 , and also numerically for a wide range of transition frequencies. For this purpose, the intensity rate equation was used under unsaturated and saturated conditions. For verifying the proposed model, reported measurements of the ASE energy versus the excitation length for a KrF laser were used. For the excitation length of l = 84 cm corresponding to single-path propagation, the ASE spectral width for the homogeneously broadened transition was calculated to be 6.28 Å, to be compared with the measured 4.1 Å spectral width reported for a KrF oscillator utilizing a two-mirror resonator. With the gain parameters obtained from the ASE energy measurements, the unsaturated and saturated gain coefficients for l = 84 cm were calculated to be 0.042 cm1 and 0.014 cm1 , respectively. These values of the gain coefficient are comparable to but slightly lower than the measured gain coefficient for laser systems of 80–100 cm excitation lengths reported from different laboratories. (letter)

  10. High-resolution far-infrared synchrotron FTIR spectrum of the ν12 band of formamide-d1 (DCONH2)

    Science.gov (United States)

    Tan, T. L.; Wu, Q. Y.; Ng, L. L.; Appadoo, Dominique R. T.; McNaughton, Don

    2018-05-01

    The spectrum of the ν12 band of formamide-d1 (DCONH2) was recorded using a synchrotron Fourier transform infrared (FTIR) spectrometer coupled to the Australian Synchrotron THz/Far-IR beamline, with an unapodized resolution of 0.00096 cm-1 in the 350-210 cm-1 region. For the first time, rovibrational constants up to five quartic and two sextic terms were derived for the v12 = 1 state through the fitting of a total of 2072 far-infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation with a root-mean-square (rms) deviation of 0.000073 cm-1. The band centre of the ν12 band of DCONH2 was found to be 289.3327553(47) cm-1 although the experimental uncertainty was limited to ±0.0002 cm-1. Ground state rovibrational constants of DCONH2 up to five quartic and two sextic constants were derived from a fit of 847 ground state combination differences (GSCDs) obtained from the infrared transitions of the ν12 band, together with 6 previously reported microwave transitions, with a rms deviation of 0.000108 cm-1. The ground state rotational constants (A, B, and C) of DCONH2 were improved while the ground state centrifugal distortion constants were accurately obtained for the first time. The uncertainty of the measured infrared lines was estimated to be ±0.0002 cm-1. From the ground state rotational constants, the inertial defect of DCONH2 was calculated to be 0.0169412(11) uÅ2.

  11. Smoothing of Fused Spectral Consistent Satellite Images with TV-based Edge Detection

    DEFF Research Database (Denmark)

    Sveinsson, Johannes; Aanæs, Henrik; Benediktsson, Jon Atli

    2007-01-01

    based on satellite data. Additionally, most conventional methods are loosely connected to the image forming physics of the satellite image, giving these methods an ad hoc feel. Vesteinsson et al. [1] proposed a method of fusion of satellite images that is based on the properties of imaging physics...... in a statistically meaningful way and was called spectral consistent panshapening (SCP). In this paper we improve this framework for satellite image fusion by introducing a better image prior, via data-dependent image smoothing. The dependency is obtained via total variation edge detection method.......Several widely used methods have been proposed for fusing high resolution panchromatic data and lower resolution multi-channel data. However, many of these methods fail to maintain the spectral consistency of the fused high resolution image, which is of high importance to many of the applications...

  12. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    Directory of Open Access Journals (Sweden)

    Mitch Bryson

    Full Text Available Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae and animal (e.g. gastropods assemblages at multiple spatial and temporal scales.

  13. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    Science.gov (United States)

    Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J; Bongiorno, Daniel

    2013-01-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  14. A HIGH-RESOLUTION, MULTI-EPOCH SPECTRAL ATLAS OF PECULIAR STARS INCLUDING RAVE, GAIA , AND HERMES WAVELENGTH RANGES

    International Nuclear Information System (INIS)

    Tomasella, Lina; Munari, Ulisse; Zwitter, Tomaz

    2010-01-01

    We present an Echelle+CCD, high signal-to-noise ratio, high-resolution (R = 20,000) spectroscopic atlas of 108 well-known objects representative of the most common types of peculiar and variable stars. The wavelength interval extends from 4600 to 9400 A and includes the RAVE, Gaia, and HERMES wavelength ranges. Multi-epoch spectra are provided for the majority of the observed stars. A total of 425 spectra of peculiar stars, which were collected during 56 observing nights between 1998 November and 2002 August, are presented. The spectra are given in FITS format and heliocentric wavelengths, with accurate subtraction of both the sky background and the scattered light. Auxiliary material useful for custom applications (telluric dividers, spectrophotometric stars, flat-field tracings) is also provided. The atlas aims to provide a homogeneous database of the spectral appearance of stellar peculiarities, a tool useful both for classification purposes and inter-comparison studies. It could also serve in the planning and development of automated classification algorithms designed for RAVE, Gaia, HERMES, and other large-scale spectral surveys. The spectrum of XX Oph is discussed in some detail as an example of the content of the present atlas.

  15. Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy

    OpenAIRE

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.

    2013-01-01

    Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separat...

  16. High-resolution bent-crystal spectrometer for the ultra-soft x-ray region

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.; Hulse, R.A.; Walling, R.S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 /angstrom/. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (λ/Δλ ∼ 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is Δλ/λ 0 = 8/angstrom/. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic. 43 refs., 23 figs

  17. Hybrid Spectral Micro-CT: System Design, Implementation, and Preliminary Results

    CERN Document Server

    Bennett, James R; Xu, Qiong; Yu, Hengyong; Walsh, Michael; Butler, Anthony; Butler, Phillip; Cao, Guohua; Mohs, Aaron; Wang, Ge

    2014-01-01

    Spectral CT has proven an important development in biomedical imaging, and there have been several publications in the past years demonstrating its merits in pre-clinical and clinical applications. In 2012, Xu et al. reported that near-term implementation of spectral micro-CT could be enhanced by a hybrid architecture: a narrow-beam spectral "interior" imaging chain integrated with a traditional wide-beam "global" imaging chain. This hybrid integration coupled with compressive sensing (CS)-based interior tomography demonstrated promising results for improved contrast resolution, and decreased system cost and radiation dose. The motivation for the current study is implementation and evaluation of the hybrid architecture with a first-of-its-kind hybrid spectral micro-CT system. Preliminary results confirm improvements in both contrast and spatial resolution. This technology is shown to merit further investigation and potential application in future spectral CT scanner design.

  18. Applications of Cr:ZnSe and Cr:ZnS lasers to ultrabroadband high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Sorokin, E.; Sorokina, I.; Picque, N.; Guelachvili, G.

    2006-01-01

    Full text: Cr 2+ :ZnSe laser, and since recently also the Cr 2+ :ZnS laser proved to be versatile laser sources for trace gas measurements in the whole range between 2 and 3.1 μm. Among the existing methods of sensitive gas detection, intracavity laser absorption spectroscopy (ICLAS) offers some distinct advantages such as the simultaneous coverage of a broad spectral domain and large dynamic range. Under ICLAS the absorbing medium is put inside a laser cavity with broadband gain. As a result, the laser cavity acts as a multipass cell. Equivalent absorption path length of tens of kilometers can be achieved, corresponding to high detection sensitivities of the order of 10 -8 cm -1 and better. Only few examples of ICLAS spectrometers were demonstrated beyond 2 μm. Among them are: KCl:Li Fa(II) color center laser with coverage up to 4 nm at 2638 nm, Co:MgF 2 , covering up to 30 nm around 2040 and 2245 nm, Tm:YAG with coverage up to 35 nm at 2030 nm, and pulsed Cr:ZnSe, with coverage up to 50 nmat 2500 nm. In this talk we discuss application of a Cr 2+ :ZnSe laser to high-resolution and high-sensitivity intracavity absorption spectroscopy (ICLAS) analyzed by time-resolved Fourier transform spectroscopy. This represents the extreme limit presently reached in the infrared by ICLAS with Doppler limited resolution. Our most recent works concern application of a Cr 2+ :ZnS laser for broadband ultrasensitive intracavity laser spectroscopy (ICLAS), with effective absorption path up to about 50 km in the 2.4 μm range. The spectrometer operates with both Er-fiber and direct diode pumping in the very interesting water-free window between ∼ 2.1 and 2.5 μm. The sensitivity of 2 x 10 -9 cm -1 at Doppler-limited resolution allows obtaining spectral information that was previously unreachable in laboratory conditions. Summarizing, intracavity laser spectroscopy technique has been successfully used for measuring and detecting gas constituents with extreme sensitivity and

  19. 12 CFR 360.1 - Least-cost resolution.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Least-cost resolution. 360.1 Section 360.1 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY RESOLUTION AND RECEIVERSHIP RULES § 360.1 Least-cost resolution. (a) General rule. Except as provided in...

  20. Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Larsén, Xiaoli Guo; Badger, Merete

    2013-01-01

    as an increase in spectral density over similar wavenumber ranges as the spatial resolution increases. The 600-m SAR wind product reveals a range of wavenumbers in which the exchange processes between micro- and meso-scales occur; this range is not captured by the wind products with a resolution of 1.5 km......Spectra derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR) and QuikSCAT near-surface ocean winds are investigated over the North Sea. The two sensors offer a wide range of spatial resolutions, from 600 m to 25 km, with different spatial coverage over the area of interest. This provides...... a unique opportunity to study the impact of the spatial resolution on the spectral properties of the wind over a wide range of length scales. Initially, a sub-domain in the North Sea is chosen, due to the overlap of 87 wind scenes from both sensors. The impact of the spatial resolution is manifested...

  1. The X-shooter Spectral Library and Carbon stars

    NARCIS (Netherlands)

    Gonneau, A.; Lançon, A.; Trager, S. C.; Chen, Y.; Peletier, R.; Aringer, B.; Nowotny, W.; Cambrésy, L.; Martins, F.; Nuss, E.; Palacios, A.

    2013-01-01

    Until recently, most empirical stellar spectral libraries were limited to a certain wavelength range or combined data from different stars, taken by different instruments of which some have low spectral resolution, limiting for instance our ability to analyze galaxies jointly in the ultraviolet, the

  2. Description and evaluation of the Earth System Regional Climate Model (RegCM-ES)

    Science.gov (United States)

    Farneti, Riccardo; Sitz, Lina; Di Sante, Fabio; Fuentes-Franco, Ramon; Coppola, Erika; Mariotti, Laura; Reale, Marco; Sannino, Gianmaria; Barreiro, Marcelo; Nogherotto, Rita; Giuliani, Graziano; Graffino, Giorgio; Solidoro, Cosimo; Giorgi, Filippo

    2017-04-01

    The increasing availability of satellite remote sensing data, of high temporal frequency and spatial resolution, has provided a new and enhanced view of the global ocean and atmosphere, revealing strong air-sea coupling processes throughout the ocean basins. In order to obtain an accurate representation and better understanding of the climate system, its variability and change, the inclusion of all mechanisms of interaction among the different sub-components, at high temporal and spatial resolution, becomes ever more desirable. Recently, global coupled models have been able to progressively refine their horizontal resolution to attempt to resolve smaller-scale processes. However, regional coupled ocean-atmosphere models can achieve even finer resolutions and provide additional information on the mechanisms of air-sea interactions and feedbacks. Here we describe a new, state-of-the-art, Earth System Regional Climate Model (RegCM-ES). RegCM-ES presently includes the coupling between atmosphere, ocean, land surface and sea-ice components, as well as an hydrological and ocean biogeochemistry model. The regional coupled model has been implemented and tested over some of the COordinated Regional climate Downscaling Experiment (CORDEX) domains. RegCM-ES has shown improvements in the representation of precipitation and SST fields over the tested domains, as well as realistic representations of coupled air-sea processes and interactions. The RegCM-ES model, which can be easily implemented over any regional domain of interest, is open source making it suitable for usage by the large scientific community.

  3. Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea

    Directory of Open Access Journals (Sweden)

    Ioanna Karagali

    2013-11-01

    Full Text Available Spectra derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR and QuikSCAT near-surface ocean winds are investigated over the North Sea. The two sensors offer a wide range of spatial resolutions, from 600 m to 25 km, with different spatial coverage over the area of interest. This provides a unique opportunity to study the impact of the spatial resolution on the spectral properties of the wind over a wide range of length scales. Initially, a sub-domain in the North Sea is chosen, due to the overlap of 87 wind scenes from both sensors. The impact of the spatial resolution is manifested as an increase in spectral density over similar wavenumber ranges as the spatial resolution increases. The 600-m SAR wind product reveals a range of wavenumbers in which the exchange processes between micro- and meso-scales occur; this range is not captured by the wind products with a resolution of 1.5 km or lower. The lower power levels of coarser resolution wind products, particularly when comparing QuikSCAT to ENVISAT ASAR, strongly suggest that the effective resolution of the wind products should be high enough to resolve the spectral properties. Spectra computed from 87 wind maps are consistent with those obtained from several thousands of samples. Long-term spectra from QuikSCAT show that during the winter, slightly higher energy content is identified compared to the other seasons.

  4. High resolution computed tomography of positron emitters

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Cahoon, J.L.; Huesman, R.H.; Jackson, H.G.

    1976-10-01

    High resolution computed transaxial radionuclide tomography has been performed on phantoms containing positron-emitting isotopes. The imaging system consisted of two opposing groups of eight NaI(Tl) crystals 8 mm x 30 mm x 50 mm deep and the phantoms were rotated to measure coincident events along 8960 projection integrals as they would be measured by a 280-crystal ring system now under construction. The spatial resolution in the reconstructed images is 7.5 mm FWHM at the center of the ring and approximately 11 mm FWHM at a radius of 10 cm. We present measurements of imaging and background rates under various operating conditions. Based on these measurements, the full 280-crystal system will image 10,000 events per sec with 400 μCi in a section 1 cm thick and 20 cm in diameter. We show that 1.5 million events are sufficient to reliably image 3.5-mm hot spots with 14-mm center-to-center spacing and isolated 9-mm diameter cold spots in phantoms 15 to 20 cm in diameter

  5. Structure determination of two new indole-diterpenoids from Penicillium sp. CM-7 by NMR spectroscopy.

    Science.gov (United States)

    Zhang, Yu-Hong; Huang, Sheng-Dong; Pan, Hua-Qi; Bian, Xi-Qing; Wang, Zai-Ying; Han, Ai-Hong; Bai, Jiao

    2014-06-01

    Two new indole-diterpenoids 4b-deoxy-1'-O-acetylpaxilline (1) and 4b-deoxypenijanthine A (2) were isolated from the fermentation broth and the mycelia of the soil fungus Penicillium sp. CM-7, along with three known structurally related compounds, 1'-O-acetylpaxilline (3), paspaline (4) and 3-deoxo-4b-deoxypaxilline (5). The structures of compounds 1 and 2 were elucidated by extensive spectroscopic methods, especially 2D NMR, and their absolute configurations were suggested on the basis of the circular dichroism spectral analysis and the NOESY data. Copyright © 2014 John Wiley & Sons, Ltd.

  6. SOFIA/EXES High Spectral Resolution Observations of the Orion Hot Core

    Science.gov (United States)

    Rangwala, Naseem; Colgan, Sean; Le Gal, Romane; Acharya, Kinsuk; Huang, Xinchuan; Herbst, Eric; Lee, Timothy J.; Richter, Matthew J.; Boogert, Adwin

    2018-01-01

    The Orion hot core has one of the richest molecular chemistries observed in the ISM. In the MIR, the Orion hot core composition is best probed by the closest, compact, bright background continuum source in this region, IRc2. We present high-spectral resolution observations from 12.96 - 13.33 μm towards Orion IRc2 using the mid-infrared spectrograph, EXES, on SOFIA, to probe the physical and chemical conditions of the Orion hot core. All ten of the rovibrational C2H2 transitions expected in our spectral coverage, are detected with high S/N, yielding continuous coverage of the R-branch lines from J=9-8 to J=18-17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. These data show distinct ortho and para ladders towards the Orion hot core for the first time, with an ortho to para ratio (OPR) of only 0.6 - much lower than the high temperature equilibrium value of 3. A non-equilibrium OPR is a further indication of the Orion hot core being heated externally by shocks likely resulting from a well-known explosive event which occurred 500 yrs ago. The OPR conversion timescales are much longer than the 500 yr shock timescale and thus a low OPR might be a remnant from an earlier colder pre-stellar phase before the density enhancement (now the hot core) was impacted by shocks.We will also present preliminary results from an on-going SOFIA Cycle-5 impact program to use EXES to conduct an unbiased, high-S/N, continuous, molecular line survey of the Orion hot core from 12.5 - 28.3 microns. This survey is expected to be 50 times better than ISO in detecting isolated, narrow lines to (a) resolve the ro-vibrational structure of the gas phase molecules and their kinematics, (b) detect new gas phase molecules missed by ISO, and (c) provide useful constraints on the hot core chemistry and the source of Orion hot core excitation. This survey will greatly enhance the inventory of resolved line features in the MIR for hot cores

  7. Driftscan surveys in the 21 cm line with the Arecibo and Nancay telescopes

    NARCIS (Netherlands)

    Briggs, FH; Sorar, E; KraanKorteweg, RC; vanDriel, W

    Driftscan methods are highly efficient, stable techniques for conducting extragalactic surveys in the 21 cm line of neutral hydrogen. Holding the telescope still while the beam scans the sky at the sidereal rate produces exceptionally stable spectral baselines, increased stability for RFI signals,

  8. Precision Stellar Characterization of FGKM Stars using an Empirical Spectral Library

    Science.gov (United States)

    Yee, Samuel W.; Petigura, Erik A.; von Braun, Kaspar

    2017-02-01

    Classification of stars, by comparing their optical spectra to a few dozen spectral standards, has been a workhorse of observational astronomy for more than a century. Here, we extend this technique by compiling a library of optical spectra of 404 touchstone stars observed with Keck/HIRES by the California Planet Search. The spectra have high resolution (R ≈ 60,000), high signal-to-noise ratio (S/N ≈ 150/pixel), and are registered onto a common wavelength scale. The library stars have properties derived from interferometry, asteroseismology, LTE spectral synthesis, and spectrophotometry. To address a lack of well-characterized late-K dwarfs in the literature, we measure stellar radii and temperatures for 23 nearby K dwarfs, using modeling of the spectral energy distribution and Gaia parallaxes. This library represents a uniform data set spanning the spectral types ˜M5-F1 (T eff ≈ 3000-7000 K, R ⋆ ≈ 0.1-16 R ⊙). We also present “Empirical SpecMatch” (SpecMatch-Emp), a tool for parameterizing unknown spectra by comparing them against our spectral library. For FGKM stars, SpecMatch-Emp achieves accuracies of 100 K in effective temperature (T eff), 15% in stellar radius (R ⋆), and 0.09 dex in metallicity ([Fe/H]). Because the code relies on empirical spectra it performs particularly well for stars ˜K4 and later, which are challenging to model with existing spectral synthesizers, reaching accuracies of 70 K in T eff, 10% in R ⋆, and 0.12 dex in [Fe/H]. We also validate the performance of SpecMatch-Emp, finding it to be robust at lower spectral resolution and S/N, enabling the characterization of faint late-type stars. Both the library and stellar characterization code are publicly available.

  9. Precision Stellar Characterization of FGKM Stars using an Empirical Spectral Library

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Samuel W.; Petigura, Erik A. [California Institute of Technology (United States); Von Braun, Kaspar, E-mail: syee@caltech.edu [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2017-02-10

    Classification of stars, by comparing their optical spectra to a few dozen spectral standards, has been a workhorse of observational astronomy for more than a century. Here, we extend this technique by compiling a library of optical spectra of 404 touchstone stars observed with Keck/HIRES by the California Planet Search. The spectra have high resolution ( R ≈ 60,000), high signal-to-noise ratio (S/N ≈ 150/pixel), and are registered onto a common wavelength scale. The library stars have properties derived from interferometry, asteroseismology, LTE spectral synthesis, and spectrophotometry. To address a lack of well-characterized late-K dwarfs in the literature, we measure stellar radii and temperatures for 23 nearby K dwarfs, using modeling of the spectral energy distribution and Gaia parallaxes. This library represents a uniform data set spanning the spectral types ∼M5–F1 ( T {sub eff} ≈ 3000–7000 K, R {sub ⋆} ≈ 0.1–16 R {sub ⊙}). We also present “Empirical SpecMatch” (SpecMatch-Emp), a tool for parameterizing unknown spectra by comparing them against our spectral library. For FGKM stars, SpecMatch-Emp achieves accuracies of 100 K in effective temperature ( T {sub eff}), 15% in stellar radius ( R {sub ⋆}), and 0.09 dex in metallicity ([Fe/H]). Because the code relies on empirical spectra it performs particularly well for stars ∼K4 and later, which are challenging to model with existing spectral synthesizers, reaching accuracies of 70 K in T {sub eff}, 10% in R {sub ⋆}, and 0.12 dex in [Fe/H]. We also validate the performance of SpecMatch-Emp, finding it to be robust at lower spectral resolution and S/N, enabling the characterization of faint late-type stars. Both the library and stellar characterization code are publicly available.

  10. Spectral properties of 441 radio pulsars

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-02-01

    We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.

  11. Ultra-wideband spectral analysis using S2 technology

    International Nuclear Information System (INIS)

    Krishna Mohan, R.; Chang, T.; Tian, M.; Bekker, S.; Olson, A.; Ostrander, C.; Khallaayoun, A.; Dollinger, C.; Babbitt, W.R.; Cole, Z.; Reibel, R.R.; Merkel, K.D.; Sun, Y.; Cone, R.; Schlottau, F.; Wagner, K.H.

    2007-01-01

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution (∼25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 μs) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed

  12. Ultra-wideband spectral analysis using S2 technology

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Mohan, R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)]. E-mail: krishna@spectrum.montana.edu; Chang, T. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Tian, M. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Bekker, S. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Olson, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Ostrander, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Khallaayoun, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Dollinger, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cole, Z. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Reibel, R.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Merkel, K.D. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Sun, Y. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cone, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Schlottau, F. [University of Colorado, Boulder, CO 80309 (United States); Wagner, K.H. [University of Colorado, Boulder, CO 80309 (United States)

    2007-11-15

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution ({approx}25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 {mu}s) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed.

