WorldWideScience

Sample records for clusters actinide complexes

  1. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan Balasubramanian

    2009-07-18

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP

  2. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    International Nuclear Information System (INIS)

    Balasubramanian, Krishnan

    2009-01-01

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP

  3. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  4. Seventeen-coordinate actinide helium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kaltsoyannis, Nikolas [School of Chemistry, The University of Manchester (United Kingdom)

    2017-06-12

    The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe{sub 17}{sup 3+}, ThHe{sub 17}{sup 4+}, and PaHe{sub 17}{sup 4+} are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHe{sub n}{sup 3+} (n=1-17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R{sup 2}>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac-He distances, and also with the incremental He binding energies. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  6. Actinide phosphonate complexes in aqueous solutions

    International Nuclear Information System (INIS)

    Nash, K.L.

    1993-01-01

    Complexes formed by actinides with carboxylic acids, polycarboxylic acids, and aminopolycarboxylic acids play a central role in both the basic and process chemistry of the actinides. Recent studies of f-element complexes with phosphonic acid ligands indicate that new ligands incorporating doubly ionizable phosphonate groups (-PO 3 H 2 ) have many properties which are unique chemically, and promise more efficient separation processes for waste cleanup and environmental restoration. Simple diphosphonate ligands form much stronger complexes than isostructural carboxylates, often exhibiting higher solubility as well. In this manuscript recent studies of the thermodynamics and kinetics of f-element complexation by 1,1 and 1,2 diphosphonic acid ligands are described

  7. Aqueous actinide complexes: A thermochemical assessment

    International Nuclear Information System (INIS)

    Fuger, J.; Khodakovsky, I.L.; Medvedev, V.A.; Navratil, J.D.

    1979-01-01

    The scope and purpose of an assessment of the thermodynamic properties of the aqueous actinide complexes are presented. This work which, at present, is limited to inorganic ligands and three selected organic ligands (formate, acetate and oxalate), is part of an effort established by the International Atomic Energy Agency to assess the thermodynamic properties of the actinides and their compounds. The problems involved in this work are illustrated by discussing the present status of the assessment as related to a few complex species, (hydroxyl-, fluoride-, carbonate complexes). (orig.) [de

  8. Thermodynamic properties of actinide complexes

    International Nuclear Information System (INIS)

    Bismondo, A.; Cassol, A.; Di Bernardo, P.; Magon, L.; Tomat, G.; Consiglio Nazionale delle Ricerche, Padua

    1981-01-01

    In a previous paper the stability constants and the enthalpies of formation of uranyl(VI)-malonate complexes in 1 M Na(ClO 4 ) and at 25.0 0 C, have been reported. In order to assess the influence of the number of methylenic groups in the ligand chain on the stability constants of the formed complexes and on their ΔH and ΔS values, a series of potentiometric and calorimetric investigations were carried out on the uranyl(VI)-succinate system. The results are given and discussed. (author)

  9. Thermodynamic properties of actinide complexes

    International Nuclear Information System (INIS)

    Di Bernardo, P.; Tomat, G.; Bismondo, A.

    1980-01-01

    The present paper reports a continuation of investigations on the complexing ability of substituted polycarboxylate ligands toward the uranyl(VI) ion. The changes in free energy were computed from the stability constants determined by potentiometric measurements; the enthalpy changes were measured by direct calorimetric titrations. The acid formation constants and the complex formation constants were calculated with the aid of a CDC/CRYBER '76 computer using the programs LETAGROP VRID and MINIQUAD 75. The enthalpy changes for the proton ligand and metal ligand complex formation were calculated by the least-squares program LETAGROP KALLE. The data obtained for a relatively wide range of concentrations of the metal and hydrogen ions may be interpreted in terms of the formation of simple mononuclear, ML, and acid complexes, Msub(p)Hsub(q)Lsub(r), where p = 1; q = 1, 2; r = 1, 2. The values of free energy enthalpy, and entropy changes for the systems investigated are reported together with the logarithms of the corresponding stability constants. (author)

  10. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  11. Molecular cluster theory of chemical bonding in actinide oxide

    International Nuclear Information System (INIS)

    Ellis, D.E.; Gubanov, V.A.; Rosen, A.

    1978-01-01

    The electronic structure of actinide monoxides AcO and dioxides AcO 2 , where Ac = Th, U, Np, Pu, Am, Cm and Bk has been studied by molecular cluster methods based on the first-principles one-electron local density theory. Molecular orbitals for nearest neighbor clusters AcO 10- 6 and AcO 12- 8 representative of monoxide and dioxide lattices were obtained using non-relativistic spin-restricted and spin-polarized Hartree-Fock-Slater models for the entire series. Fully relativistic Dirac-Slater calculations were performed for ThO, UO and NpO in order to explore magnitude of spin-orbit splittings and level shifts in valence structure. Self-consistent iterations were carried out for NpO, in which the NpO 6 cluster was embedded in the molecular field of the solid. Finally, a ''moment polarized'' model which combines both spin-polarization and relativistic effects in a consistent fashion was applied to the NpO system. Covalent mixing of oxygen 2p and Ac 5f orbitals was found to increase rapidly across the actinide series; metal s,p,d covalency was found to be nearly constant. Mulliken atomic population analysis of cluster eigenvectors shows that free-ion crystal field models are unreliable, except for the light actinides. X-ray photoelectron line shapes have been calculated and are found to compare rather well with experimental data on the dioxides

  12. Complexes of actinides with naturally occuring organic substances - Literature survey

    International Nuclear Information System (INIS)

    Olofsson, U.; Allard, B.

    1983-02-01

    Properties of naturally occurring humic and fulvic acids and their formation of actinide complexes are reviewed. Actinides in all the oxdation states III, IV, V and VI would form complexes with many humic and fulvic acids, comparable in strength to the hydroxide and carbonate complexes. Preliminary experiments have shown, that the presence of predominantly humic acid complexes would significantly reduce the sorption of americium on geologic media. This does not, however, necessarily lead to a potentially enhanced mobility under environmental conditions, since humic and fulvic acids carrying trace metals also would be strongly bound to e.g. clayish material. (author)

  13. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry and Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs.

  14. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    International Nuclear Information System (INIS)

    Rydberg, J.

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs

  15. Alpha decay and cluster decay of some neutron-rich actinide nuclei

    Indian Academy of Sciences (India)

    2017-02-09

    Feb 9, 2017 ... Abstract. Nuclei in the actinide region are good in exhibiting cluster radioactivity. In the present work, the half-lives of α-decay and heavy cluster emission from certain actinide nuclei have been calculated using cubic plus Yukawa plus exponential model (CYEM). Our model has a cubic potential for the ...

  16. Actinides

    International Nuclear Information System (INIS)

    Martinot, L.; Fuger, J.

    1985-01-01

    The oxidation behavior of the actinides is explained on the basis of their electronic structure. The actinide elements, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and laurencium are included. For all except the last three elements, the points of discussion are oxidation states, Gibbs energies and potentials, and potential diagram for the element in acid solution; and thermodynamic properties of these same elements are tabulated. References are cited following discussion of each element with a total of 97 references being cited. 13 tables

  17. Structural organization and spectroscopy of peptide-actinide(IV) complexes

    International Nuclear Information System (INIS)

    Dahou, S.

    2010-01-01

    The contamination of living organisms by actinide elements is at the origin of both radiological and chemical toxicity that may lead to severe dysfunction. Most of the data available on the actinide interaction with biological systems are macroscopic physiological measurements and are lacking a molecular description of the systems. Because of the intricacy of these systems, classical biochemical methods are difficult to implement. Our strategy consisted in designing simplified biomimetic peptides, and describing the corresponding intramolecular interactions with actinides. A carboxylic pentapeptide of the form DDPDD has been at the starting point of this work in order to further assess the influence of the peptide sequence on the topology of the complexes.To do so, various linear (Asp/Ala permutations, peptoids) and cyclic analogues have been synthesized. Furthermore, in order to include the hydroxamic function (with a high affinity for Fe(III)) in the peptide, both desferrioxamine and acetohydroxamic acid have been investigated. However because of difficulties in synthesis, we have not been able to test these peptides. Three actinide cations have been considered at oxidation state +IV (Th, Np, Pu) and compared to Fe(III), often considered as a biological surrogate of Pu(IV). The spatial arrangement of the peptide around the cation has been probed by spectrophotometry and X-ray Absorption Spectroscopy. The spectroscopic data and EXAFS data adjustment lead us to rationalize the topology of the complexes as a function of the peptide sequence: mix hydroxy polynuclear species for linear and cyclic peptides, mononuclear for the desferrioxamine complexes. Furthermore, significant differences have appeared between Fe(III) and actinide(IV), related to differences of reactivity in aqueous medium. (author)

  18. Lanthanide and actinide complexation studies with tetradentate 'N' donor ligands

    International Nuclear Information System (INIS)

    Bhattacharyya, A.; Mohapatra, M.; Mohapatra, P.K.; Rawat, N.; Tomar, B.S.; Gadly, T.; Ghosh, S.K.; Manna, D.; Ghanty, T.K.

    2014-01-01

    Because of their similar charge and chemical behaviour separation of trivalent actinides and lanthanides is an important and challenging task in nuclear fuel cycle. Soft (S,N) donor ligands show selectivity towards the trivalent actinides over the lanthanides. Out of various 'N' donor ligands studied, bis(1,2,4)triazinyl bipyridine (BTBP) and bis(1,2,4)triazinyl phenanthroline (BTPhen) were found to be most promising. In order to understand the separation behaviour of these ligands, their complexation studies with these 'f' block elements are essential. In the present work, complexation studies of various lanthanide ions (La 3+ , Eu 3+ and Er 3+ ) was studied with ethyl derivatives of BTBP (C 2 BTBP) and BTBPhen (C 2 BTPhen) and pentyl derivative of BTBP (C 5 BTBP) in acetonitrile medium using UV-Vis spectrophotometry, fluorescence spectroscopy and solution calorimetry. Computational studies were also carried out to understand the experimental results

  19. Actinide complexes of the calixarenes: Pt. 2

    International Nuclear Information System (INIS)

    Harrowfield, J.M.; Ogden, M.I.; White, A.H.

    1990-01-01

    The synthesis and room-temperature single-crystal X-ray structure determination of a novel tetranuclear thorium complex with p-tert-butylcalix [8] arene, H 8 L, has been achieved, the stoichiometry being assigned as [Th 4 (HL)(H 2 L)(dmso) 4 (OH) 3 (OH 2 )].dmso. 2H 2 O (dmso = Me 2 SO). Crystals of the complex are triclinic. Each calixarene unit, one with approximate 2 and the other approximate mm symmetry, is co-ordinated to two thorium atoms, the environment of each thorium comprising five ligand phenolic oxygen atoms; three being 'monodentate' and two bridging, with a monodentate O-bonded dmso entering through each cup of each ligand, and hydroxide groups variously bridging to the other thorium within the same ligand, and binding the two Th 2 L systems together. The 1 H NMR spectrum has been rationalised in terms of the X-ray structure. (author)

  20. Piperazine complexes of some lanthanides and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Manhas, B S; Trikha, A K [Punjabi Univ., Patiala (India). Dept. of Chemistry; Singh, M [Guru Nanak Univ., Amritsar (India). Dept. of Chemistry

    1981-02-01

    Complexes of piperazine with LaCl/sub 3/, CeCl/sub 3/, La(NO/sub 3/)/sub 3/, Ce(NO/sub 3/)/sub 3/, UO/sub 2/(OAc)/sub 2/, UO/sub 2/Cl/sub 2/, UO/sub 2/(NO/sub 3/)/sub 2/, UCl/sub 4/, ThCl/sub 4/ and Th(NO/sub 3/)/sub 4/ have been synthesized and characterized on the basis of elemental analyses, IR and electronic reflectance spectra and magnetic susceptibility measurements. IR data indicate (i) coordination of the ligand in the chair form (except in the case of uranyl chloride complex where at least some of the ligand molecules are present in boat conformation), (ii) coordination of the ethanol and methanol molecules and (iii) the presence of chelating bidentate acetate and nitrate groups.

  1. Automated complex spectra processing of actinide α-radiation

    International Nuclear Information System (INIS)

    Anichenkov, S.V.; Popov, Yu.S.; Tselishchev, I.V.; Mishenev, V.B.; Timofeev, G.A.

    1989-01-01

    Earlier described algorithms of automated processing of complex α - spectra of actinides with the use of Ehlektronika D3-28 computer line, connected with ICA-070 multichannel amplitude pulse analyzer, were realized. The developed program enables to calculated peak intensity and the relative isotope content, to conduct energy calibration of spectra, to calculate peak center of gravity and energy resolution, to perform integral counting in particular part of the spectrum. Error of the method of automated processing depens on the degree of spectrum complication and lies within the limits of 1-12%. 8 refs.; 4 figs.; 2 tabs

  2. Actinides and rare earths complexation with adenosine phosphate nucleotides

    International Nuclear Information System (INIS)

    Mostapha, Sarah

    2013-01-01

    Organophosphorus compounds are important molecules in both nuclear industry and living systems fields. Indeed, several extractants of organophosphorus compounds (such as TBP, HDEHP) are used in the nuclear fuel cycle reprocessing and in the biological field. For instance, the nucleotides are organophosphates which play a very important role in various metabolic processes. Although the literature on the interactions of actinides with inorganic phosphate is abundant, published studies with organophosphate compounds are generally limited to macroscopic and / or physiological approaches. The objective of this thesis is to study the structure of several organophosphorus compounds with actinides to reach a better understanding and develop new specific buildings blocks. The family of the chosen molecules for this procedure consists of three adenine nucleotides mono, bi and triphosphate (AMP, adenosine monophosphate - ADP, adenosine diphosphate - ATP, adenosine triphosphate) and an amino-alkylphosphate (AEP O-phosphoryl-ethanolamine). Complexes synthesis was conducted in aqueous and weakly acidic medium (2.8-4) for several lanthanides (III) (Lu, Yb, Eu) and actinides (U (VI), Th (IV) and Am (III)). Several analytical and spectroscopic techniques have been used to describe the organization of the synthesized complexes: spectrometric analysis performed by FTIR and NMR were used to identify the functional groups involved in the complexation, analysis by ESI-MS and pH-metric titration were used to determine the solution speciation and EXAFS analyzes were performed on Mars beamline of the SOLEIL synchrotron, have described the local cation environment, for both solution and solid compounds. Some theoretical approaches of DFT were conducted to identify stable structures in purpose of completing the experimental studies. All solid complexes (AMP, ADP, ATP and AEP) have polynuclear structures, while soluble ATP complexes are mononuclear. For all synthesized complexes, it has been

  3. Effects of humic substances on the migration of radionuclides: Complexation of actinides with humic substances

    International Nuclear Information System (INIS)

    Kim, J.I.; Rhee, D.S.; Wimmer, H.; Buckau, G.; Klenze, R.; Decambox, P.; Moulin, C.; Moulin, V.; Tits, J.; Marquardt, C.; Herrmann, G.; Trautmann, N.; Dierckx, A.; Vancluysen, J.; Maes, A.

    1992-09-01

    The aim of the present research programme is to study the complexation behaviour of actinide ions with humic substances in natural aquifer systems and hence to quantify the effect of humic substances on the actinide migration. Aquatic humic substances commonly found in all groundwaters in different concentrations have a strong tendency towards complexation with actinide ions. This is one of the major geochemical reactions but hitherto least quantified. Therefore, the effect of humic substances on the actinide migration is poorly understood. In the present research programme the complexation of actinide ions with humic substances will be described thermodynamically. This description will be based on a model being as simple as possible to allow an easy introduction of the resulting constants into geochemical modelling of the actinide migration. (orig.)

  4. Leaching of irradiated polymers: solution characterization and actinides complexation

    International Nuclear Information System (INIS)

    Fromentin, Elodie

    2017-01-01

    The first aim of this work is to study the degradation of an industrial poly-esterurethane (PURm) by radio-oxidation and then by leaching in an alkaline aqueous solution. The second aim is to measure the complexing power of hydro-soluble degradation products (HDP) with actinides. To reach these goals, PURm was first characterized and then radio-oxidized at room temperature with γ rays up to 10 MGy. Second, it was leached at pH 13.3 at different temperature values. Numerous analytical techniques were employed in order to characterize the HDP which were obtained. Europium(III) was used as an analogue of actinides(III) and the behavior of HDP with europium(III) was analyzed by time-resolved luminescence spectroscopy (TRLS). Whatever the dose received by PURm, adipic acid and butane-1,4-diol are the two main HDP in leachates. The leaching data acquired at 40 and 60 C, on the 1 MGy radio-oxidized PURm, correlate with the model given by Yoon et al. (1997). However, the data at room temperature (22 C in average) are not in agreement with the model. Nevertheless, it seems that the plateau which was reached at long-term leaching is the same whatever the temperature used in this study. The results allow to conclude that the predominant mechanism occurring during the leaching of unirradiated and radio-oxidized PURm in an alkaline medium is the hydrolysis of the soft segments ester groups. The complexation of europium(III) by HDP in alkaline medium was demonstrated. The measurement of the complexing power and the identification of ligands was achieved under certain conditions. (author) [fr

  5. Actinide-specific complexing agents: their structural and solution chemistry

    International Nuclear Information System (INIS)

    Raymond, K.N.; Freeman, G.E.; Kappel, M.J.

    1983-07-01

    The synthesis of a series of tetracatecholate ligands designed to be specific for Pu(IV) and other actinide(IV) ions has been achieved. Although these compounds are very effective as in vivo plutonium removal agents, potentiometric and voltammetric data indicate that at neutral pH full complexation of the Pu(IV) ion by all four catecholate groups does not occur. Spectroscopic results indicate that the tetracatecholates, 3,4,3-LICAMS and 3,4,3-LICAMC, complex Am(III). The Am(IV)/(III)-catecholate couple (where catecholate = 3,4,3-LICAMS or 3,4,3-LICAMC) is not observed, but may not be observable due to the large currents associated with ligand oxidation. However, within the potential range where ligand oxidation does not occur, these experiments indicate that the reduction potential of free Am(IV)/(III) is probably greater than or equal to + 2.6 V vs NHE or higher. Proof of the complexation of americium in the trivalent oxidation state by 3,4,3-LICAMS and 3,4,3-LICAMC elimates the possibility of tetracatholates stabilizing Am(IV) in vivo

  6. Actinides complexes in solvent extraction. The amide type of extractants

    International Nuclear Information System (INIS)

    Musikas, C.; Condamines, N.; Charbonnel, M.C.; Hubert, H.

    1989-01-01

    The N,N-dialkylamides and the N,N'-tetraalkyl. 2-alkyl 1,3-diamide propane are two promising classes of extractants which could replace advantageously the organophosphorus molecules for the separations of the actinide. The main advantages of the amides lie in their complete incinerability and the small interference of their radiolytic and hydrolytic degradation products for the processes. The actinide extraction chemistry with various amides is reviewed in this paper

  7. Contribution to the study of pseudohalides complexes of tervalent, lanthanides and actinides in solution

    International Nuclear Information System (INIS)

    Cuillerdier, Christine.

    1981-10-01

    Some complexes formed with halides or pseudohalides (iodide, cyanide, azide and thiocyanate) and tervalent lanthanides and actinides have been studied in solution. Methods like solvent extraction, polarography have been used to measure inner plus outer sphere complexation and spectroscopic methods have been chosen to study inner sphere complexes only. It has been found that inner sphere complexe of americium and neodymium with cyanide exist in aqueous solutions. Tervalent actinides form stronger inner sphere complexes with azide than lanthanide in solution. Thiocyanate complexes appear to be inner sphere and N-bonded [fr

  8. Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

    2010-02-24

    A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

  9. Thermally unstable complexants/phosphate mineralization of actinides

    International Nuclear Information System (INIS)

    Nash, K.