  13. THE HERSCHEL AND IRAM CHESS SPECTRAL SURVEYS OF THE PROTOSTELLAR SHOCK L1157-B1: FOSSIL DEUTERATION

    International Nuclear Information System (INIS)

    Codella, C.; Fontani, F.; Vasta, M.; Ceccarelli, C.; Lefloch, B.; Kahane, C.; Taquet, V.; Wiesenfeld, L.; Busquet, G.; Caselli, P.; Lis, D.; Viti, S.

    2012-01-01

    We present the first study of deuteration toward the protostellar shock L1157-B1, based on spectral surveys performed with the Herschel-HIFI and IRAM 30 m telescopes. The L1157 outflow is driven by a low-mass Class 0 protostar and is considered the prototype of the so-called chemically active outflows. The young (2000 yr), bright blueshifted bow shock, B1, is an ideal laboratory for studying the gas chemically enriched by the release of dust mantles due to the passage of a shock. A total of 12 emission lines (up to E u = 63 K) of CH 2 DOH, HDCO, and DCN are detected. In addition, two lines of NH 2 D and HDO are tentatively reported. To estimate the deuteration, we also extracted from our spectral survey emission lines of non-deuterated isotopologues ( 13 CH 3 OH, H 2 13 CO, H 13 CN, H 2 13 CO, and NH 3 ). We infer higher deuteration fractions for CH 3 OH (D/H = 0.2-2 × 10 –2 ) and H 2 CO (5-8 × 10 –3 ) than for H 2 O (0.4-2 × 10 –3 ), HCN (∼10 –3 ), and ammonia (≤3 × 10 –2 ). The measurement of deuteration of water, formaldehyde, and methanol in L1157-B1 provides a fossil record of the gas before it was shocked by the jet driven by the protostar. A comparison with gas-grain models indicates that the gas passed through a low-density (≤10 3 cm –3 ) phase, during which the bulk of water ices formed, followed by a phase of increasing density, up to 3 × 10 4 cm –3 , during which formaldehyde and methanol ices formed.

  14. Finite-temperature gluon spectral functions from N{sub f} = 2+1+1 lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ilgenfritz, Ernst-Michael; Trunin, Anton [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Pawlowski, Jan M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung mbH, Darmstadt (Germany); Rothkopf, Alexander [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany)

    2018-02-15

    We investigate gluon correlation functions and spectral functions at finite temperature in Landau gauge on lattice QCD ensembles with N{sub f} = 2+1+1 dynamical twisted-mass quarks flavors, generated by the tmfT collaboration. They cover a temperature range from 0.8 ≤ T/T{sub C} ≤ 4 using the fixed-scale approach. Our study of spectral properties is based on a novel Bayesian approach for the extraction of non-positive-definite spectral functions. For each binned spatial momentum we take into account the gluon correlation functions at all available discrete imaginary frequencies. Clear indications for the existence of a well defined quasi-particle peak are obtained. Due to a relatively small number of imaginary frequencies available, we focus on the momentum and temperature dependence of the position of this spectral feature. The corresponding dispersion relation reveals different in-medium masses for longitudinal and transversal gluons at high temperatures, qualitatively consistent with weak coupling expectations. (orig.)

  15. SU-E-J-197: Investigation of Microsoft Kinect 2.0 Depth Resolution for Patient Motion Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, E; Snyder, M [Wayne State University, Detroit, MI (United States)

    2015-06-15

    Purpose: Investigate the use of the Kinect 2.0 for patient motion tracking during radiotherapy by studying spatial and depth resolution capabilities. Methods: Using code written in C#, depth map data was abstracted from the Kinect to create an initial depth map template indicative of the initial position of an object to be compared to the depth map of the object over time. To test this process, simple setup was created in which two objects were imaged: a 40 cm × 40 cm board covered in non reflective material and a 15 cm × 26 cm textbook with a slightly reflective, glossy cover. Each object, imaged and measured separately, was placed on a movable platform with object to camera distance measured. The object was then moved a specified amount to ascertain whether the Kinect’s depth camera would visualize the difference in position of the object. Results: Initial investigations have shown the Kinect depth resolution is dependent on the object to camera distance. Measurements indicate that movements as small as 1 mm can be visualized for objects as close as 50 cm away. This depth resolution decreases linearly with object to camera distance. At 4 m, the depth resolution had decreased to observe a minimum movement of 1 cm. Conclusion: The improved resolution and advanced hardware of the Kinect 2.0 allows for increase of depth resolution over the Kinect 1.0. Although obvious that the depth resolution should decrease with increasing distance from an object given the decrease in number of pixels representing said object, the depth resolution at large distances indicates its usefulness in a clinical setting.

  16. Development of a modular directional and spectral neutron detection system using solid-state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Weltz, A., E-mail: weltza3@gmail.com; Torres, B.; McElwain, L.; Dahal, R.; Huang, J.; Bhat, I.; Lu, J.; Danon, Y.

    2015-08-21

    A detection system using room-temperature, microstructured solid-state thermal neutron detectors with very low leakage current has been developed at Rensselaer Polytechnic Institute (RPI) with the ability to provide positional and spectral information about an unknown neutron source. The Directional and Spectral Neutron Detection System (DSNDS) utilizes a set of small-but-scalable, zero-bias solid-state thermal neutron detectors which have demonstrated high thermal neutron efficiency and adequate gamma insensitivity. The DSNDS can gather spectral information about an unknown neutron source with a relatively small number of detectors, simplifying the detector electronics and minimizing cost; however, the DSNDS is modular in design, providing the capability to increase the detection efficiency and angular resolution. The system used in this paper was comprised of a stack of five high-density polyethylene (HDPE) disks with a thickness of 5 cm and a diameter of 30 cm, the middle disk containing 16 detectors positioned as one internal (moderated) and one external (unmoderated) ring of solid-state neutron detectors. These two detector rings provide the ability to determine the directionality of a neutron source. The system gathers spectral information about a neutron source in two ways: by measuring the relative responses of the internal ring of detectors as well as measuring the ratio of the internal-to-external detector responses. Experiments were performed with variable neutron spectra: a {sup 252}Cf spontaneous fission neutron source which was HDPE moderated, HDPE reflected, lead (Pb) shielded, and bare in order to benchmark the system for spectral sensitivity. Simulations were performed in order to characterize the neutron spectra corresponding to each of the source configurations and showed agreement with experimental measurements. The DSNDS demonstrates the ability to determine the relative angle of the source and the hardness of the neutron spectrum. By using the

  17. One method for HJ-1-A HSI and CCD data fusion

    International Nuclear Information System (INIS)

    Xiong, Wencheng; Shao, Yun; Shen, Wenming; Xiao, Rulin; Fu, Zhuo; Shi, Yuanli

    2014-01-01

    HJ-1-A satellite, developed by China independently, was equipped with two sensors of Hyper Spectral Imager (HSI) and multispectral sensor (CCD). In this paper, we examine the benefits of combining data from CCD data (high-spatial-resolution, low-spectral-resolution image) with HSI data (low -spatial-resolution, high -spectral-resolution image). Due to the same imaging time and similar spectral regime, the CCD and HSI data can be registered with each other well, and the difference between CCD and HSI data mainly is systematic bias. The approach we have been investigating compares the spectral information present in the multispectral image to the spectral content in the hyperspectral image, and derives a set of equations to approximately acquire the systematic bias between the two sensors. The systematic bias is then applied to the interpolated high-spectral CCD image to produce a fused product. This fused image has the spectral resolution of the hyperspectral image (HSI) and the spatial resolution of the multispectral image (CCD). It is capable of full exploitation as a hyperspectral image. We evaluate this technique using the data of Honghe wetland and show both good spectral and visual fidelity. An analysis of SAM classification test case shows good result when compared to original image. All in all, the approach we developed here provides a means for fusing data from HJ-1-A satellite to produce a spatial-resolution-enhanced hyperspectral data cube that can be further analyzed by spectral classification and detection algorithms

  18. Signal-to-noise analysis of a birefringent spectral zooming imaging spectrometer

    Science.gov (United States)

    Li, Jie; Zhang, Xiaotong; Wu, Haiying; Qi, Chun

    2018-05-01

    Study of signal-to-noise ratio (SNR) of a novel spectral zooming imaging spectrometer (SZIS) based on two identical Wollaston prisms is conducted. According to the theory of radiometry and Fourier transform spectroscopy, we deduce the theoretical equations of SNR of SZIS in spectral domain with consideration of the incident wavelength and the adjustable spectral resolution. An example calculation of SNR of SZIS is performed over 400-1000 nm. The calculation results indicate that SNR with different spectral resolutions of SZIS can be optionally selected by changing the spacing between the two identical Wollaston prisms. This will provide theoretical basis for the design, development and engineering of the developed imaging spectrometer for broad spectrum and SNR requirements.

  19. Cloud Masking for Remotely Sensed Data Using Spectral and Principal Components Analysis

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2012-06-01

    Full Text Available Two methods of cloud masking tuned to tropical conditions have been developed, based on spectral analysis and Principal Components Analysis (PCA of Moderate Resolution Imaging Spectroradiometer (MODIS data. In the spectral approach, thresholds were applied to four reflective bands (1, 2, 3, and 4, three thermal bands (29, 31 and 32, the band 2/band 1 ratio, and the difference between band 29 and 31 in order to detect clouds. The PCA approach applied a threshold to the first principal component derived from the seven quantities used for spectral analysis. Cloud detections were compared with the standard MODIS cloud mask, and their accuracy was assessed using reference images and geographical information on the study area.

  20. Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Haishun Cao

    2017-11-01

    Full Text Available Drought, cold and salinity are the major environmental stresses that limit agricultural productivity. NAC transcription factors regulate the stress response in plants. Pumpkin (Cucurbita moschata is an important cucurbit vegetable crop and it has strong resistance to abiotic stress; however, the biological functions of stress-related NAC genes in this crop are largely unknown. This study reports the function of CmNAC1, a stress-responsive pumpkin NAC domain protein. The CmNAC1-GFP fusion protein was transiently expressed in tobacco leaves for subcellular localization analysis, and we found that CmNAC1 is localized in the nucleus. Transactivation assay in yeast cells revealed that CmNAC1 functions as a transcription activator, and its transactivation domain is located in the C-terminus. CmNAC1 was ubiquitously expressed in different organs, and its transcript was induced by salinity, cold, dehydration, H2O2, and abscisic acid (ABA treatment. Furthermore, the ectopic expression (EE of CmNAC1 in Arabidopsis led to ABA hypersensitivity and enhanced tolerance to salinity, drought and cold stress. In addition, five ABA-responsive elements were enriched in CmNAC1 promoter. The CmNAC1-EE plants exhibited different root architecture, leaf morphology, and significantly high concentration of ABA compared with WT Arabidopsis under normal conditions. Our results indicated that CmNAC1 is a critical factor in ABA signaling pathways and it can be utilized in transgenic breeding to improve the abiotic stress tolerance of crops.

  1. Patch testing with 2.0% (0.60 mg/cm2) formaldehyde instead of 1.0% (0.30 mg/cm2) detects significantly more contact allerg

    DEFF Research Database (Denmark)

    Pontén, Ann; Aalto-Korte, Kristiina; Agner, Tove

    2013-01-01

    .To validate earlier patch test results for comparison of 1% (wt/vol) and 2% (wt/vol) formaldehyde in water, and to investigate co-reactivity with quaternium-15. Materials and methods.In 12 dermatology clinics, 3591 patients were routinely patch tested simultaneously with 2.0% (wt/vol) (0.60 mg/cm(2) ) and 1.......0% (wt/vol) (0.30 mg/cm(2) ) formaldehyde. Micropipettes were used for delivering the exact dosage of the allergen. Results.Significantly more patients reacted to 2.0% formaldehyde than to 1.0% (3.4% versus 1.8%, p

  2. Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library

    Science.gov (United States)

    Heap, Sally

    2010-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.

  3. High performance multi-spectral interrogation for surface plasmon resonance imaging sensors.

    Science.gov (United States)

    Sereda, A; Moreau, J; Canva, M; Maillart, E

    2014-04-15

    Surface plasmon resonance (SPR) sensing has proven to be a valuable tool in the field of surface interactions characterization, especially for biomedical applications where label-free techniques are of particular interest. In order to approach the theoretical resolution limit, most SPR-based systems have turned to either angular or spectral interrogation modes, which both offer very accurate real-time measurements, but at the expense of the 2-dimensional imaging capability, therefore decreasing the data throughput. In this article, we show numerically and experimentally how to combine the multi-spectral interrogation technique with 2D-imaging, while finding an optimum in terms of resolution, accuracy, acquisition speed and reduction in data dispersion with respect to the classical reflectivity interrogation mode. This multi-spectral interrogation methodology is based on a robust five parameter fitting of the spectral reflectivity curve which enables monitoring of the reflectivity spectral shift with a resolution of the order of ten picometers, and using only five wavelength measurements per point. In fine, such multi-spectral based plasmonic imaging system allows biomolecular interaction monitoring in a linear regime independently of variations of buffer optical index, which is illustrated on a DNA-DNA model case. © 2013 Elsevier B.V. All rights reserved.

  4. High-resolution photoemission study of Ce1-x La x RhAs: A collapse of the energy gap in the Kondo semiconductor

    International Nuclear Information System (INIS)

    Shimada, K.; Higashiguchi, M.; Fujimori, S.-I.; Saitoh, Y.; Fujimori, A.; Namatame, H.; Taniguchi, M.; Sasakawa, T.; Takabatake, T.

    2006-01-01

    High-resolution resonance-photoemission spectroscopy has been performed on the Ce 1- x La x RhAs (0≤x≤0.05) single crystal to elucidate a collapse of the energy gap in the Kondo semiconductor CeRhAs by La substitution. With increasing x, the spectral intensity of the Ce4f 1 derived states near the Fermi level decreases and new 4f derived spectral feature appears at a higher binding energy. The Rh4d-derived states, on the other hand, are not significantly changed by the substitution. New 4f-derived states have incoherent nature, which is responsible for the collapse of the semiconducting state for x>∼0.02

  5. The high throughput virtual slit enables compact, inexpensive Raman spectral imagers

    Science.gov (United States)

    Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2018-02-01

    Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.

  6. In Situ Raman Spectral Characteristics of Carbon Dioxide in a Deep-Sea Simulator of Extreme Environments Reaching 300 ℃ and 30 MPa.

    Science.gov (United States)

    Li, Lianfu; Du, Zengfeng; Zhang, Xin; Xi, Shichuan; Wang, Bing; Luan, Zhendong; Lian, Chao; Yan, Jun

    2018-01-01

    Deep-sea carbon dioxide (CO 2 ) plays a significant role in the global carbon cycle and directly affects the living environment of marine organisms. In situ Raman detection technology is an effective approach to study the behavior of deep-sea CO 2 . However, the Raman spectral characteristics of CO 2 can be affected by the environment, thus restricting the phase identification and quantitative analysis of CO 2 . In order to study the Raman spectral characteristics of CO 2 in extreme environments (up to 300 ℃ and 30 MPa), which cover most regions of hydrothermal vents and cold seeps around the world, a deep-sea extreme environment simulator was developed. The Raman spectra of CO 2 in different phases were obtained with Raman insertion probe (RiP) system, which was also used in in situ Raman detection in the deep sea carried by remotely operated vehicle (ROV) "Faxian". The Raman frequency shifts and bandwidths of gaseous, liquid, solid, and supercritical CO 2 and the CO 2 -H 2 O system were determined with the simulator. In our experiments (0-300 ℃ and 0-30 MPa), the peak positions of the symmetric stretching modes of gaseous CO 2, liquid CO 2 , and supercritical CO 2 shift approximately 0.6 cm -1 (1387.8-1388.4 cm -1 ), 0.7 cm -1 (1385.5-1386.2 cm -1 ), and 2.5 cm -1 (1385.7-1388.2 cm -1 ), and those of the bending modes shift about 1.0 cm -1 (1284.7-1285.7 cm -1 ), 1.9 cm -1 (1280.1-1282.0 cm -1 ), and 4.4 cm -1 (1281.0-1285.4 cm -1 ), respectively. The Raman spectral characteristics of the CO 2 -H 2 O system were also studied under the same conditions. The peak positions of dissolved CO 2 varied approximately 4.5 cm -1 (1282.5-1287.0 cm -1 ) and 2.4 cm -1 (1274.4-1276.8 cm -1 ) for each peak. In comparison with our experiment results, the phases of CO 2 in extreme conditions (0-3000 m and 0-300 ℃) can be identified with the Raman spectra collected in situ. This qualitative research on CO 2 can also support the

  7. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.

    1995-01-01

    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  8. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  9. High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira

    Science.gov (United States)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.

    2016-04-01

    We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.

  10. WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

    International Nuclear Information System (INIS)

    Montoya, J; Ferrero, A; Yu, L; Leng, S; McCollough, C

    2016-01-01

    Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150 and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare

  11. WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, J; Ferrero, A; Yu, L; Leng, S; McCollough, C [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150 and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare.

  12. Evaluation of 1cm dose equivalent rate using a NaI(Tl) scintilation spectrometer

    International Nuclear Information System (INIS)

    Matsuda, Hideharu

    1990-01-01

    A method for evaluating 1 cm dose equivalent rates from a pulse height distribution obtained by a 76.2mmφ spherical NaI(Tl) scintillation spectrometer was described. Weak leakage radiation from nuclear facilities were also measured and dose equivalent conversion factor and effective energy of leakage radiation were evaluated from 1 cm dose equivalent rate and exposure rate. (author)

  13. An empirical line-by-line model for the infrared solar transmittance spectrum from 700 to 5000cm{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Hase, F. [Institut fuer Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany)]. E-mail: frank.hase@imk.fzk.de; Demoulin, P. [Institut d' Astrophysique et de Geophysique, allee du VI aout, 17, batiment B5a, B-4000, Liege (Belgium); Sauval, A.J. [Observatoire Royal de Belgique, avenue circulaire, 3, B-1180, Bruxelles (Belgium); Toon, G.C. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Bernath, P.F. [Department of Chemistry, University of Waterloo, Waterloo, Ont., Canada N2L3G1 (Canada); Goldman, A. [Department of Physics, University of Denver, Denver, CO 80208 (United States); Hannigan, J.W. [Atmospheric Chemistry Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80303 (United States); Rinsland, C.P. [NASA Langley Research Center, Hampton, VA 23681-2199 (United States)

    2006-12-15

    An empirical line-by-line model for the infrared solar transmittance spectrum is presented. The model can be incorporated into radiative transfer codes to allow fast calculation of all relevant emission and absorption features in the solar spectrum in the mid-infrared region from 700 to 5000cm{sup -1}. The transmittance is modelled as a function of the diameter of the field-of-view centered on the solar disk: the line broadening due to solar rotation as well as center-to-limb variations in strength and width are taken into account for stronger lines. Applications of the model presented here are in the fields of terrestrial remote sensing in the mid-infrared spectral region when the sun is used as radiation source or scattered solar radiation contributes to the measured signal and in the fields of atmospheric radiative transfer algorithms which compute the propagation of infrared solar radiation in the terrestrial atmosphere.

  14. The 1943 K emission spectrum of H216O between 6600 and 7050 cm-1

    Science.gov (United States)

    Czinki, Eszter; Furtenbacher, Tibor; Császár, Attila G.; Eckhardt, André K.; Mellau, Georg Ch.

    2018-02-01

    An emission spectrum of H216O has been recorded, with Doppler-limited resolution, at 1943 K using Hot Gas Molecular Emission (HOTGAME) spectroscopy. The wavenumber range covered is 6600 to 7050 cm-1. This work reports the analysis and subsequent assignment of close to 3700 H216O transitions out of a total of more than 6700 measured peaks. The analysis is based on the Measured Active Rotational-Vibrational Energy Levels (MARVEL) energy levels of H216O determined in 2013 and emission line intensities obtained from accurate variational nuclear-motion computations. The analysis of the spectrum yields about 1300 transitions not measured previously and 23 experimentally previously unidentified rovibrational energy levels. The accuracy of the line positions and intensities used in the analysis was improved with the spectrum deconvolution software SyMath via creating a peak list corresponding to the dense emission spectrum. The extensive list of labeled transitions and the new experimental energy levels obtained are deposited in the Supplementary Material of this article as well as in the ReSpecTh (http://www.respecth.hu) information system.

  15. Terahertz Josephson spectral analysis and its applications

    Science.gov (United States)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  16. Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions.

    Science.gov (United States)

    Ali-Haïmoud, Yacine; Chluba, Jens; Kamionkowski, Marc

    2015-08-14

    We propose a new method to constrain elastic scattering between dark matter (DM) and standard model particles in the early Universe. Direct or indirect thermal coupling of nonrelativistic DM with photons leads to a heat sink for the latter. This results in spectral distortions of the cosmic microwave background (CMB), the amplitude of which can be as large as a few times the DM-to-photon-number ratio. We compute CMB spectral distortions due to DM-proton, DM-electron, and DM-photon scattering for generic energy-dependent cross sections and DM mass m_{χ}≳1 keV. Using Far-Infrared Absolute Spectrophotometer measurements, we set constraints on the cross sections for m_{χ}≲0.1 MeV. In particular, for energy-independent scattering we obtain σ_{DM-proton}≲10^{-24} cm^{2} (keV/m_{χ})^{1/2}, σ_{DM-electron}≲10^{-27} cm^{2} (keV/m_{χ})^{1/2}, and σ_{DM-photon}≲10^{-39} cm^{2} (m_{χ}/keV). An experiment with the characteristics of the Primordial Inflation Explorer would extend the regime of sensitivity up to masses m_{χ}~1 GeV.

  17. The High-Resolution IRAS Galaxy Atlas

    Science.gov (United States)

    Cao, Yu; Terebey, Susan; Prince, Thomas A.; Beichman, Charles A.; Oliversen, R. (Technical Monitor)

    1997-01-01

    An atlas of the Galactic plane (-4.7 deg is less than b is less than 4.7 deg), along with the molecular clouds in Orion, rho Oph, and Taurus-Auriga, has been produced at 60 and 100 microns from IRAS data. The atlas consists of resolution-enhanced co-added images with 1 min - 2 min resolution and co-added images at the native IRAS resolution. The IRAS Galaxy Atlas, together with the Dominion Radio Astrophysical Observatory H(sub I) line/21 cm continuum and FCRAO CO (1-0) Galactic plane surveys, which both have similar (approx. 1 min) resolution to the IRAS atlas, provides a powerful tool for studying the interstellar medium, star formation, and large-scale structure in our Galaxy. This paper documents the production and characteristics of the atlas.

  18. Time-resolved spectral measurements above 80 A

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Ceglio, N.; Medecki, H.

    1983-01-01

    We have made time-resolved spectral measurements above 80 A from laser-produced plasmas. These are made using a transmission grating spectrograph whose primary components are a cylindrically-curved x-ray mirror for light collection, a transmission grating for spectral dispersions, and an x-ray streak camera for temporal resolution. A description of the instrument and an example of the data are given

  19. Focusing, adjustable spectrometer with temporal resolution for the Sandia Z facility

    International Nuclear Information System (INIS)

    Sinars, D. B.; Wenger, D. F.; Keller, K. L.; Rochau, G. A.; Porter, J. L.

    2006-01-01

    Spherically bent focusing spectrometers with one- or two-dimensional spatial resolution (FSSR) are commonly used to obtain spectra with λ/Δλ>1000 from laser and exploding-wire plasmas. The focal properties of such spectrometers make them ideally suited for coupling with x-ray streak cameras when imaging small sources. We discuss the design of a streaked FSSR system intended to measure time-resolved emission spectra with time resolutions 2000 for source sizes ∼1 mm. The narrow spectral range (∼0.04 nm) can be adjusted between tests by varying the central Bragg angle (35 deg. -55 deg.) range and/or by exchanging the crystal type. The high spectral resolution is ideal for detailed line shape measurements. An example configuration for studying H- and He-like Ar emission is presented

  20. The Validity of 21 cm Spin Temperature as a Kinetic Temperature Indicator in Atomic and Molecular Gas

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Gargi [Dept. of Physics, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai 400098 (India); Ferland, G. J. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Hubeny, I., E-mail: gargishaw@gmail.com, E-mail: gary@uky.edu, E-mail: hubeny@as.arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-07-10

    The gas kinetic temperature ( T {sub K} ) of various interstellar environments is often inferred from observations that can deduce level populations of atoms, ions, or molecules using spectral line observations; H i 21 cm is perhaps the most widely used, and has a long history. Usually the H i 21 cm line is assumed to be in thermal equilibrium and the populations are given by the Boltzmann distribution. A variety of processes, many involving Ly α , can affect the 21 cm line. Here we show how this is treated in the spectral simulation code Cloudy, and present numerical simulations of environments where this temperature indicator is used, with a detailed treatment of the physical processes that determine level populations within H{sup 0}. We discuss situations where this temperature indicator traces T {sub K}, cases where it fails, as well as the effects of Ly α pumping on the 21 cm spin temperature. We also show that the Ly α excitation temperature rarely traces the gas kinetic temperature.

  1. Insight into resolution enhancement in generalized two-dimensional correlation spectroscopy.

    Science.gov (United States)

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K; Asher, Sanford A

    2013-03-01

    Generalized two-dimensional correlation spectroscopy (2D-COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D-COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) is not completely understood. In the work here, we studied the 2D-COS of simulated spectra in order to develop new insights into the dependence of 2D-COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We found that the features in the 2D-COS maps that are derived from overlapping bands were determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identified the conditions required to resolve overlapping bands. In particular, 2D-COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands.

  2. How accurately can 21cm tomography constrain cosmology?

    Science.gov (United States)

    Mao, Yi; Tegmark, Max; McQuinn, Matthew; Zaldarriaga, Matias; Zahn, Oliver

    2008-07-01

    There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted 21 cm line as a cosmological probe. However, its utility depends on many assumptions. To aid experimental planning and design, we quantify how the precision with which cosmological parameters can be measured depends on a broad range of assumptions, focusing on the 21 cm signal from 6noise, to uncertainties in the reionization history, and to the level of contamination from astrophysical foregrounds. We derive simple analytic estimates for how various assumptions affect an experiment’s sensitivity, and we find that the modeling of reionization is the most important, followed by the array layout. We present an accurate yet robust method for measuring cosmological parameters that exploits the fact that the ionization power spectra are rather smooth functions that can be accurately fit by 7 phenomenological parameters. We find that for future experiments, marginalizing over these nuisance parameters may provide constraints almost as tight on the cosmology as if 21 cm tomography measured the matter power spectrum directly. A future square kilometer array optimized for 21 cm tomography could improve the sensitivity to spatial curvature and neutrino masses by up to 2 orders of magnitude, to ΔΩk≈0.0002 and Δmν≈0.007eV, and give a 4σ detection of the spectral index running predicted by the simplest inflation models.

  3. Heterodyne spectrophotometry of ozone in the 9.6-micron band using a tunable diode laser

    Science.gov (United States)

    Mcelroy, C. T.; Goldman, A.; Fogal, P. F.; Murcray, D. G.

    1990-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (0.0003/cm) solar spectra in the 9.6-micron ozone band. Observations have shown that a signal-to-noise ratio of 120:1 (about 30 percent of theoretical) for an integration time of 1/8 s can be achieved at a resolution of 0.0013 wave numbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that measured at the nearby NOAA ozone monitoring facility in Boulder, Colorado. Line positions for several ozone lines in the spectral region 996-997/cm are reported. Recent improvements have produced a signal-to-noise ratio of 95:1 (about 40 percent of theoretical) at 0.0003/cm and extended the range of wavelengths which can be observed.

  4. Evaluation of the Chinese Fine Spatial Resolution Hyperspectral Satellite TianGong-1 in Urban Land-Cover Classification

    Directory of Open Access Journals (Sweden)

    Xueke Li

    2016-05-01

    Full Text Available The successful launch of the Chinese high spatial resolution hyperspectral satellite TianGong-1 (TG-1 opens up new possibilities for applications of remotely-sensed satellite imagery. One of the main goals of the TG-1 mission is to provide observations of surface attributes at local and landscape spatial scales to map urban land cover accurately using the hyperspectral technique. This study attempted to evaluate the TG-1 datasets for urban feature analysis, using existing data over Beijing, China, by comparing the TG-1 (with a spatial resolution of 10 m to EO-1 Hyperion (with a spatial resolution of 30 m. The spectral feature of TG-1 was first analyzed and, thus, finding out optimal hyperspectral wavebands useful for the discrimination of urban areas. Based on this, the pixel-based maximum likelihood classifier (PMLC, pixel-based support vector machine (PSVM, hybrid maximum likelihood classifier (HMLC, and hybrid support vector machine (HSVM were implemented, as well as compared in the application of mapping urban land cover types. The hybrid classifier approach, which integrates the pixel-based classifier and the object-based segmentation approach, was demonstrated as an effective alternative to the conventional pixel-based classifiers for processing the satellite hyperspectral data, especially the fine spatial resolution data. For TG-1 imagery, the pixel-based urban classification was obtained with an average overall accuracy of 89.1%, whereas the hybrid urban classification was obtained with an average overall accuracy of 91.8%. For Hyperion imagery, the pixel-based urban classification was obtained with an average overall accuracy of 85.9%, whereas the hybrid urban classification was obtained with an average overall accuracy of 86.7%. Overall, it can be concluded that the fine spatial resolution satellite hyperspectral data TG-1 is promising in delineating complex urban scenes, especially when using an appropriate classifier, such as the

  5. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  6. THE RADIO-2 mm SPECTRAL INDEX OF THE CRAB NEBULA MEASURED WITH GISMO

    International Nuclear Information System (INIS)

    Arendt, R. G.; George, J. V.; Staguhn, J. G.; Benford, D. J.; Fixsen, D. J.; Maher, S. F.; Moseley, S. H.; Sharp, E.; Wollack, E. J.; Devlin, M. J.; Dicker, S. R.; Korngut, P. M.; Irwin, K. D.; Jhabvala, C. A.; Miller, T. M.; Kovacs, A.; Mason, B. S.; Navarro, S.; Sievers, A.; Sievers, J. L.

    2011-01-01

    We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power-law spectrum, extrapolated up to a break frequency of log (ν b [GHz]) = 2.84 ± 0.29 or ν b = 695 +651 -336 GHz. The Crab Nebula is well resolved by the ∼16.''7 beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime.

  7. Analysis of petroleum contaminated soils by spectral modeling and pure response profile recovery of n-hexane

    International Nuclear Information System (INIS)

    Chakraborty, Somsubhra; Weindorf, David C.; Li, Bin; Ali, Md. Nasim; Majumdar, K.; Ray, D.P.

    2014-01-01

    This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Additionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multivariate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r 2  = 0.87, RMSE = 0.580 log 10  mg kg −1 , and residual prediction deviation = 2.78) outperformed all other models tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r 2  = 0.65 and RMSE 0.261 log 10  mg kg −1 ) were comparable to those obtained using FD (PSR) model. Furthermore, MCR ALS was able to recover pure spectra of n-hexane. - Highlights: • We predicted soil petroleum contamination with VisNIR DRS spectra. • We examined 2 spectral pretreatments and 2 multivariate models. • MCR-ALS was used for compositional and spectral resolution of n-hexane. • Penalized spline regression performed best for quantifying soil TPH. • MCR-ALS was promising for resolution of complex soil–petroleum mixture. - Use of VisNIR DRS for rapid quantification of soil TPH and resolution of complex soil petroleum mixtures

  8. Error Analysis of CM Data Products Sources of Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eckert-Gallup, Aubrey Celia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cochran, Lainy Dromgoole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kraus, Terrence D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allen, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beal, Bill [National Security Technologies, Joint Base Andrews, MD (United States); Okada, Colin [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States); Simpson, Mathew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-01

    This goal of this project is to address the current inability to assess the overall error and uncertainty of data products developed and distributed by DOE’s Consequence Management (CM) Program. This is a widely recognized shortfall, the resolution of which would provide a great deal of value and defensibility to the analysis results, data products, and the decision making process that follows this work. A global approach to this problem is necessary because multiple sources of error and uncertainty contribute to the ultimate production of CM data products. Therefore, this project will require collaboration with subject matter experts across a wide range of FRMAC skill sets in order to quantify the types of uncertainty that each area of the CM process might contain and to understand how variations in these uncertainty sources contribute to the aggregated uncertainty present in CM data products. The ultimate goal of this project is to quantify the confidence level of CM products to ensure that appropriate public and worker protections decisions are supported by defensible analysis.

  9. Spectrally narrowed emissions in 2,5-bis(4-biphenylyl)thiophene crystals pumped by fs laser pulse

    International Nuclear Information System (INIS)

    Kobayashi, S.; Sasaki, F.; Yanagi, H.; Hotta, S.; Ichikawa, M.; Taniguchi, Y.

    2005-01-01

    Spectrally narrowed emission (SNE) in 2,5-bis(4-biphenylyl)thiophene (BP1T) crystals is investigated using fs laser pulse. Two different types of narrowing are observed at different vibronic emission bands with increasing pump intensities. Based on their pump intensity dependence and illumination area dependence, we assign the SNE at 20,200 cm -1 (β-band) to amplified spontaneous emission (ASE) and the SNE at 21,600 cm -1 (α-band) to superfluorescence rather than ASE

  10. Accuracy in mineral identification: image spectral and spatial resolutions and mineral spectral properties

    Directory of Open Access Journals (Sweden)

    L. Pompilio

    2006-06-01

    Full Text Available Problems related to airborne hyperspectral image data are reviewed and the requirements for data analysis applied to mineralogical (rocks and soils interpretation are discussed. The variability of mineral spectral features, including absorption position, shape and depth is considered and interpreted as due to chemical composition, grain size effects and mineral association. It is also shown how this variability can be related to well defined geologic processes. The influence of sensor noise and diffuse atmospheric radiance in classification accuracy is also analyzed.

  11. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture

    Science.gov (United States)

    Elarab, Manal; Ticlavilca, Andres M.; Torres-Rua, Alfonso F.; Maslova, Inga; McKee, Mac

    2015-12-01

    Precision agriculture requires high-resolution information to enable greater precision in the management of inputs to production. Actionable information about crop and field status must be acquired at high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high spatial resolution imagery was obtained through the use of a small, unmanned aerial system called AggieAirTM. Simultaneously with the AggieAir flights, intensive ground sampling for plant chlorophyll was conducted at precisely determined locations. This study reports the application of a relevance vector machine coupled with cross validation and backward elimination to a dataset composed of reflectance from high-resolution multi-spectral imagery (VIS-NIR), thermal infrared imagery, and vegetative indices, in conjunction with in situ SPAD measurements from which chlorophyll concentrations were derived, to estimate chlorophyll concentration from remotely sensed data at 15-cm resolution. The results indicate that a relevance vector machine with a thin plate spline kernel type and kernel width of 5.4, having LAI, NDVI, thermal and red bands as the selected set of inputs, can be used to spatially estimate chlorophyll concentration with a root-mean-squared-error of 5.31 μg cm-2, efficiency of 0.76, and 9 relevance vectors.

  12. INTERMEDIATE RESOLUTION NEAR-INFRARED SPECTROSCOPY OF 36 LATE M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, R. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Martin, E. L.; Zapatero Osorio, M. R.; Bouy, H. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Montgomery, M. M. [Department of Physics, University of Central Florida, P.O. Box 162385, Orlando, FL 32816-2385 (United States); Rodler, F. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Torre C5-parell-2a planta, E-08193 Bellaterra (Spain); Del Burgo, C. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla, Pue. (Mexico); Phan Bao, N. [Department of Physics, HCMIU, Vietnam National University Administrative Building, Block 6, Linh Trung Ward, Thu Duc District, HCM (Viet Nam); Lyubchik, Y.; Pavlenko, Y. [Main Astronomical Observatory of Academy of Sciences of Ukraine, Zabolotnoho, 27, Kyiv 03680 (Ukraine); Tata, R., E-mail: rohit@psu.edu [Instituto de Astrofisica de Canarias, c/Via Lactea, s/n, E-38205 La Laguna, Tenerife, Islas Canarias (Spain)

    2012-10-01

    We present observations of 36 late M dwarfs obtained with the Keck II/NIRSPEC in the J band at a resolution of {approx}20,000. We have measured projected rotational velocities, absolute radial velocities, and pseudo-equivalent widths of atomic lines. Twelve of our targets did not have previous measurements in the literature. For the other 24 targets, we confirm previously reported measurements. We find that 13 stars from our sample have v sin i below our measurement threshold (12 km s{sup -1}) whereas four of our targets are fast rotators (v sin i > 30 km s{sup -1}). As fast rotation causes spectral features to be washed out, stars with low projected rotational velocities are sought for radial velocity surveys. At our intermediate spectral resolution, we have confirmed the identification of neutral atomic lines reported in McLean et al. We also calculated pseudo-equivalent widths of 12 atomic lines. Our results confirm that the pseudo-equivalent width of K I lines is strongly dependent on spectral types. We observe that the pseudo-equivalent width of Fe I and Mn I lines remains fairly constant with later spectral type. We suggest that these lines are particularly suitable for deriving metallicities for late M dwarfs.

  13. High spatial and temporal resolution visible spectroscopy of the plasma edge in DIII-D

    International Nuclear Information System (INIS)

    Gohil, P.; Burrell, K.H.; Groebner, R.J.; Seraydarian, R.P.

    1990-10-01

    In DIII-D, visible spectroscopic measurements of the He II 468.6 nm and C VI 529.2 nm Doppler broadened spectral lines, resulting from charge exchange recombination interactions between beam neutral atoms and plasma ions, are performed to determine ion temperatures, and toroidal and poloidal rotation velocities. The diagnostics system comprises 32 viewing chords spanning a typical minor radius of 63 cm across the midplane, of which 16 spatial chords span 11 cm of the plasma edge just within the separatrix. A temporal resolution of 260 μs per time slice can be obtained as a result of using MCP phosphors with short decay times and fast camera readout electronics. Results from this system will be used in radial electric field comparisons with theory at the L-H transition and ion transport analysis. 6 refs., 3 figs

  14. Regional climate modeling over the Maritime Continent: Assessment of RegCM3-BATS1e and RegCM3-IBIS

    Science.gov (United States)

    Gianotti, R. L.; Zhang, D.; Eltahir, E. A.

    2010-12-01

    Despite its importance to global rainfall and circulation processes, the Maritime Continent remains a region that is poorly simulated by climate models. Relatively few studies have been undertaken using a model with fine enough resolution to capture the small-scale spatial heterogeneity of this region and associated land-atmosphere interactions. These studies have shown that even regional climate models (RCMs) struggle to reproduce the climate of this region, particularly the diurnal cycle of rainfall. This study builds on previous work by undertaking a more thorough evaluation of RCM performance in simulating the timing and intensity of rainfall over the Maritime Continent, with identification of major sources of error. An assessment was conducted of the Regional Climate Model Version 3 (RegCM3) used in a coupled system with two land surface schemes: Biosphere Atmosphere Transfer System Version 1e (BATS1e) and Integrated Biosphere Simulator (IBIS). The model’s performance in simulating precipitation was evaluated against the 3-hourly TRMM 3B42 product, with some validation provided of this TRMM product against ground station meteorological data. It is found that the model suffers from three major errors in the rainfall histogram: underestimation of the frequency of dry periods, overestimation of the frequency of low intensity rainfall, and underestimation of the frequency of high intensity rainfall. Additionally, the model shows error in the timing of the diurnal rainfall peak, particularly over land surfaces. These four errors were largely insensitive to the choice of boundary conditions, convective parameterization scheme or land surface scheme. The presence of a wet or dry bias in the simulated volumes of rainfall was, however, dependent on the choice of convection scheme and boundary conditions. This study also showed that the coupled model system has significant error in overestimation of latent heat flux and evapotranspiration from the land surface, and

  15. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    Science.gov (United States)

    Velarde, Luis; Wang, Hong-fei

    2013-08-01

    While in principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system, the inhomogeneous character of surface vibrations in sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with time-domain SFG-VS by mapping the decay of the vibrational polarization using ultrafast lasers, this due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough lineshape. Here, with the recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) technique, we show that the inhomogeneous lineshape can be obtained in the frequency-domain for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 ± 0.01 cm-1 with a total linewidth of 10.9 ± 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4.7 ± 0.4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8.1 ± 0.2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57° ± 2° from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accommodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  16. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  17. Advancing Atmosphere-Ocean Remote Sensing with Spaceborne High Spectral Resolution Lidar

    Science.gov (United States)

    Hostetler, C. A.; Behrenfeld, M. J.; Chepfer, H.; Hu, Y.; Hair, J. W.; Trepte, C. R.; Winker, D. M.; Ferrare, R. A.; Burton, S. P.; Scarino, A. J.; Powell, K. A.; Michaud, J.

    2016-12-01

    More than 1600 publications employing observations from the CALIOP lidar on CALIPSO testify to the value of spaceborne lidar for aerosol and cloud remote sensing. Recent publications have shown the value of CALIOP data for retrievals of key ocean carbon cycle stocks. In this presentation we focus on the advantages of a more advanced technique, High Spectral Resolution Lidar (HSRL), for aerosol, cloud, and ocean remote sensing. An atmosphere-ocean optimized HSRL achieves greater accuracy over the standard backscatter lidar technique for retrievals of aerosol and cloud extinction and backscatter profiles, provides additional capability to retrieve aerosol and cloud microphysical parameters, and enables vertically-resolved characterization of scattering and absorption properties of suspended and dissolved materials in the ocean. Numerous publications highlight the synergy of coincident CALIOP and passive A-train observations for studies of aerosol-cloud radiative effects and cloud-climate feedback. Less appreciated is the complementarity that would exist between an optimized spaceborne lidar and passive ocean color. An optimized HSRL flown in formation with the Plankton, Aerosol, and ocean Ecosystem (PACE) mission would provide phytoplankton vertical distribution, which is needed for accurately estimating net primary productivity but absent in the PACE ocean color data. The HSRL would also provide data needed to improve atmospheric correction schemes in ocean color retrievals. Because lidar provides measurements both night and day, through tenuous clouds and aerosol layers, and in holes between clouds, the sampling achieved is highly complementary to passive radiometry, providing data in important high latitude regions where ocean color data are sparse or nonexistent. In this presentation we will discuss 1) relevant aerosol, cloud, and ocean retrievals from airborne HSRL field missions; 2) the advantages of an optimized spaceborne HSRL for aerosol, cloud, and ocean

  18. Observation of an energy threshold for large ΔE collisional relaxation of highly vibrationally excited pyrazine (Evib=31 000-41 000 cm-1) by CO2

    Science.gov (United States)

    Elioff, Michael S.; Wall, Mark C.; Lemoff, Andrew S.; Mullin, Amy S.

    1999-03-01

    Energy dependent studies of the collisional relaxation of highly vibrationally excited pyrazine through collisions with CO2 were performed for initial pyrazine energies Evib=31 000-35 000 cm-1. These studies are presented along with earlier results for pyrazine with Evib=36 000-41 000 cm-1. High-resolution transient IR laser absorption of individual CO2 (0000) rotational states (J=56-80) was used to investigate the magnitude and partitioning of energy gain into CO2 rotation and translation, which comprises the high energy tail of the energy transfer distribution function. Highly vibrationally excited pyrazine was prepared by absorption of pulsed UV light at seven wavelengths in the range λ=281-324 nm, followed by radiationless decay to pyrazine's ground electronic state. Nascent CO2 (0000) rotational populations were measured for each UV excitation wavelength and distributions of nascent recoil velocities for individual rotational states of CO2 (0000) were obtained from Doppler-broadened transient linewidth measurements. Measurements of energy transfer rate constants at each UV wavelength yield energy-dependent probabilities for collisions involving large ΔE values. These results reveal that the magnitude of large ΔE collisional energy gain in CO2 (0000) is fairly insensitive to the amount of vibrational energy in pyrazine for Evib=31 000-35 000 cm-1. A comparison with earlier studies on pyrazine with Evib=36 000-41 000 cm-1 indicates that the V→RT energy transfer increases both in magnitude and probability for Evib>36 000 cm-1. Implications of incomplete intramolecular vibrational relaxation, electronic state coupling, and isomerization barriers are discussed in light of these results.