    1996-01-01

    In situ immobilization is an approach to isolation of radionuclides from the hydrosphere that is receiving increasing attention. Rather than removing the actinides from contaminated soils, this approach transforms the actinides into intrinsically insoluble mineral phases resistant to leaching by groundwater. The principal advangates of this concept are the low cost and low risk of operator exposure and/or dispersion of the radionuclides to the wider environment. The challenge of this approach is toe accomplish the immobilization without causing collateral damage to the environment (the cure shouldn't be worse than the disease) and verification of system performance

  10. The complex formation of selected actinides (U, Np, Cm) with microbial ligands

    International Nuclear Information System (INIS)

    Glorius, Maja

    2009-01-01

    One of the urgent tasks in the field of nuclear technology is the final storage of radioactive substances. As a part of the safety requirements the protection of humans and the environment from the danger of radioactive substances in case of the release from the final storage is essential. For performing long-term safety calculations the detailed understanding of the physico-chemical effects and influences which cause the mobilisation and transport of actinides are necessary. The presented work was a discrete part of a project, which was focused on the clarification of the influence of microorganisms on the migration of actinides in case of the release of actinides from a final storage. The influence of microbial produced substances on the mobilisation of selected actinides was studied thereby. The microbial produced substances studied in this project were synthesized by bacteria from the Pseudomonas genus under special conditions. Fluorescent Pseudomonads secrete bacterial pyoverdin-type siderophores with a high potential to complex and transport metals, especially iron(III). The aim of the project was to determine how and under which conditions the bioligands are able to complex also radioactive substances and therefore to transport them. For this work the alpha-emitting actinides uranium, curium and neptunium were chosen because their long-life cycle and their radiotoxicity are a matter of particular interest. This work dealed with the interaction of the actinides U(VI), Np(V) and Cm(III) with model ligands simulating the functionality of the pyoverdins. So, such bioligands can essentially influence the behaviour of actinides in the environment. The results of this work contribute to a better understanding and assessment of the influence of the microbial ligands to the mobilisation and migration of the radionuclides. The outcomes could be used to quantify the actinide-mobilising effect of the bioligands, which are released, for example, in the vicinity of a

  11. Effects of humic substances on the migration of radionuclides: Complexation of actinides with humic substances. 1. progress report

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.; Klenze, R.; Rhee, D.S.; Wimmer, H.; Decambox, P.; Mauchien, P.; Moulin, C.; Moulin, V.; Tits, J.; Marquardt, C.; Riegel, J.; Sattelberger, P.; Herrmann, G.; Trautmann, N.; Diercks, A.; Vancluysen, J.; Maes, A.; Bidoglio, G.; Righetto, L.

    1992-02-01

    The aim of the present research programme is to study the complexation behaviour of actinide ions with humic substances in natural aquifer systems and hence to quantify the effect of humic substances on the actinide migration. Aquatic humic substances commonly found in all groundwaters in different concentrations have a strong tendency towards complexation with actinide ions. This is one of the major geochemical reactions but hitherto least quantified. Therefore, the effect of humic substances on the actinide migration is poorly understood. In the present research programme the complexation of actinide ions with humic substances will be described thermodynamically. This description will be based on a model being as simple as possible to allow an easy introduction of the resulting constants into geochemical modelling of the actinide migration. This programme is a continuation of the activities of the COCO group in the second phase of the CEC-MIRAGE project. (orig.)

  12. Synthesis and characterization of templated ion exchange resins for the selective complexation of actinide ions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Murray, G.M.; Uy, O.M.

    1998-01-01

    'The purpose of this research is to develop polymeric extractants for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions (lakes, streams, waste tanks and body fluids). Selectivity for a specific actinide ion is obtained by providing polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide metal ion. These cavity-containing polymers will be produced using a specific actinide ion (or surrogate) as a template around which monomeric complexing ligands will be polymerized. The polymers will provide useful sequestering agents for removing actinide ions from wastes and will form the basis for a variety of analytical techniques for actinide determinations.'

  13. Theoretical and experimental study of actinide complexes with monoamides and organophosphorus ligands in solution

    International Nuclear Information System (INIS)

    Ribokaite, Kristina

    2013-01-01

    Monoamides and organophosphate are of great interest for the nuclear fuel cycle. Such ligands can selectively extract actinides in liquid-liquid extraction processes. The structure of the extractant (its functional group and its alkyl substituents) has a predominant role in the selective separation of actinides. This thesis concerns the theoretical and experimental studies of model systems in the aim of better understanding of the effect on molecular structures of the complexes. Structures of actinides complexes formed with model ligands in simple media (water or methanol in the presence of nitrate ions) have been characterized. At first, the complexation of uranyl by monoamide and phosphine oxide was studied in water and methanol. Molecular Dynamics simulations and DFT calculations were used to quantify the stability of uranyl complexes with those ligands, and to determine their structural properties. The theoretical results were then compared with experimental results obtained by UV-visible, infrared, Raman and EXAFS on the same chemical systems. The results were used to highlight the greater stability of uranyl complexes with phosphine oxide and monoamides. Further spectroscopic measurements combined with molecular modeling were used to gain a better understanding of the coordination mode of nitrate ion around the uranyl in both water and methanol. Finally, DFT calculations were used to study the influence of the structure of the monoamide or organophosphorus ligand and their interaction with the actinides (IV, VI) including steric effects in the first coordination sphere. (author) [fr

  14. Correlation of retention of lanthanide and actinide complexes with stability constants and their speciation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Sivaraman, N.; Viswanathan, K.S.; Ghosh, Suddhasattwa; Srinivasan, T.G.; Vasudeva Rao, P.R. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2013-03-01

    The present study describes a correlation that is developed from retention of lanthanide and actinide complexes with the stability constant. In these studies, an ion-pairing reagent, camphor-10-sulphonic acid (CSA) was used as the modifier and organic acids such as {alpha}-hydroxy isobutyric acid ({alpha}-HIBA), mandelic acid, lactic acid and tartaric acid were used as complexing reagent for elution. From these studies, a correlation has been established between capacity factor of a metal ion, concentration of ion-pairing reagent and complexing agent with the stability constant of metal complex. Based on these studies, it has been shown that the stability constant of lanthanide and actinide complexes can be estimated using a single lanthanide calibrant. Validation of the method was carried out with the complexing agents such as {alpha}-HIBA and lactic acid. It was also demonstrated that data from a single chromatogram can be used for estimation of stability constant at various ionic strengths. These studies also demonstrated that the method can be applied for estimation of stability constant of actinides with a ligand whose value is not reported yet, e.g., ligands of importance in the lanthanide-actinide separations, chelation therapy etc. The chromatographic separation method is fast and the estimation of stability constant can be done in a very short time, which is a significant advantage especially in dealing with radioactive elements. The stability constant data was used to derive speciation data of plutonium in different oxidation states as well as that of americium with {alpha}-HIBA. The elution behavior of actinides such as Pu and Am from reversed phase chromatographic technique could be explained based on these studies. (orig.)

  15. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals

    Science.gov (United States)

    Garza, Alejandro J.; Sousa Alencar, Ana G.; Scuseria, Gustavo E.

    2015-12-01

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f0 actinyl series (UO22+, NpO23+, PuO24+), the isoelectronic NUN, and thorium (ThO, ThO2+) and nobelium (NoO, NoO2) oxides are studied.

  16. Actinides(3)/lanthanides(3) separation by nano-filtration assisted by complexation; Separation actinides(3)lanthanides(3) par nanofiltration assistee par complexation

    Energy Technology Data Exchange (ETDEWEB)

    Sorin, A

    2006-07-01

    In France, one of the research trend concerning the reprocessing of spent nuclear fuel consists to separate selectively the very radio-toxic elements with a long life to be recycled (Pu) or transmuted (Am, Cm, Np). The aim of this thesis concerns the last theme about actinides(III)/lanthanides(III) separation by a process of nano-filtration assisted by complexation. Thus, a pilot of tangential membrane filtration was designed and established in a glove box at the ATALANTE place of CEA-Marcoule. Physico-chemical characterisation of the Desal GH membrane (OSMONICS), selected to carry out actinides(III)/lanthanides(III) separation, was realized to determine the zeta potential of the active layer and its resistance to ionizing radiations. Moreover, a parametric study was also carried out to optimize the selectivity of complexation, and the operating conditions of complex retention (influences of the transmembrane pressure, solute concentration, tangential velocity and temperature). Finally, the separation of traces of Am(III) contained in a mixture of lanthanides(III), simulating the real load coming from a reprocessing cycle, was evaluated with several chelating agents such as poly-amino-carboxylic acids according to the solution acidity and the [Ligand]/[Cation(III)] ratio. (author)

  17. Investigation into complexing of pentavalent actinide forms with some anions of organic acids by the coprecipitation method

    International Nuclear Information System (INIS)

    Moskvin, A.I.; Poznyakov, A.N.; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1979-01-01

    Complexing of pentavolent forms of Np, Pu, Am actinides with anions of acetic, oxalic acids and EDTA is studied using the method of coprecipitation with iron hydroxide. Composition and stability constants of the actinide complexes formed are determined. The acids anions are arranged in a row in the order of decrease of complexing tendency that is EDTA anion>C 2 O 4 2- >CH 3 COO -

  18. Effects of humic substances on the migration of radionuclides: Complexation of actinides with humic substances. 3. Progress report

    International Nuclear Information System (INIS)

    Kim, J.I.; Rhee, D.S.; Buckau, G.; Moulin, V.; Tits, J.; Decambox, P.; Franz, C.; Herrmann, G.; Trautmann, N.; Dierckx, A.; Vancluysen, J.; Maes, A.

    1993-03-01

    The aim of the present research programme is to study the complexation behaviour of actinide ions with humic substances in natural aquifer systems and hence to quantify the effect of humic substances on the actinide migration. Aquatic humic substances commonly found in all groundwaters in different concentrations have a strong tendency towards complexation with actinide ions. This is one of the major geochemical reactions but hitherto least quantified. Therefore, the effect of humic substances on the actinide migration is poorly understood. In the present research programme the complexation of actinide ions with humic substances will be described thermodynamically. This description will be based on a model being as simple as possible to allow an easy introduction of the resulting reaction constants into geochemical modelling of the actinide migration. This programme is a continuation of the activities of the COCO group in the second phase of the CEC-MIRAGE project. The programme consists of the following three main tasks: Task 1: Complexation reactions of actinide ions with well characterized reference and site-specific humic and fulvic acids; Task 2: Competition reactions with major cations in natural groundwaters; Task 3: Validation of the complexation data in natural aquatic systems by comparison of calculation with spectroscopic experiment. (orig./EF)

  19. Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Dolgopolova, Ekaterina A. [Department; Ejegbavwo, Otega A. [Department; Martin, Corey R. [Department; Smith, Mark D. [Department; Setyawan, Wahyu [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Karakalos, Stavros G. [College; Henager, Charles H. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; zur Loye, Hans-Conrad [Department; Shustova, Natalia B. [Department

    2017-11-07

    Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures towards fundamental understanding of mechanisms involved in actinide integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials were built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with “unsaturated” metal nodes. The first successful attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt% in mono- and bi-actinide frameworks with minimal structural density. Overall, combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures, and therefore, shed light on possible optimization of nuclear waste administration.

  20. Thermodynamics and Structure of Actinide(IV) Complexes with Nitrilotriacetic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, L.; Guillaumont, D.; Jeanson, A.; Den Auwer, C.; Moisy, Ph. [CEA Marcoule, DEN, DRCP, SCPS, F-30207 Bagnols Sur Ceze (France); Grigoriev, M. [RAS, AN Frumkin Inst Phys Chem and Electrochem, Moscow 119991 (Russian Federation); Berthet, J.C. [CEA Saclay, DSM, IRAMIS, URA 331, Serv Chim Mol, CNRS, F-91191 Gif Sur Yvette (France); Hennig, C.; Scheinost, A. [Forschungszentrum Dresden Rossendorf, Inst Radiochem, D-01314 Dresden (Germany)

    2009-05-15

    Nitrilotriacetic acid, commonly known as NITA (N(CH{sub 2}CO{sub 2}H){sub 3}), can be considered a representative of the polyamino-carboxylic family. The results presented in this paper describe the thermodynamical complexation and structural investigation of An(IV) complexes with NTA in aqueous solution. In the first part, the stability constants of the An(IV) complexes (An = Pu, Np, U, and Th) have been determined by spectrophotometry. In the second part, the coordination spheres of the actinide cation in these complexes have been described using extended X-ray absorption fine structure spectroscopy and compared to the solid-state structure of (Hpy){sub 2}[U(NTA){sub 2}].H{sub 2}O. These data are further compared to quantum chemical calculations, and their evolution across the actinide series is discussed. In particular, an interpretation of the role of the nitrogen atom in the coordination mode is proposed. These results are considered to be model behavior of polyamino-carboxylic ligands such as diethylenetriamine pentaacetic acid, which is nowadays the best candidate for a chelating agent in the framework of actinide decorporation for the human body. (authors)

  1. New strategies in actinide separation - water-soluble complexing agents for the innovative SANEX process

    International Nuclear Information System (INIS)

    Ruff, Christian M.; Muelllich, Udo; Geist, Andreas; Panak, Petra J.

    2012-01-01

    Reduction of the radiotoxicity and thermal output of radioactive wastes prior to their permanent disposal is a topic of extreme interest for the issue of final nuclear waste disposal. One possibility to this end is a process referred to as actinide separation. This process can be optimised by means of a newly developed water-soluble molecule, as has been shown in studies on the molecule's complex chemistry using ultra-modern laser-based spectroscopy methods under process-relevant reaction conditions. Through the use of curium (III) and europium (III), which as members of the trivalent actinides and lanthanides family have excellent spectroscopic properties, it has been possible to generate spectroscopic and thermodynamic data which will facilitate our understanding of the complex chemistry and extraction chemistry of this molecule family.

  2. Synthesis of tetravalent actinide chlorides. Versatile compounds for actinide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Maerz, Juliane [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements

    2016-07-01

    Anhydrous actinide tetrachlorides (AnCl{sub 4}) were synthesized under mild conditions to provide versatile compounds for actinide chemistry. They enable a direct access to actinide complexes with organic and inorganic ligands.

  3. NMR study of rare earth and actinide complexes

    International Nuclear Information System (INIS)

    Villardi de Montlaur de, G.C.

    1978-01-01

    Proton magnetic resonance studies of lanthanide shift reagents with olefin-transition metal complexes, monoamines and diamines as substrates are described. Shift reagents for olefins are reported: Lnsup(III)(fod) 3 can induce substantial shifts in the nmr spectra of a variety of olefins when silver 1-heptafluororobutyrate is used to complex the olefin. The preparation, properties and efficiency of such systems are described. Configurational aspects and exchange processes of Lnsup(III)(fod) 3 complexes with secondary and tertiary monoamines are analysed by means of dynamic nmr. Factors influencing the stability and the stoichiometry of these complexes and various processes such as nitrogen inversion and ligand exchange are discussed. At low temperature, ring inversion can be slow on an nmr time-scale for Lnsup(III)(fod) 3 -diamino chelates. Barriers to ring inversion in substituted ethylenediamines and propanediamines are obtained. Steric factors appear to play an important role in the stability and kinetics of these bidentate species. The synthesis of uranium-IV crown-ether and cryptate complexes is described. A conformational study of these compounds show evidence of an insertion of the paramagnetic cation as witnessed by the large induced shifts observed. The insertion of uranium in the macrocyclic ligand of a UCl 4 -dicyclohexyl-18-crown-6 complex is confirmed by an X-ray structural determination [fr

  4. Some actinide complexes of pyridin-, pyrrol-, furan- and thiophen-aldazine Schiff bases

    International Nuclear Information System (INIS)

    Dawod, M.M.; Khalili, F.I.; Seyam, A.M.

    1990-01-01

    Actinide chloride complexes with pyridinaldazine (PAA), pyrrolaldazine(PyAA-H 2 ), furanaldazine (FAA), and thiophenaldazine (TAA): An(L)Cl n ·m-H 2 O, where An = Th, UO 2 ; L PAA, PyAA-H 2 , FAA, TAA; n = 2,4; m = 0, 2, 3, 5 (also, mononuclear with 2L, dinuclear and trinuclear complexes) have been prepared by the reaction of ThCl 4 , UO 2 Cl 2 or UO 2 (Ac) 2 ·2H 2 O with PAA, PyAA-H 2 , FAA or TAA and characterized by spectral data, electrical conductance, thermal and elemental analysis. (author)

  5. Recent development in clusters of rare earths and actinides. Chemistry and materials

    International Nuclear Information System (INIS)

    Zheng, Zhiping

    2017-01-01

    This book contains the following eight contributions: 1. Lanthanide Hydroxide Cluster Complexes via Ligand-Controlled Hydrolysis of the Lanthanide Ions (Zhonghao Zhang, Yanan Zhang, and Zhiping Zheng); 2. Synthesis and Structures of Lanthanide-Transition Metal Clusters (Xiu-Ying Zheng, Xiang-Jian Kong, and La-Sheng Long); 3. Hydrothermal Synthesis of Lanthanide and Lanthanide-Transition-Metal Cluster Organic Frameworks via Synergistic Coordination Strategy (Jian-Wen Cheng and Guo-Yu Yang); 4. Oxo Clusters of 5f Elements (Sarah Hickam and Peter C.); 5. Construction and Luminescence Properties of 4f and d-4f Clusters with Salen-Type Schiff Base Ligands (Xiaoping Yang, Shiqing Wang, Chengri Wang, Shaoming Huang, and Richard A.); 6. 4f-Clusters for Cryogenic Magnetic Cooling (Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong); 7. Lanthanide Clusters Toward Single-Molecule Magnets (Tian Han, You-Song Ding, and Yan-Zhen Zheng); 8. Molecular Rare Earth Hydride Clusters (Takanori Shima and Zhaomin Hou).

  6. Recent development in clusters of rare earths and actinides. Chemistry and materials

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhiping (ed.) [Arizona Univ., Tucson, AZ (United States). Dept. of Chemistry and Biochemistry

    2017-02-01

    This book contains the following eight contributions: 1. Lanthanide Hydroxide Cluster Complexes via Ligand-Controlled Hydrolysis of the Lanthanide Ions (Zhonghao Zhang, Yanan Zhang, and Zhiping Zheng); 2. Synthesis and Structures of Lanthanide-Transition Metal Clusters (Xiu-Ying Zheng, Xiang-Jian Kong, and La-Sheng Long); 3. Hydrothermal Synthesis of Lanthanide and Lanthanide-Transition-Metal Cluster Organic Frameworks via Synergistic Coordination Strategy (Jian-Wen Cheng and Guo-Yu Yang); 4. Oxo Clusters of 5f Elements (Sarah Hickam and Peter C.); 5. Construction and Luminescence Properties of 4f and d-4f Clusters with Salen-Type Schiff Base Ligands (Xiaoping Yang, Shiqing Wang, Chengri Wang, Shaoming Huang, and Richard A.); 6. 4f-Clusters for Cryogenic Magnetic Cooling (Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong); 7. Lanthanide Clusters Toward Single-Molecule Magnets (Tian Han, You-Song Ding, and Yan-Zhen Zheng); 8. Molecular Rare Earth Hydride Clusters (Takanori Shima and Zhaomin Hou).

  7. Complexes of groups 3,4, the lanthanides and the actinides containing neutral phophorus donor ligands

    International Nuclear Information System (INIS)

    Fryzuk, M.D.; Haddad, T.S.; Berg, D.J.

    1990-01-01

    Of relevance to this review are complexes of the early transition elements, in particular groups 3 and 4 and the lanthanides and actinides. In this review the authors have attempted to collect all the data up to the end of 1988 for complexed of groups 3 and 4, the lanthanides and the actinides that contain phosphorus donor ligands. The 1989s have seen a renaissance of the use of phosphine donors for the early d elements (groups 3 and 4) and the f elements. Neutral phosphorus donors are defined as primary (PH 2 R), secondary (PH 2 ) or tertiary phosphines (PR 3 ), including complexes of phosphine, PH 3 . Also reviewed are complexes of PF 3 and phosphites, P(OR) 3 . Specifically excluded are phosphido derivates, PR 2 . The ability of a neutral phosphorus donor to bind the metals of groups 3 and 4, the lanthanides and the actinides is now well established. While there are still no examples of lanthanum or actinium phosphine complexes, such derivatives should be accessible at least for lanthanum. series. However, there is no obvious chemical reason to suggest that such derivatives cannot be generated. The phosphine ligands that appear to generate the most stable phosphine-metal interaction are chelating phosphines such as dmpe, trmpe and trimpsi. In addition, the use of the chelate effect in conjunction with a hard ligand such as the amide in - N(SiMe 2 CH 2 PMe 2 ) 2 , or an alkoxide as found in - OC(BU t ) 2 CH 2 PMe 2 , also appears to be effective in anchoring the phosphine donor to the metal. The majority of low oxidation state derivatives of the group 4 elements are stabilized by phosphine donors in contrast with other parts of the transition series where one finds that classic π-acceptor-type ligands such as CO or RNC are utilized. 233 refs

  8. Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides

    International Nuclear Information System (INIS)

    Alexander, V.

    1995-01-01

    A review article which covers the various design and synthetic strategies developed to synthesize macrocyclic complexes of lanthanides and actinides, their structural features, quantitative studies on the stabilities of these complexes, their applications, and the structure-reactivity principle would be an asset for those who are actively engaged in this area of research. This review is also purported to give a comprehensive view of the current status of this area of research to the beginners and to highlight the application of this chemical research to emerging nonchemical applications to lure the potential workers. The coordination template effect provides a general strategy for the synthesis of a wide variety of discrete metal complexes. The principal conceptual and experimental development that have established and exploited this strategy are briefly outlined. A brief review of the coordination template effect and subsequent developments in the design of macrocyclic complexes of alkali, alkaline earth, and transition metal ions is presented as an essential basis for the rational design of new macrocyclic complexes of lanthanides and actinides. The exciting aspect of this chemistry is that in the majority of cases the molecules meet the design criteria very well. It is evident that in an increasing number of cases the driving force behind the synthetic effort is the desire to create a molecule which will enable the user to make specific applications. 506 refs

  9. Temperature and ionic strength influences on actinide(VI)/(V) redox potentials for carbonate limiting complexes

    International Nuclear Information System (INIS)

    Capdevila, H.; Vitorge, P.

    1998-01-01

    Actinide behaviour was studied in two limiting aqueous solutions: acidic and carbonate. Cyclic voltametry was validated with well-known U redox system. SIT was used to account for I influence. Taylor's series expansions to the second order were used to account for T influence. Redox potentials of actinide couples had previously been measured in non complexing media. The above data treatments give standard values for redox potential E 0 , for the corresponding entropy ΔS 0 , enthalpy ΔH 0 and heat capacity ΔC p 0 changes, and also for the corresponding excess values (i.e. the variation of these thermodynamic constants with ionic strength). This methodology was here used in carbonate media to measure the potential of the redox couple PuO 2 (CO 3 ) 3 4- /PuO 2 (CO 3 ) 3 5- from 5 to 70 degC and from I = 0.5 to 4.5 M in Na 2 CO 3 , NaClO 4 media. Experimental details and full results are given for Pu. Only final results are given for Np. Previous and/or published data for U and Am are discussed. E and ΔS variations with T or I were enough to be measured. The values obtained for the fitted SIT coefficients Δε, and for ΔS and ΔCp are similar for U, Np and Pu redox reactions. Using this analogy for Am missing data is discussed. β 3 V /β 3 VI formation constant ratio of the carbonate limiting complexes were deduced from the potential shift from complexing to non complexing media for the Actinide(VI)/Actinide(V) redox couples. β 3 V (U and Pu) and β 3 VI (Np) were finally proposed using published β3 VI (U and Pu) and β 3 V (Np). For Am, this data treatment was used to discuss the AmO 2 2+ / AmO 2 + redox potential

  10. Theoretical study of the structure and reactivity of lanthanide and actinide based organometallic complexes

    International Nuclear Information System (INIS)

    Barros, N.

    2007-06-01

    In this PhD thesis, lanthanide and actinide based organometallic complexes are studied using quantum chemistry methods. In a first part, the catalytic properties of organo-lanthanide compounds are evaluated by studying two types of reactions: the catalytic hydro-functionalization of olefins and the polymerisation of polar monomers. The reaction mechanisms are theoretically determined and validated, and the influence of possible secondary non productive reactions is envisaged. A second part focuses on uranium-based complexes. Firstly, the electronic structure of uranium metallocenes is analysed. An analogy with the uranyl compounds is proposed. In a second chapter, two isoelectronic complexes of uranium IV are studied. After validating the use of DFT methods for describing the electronic structure and the reactivity of these compounds, it is shown that their reactivity difference can be related to a different nature of chemical bonding in these complexes. (author)

  11. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes

    Science.gov (United States)

    Gregson, Matthew; Lu, Erli; Mills, David P.; Tuna, Floriana; McInnes, Eric J. L.; Hennig, Christoph; Scheinost, Andreas C.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Kerridge, Andrew; Liddle, Stephen T.

    2017-02-01

    Across the periodic table the trans-influence operates, whereby tightly bonded ligands selectively lengthen mutually trans metal-ligand bonds. Conversely, in high oxidation state actinide complexes the inverse-trans-influence operates, where normally cis strongly donating ligands instead reside trans and actually reinforce each other. However, because the inverse-trans-influence is restricted to high-valent actinyls and a few uranium(V/VI) complexes, it has had limited scope in an area with few unifying rules. Here we report tetravalent cerium, uranium and thorium bis(carbene) complexes with trans C=M=C cores where experimental and theoretical data suggest the presence of an inverse-trans-influence. Studies of hypothetical praseodymium(IV) and terbium(IV) analogues suggest the inverse-trans-influence may extend to these ions but it also diminishes significantly as the 4f orbitals are populated. This work suggests that the inverse-trans-influence may occur beyond high oxidation state 5f metals and hence could encompass mid-range oxidation state actinides and lanthanides. Thus, the inverse-trans-influence might be a more general f-block principle.

  12. Mass spectrometric studies of the complexing behaviour of actinide ions in solution

    International Nuclear Information System (INIS)

    Steppert, Michael

    2012-01-01

    As the long-term radiotoxicity of spent nuclear fuel is governed by Plutonium and the Minor Actinides, these elements are focussed on for investigations in the framework of safety assessment for nuclear waste repositories. To shed more light on the selectivity of the partitioning ligands BTP and BTBP towards the extraction of trivalent actinides, the complexes these ligands form with lanthanides in octanolic solution were characterized. The differences in the extraction efficiencies among the different lanthanides were traced back to the varying preferential formation of Ln(BTP)3 complexes, depending on the ionic radius of the lanthanides. Additionally it was shown that depending on the sterical demand of BTBP ligands nitrate anions coordinate in the first coordination shell of Eu(BTBP)2-complexes. As the behavior of Plutonium under geochemical conditions is of particular interest for the safety assessment of potential nuclear waste repositories, the second part of the thesis focuses on the hydrolysis and colloid formation behavior of aqueous Plutonium solutions. The solution species of Zirconium(IV) as analogue for Plutonium(IV) as well as of Uranium(VI) and Plutonium(VI) were characterized and quantified by means of electrospray ionization mass spectrometry. Moreover the colloid-induced reduction of Pu(V) to Pu(IV) and the subsequent formation of colloidal species was investigated. [de

  13. Probing the chemistry, electronic structure and redox energetics in pentavalent organometallic actinide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Christopher R [Los Alamos National Laboratory; Vaughn, Anthony E [Los Alamos National Laboratory; Morris, David E [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2008-01-01

    Complexes of the early actinides (Th-Pu) have gained considerable prominence in organometallic chemistry as they have been shown to undergo chemistries not observed with their transition- or lanthanide metal counterparts. Further, while bonding in f-element complexes has historically been considered to be ionic, the issue of covalence remains a subject of debate in the area of actinide science, and studies aimed at elucidating key bonding interactions with 5f-orbitals continue to garner attention. Towards this end, our interests have focused on the role that metal oxidation state plays in the structure, reactivity and spectral properties of organouranium complexes. We report our progress in the synthesis of substituted U{sup V}-imido complexes using various routes: (1) Direct oxidation of U{sup IV}-imido complexes with copper(I) salts; (2) Salt metathesis with U{sup V}-imido halides; (3) Protonolysis and insertion of an U{sup V}-imido alkyl or aryl complex with H-N{double_bond}CPh{sub 2} or N{triple_bond}C-Ph, respectively, to form a U{sup V}-imido ketimide complex. Further, we report and compare the crystallographic, electrochemical, spectroscopic and magnetic characterization of the pentavalent uranium (C{sub 5}Me{sub 5}){sub 2}U({double_bond}N-Ar)(Y) series (Y = OTf, SPh, C{triple_bond}C-Ph, NPh{sub 2}, OPh, N{double_bond}CPh{sub 2}) to further interrogate the molecular, electronic, and magnetic structures of this new class of uranium complexes.

  14. Lanthanides(3)/ actinides (3) separation by nano-filtration-complexation in aqueous medium

    International Nuclear Information System (INIS)

    Chitry, F.; Pellet-Rostaing, S.; Gozzi, C.; Lemaire, M.; Guy, A.; Foos, J.

    2000-01-01

    Lanthanides(III)/actinides(III) separation is a major research subject in matter of treatment of high activity liquid effluents. Liquid-liquid extraction actually gives the best results for this separation. In order to demonstrate that nano-filtration (NF) is a valuable alternative to liquid-liquid extraction, we tried to separate different lanthanides(III) with a nano-filtration process combined with a selective complexation step. At first DTPA (diethylene-triamine-pentaacetic acid) combined with a Sepa MG-17 (Osmonics) gave a 95% retention of Gd 3+ and a 50% retention of La 3+ . Then new hydrosoluble and more selective ligands derived from DTPA were synthesized. One of them combined with a Sepa MG-17 membrane allowed a 87% retention of Gd 3+ and a 5% retention of La 3+ . The same nano-filtration-complexation system was experimented with an equimolar aqueous solution of Gd 3+ , Pr 3+ and La 3+ . Other experiments in the field of actinides(III)/lanthanides(III) separation were also performed. (authors)

  15. Synthesis and evaluation structure/extracting and complexing properties of new bi-topic ligands for group actinides extraction

    International Nuclear Information System (INIS)

    Bisson, J.

    2011-01-01

    The aim of this project is to design and study new extractants for spent nuclear fuel reprocessing. To decrease the long-term radiotoxicity of the waste, the GANEX process is an option to homogeneously recycle actinides. All actinides (U, Np, Pu, Am, Cm) would be extracted together from a highly acidic media and separated from fission products (especially from lanthanides). In this context, fourteen new bi-topic ligands constituted of a nitrogen poly-aromatic unit from the dipyridyl-phenanthroline and dipyridyl-1,3,5-triazine families and functionalized by amid groups were synthesized. Extraction studies performed with some of these ligands confirmed their interest to selectively separate actinides at different oxidation states from an aqueous solution 3M HNO 3 . To determine the influence of ligands structure on cation complexation, a study in a homogenous media (MeOH/H 2 O) has been carried out. Electro-spray ionization mass spectrometry have been used to characterize the complexes stoichiometries formed with several cations (Eu 3+ , Nd 3+ , Am 3+ , Pu 4+ and NpO 2 + ). Stability constants, evaluated by UV-Visible spectrophotometry, confirm the selectivity of these ligands toward actinides. Lanthanides and actinides complexes have also been characterized in the solid state by infra-red spectroscopy and X-Ray diffraction. Associated to nuclear magnetic resonance experiments and DFT calculations (Density Functional Theory), a better knowledge of their coordination mode was achieved. (author) [fr

  16. Complexation of Eu(III) with a polymeric cement additive as a potential carrier of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Lippold, Holger; Becker, Michael [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactive Transport

    2017-06-01

    In the long term, cementitious materials in a final repository will be exposed to leaching processes generating highly alkaline solutions. Polymeric additives, so-called superplasticizers, are considered as potential mobilizing agents for released radionuclides, since it is uncertain whether complete degradation will take place under the evolving aqueous conditions. Regarding the complexing properties of superplasticizers, there are only indirect assessments so far. In this study, first systematic investigations on complexation with Eu(III) as an analogue of trivalent actinides were performed at variable pH and electrolyte content (NaCl, CaCl{sub 2}) using ultrafiltration as a separation method. A stability constant was derived according to the charge neutralization model. For this purpose, the proton exchange capacity was determined by potentiometric titration.

  17. Coupling of terminal alkynes and isonitriles by organo-actinide complexes: Scope and mechanistic insights

    International Nuclear Information System (INIS)

    Barnea, E.; Andrea, T.; Eisen, M. S.; Berthet, J.C.; Ephritikhine, M.

    2008-01-01

    The coupling reaction of terminal alkynes with several isonitriles, catalyzed by the neutral organo-actinide complexes Cp * 2 AnMe 2 (Cp * = C 5 Me 5 , An = Th, U) or the cationic complex [(Et 2 N) 3 U][BPh 4 ], yielded substituted α, β-acetylenic aldimines, in good to excellent yields. The reaction proceeded via a 1,1-insertion of the isonitrile carbon into a metal-acetylide bond, followed by a protonolysis by the acidic proton of the terminal alkyne. Additional insertion products were obtained by altering the catalyst and the reactant ratios. A plausible mechanism for the catalytic reaction is also presented, based on kinetics measurements and thermodynamic studies of the coupling reaction with Cp * 2 ThMe 2 or [(Et 2 N) 3 U][BPh 4 ] as catalysts. The reaction is first-order in catalyst and isonitrile and zero-order in alkyne. (authors)

  18. Complexation of the actinides (III, IV and V) with organic acids

    International Nuclear Information System (INIS)

    Leguay, S.

    2012-01-01

    A thorough knowledge of the chemical properties of actinides is now required in a wide variety of fields: extraction processes involved in spent fuel reprocessing, groundwater in the vicinity of radioactive waste packages, environmental and biological media in the case of accidental release of radionuclides. In this context, the present work has been focused on the complexation of Am(III), Cm(III), Cf(III), Pu(IV) and Pa(V) with organic ligands: DTPA, NTA and citric acid. The complexation of pentavalent protactinium with citric and nitrilotriacetic acids was studied using liquid-liquid extraction with the element at tracer scale (C Pa ≤ 10 -10 M). The order and the mean charge of each complex were determined from the analysis of the systematic variations of the distribution coefficient of Pa(V) as function of ligand and proton concentration. Then, the apparent formation constants related of the so-identified complexes were calculated. The complexation of trivalent actinides with DTPA was studied by fluorescence spectroscopy (TRLFS) and capillary electrophoresis (CE-ICP-MS). The coexistence of the mono-protonated and non-protonated complexes (AnHDTPA - and AnDTPA 2- ) in acidic media (1.5 ≤ pH ≤ 3.5) was shown unambiguously. Literature data have been reinterpreted by taking into account both complexes and a consistent set of formation constants of An(III)-DTPA has been obtained. The experimental study was completed by theoretical calculations (DFT) on Cm-DTPA system. The coordination geometry of Cm in CmDTPA 2- and CmHDTPA - including water molecules in the first coordination sphere has been determined as well as interatomic distances. Finally, a study on the complexation of Pu(IV) with DTPA was initiated in order to more closely mimic physiological conditions. A three-step approach was proposed to avoid plutonium hydrolysis: i/ complexation of Pu(IV) with (NTA) in order to protect Pu(IV) from hydrolysis (at low pH) ii/ increase of pH toward neutral conditions

  19. Stability constants of the fluoride complexes of actinides in aqueous solution and their correlation with fundamental properties

    International Nuclear Information System (INIS)

    Chaudhuri, N.K.; Sawant, R.M.

    1997-09-01

    Stability constants of the fluoride complexes of the actinides in different oxidation states measured by potentiometric method using fluoride ion selective electrode have been presented. Procedure and precautions required to overcome certain difficulties particular to actinide ions have been discussed. Literature data from various sources have been compiled. In order to have a reasonable comparison the stability constant (β 1 ) values obtained in diverse ionic strength media are converted to thermodynamic stability constant, β 1 0 , using Davies equation (a modification of Debye-Huckel equation). A correlation of the β 1 0 values with the fundamental properties of the actinide ions using various models available in the literature has been attempted. A semiempirical relation recently developed by Brown, Sylva and Ellis (BSE equation) appears to be most suitable. Using the values of ionic radii and best available values of the stability constants of a large number of metal ions from recent compilations a comparative study of the various models or relations available in the literature has been tried. For metal ions in general, the best correlation is obtained with the BSE equation. In an attempt to accommodate the unusual trend in the stability constants of the tetravalent actinides a modification in a parameter of the BSE equation has been proposed. Good agreement between the theoretically calculated and experimentally determined values for actinides in different oxidation states is then obtained in most of the cases. (author)

  20. Combined techniques for studying actinide complexes in room temperature ionic liquids

    International Nuclear Information System (INIS)

    Gaillard, C.; Billard, I.; Mekki, S.; Ouadi, A.; Hennig, Ch.; Denecke, M.A.

    2007-01-01

    Room temperature ionic liquids (RTILs) are a new class of solvents. Their main interest is related to their 'green' properties (non-volatile, non-flammable, etc.), but also from the variability of their physico-chemical properties (stability, hydrophobicity, viscosity) as a function of the RTIL cationic and anionic components. In the frame of the nuclear fuel reprocessing, RTILs are particularly attractive in order to improve existing processes or to develop new ones for actinide and lanthanide partitioning, in replacement of toxic solvents used nowadays, for metal electrodeposition or for liquid/liquid extraction by the use of task specific ionic liquids. However, despite the increasing number of publications devoted to ionic liquids, the solvation effects, the solute-solvent and solvent-solvent interactions are still hardly known. These fundamental aspects are of tremendous importance to the understanding of the solvating properties of these new solvents. In this frame, we have undertaken studies on the solvation and complexation of lanthanides (III) and actinides in RTILs, by the use of spectroscopic techniques. Experiments were led in various ionic liquids in order to highlight the role of the anionic part of the RTILs on the reactivity of the studied cations. Results have clearly shown that solvation phenomena in RTILs are not as 'simple' as in classical solvents. The dissolution of a Ln/An salt, even if complete, does not imply dissociation and solvation of the metal cation by the RTILs anions only. The nature of first co-ordination sphere of Ln/An depends on the competition between its counter-anions and the RTIL anions, which, in turn, influence the complexation reaction with other added anions such as chlorides. (authors)

  1. Complex scaling in the cluster model

    International Nuclear Information System (INIS)

    Kruppa, A.T.; Lovas, R.G.; Gyarmati, B.

    1987-01-01

    To find the positions and widths of resonances, a complex scaling of the intercluster relative coordinate is introduced into the resonating-group model. In the generator-coordinate technique used to solve the resonating-group equation the complex scaling requires minor changes in the formulae and code. The finding of the resonances does not need any preliminary guess or explicit reference to any asymptotic prescription. The procedure is applied to the resonances in the relative motion of two ground-state α clusters in 8 Be, but is appropriate for any systems consisting of two clusters. (author) 23 refs.; 5 figs

  2. Design, synthesis, and evaluation of polyhydroxamate chelators for selective complexation of actinides

    International Nuclear Information System (INIS)

    Gopalan, A.; Jacobs, H.; Koshti, N.; Stark, P.; Huber, V.; Dasaradhi, L.; Caswell, W.; Smith, P.; Jarvinen, G.

    1995-01-01

    Specific chelating polymers targeted for actinides have much relevance to problems involving remediation of nuclear waste. Goal is to develop polymer supported, ion specific extraction systems for removing actinides and other hazardous metal ions from wastewaters. This is part of an effort to develop chelators for removing actinide ions such as Pu from soils and waste streams. Selected ligands are being attached to polymeric backbones to create novel chelating polymers. These polymers and other water soluble and insoluble polymers have been synthesized and are being evaluated for ability to selectively remove target metal ions from process waste streams

  3. Investigation of the complexation and the migration of actinides and non-radioactive substances with humic acids under geogenic conditions. Complexation of humic acids with actinides in the oxidation state IV Th, U, Np

    International Nuclear Information System (INIS)

    Sachs, S.; Schmeide, K.; Brendler, V.; Krepelova, A.; Mibus, J.; Geipel, G.; Heise, K.H.; Bernhard, G.

    2004-03-01

    Objective of this project was the study of basic interaction and migration processes of actinides in the environment in presence of humic acids (HA). To obtain more basic knowledge on these interaction processes synthetic HA with specific functional properties as well as 14 C-labeled HA were synthesized and applied in comparison to the natural HA Aldrich. One focus of the work was on the synthesis of HA with distinct redox functionalities. The obtained synthetic products that are characterized by significantly higher Fe(III) redox capacities than Aldrich HA were applied to study the redox properties of HA and the redox stability of U(VI) humate complexes. It was confirmed that phenolic OH groups play an important role for the redox properties of HA. However, the results indicate that there are also other processes than the single oxidation of phenolic OH groups and/or other functional groups contributing to the redox behavior of HA. A first direct-spectroscopic proof for the reduction of U(VI) by synthetic HA with distinct redox functionality was obtained. The complexation behavior of synthetic and natural HA with actinides (Th, Np, Pu) was studied. Structural parameters of Pu(III), Th(IV), Np(IV) and Np(V) humates were determined by X-ray absorption spectroscopy (XAS). The results show that carboxylate groups dominate the interaction between HA and actinide ions. These are predominant monodentately bound. The influence of phenolic OH groups on the Np(V) complexation by HA was studied with modified HA (blocked phenolic OH groups). The blocking of phenolic OH groups induces a decrease of the number of maximal available complexing sites of HA, whereas complex stability constant and Np(V) near-neighbor surrounding are not affected. The effects of HA on the sorption and migration behavior of actinides was studied in batch and column experiments. Th(IV) sorption onto quartz and Np(V) sorption onto granite and its mineral constituents are affected by the pH value and the

  4. Investigation of the complexation and the migration of actinides and non-radioactive substances with humic acids under geogenic conditions. Complexation of humic acids with actinides in the ocidation state IV Th, U, Np

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, S.; Schmeide, K.; Brendler, V.; Krepelova, A.; Mibus, J.; Geipel, G.; Heise, K.H.; Bernhard, G.