  19. INVISIBLE ACTIVE GALACTIC NUCLEI. II. RADIO MORPHOLOGIES AND FIVE NEW H i 21 cm ABSORPTION LINE DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ting; Stocke, John T.; Darling, Jeremy [Center for Astrophysics and Space Astronomy, UCB 389, University of Colorado, Boulder, CO 80309-0389 (United States); Momjian, Emmanuel [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Sharma, Soniya [Research School of Astronomy and Astrophysics, The Australian National University, Mt Stromlo Observatory, ACT 2611 (Australia); Kanekar, Nissim [National Centre for Radio Astrophysics, TIFR, Post Bag 3, Ganeshkhind, Pune 411 007 (India)

    2016-03-15

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  20. Wavelet Filter Banks for Super-Resolution SAR Imaging

    Science.gov (United States)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  1. Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites

    Science.gov (United States)

    Cloutis, E. A.; Hiroi, T.; Gaffey, M. J.; Alexander, C. M. O.'D.; Mann, P.

    2011-03-01

    Existing reflectance spectra of CI chondrites (18 spectra of 3 CIs) have been augmented with new (18 spectra of 2 CIs) reflectance spectra to ascertain the spectral variability of this meteorite class and provide insights into their spectral properties as a function of grain size, composition, particle packing, and viewing geometry. Particle packing and viewing geometry effects have not previously been examined for CI chondrites. The current analysis is focused on the 0.3-2.5 μm interval, as this region is available for the largest number of CI spectra. Reflectance spectra of powdered CI1 chondrites are uniformly dark (IOM), as no other CI opaque phase appears able to produce concurrent darkening and bluing. Magnetite can also explain the presence of an absorption feature near 1 μm in some CI spectra. The most blue-sloped spectra are generally associated with the larger grain size samples. For incidence and emission angles <60°, increasing phase angle results in darker and redder spectra, particularly below ∼1 μm. At high incidence angles (60°), increasing emission angle results in brighter and redder spectra. More densely packed samples and underdense (fluffed) samples show lower overall reflectance than normally packed and flat-surface powdered samples. Some B-class asteroids exhibit selected spectral properties consistent with CI chondrites, although perfect spectral matches have not been found. Because many CI chondrite spectra exhibit absorption features that can be related to specific mineral phases, the search for CI parent bodies can fruitfully be conducted using such parameters.

  2. Electronic structure and spectral properties of heavy actinides Pu, Am, Cm and Bk

    International Nuclear Information System (INIS)

    Shick, Alexander B; Kolorenc, Jindrich; Lichtenstein, Alexander I; Havela, Ladislav

    2010-01-01

    Selected electronic properties of Pu, Am, Cm and Bk are calculated with the aid of charge self-consistent LDA + Hubbard I method. Presented all-electron calculations are performed in the full-potential LAPW basis and incorporate spin-orbit interaction. The results are found to be in good agreement with experimental valence photoelectron spectra as well as with core XAS/EELS spectra of heavy actinides.

  3. Conjugate Etalon Spectral Imager (CESI) & Scanning Etalon Methane Mapper (SEMM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Conjugate Etalon Spectral Imaging (CESI) concept enables the development of miniature instruments with high spectral resolution, suitable for LEO missions aboard...

  4. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-11

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm{sup 3} uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm){sup 3} to (2 mm){sup 3} in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm){sup 3} to (9 mm){sup 3}. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm){sup 3} even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm){sup 3} cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial

  5. THE APPLICATION OF CONTINUOUS WAVELET TRANSFORM BASED FOREGROUND SUBTRACTION METHOD IN 21 cm SKY SURVEYS

    International Nuclear Information System (INIS)

    Gu Junhua; Xu Haiguang; Wang Jingying; Chen Wen; An Tao

    2013-01-01

    We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time

  6. Small nodules (1-2 cm) in liver cirrhosis: Characterization with contrast-enhanced ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyun-Jung [Department of Medical Imaging, Toronto General Hospital, University of Toronto, 585 University Avenue, Toronto, Ontario M5G 2N2 (Canada); Kim, Tae Kyoung [Department of Medical Imaging, Toronto General Hospital, University of Toronto, 585 University Avenue, Toronto, Ontario M5G 2N2 (Canada)], E-mail: taekyoung.kim@uhn.on.ca; Wilson, Stephanie R. [Department of Medical Imaging, Toronto General Hospital, University of Toronto, 585 University Avenue, Toronto, Ontario M5G 2N2 (Canada)

    2009-12-15

    Objective: To determine the diagnostic efficacy of arterial phase contrast-enhanced ultrasound (CEUS) for characterizing small hepatic nodules (1-2 cm) in patients with high-risk for hepatocellular carcinoma (HCC). Materials and methods: Over 12 months, CEUS was performed in 59 patients at high-risk for HCC with small hepatic nodules (1-2 cm; mean, 1.5 cm). Based only on arterial phase (<45 s) vascular intensity and pattern, lesions were prospectively diagnosed as HCC if there was hypervascularity without known features of hemangioma. The diagnosis of HCC was made regardless of the presence or absence of washout. Verification of diagnosis was made by liver transplantation (n = 13), biopsy (n = 12), resection (n = 3) or clinical and imaging follow-up for at least 12 months (n = 31). Results: At of the time of CEUS, the 59 nodules were diagnosed as HCC in 26 and benign lesions in 33, including 20 regenerative/dysplastic nodules (RN/DN), 11 hemangiomas, and 2 focal fat sparing. All 26 nodules with arterial phase hypervascularity without hemangioma-like features were HCC. However, CEUS misdiagnosed HCC as RN/DN in 4 cases with arterial iso- (n = 3) or hypovascularity (n = 1). CEUS correctly diagnosed all 11 hemangiomas. The sensitivity, specificity, and accuracy of CEUS for diagnosing HCC were 86.7, 100, and 93.2%. Conclusions: Arterial phase vascular intensity and pattern of CEUS are highly accurate for the diagnosis of small (1-2 cm) HCC and hemangioma in liver cirrhosis. On CEUS, arterial phase hypervascularity without a hemangioma-pattern alone may be sufficient for diagnosis of small HCC. Infrequent iso/hypovascular HCC may erroneously suggest RN/DN necessitating biopsy or close follow-up.

  7. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    Science.gov (United States)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  8. FLICKERING OF 1.3 cm SOURCES IN SGR B2: TOWARD A SOLUTION TO THE ULTRACOMPACT H II REGION LIFETIME PROBLEM

    Energy Technology Data Exchange (ETDEWEB)

    De Pree, C. G.; Monsrud, A. [Agnes Scott College, 141 East College Avenue, Decatur, GA 30030 (United States); Peters, T. [Institut für Theoretische Physik, Universität Zürich, CH-8057 Zürich (Switzerland); Mac Low, M.-M. [American Museum of Natural History, New York, NY 10024 (United States); Wilner, D. J.; Keto, E. R. [Harvard-Smithsonian CfA, Cambridge, MA 02138 (United States); Goss, W. M. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Galván-Madrid, R. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Klessen, R. S. [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2014-02-01

    Accretion flows onto massive stars must transfer mass so quickly that they are themselves gravitationally unstable, forming dense clumps and filaments. These density perturbations interact with young massive stars, emitting ionizing radiation, alternately exposing and confining their H II regions. As a result, the H II regions are predicted to flicker in flux density over periods of decades to centuries rather than increase monotonically in size as predicted by simple Spitzer solutions. We have recently observed the Sgr B2 region at 1.3 cm with the Very Large Array in its three hybrid configurations (DnC, CnB, and BnA) at a resolution of ∼0.''25. These observations were made to compare in detail with matched continuum observations from 1989. At 0.''25 resolution, Sgr B2 contains 41 ultracompact (UC) H II regions, 6 of which are hypercompact. The new observations of Sgr B2 allow comparison of relative peak flux densities for the H II regions in Sgr B2 over a 23 year time baseline (1989-2012) in one of the most source-rich massive star forming regions in the Milky Way. The new 1.3 cm continuum images indicate that four of the 41 UC H II regions exhibit significant changes in their peak flux density, with one source (K3) dropping in peak flux density, and the other three sources (F10.303, F1, and F3) increasing in peak flux density. The results are consistent with statistical predictions from simulations of high mass star formation, suggesting that they offer a solution to the lifetime problem for UC H II regions.

  9. Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors.

    Science.gov (United States)

    Lee, Zhongping; Shang, Shaoling; Hu, Chuanmin; Zibordi, Giuseppe

    2014-05-20

    Using 901 remote-sensing reflectance spectra (R(rs)(λ), sr⁻¹, λ from 400 to 700 nm with a 5 nm resolution), we evaluated the correlations of R(rs)(λ) between neighboring spectral bands in order to characterize (1) the spectral interdependence of R(rs)(λ) at different bands and (2) to what extent hyperspectral R(rs)(λ) can be reconstructed from multiband measurements. The 901 R(rs) spectra were measured over a wide variety of aquatic environments in which water color varied from oceanic blue to coastal green or brown, with chlorophyll-a concentrations ranging from ~0.02 to >100  mg  m⁻³, bottom depths from ~1  m to >1000  m, and bottom substrates including sand, coral reef, and seagrass. The correlation coefficient of R(rs)(λ) between neighboring bands at center wavelengths λ(k) and λ(l), r(Δλ)(λ(k), λ(l)), was evaluated systematically, with the spectral gap (Δλ=λ(l)-λ(k)) changing between 5, 10, 15, 20, 25, and 30 nm, respectively. It was found that r(Δλ) decreased with increasing Δλ, but remained >0.97 for Δλ≤20  nm for all spectral bands. Further, using 15 spectral bands between 400 and 710 nm, we reconstructed, via multivariant linear regression, hyperspectral R(rs)(λ) (from 400 to 700 nm with a 5 nm resolution). The percentage difference between measured and reconstructed R(rs) for each band in the 400-700 nm range was generally less than 1%, with a correlation coefficient close to 1.0. The mean absolute error between measured and reconstructed R(rs) was about 0.00002  sr⁻¹ for each band, which is significantly smaller than the R(rs) uncertainties from all past and current ocean color satellite radiometric products. These results echo findings of earlier studies that R(rs) measurements at ~15 spectral bands in the visible domain can provide nearly identical spectral information as with hyperspectral (contiguous bands at 5 nm spectral resolution) measurements. Such results provide insights for data

  10. The US Geological Survey, digital spectral reflectance library: version 1: 0.2 to 3.0 microns

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; King, Trude V. V.; Gallagher, Andrea J.; Calvin, Wendy M.

    1993-01-01

    We have developed a digital reflectance spectral library, with management and spectral analysis software. The library includes 500 spectra of 447 samples (some samples include a series of grain sizes) measured from approximately 0.2 to 3.0 microns. The spectral resolution (Full Width Half Maximum) of the reflectance data is less than or equal to 4 nm in the visible (0.2-0.8 microns) and less than or equal 10 nm in the NIR (0.8-2.35 microns). All spectra were corrected to absolute reflectance using an NBS Halon standard. Library management software lets users search on parameters (e.g. chemical formulae, chemical analyses, purity of samples, mineral groups, etc.) as well as spectral features. Minerals from sulfide, oxide, hydroxide, halide, carbonate, nitrate, borate, phosphate, and silicate groups are represented. X-ray and chemical analyses are tabulated for many of the entries, and all samples have been evaluated for spectral purity. The library also contains end and intermediate members for the olivine, garnet, scapolite, montmorillonite, muscovite, jarosite, and alunite solid-solution series. We have included representative spectra of H2O ice, kerogen, ammonium-bearing minerals, rare-earth oxides, desert varnish coatings, kaolinite crystallinity series, kaolinite-smectite series, zeolite series, and an extensive evaporite series. Because of the importance of vegetation to climate-change studies we have include 17 spectra of tree leaves, bushes, and grasses.

  11. Spectral and spatial resolution properties of photon counting X-ray detectors like the Medipix-Detector

    International Nuclear Information System (INIS)

    Korn, A.

    2007-01-01

    The Medipix detector is a hybrid photon counting X-ray detector, consisting of an ASIC and a semiconducting layer as the sensor. This makes the Medipix a direct converting detector. A special feature of the Medipix is a signal processing circuit in every single pixel. This circuit amplifies the input signal triggered by a photon and then transforms the pulse into a digital signal. This early stage digitalisation is one of the main advantages of the detector, since no dark currents are integrated into the signal. Furthermore, the energy information of each single photon is partly preserved. The high number of pixels lends the detector a wide dynamic range, starting from single counts up to a rate of 1010 photons per cm2 and second. Apart from the many advantages, there are still some problems with the detector. Some effects lead to a deterioration of the energy resolution as well as the spatial resolution. The main reasons for this are two effects occuring in the detector, charge sharing and backscattering inside the detector. This study investigates the influence of those two effects on both the energy and spatial resolution. The physical causes of these effects are delineated and their impact on the detector output is examined. In contrast to high energy photon detectors, the repulsion of the charge carriers drifting inside the sensor must not be neglected in a detailed model of X-ray detectors with an energy range of 5 keV-200 keV. For the simulation of the Medipix using Monte Carlo simulations, the software ROSI was augmented. The added features allow a detailed simulation of the charge distribution, using the relevant physical effects that alter the distribution width during the drift towards the sensor electrodes as well further influences on the detector output, including electronical noise, threshold noise or the geometry of the detector. The measured energy and spatial resolution of several different models of Medipix is compared to the simulated

  12. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements

    Science.gov (United States)

    Hoffmann, Alex; Macleod, Neil A.; Huebner, Marko; Weidmann, Damien

    2016-12-01

    This technology demonstration paper reports on the development, demonstration, performance assessment, and initial data analysis of a benchtop prototype quantum cascade laser heterodyne spectroradiometer, operating within a narrow spectral window of ˜ 1 cm-1 around 953.1 cm-1 in transmission mode and coupled to a passive Sun tracker. The instrument has been specifically designed for accurate dry air total column, and potentially vertical profile, measurements of CO2. Data from over 8 months of operation in 2015 near Didcot, UK, confirm that atmospheric measurements with noise levels down to 4 times the shot noise limit can be achieved with the current instrument. Over the 8-month period, spectra with spectral resolutions of 60 MHz (0.002 cm-1) and 600 MHz (0.02 cm-1) have been acquired with median signal-to-noise ratios of 113 and 257, respectively, and a wavenumber calibration uncertainty of 0.0024 cm-1.Using the optimal estimation method and RFM as the radiative transfer forward model, prior analysis and theoretical benchmark modelling had been performed with an observation system simulator (OSS) to target an optimized spectral region of interest. The selected narrow spectral window includes both CO2 and H2O ro-vibrational transition lines to enable the measurement of dry air CO2 column from a single spectrum. The OSS and preliminary retrieval results yield roughly 8 degrees of freedom for signal (over the entire state vector) for an arbitrarily chosen a priori state with relatively high uncertainty ( ˜ 4 for CO2). Preliminary total column mixing ratios obtained are consistent with GOSAT monthly data. At a spectral resolution of 60 MHz with an acquisition time of 90 s, instrumental noise propagation yields an error of around 1.5 ppm on the dry air total column of CO2, exclusive of biases and geophysical parameters errors at this stage.

  13. 3.3 CM JVLA OBSERVATIONS OF TRANSITIONAL DISKS: SEARCHING FOR CENTIMETER PEBBLES

    International Nuclear Information System (INIS)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina

    2017-01-01

    We present sensitive (rms-noises ∼4–25 μ Jy) and high angular resolution (∼1″–2″) 8.9 GHz (3.3 cm) Karl G. Jansky Very Large Array radio continuum observations of 10 presumed transitional disks associated with young low-mass stars. We report the detection of radio continuum emission in 5 out of the 10 objects (RXJ1615, UX Tau A, LkCa15, RXJ1633, and SR 24s). In the case of LkCa15, the centimeter emission is extended, and has a similar morphology to that of the transitional disk observed at millimeter wavelengths with an inner depression. For these five detections, we construct the spectral energy distributions from the centimeter to submillimeter wavelengths, and find that they can be well fitted with a single (RXJ1633 and UX Tau A) or a two-component power law (LkCa15, RXJ1615, and SR 24s). For the cases where a single power law fits the data well, the centimeter emission is likely produced by optically thin dust with large grains (i.e., centimeter-size pebbles) present in the transitional disks. For the cases where a double power law fits the data, the centimeter emission might be produced by the combination of photoevaporation and a free–free jet. We conclude that RXJ1633 and UX Tau A are excellent examples of transitional disks where the structure of the emission from centimeter/millimeter pebbles can be studied. In the other cases, some other physical emitting mechanisms are also important in the centimeter regime.

  14. 3.3 CM JVLA OBSERVATIONS OF TRANSITIONAL DISKS: SEARCHING FOR CENTIMETER PEBBLES

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina, E-mail: lzapata@crya.unam.mx [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico)

    2017-01-10

    We present sensitive (rms-noises ∼4–25 μ Jy) and high angular resolution (∼1″–2″) 8.9 GHz (3.3 cm) Karl G. Jansky Very Large Array radio continuum observations of 10 presumed transitional disks associated with young low-mass stars. We report the detection of radio continuum emission in 5 out of the 10 objects (RXJ1615, UX Tau A, LkCa15, RXJ1633, and SR 24s). In the case of LkCa15, the centimeter emission is extended, and has a similar morphology to that of the transitional disk observed at millimeter wavelengths with an inner depression. For these five detections, we construct the spectral energy distributions from the centimeter to submillimeter wavelengths, and find that they can be well fitted with a single (RXJ1633 and UX Tau A) or a two-component power law (LkCa15, RXJ1615, and SR 24s). For the cases where a single power law fits the data well, the centimeter emission is likely produced by optically thin dust with large grains (i.e., centimeter-size pebbles) present in the transitional disks. For the cases where a double power law fits the data, the centimeter emission might be produced by the combination of photoevaporation and a free–free jet. We conclude that RXJ1633 and UX Tau A are excellent examples of transitional disks where the structure of the emission from centimeter/millimeter pebbles can be studied. In the other cases, some other physical emitting mechanisms are also important in the centimeter regime.

  15. CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes.

    Directory of Open Access Journals (Sweden)

    Qingqing Fan

    Full Text Available WRKY transcription factors serve as antagonistic or synergistic regulators in a variety of abiotic stress responses in plants. Here, we show that CmWRKY1, a member of the group IIb WRKY family isolated from Chrysanthemum morifolium, exhibits no transcriptional activation in yeast cells. The subcellular localization examination showed that CmWRKY1 localizes to the nucleus in vivo. Furthermore, CmWRKY1-overexpressing transgenic lines exhibit enhanced dehydration tolerance in response to polyethylene glycol (PEG treatment compared with wild-type plants. We further confirmed that the transgenic plants exhibit suppressed expression levels of genes negatively regulated by ABA, such as PP2C, ABI1 and ABI2, and activated expression levels of genes positively regulated by ABA, such as PYL2, SnRK2.2, ABF4, MYB2, RAB18, and DREB1A. Taken together, our results indicate that CmWRKY1 plays an important role in the response to drought in chrysanthemum through an ABA-mediated pathway.

  16. In-Situ Assay Of Transuranic Radionuclides In The Vadose Zone Using High-Resolution Spectral Gamma Logging - A Hanford Case Study

    International Nuclear Information System (INIS)

    Rohay, V.J.; Henwood, P.; McCain, R.

    2009-01-01

    High-resolution spectral gamma logging in steel-cased boreholes is used to detect and quantify transuranic radionuclides in the subsurface. Pu-239, Pu-241, Am-241, and Np-237 are identified based on characteristic decay gammas. Typical minimum detectable levels are on the order of 20 to 40 nCi/g. In intervals of high transuranic concentrations, gamma rays from other sources may complicate analysis and interpretation. Gamma rays detected in the borehole may originate from three sources: decay of the parent transuranic radionuclide or a daughter; alpha interactions; and interactions with neutrons resulting from either spontaneous fission or alpha particle interactions.

  17. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown

  18. A high spatio-temporal resolution optical pyrometer at the ORION laser facility.

    Science.gov (United States)

    Floyd, Emma; Gumbrell, Edward T; Fyrth, Jim; Luis, James D; Skidmore, Jonathan W; Patankar, Siddharth; Giltrap, Samuel; Smith, Roland

    2016-11-01

    A streaked pyrometer has been designed to measure the temperature of ≈100 μm diameter heated targets in the warm dense matter region. The diagnostic has picosecond time resolution. Spatial resolution is limited by the streak camera to 4 μm in one dimension; the imaging system has superior resolution of 1 μm. High light collection efficiency means that the diagnostic can transmit a measurable quantity of thermal emission at temperatures as low as 1 eV to the detector. This is achieved through the use of an f/1.4 objective, and a minimum number of reflecting and refracting surfaces to relay the image over 8 m with no vignetting over a 0.4 mm field of view with 12.5× magnification. All the system optics are highly corrected, to allow imaging with minimal aberrations over a broad spectral range. The detector is a highly sensitive Axis Photonique streak camera with a P820PSU streak tube. For the first time, two of these cameras have been absolutely calibrated at 1 ns and 2 ns sweep speeds under full operational conditions and over 8 spectral bands between 425 nm and 650 nm using a high-stability picosecond white light source. Over this range the cameras had a response which varied between 47 ± 8 and 14 ± 4 photons/count. The calibration of the optical imaging system makes absolute temperature measurements possible. Color temperature measurements are also possible due to the wide spectral range over which the system is calibrated; two different spectral bands can be imaged onto different parts of the photocathode of the same streak camera.