    2004-03-01

    Objective of this project was the study of basic interaction and migration processes of actinides in the environment in presence of humic acids (HA). To obtain more basic knowledge on these interaction processes synthetic HA with specific functional properties as well as {sup 14}C-labeled HA were synthesized and applied in comparison to the natural HA Aldrich. One focus of the work was on the synthesis of HA with distinct redox functionalities. The obtained synthetic products that are characterized by significantly higher Fe(III) redox capacities than Aldrich HA were applied to study the redox properties of HA and the redox stability of U(VI) humate complexes. It was confirmed that phenolic OH groups play an important role for the redox properties of HA. However, the results indicate that there are also other processes than the single oxidation of phenolic OH groups and/or other functional groups contributing to the redox behavior of HA. A first direct-spectroscopic proof for the reduction of U(VI) by synthetic HA with distinct redox functionality was obtained. The complexation behavior of synthetic and natural HA with actinides (Th, Np, Pu) was studied. Structural parameters of Pu(III), Th(IV), Np(IV) and Np(V) humates were determined by X-ray absorption spectroscopy (XAS). The results show that carboxylate groups dominate the interaction between HA and actinide ions. These are predominant monodentately bound. The influence of phenolic OH groups on the Np(V) complexation by HA was studied with modified HA (blocked phenolic OH groups). The blocking of phenolic OH groups induces a decrease of the number of maximal available complexing sites of HA, whereas complex stability constant and Np(V) near-neighbor surrounding are not affected. The effects of HA on the sorption and migration behavior of actinides was studied in batch and column experiments. Th(IV) sorption onto quartz and Np(V) sorption onto granite and its mineral constituents are affected by the pH value

  5. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    International Nuclear Information System (INIS)

    Zalupski, Peter R.; Martin, Leigh R.; Nash, Ken; Nakamura, Yoshinobu; Yamamoto, Masahiko

    2009-01-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N',N(double p rime),N(double p rime)-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  6. The complex lives of star clusters

    CERN Document Server

    Stevenson, David

    2015-01-01

    As with the author’s recent books Extreme Explosions and Under a Crimson Sun, the complex topic of star clusters is broken down and made accessible with clear links to other areas of astronomy in a language which the non-specialist can easily read and enjoy. The full range of a star cluster's lifespan is depicted, as both globular and open clusters are tracked from birth to eventual death. Why is it some are dense conglomerates of stars while others are looser associations? Are the young, brilliant clusters seen in neighboring galaxies such as the Large Magellanic Cloud, M33 or M82 analogous to the ancient globulars seen in the Milky Way? How will these clusters change as their stars wane and die? More interestingly, how does living in a dense star cluster affect the fates of the stars and any attendant planets that accompany them?   Star clusters form many of the most dazzling objects in the astronomers’ catalogs. Many amateur astronomers are interested in exploring how these objects are created and wh...

  7. Competitive cluster growth in complex networks.

    Science.gov (United States)

    Moreira, André A; Paula, Demétrius R; Costa Filho, Raimundo N; Andrade, José S

    2006-06-01

    In this work we propose an idealized model for competitive cluster growth in complex networks. Each cluster can be thought of as a fraction of a community that shares some common opinion. Our results show that the cluster size distribution depends on the particular choice for the topology of the network of contacts among the agents. As an application, we show that the cluster size distributions obtained when the growth process is performed on hierarchical networks, e.g., the Apollonian network, have a scaling form similar to what has been observed for the distribution of a number of votes in an electoral process. We suggest that this similarity may be due to the fact that social networks involved in the electoral process may also possess an underlining hierarchical structure.

  8. Influence of a Heterocyclic Nitrogen-Donor Group on the Coordination of Trivalent Actinides and Lanthanides by Aminopolycarboxylate Complexants.

    Science.gov (United States)

    Grimes, Travis S; Heathman, Colt R; Jansone-Popova, Santa; Ivanov, Alexander S; Roy, Santanu; Bryantsev, Vyacheslav S; Zalupski, Peter R

    2018-02-05

    The novel metal chelator N-2-(pyridylmethyl)diethylenetriamine-N,N',N″,N″-tetraacetic acid (DTTA-PyM) was designed to replace a single oxygen-donor acetate group of the well-known aminopolycarboxylate complexant diethylenetriamine-N,N,N',N″,N″-pentaacetic acid (DTPA) with a nitrogen-donor 2-pyridylmethyl. Potentiometric, spectroscopic, computational, and radioisotope distribution methods show distinct differences for the 4f and 5f coordination environments and enhanced actinide binding due to the nitrogen-bearing heterocyclic moiety. The Am 3+ , Cm 3+ , and Ln 3+ complexation studies for DTTA-PyM reveal an enhanced preference, relative to DTPA, for trivalent actinide binding. Fluorescence studies indicate no changes to the octadentate coordination of trivalent curium, while evidence of heptadentate complexation of trivalent europium is found in mixtures containing EuHL (aq) complexes at the same aqueous acidity. The denticity change observed for Eu 3+ suggests that complex protonation occurs on the pyridyl nitrogen. Formation of the CmHL (aq) complex is likely due to the protonation of an available carboxylate group because the carbonyl oxygen can maintain octadentate coordination through a rotation. The observed suppressed protonation of the pyridyl nitrogen in the curium complexes may be attributed to stronger trivalent actinide binding by DTTA-PyM. Density functional theory calculations indicate that added stabilization of the actinide complexes with DTTA-PyM may originate from π-back-bonding interactions between singly occupied 5f orbitals of Am 3+ and the pyridyl nitrogen. The differences between the stabilities of trivalent actinide chelates (Am 3+ , Cm 3+ ) and trivalent lanthanide chelates (La 3+ -Lu 3+ ) are observed in liquid-liquid extraction systems, yielding unprecedented 4f/5f differentiation when using DTTA-PyM as an aqueous holdback reagent. In addition, the enhanced nitrogen-donor softness of the new DTTA-PyM chelator was perturbed by

  9. Influence of a Heterocyclic Nitrogen-Donor Group on the Coordination of Trivalent Actinides and Lanthanides by Aminopolycarboxylate Complexants

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heathman, Colt R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jansone-Popova, Santa [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Alexander S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roy, Santanu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryantsev, Vyacheslav S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zalupski, Peter R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-01-05

    Here, the novel metal chelator N-2-(pyridylmethyl)diethylenetriamine-N,N',N",N"-tetraacetic acid (DTTA-PyM) was designed to replace a single oxygen-donor acetate group of the well-known aminopolycarboxylate complexant diethylenetriamine-N,N,N',N",N"-pentaacetic acid (DTPA) with a nitrogen-donor 2-pyridylmethyl. Potentiometric, spectroscopic, computational, and radioisotope distribution methods show distinct differences for the 4f and 5f coordination environments and enhanced actinide binding due to the nitrogen-bearing heterocyclic moiety. The Am3+, Cm3+, and Ln3+ complexation studies for DTTA-PyM reveal an enhanced preference, relative to DTPA, for trivalent actinide binding. Fluorescence studies indicate no changes to the octadentate coordination of trivalent curium, while evidence of heptadentate complexation of trivalent europium is found in mixtures containing EuHL(aq) complexes at the same aqueous acidity. The denticity change observed for Eu3+ suggests that complex protonation occurs on the pyridyl nitrogen. Formation of the CmHL(aq) complex is likely due to the protonation of an available carboxylate group because the carbonyl oxygen can maintain octadentate coordination through a rotation. The observed suppressed protonation of the pyridyl nitrogen in the curium complexes may be attributed to stronger trivalent actinide binding by DTTA-PyM. Density functional theory calculations indicate that added stabilization of the actinide complexes with DTTA-PyM may originate from π-back-bonding interactions between singly occupied 5f orbitals of Am3+ and the pyridyl nitrogen. The differences between the stabilities of trivalent actinide chelates (Am3+, Cm3+) and trivalent lanthanide chelates (La3+–Lu3+) are observed in liquid–liquid extraction systems, yielding unprecedented 4f/5f differentiation when using DTTA

  10. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  11. Anisotropic behavior and complex colinear magnetic structures of cerium and actinide intermetallics

    International Nuclear Information System (INIS)

    Cooper, B.R.

    1977-01-01

    A review is given of the experimental situation and degree of theoretical understanding for the occurrence of complex colinear magnetic structures in cerium and actinide intermetallics of NaCl structure. In doing this, emphasis is on the qualitative nature of the anisotropic effects necessary to understand the behavior. With this in mind we focus on the I to IA magnetic structure transition, and indeed more simply, on the occurrence of the IA magnetic structure which appears for CeBi, UAs, and some of the mixed uranium monopnictide-monochalcogenides. We show how the experimental observations involving properties related to the IA magnetic structure indicate important qualitative features of the physical mechanism involved. Through discussion of the possible analogue to the situation in UO 2 , the idea is introduced that magnetoelastic effects involving internal rearrangement modes may play a key role in the occurrence of the IA structure. Internal rearrangement modes are modes where one ionic species remains at its site in the undistorted crystal structure, and the other species is displaced from its position in the undistorted structure. We show that in a very natural way one can anticipate the possible occurrence of an internal rearrangement mode having a four-layer, periodic displacement sequence for planes for one species in the NaCl structure crystals, while the other species remains undisplaced. The presence of such a static lattice mode is susceptible to direct experimental observation. (author)

  12. Complexation studies of actinides (U, Pu, Am) with linear polyamino-carboxylate ligands and sidero-chelates

    International Nuclear Information System (INIS)

    Nguyen, L.V.

    2010-01-01

    As part of our research endeavour aimed at developing and improving decontamination processes of wastewater containing alpha emitters, physico-chemical complexation studies of actinides (U, Pu, Am) with organic open-chain ligands such as poly-aminocarboxylic acids (H 4 EDTA) and sidero-chelates (di-hydroxamic acids and desferrioxamine B) have been carried out. Gaining a clear understanding of the coordination properties of the targeted actinides is an essential step towards the selection of the most appropriate chelating agents that will exhibit high uptake efficiencies. EXAFS (Extended X-ray Absorption Fine Structure) measurements at the ESRF synchrotron enabled to elucidate the coordination scheme of uranium and plutonium complexes. Solution thermodynamic investigations were intended to provide valuable information about the nature and the stability of the uranium(VI) and americium(III) complexes prevailing at a given pH in solution. The set of stability constants determined from potentiometric and UV-visible spectrophotometric titrations, allowed to predict the speciation of the selected actinides in presence of the aforementioned ligands and to determine the pH range required for achieving 'ultimate' decontamination. (author) [fr

  13. Complexation of f elements by tripodal ligands containing aromatic nitrogens. Application to the selective extraction of actinides(III)

    International Nuclear Information System (INIS)

    Wietzke, Raphael

    1999-01-01

    This work initiates a research project, whose aim is the actinides(lll)/lanthanides(III) separation by liquid-liquid extraction. We were interested in the study of the coordination chemistry of lanthanides(III) and uranium(III) (uranium(III) as model for the actinides(III)), with the aim to show differences between the two families and to better understand the coordination properties involved in the extraction process. We studied the lanthanide(III) and uranium(III) complexation with tripodal ligands containing aromatic nitrogens. Several tripodal ligands were synthesized varying the type and the number of the donor atoms. The lanthanide(III) complexes have been characterized in the solid state and in solution (by several techniques: "1H NMR, ESMS, luminescence, UV spectrophotometry, conductometry). Differences in the coordination were found depending on the nature of the donor atoms. The new ligands, tris(2-pyrazinylmethyl)amine (tpza) et tris(N,N-diethyl-2-carbamoyl-6- pyridylmethyl)amine (tpaa), have shown a selectivity for the actinides(III) with promising results in liquid-liquid extraction. The comparison between the lanthanum(III) and uranium(III) complexes with the ligand tpza showed differences in the bonding nature, which could be attributed to a covalent contribution to the metal-ligand bond. (author) [fr

  14. Determination of non-metallic elements in actinide complexes by oxygen flask combustion (OFC): chlorine and fluorine

    International Nuclear Information System (INIS)

    Ruikar, P.B.; Nagar, M.S.; Subramanian, M.S.

    1989-01-01

    The oxygen flask combustion followed by ion selective electrode measurement has been found to be the most suitable from the point of view of elegance and simplicity for the determination of chlorine and fluorine in actinide complexes. The method has been found to be particularly suitable for glove box adaptation. This report describes the determination of chlorine and fluorine in several uranium complexes, some plutonium complexes and organic analytical standards by this method. The precision and accuracy of the measurements in the milligram level has been found to be quite satisfactory. (author). 16 refs., 11 tabs

  15. Xafs studies on actinide-pyridine-diamide complexes for development of an innovative separation process

    International Nuclear Information System (INIS)

    Hideaki, Shiwaku; Tsuyoshi, Yaita; Tohru, Kobayashi; Masahiko, Numakura; Tsuyoshi, Yaita; Shinichi, Suzuki; Yoshihiro, Okamoto

    2007-01-01

    We have been studying the bond properties and the structures of actinide (An) and lanthanide (Ln) complexes in detail using several kinds of X-ray analyses by synchrotron radiation in order to elucidate the ionic recognition mechanism of organic ligands. Generally, an oxygen donor type ligand separates both An and Ln from solutions of spent fuel or high level radioactive waste. Separation ability of this type of ligand for An and Ln follows the order of the surface charge density of an ion, i.e., An 4+ > AnO 2 2+ > An 3+ = Ln 3+ > AnO 2+ and/or a few structural factors. Therefore, this type of ligand is ineffective for the separation of An 3+ and Ln 3+ due to their similar chemical properties. Recently, new extractants like aromatic N-donor ligands have been developed using the preference of soft-donors to achieve the An 3+ /Ln 3+ separation. However, aromatic N-donor ligands often show a few problems such as protonation. In this developing process, we synthesized a new type of ligand, N,N'-dimethyl-N,N'-diphenyl-pyridine-2,6-carboxy-amide (DMDPh-PDA). The PDA is hybrid type ligand having oxygen and nitrogen as donor atoms and follows a unique separation order, i.e., An 4+ > An 3+ > AnO 2 2+ > Ln 3+ > AnO 2 + , probably arising from the combined effects of covalent bonding and steric hindrance. Hence, clarification of any ionic recognition mechanism of the PDA is very interesting from the view point of structural analysis. In this presentation, we will show XAFS results of An and Ln complexes with PDA in solution and discuss separation mechanism of An and Ln by PDA. Various kinds of complexes between Ln/An and PDA were prepared for XAFS analysis. The Ln complexes were measured in transmission mode at the K absorption edge on the BL11XU at SPring-8. On the other hand, the U complexes were measured in fluorescence mode at the L III absorption edge on the BL-27B at Photon Factory, High-energy Accelerator Research Organization (KEK). (authors)

  16. Thermodynamic study on the complexation of Trivalent actinide and lanthanide cation by N-donor ligands in homogeneous conditions; Etude thermodynamique de la complexation des ions actinide (III) et lanthanide (III) par des ligands polyazotes en milieu homogene

    Energy Technology Data Exchange (ETDEWEB)

    Miguirditchian, M

    2004-07-01

    Polydentate N-donor ligands, alone or combined with a synergic acid, may selectively extract minor actinides(III) from lanthanide(III) ions, allowing to develop separation processes of long-live radioelements. The aim of the researches carried out during this thesis was to better understand the chemical mechanisms of the complexation of f-elements by Adptz, a tridentate N-donor ligand, in homogeneous conditions. A thermodynamic approach was retained in order to estimate, from an energetic point of view, the influence of the different contributions to the reaction, and to acquire a complete set of thermodynamic data on this reaction. First, the influence of the nature of the cation on the thermodynamics was considered. The stability constants of the 1/1 complexes were systematically determined by UV-visible spectrophotometry for every lanthanide ion (except promethium) and for yttrium in a mixed solvent methanol/water in volume proportions 75/25%. The thermodynamic parameters ({delta}H{sup 0} {delta}{sup S}) of complexation were estimated by the van't Hoff method and by micro-calorimetry. The trends of the variations across the lanthanide series are compared with similar studies. The same methods were applied to the study of three actinide(III) cations: plutonium, americium and curium. The comparison of these values with those obtained for the lanthanides highlights the increase of stability of these complexes by a factor of 20 in favor of the actinide cations. This gap is explained by a more exothermic reaction and is associated, in the data interpretation, to a higher covalency of the actinide(III)-nitrogen bond. Then, the influence of the change of solvent composition on the thermodynamic of complexation was studied. The thermodynamic parameters of the complexation of europium(III) by Adptz were determined for several fractions of methanol. The stability of the complex formed increases with the percentage of methanol in the mixed solvent, owing to an

  17. Research in actinide chemistry

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1993-01-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH - , CO 3 2- , PO 4 3- , humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements

  18. Extraction of lanthanides and actinides (III) by DI-2 ethyl dithiophosphoric acid and DI-2 ethyl hexyl monothiophosphoric acid. Structure of the complexes in the organic phase

    International Nuclear Information System (INIS)

    Pattee, D.; Musikas, C.; Faure, A.; Chachaty, C.

    1986-09-01

    To operate a trivalent actinide-lanthanide (III) group chemical separation from low pH nitric solutions we studied the extractive properties of the di-2 ethyl hexyl dithiophosphoric acid (HDEHDTP); this bidentate ligand which possesses a sulfur donor atom is a good extractant of soft acids. We so expect a better selectivity for the actinides (III) extraction. We also have investigated extractive properties of di-2 ethyl hexyl monothiophosphoric acid (HDEHTP) for trivalent actinides and lanthanides; HDEHDTP is a bidentate ligand with one oxygen donor atom and so is a better extractant for hard acids like actinides and lanthanides (III); but its selectivity is weak. The addition of TBP (tri-n butyl phosphate) to HDEHDTP deals to strong synergistic organic complexes with a great selectivity for Am(III). We explicited this phenomenon. When the metal is macroconcentrated the organic complexes aggregate and form inverted micelles

  19. Chalcogenhalide cluster rhenium- and molybdenum complexes

    International Nuclear Information System (INIS)

    Fedin, V.P.; Gubin, S.P.; Mishchenko, A.V.; Fedorov, V.E.

    1984-01-01

    The interaction of rhenium- and molybdenum chalcogenhalides with n-donor ligands (L) is studied. At heating Re 3 X 2 Hal 5 complexes up to 100 deg in DMSO in the L presence obtained are the complexes of the 1-6 composition Re 3 X 2 Hal 5 -x Lx DMSO (X=Se, Hal=Cl, L=Et 3 N(1); X=Se, Hal=Cl, L=Bipy(2); X=Se, Hal=Br, L=Et 3 N(3); X=Se, Hal=Br, L=Bipy(4); X=Te, Hal=Br, L=Et 3 N(5); X=Te, Hal=Br, L=(Me 2 NCH 2 ) 2 (6). In the course of boiling of Mo 3 S 7 Hal 4 with PPh 3 in MeCN the Mo 3 S 7 Hal 4 2PPh 3 complexes (Hal=Cl(7); Br(8)) are obtained. For 1 through 8 complexes the chemical analysis data and IR spectra are given. For 4 and 8 complexes the molecular mass is measured. A possible method of obtaining molecular trinuclear clusters from polymer clusters is discussed

  20. Theoretical study of the structure and reactivity of lanthanide and actinide based organometallic complexes; Etude theorique de la structure et de la reactivite de complexes organometalliques de lanthanides et d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Barros, N

    2007-06-15

    In this PhD thesis, lanthanide and actinide based organometallic complexes are studied using quantum chemistry methods. In a first part, the catalytic properties of organo-lanthanide compounds are evaluated by studying two types of reactions: the catalytic hydro-functionalization of olefins and the polymerisation of polar monomers. The reaction mechanisms are theoretically determined and validated, and the influence of possible secondary non productive reactions is envisaged. A second part focuses on uranium-based complexes. Firstly, the electronic structure of uranium metallocenes is analysed. An analogy with the uranyl compounds is proposed. In a second chapter, two isoelectronic complexes of uranium IV are studied. After validating the use of DFT methods for describing the electronic structure and the reactivity of these compounds, it is shown that their reactivity difference can be related to a different nature of chemical bonding in these complexes. (author)

  1. Theoretical study of the structure and the reactivity of lanthanides and actinides complexes: Activation of small molecules

    International Nuclear Information System (INIS)

    Castro, Ludovic

    2012-01-01

    This PhD thesis presents a theoretical study of the structure and the reactivity of organometallic complexes of lanthanides and actinides at the DFT level. After a general introduction of the methods of theoretical chemistry used for the modelling of organometallic reactivity, a study of the participation of 5f electrons in uranium(IV) reactivity is presented. The results show that the large core ECP can be used safely in order to treat the actinide and so that 5f electrons can be treated implicitly. Then, the reactivity of uranium(III) complexes with CO 2 and other analogous molecules is studied via multiple examples from the literature. These studies show that the steric nature of the ligands is very important and controls the reactivity. This study is then extended to samarium(II) complex. Eventually, the reactivity of a hydride complex of cerium(III) with MeOSO 2 Me is investigated and theoretical results are compared with experimental observations. (author) [fr

  2. Electro-spray Ionization Mass Spectrometry Investigation of BTBP - Lanthanide(III) and Actinide(III) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Retegan, T.; Ekberg, Ch. [Chalmers, Dept Chem and Biol Engn, SE-41296 Gothenburg, (Sweden); Berthon, L.; Zorz, N. [DEN DRCP SCPS LCSE, CEA Marcoule, Bagnols Sur Ceze, (France)

    2009-07-01

    In the framework of nuclear waste reprocessing, the separation processes of minor actinides from fission products are developed using liquid-liquid extraction. To gain an understanding of the mechanism involved in the extraction process, a complex formation of actinides and lanthanides with BTBPs (6, 6'-bis(5, 6-dialkyl-1, 2, 4-triazin-3-yl)-2, 2'-bipyridines) was characterized using the Electro-spray Ionization Mass Spectrometry (ESI-MS) technique. This study was carried out to compare the influence of diluents and side groups of the extractants on complex formation. Three different diluents, nitrobenzene, octanol and cyclohexanone, and two extractants, C5-BTBP and CyMe{sub 4}-BTBP, were selected for this experiment. It was found that the change of the diluent and of the substituent on the BTBP moiety does not modify the stoichiometry of the complexes which is L{sub 2}M(NO{sub 3}){sub 3}. It is proposed that one nitrate is directly coordinated to the metal ion, the two other anions probably remaining in the outer coordination sphere. The difference observed in extracting properties is probably due to the solvation of the complexes by the diluent. The noncovalent force that holds complexes together are likely to be largely governed by electrostatic interactions even if the hydrophobic exterior of the complexes plays an important role in the complexation/extraction mechanism. The study of the stability of the ions in the gas phase shows that the C5-BTBP ligand has a labile hydrogen atom, which is a fragility point of C5-BTBP. (authors)

  3. A specific alpha laboratory dedicated to structural and thermodynamic studies on actinide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Charbonnel, M-C.; Berthon, C.; Berthon, L.; Boubals, N.; Couston, L.; Auwer, C. den; Meyer, D.; Guillaneux, D

    2004-07-01

    The main scope of the LN1 laboratory in ATALANTE facility is the chemical and physico-chemical study of transuranic samples to understand the behavior of compounds of actinide with selective ligands at a molecular scale. The main techniques implemented in this laboratory are the following ones: Nuclear Magnetic Resonance spectrometer (400 MHz shielded magnetic field), a four circle X-ray diffractometer for single crystals, a microcalorimeter to the measurement of low heats of reactions, a Time Resolved Laser-induced spectro-fluorimeter, vibrational spectrometers: FTIR and Raman, an Electro-spray Ionisation Mass spectrometer. Specific glove boxes have been built for each technique to work on radio elements with safety conditions and allow the analysis of samples in different states (aqueous and organic liquids, gels, solids). (authors)

  4. Effects of humic substances on the migration of radionuclides: complexation and transport of actinides. First technical progress report (work period 01.97 - 12.97)

    International Nuclear Information System (INIS)

    Buckau, G.

    1998-08-01

    The present report describes progress within the first year of the EC-project 'Effects of Humic Substances on the Migration of Radionuclides: Complexation and Transport of Actinides'. The project is conducted within the EC-Cluster 'Radionuclide Transport/Retardation Processes'. Contrary to formal requirements of the Commission, this report with a great deal of detail is established already after one year of project work. It is scheduled to be followed by a second technical progress report covering the second year of the project. In agreement with the contractual obligations a final report of similar technical detail will also be generated. The report contains an executive summary written by the coordinator (FZK/INE) with strong support from the other three task leaders (BGS, CEA-SGC and RMC-E). More detailed results are given by individual contributions of the project partners in 13 annexes. In the executive summary report the origin of results presented is given, also serving as guidance for finding more detailed results in the annexes. Not all results are discussed or referred to in the executive summary report and thus readers with a deeper interest also need to consult the annexes. (orig.)

  5. Modelling thermodynamic properties of lanthanide (LnL)3+ and actinide (AnL)3+ complexes with tridentate planar nitrogen ligands (L)

    International Nuclear Information System (INIS)

    Ionova, G.; Rabbe, C.; Charbonnel, M.C.; Hill, C.; Guillaumont, D.; Guillaumont, R.; Ionov, S.; Madic, C.

    2004-01-01

    We report here the results obtained from a systematic theoretical study on the thermodynamic properties of trivalent lanthanide (Ln) and actinide (An) complexes with chelating nitrogen tridentate ligands. The mechanism of chelation has been investigated and the role of cation dissolution is investigated through a comparison of the thermodynamic properties of solvated cations and complexes. The difference in thermodynamic properties of LnL and AnL complexes is analyzed. (authors)

  6. Complexation of trivalent actinide ions (Am3+, Cm3+) with humic acid: a comparison of different experimental methods

    International Nuclear Information System (INIS)

    Kim, J.I.; Rhee, D.S.; Wimmer, H.; Buckau, G.; Klenze, R.

    1993-01-01

    The complexation of trivalent metal ions with humic acid has been studied at pH 4 and 5 in 0.1 M NaClO 4 by three different experimental methods, i.e. UV spectroscopy, time resolved laser fluorescence spectroscopy (TRLFS) and ultrafiltration. The direct speciation of the metal ion and its humate complex in the reaction process has been made by UV spectroscopy for Am(III) in the micromolar concentration range and by TRLFS for Cm(III) in the nanomolar concentration range. The ultrafiltration is used with the lowest pore size of filter (ca. 1 nm) to separate the uncomplexed metal ion from its complexed species. The concentrations of both metal ion and humic acid are varied in such a manner that the effective functional groups of the humic acid becomes loaded with metal ions from 1% to nearly 100%. The loading capacity of the humic acid for the trivalent metal ion, determined separately at each pH, is introduced into the evaluation of complexation constants. The variation of the metal ion concentration from 6 x 10 -8 mol/l to 4 x 10 -5 mol/l does not show any effect on the complexation reaction. The three different methods give rise to constants being comparable with one another. The average value of the constants thus determined is log β = 6.24±0.28 for the trivalent actinide ions. (orig.)

  7. Actinides-1981

    International Nuclear Information System (INIS)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  8. Actinides-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  9. Actinide colloid generation in groundwater. Part 2

    International Nuclear Information System (INIS)

    Kim, J.I.

    1991-01-01

    The progress made in the investigation of actinide colloid generation in groundwater is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudo colloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC Mirage II project, in particular the complexation and colloids research area

  10. Protactinium and the intersection of actinide and transition metal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Richard E.; De Sio, Stephanie; Vallet, Valérie

    2018-02-12

    The role of the 5f and 6d orbitals in the chemistry of the actinide elements has been of considerable interest since their discovery and synthesis. Relativistic effects cause the energetics of the 5f and 6d orbitals to change as the actinide series is traversed left to right imparting a rich and complex chemistry. The 5f and 6d atomic states cross in energy at protactinium (Pa), making it a potential intersection between transition metal and actinide chemistries. Herein, we report the synthesis of a Pa-peroxo cluster, A(6)(Pa4O(O-2)(6)F-12) [A = Rb, Cs, (CH3)(4)N], formed in pursuit of an actinide polyoxometalate. Quantum chemical calculations at the density functional theory level demonstrate equal 5f and 6d orbital participation in the chemistry of Pa and increasing 5f orbital participation for the heavier actinides. Periodic changes in orbital character to the bonding in the early actinides highlights the influence of the 5f orbitals in their reactivity and chemical structure.

  11. Critical analysis of the data on complexation of lanthanides and actinides by natural organic matter: particular case of humic substances

    International Nuclear Information System (INIS)

    Reiller, P.

    2010-01-01

    This document proposes a critical analysis of the models that describe the actinides and lanthanides complexation by natural organic matter in general and by humic substances in particular. In order to better delimit the particular properties of these substances the most influent physical and chemical properties on complexation are recalled as a preamble. Models as well as data that has been used are reviewed, compiled, and eventually compared to independent data in order to identify (i) their application domain, (ii) the possible simplifications which permit to obtain operational models, (iii) the conditions in which simplifications cannot be ascertained yet, and (iv) the data or fields of knowledge which are still too uncertain. A comparison between the different models is proposed in order to adapt parameters from one model to another minimising the experimental acquisitions, or at least to focus on missing data. Usually, data on the complexation of free ions M z+ are reliable; as soon as hydrolysis, or competition with another ligand in general, in at stake data are much less reliable. Predictions from models are much more uncertain: formation of mixed complexes with hydroxide or carbonate anions is not univocal whatever the modelling strategy. Hints for transfer functions between models which are believed to be incompatible could be explored in order to justify necessary simplifications for using operational modelling. Influence on the solubility of oxides could be quantified, but it is difficult to clearly separate it from colloidal particles stabilisation. The account of the competition between cations by the models has also been tested. In view of the small number of available experimental data there still lie some uncertainties especially for the media that are close to neutrality and in the case of competition with magnesium, but overall in the case of the competition with aluminium and iron. The influence of redox activity of humic substances is also

  12. Actinide immobilization in the subsurface environment by in-situ treatment with a hydrolytically unstable organophosphorus complexant: Uranyl uptake by calcium phytate

    International Nuclear Information System (INIS)

    Nash, K.L.; Jensen, M.P.; Schmidt, M.A.

    1997-01-01

    In addition to naturally occurring uranium and thorium, actinide ions exist in the subsurface environment as a result of accidental releases and intentional disposal practices associated with nuclear weapons production. These species present a significant challenge to cost-effective remediation of contaminated environments. An attractive approach to decreasing the probability of actinide migration in the subsurface is to transform the ions into a less mobile form by remote treatment. We have under development a process which relies on a polyfunctional organophosphorus complexant to sequester the mobile metal ions by complexation/cation exchange in the near term, and to subsequently decompose, transforming the actinides into insoluble phosphate mineral forms in the long term. Studies to date include identification of a suitable organophosphorus reagent, profiling of its decomposition kinetics, verification of the formation of phosphate mineral phases upon decomposition of the reagent, and extensive comparison of the actinide uptake ability of the calcium salt of the reagent as compared with hydroxyapatite. In this report, we briefly describe the process with focus on the cation exchange behavior of the calcium salt of the organophosphorus sequestrant

  13. Bis(arene) actinide sandwich complexes, (η6-C6H3R3)2An: Linear or bent?

    International Nuclear Information System (INIS)

    Li, J.; Bursten, B.E.

    1999-01-01

    The syntheses of the sandwich complexes ferrocene, (η 5 -C 5 H 5 ) 2 -Fe, in 1951 and uranocene, (η 8 -C 8 H 8 ) 2 U, in 1968 ushered in the modern eras of organotransition metal and organoactinide chemistry, respectively. Ferrocene and uranocene are examples of linear sandwich complexes, that is, those in which the (ring centroid)-M-(ring centroid) angle (denoted θ) is 180 degree. In the case of (η 5 -C 5 H 5 ) 2 M chemistry, a number of bent (θ 2 An (An = Th-Am) and (η 6 -C 6 H 3 R 3 ) 2 An (An = Th, U, Pu; R = Me, t Bu) obtained by using local density approximation (LDA) and Perdew-Wang (PW91) gradient-corrected relativistic density functional theory (DFT) methods. These DFT methods are found to be able to reproduce the experimental geometries and vibrational frequencies of organoactinide complexes with satisfactory accuracy. The (TTB) 2 An calculations that are reported here are, to date, the largest full geometry optimizations to be carried out on an actinide system

  14. Clustering biomolecular complexes by residue contacts similarity

    NARCIS (Netherlands)

    Garcia Lopes Maia Rodrigues, João; Trellet, Mikaël; Schmitz, Christophe; Kastritis, Panagiotis; Karaca, Ezgi; Melquiond, Adrien S J; Bonvin, Alexandre M J J; Garcia Lopes Maia Rodrigues, João

    Inaccuracies in computational molecular modeling methods are often counterweighed by brute-force generation of a plethora of putative solutions. These are then typically sieved via structural clustering based on similarity measures such as the root mean square deviation (RMSD) of atomic positions.

  15. Thermodynamic properties of actinide complexes. IV. Thorium(IV)- and uranyl(VI)-malonate systems

    Energy Technology Data Exchange (ETDEWEB)

    Di Bernardo, P; Di Napoli, V; Cassol, A; Magon, L [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi

    1977-01-01

    The stability constants and the enthalpies of formation of thorium(IV)- and uranyl(VI)-malonate complexes have been determined by potentiometric and calorimetric titrations in 1.00 M solutions of Na(ClO/sub 4/) at 25/sup 0/C. All complexes formed are found to be stabilized by a large entropy gain. The values for the stability constants agree with an ionic bonding model. The malonate behaves as a bidentate ligand forming only chelate complexes.

  16. Plutonium(IV) complexation by diglycolamide ligands - coordination chemistry insight into TODGA-based actinide separations

    NARCIS (Netherlands)

    Reilly, S.D.; Gaunt, A.J.; Scott, B.L.; Modolo, G.; Iqbal, M.; Verboom, Willem; Sarsfield, M.J.

    2012-01-01

    Complexation of Pu(IV) with TMDGA, TEDGA, and TODGA diglycolamide ligands was followed by vis-NIR spectroscopy. A crystal structure determination reveals that TMDGA forms a 1:3 homoleptic Pu(IV) complex with the nitrate anions forced into the outer coordination sphere

  17. Complex brain networks: From topological communities to clustered

    Indian Academy of Sciences (India)

    Complex brain networks: From topological communities to clustered dynamics ... Recent research has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. ... Pramana – Journal of Physics | News.

  18. Exploration of the potential of complex fluids and liquid mineral crystals as templates for obtaining meso-porous monoliths for actinides immobilization; Exploration du potentiel de fluides complexes et cristaux liquides mineraux comme templates pour l'obtention de monolithes mesoporeux pour l'immobilisation d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Guiot, C. [Montpellier-2 Univ., 34 (France)]|[CEA Valrho, Lab. de Chimie des Actinides (LCA), 30 - Marcoule (France)

    2006-07-01

    In the framework of generation IV reactors, the implementation of a closed cycle involves a grouped management of actinides, as well as their united insertion in a new fuel material. The researches carried out for the main variant of fuel cycle are then centred on the synthesis of a material allowing to immobilize these radioelements in an ordered way inside a solid phase of known composition and structure, and in which they have to be dispersed in an homogeneous way. In this work, is considered the study of the synthesis of innovating materials by a molecular engineering approach. The aim is to explore the properties of matrices based on complex mineral fluids for actinides immobilization, to study the confinement potential of these new mineral liquid crystal phases and to understand their interaction with the actinides. (O.M.)

  19. Lanthanide and actinide inorganic complexes in natural waters. TRLFS and ESI-MS studies

    Energy Technology Data Exchange (ETDEWEB)

    Vercouter, T.; Amekraz, B.; Moulin, C.; Vitorge, P

    2004-07-01

    Aqueous complexes of M(III) f-element ions with the inorganic ligands CO{sub 3}{sup 2-} and SO{sub 4}{sup 2-} have been investigated using the highly-sensitive speciation techniques TRLFS and ESI-MS. The Eu(CO{sub 3}){sub i}{sup 3-2i} (i=1-3) species have been characterized by TRLFS, and the stoichiometry of the limiting complex Eu(CO{sub 3}){sub 3}{sup 3-} have been confirmed by solubility measurements of NaEu(CO{sub 3}){sub 2}(s) at high ionic strength. Temperature effect on Cm(III) carbonate complexes is evidenced by the TRLFS technique. Investigation on sulphate complexation has been done at various ionic strengths by TRLFS on Eu(III) and by ESI-MS on La(III). New thermodynamic data are obtained by both techniques, which are consistent with literature data. (authors)

  20. Determination of nonmetallic elements in actinide complexes by oxygen flask combustion (OFC) (Part 2). Sulphur

    International Nuclear Information System (INIS)

    Ruikar, P.B.; Nagar, M.S.; Subramanian, M.S.

    1989-01-01

    This report describes the determination of sulphur in metallic complexes by oxygen flask combustion followed by conductivity titration with standard barium acetate solution in alcoholic medium and lead electrode titration using a lead ion sensitive electrode. Various organic ligands and uranyl and plutonyl synergistic complexes have been analysed by both these methods and the precision and accuracy of the results have been found to be satisfactory. (author). 12 refs., 12 tabs

  1. Effects of humic substances on the migration of radionuclides: Complexation of actinides with humic substances. (6th progress report, project summary). Period covered: January 1994 - July 1994

    International Nuclear Information System (INIS)

    Czerwinski, K.R.; Rhee, D.S.; Scherbaum, F.; Buckau, G.; Kim, J.I.; Moulin, V.; Tits, J.; Laszak, I.; Moulin, C.; Decambox, P.; Ruty, O. de; Marquardt, C.; Franz, C.; Herrmann, G.; Trautmann, N.; Dierckx, A.; Vancluysen, J.; Maes, A.; Bidoglio, G.; Eliet, V.; Grenthe, I.

    1995-03-01

    The goal of the research project is to examine the complexation behaviour of actinide ions with humic substances and thermodynamically describe the binding based upon a simple complexation model. This program is a continuation of the activities of the colloid and complexation group (COCO) in the second phase of the EC-MIRAGE project. A number of different experimental methods are used to determine speciation. The metal ions examined are the trivalent lanthanides, UO 2 2+ , NpO 2 + , Am 3+ , and Cm 3+ . The project is divided into three tasks: Task 1: complexation reactions of actinide ions with well characterized reference and site-specific humic and fulvic acids, Task 2: complexation reactions with major cations in natural groundwaters; Task 3: validation of the complexation data in natural aquatic systems by comparison of calculation with spectroscopic experiment. Five European community laboratories participated in the program: Technische Universitaet Muenchen, Commissariat a l'Energie Atomique Fontenay-Aux-Roses and Saclay, Universitaet Mainz, Katolieke Universiteit Leuven, and Joint Research Centre, Ispra. The evaluated stability constants are similar for all laboratories when the same humic substance complexation model is applied. Humic acid is shown to reduce NpO 2 + to Np 4+ , while no reduction of UO 2 2+ is observed. Temperature effects are seen on the Np humate complex. Competition is observed between NpO 2 + and Ca 2+ , but not between the trivalent lanthanides and Ca 2+ . No influence of humic acid purification on the evaluated stability constants is seen. Using the evaluated constants, calculations are conducted for natural water systems which indicate the trivalent actinide humate complex to be an important species. (orig.)

  2. Synthesis and characterization of complexes of early actinides with tridentate Schiff base ligands

    International Nuclear Information System (INIS)

    Mansingh, P.S.; Dash, K.C.

    1995-01-01

    A series of thorium(IV) and dioxouranium(VI) complexes have been synthesised with tridentate Schiff base ligands (N 2 O donor set) obtained by in-situ condensation of N, N-dimethylethylenediamine with o-hydroxy aromatic aldehydes such as salicylaldehyde (HL) or o-hydroxy naphthaldehyde (HL'). While with dioxouranium(VI), the ligands are coordinated in a neutral manner and act as tridentate donors forming complexes of the type UO 2 (HL)X 2 or UO 2 (HL')X 2 (X=Cl,I,NCS,NO 3 ,CH 3 COO) with thorium(IV) they are coordinated as deprotonated tridentate ligands yielding complexes of the type Th(L') 2 X 2 (X=I,NCS,NO 3 ). The IR spectra show that the thiocyanate group is actually N-bonded unidentate isothiocyanate and both the nitrate and the acetate groups are bonded in bidentate manner while the ligands are bonded in tridentate manner in these complexes. The PMR spectra confirm the mode of bonding of the ligands either as neutral or as deprotonated species. The thermogravimetric analyses indicate the stability of the complexes. (author). 22 refs., 1 tab

  3. Coprecipitation of the lanthanide and actinide elements with some carbonato and sulfato complexes

    International Nuclear Information System (INIS)

    Saito, A.; Morimoto, T.; Ueno, K.

    1980-01-01

    Coprecipitation of Eu(III), Th(IV), U(VI), Np(V), Am(III) and Cm(III) with carbonato and sulfato complexes of Nd(III), Th(IV) and U(VI) containing [Co(NH 3 ) 6 ] 3+ cation was investigated. Experiments were made using radioactive tracers. It is assumed that coprecipitation is mainly due to mixed crystal formation. The requirement for a large extent of coprecipitation is the similarity in ionic size, ionic charge and ionic species of the participating ions. In particular, Th(IV) sulfato complex carries tri- tetra- and hexavalent ions in quite high yields. (author)

  4. Actinide complexation kinetics: rate and mechanism of dioxoneptunium (V) reaction with chlorophosphonazo III

    International Nuclear Information System (INIS)

    Fugate, G.; Feil-Jenkins, J.F.; Sullivan, J.C.; Nash, K.L.