  19. Processing of spectral X-ray data with principal components analysis

    CERN Document Server

    Butler, A P H; Cook, N J; Butzer, J; Schleich, N; Tlustos, L; Scott, N; Grasset, R; de Ruiter, N; Anderson, N G

    2011-01-01

    The goal of the work was to develop a general method for processing spectral x-ray image data. Principle component analysis (PCA) is a well understood technique for multivariate data analysis and so was investigated. To assess this method, spectral (multi-energy) computed tomography (CT) data was obtained using a Medipix2 detector in a MARS-CT (Medipix All Resolution System). PCA was able to separate bone (calcium) from two elements with k-edges in the X-ray spectrum used (iodine and barium) within a mouse. This has potential clinical application in dual-energy CT systems and future Medipix3 based spectral imaging where up to eight energies can be recorded simultaneously with excellent energy resolution. (c) 2010 Elsevier B.V. All rights reserved.

  20. Relationship between behavioral and physiological spectral-ripple discrimination.

    Science.gov (United States)

    Won, Jong Ho; Clinard, Christopher G; Kwon, Seeyoun; Dasika, Vasant K; Nie, Kaibao; Drennan, Ward R; Tremblay, Kelly L; Rubinstein, Jay T

    2011-06-01

    Previous studies have found a significant correlation between spectral-ripple discrimination and speech and music perception in cochlear implant (CI) users. This relationship could be of use to clinicians and scientists who are interested in using spectral-ripple stimuli in the assessment and habilitation of CI users. However, previous psychoacoustic tasks used to assess spectral discrimination are not suitable for all populations, and it would be beneficial to develop methods that could be used to test all age ranges, including pediatric implant users. Additionally, it is important to understand how ripple stimuli are processed in the central auditory system and how their neural representation contributes to behavioral performance. For this reason, we developed a single-interval, yes/no paradigm that could potentially be used both behaviorally and electrophysiologically to estimate spectral-ripple threshold. In experiment 1, behavioral thresholds obtained using the single-interval method were compared to thresholds obtained using a previously established three-alternative forced-choice method. A significant correlation was found (r = 0.84, p = 0.0002) in 14 adult CI users. The spectral-ripple threshold obtained using the new method also correlated with speech perception in quiet and noise. In experiment 2, the effect of the number of vocoder-processing channels on the behavioral and physiological threshold in normal-hearing listeners was determined. Behavioral thresholds, using the new single-interval method, as well as cortical P1-N1-P2 responses changed as a function of the number of channels. Better behavioral and physiological performance (i.e., better discrimination ability at higher ripple densities) was observed as more channels added. In experiment 3, the relationship between behavioral and physiological data was examined. Amplitudes of the P1-N1-P2 "change" responses were significantly correlated with d' values from the single-interval behavioral

  1. Imaging of Hsp70-positive tumors with cmHsp70.1 antibody-conjugated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Gehrmann MK

    2015-09-01

    Full Text Available Mathias K Gehrmann,1 Melanie A Kimm,2 Stefan Stangl,1 Thomas E Schmid,1 Peter B Noël,2 Ernst J Rummeny,2 Gabriele Multhoff11Department of Radiation Oncology, 2Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, GermanyAbstract: Real-time imaging of small tumors is still one of the challenges in cancer diagnosis, prognosis, and monitoring of clinical outcome. Targeting novel biomarkers that are selectively expressed on a large variety of different tumors but not normal cells has the potential to improve the imaging capacity of existing methods such as computed tomography. Herein, we present a novel technique using cmHsp70.1 monoclonal antibody-conjugated spherical gold nanoparticles for quantification of the targeted uptake of gold nanoparticles into membrane Hsp70-positive tumor cells. Upon binding, cmHsp70.1-conjugated gold nanoparticles but not nanoparticles coupled to an isotype-matched IgG1 antibody or empty nanoparticles are rapidly taken up by highly malignant Hsp70 membrane-positive mouse tumor cells. After 24 hours, the cmHsp70.1-conjugated gold nanoparticles are found to be enriched in the perinuclear region. Specificity for membrane Hsp70 was shown by using an Hsp70 knockout tumor cell system. Toxic side effects of the cmHsp70.1-conjugated nanoparticles are not observed at a concentration of 1–10 µg/mL. Experiments are ongoing to evaluate whether cmHsp70.1 antibody-conjugated gold nanoparticles are suitable for the detection of membrane-Hsp70-positive tumors in vivo.Keywords: heat shock protein 70, tumor biomarker, theranostics, multimodal CT, multispectral CT, k-edge

  2. A new ~1 μm laser crystal Nd:Gd2SrAl2O7: growth, thermal, spectral and lasing properties

    Science.gov (United States)

    Yuan, Feifei; Liao, Wenbin; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Wang, Yeqing; Lin, Zhoubin; Wang, Guofu; Zhang, Ge

    2018-03-01

    Nd:Gd2SrAl2O7 crystals were grown by the Czochralski technique; thermal, spectral and laser properties were investigated in detail. The average thermal expansion coefficients along a- and c-axis are 12.6  ×  10-6 K-1 and 14.9  ×  10-6 K-1, respectively. At room temperature, the thermal conductivities are 4.98 and 5.24 W (m-1 * K-1) along the a- and c-axis, respectively. The absorption cross sections at ~808 nm are 13.7  ×  10-20 cm2 with a FWHM of 3.3 nm for π-polarization and 11.84  ×  10-20 cm2 with a FWHM of 3.4 nm for σ-polarization. The emission cross sections at ~1080 nm are 15  ×  10-20 cm2 and 12.7  ×  10-20 cm2 with a FWHM of about 5.1 nm and 12.5 nm for π- and σ-polarization, respectively. The fluorescence lifetime for the 4F3/2  →  4I11/2 transition was fitted to be 118 µs. Pumped by a fiber-coupled 808 nm laser diode, the maximum 1.55 W continuous-wave laser output at ~1.08 µm was achieved with a slope efficiency of 30.5%. All the results show that Nd:Gd2SrAl2O7 crystal is a promising laser material.

  3. EarthFinder: A Precise Radial Velocity Survey Probe Mission of our Nearest Stellar Neighbors for Earth-Mass Habitable Zone Analogs Using High-Resolution UV-Vis-NIR Echelle Spectroscopy on a Space Platform

    Science.gov (United States)

    Plavchan, Peter; EarthFinder Team

    2018-01-01

    We are investigating the science case for a 1.0-1.4 meter space telescope to survey the closest, brightest FGKM main sequence stars to search for Habitable Zone (HZ) Earth analogs using the precise radial velocity (PRV) technique at a precision of 1-10 cm/s. Our baseline instrument concept uses two diffraction-limited spectrographs operating in the 0.4-1.0 microns and 1.0-2.4 microns spectral regions each with a spectral resolution of R=150,000~200,000, with the possibility of a third UV arm. Because the instrument utilizes a diffraction-limited input beam, the spectrograph would be extremely compact, less than 50 cm on a side, and illumination can be stabilized with the coupling of starlight into single mode fibers. With two octaves of wavelength coverage and a cadence unimpeded by any diurnal, seasonal, and atmospheric effects, EarthFinder will offer a unique platform for recovering stellar activity signals from starspots, plages, granulation, etc. to detect exoplanets at velocity semi-amplitudes currently not obtainable from the ground. Variable telluric absorption and emission lines may potentially preclude achieving PRV measurements at or below 10 cm/s in the visible and advantage compared to an annual ~3-6 month observing season from the ground for mitigating stellar activity and detecting the orbital periods of HZ Earth-mass analogs (e.g. ~6-months to ~2 years). Finally, we are compiling a list of ancillary science cases for the observatory, ranging from asteroseismology to the direct measurement of the expansion of the Universe.

  4. THE HERSCHEL AND IRAM CHESS SPECTRAL SURVEYS OF THE PROTOSTELLAR SHOCK L1157-B1: FOSSIL DEUTERATION

    Energy Technology Data Exchange (ETDEWEB)

    Codella, C.; Fontani, F.; Vasta, M. [INAF, Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Ceccarelli, C.; Lefloch, B.; Kahane, C.; Taquet, V.; Wiesenfeld, L. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Busquet, G. [INAF - Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133, Roma (Italy); Caselli, P. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Lis, D. [California Institute of Technology, Cahill Center for Astronomy and Astrophysics 301-17, Pasadena, CA 91125 (United States); Viti, S., E-mail: codella@rcetri.astro.it [Department of Physics and Astronomy, University College London, London (United Kingdom)

    2012-09-20

    We present the first study of deuteration toward the protostellar shock L1157-B1, based on spectral surveys performed with the Herschel-HIFI and IRAM 30 m telescopes. The L1157 outflow is driven by a low-mass Class 0 protostar and is considered the prototype of the so-called chemically active outflows. The young (2000 yr), bright blueshifted bow shock, B1, is an ideal laboratory for studying the gas chemically enriched by the release of dust mantles due to the passage of a shock. A total of 12 emission lines (up to E{sub u} = 63 K) of CH{sub 2}DOH, HDCO, and DCN are detected. In addition, two lines of NH{sub 2}D and HDO are tentatively reported. To estimate the deuteration, we also extracted from our spectral survey emission lines of non-deuterated isotopologues ({sup 13}CH{sub 3}OH, H{sub 2} {sup 13}CO, H{sup 13}CN, H{sub 2} {sup 13}CO, and NH{sub 3}). We infer higher deuteration fractions for CH{sub 3}OH (D/H = 0.2-2 Multiplication-Sign 10{sup -2}) and H{sub 2}CO (5-8 Multiplication-Sign 10{sup -3}) than for H{sub 2}O (0.4-2 Multiplication-Sign 10{sup -3}), HCN ({approx}10{sup -3}), and ammonia ({<=}3 Multiplication-Sign 10{sup -2}). The measurement of deuteration of water, formaldehyde, and methanol in L1157-B1 provides a fossil record of the gas before it was shocked by the jet driven by the protostar. A comparison with gas-grain models indicates that the gas passed through a low-density ({<=}10{sup 3} cm{sup -3}) phase, during which the bulk of water ices formed, followed by a phase of increasing density, up to 3 Multiplication-Sign 10{sup 4} cm{sup -3}, during which formaldehyde and methanol ices formed.

  5. Extracting attosecond delays from spectrally overlapping interferograms

    Science.gov (United States)

    Jordan, Inga; Wörner, Hans Jakob

    2018-02-01

    Attosecond interferometry is becoming an increasingly popular technique for measuring the dynamics of photoionization in real time. Whereas early measurements focused on atomic systems with very simple photoelectron spectra, the technique is now being applied to more complex systems including isolated molecules and solids. The increase in complexity translates into an augmented spectral congestion, unavoidably resulting in spectral overlap in attosecond interferograms. Here, we discuss currently used methods for phase retrieval and introduce two new approaches for determining attosecond photoemission delays from spectrally overlapping photoelectron spectra. We show that the previously used technique, consisting in the spectral integration of the areas of interest, does in general not provide reliable results. Our methods resolve this problem, thereby opening the technique of attosecond interferometry to complex systems and fully exploiting its specific advantages in terms of spectral resolution compared to attosecond streaking.

  6. Gain and time resolution of 45 μm thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 1015 neq/cm2

    CERN Document Server

    Lange, J; Cavallaro, E; Chytka, L; Davis, P.M; Flores, D; Förster, F; Grinstein, S; Hidalgo, S; Komarek, T; Kramberger, G; Mandić, I; Merlos, A; Nozka, L; Pellegrini, G; Quirion, D; Sykora, T; Physics

    2018-01-01

    The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3 × 1014 neq/cm2, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain...

  7. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    Science.gov (United States)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

  8. Atmospheric stellar parameters for large surveys using FASMA, a new spectral synthesis package

    Science.gov (United States)

    Tsantaki, M.; Andreasen, D. T.; Teixeira, G. D. C.; Sousa, S. G.; Santos, N. C.; Delgado-Mena, E.; Bruzual, G.

    2018-02-01

    In the era of vast spectroscopic surveys focusing on Galactic stellar populations, astronomers want to exploit the large quantity and good quality of data to derive their atmospheric parameters without losing precision from automatic procedures. In this work, we developed a new spectral package, FASMA, to estimate the stellar atmospheric parameters (namely effective temperature, surface gravity and metallicity) in a fast and robust way. This method is suitable for spectra of FGK-type stars in medium and high resolution. The spectroscopic analysis is based on the spectral synthesis technique using the radiative transfer code, MOOG. The line list is comprised of mainly iron lines in the optical spectrum. The atomic data are calibrated after the Sun and Arcturus. We use two comparison samples to test our method, (i) a sample of 451 FGK-type dwarfs from the high-resolution HARPS spectrograph; and (ii) the Gaia-ESO benchmark stars using both high and medium resolution spectra. We explore biases in our method from the analysis of synthetic spectra covering the parameter space of our interest. We show that our spectral package is able to provide reliable results for a wide range of stellar parameters, different rotational velocities, different instrumental resolutions and for different spectral regions of the VLT-GIRAFFE spectrographs, used amongst others for the Gaia-ESO survey. FASMA estimates stellar parameters in less than 15 m for high-resolution and 3 m for medium-resolution spectra. The complete package is publicly available to the community.

  9. The Monte Carlo evaluation of noise and resolution properties of granular phosphor screens

    International Nuclear Information System (INIS)

    Liaparinos, P F; Kandarakis, I S

    2009-01-01

    The imaging performance of phosphor screens, used as x-ray detectors in diagnostic medical imaging systems, is affected by their both noise and resolution properties. Amplification and blurring processes are due to a sequence of conversion stages within the screen which contribute to fluctuations in the number and spatial distribution of the optical quanta recorded by the optical detector (e.g. film, television camera, CCD, etc). The purpose of this paper is to investigate the stochastic noise arising from granularity as well as the variation of spatial resolution of granular fluorescent screens in terms of the detector's structure. Using a custom-validated Monte Carlo model, the parameters of interest were evaluated for the widely used Gd 2 O 2 S:Tb phosphor material. We have studied the variations of (i) the modulation transfer function, (ii) the Swank factor and (iii) the zero-frequency detective quantum efficiency (DQE), under several conditions employed in conventional and digital mammography and radiology. Several evaluations are provided for the imaging metrics as a function of the x-ray energy (18 keV, 49 keV and 51 keV), phosphor coating weight (20 mg cm -2 , 34 mg cm -2 and 60 mg cm -2 ), grain size (from 4 μm up to 13 μm) and packing density (from 50% up to 85%). It was found that screens of high packing density can combine high zero-frequency DQE with improved resolution properties. For a digital mammographic imaging system (34 mg cm -2 , 18 keV), a packing density of 85% can improve the spatial resolution of the screen by 1.6 cycles mm -1 in comparison to that of 50% packing density. Similarly, for radiographic cases (60 mg cm -2 , 49 keV), the spatial resolution can be improved by 1.7 cycles mm -1 . The aforementioned findings provide the resolution benefits of using high packing density screens.

  10. 344 cm x 86 cm low mass vacuum window

    International Nuclear Information System (INIS)

    Reimers, R.M.; Porter, J.; Meneghetti, J.; Wilde, S.; Miller, R.

    1983-08-01

    The LBL Heavy Ion Spectrometer System (HISS) superconducting magnet contains a 1 m x 3.45 m x 2 m vacuum tank in its gap. A full aperture thin window was needed to minimize background as the products of nuclear collisions move from upstream targets to downstream detectors. Six windows were built and tested in the development process. The final window's unsupported area is 3m 2 with a 25 cm inward deflection. The design consists of a .11 mm Nylon/aluminum/polypropylene laminate as a gas seal and .55 mm woven aramid fiber for strength. Total mass is 80 milligrams per cm 2 . Development depended heavily on past experience and testing. Safety considerations are discussed

  11. The fusion of satellite and UAV data: simulation of high spatial resolution band

    Science.gov (United States)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  12. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.

    Science.gov (United States)

    Chemyakin, Eduard; Müller, Detlef; Burton, Sharon; Kolgotin, Alexei; Hostetler, Chris; Ferrare, Richard

    2014-11-01

    We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (β)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3β+1α," "2β+1α," and "3β" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3β+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and

  13. High resolution infrared and Raman spectra of 13C12CD2: The CD stretching fundamentals and associated combination and hot bands

    International Nuclear Information System (INIS)

    Di Lonardo, G.; Fusina, L.; Canè, E.; Tamassia, F.; Martínez, R. Z.; Bermejo, D.

    2015-01-01

    Infrared and Raman spectra of mono 13 C fully deuterated acetylene, 13 C 12 CD 2 , have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm1 in the region 1800–7800 cm1 . Sixty new bands involving the ν 1 and ν 3 C—D stretching modes also associated with the ν 4 and ν 5 bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν 1 fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm1 . The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ 4 + υ 5 up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling–Dennison interaction between υ 4 = 2 and υ 5 = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm1 , of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν 2 manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling–Dennison constants can be valuable for understanding energy flows between independent vibrations

  14. Spectral response of THM grown CdZnTe crystals

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Harris, F.

    2008-01-01

    The spectral response of several crystals grown by the Traveling Heater Method (THM) were investigated. An energy resolution of 0.98% for a Pseudo Frisch-Grid of 4 × 4 × 9 mm3 and 2.1% FWHM for a coplanar-grid of size 11 × 11 × 5 mm3 were measured using 137Cs-662 keV. In addition a 4% FWHM at 122...

  15. Image quality of conventional images of dual-layer SPECTRAL CT: a phantom study.

    Science.gov (United States)

    van Ommen, F; Bennink, E; Vlassenbroek, A; Dankbaar, J W; Schilham, A M R; Viergever, M A; de Jong, H W A M

    2018-05-10

    Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips), by means of phantom experiments. For both CT scanners conventional CT images were acquired using four adult scanning protocols: i) body helical, ii) body axial, iii) head helical and iv) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10% and 5% MTF of the iCT and IQon showed small but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with

  16. Archives of Astronomical Spectral Observations and Atomic/Molecular Databases for their Analysis

    Directory of Open Access Journals (Sweden)

    Ryabchikova T.

    2015-12-01

    Full Text Available We present a review of open-source data for stellar spectroscopy investigations. It includes lists of the main archives of medium-to-high resolution spectroscopic observations, with brief characteristics of the archive data (spectral range, resolving power, flux units. We also review atomic and molecular databases that contain parameters of spectral lines, cross-sections and reaction rates needed for a detailed analysis of high resolution, high signal-to-noise ratio stellar spectra.

  17. FOREGROUND CONTAMINATION IN INTERFEROMETRIC MEASUREMENTS OF THE REDSHIFTED 21 cm POWER SPECTRUM

    International Nuclear Information System (INIS)

    Bowman, Judd D.; Morales, Miguel F.; Hewitt, Jacqueline N.

    2009-01-01

    Subtraction of astrophysical foreground contamination from 'dirty' sky maps produced by simulated measurements of the Murchison Widefield Array (MWA) has been performed by fitting a third-order polynomial along the spectral dimension of each pixel in the data cubes. The simulations are the first to include the unavoidable instrumental effects of the frequency-dependent primary antenna beams and synthesized array beams. They recover the one-dimensional spherically binned input redshifted 21 cm power spectrum within ∼1% over the scales probed most sensitively by the MWA (0.01 ∼ -1 ) and demonstrate that realistic instrumental effects will not mask the epoch of reionization signal. We find that the weighting function used to produce the dirty sky maps from the gridded visibility measurements is important to the success of the technique. Uniform weighting of the visibility measurements produces the best results, whereas natural weighting significantly worsens the foreground subtraction by coupling structure in the density of the visibility measurements to spectral structure in the dirty sky map data cube. The extremely dense uv-coverage of the MWA was found to be advantageous for this technique and produced very good results on scales corresponding to |u| ∼< 500λ in the uv-plane without any selective editing of the uv-coverage.

  18. Monitoring of Antarctic moss ecosystems using a high spatial resolution imaging spectroscopy

    Science.gov (United States)

    Malenovsky, Zbynek; Lucieer, Arko; Robinson, Sharon; Harwin, Stephen; Turner, Darren; Veness, Tony

    2013-04-01

    The most abundant photosynthetically active plants growing along the rocky Antarctic shore are mosses of three species: Schistidium antarctici, Ceratodon purpureus, and Bryum pseudotriquetrum. Even though mosses are well adapted to the extreme climate conditions, their existence in Antarctica depends strongly on availability of liquid water from snowmelt during the short summer season. Recent changes in temperature, wind speed and stratospheric ozone are stimulating faster evaporation, which in turn influences moss growing rate, health state and abundance. This makes them an ideal bio-indicator of the Antarctic climate change. Very short growing season, lasting only about three months, requires a time efficient, easily deployable and spatially resolved method for monitoring the Antarctic moss beds. Ground and/or low-altitude airborne imaging spectroscopy (called also hyperspectral remote sensing) offers a fast and spatially explicit approach to investigate an actual spatial extent and physiological state of moss turfs. A dataset of ground-based spectral images was acquired with a mini-Hyperspec imaging spectrometer (Headwall Inc., the USA) during the Antarctic summer 2012 in the surroundings of the Australian Antarctic station Casey (Windmill Islands). The collection of high spatial resolution spectral images, with pixels about 2 cm in size containing from 162 up to 324 narrow spectral bands of wavelengths between 399 and 998 nm, was accompanied with point moss reflectance measurements recorded with the ASD HandHeld-2 spectroradiometer (Analytical Spectral Devices Inc., the USA). The first spectral analysis indicates significant differences in red-edge and near-infrared reflectance of differently watered moss patches. Contrary to high plants, where the Normalized Difference Vegetation Index (NDVI) represents an estimate of green biomass, NDVI of mosses indicates mainly the actual water content. Similarly to high plants, reflectance of visible wavelengths is

  19. A high resolution gamma-ray spectrometer based on superconducting microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D. A.; Horansky, R. D. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Denver, Denver, Colorado 80208 (United States); Schmidt, D. R.; Doriese, W. B.; Fowler, J. W.; Kotsubo, V.; Mates, J. A. B. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Colorado, Boulder, Colorado 80309 (United States); Hoover, A. S.; Winkler, R.; Rabin, M. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Alpert, B. K.; Beall, J. A.; Fitzgerald, C. P.; Hilton, G. C.; Irwin, K. D.; O' Neil, G. C.; Reintsema, C. D.; Schima, F. J.; Swetz, D. S.; Vale, L. R. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); and others

    2012-09-15

    Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gamma-ray microcalorimeters, based on transition-edge sensors (TESs), possible. At these collecting areas, gamma microcalorimeters can utilize their unprecedented energy resolution to perform spectroscopy in a number of applications that are limited by closely-spaced spectral peaks, for example, the nondestructive analysis of nuclear materials. We have built a 256 pixel spectrometer with an average full-width-at-half-maximum energy resolution of 53 eV at 97 keV, a useable dynamic range above 400 keV, and a collecting area of 5 cm{sup 2}. We have demonstrated multiplexed readout of the full 256 pixel array with 236 of the pixels (91%) giving spectroscopic data. This is the largest multiplexed array of TES microcalorimeters to date. This paper will review the spectrometer, highlighting the instrument design, detector fabrication, readout, operation of the instrument, and data processing. Further, we describe the characterization and performance of the newest 256 pixel array.