    1996-12-01

    Rates of complex formation and dissociation in NpO 2 + - Chlorophosphonazo III (2,7-bis(4-chloro-2-phosphonobenzeneazo)-1,8- dihydroxynapthalene-3,6-disulfonic acid)(CLIII) were investigated by stopped-flow spectrophotometry. Also, limited studies were made of the rates of reaction of La 3+ , Eu 3+ , Dy 3+ , and Fe 3+ with CLIII. Rate determining step in each system is an intramolecular process, the NpO 2 + -CLIII reaction proceeding by a first order approach to equilibrium in the acid range from 0.1 to 1.0 M. Complex formation occurs independent of acidity, while both acid dependent and independent dissociation pathways are observed. Activation parameters for the complex formation reaction are ΔH=46.2±0.3 kJ/m and ΔS=7± J/mK (I=1.0 M); these for the acid dependent and independent dissociation pathways are ΔH=38.8±0.6 kJ/m, ΔS=-96±18 J/mK, ΔH=70.0± kJ/m, and ΔS=17±1 J/mK, respectively. An isokinetic relationship is observed between the activation parameters for CLIII complex formation with NpO 2 + , UO 2 2+ , Th 4+ , and Zr 4+ . Rates of CLIII complex formation reactions for Fe 3+ , Zr 4+ , NpO 2 + , UO 2 2+ , Th 4+ , La 3+ , Eu 3+ , and Dy 3+ correlate with cation radius rather than charge/radius ratio

  5. Complex fragments from excited actinide nuclei. A new test of the finite range model

    International Nuclear Information System (INIS)

    Sarantities, D.G.; Bowman, D.R.; Wozniak, G.J.; Charity, R.J.; Liu, Z.H.; McDonald, R.J.; McMahan, M.A.; Moretto, L.G.

    1989-01-01

    Complex fragments ranging in charge from 7 ≤ Z ≤ 45 have been detected in binary coincidence following the reaction of 8.4 MeV/u 232 Th+ 12 C, and are shown to arise from the binary decay of a 244 Cm compound nucleus. This work confirms earlier radiochemical observations of very light fragments in the fission fragment mass distribution, establishes their binary character, and interprets their yield in terms of finite range potential energy barriers. (orig.)

  6. Complex fragments from excited actinide nuclei: A new test of the finite range model

    International Nuclear Information System (INIS)

    Sarantities, D.G.; Bowman, D.R.; Wozniak, G.J.; Charity, R.J.; Liu, Z.H.; McDonald, R.J.; McMahan, M.A.; Moretto, L.G.

    1988-05-01

    Complex fragments ranging in charge from 7≤Z≤45 have been detected in binary coincidence following the reaction of 8.4 MeV/u 232 Th+ 12 C, and are shown to arise from the binary decay of a 244 Cm compound nucleus. This work confirms earlier radiochemical observations of very light fragments in the fission fragment mass distribution, establishes their binary character, and interprets their yield in terms of finite range potential energy barriers. 15 refs., 3 figs

  7. Study of the selectivity of poly-nitrogenous extracting molecules in the complexation of actinides (III) and lanthanides (III) in solution in anhydrous pyridine

    International Nuclear Information System (INIS)

    Riviere, Ch.

    2000-01-01

    The aim of this work is to better understand the factors which contribute to the separation of lanthanides(III) and actinides(III). Polydentate nitrogenous molecules present an interesting selectivity. A thermodynamic study of the complexation in pyridine of lanthanide and uranium by the bipyridine ligand (bipy) has been carried out. The formation constants and the thermodynamic values of the different complexes have been determined. It has been shown that the bipy complexes formation is controlled by the enthalpy and unfavored by the entropy. The conductometry has revealed too a significant difference in the uranium and lanthanides complexation by the bipyridine ligand. The use of the phenanthroline ligand induces a better complexation of the metallic ions but the selectivity is not improved. On the other hand, the decrease of the basicity and the increase of the ligand denticity (for instance in the case of the use of ter-pyridine) favour the selectivity without improving the complexation. The selectivity difference for the complexation of actinides(III) and lanthanides(III) by the different studied ligands (independent systems) has been confirmed by experiments of inter-metals competition. (O.M.)

  8. Actinide recycle

    Energy Technology Data Exchange (ETDEWEB)

    Till, C; Chang, Y [Argonne National Laboratory, Argonne, IL (United States)

    1990-07-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository.

  9. Actinide recycle

    International Nuclear Information System (INIS)

    Till, C.; Chang, Y.

    1990-01-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  10. New approaches to the study of lanthanide/actinide chloride: aluminum chloride vapor phase complexes

    International Nuclear Information System (INIS)

    Peterson, E.J.; Caird, J.A.; Carnall, W.T.; Hessler, J.P.; Hoekstra, H.R.; Williams, C.W.

    1979-01-01

    The spectrophotometric technique for vapor density measurements of complexed metal ions has been reformulated to account for temperature dependent effects and multi-species systems. Analysis of vapor pressure information indicates that the NdCl 3 --AlCl 3 and HoCl 3 --AlCl 3 systems are adequately explained by the existence of three vapor species. The two higher molecular weight complexes LnAl 4 Cl 15 and LnAl 3 Cl 12 were first proposed by Oeye and Gruen. The newly identified higher temperature species, HoAl 2 Cl 9 , contributes significantly to the vapor density above 750 0 K and below 3 atm of dimer pressure. In view of the consistency of the Nd +3 and Ho +3 chemistry the data for the Sm +3 system should be viewed with reservation. A new method for vapor density measurements involving use of radioactive tracers has been discussed in terms of its applicability to the study of (Ln,An)Cl 3 (AlCl 3 )/sub x/ systems

  11. Complexation thermodynamics and structural studies of trivalent actinide and lanthanide complexes with DTPA, MS-325 and HMDTPA

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, P.; Choppin, G.R. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Conca, J.L. [RJ Lee Group, Inc., Pasco, WA (United States). Center for Lab. Sciences; Dodge, C.J. [Brookhaven National Laboratory, Upton, NY (United States); Francis, A.J. [Brookhaven National Laboratory, Upton, NY (United States); Pohang Univ. of Science and Technology (Korea, Republic of). Div. of Advanced Nuclear Engineering

    2013-05-01

    The protonation constants of DTPA (diethylenetriaminepentaacetic acid) and two derivatives of DTPA, 1-R(4,4-diphenyl cyclohexyl-phosphonyl-methyl diethylenentriaminepentaacetic acid) (MS-325) and (R)-hydroxymethyl-diethylenentriaminepentaacetic acid (HMDTPA) were determined by potentiometric titration in 0.1 M NaClO{sub 4}. The formation of 1: 1 complexes of Am{sup 3+}, Cm{sup 3+} and Ln{sup 3+} cations with these three ligands were investigated by potentiometric titration with competition by ethylenediaminetetraacetic acid (EDTA) and the solvent extraction method in aqueous solutions of I=0.10 M NaClO{sub 4}. The thermodynamic data of complexation were determined by the temperature dependence of the stability constants and by calorimetry. The complexation is exothermic and becomes weaker with increase in temperature. The complexation strength of these ligands follows the order: DTPA {approx} HMDTPA > MS-325. Eu{sup 3+}/Cm{sup 3+} luminescence, EXAFS (Extended X-ray Absorption Fine Structure) and DFT (Density Functional Theory) calculations suggest that all three ligands are octadentate in the complex. In the complex, M(L){sup 2-} (L = DTPA, MS-325 and HMDTPA). The M{sup 3+} binds via five carboxylates oxygen atoms, three nitrogen atoms, and the complex contains one water of hydration. (orig.)

  12. Trivalent actinide-lanthanide extraction by DEHPA. Structure of organic complexes

    International Nuclear Information System (INIS)

    Pattee, D.; Musikas, C.; Faure, A.; Chachaty, C.

    1985-09-01

    The di-2-ethylhexyldithiophosphoric acid HDEHDTP is a bidentate ligand with sulphur donor atoms which has a good affinity for soft acids. H 2 O H NMR and light diffraction let us demonstrate that HDEHDTP is a monomer and NaDEHDTP a reverse micelle. When La 3+ replaces Na + , the reverse micelle is preserved. In the same way when TBP expells H 2 O the polymerised state is preserved. Evidence of that is provided by low angle X-ray diffraction; the micelles are shell-shaped and the ions are strongly tied to the ligand. The mechanism of extraction has been determined with traces of metal for HDEHDTP and the synergistic system HDEHDTP, TBP. The substitution of H 2 O by TBP in the complex induces a shortening of the S-metal bound so that the 5f ions better ability to form covalent bounds is settled [fr

  13. Complexation modeling of uranium and other actinides by organic compounds of natural or synthetic origin

    International Nuclear Information System (INIS)

    Bouby, M.

    1998-01-01

    The behaviour of nuclear wastes raises many questions, the answers of which require a precise knowledge of the physical, chemical and biological processes affecting the properties of the radio-elements present in the wastes. Three ways of research are approached. The results obtained give some elements of answer to these questions. The experimental methods that have been used are the neutron activation analysis, the UV-visible spectrophotometry, and the time-resolved laser spectro-fluorimetry. The analysis of the results has permitted to model part of the phenomena evidenced by using suitable ionic force correction models (Davies or MSA type) when chemical equilibria have been considered. The main results show: the bio-sorption capacities of Mycobacterium phlei microorganism with respect to UO 2 2+ and NpO 2+ cations such as: Q eq (UO 2 2+ ) = 60 and Q eq (NpO 2+ ) = 444 moles of cation per g of dry biomass; the retention capacities, in various leaching conditions, of this bacteria of the preliminarily adsorbed ions; the complexation properties of two siderophores with respect to UO 2 2+ , U 4+ and Th 4+ cations. One siderophore, Pyoverdine A, shows a selectiveness which is explained by the value of the thermodynamic equilibrium constant determined for each cation using the same model: K(UO 2 2+ ) 4+ ) 4+ ). The behaviour in highly acid environment (HCl and HClO 4 up to 12 M) of acylisoxazolone HPBI (1-phenyl-4-benzoyl-5-isoxazolone) and the value of its acidity thermodynamical constant (0.13 th 4 and CF 3 SO 3 H up to 12 M). It seems that a complexation between uranyl and the counter-ions present in the solution occurs. (J.S.)

  14. Complexation modelling of uranium and other actinides by organic compounds of natural or synthetic origin

    International Nuclear Information System (INIS)

    Bouby, M.

    1998-01-01

    The future of nuclear wastes raises a lot of questions. Their resolution require an accurate knowledge of the physical, chemical and biological processes which affect the properties of radioelements constituting the wastes. 3 research themes have been approached. The experimental methods used are: neutronic activation analysis, UV-visible spectrophotometry and time-resolved induced laser spectro-fluorimetry. A part of the phenomena has been modelled by ionic strength correction models (as Davies or MSA). The main results have revealed: 1)the bio-sorption capacities of the microorganism (Mycobacterium phlei) for UO 2 2+ and NpO 2+ (in conditions where the specific adsorption capacities Qe(UO 2 2+ )=60 and Qe(NpO 2+ )=444 moles cations/g dry biomass 2)the retention capacities, in various leaching conditions, by this bacteria of the ions initially adsorbed 3)the complexation properties of 2 siderophores for the cations UO 2 2+ , U 4+ and Th 4+ . The thermodynamical equilibrium constants were determined for one of the siderophore: the pyoverdine A; they were such that KUO 2 2+ ≤KU 4+ ≤KTh 4+ 4)in very acidic media (HCl and HClO 4 until 12 M), the behaviour of the acylisoxazolone HPBI (1-phenyl-4-benzoyl-5-isoxazolone) and the value of its acidity thermodynamical constant is such that 0.13≤KATh≤0.32 at 25 degrees Celsius 5)the variations of the fluorescence properties of the uranyl cation in terms of the acidity of the concentrated media (HClO 4 and CF 3 SO 3 H) in which they are in solution; it seems that a complexation between the uranyl ion and the counter-ions present in solution occur. (O.M.)

  15. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2010-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  16. The actinides

    International Nuclear Information System (INIS)

    Bagnall, K.W.

    1987-01-01

    This chapter of coordination compound chemistry is devoted to the actinides and starts with a general survey. Most of the chapter relates to thorium and uranium but protactinium, neptunium and plutonium are included. There are sections on nitrogen, phosphorus, sulfur, selenium, tellurium and halogen ligands of the metals in their +3, +4, +5 and +6 oxidation states and of the transplutonium elements in their +2, +3, +4, and +5 oxidation states. (UK)

  17. Mathematical modelling of complex contagion on clustered networks

    Science.gov (United States)

    O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James

    2015-09-01

    The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  18. Mathematical modelling of complex contagion on clustered networks

    Directory of Open Access Journals (Sweden)

    David J. P. O'Sullivan

    2015-09-01

    Full Text Available The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010, adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the complex contagion effects of social reinforcement are important in such diffusion, in contrast to simple contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010, to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  19. Nonaqueous method for dissolving lanthanide and actinide metals

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1975-01-01

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol

  20. Low-Complexity Bayesian Estimation of Cluster-Sparse Channels

    KAUST Repository

    Ballal, Tarig; Al-Naffouri, Tareq Y.; Ahmed, Syed

    2015-01-01

    This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.

  1. Low-Complexity Bayesian Estimation of Cluster-Sparse Channels

    KAUST Repository

    Ballal, Tarig

    2015-09-18

    This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.

  2. Recent development in computational actinide chemistry

    International Nuclear Information System (INIS)

    Li Jun

    2008-01-01

    Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of actinide compounds and materials using first-principle theory and computational modeling. Actinide compounds are challenging to computational chemistry because of their complicated electron correlation effects and relativistic effects, including spin-orbit coupling effects. There have been significant developments in theoretical studies on actinide compounds in the past several years. The theoretical capabilities coupled with new experimental characterization techniques now offer a powerful combination for unraveling the complexities of actinide chemistry. In this talk, we will provide an overview of our own research in this field, with particular emphasis on applications of relativistic density functional and ab initio quantum chemical methods to the geometries, electronic structures, spectroscopy and excited-state properties of small actinide molecules such as CUO and UO 2 and some large actinide compounds relevant to separation and environment science. The performance of various density functional approaches and wavefunction theory-based electron correlation methods will be compared. The results of computational modeling on the vibrational, electronic, and NMR spectra of actinide compounds will be briefly discussed as well [1-4]. We will show that progress in relativistic quantum chemistry, computer hardware and computational chemistry software has enabled computational actinide chemistry to emerge as a powerful and predictive tool for research in actinide chemistry. (authors)

  3. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    Pruett, D.J.; Sherrow, S.A.; Toth, L.M.

    1988-01-01

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  4. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2012-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using highly sensitive and advanced laser-based spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been applied for the chemical speciation of actinide in aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. Development of TRLFS technology for the chemical speciation of actinides, Development of laser-induced photo-acoustic spectroscopy (LPAS) system, Application of LIBD technology to investigate dynamic behaviors of actinides dissolution reactions, Development of nanoparticle analysis technology in groundwater using LIBD, Chemical speciation of plutonium complexes by using a LWCC system, Development of LIBS technology for the quantitative analysis of actinides, Evaluation on the chemical reactions between actinides and humic substances, Spectroscopic speciation of uranium-ligand complexes in aqueous solution, Chemical speciation of actinides adsorbed on metal oxides surfaces

  5. Study of the selectivity of poly-nitrogenous extracting molecules in the complexation of actinides (III) and lanthanides (III) in solution in anhydrous pyridine; Etude de la selectivite de molecules extractantes polyazotees dans la complexation des actinides (III) et des lanthanides (III) en solution dans la pyridine anhydre

    Energy Technology Data Exchange (ETDEWEB)

    Riviere, Ch

    2000-10-05

    The aim of this work is to better understand the factors which contribute to the separation of lanthanides(III) and actinides(III). Polydentate nitrogenous molecules present an interesting selectivity. A thermodynamic study of the complexation in pyridine of lanthanide and uranium by the bipyridine ligand (bipy) has been carried out. The formation constants and the thermodynamic values of the different complexes have been determined. It has been shown that the bipy complexes formation is controlled by the enthalpy and unfavored by the entropy. The conductometry has revealed too a significant difference in the uranium and lanthanides complexation by the bipyridine ligand. The use of the phenanthroline ligand induces a better complexation of the metallic ions but the selectivity is not improved. On the other hand, the decrease of the basicity and the increase of the ligand denticity (for instance in the case of the use of ter-pyridine) favour the selectivity without improving the complexation. The selectivity difference for the complexation of actinides(III) and lanthanides(III) by the different studied ligands (independent systems) has been confirmed by experiments of inter-metals competition. (O.M.)

  6. Actinide separation by electrorefining

    International Nuclear Information System (INIS)

    Fusselman, S.P.; Gay, R.L.; Grantham, L.F.; Grimmett, D.L.; Roy, J.J.; Inoue, T.; Hijikata, T.; Krueger, C.L.; Storvick, T.S.; Takahashi, N.

    1995-01-01

    TRUMP-S is a pyrochemical process being developed for the recovery of actinides from PUREX wastes. This paper describes development of the electrochemical partitioning step for recovery of actinides in the TRUMP-S process. The objectives are to remove 99 % of each actinide from PUREX wastes, with a product that is > 90 % actinides. Laboratory tests indicate that > 99 % of actinides can be removed in the electrochemical partitioning step. A dynamic (not equilibrium) process model predicts that 90 wt % product actinide content can be achieved through 99 % actinide removal. Accuracy of model simulation results were confirmed in tests with rare earths. (authors)

  7. Which clustering algorithm is better for predicting protein complexes?

    Directory of Open Access Journals (Sweden)

    Moschopoulos Charalampos N

    2011-12-01

    Full Text Available Abstract Background Protein-Protein interactions (PPI play a key role in determining the outcome of most cellular processes. The correct identification and characterization of protein interactions and the networks, which they comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism. Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage display are also used to reveal protein interaction networks. Results In this paper we evaluated four different clustering algorithms using six different interaction datasets. We parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets produced experimentally by Yeast 2 Hybrid (Y2H and Tandem Affinity Purification (TAP methods. The predicted clusters, so called protein complexes, were then compared and benchmarked with already known complexes stored in published databases. Conclusions While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are presented in the text below. Supplementary material can be found at: http://www.bioacademy.gr/bioinformatics/projects/ppireview.htm

  8. Community detection in complex networks using proximate support vector clustering

    Science.gov (United States)

    Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing

    2018-03-01

    Community structure, one of the most attention attracting properties in complex networks, has been a cornerstone in advances of various scientific branches. A number of tools have been involved in recent studies concentrating on the community detection algorithms. In this paper, we propose a support vector clustering method based on a proximity graph, owing to which the introduced algorithm surpasses the traditional support vector approach both in accuracy and complexity. Results of extensive experiments undertaken on computer generated networks and real world data sets illustrate competent performances in comparison with the other counterparts.

  9. The globular cluster system of NGC 1316. IV. Nature of the star cluster complex SH2

    Science.gov (United States)

    Richtler, T.; Husemann, B.; Hilker, M.; Puzia, T. H.; Bresolin, F.; Gómez, M.

    2017-05-01

    Context. The light of the merger remnant NGC 1316 (Fornax A) is dominated by old and intermediate-age stars. The only sign of current star formation in this big galaxy is the Hii region SH2, an isolated star cluster complex with a ring-like morphology and an estimated age of 0.1 Gyr at a galactocentric distance of about 35 kpc. A nearby intermediate-age globular cluster, surrounded by weak line emission and a few more young star clusters, is kinematically associated. The origin of this complex is enigmatic. Aims: We want to investigate the nature of this star cluster complex. The nebular emission lines permit a metallicity determination which can discriminate between a dwarf galaxy or other possible precursors. Methods: We used the Integral Field Unit (IFU) of the VIMOS instrument at the Very Large Telescope of the European Southern Observatory in high dispersion mode to study the morphology, kinematics, and metallicity employing line maps, velocity maps, and line diagnostics of a few characteristic spectra. Results: The line ratios of different spectra vary, indicating highly structured Hii regions, but define a locus of uniform metallicity. The strong-line diagnostic diagrams and empirical calibrations point to a nearly solar or even super-solar oxygen abundance. The velocity dispersion of the gas is highest in the region offset from the bright clusters. Star formation may be active on a low level. There is evidence for a large-scale disk-like structure in the region of SH2, which would make the similar radial velocity of the nearby globular cluster easier to understand. Conclusions: The high metallicity does not fit to a dwarf galaxy as progenitor. We favour the scenario of a free-floating gaseous complex having its origin in the merger 2 Gyr ago. Over a long period the densities increased secularly until finally the threshold for star formation was reached. SH2 illustrates how massive star clusters can form outside starbursts and without a considerable field

  10. Electronic structure of Ni-- and Ni2--ethylene cluster complexes

    International Nuclear Information System (INIS)

    Basch, H.; Newton, M.D.; Moskowitz, J.W.

    1978-01-01

    The electronic structure of metal cluster--ethylene complexes has been investigated by carrying out ab initio bonding pair-correlated, self-consistent field, and configuration interaction (CI) calculations on the NiC 2 H 4 and Ni 2 C 2 H 4 species. The π-NiC 2 H 4 and π-Ni 2 C 2 H 4 cluster complexes are found to be bound, the former only with CI, while disigma-Ni 2 C 2 H 4 has only a repulsive Ni 2 --C 2 H 4 ground state potential curve. The bonding in the π-type cluster complexes can be described as follows: The metal atom configuration is 3d 9 4s 1 with the 4s hybridized (by the metal 4p) away from the ethylene molecule, thereby allowing the π orbital to form a dative sigma bond with the metal atom. The bonding interaction is promoted by the presence of a second nickel atom behind the first one, leading to a 4s orbital electron deficiency of the bonded nickel atom and thus making this nickel atom a better electron acceptor. Back donation from the occupied metal 3d into the ethylene π* molecular orbital also takes place to some extent, and thus both features of the classical Dewar--Chatt--Duncanson model are observed. The π-Ni 2 C 2 H 4 species is analyzed in terms of the addition of a bare nickel atom to a π-NiC 2 H 4 cluster complex, with concomitant stabilization of the orbitals of the bonded nickel atom. A study of the excited electronic states of π-NiC 2 H 4 shows that low-lying 4s→π* and 3d→π* (M→L) charge transfer transitions are predicted. The former is not observed experimentally, probably due to the diffuse nature of the 4s orbital. The relationship between small cluster--ethylene complex systems and ethylene chemisorption on a nickel metal surface is discussed

  11. Characterization of partitioning relevant lanthanide and actinide complexes by NMR spectroscopy; Charakterisierung von partitioningrelevanten Lanthaniden- und Actinidenkomplexen mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Christian

    2016-01-15

    In the present work the interaction of N-donor ligands, such as 2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (nPrBTP) and 2,6-Bis(5-(2,2-dimethylpropyl)1H-pyrazol)-3-yl-pyridine (C5-BPP), with trivalent lanthanide and actinide ions was studied. Ligands of this type show a high selectivity for the separation of trivalent actinide ions over lanthanides from nitric acid solutions. However, the reason for this selectivity, which is crucial for future partitioning and transmutation strategies for radioactive wastes, is still unknown. So far, the selectivity of some N-donor ligands is supposed to be an effect of an increased covalency in the actinide-ligand bond, compared to the lanthanide compounds. NMR spectroscopy on paramagnetic metal complexes is an excellent tool for the elucidation of bonding modes. The overall paramagnetic chemical shift consists of two contributions, the Fermi Contact Shift (FCS), due to electron spin delocalisation through covalent bonds, and the Pseudo Contact Shift (PCS), which describes the dipolar coupling of the electron magnetic moment and the nuclear spin. By assessing the FCS share in the paramagnetic shift, the degree of covalency in the metal-ligand bond can be gauged. Several methods to discriminate FCS and PCS have been used on the data of the nPrBTP- and C5-BPP-complexes and were evaluated regarding their applicability on lanthanide and actinide complexes with N-donor ligands. The study comprised the synthesis of all Ln(III) complexes with the exceptions of Pm(III) and Gd(III) as well as the Am(III) complex as a representative of the actinide series with both ligands. All complexes were fully characterised ({sup 1}H, {sup 13}C and {sup 15}N spectra) using NMR spectroscopy. By isotope enrichment with the NMR-active {sup 15}N in positions 8 and 9 in both ligands, resonance signals of these nitrogen atoms were detected for all complexes. The Bleaneymethod relies on different temperature dependencies for FCS (T{sup -1}) and PCS (T

  12. Actinide metal processing

    International Nuclear Information System (INIS)

    Sauer, N.N.; Watkin, J.G.

    1992-01-01

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage

  13. Use of tetraaza-macrocycles for complexation of actinides in aqueous solutions. Validation of the process for the treatment of waste waters

    International Nuclear Information System (INIS)

    Chollet, Herve

    1994-01-01

    This report makes one's contribution to the study of the reactivity of free or fixed tetraaza-macrocycles. The major interest of this work concerns the following key-points: - Synthesis, spectral characterization and X-ray diffraction study of tetraaza-macrocycles N-tetra-functionalized, - Synthesis, physicochemical, chemicals and X-ray studies of macrocyclic complex in lanthanides and actinides series, - Synthesis and characterization of tetraaza-macrocycles grafted on organic and inorganic polymers, - Reactivity of macrocyclic ligands grafted on Merrifield's resin or silica gel in cerium, europium, uranium, plutonium and americium series, - Extraction of heavy metals in a solid-liquid process and measurements of a pilot. (author) [fr

  14. Synthesis and characterization of low-valence actinide phosphide tellurides and ternary selenium-halide iridium complexes; Synthese und Charakterisierung niedervalenter Actinoidphosphidtelluride und ternaerer Selen-Halogenid-Komplexe des Iridiums

    Energy Technology Data Exchange (ETDEWEB)

    Stolze, Karoline

    2016-04-07

    The thesis on the synthesis and characterization of low-valence actinide phosphide tellurides and ternary selenium-halide iridium complexes includes two parts: a description of the experimental synthesis of UPTe and U2PTe2O and ThPTe and the synthesis of selenium-chloride iridium complexes and selenium-bromide iridium complexes. The characterization included X-ray diffraction and phase studies.

  15. Actinide metals

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Paul L. [Geochem Australia, Kiama, NSW (Australia); Ekberg, Christian [Chalmers Univ. of Technology, Goeteborg (Sweden). Nuclear Chemistry/Industrial Materials Recycling

    2016-07-01

    All isotopes of actinium are radioactive and exist in aqueous solution only in the trivalent state. There have been very few studies on the hydrolytic reactions of actinium(III). The hydrolysis reactions for uranium would only be important in alkaline pH conditions. Thermodynamic parameters for the hydrolysis species of uranium(VI) and its oxide and hydroxide phases can be determined from the stability and solubility constants. The hydrolytic behaviour of neptunium(VI) is quite similar to that of uranium(VI). The solubility constant of NpO{sub 2}OH(am) has been reported a number of times for both zero ionic strength and in fixed ionic strength media. Americium can form four oxidation states in aqueous solution, namely trivalent, tetravalent, pentavalent and hexavalent. Desire, Hussonnois and Guillaumont determined stability constants for the species AmOH{sup 2+} for the actinides, plutonium(III), americium(III), curium(III), berkelium(III) and californium(III) using a solvent extraction technique.

  16. Actinide metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    All isotopes of actinium are radioactive and exist in aqueous solution only in the trivalent state. There have been very few studies on the hydrolytic reactions of actinium(III). The hydrolysis reactions for uranium would only be important in alkaline pH conditions. Thermodynamic parameters for the hydrolysis species of uranium(VI) and its oxide and hydroxide phases can be determined from the stability and solubility constants. The hydrolytic behaviour of neptunium(VI) is quite similar to that of uranium(VI). The solubility constant of NpO 2 OH(am) has been reported a number of times for both zero ionic strength and in fixed ionic strength media. Americium can form four oxidation states in aqueous solution, namely trivalent, tetravalent, pentavalent and hexavalent. Desire, Hussonnois and Guillaumont determined stability constants for the species AmOH 2+ for the actinides, plutonium(III), americium(III), curium(III), berkelium(III) and californium(III) using a solvent extraction technique.

  17. Community Clustering Algorithm in Complex Networks Based on Microcommunity Fusion

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2015-01-01

    Full Text Available With the further research on physical meaning and digital features of the community structure in complex networks in recent years, the improvement of effectiveness and efficiency of the community mining algorithms in complex networks has become an important subject in this area. This paper puts forward a concept of the microcommunity and gets final mining results of communities through fusing different microcommunities. This paper starts with the basic definition of the network community and applies Expansion to the microcommunity clustering which provides prerequisites for the microcommunity fusion. The proposed algorithm is more efficient and has higher solution quality compared with other similar algorithms through the analysis of test results based on network data set.

  18. Actinide speciation in the environment

    International Nuclear Information System (INIS)

    Choppin, G.R.

    2007-01-01

    Nuclear test explosions and nuclear reactor wastes and accidents have released large amounts of radioactivity into the environment. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides are introduced into the aquatic system. Chemical speciation, oxidation state, redox reactions, and sorption characteristics are necessary in predicting solubility of the different actinides, their migration behaviors and their potential effects on marine biota. The most significant of these variables is the oxidation state of the metal ion as the simultaneous presence of more than one oxidation state for some actinides in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters, are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is much more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK sp ≥56) but which can be present in the pentavalent form in aqautic phases as colloidal material. The solubility of hexavalent UO 2 2+ in sea water is relatively high due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(OH)(CO 3 ) is the limiting species for the solubility of Am(III) in sea water. Thorium(IV) is present as Th(OH) 4 , in colloidal form. The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in natural waters which must be considered in assessing the environmental behavior of actinides. Much is understood about sorption of actinides on surfaces, the mode of migration of actinides in such waters and the potential effects of these radioactive species on marine biota, but much more understanding of the behavior of the actinides in the environment is

  19. Predictive Modeling in Actinide Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  20. Subsurface interactions of actinide species and microorganisms. Implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Rittmann, B.E.; Reed, D.T.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, the way how bioremediation controls the fate of actinides is assessed. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. The way how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility is described. Why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions is explained. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. Development of mathematical models that link microbiological and geochemical reactions is described. Throughout, the key research needs are identified. (author)

  1. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs

  2. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  3. Recovery actinide values

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Delphin, W.H.; Mason, G.W.

    1979-01-01

    A process is described for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of di-hexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate solution of tetramethylammonium hydrogen oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid. (author)

  4. Actinide chemistry in the far field

    International Nuclear Information System (INIS)

    Livens, F.R.; Morris, K.; Parkman, R.; Moyes, L.

    1996-01-01

    The environmental chemistry of the actinides is complicated due both to the extensive redox and coordination chemistry of the elements and also to the complexity of the reactive phases encountered in natural environments. In the far field, interactions with reactive surfaces, coatings and colloidal particles will play a crucial role in controlling actinide mobility. By virtue of both their abundance and reactivity; clays and other layer aluminosilicate minerals, hydrous oxides and organic matter (humic substances) are all identified as having the potential to react with actinide ions and some possible modes of interaction are described, together with experimental evidence for their occurrence. (author)

  5. Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites.

    Science.gov (United States)

    Fernandes, M Marques; Scheinost, A C; Baeyens, B

    2016-08-01

    The credibility of long-term safety assessments of radioactive waste repositories may be greatly enhanced by a molecular level understanding of the sorption processes onto individual minerals present in the near- and far-fields. In this study we couple macroscopic sorption experiments to surface complexation modelling and spectroscopic investigations, including extended X-ray absorption fine structure (EXAFS) and time-resolved laser fluorescence spectroscopies (TRLFS), to elucidate the uptake mechanism of trivalent lanthanides and actinides (Ln/An(III)) by montmorillonite in the absence and presence of dissolved carbonate. Based on the experimental sorption isotherms for the carbonate-free system, the previously developed 2 site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) model needed to be complemented with an additional surface complexation reaction onto weak sites. The fitting of sorption isotherms in the presence of carbonate required refinement of the previously published model by reducing the strong site capacity and by adding the formation of Ln/An(III)-carbonato complexes both on strong and weak sites. EXAFS spectra of selected Am samples and TRLFS spectra of selected Cm samples corroborate the model assumptions by showing the existence of different surface complexation sites and evidencing the formation of Ln/An(III) carbonate surface complexes. In the absence of carbonate and at low loadings, Ln/An(III) form strong inner-sphere complexes through binding to three Al(O,OH)6 octahedra, most likely by occupying vacant sites in the octahedral layers of montmorillonite, which are exposed on {010} and {110} edge faces. At higher loadings, Ln/An(III) binds to only one Al octahedron, forming a weaker, edge-sharing surface complex. In the presence of carbonate, we identified a ternary mono- or dicarbonato Ln/An(III) complex binding directly to one Al(O,OH)6 octahedron, revealing that type-A ternary complexes form with the one

  6. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  7. Lanthanide/Actinide Opacities

    Science.gov (United States)

    Hungerford, Aimee; Fontes, Christopher J.

    2018-06-01

    Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.

  8. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  9. Complexation studies of actinides (U, Pu, Am) with linear polyamino-carboxylate ligands and sidero-chelates; Etudes de la chelation d'actinides (U, Pu, Am) par des ligands polyaminocarboxylate lineaires et des siderochelates d'interet environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, L.V.

    2010-11-25

    As part of our research endeavour aimed at developing and improving decontamination processes of wastewater containing alpha emitters, physico-chemical complexation studies of actinides (U, Pu, Am) with organic open-chain ligands such as poly-aminocarboxylic acids (H{sub 4}EDTA) and sidero-chelates (di-hydroxamic acids and desferrioxamine B) have been carried out. Gaining a clear understanding of the coordination properties of the targeted actinides is an essential step towards the selection of the most appropriate chelating agents that will exhibit high uptake efficiencies. EXAFS (Extended X-ray Absorption Fine Structure) measurements at the ESRF synchrotron enabled to elucidate the coordination scheme of uranium and plutonium complexes. Solution thermodynamic investigations were intended to provide valuable information about the nature and the stability of the uranium(VI) and americium(III) complexes prevailing at a given pH in solution. The set of stability constants determined from potentiometric and UV-visible spectrophotometric titrations, allowed to predict the speciation of the selected actinides in presence of the aforementioned ligands and to determine the pH range required for achieving 'ultimate' decontamination. (author) [French] Dans le cadre du developpement et de l'amelioration des procedes de decontamination d'effluents aqueux contamines par des radioelements emetteurs alpha, des etudes physico-chimiques sur la complexation des actinides (U, Pu, Am) avec des ligands organiques tels que des acides polyaminocarboxyliques lineaires (H{sub 4}EDTA) et des siderochelates (acides dihydroxamiques et desferrioxamine B) ont ete effectuees. La comprehension des proprietes de coordination est une etape essentielle pour selectionner les meilleurs agents chelatants qui se montreront efficaces dans le traitement des effluents. Les schemas de coordination des complexes d'uranium et de plutonium avec ces ligands ont ete determines a l

  10. Interaction between actinides and protein: the calmodulin

    International Nuclear Information System (INIS)

    Brulfert, Florian

    2016-01-01

    Considering the environmental impact of the Fukushima nuclear accident, it is fundamental to study the mechanisms governing the effects of the released radionuclides on the biosphere and thus identify the molecular processes generating the transport and deposition of actinides, such as neptunium and uranium. However, the information about the microscopic aspect of the interaction between actinides and biological molecules (peptides, proteins...) is scarce. The data being mostly reported from a physiological point of view, the structure of the coordination sites remains largely unknown. These microscopic data are indeed essential for the understanding of the interdependency between structural aspect, function and affinity.The Calmodulin (CaM) (abbreviation for Calcium-Modulated protein), also known for its affinity towards actinides, acts as a metabolic regulator of calcium. This protein is a Ca carrier, which is present ubiquitously in the human body, may also bind other metals such as actinides. Thus, in case of a contamination, actinides that bind to CaM could avoid the protein to perform properly and lead to repercussions on a large range of vital functions.The complexation of Np and U was studied by EXAFS spectroscopy which showed that actinides were incorporated in a calcium coordination site. Once the thermodynamical and structural aspects studied, the impact of the coordination site distortion on the biological efficiency was analyzed. In order to evaluate these consequences, a calorimetric method based on enzyme kinetics was developed. This experiment, which was conducted with both uranium (50 - 500 nM) and neptunium (30 - 250 nM) showed a decrease of the heat produced by the enzymatic reaction with an increasing concentration of actinides in the medium. Our findings showed that the Calmodulin actinide complex works as an enzymatic inhibitor. Furthermore, at higher neptunium (250 nM) and uranium (500 nM) concentration the metals seem to have a poison

  11. Survey of the numerical characterisation of 2-D complex clusters

    NARCIS (Netherlands)

    Maggi, F.

    2003-01-01

    The study of cluster format ion is common in many fields of science and technology (aerosols, colloidal suspensions, hetero-disperse particulate systems in general, growth processes far from equilibrium, etc.). The term "cluster" is a general word indicating an object consisting of a set of

  12. Coordination chemistry of actinide elements: preparation of new uranium complexes with schiff bases and their characterization (Preprint No. CT-31)

    International Nuclear Information System (INIS)

    Hingorani, S.; Reddy, P.S.N.; Agarwala, B.V.

    1988-02-01

    The Schiff bases, o-vanillin semicarbazone (oVSC) and 2-pyridine carboxaldehyde isonicotinoyl hydrazone (PCINH) have been prepared and their novel complexes with dioxouranium(VI) have been synthesized and characterized by IR spectra, elemental analysis and other physico-chemical techniques. (author)

  13. Link-Prediction Enhanced Consensus Clustering for Complex Networks (Open Access)

    Science.gov (United States)

    2016-05-20

    RESEARCH ARTICLE Link-Prediction Enhanced Consensus Clustering for Complex Networks Matthew Burgess1*, Eytan Adar1,2, Michael Cafarella1 1Computer...consensus clustering algorithm to enhance community detection on incomplete networks. Our framework utilizes existing community detection algorithms that...types of complex networks exhibit community structure: groups of highly connected nodes. Communities or clusters often reflect nodes that share similar

  14. Thermodynamic Properties of Actinides and Actinide Compounds

    Science.gov (United States)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  15. Recent progress in actinide and lanthanide solvent extraction

    International Nuclear Information System (INIS)

    Musikas, C.; Hubert, H.; Benjelloun, N.; Vitorge, P.; Bonnin, M.; Forchioni, A.; Chachaty, C.

    1983-04-01

    Work in progress on actinide solvent extraction is briefly reviewed in this paper. 1 H and 31 P NMR are used to elucidate several fundamental unsolved problems concerning organophosphorous extractants often used in actinides extraction: determination of site of dialkylthiophosphate protonation and addition of basic phosphine oxide to dibutylthiophosphoric acid dimer. Extraction of Am III and Eu from high radioactivity level wastes by tetrasubsituted methylene diamides is investigated. Trivalent actinide-lanthanide group are separated by solvent extraction using soft donor ligand complexes which are more stable. The synergism of dinonylnaphtalene sulfonic acid (HDNNS) associated with several neutral donors like TBP, TOPO, amides are examined in the trivalent and tetravalent actinide extraction

  16. Biotransformation of uranium and other actinides in radioactive wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1998-01-01

    Microorganisms affect the solubility, bioavailability, and mobility of actinides in radioactive wastes. Under appropriate conditions, actinides are solubilized or stabilized by the direct enzymatic or indirect nonenzymatic actions of microorganisms. Biotransformation of various forms of uranium (ionic, inorganic, and organic complexes) by aerobic and anaerobic microorganisms has been extensively studied, whereas limited information is available on other important actinides (Th, Np, Pu, and Am). Fundamental information on the mechanisms of biotransformation of actinides by microbes under various environmental conditions will be useful in predicting the long-term performance of waste repositories and in developing strategies for waste management and remediation of contaminated sites. (orig.)

  17. Generation of clusters in complex dynamical networks via pinning control

    International Nuclear Information System (INIS)

    Li Kezan; Fu Xinchu; Small, Michael

    2008-01-01

    Many real-world networks show community structure, i.e., groups (or clusters) of nodes that have a high density of links within them but with a lower density of links between them. In this paper, by applying feedback injections to a fraction of network nodes, various clusters are synchronized independently according to the community structure generated by the group partition of the network (cluster synchronization). This control is achieved by pinning (i.e. applying linear feedback control) to a subset of the network nodes. Those pinned nodes are selected not randomly but according to the topological structure of communities of a given network. Specifically, for a given group partition of a network, those nodes with direct connections between groups must be pinned in order to achieve cluster synchronization. Both the local stability and global stability of cluster synchronization are investigated. Taking the tree-shaped network and the most modular network as two particular examples, we illustrate in detail how the pinning strategy influences the generation of clusters. The simulations verify the efficiency of the pinning schemes used in this paper

  18. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  19. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    International Nuclear Information System (INIS)

    Mena, Natalia P.; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C.; Nunez, Marco T.

    2011-01-01

    Highlights: → Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. → Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. → Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. → Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex

  20. Thermodynamic properties of actinide complexes. Part 5: Uranyl(VI)-thioglycolate system; thorium(IV)-glycolate and -thioglycolate systems

    Energy Technology Data Exchange (ETDEWEB)

    di Bernardo, P; Roncari, E; Mazzi, U; Bettella, F [Padua Univ. (Italy). Istituto di Chimica Generale ed Inorganica; Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi); Magon, L [Ferrara Univ. (Italy). Istituto Chimico

    1978-04-01

    The changes in free energy, enthalpy and entropy for the formation of uranyl(VI)-thioglycolate, thorium(IV)-glycolate and -thioglycolate complexes have been determined. The changes in free energy were calculated from the stability constants obtained from a potentiometric determination of the concentration of free hydrogen ion, using a glass or quinhydrone electrode. The enthalpy values were measured calorimetrically. The measurements were performed at 25.0/sup 0/C in an aqueous sodium perchlorate medium with the total sodium concentration equal to 100 M. A comparison of the magnitude of the enthalpy and entropy changes for the various systems gives additional support of the view that the thioglycolate acts as a monodentate ligand while the glycolate forms chelate rings.