  20. Raman and Mid-IR Spectral Analysis of the Atacamite-Structure Hydroxyl/Deuteroxyl Nickel Chlorides Ni2(OH/D)3Cl

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Dong; Hagihala Masato; ZHENG Xu-Guang; MENG Dong-Doug; GUO Qi-Xin

    2011-01-01

    @@ Vibrational spectra(Raman 4000-95cm-1 and mid-IR 4000-400cm-1) of the atacamite-structure Ni2(OH)3Cl,including a rarely reported kind of asymmetric trimetric hydrogen bond, as a member of the geometrically frustrated material series and its deuteride Ni2(OD)3Cl are, to the best of our knowledge, reported for the first time and analyzed at room temperature.Through a comparative study of four spectra according to their crystal structural parameters, we assign OH stretching modes v(OH) in a functional group region(3700-3400 cm-1) and their deformation modes δ(NiOH/D) in the correlation peak region(900-600 cm-1)with the corresponding mode frequency ratios ωv(OD)/ωv(OH)≈73% and ωδ(NiOD)/ωδ(NiOH)≈75%, and further self-consistently suggest NiO and Ni-Cl related modes in the fingerprint region(500-200cm-1 and 200-Ocm-1, respectively) by use of the unified six-ligand NiO5Cl and NiO4Cl2 frames.This report may contribute to the spectral analysis of other hydroxyl transition-metal halides and to the understanding of the fundamental physics of their exotic magnetic geometrical frustration property from the spectral changes around the corresponding low transition temperatures.

  1. Signal-to-solar clutter calculations of AK-47 muzzle flash at various spectral bandpasses near the potassium D1/D2 doublet

    Science.gov (United States)

    Klett, Karl K., Jr.

    2010-04-01

    An analysis was performed, using MODTRAN, to determine the best filters to use for detecting the muzzle flash of an AK-47 in daylight conditions in the desert. Filters with bandwidths of 0.05, 0.1, 0.5, 1.0, 3.0, and 5.0 nanometers (nm) were analyzed to understand how the optical bandwidth affects the signal-to-solar clutter ratio. These filters were evaluated near the potassium D1 and D2 doublet emission lines that occur at 769.89 and 766.49 nm respectively that are observed where projectile propellants are used. The maximum spectral radiance, from the AK-47 muzzle flash, is 1.88 x 10-2 W/cm2 str micron, and is approximately equal to the daytime atmospheric spectral radiance. The increased emission, due to the potassium doublet lines, and decreased atmospheric transmission, due to oxygen absorption, combine to create a condition where the signal-to-solar clutter ratio is greater than 1. The 3 nm filter, has a signal-to-solar clutter ratio of 2.09 when centered at 765.37 nm and provides the best combination of both cost and signal sensitivity.

  2. MIPAS-ENVISAT limb-sounding measurements: trade-off study for improvement of horizontal resolution.

    Science.gov (United States)

    Ridolfi, Marco; Magnani, Luca; Carlotti, Massimo; Dinelli, Bianca Maria

    2004-11-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a limb-scanning spectrometer that has operated onboard the Environmental Satellite since the end of March 2002. Common features of limb-scanning experiments are both high vertical resolution and poor horizontal resolution. We exploit the two-dimensional geo-fit retrieval approach [Appl. Opt. 40, 1872-1875 (2001)] to investigate the possibility of improving the horizontal resolution of MIPAS measurements. Two different strategies are considered for this purpose, one exploiting the possibility (offered by the geo-fit analysis method) for an arbitrary definition of the retrieval grid, the other based on the possibility of saving measurement time by degrading the spectral resolution of the interferometer. The performances of the two strategies are compared in terms of the trade-off between the attained horizontal resolution and the retrieval precision. We find that for ozone it is possible to improve by a factor of 2 the horizontal resolution, which in the nominal measurement plan is approximately 530 km. This improvement corresponds to a degradation of the retrieval precision, which on average varies from a factor of 1.4 to 2.5, depending on the adopted spectral resolution.

  3. Infrared absorption cross sections for ethane (C2H6) in the 3 μm region

    International Nuclear Information System (INIS)

    Harrison, Jeremy J.; Allen, Nicholas D.C.; Bernath, Peter F.

    2010-01-01

    Infrared absorption cross sections for ethane have been measured in the 3 μm spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125/HR). Results are presented for pure ethane gas from spectra recorded at 0.004 cm -1 resolution and for mixtures with dry synthetic air from spectra obtained at 0.015 cm -1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution), at a number of temperatures and pressures appropriate for atmospheric conditions. Intensities were calibrated using three ethane spectra (recorded at 278, 293, and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database.

  4. Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments

    Directory of Open Access Journals (Sweden)

    MingXia He

    2007-12-01

    Full Text Available About 30 years ago, NASA launched the first ocean-color observing satellite:the Coastal Zone Color Scanner. CZCS had 5 bands in the visible-infrared domain with anobjective to detect changes of phytoplankton (measured by concentration of chlorophyll inthe oceans. Twenty years later, for the same objective but with advanced technology, theSea-viewing Wide Field-of-view Sensor (SeaWiFS, 7 bands, the Moderate-ResolutionImaging Spectrometer (MODIS, 8 bands, and the Medium Resolution ImagingSpectrometer (MERIS, 12 bands were launched. The selection of the number of bands andtheir positions was based on experimental and theoretical results achieved before thedesign of these satellite sensors. Recently, Lee and Carder (2002 demonstrated that foradequate derivation of major properties (phytoplankton biomass, colored dissolved organicmatter, suspended sediments, and bottom properties in both oceanic and coastalenvironments from observation of water color, it is better for a sensor to have ~15 bands inthe 400 – 800 nm range. In that study, however, it did not provide detailed analysesregarding the spectral locations of the 15 bands. Here, from nearly 400 hyperspectral (~ 3-nm resolution measurements of remote-sensing reflectance (a measure of water colortaken in both coastal and oceanic waters covering both optically deep and optically shallowwaters, first- and second-order derivatives were calculated after interpolating themeasurements to 1-nm resolution. From these derivatives, the frequency of zero values foreach wavelength was accounted for, and the distribution spectrum of such frequencies wasobtained. Furthermore, the wavelengths that have the highest appearance of zeros wereidentified. Because these spectral locations indicate extrema (a local maximum orminimum of the reflectance spectrum or inflections of the spectral curvature, placing the bands of a sensor at these wavelengths maximizes the potential of capturing (and then restoring

  5. Computer generated multi-color graphics in whole body gamma spectral analysis

    International Nuclear Information System (INIS)

    Phillips, W.G.; Curtis, S.P.; Environmental Protection Agency, Las Vegas, NV)

    1984-01-01

    A medium resolution color graphics terminal (512 x 512 pixels) was appended to a computerized gamma spectrometer for the display of whole body counting data. The color display enhances the ability of a spectroscopist to identify at a glance multicolored spectral regions of interest immediate qualitative interpretation. Spectral data from subjects containing low concentrations of gamma emitters obtained by both NaI(T1) and phoswich detectors are viewed by the method. In addition, software generates a multispectral display by which the gross, background, and net spectra are displayed in color simultaneously on a single screen

  6. A novel and compact spectral imaging system based on two curved prisms

    Science.gov (United States)

    Nie, Yunfeng; Bin, Xiangli; Zhou, Jinsong; Li, Yang

    2013-09-01

    As a novel detection approach which simultaneously acquires two-dimensional visual picture and one-dimensional spectral information, spectral imaging offers promising applications on biomedical imaging, conservation and identification of artworks, surveillance of food safety, and so forth. A novel moderate-resolution spectral imaging system consisting of merely two optical elements is illustrated in this paper. It can realize the function of a relay imaging system as well as a 10nm spectral resolution spectroscopy. Compared to conventional prismatic imaging spectrometers, this design is compact and concise with only two special curved prisms by utilizing two reflective surfaces. In contrast to spectral imagers based on diffractive grating, the usage of compound-prism possesses characteristics of higher energy utilization and wider free spectral range. The seidel aberration theory and dispersive principle of this special prism are analyzed at first. According to the results, the optical system of this design is simulated, and the performance evaluation including spot diagram, MTF and distortion, is presented. In the end, considering the difficulty and particularity of manufacture and alignment, an available method for fabrication and measurement is proposed.

  7. SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS

    International Nuclear Information System (INIS)

    Beresnyak, Andrey

    2014-01-01

    Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 4096 3 , which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around –1.7, close to Kolmogorov's –5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The –1.5 slope for energy and the –2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics

  8. High-resolution linkage map of mouse chromosome 13 in the vicinity of the host resistance locus Lgn1

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, M.C.; Ernst, E.; Diez, E. [McGill Univ., Quebec (Canada)] [and others

    1997-02-01

    Natural resistance of inbred mouse strains to infection with Legionella pneumophila is controlled by the expression of a single dominant gene on chromosome 13, designated Lgn1. The genetic difference at Lgn1 is phenotypically expressed as the presence or absence of intracellular replication of L. pneumophila in host macrophages. In our effort to identify the Lgn1 gene by positional cloning, we have generated a high-resolution linkage map of the Lgn1 chromosomal region. For this, we have carried out extensive segregation analysis in a total of 1270 (A/J x C57BL/6J) X A/J informative backcross mice segregating the resistance allele of C57BL/6J and the susceptibility allele of A/J. Additional segregation analyses were carried out in three preexisting panels of C57BL/6J X Mus spretus interspecific backcross mice. A total of 39 DNA markers were mapped within an interval of approximately 30 cM overlapping the Lgn1 region. Combined pedigree analyses for the 5.4-cM segment overlapping Lgn1 indicated the locus order and the interlocus distances (in cM): D13Mit128-(1.4)-D13Mit194-(0.1)-D13Mit147-(0.9)-Dl3Mit36-(0.9)-D13Mit146-(0.2)-Lgn1/D 13Mit37-(1.0)-D13Mit70. Additional genetic linkage studies of markers not informative in the A/J X C57BL/6J cross positioned D13Mit30, -72, -195, and -203, D13Gor4, D13Hun35, and Mtap5 in the immediate vicinity of the Lgn1 locus. The marker density and resolution of this genetic linkage map should allow the construction of a physical map of the region and the isolation of YAC clones overlapping the gene. 60 refs., 2 figs., 2 tabs.

  9. High-Resolution Regional Reanalysis in China: Evaluation of 1 Year Period Experiments

    Science.gov (United States)

    Zhang, Qi; Pan, Yinong; Wang, Shuyu; Xu, Jianjun; Tang, Jianping

    2017-10-01

    Globally, reanalysis data sets are widely used in assessing climate change, validating numerical models, and understanding the interactions between the components of a climate system. However, due to the relatively coarse resolution, most global reanalysis data sets are not suitable to apply at the local and regional scales directly with the inadequate descriptions of mesoscale systems and climatic extreme incidents such as mesoscale convective systems, squall lines, tropical cyclones, regional droughts, and heat waves. In this study, by using a data assimilation system of Gridpoint Statistical Interpolation, and a mesoscale atmospheric model of Weather Research and Forecast model, we build a regional reanalysis system. This is preliminary and the first experimental attempt to construct a high-resolution reanalysis for China main land. Four regional test bed data sets are generated for year 2013 via three widely used methods (classical dynamical downscaling, spectral nudging, and data assimilation) and a hybrid method with data assimilation coupled with spectral nudging. Temperature at 2 m, precipitation, and upper level atmospheric variables are evaluated by comparing against observations for one-year-long tests. It can be concluded that the regional reanalysis with assimilation and nudging methods can better produce the atmospheric variables from surface to upper levels, and regional extreme events such as heat waves, than the classical dynamical downscaling. Compared to the ERA-Interim global reanalysis, the hybrid nudging method performs slightly better in reproducing upper level temperature and low-level moisture over China, which improves regional reanalysis data quality.

  10. Zinc sulfide and zinc selenide immersion gratings for astronomical high-resolution spectroscopy: evaluation of internal attenuation of bulk materials in the short near-infrared region

    Science.gov (United States)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Kuzmenko, Paul J.; Tokoro, Hitoshi; Terada, Hiroshi

    2009-08-01

    We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of αatt=0.01 to 0.03 cm-1 among the major candidates. The measured attenuation is roughly in proportion to λ-2, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R=300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.

  11. Pulsed WIP electron gun. Final report: design phase 1 x 70 cm cooled WIP electron gun, 1 December 1978--2 February 1979

    International Nuclear Information System (INIS)

    Wakalopulos, G.; Gresko, L.

    1979-01-01

    Presented here are design criteria for a full scale (70 cm) WIP electron gun system capable of long run operation with the following specifications: foil area approx. 70 x 1 cm, electron beam current density approx. 1 A/cm 2 , pulse length 2 , voltage -150 kV, voltage droop < 10%, Rep rate approx. 10 KHz, power approx. 20 kW, run time approx. 30 min, and jitter approx. 10 μs

  12. Classification of Ultra-High Resolution Orthophotos Combined with DSM Using a Dual Morphological Top Hat Profile

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2015-12-01

    Full Text Available New aerial sensors and platforms (e.g., unmanned aerial vehicles (UAVs are capable of providing ultra-high resolution remote sensing data (less than a 30-cm ground sampling distance (GSD. This type of data is an important source for interpreting sub-building level objects; however, it has not yet been explored. The large-scale differences of urban objects, the high spectral variability and the large perspective effect bring difficulties to the design of descriptive features. Therefore, features representing the spatial information of the objects are essential for dealing with the spectral ambiguity. In this paper, we proposed a dual morphology top-hat profile (DMTHP using both morphology reconstruction and erosion with different granularities. Due to the high dimensional feature space, we have proposed an adaptive scale selection procedure to reduce the feature dimension according to the training samples. The DMTHP is extracted from both images and Digital Surface Models (DSM to obtain complimentary information. The random forest classifier is used to classify the features hierarchically. Quantitative experimental results on aerial images with 9-cm and UAV images with 5-cm GSD are performed. Under our experiments, improvements of 10% and 2% in overall accuracy are obtained in comparison with the well-known differential morphological profile (DMP feature, and superior performance is observed over other tested features. Large format data with 20,000 × 20,000 pixels are used to perform a qualitative experiment using the proposed method, which shows its promising potential. The experiments also demonstrate that the DSM information has greatly enhanced the classification accuracy. In the best case in our experiment, it gives rise to a classification accuracy from 63.93% (spectral information only to 94.48% (the proposed method.

  13. The Relationship Between Spectral Modulation Detection and Speech Recognition: Adult Versus Pediatric Cochlear Implant Recipients.

    Science.gov (United States)

    Gifford, René H; Noble, Jack H; Camarata, Stephen M; Sunderhaus, Linsey W; Dwyer, Robert T; Dawant, Benoit M; Dietrich, Mary S; Labadie, Robert F

    2018-01-01

    Adult cochlear implant (CI) recipients demonstrate a reliable relationship between spectral modulation detection and speech understanding. Prior studies documenting this relationship have focused on postlingually deafened adult CI recipients-leaving an open question regarding the relationship between spectral resolution and speech understanding for adults and children with prelingual onset of deafness. Here, we report CI performance on the measures of speech recognition and spectral modulation detection for 578 CI recipients including 477 postlingual adults, 65 prelingual adults, and 36 prelingual pediatric CI users. The results demonstrated a significant correlation between spectral modulation detection and various measures of speech understanding for 542 adult CI recipients. For 36 pediatric CI recipients, however, there was no significant correlation between spectral modulation detection and speech understanding in quiet or in noise nor was spectral modulation detection significantly correlated with listener age or age at implantation. These findings suggest that pediatric CI recipients might not depend upon spectral resolution for speech understanding in the same manner as adult CI recipients. It is possible that pediatric CI users are making use of different cues, such as those contained within the temporal envelope, to achieve high levels of speech understanding. Further investigation is warranted to investigate the relationship between spectral and temporal resolution and speech recognition to describe the underlying mechanisms driving peripheral auditory processing in pediatric CI users.

  14. Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera

    Science.gov (United States)

    Kastis, GA; Wu, MC; Balzer, SJ; Wilson, DW; Furenlid, LR; Stevenson, G; Barber, HB; Barrett, HH; Woolfenden, JM; Kelly, P; Appleby, M

    2015-01-01

    We have developed a high-resolution, compact semiconductor camera for nuclear medicine applications. The modular unit has been used to obtain tomographic images of phantoms and mice. The system consists of a 64 x 64 CdZnTe detector array and a parallel-hole tungsten collimator mounted inside a 17 cm x 5.3 cm x 3.7 cm tungsten-aluminum housing. The detector is a 2.5 cm x 2.5 cm x 0.15 cm slab of CdZnTe connected to a 64 x 64 multiplexer readout via indium-bump bonding. The collimator is 7 mm thick, with a 0.38 mm pitch that matches the detector pixel pitch. We obtained a series of projections by rotating the object in front of the camera. The axis of rotation was vertical and about 1.5 cm away from the collimator face. Mouse holders were made out of acrylic plastic tubing to facilitate rotation and the administration of gas anesthetic. Acquisition times were varied from 60 sec to 90 sec per image for a total of 60 projections at an equal spacing of 6 degrees between projections. We present tomographic images of a line phantom and mouse bone scan and assess the properties of the system. The reconstructed images demonstrate spatial resolution on the order of 1–2 mm. PMID:26568676

  15. Sensitive detection of aerosol effect on simulated IASI spectral radiance

    International Nuclear Information System (INIS)

    Quan, X.; Huang, H.-L.; Zhang, L.; Weisz, E.; Cao, X.

    2013-01-01

    Guided by radiative transfer modeling of the effects of dust (aerosol) on satellite thermal infrared radiance by many different imaging radiometers, in this article, we present the aerosol-effected satellite radiative signal changes in the top of atmosphere (TOA). The simulation of TOA radiance for Infrared Atmospheric Sounding Interferometer (IASI) is performed by using the RTTOV fast radiative transfer model. The model computation is carried out with setting representative geographical atmospheric models and typical default aerosol climatological models under clear sky condition. The radiative differences (in units of equivalent black body brightness temperature differences (BTDs)) between simulated radiances without consideration of the impact of aerosol (Aerosol-free) and with various aerosol models (Aerosol-modified) are calculated for the whole IASI spectrum between 3.62 and 15.5 μm. The comparisons of BTDs are performed through 11 aerosol models in 5 classified atmospheric models. The results show that the Desert aerosol model has the most significant impact on IASI spectral simulated radiances than the other aerosol models (Continental, Urban, Maritime types and so on) in Mid-latitude Summer, contributing to the mineral aerosol components contained. The value of BTDs could reach up to 1 K at peak points. The atmospheric window spectral region between 900 and 1100 cm1 (9.09–11.11 μm) is concentrated after the investigation for the largest values of aerosol-affected radiance differences. BTDs in IASI spectral region between 645 and 1200 cm1 occupies the largest oscillation and the major part of the whole spectrum. The IASI highest window peak-points channels (such as 9.4 and 10.2 μm) are obtained finally, which are the most sensitive ones to the simulated IASI radiance. -- Highlights: ► Sensitive study of aerosol effect on simulated IASI spectral radiance is performed. ► The aerosol components have influenced IASI spectral regions

  16. Simultaneous measurement of spectral sky radiance by a non-scanning multidirectional spectroradiometer (MUDIS)

    International Nuclear Information System (INIS)

    Riechelmann, Stefan; Schrempf, Michael; Seckmeyer, Gunther

    2013-01-01

    We present a novel non-scanning multidirectional spectroradiometer (MUDIS) measuring the spectral sky radiance as a function of zenith and azimuth angle with a high spectral and temporal resolution. The instrument is based on a hyperspectral imager and measures spectral sky radiance in the wavelength range of 250–600 nm at 113 different directions simultaneously. MUDIS has been intercalibrated with a sky scanning CCD spectroradiometer (SCCD). Sky radiance measurements have been performed with both instruments under cloudless and overcast sky. The spectral actinic irradiance derived from those measurements agrees within 8% for wavelengths higher than 320 nm. The bias between synchronous MUDIS and SCCD sky radiance measurements during cloudless and overcast sky is below 5% for 320 and 500 nm with a 1σ standard deviation of less than 10%. MUDIS enables us to perform more than 220 000 spectral sky radiance measurements instead of approximately 6000 SCCD spectral sky radiance measurements per day and to measure spatial variations of spectral sky radiance simultaneously. (paper)

  17. Dielectric properties of semi-insulating Fe-doped InP in the terahertz spectral region.

    Science.gov (United States)

    Alyabyeva, L N; Zhukova, E S; Belkin, M A; Gorshunov, B P

    2017-08-04

    We report the values and the spectral dependence of the real and imaginary parts of the dielectric permittivity of semi-insulating Fe-doped InP crystalline wafers in the 2-700 cm -1 (0.06-21 THz) spectral region at room temperature. The data shows a number of absorption bands that are assigned to one- and two-phonon and impurity-related absorption processes. Unlike the previous studies of undoped or low-doped InP material, our data unveil the dielectric properties of InP that are not screened by strong free-carrier absorption and will be useful for designing a wide variety of InP-based electronic and photonic devices operating in the terahertz spectral range.

  18. Rovibrational study of the 2ν2 band of D213CO by high-resolution Fourier transform infrared spectroscopy

    Science.gov (United States)

    Wu, Q. Y.; Tan, T. L.; A'dawiah, Rabia'tul; Ng, L. L.

    2018-03-01

    The high-resolution FTIR spectrum of the 2ν2 band (3250-3380 cm-1) of D213CO was recorded at an unapodized resolution of 0.0063 cm-1. A total of 747 rovibrational transitions have been assigned and fitted up to J″ = 32 and Ka″ = 10 using the Watson's A-reduced Hamiltonian in the Ir representation. A set of accurate upper state (v2 = 2) rovibrational constants, three rotational and five quartic centrifugal distortion constants, were determined for the first time. The band center of the 2ν2 band was found to be 3326.765109 ± 0.000079 cm-1. The rms deviation of the rovibrational fit was 0.00096 cm-1.

  19. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-07-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.

  20. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  1. Separation and recovery of Cm from Cm-Pu mixed oxide samples containing Am impurity

    International Nuclear Information System (INIS)

    Hirokazu Hayashi; Hiromichi Hagiya; Mitsuo Akabori; Yasuji Morita; Kazuo Minato

    2013-01-01

    Curium was separated and recovered as an oxalate from a Cm-Pu mixed oxide which had been a 244 Cm oxide sample prepared more than 40 years ago and the ratio of 244 Cm to 240 Pu was estimated to 0.2:0.8. Radiochemical analyses of the solution prepared by dissolving the Cm-Pu mixed oxide in nitric acid revealed that the oxide contained about 1 at% of 243 Am impurity. To obtain high purity curium solution, plutonium and americium were removed from the solution by an anion exchange method and by chromatographic separation using tertiary pyridine resin embedded in silica beads with nitric acid/methanol mixed solution, respectively. Curium oxalate, a precursor compound of curium oxide, was prepared from the purified curium solution. 11.9 mg of Cm oxalate having some amounts of impurities, which are 243 Am (5.4 at%) and 240 Pu (0.3 at%) was obtained without Am removal procedure. Meanwhile, 12.0 mg of Cm oxalate (99.8 at% over actinides) was obtained with the procedure including Am removals. Both of the obtained Cm oxalate sample were supplied for the syntheses and measurements of the thermochemical properties of curium compounds. (author)

  2. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    Science.gov (United States)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  3. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF Nb i IN THE NEAR-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Er, A.; Güzelçimen, F.; Başar, Gö.; Öztürk, I. K. [Faculty of Science, Physics Department, Istanbul University, TR-34134 Vezneciler, Istanbul (Turkey); Tamanis, M.; Ferber, R. [Laser Centre, The University of Latvia, Rainis Boulevard 19, LV-1586 Riga (Latvia); Kröger, S., E-mail: gbasar@istanbul.edu.tr, E-mail: sophie.kroeger@htw-berlin.de [Hochschule für Technik und Wirtschaft Berlin, Wilhelminenhofstrasse 75A, D-12459 Berlin (Germany)

    2015-11-15

    In this study, a Fourier Transform spectrum of Niobium (Nb) is investigated in the near-infrared spectral range from 6000 to 12,000 cm{sup −1} (830–1660 nm). The Nb spectrum is produced using a hollow cathode discharge lamp in an argon atmosphere. Both Nb and Ar spectral lines are visible in the spectrum. A total of 110 spectral lines are assigned to the element Nb. Of these lines, 90 could be classified as transitions between known levels of atomic Nb. From these classified Nb i transitions, 27 have not been listed in literature previously. Additionally, 8 lines are classified for the first time.

  4. Spectral-Temporal Modulated Ripple Discrimination by Children With Cochlear Implants.

    Science.gov (United States)

    Landsberger, David M; Padilla, Monica; Martinez, Amy S; Eisenberg, Laurie S

    A postlingually implanted adult typically develops hearing with an intact auditory system, followed by periods of deafness (or near deafness) and adaptation to the implant. For an early implanted child whose brain is highly plastic, the auditory system matures with consistent input from a cochlear implant. It is likely that the auditory system of early implanted cochlear implant users is fundamentally different than postlingually implanted adults. The purpose of this study is to compare the basic psychophysical capabilities and limitations of these two populations on a spectral resolution task to determine potential effects of early deprivation and plasticity. Performance on a spectral resolution task (Spectral-temporally Modulated Ripple Test [SMRT]) was measured for 20 bilaterally implanted, prelingually deafened children (between 5 and 13 years of age) and 20 hearing children within the same age range. Additionally, 15 bilaterally implanted, postlingually deafened adults, and 10 hearing adults were tested on the same task. Cochlear implant users (adults and children) were tested bilaterally, and with each ear alone. Hearing listeners (adults and children) were tested with the unprocessed SMRT and with a vocoded version that simulates an 8-channel cochlear implant. For children with normal hearing, a positive correlation was found between age and SMRT score for both the unprocessed and vocoded versions. Older hearing children performed similarly to hearing adults in both the unprocessed and vocoded test conditions. However, for children with cochlear implants, no significant relationship was found between SMRT score and chronological age, age at implantation, or years of implant experience. Performance by children with cochlear implants was poorer than performance by cochlear implanted adults. It was also found that children implanted sequentially tended to have better scores with the first implant compared with the second implant. This difference was not

  5. Spatial Resolution Assessment of the Telops Airborne TIR Imagery

    Science.gov (United States)

    Mousakhani, S.; Eslami, M.; Saadatseresht, M.

    2017-09-01

    Having a high spatial resolution of Thermal InfraRed (TIR) Sensors is a challenge in remote sensing applications. Airborne high spatial resolution TIR is a novel source of data that became available lately. Recent developments in spatial resolution of the TIR sensors have been an interesting topic for scientists. TIR sensors are very sensitive to the energies emitted from objects. Past researches have been shown that increasing the spatial resolution of an airborne image will decrease the spectral content of the data and will reduce the Signal to Noise Ratio (SNR). Therefore, in this paper a comprehensive assessment is adapted to estimate an appropriate spatial resolution of the TIR data (TELOPS TIR data), in consideration of the SNR. So, firstly, a low-pass filter is applied on TIR data and the achieved products fed to a classification method for analysing of the accuracy improvement. The obtained results show that, there is no significant change in classification accuracy by applying low-pass filter. Furthermore, estimation of the appropriate spatial resolution of the TIR data is evaluated for obtaining higher spectral content and SNR. For this purpose, different resolutions of the TIR data are created and fed to the maximum likelihood classification method separately. The results illustrated in the case of using images with ground pixel size four times greater than the original image, the classification accuracy is not reduced. Also, SNR and spectral contents are improved. But the corners sharpening is declined.

  6. Design Optimization for Interferometric Space-Based 21-cm Power Spectrum Measurements

    Science.gov (United States)

    Pober, Jonathan

    2018-06-01

    Observations of the highly-redshifted 21 cm hyperfine line of neutral hydrogen (HI) are one of the most promising probes for the future of cosmology. At redshifts z > 30, the HI signal is likely the only measurable emission, as luminous objects have yet to form. At these very low radio frequencies, however, the earth’s ionosphere becomes opaque — necessitating observations from space. The major challenge to neutral hydrogen cosmology (at all redshifts) lies in the presence of bright foreground emission, which can dominate the HI signal by as much as eight orders of magnitude at the highest redshifts. The only method for extracting the cosmological signal relies on the spectral smoothness of the foregrounds; since each frequency of the HI signal probes a different redshift, the cosmological emission is essentially uncorrelated from frequency to frequency. The key challenge for designing an experiment lies in maintaining the spectral smoothness of the foregrounds. If the frequency response of the instrument introduces spectral structure (or at least, a residual that cannot be calibrated out at the necessary precision), it quickly becomes impossible to distinguish the cosmological signal from the foregrounds. This principle has guided the design of ground-based experiments like the Precision Array for Probing the Epoch of Reionization (PAPER) and the Hydrogen Epoch of Reionization Array (HERA). However, there still exists no unifying framework for turning this design "philosophy" into a robust, quantitative set of performance metrics and specifications. In this talk, I will present updates on the efforts of my research group to translate lessons learned from ground-based experiments into a fully traceable set of mission requirements for Cosmic Dawn Mapper or other space-based 21 cm interferometer.

  7. Detailed spectral and morphological analysis of the shell type supernova remnant RCW 86

    Science.gov (United States)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lorentz, M.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2018-04-01

    Aim. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy γ-ray emission. Methods: We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1 keV X-ray band, the 2-5 keV X-ray band, radio, and γ-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results: We present the first conclusive evidence that the TeV γ-ray emission region is shell-like based on our morphological studies. The comparison with 2-5 keV X-ray data reveals a correlation with the 0.4-50 TeV γ-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at Ecut = (3.5 ± 1.2stat) TeV and a spectral index of Γ ≈ 1.6 ± 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to 0.1% of the initial kinetic energy of a Type Ia supernova explosion (1051 erg). When using a hadronic model, a magnetic field of B ≈ 100 μG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E-2 spectrum for the proton distribution cannot describe the γ-ray data. Instead, a spectral index of Γp ≈ 1.7 would be required, which implies that ˜7 × 1049/ncm-3 has been transferred into high-energy protons with the effective density ncm-3 = n/1 cm-3. This is about 10% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm-3.

  8. High sensitivity cavity ring down spectroscopy of N_2O near 1.22 µm: (II) "1"4N_2"1"6O line intensity modeling and global fit of "1"4N_2"1"8O line positions

    International Nuclear Information System (INIS)

    Tashkun, S.A.; Perevalov, V.I.; Karlovets, E.V.; Kassi, S.; Campargue, A.

    2016-01-01

    In a recent work (Karlovets et al., 2016 [1]), we reported the measurement and rovibrational assignments of more than 3300 transitions belonging to 64 bands of five nitrous oxide isotopologues ("1"4N_2"1"6O, "1"4N"1"5N"1"6O, "1"5N"1"4N"1"6O, "1"4N_2"1"8O and "1"4N_2"1"7O) in the high sensitivity CRDS spectrum recorded in the 7915–8334 cm"−"1 spectral range. The assignments were performed by comparison with predictions of the effective Hamiltonian models developed for each isotopologue. In the present paper, the large amount of measurements from our previous work mentioned above and literature are gathered to refine the modeling of the nitrous oxide spectrum in two ways: (i) improvement of the intensity modeling for the principal isotopologue, "1"4N_2"1"6O, near 8000 cm"−"1 from a new fit of the relevant effective dipole moment parameters, (ii) global modeling of "1"4N_2"1"8O line positions from a new fit of the parameters of the global effective Hamiltonian using an exhaustive input dataset collected in the literature in the 12–8231 cm"−"1 region. The fitted set of 81 parameters allowed reproducing near 5800 measured line positions with an RMS deviation of 0.0016 cm"−"1. The dimensionless weighted standard deviation of the fit is 1.22. As an illustration of the improvement of the predictive capabilities of the obtained effective Hamiltonian, two new "1"4N_2"1"8O bands could be assigned in the CRDS spectrum in the 7915–8334 cm"−"1 spectral range. A line list at 296 K has been generated in the 0–10,700 cm"−"1 range for "1"4N_2"1"8O in natural abundance with a 10"−"3"0 cm/molecule intensity cutoff. - Highlights: • Line parameters of two new "1"4N_2"1"8O bands centered at 7966 cm"−"1 and at 8214 cm"−"1. • Refined sets of the "1"4N_2"1"6O effective dipole moment parameters for ΔP=13,14 series. • Global modeling of "1"4N_2"1"8O line positions and intensities in the 12–8231 cm"−"1 range. • 5800 observed of "1"4N_2"1"8O line positions

  9. A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors.

    Science.gov (United States)

    He, Xiyan; Condat, Laurent; Bioucas-Diaz, Jose; Chanussot, Jocelyn; Xia, Junshi

    2014-06-27

    The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed

  10. SPECTRAL SMILE CORRECTION IN CRISM HYPERSPECTRAL IMAGES

    Science.gov (United States)

    Ceamanos, X.; Doute, S.

    2009-12-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is affected by a common artifact in "push-broom" sensors, the so-called "spectral smile". As a consequence, both central wavelength and spectral width of the spectral response vary along the across-track dimension, thus giving rise to a shifting and smoothing of spectra (see Fig. 1 (left)). In fact, both effects are greater for spectra on the edges, while they are minimum for data acquired by central detectors, the so-called "sweet spot". The prior artifacts become particularly critical for Martian observations which contain steep spectra such as CO2 ice-rich polar images. Fig. 1 (right) shows the horizontal brightness gradient which appears in every band corresponding to a steep portion of spectra. The correction of CRISM spectral smile is addressed using a two-step method which aims at modifying data sensibly in order to mimic the optimal CRISM response. First, all spectra, which are previously interpolated by cubic splines, are resampled to the "sweet spot" wavelengths in order to overcome the spectra shift. Secondly, the non-uniform spectral width is overcome by mimicking an increase of spectral resolution thanks to a spectral sharpening. In order to minimize noise, only bands particularly suffering from smile are selected. First, bands corresponding to the outliers of the Minimum Noise Transformation (MNF) eigenvector, which corresponds to the MNF band related to smile (MNF-smile), are selected. Then, a spectral neighborhood Θi, which takes into account the local spectral convexity or concavity, is defined for every selected band in order to maximize spectral shape preservation. The proposed sharpening technique takes into account both the instrument parameters and the observed spectra. First, every reflectance value belonging to a Θi is reevaluated by a sharpening which depends on a ratio of the spectral width of the current detector and the "sweet spot" one. Then, the optimal degree of

  11. The Cryosphere Model Comparison Tool (CmCt): Ice Sheet Model Validation and Comparison Tool for Greenland and Antarctica

    Science.gov (United States)

    Simon, E.; Nowicki, S.; Neumann, T.; Tyahla, L.; Saba, J. L.; Guerber, J. R.; Bonin, J. A.; DiMarzio, J. P.

    2017-12-01

    The Cryosphere model Comparison tool (CmCt) is a web based ice sheet model validation tool that is being developed by NASA to facilitate direct comparison between observational data and various ice sheet models. The CmCt allows the user to take advantage of several decades worth of observations from Greenland and Antarctica. Currently, the CmCt can be used to compare ice sheet models provided by the user with remotely sensed satellite data from ICESat (Ice, Cloud, and land Elevation Satellite) laser altimetry, GRACE (Gravity Recovery and Climate Experiment) satellite, and radar altimetry (ERS-1, ERS-2, and Envisat). One or more models can be uploaded through the CmCt website and compared with observational data, or compared to each other or other models. The CmCt calculates statistics on the differences between the model and observations, and other quantitative and qualitative metrics, which can be used to evaluate the different model simulations against the observations. The qualitative metrics consist of a range of visual outputs and the quantitative metrics consist of several whole-ice-sheet scalar values that can be used to assign an overall score to a particular simulation. The comparison results from CmCt are useful in quantifying improvements within a specific model (or within a class of models) as a result of differences in model dynamics (e.g., shallow vs. higher-order dynamics approximations), model physics (e.g., representations of ice sheet rheological or basal processes), or model resolution (mesh resolution and/or changes in the spatial resolution of input datasets). The framework and metrics could also be used for use as a model-to-model intercomparison tool, simply by swapping outputs from another model as the observational datasets. Future versions of the tool will include comparisons with other datasets that are of interest to the modeling community, such as ice velocity, ice thickness, and surface mass balance.

  12. Simulation of heat and mass transfer in turbulent channel flow using the spectral-element method: effect of spatial resolution

    Science.gov (United States)

    Ryzhenkov, V.; Ivashchenko, V.; Vinuesa, R.; Mullyadzhanov, R.

    2016-10-01

    We use the open-source code nek5000 to assess the accuracy of high-order spectral element large-eddy simulations (LES) of a turbulent channel flow depending on the spatial resolution compared to the direct numerical simulation (DNS). The Reynolds number Re = 6800 is considered based on the bulk velocity and half-width of the channel. The filtered governing equations are closed with the dynamic Smagorinsky model for subgrid stresses and heat flux. The results show very good agreement between LES and DNS for time-averaged velocity and temperature profiles and their fluctuations. Even the coarse LES grid which contains around 30 times less points than the DNS one provided predictions of the friction velocity within 2.0% accuracy interval.

  13. Thermal infrared spectral analysis of compacted fine-grained mineral mixtures: implications for spectral interpretation of lithified sedimentary materials on Mars

    Science.gov (United States)

    Pan, C.; Rogers, D.

    2012-12-01

    Characterizing the thermal infrared (TIR) spectral mixing behavior of compacted fine-grained mineral assemblages is necessary for facilitating quantitative mineralogy of sedimentary surfaces from spectral measurements. Previous researchers have demonstrated that TIR spectra from igneous and metamorphic rocks as well as coarse-grained (>63 micron) sand mixtures combine in proportion to their volume abundance. However, the spectral mixing behavior of compacted, fine-grained mineral mixtures that would be characteristic of sedimentary depositional environments has received little attention. Here we characterize the spectral properties of pressed pellet samples of pestle and centrifuged to obtain less than 10 micron size. Pure phases and mixtures of two, three and four components were made in varying proportions by volume. All of the samples were pressed into pellets at 15000PSI to minimize volume scattering. Thermal infrared spectra of pellets were measured in the Vibrational Spectroscopy Laboratory at Stony Brook University with a Thermo Fisher Nicolet 6700 Fourier transform infrared Michelson interferometer from ~225 to 2000 cm-1. Our preliminary results indicate that some pelletized samples have contributions from volume scattering, which leads to non-linear spectral combinations. It is not clear if the transparency features (which arise from multiple surface reflections of incident photons) are due to minor clinging fines on an otherwise specular pellet surface or to partially transmitted energy through optically thin grains in the compacted mixture. Inclusion of loose powder (analysis of TES and Mini-TES data of lithified sedimentary deposits.

  14. MTG infrared sounder detection chain: first radiometric test results

    Science.gov (United States)

    Dumestier, D.; Pistone, F.; Dartois, T.; Blazquez, E.

    2017-11-01

    Europe's next fleet of geostationary meteorological satellites, MeteoSat Third Generation, will introduce new functions in addition to continuity of high-resolution meteorological data. The atmosphere Infrared Sounder (IRS), as high -end instrument, is part of this challenging program. IRS principle is a Fourier Transform Interferometer, which allows recomposing atmospheric spectrum after infrared photons detection. Transmission spectrums will be used to support numerical weather prediction. IRS instrument is able to offer full disk coverage in one hour, an on-ground resolution of 4 by 4 km, in two spectral bands (MWIR: 1600 to 2175cm-1 and LWIR: 700 to 1210cm-1) with a spectral resolution of 0.6cm-1. Among critical technologies and processes, IRS detection chain shall offer outstanding characteristics in terms of radiometric performance like Signal to Noise Ratio (SNR), dynamic range and linearity. Selected detectors are HgCdTe two-dimensions arrays, cooled at 55 Kelvins, hybridized on snapshot silicon read-out circuit at 160x160 format. Video electronics present 16 bits resolution, and the whole detection chain (Detectors and electronics) permits to reach SNR between 2 000 and 10 000 as requested by the application. Radiometric onground test results performed on design representative detection chains are presented and are confirming the challenging phase A design choices.

  15. Visible/Near-Infrared Spectral Properties of MUSES C Target Asteroid 25143 Itokawa

    Science.gov (United States)

    Jarvis, K. S.; Vilas, F.; Kelley, M. S.; Abell, P. A.

    2004-01-01

    The Japanese MUSES C mission launched the Hayabusa spacecraft last May 15, 2003, to encounter and study the near-Earth asteroid 25143 Itokawa. The spacecraft will obtain visible images through broadband filters similar to the ECAS filters, and near-infrared spectra from 0.85 - 2.1 microns. In preparation for this encounter, opportunities to study the asteroid with Earth-based telescopes have been fully leveraged. Visible and near-infrared spectral observations were made of asteroid 25143 Itokawa during several nights of March, 2001, around the last apparition. We report here on the results of extensive spectral observations made to address the questions of compositional variations across the surface of the asteroid (as determined by the rotational period and shape model); variations in phase angle (Sun-Itokawa-Earth angle) on spectral characteristics; and predictions of Itokawa observations by Hayabusa based on the spectral resolution and responsivity of the NIRS and AMICA instruments.

  16. FOREGROUND MODEL AND ANTENNA CALIBRATION ERRORS IN THE MEASUREMENT OF THE SKY-AVERAGED λ21 cm SIGNAL AT z∼ 20

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, G. [SKA SA, 3rd Floor, The Park, Park Road, Pinelands, 7405 (South Africa); McQuinn, M. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Greenhill, L. J., E-mail: gbernardi@ska.ac.za [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-01-20

    The most promising near-term observable of the cosmic dark age prior to widespread reionization (z ∼ 15-200) is the sky-averaged λ21 cm background arising from hydrogen in the intergalactic medium. Though an individual antenna could in principle detect the line signature, data analysis must separate foregrounds that are orders of magnitude brighter than the λ21 cm background (but that are anticipated to vary monotonically and gradually with frequency, e.g., they are considered {sup s}pectrally smooth{sup )}. Using more physically motivated models for foregrounds than in previous studies, we show that the intrinsic spectral smoothness of the foregrounds is likely not a concern, and that data analysis for an ideal antenna should be able to detect the λ21 cm signal after subtracting a ∼fifth-order polynomial in log ν. However, we find that the foreground signal is corrupted by the angular and frequency-dependent response of a real antenna. The frequency dependence complicates modeling of foregrounds commonly based on the assumption of spectral smoothness. Our calculations focus on the Large-aperture Experiment to detect the Dark Age, which combines both radiometric and interferometric measurements. We show that statistical uncertainty remaining after fitting antenna gain patterns to interferometric measurements is not anticipated to compromise extraction of the λ21 cm signal for a range of cosmological models after fitting a seventh-order polynomial to radiometric data. Our results generalize to most efforts to measure the sky-averaged spectrum.

  17. Multichannel spectral mode of the ALOHA up-conversion interferometer

    Science.gov (United States)

    Lehmann, L.; Darré, P.; Boulogne, H.; Delage, L.; Grossard, L.; Reynaud, F.

    2018-06-01

    In this paper, we propose a multichannel spectral configuration of the Astronomical Light Optical Hybrid Analysis (ALOHA) instrument dedicated to high-resolution imaging. A frequency conversion process is implemented in each arm of an interferometer to transfer the astronomical light to a shorter wavelength domain. Exploiting the spectral selectivity of this non-linear optical process, we propose to use a set of independent pump lasers in order to simultaneously study multiple spectral channels. This principle is experimentally demonstrated with a dual-channel configuration as a proof-of-principle.

  18. GOW2.0: A global wave hindcast of high resolution

    Science.gov (United States)

    Menendez, Melisa; Perez, Jorge; Losada, Inigo

    2016-04-01

    The information provided by reconstructions of historical wind generated waves is of paramount importance for a variety of coastal and offshore purposes (e.g. risk assessment, design of costal structures and coastal management). Here, a new global wave hindcast (GOW2.0) is presented. This hindcast is an update of GOW1.0 (Reguero et al. 2012) motivated by the emergence of new settings and atmospheric information from reanalysis during recent years. GOW2.0 is based on version 4.18 of WaveWatch III numerical model (Tolman, 2014). Main features of the model set-up are the analysis and selection of recent source terms concerning wave generation and dissipation (Ardhuin et al. 2010, Zieger et al., 2015) and the implementation of obstruction grids to improve the modeling of wave shadowing effects in line with the approach described in Chawla and Tolman (2007). This has been complemented by a multigrid system and the use of the hourly wind and ice coverage from the Climate Forecast System Reanalysis, CFSR (30km spatial resolution approximately). The multigrid scheme consists of a series of "two-way" nested domains covering the whole ocean basins at a 0.5° spatial resolution and continental shelfs worldwide at a 0.25° spatial resolution. In addition, a technique to reconstruct wave 3D spectra for any grid-point is implemented from spectral partitioning information. A validation analysis of GOW2.0 outcomes has been undertaken considering wave spectral information from surface buoy stations and multi-mission satellite data for a spatial validation. GOW2.0 shows a substantial improvement over its predecessor for all the analyzed variables. In summary, GOW2.0 reconstructs historical wave spectral data and climate information from 1979 to present at hourly resolution providing higher spatial resolution over regions where local generated wind seas, bimodal-spectral behaviour and relevant swell transformations across the continental shelf are important. Ardhuin F, Rogers E

  19. Toward high performance radioisotope thermophotovoltaic systems using spectral control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiawa, E-mail: xiawaw@mit.edu [Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Chan, Walker [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Stelmakh, Veronika [Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Fisher, Peter [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Physics Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States)

    2016-12-01

    This work describes RTPV-PhC-1, an initial prototype for a radioisotope thermophotovoltaic (RTPV) system using a two-dimensional photonic crystal emitter and low bandgap thermophotovoltaic (TPV) cell to realize spectral control. We validated a system simulation using the measurements of RTPV-PhC-1 and its comparison setup RTPV-FlatTa-1 with the same configuration except a polished tantalum emitter. The emitter of RTPV-PhC-1 powered by an electric heater providing energy equivalent to one plutonia fuel pellet reached 950 °C with 52 W of thermal input power and produced 208 mW output power from 1 cm{sup 2} TPV cell. We compared the system performance using a photonic crystal emitter to a polished flat tantalum emitter and found that spectral control with the photonic crystal was four times more efficient. Based on the simulation, with more cell areas, better TPV cells, and improved insulation design, the system powered by a fuel pellet equivalent heat source is expected to reach an efficiency of 7.8%.

  20. Investigation of spectral interferences in the determination of lead in fertilizers and limestone samples using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Becker, Emilene M.; François, Luciane L.; Jesus, Alexandre de [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2014-11-01

    In the present work, spectral interferences on the determination of lead in fertilizer and limestone samples were investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry at the main analytical lines: 217.001 and 283.306 nm. For these investigations, samples were introduced into the furnace as slurry together with a mixture of Pd and Mg as chemical modifier. Spectral interferences were observed for some samples at both analytical lines. In order to verify whether a wet digestion procedure would avoid these interferences, a reference method for wet digestion of fertilizers was employed as an alternative sample preparation procedure. However, the same interferences were also observed in the digested samples. In order to identify and eliminate the fine-structured background using a least-squares background correction, reference spectra were generated using the combination of different species. The use of the latter technique allowed the elimination of spectral interferences for most of the investigated samples, making possible the determination of lead in fertilizer and limestone samples free of interferences. The best results were found using a reference spectrum of NH{sub 4}H{sub 2}PO{sub 4} at 217.001 nm, and a mixture of H{sub 2}SO{sub 4} + Ca and HNO{sub 3} + Ca at the 283.306 nm line. The accuracy of the method was evaluated using a certified reference material “Trace Elements in Multi-Nutrient Fertilizer”. Similar results were obtained using line source graphite furnace atomic absorption spectrometry with Zeeman-effect background correction, indicating that the latter technique was also capable to correct the spectral interferences, at least in part. - Highlights: • Spectral interferences on the determination of lead in fertilizers and limestone. • The analytical lines at 217.001 nm and 283.306 nm using HR-CS GF AAS. • Various combinations of compounds were used to create reference spectra. • LSBC

  1. New levels of Ta II with energies higher than 72,000 cm−1

    International Nuclear Information System (INIS)

    Uddin, Zaheer; Windholz, Laurentius

    2014-01-01

    We studied the hyperfine structure of Tantalum lines appearing in a high-resolution Fourier transform spectrum. Hundreds of lines of Ta in this spectrum are still unclassified; most of them, especially in the UV region, belong to Ta II. When investigating such lines we found 14 new levels of Ta II. These new levels are the highest-lying known Ta II levels and do not belong to the already known configurations. - Highlights: • We report the discovery of 14 even energy levels of the first ion of Tantalum (Ta II). • Their energy ranges from 72,000 to 81,000 cm1 . • For comparison, up to now only even levels between 0 and 44,000 cm1 were known. • These levels belong to up to now unknown electron configurations. • With help of these levels, approximately 100 spectral lines of Ta II can be classified

  2. Self-phase-modulation induced spectral broadening in silicon waveguides

    Science.gov (United States)

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-01

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm2 peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  3. Fourier Transform and Photoacoustic Absorption Spectra of Ethylene within 6035 6210 cm-1: Comparative Measurements

    International Nuclear Information System (INIS)

    Kapitanov, V.A.; Solodov, A.M.; Petrova, T.M.; Ponomarev, Y.N.

    2010-01-01

    Measurements of ethylene absorption spectra with Fourier Transform (FT) and Photoacoustic (PA) spectrometers within 6035-6210 cm -1 are described. The methodology used for building the frequency scale for both spectrometers is presented. The methane absorption spectrum, included into the HITRAN database, was used in both cases to calibrate the frequency scale. Ethylene absorption spectra were obtained with the two recording methods; a coincidence of the measured line center positions was obtained with an accuracy of 0.0005 cm -1

  4. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Peng Hao; Levin, Craig S

    2010-01-01

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 x 15 cm 2 area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve ∼32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be ∼94.2 kcts s -1 (breast volume: 720 cm 3 and activity concentration: 3.7 kBq cm -3 ) for a ∼10% energy window around 511 keV and ∼8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity (σ rms /mean) ≤ 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres with a 5:1 activity concentration ratio within

  5. Spectral resolution and high-flux capability tradeoffs in CdTe detectors for clinical CT.

    Science.gov (United States)

    Hsieh, Scott S; Rajbhandary, Paurakh L; Pelc, Norbert J

    2018-04-01

    than the ideal photon counting detector. The optimal pixel size depends on a number of factors such as x-ray technique and object size. At high technique (140 kVp/500 mA), the ratio of variance for a 450 micron pixel compared to a 250 micron pixel size is 2126%, 200%, 97%, and 78% when imaging 10, 15, 20, and 25 cm of water, respectively. If 300 mg/cm 2 of iodine is also added to the object, the variance ratio is 117%, 91%, 74%, and 72%, respectively. Nonspectral tasks, such as equivalent monoenergetic imaging, are less sensitive to spectral distortion. The detector pixel size is an important design consideration in CdTe detectors. Smaller pixels allow for improved capabilities at high flux but increase charge sharing, which in turn compromises spectral performance. The optimal pixel size will depend on the specific task and on the charge shaping time. © 2018 American Association of Physicists in Medicine.

  6. Am/Cm target glass durability dependence on pH (U). Revision 1

    International Nuclear Information System (INIS)

    Daniel, W.E.; Best, D.R.

    1996-03-01

    At the Westinghouse Savannah River Company near Aiken, South Carolina, a process is being developed to safely vitrify all of the highly radioactive americium/curium (Am/Cm) material and a portion of the other fissile actinide materials stored on site. One goal of this campaign is to provide Oak Ridge National Laboratory with the excess Am/Cm so it can be recycled as opposed to simply disposing of it as waste. The vitrification will allow safe transportation of the Am/Cm to Oak Ridge as well as safe storage once it arrives. The Am/Cm Target glass being used in this project has been specifically designed to be extremely durable in aqueous environments while it can be selectively attacked by nitric acid to recover the valuable Am and Cm isotopes. Similar glass compositions could be used for storage and retrieval of other actinides on the WSRC site. Previous reports have presented the time, temperature, and compositional dependence of the Am/Cm glass durability. This paper will show results from a pH study on the Am/Cm Target glass durability. The data indicate that the Am/Cm Target Glass durability decreases as pH decreases from a neutral reading. These findings support the extraction of the valuable isotopes from the glass using nitric acid

  7. Advanced mineral and lithological mapping using high spectral resolution TIR data from the active CO2 remote sensing system; CO2 laser wo mochiita kosupekutoru bunkaino netsusekigai remote sensing data no ganseki kobutsu shikibetsu eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Okada, K [Sumitomo Metal Mining Co. Ltd., Osaka (Japan); Hato, M [Earth Remote Sensing Data Analysis Center, Tokyo (Japan); Cudahy, T; Tapley, I

    1997-05-27

    A study was conducted on rock/mineral mapping technology for the metal ore deposit survey using MIRACO2LAS, an active type thermal infrared ray remote sensing system which was developed by CSIRO of Australia and is now the highest in spectral resolution in the world, and TIMS of NASA which is a passive type system. The area for the survey is the area of Olary/Broken Hill and Mt. Fitton of Australia. A good correlation is seen between the ground reflectance measured by MIRACO2LAS and the value measured by the chamber CO2 laser of rocks sampled at the above-mentioned area. In case that the width of spectral characteristics is below 300nm, the inspection ability by MIRACO2LAS`s high spectral resolution is more determined in mineral mapping as compared with TIMS which is large in band width. Minerals mapped using MIRACO2LAS are quartz, talc, amphibole, hornblende, garnet, supessartine, dolomite, magnesite, etc. 4 refs., 3 figs.

  8. High spectral resolution image of Barnacle Bill

    Science.gov (United States)

    1997-01-01

    The rover Sojourner's first target for measurement by the Alpha-Proton-Xray Spectrometer (APXS) was the rock named Barnacle Bill, located close to the ramp down which the rover made its egress from the lander. The full spectral capability of the Imager for Mars Pathfinder (IMP), consisting of 13 wavelength filters, was used to characterize the rock's surface. The measured area is relatively dark, and is shown in blue. Nearby on the rock surface, soil material is trapped in pits (shown in red).Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  9. Planck constant as spectral parameter in integrable systems and KZB equations

    Science.gov (United States)

    Levin, A.; Olshanetsky, M.; Zotov, A.

    2014-10-01

    We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar ( N = 1) the linear problem reproduces the Krichever's ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.

  10. Fourier-transform optical microsystems

    Science.gov (United States)

    Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.

    1999-01-01

    The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.

  11. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  12. Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data

    Science.gov (United States)

    Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.

    2017-12-01

    We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).

  13. The ν8 band of C2HD3 by high-resolution synchrotron FTIR spectroscopy: Coriolis interactions between the v8 = 1 and v6 = 1 states

    Science.gov (United States)

    Ng, L. L.; Tan, T. L.; Akasyah, Luqman; Wong, Andy; Appadoo, Dominique R. T.; McNaughton, Don

    2017-10-01

    The synchrotron Fourier transform infrared (FTIR) spectrum of the ν8 band of ethylene-d3 (C2HD3) was measured at an unapodized resolution of 0.00096 cm-1 from 830 to 1010 cm-1. Rovibrational constants up to five quartic terms were derived with improved precision for the v8 = 1 state through the fitting of 1566 unperturbed infrared transitions using the Watson's A-reduced Hamiltonian in the Ir representation with a root-mean-square (rms) deviation of 0.00044 cm-1. For the first time, 446 perturbed IR transitions of the ν8 band were fitted together with the 1566 unperturbed infrared transitions to obtain the a- and b-Coriolis resonance parameters from its interaction with the v6 = 1 state, with an rms deviation of 0.00039 cm-1. The IR lines of the ν6 band were too weak for detection. Three rotational constants, a quartic constant and band center of the v6 = 1 state were also derived for the first time in this work. Ground state rovibrational constants of C2HD3 up to five quartic constants were also derived from a fit of 906 ground state combination differences with an rms deviation of 0.00030 cm-1 from infrared transitions of the present analysis. The ground state rotational constants are in close agreement with theoretically calculated values using the cc-pVTZ basis set at CCSD(T), MP2 and B3LYP levels of theory. Alpha constants determined from the rotational constants of the v8 = 1 state derived from the perturbed IR fit compared favourably with those from anharmonic calculations.

  14. Chiari malformation Type I surgery in pediatric patients. Part 1: validation of an ICD-9-CM code search algorithm.

    Science.gov (United States)

    Ladner, Travis R; Greenberg, Jacob K; Guerrero, Nicole; Olsen, Margaret A; Shannon, Chevis N; Yarbrough, Chester K; Piccirillo, Jay F; Anderson, Richard C E; Feldstein, Neil A; Wellons, John C; Smyth, Matthew D; Park, Tae Sung; Limbrick, David D

    2016-05-01

    OBJECTIVE Administrative billing data may facilitate large-scale assessments of treatment outcomes for pediatric Chiari malformation Type I (CM-I). Validated International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) code algorithms for identifying CM-I surgery are critical prerequisites for such studies but are currently only available for adults. The objective of this study was to validate two ICD-9-CM code algorithms using hospital billing data to identify pediatric patients undergoing CM-I decompression surgery. METHODS The authors retrospectively analyzed the validity of two ICD-9-CM code algorithms for identifying pediatric CM-I decompression surgery performed at 3 academic medical centers between 2001 and 2013. Algorithm 1 included any discharge diagnosis code of 348.4 (CM-I), as well as a procedure code of 01.24 (cranial decompression) or 03.09 (spinal decompression or laminectomy). Algorithm 2 restricted this group to the subset of patients with a primary discharge diagnosis of 348.4. The positive predictive value (PPV) and sensitivity of each algorithm were calculated. RESULTS Among 625 first-time admissions identified by Algorithm 1, the overall PPV for CM-I decompression was 92%. Among the 581 admissions identified by Algorithm 2, the PPV was 97%. The PPV for Algorithm 1 was lower in one center (84%) compared with the other centers (93%-94%), whereas the PPV of Algorithm 2 remained high (96%-98%) across all subgroups. The sensitivity of Algorithms 1 (91%) and 2 (89%) was very good and remained so across subgroups (82%-97%). CONCLUSIONS An ICD-9-CM algorithm requiring a primary diagnosis of CM-I has excellent PPV and very good sensitivity for identifying CM-I decompression surgery in pediatric patients. These results establish a basis for utilizing administrative billing data to assess pediatric CM-I treatment outcomes.

  15. Time-resolved spectral investigations of laser light induced microplasma

    Science.gov (United States)

    Nánai, L.; Hevesi, I.

    1992-01-01

    The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.

  16. 10 microsecond time resolution studies of Cygnus X-1

    Energy Technology Data Exchange (ETDEWEB)

    Wen, H. C. [Stanford Univ., CA (United States)

    1997-06-01

    Time variability analyses have been applied to data composed of event times of X-rays emitted from the binary system Cygnus X-1 to search for unique black hole signatures. The X-ray data analyzed was collected at ten microsecond time resolution or better from two instruments, the High Energy Astrophysical Observatory (HEAO) A-1 detector and the Rossi X-ray Timing Explorer (XTE) Proportional Counter Array (PCA). HEAO A-1 and RXTE/PCA collected data from 1977--79 and from 1996 on with energy sensitivity from 1--25 keV and 2--60 keV, respectively. Variability characteristics predicted by various models of an accretion disk around a black hole have been searched for in the data. Drop-offs or quasi-periodic oscillations (QPOs) in the Fourier power spectra are expected from some of these models. The Fourier spectral technique was applied to the HEAO A-1 and RXTE/PCA data with careful consideration given for correcting the Poisson noise floor for instrumental effects. Evidence for a drop-off may be interpreted from the faster fall off in variability at frequencies greater than the observed breaks. Both breaks occur within the range of Keplerian frequencies associated with the inner edge radii of advection-dominated accretion disks predicted for Cyg X-1. The break between 10--20 Hz is also near the sharp rollover predicted by Nowak and Wagoner`s model of accretion disk turbulence. No QPOs were observed in the data for quality factors Q > 9 with a 95% confidence level upper limit for the fractional rms amplitude at 1.2% for a 16 M⊙ black hole.

  17. Next Generation UAV Based Spectral Systems for Environmental Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — At present, UAVs used in environmental monitoring mostly collect low spectral resolution imagery, capable of retrieving canopy greenness or properties related water...

  18. Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering

    Science.gov (United States)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; Walsh, Catherine; Czekala, Ian; Huang, Jane; Rosenfeld, Katherine A.

    2018-04-01

    Modern radio interferometers enable observations of spectral lines with unprecedented spatial resolution and sensitivity. In spite of these technical advances, many lines of interest are still at best weakly detected and therefore necessitate detection and analysis techniques specialized for the low signal-to-noise ratio (S/N) regime. Matched filters can leverage knowledge of the source structure and kinematics to increase sensitivity of spectral line observations. Application of the filter in the native Fourier domain improves S/N while simultaneously avoiding the computational cost and ambiguities associated with imaging, making matched filtering a fast and robust method for weak spectral line detection. We demonstrate how an approximate matched filter can be constructed from a previously observed line or from a model of the source, and we show how this filter can be used to robustly infer a detection significance for weak spectral lines. When applied to ALMA Cycle 2 observations of CH3OH in the protoplanetary disk around TW Hya, the technique yields a ≈53% S/N boost over aperture-based spectral extraction methods, and we show that an even higher boost will be achieved for observations at higher spatial resolution. A Python-based open-source implementation of this technique is available under the MIT license at http://github.com/AstroChem/VISIBLE.

  19. Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction

    Science.gov (United States)

    Niu, Shanzhou; Yu, Gaohang; Ma, Jianhua; Wang, Jing

    2018-02-01

    Spectral computed tomography (CT) has been a promising technique in research and clinics because of its ability to produce improved energy resolution images with narrow energy bins. However, the narrow energy bin image is often affected by serious quantum noise because of the limited number of photons used in the corresponding energy bin. To address this problem, we present an iterative reconstruction method for spectral CT using nonlocal low-rank and sparse matrix decomposition (NLSMD), which exploits the self-similarity of patches that are collected in multi-energy images. Specifically, each set of patches can be decomposed into a low-rank component and a sparse component, and the low-rank component represents the stationary background over different energy bins, while the sparse component represents the rest of the different spectral features in individual energy bins. Subsequently, an effective alternating optimization algorithm was developed to minimize the associated objective function. To validate and evaluate the NLSMD method, qualitative and quantitative studies were conducted by using simulated and real spectral CT data. Experimental results show that the NLSMD method improves spectral CT images in terms of noise reduction, artifact suppression and resolution preservation.

  20. Deep, Broadband Spectral Line Surveys of Molecule-rich Interstellar Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Widicus Weaver, Susanna L.; Laas, Jacob C.; Zou, Luyao; Kroll, Jay A.; Rad, Mary L.; Hays, Brian M.; Sanders, James L.; Cross, Trevor N.; Wehres, Nadine; McGuire, Brett A. [Department of Chemistry, Emory University, Atlanta, GA 30322 (United States); Lis, Dariusz C.; Sumner, Matthew C., E-mail: susanna.widicus.weaver@emory.edu [California Institute of Technology, Cahill Center for Astronomy and Astrophysics 301-17, Pasadena, CA 91125 (United States)

    2017-09-01

    Spectral line surveys are an indispensable tool for exploring the physical and chemical evolution of astrophysical environments due to the vast amount of data that can be obtained in a relatively short amount of time. We present deep, broadband spectral line surveys of 30 interstellar clouds using two broadband λ  = 1.3 mm receivers at the Caltech Submillimeter Observatory. This information can be used to probe the influence of physical environment on molecular complexity. We observed a wide variety of sources to examine the relative abundances of organic molecules as they relate to the physical properties of the source (i.e., temperature, density, dynamics, etc.). The spectra are highly sensitive, with noise levels ≤25 mK at a velocity resolution of ∼0.35 km s{sup −1}. In the initial analysis presented here, column densities and rotational temperatures have been determined for the molecular species that contribute significantly to the spectral line density in this wavelength regime. We present these results and discuss their implications for complex molecule formation in the interstellar medium.