  1. Study of actinide paramagnetism in solution

    International Nuclear Information System (INIS)

    Autillo, Matthieu

    2015-01-01

    The physiochemical properties of actinide (An) solutions are still difficult to explain, particularly the behavioral differences between An(III) and Ln(III). The study of actinide paramagnetic behavior may be a 'simple' method to analyze the electronic properties of actinide elements and to obtain information on the ligand-actinide interaction. The objective of this PhD thesis is to understand the paramagnetic properties of these elements by magnetic susceptibility measurements and chemical shift studies. Studies on actinide electronic properties at various oxidation states in solution were carried out by magnetic susceptibility measurements in solution according to the Evans method. Unlike Ln(III) elements, there is no specific theory describing the magnetic properties of these ions in solution. To obtain accurate data, the influence of experimental measurement technique and radioactivity of these elements was analyzed. Then, to describe the electronic structure of their low energy states, the experimental results were complemented with quantum chemical calculations from which the influence of the ligand field was studied. Finally, these interpretations were applied to better understand the variations in the magnetic properties of actinide cations in chloride and nitrate media. Information about ligand-actinide interactions may be determined from an NMR chemical shift study of actinide complexes. Indeed, modifications induced by a paramagnetic complex can be separated into two components. The first component, a Fermi contact contribution (δ_c) is related to the degree of covalency in coordination bonds with the actinide ions and the second, a dipolar contribution (δ_p_c) is related to the structure of the complex. The paramagnetic induced shift can be used only if we can isolate these two terms. To achieve this study on actinide elements, we chose to work with the complexes of dipicolinic acid (DPA). Firstly, to characterize the geometrical parameters, a

  2. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  3. Aqueous complexes of lanthanides(III) and actinides(III) with the carbonate and sulphate ions. Thermodynamic study by time-resolved laser-induced fluorescence spectroscopy and electro-spray-ionisation mass spectrometry; Complexes aqueux de lanthanides (3) et actinides (3) avec les ions carbonate et sulfate. Etude thermodynamique par spectrofluorimetrie laser resolue en temps et spectrometrie de masse a ionisation electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Vercouter, Th

    2005-03-15

    The prediction of the environmental impact of a possible geological disposal of radioactive wastes is supported by the thermodynamic modelling of the radionuclides behaviour in the groundwater. In this framework, the analogy between lanthanides and actinides(III) is confirmed by a critical analysis of the literature and the comparison with experimental results obtained here. The limiting complex, Eu(CO{sub 3}){sub 3}{sup 3-}, is identified by solubility measurements in Na{sub 2}CO{sub 3} solutions. Then the formation constants of the complexes Eu(CO{sub 3}){sub i}{sup 3-2i} (i=1-3) and Eu(SO{sub 4}){sub i}{sup 3-2i} (i=1-2) are measured by TRLFS. The formation of aqueous LaSO{sub 4}{sup +} is studied by ESI-MS and is in good agreement with the expected speciation. The enthalpy and entropy of the reaction Cm(CO{sub 3}){sub 2}{sup -} + CO{sub 3}{sup 2-} {r_reversible} Cm(CO{sub 3}){sub 3}{sup 3-} are deduced from TRLFS measurements of the equilibrium constant between 10 and 70 C. The ionic strength effect is calculated using the SIT formula. (author)

  4. TOSCA-based orchestration of complex clusters at the IaaS level

    Science.gov (United States)

    Caballer, M.; Donvito, G.; Moltó, G.; Rocha, R.; Velten, M.

    2017-10-01

    This paper describes the adoption and extension of the TOSCA standard by the INDIGO-DataCloud project for the definition and deployment of complex computing clusters together with the required support in both OpenStack and OpenNebula, carried out in close collaboration with industry partners such as IBM. Two examples of these clusters are described in this paper, the definition of an elastic computing cluster to support the Galaxy bioinformatics application where the nodes are dynamically added and removed from the cluster to adapt to the workload, and the definition of an scalable Apache Mesos cluster for the execution of batch jobs and support for long-running services. The coupling of TOSCA with Ansible Roles to perform automated installation has resulted in the definition of high-level, deterministic templates to provision complex computing clusters across different Cloud sites.

  5. PRODUCTION OF ACTINIDE METAL

    Science.gov (United States)

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  6. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  7. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  8. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  9. Actinide science. Fundamental and environmental aspects

    International Nuclear Information System (INIS)

    Choppin, Gregory R.

    2005-01-01

    Nuclear test explosions and reactor wastes have deposited an estimated 16x10 15 Bq of plutonium into the world's aquatic systems. However, plutonium concentration in open ocean waters is orders of magnitude less, indicating that most of the plutonium is quite insolvable in marine waters and has been incorporated into sediments. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides were introduced into the aquatic system. Actinide solubility depends on such factors as pH(hydrolysis), E H (oxidation state), reaction with complexants (e.g. carbonate, phosphate, humic acid, etc.) sorption to surfaces of minerals and/or colloids, etc., in the water. The most significant of these variables is the oxidation sate of the metal ion. The simultaneous presence of more than one oxidation state for some actinides (e.g. plutonium) in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation but can undergo reduction to the Pu(IV) oxidation state with its different elemental behavior. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK SP - 56). The net solubility of hexavalent UO 2 2+ in sea water is also limited by hydrolysis; however, it has a relatively high concentration due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(CO) 3 (OH), is the limiting species for the solubility of Am(III) in sea water. Thorium is found exclusively as the tetravalent species and its solubility is limited by the formation of quite insoluble Th(OH) 4 . The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in

  10. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  11. Actinide elements in aquatic and terrestrial environments

    International Nuclear Information System (INIS)

    Bondietti, E.A.; Bogle, M.A.; Brantley, J.N.

    1979-01-01

    Progress is reported on the following research projects: water-sediment interactions of U, Pu, Am, and Cm; relative availability of actinide elements from abiotic to aquatic biota; comparative uptake of transuranic elements by biota bordering Pond 3513; metabolic reduction of 239 Np from Np(V) to Np(IV) in cotton rats; evaluation of hazards associated with transuranium releases to the biosphere; predicting Pu in bone; adsorption--solubility--complexation phenomena in actinide partitioning between sorbents and solution; comparative soil extraction data; and comparative plant uptake data

  12. Interaction of actinides with natural microporous materials

    International Nuclear Information System (INIS)

    Misaelides, P.; Godelirsas, A.

    1998-01-01

    The existing studies mainly concern the sorption of thorium, uranium, neptunium, plutonium and americium from aqueous media by clay minerals and zeolites as well as the determination of the corresponding chemical processes taking place at the mineral-water interface. The investigation techniques applied for this purpose include, except the conventional wet-chemical and radiochemical methods, advanced spectroscopic methods such as extended X-ray absorption fine structure spectroscopy (EXAFS), Rutherford Backscattered Spectroscopy (RBS), X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. These techniques significantly contribute to the characterization of the reacted mineral waters and to the explanation of the structural and compositional characteristics of the sorbed actinide species. Theoretical models regarding the aqueous chemistry and speciation of the actinides have also been developed aiming the elucidation of the complex actinide sorption mechanisms. This contribution will critically review of the existing literature, present recently obtained unpublished results and discuss the necessity of future work in the field. (authors)

  13. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    International Nuclear Information System (INIS)

    Clark, David L.; Fedosseev, Alexander M.

    2001-01-01

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier

  14. Actinide isotopic analysis systems

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Ruhter, W.D.; Gunnink, R.

    1990-01-01

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  15. A density-based clustering model for community detection in complex networks

    Science.gov (United States)

    Zhao, Xiang; Li, Yantao; Qu, Zehui

    2018-04-01

    Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.

  16. Discovery of Multiseeded Multimode Formation of Embedded Clusters in the Rosette Molecular Complex

    Science.gov (United States)

    Li, Jin Zeng; Smith, Michael D.

    2005-02-01

    An investigation based on data from the spatially complete Two Micron All Sky Survey (2MASS) reveals that a remarkable burst of clustered star formation is taking place throughout the southeast quadrant of the Rosette Molecular Cloud. Compact clusters are forming in a multiseeded mode, in parallel and at various places. In addition, sparse aggregates of embedded young stars are extensively distributed. In this study we report the primary results and implications for high-mass and clustered star formation in giant molecular clouds. In particular, we incorporate for the first time the birth of medium- to low-mass stars into the scenario of sequential formation of OB clusters. Following the emergence of the young OB cluster NGC 2244, a variety of manifestations of forming clusters of medium to high mass appears in the vicinity of the swept-up layer of the H II region as well as farther into the molecular cloud. The embedded clusters appear to form in a structured manner, which suggests they follow tracks laid out by the decay of macroturbulence. We address the possible origins of the turbulence. This leads us to propose a tree model to interpret the neat spatial distribution of clusters within a large section of the Rosette complex. Prominent new-generation OB clusters are identified at the root of the tree pattern.

  17. Extraction chromatography of actinides

    International Nuclear Information System (INIS)

    Muller, W.

    1978-01-01

    Extraction chromatography of actinides in the oxidation state from 2 to 6 is reviewed. Data on using neutral (tbp), basic (substituted ammonium salts) and acidic [di-(2-ethylhexyl)-phosphoric acid (D2EHPA)] extracting agents ketones, esters, alcohols and β-diketones in this method are given. Using the example of actinide separation using D2EHPA, discussed are factors influencing the efficiency of their chromatography separation (nature and particle size of the carrier materials, extracting agents amount on the carrier, temperature and elution rate)

  18. Actinide nanoparticle research

    International Nuclear Information System (INIS)

    Kalmykov, Stepan N.; Denecke, Melissa A.

    2011-01-01

    This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale. (orig.)

  19. Radiochemistry and actinide chemistry

    International Nuclear Information System (INIS)

    Guillaumont, R.; Peneloux, A.

    1989-01-01

    The analysis of trace amounts of actinide elements by means of radiochemistry, is discussed. The similarities between radiochemistry and actinide chemistry, in the case of species amount by cubic cm below 10 12 , are explained. The parameters which allow to define what are the observable chemical reactions, are given. The classification of radionuclides in micro or macrocomponents is considered. The validity of the mass action law and the partition function in the definition of the average number of species for trace amounts, is investigated. Examples illustrating the results are given

  20. Novel approaches to pin cluster synchronization on complex dynamical networks in Lur'e forms

    Science.gov (United States)

    Tang, Ze; Park, Ju H.; Feng, Jianwen

    2018-04-01

    This paper investigates the cluster synchronization of complex dynamical networks consisted of identical or nonidentical Lur'e systems. Due to the special topology structure of the complex networks and the existence of stochastic perturbations, a kind of randomly occurring pinning controller is designed which not only synchronizes all Lur'e systems in the same cluster but also decreases the negative influence among different clusters. Firstly, based on an extended integral inequality, the convex combination theorem and S-procedure, the conditions for cluster synchronization of identical Lur'e networks are derived in a convex domain. Secondly, randomly occurring adaptive pinning controllers with two independent Bernoulli stochastic variables are designed and then sufficient conditions are obtained for the cluster synchronization on complex networks consisted of nonidentical Lur'e systems. In addition, suitable control gains for successful cluster synchronization of nonidentical Lur'e networks are acquired by designing some adaptive updating laws. Finally, we present two numerical examples to demonstrate the validity of the control scheme and the theoretical analysis.

  1. Actinides, the narrowwest bands

    International Nuclear Information System (INIS)

    Smith, J.L.; Riseborough, P.S.

    1984-01-01

    A table of elements is shown that demonstrates the crossover from superconductivity to magnetism as well as regions of mixed valence. In particular, the actinides must eventually show 4f-electron like mixed valence, after the 5f-electrons become localized. There also seems to be an adiabatic continuation between heavy fermion and mixed valence behavior

  2. Directed clustering coefficient as a measure of systemic risk in complex banking networks

    Science.gov (United States)

    Tabak, Benjamin M.; Takami, Marcelo; Rocha, Jadson M. C.; Cajueiro, Daniel O.; Souza, Sergio R. S.

    2014-01-01

    Recent literature has focused on the study of systemic risk in complex networks. It is clear now, after the crisis of 2008, that the aggregate behavior of the interaction among agents is not straightforward and it is very difficult to predict. Contributing to this debate, this paper shows that the directed clustering coefficient may be used as a measure of systemic risk in complex networks. Furthermore, using data from the Brazilian interbank network, we show that the directed clustering coefficient is negatively correlated with domestic interest rates.

  3. Actinide separative chemistry

    International Nuclear Information System (INIS)

    Boullis, B.

    2004-01-01

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  4. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    Science.gov (United States)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  5. Near-infrared study of new embedded clusters in the Carina complex

    Science.gov (United States)

    Oliveira, R. A. P.; Bica, E.; Bonatto, C.

    2018-05-01

    We analyse the nature of a sample of stellar overdensities that we found projected on the Carina complex. This study is based on the Two Micron All Sky Survey photometry and involves the photometry decontamination of field stars, elaboration of intrinsic colour-magnitude diagrams [CMDs; J × (J - Ks)], colour-colour diagrams (J - H) × (H - Ks), and radial density profiles, in order to determine the structure and the main astrophysical parameters of the best candidates. The verification of an overdensity as an embedded cluster requires a CMD consistent with a PMS content and MS stars, if any. From these results, we are able to verify if they are, in fact, embedded clusters. The results were, in general, rewarding: in a sample of 101 overdensities, the analysis provided 15 candidates, of which three were previously catalogued as clusters (CCCP-Cl 16, Treasure Chest, and FSR 1555), and the 12 remaining are discoveries that provided significant results, with ages not above 4.5 Myr and distances compatible with the studied complex. The resulting values for the differential reddening of most candidates were relatively high, confirming that these clusters are still (partially or fully) embedded in the surrounding gas and dust, as a rule within a shell. Histograms with the distribution of the masses, ages, and distances were also produced, to give an overview of the results. We conclude that all the 12 newly found embedded clusters are related to the Carina complex.

  6. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  7. Actinide separation chemistry in nuclear waste streams and materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  8. Actinide oxide photodiode and nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Milan; Usov, Igor

    2017-12-05

    Photodiodes and nuclear batteries may utilize actinide oxides, such a uranium oxide. An actinide oxide photodiode may include a first actinide oxide layer and a second actinide oxide layer deposited on the first actinide oxide layer. The first actinide oxide layer may be n-doped or p-doped. The second actinide oxide layer may be p-doped when the first actinide oxide layer is n-doped, and the second actinide oxide layer may be n-doped when the first actinide oxide layer is p-doped. The first actinide oxide layer and the second actinide oxide layer may form a p/n junction therebetween. Photodiodes including actinide oxides are better light absorbers, can be used in thinner films, and are more thermally stable than silicon, germanium, and gallium arsenide.

  9. Synergistic extraction of actinides : Part I. Hexa-and pentavalent actinides

    International Nuclear Information System (INIS)

    Patil, S.K.; Ramakrishna, V.V.

    1980-01-01

    A detailed discussion on the reported literature on the synergistic extraction of hexa- and pentavalent actinide ions, by different combinations of extractants and from different aqueous media, is presented. Structural aspects of the various complexes involved in synergism also are reviewed. A short account of the applications based on synergistic extraction is also given. (author)

  10. Supercritical fluid carbon dioxide extraction of actinides

    International Nuclear Information System (INIS)

    Rao, Ankita; Tomar, B.S.

    2016-01-01

    Supercritical fluid extraction (SFE) is a process akin to liquid-liquid or solvent extraction where a Supercritical fluid (SCF) is contacted with a solid/ liquid matrix for the purpose of separating the component of interest from the original matrix. Carbon dioxide is a preferred choice as supercritical fluid (SCF) owing to its moderate critical parameter (P c = 7.38 MPa and T c = 304.1K) coupled with radiation and chemical stability, non toxic nature and low cost. Despite widespread applications for extraction of organic compounds and associated advantages especially liquid waste minimization, the SFE of metal ions was left unexplored for quite some time, as direct metal ion extraction is inefficient due charge neutralization requirement and weak solute-solvent interaction. Neutral SCF soluble metal-ligand complexation is imperative and SFE of actinides was reported only in 1994. Several studies have been carried out on SFE of uranium, thorium and plutonium from nitric acid medium employing different sets of ligands (organophosphorus, diketones, amides). Especially attractive is the possibility of direct dissolution and extraction of actinides employing ligand-acid adducts (like TBP.HNO 3 adduct) from solid matrices of different stages of nuclear fuel cycle viz. ores, spent nuclear fuels and radioactive wastes. Also, partitioning of actinides from fission products has been explored in spent nuclear fuel. These studies on supercritical fluid extraction of actinides indicate a more efficient and environmentally sustainable technology. (author)

  11. Extraction of tetravalent and hexavalent actinide ions by tetraheptylammonium nitrate

    International Nuclear Information System (INIS)

    Swarup, Rajendra; Patil, S.K.

    1977-01-01

    Extraction of Th(IV), Np(IV), Pu(IV), U(VI), Np(VI), and Pu(VI) by tetraheptylammonium nitrate in Solvesso-100 has been studied from nitric acid medium. Attempts were made to identify the complex species in the organic phase by studying the dependence of the distribution coefficient of the actinide on amine concentration and taking the absorption spectra of the organic phase containing actinide ions. A compound tetraheptylammonium trinitratodioxouranate (VI) has been isolated and characterised. (author)

  12. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    International Nuclear Information System (INIS)

    Dewa, Takehisa; Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu; Nango, Mamoru

    2013-01-01

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency

  13. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dewa, Takehisa, E-mail: takedewa@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Japan Science and Technology, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nango, Mamoru, E-mail: nango@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2013-06-20

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency.

  14. Actinide recycling in reactors

    International Nuclear Information System (INIS)

    Kuesters, H.; Wiese, H.W.; Krieg, B.

    1995-01-01

    The objective is an assessment of the transmutation of long-lived actinides and fission products and the incineration of plutonium for reducing the risk potential of radioactive waste from reactors in comparison to direct waste disposal. The contribution gives an interim account on homogeneous and heterogeneous recycling of 'risk nuclides' in thermal and fast reactors. Important results: - A homogeneous 5 percent admixture of minor actinides (MA) from N4-PWRs to EFR fuel would allow a transmutation not only of the EFR MA, but in addition of the MA from 5 or 6 PWRs of equal power. However, the incineration is restricted by safety considerations. - LWR have only a very low MA incineration potential, due to their disadvantageous neutron capture/fission ratio. - In order to keep the Cm inventory at a low level, it is advantageous to concentrate the Am heterogeneously in particular fuel elements or rods. (orig./HP)

  15. Photochemistry of the actinides

    International Nuclear Information System (INIS)

    Toth, L.M.; Bell, J.T.; Friedman, H.A.

    1979-01-01

    It has been found that all three major actinides have a useful variety of photochemical reactions which could be used to achieve a separations process that requires fewer reagents. Several features merit enumerating: (1) Laser photochemistry is not now as uniquely important in fuel reprocessing as it is in isotopic enrichment. The photochemistry can be successfully accomplished with conventional light sources. (2) The easiest place to apply photo-reprocessing is on the three actinides U, Pu, and Np. The solutions are potentially cleaner and more amenable to photoreactions. (3) Organic-phase photoreactions are probably not worth much attention because of the troublesome solvent redox chemistry associated with the photochemical reaction. (4) Upstream process treatment on the raffinate (dissolver solution) may never be too attractive since the radiation intensity precludes the usage of many optical materials and the nature of the solution is such that light transmission into it might be totally impossible

  16. Analytical chemistry of actinides

    International Nuclear Information System (INIS)

    Chollet, H.; Marty, P.

    2001-01-01

    Different characterization methods specifically applied to the actinides are presented in this review such as ICP/OES (inductively coupled plasma-optical emission spectrometry), ICP/MS (inductively coupled plasma spectroscopy-mass spectrometry), TIMS (thermal ionization-mass spectrometry) and GD/OES (flow discharge optical emission). Molecular absorption spectrometry and capillary electrophoresis are also available to complete the excellent range of analytical tools at our disposal. (authors)

  17. Actinides: why are they important biologically

    International Nuclear Information System (INIS)

    Durbin, P.W.

    1978-01-01

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  18. The chemistry of the actinide elements. Volume I

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1986-01-01

    The Chemistry of the Actinide Elements is a comprehensive, contemporary and authoritative exposition of the chemistry and related properties of the 5f series of elements: actinium, thorium, protactinium, uranium and the first eleven. This second edition has been completely restructured and rewritten to incorporate current research in all areas of actinide chemistry and chemical physics. The descriptions of each element include accounts of their history, separation, metallurgy, solid-state chemistry, solution chemistry, thermo-dynamics and kinetics. Additionally, separate chapters on spectroscopy, magnetochemistry, thermodynamics, solids, the metallic state, complex ions and organometallic compounds emphasize the comparative chemistry and unique properties of the actinide series of elements. Comprehensive lists of properties of all actinide compounds and ions in solution are given, and there are special sections on such topics as biochemistry, superconductivity, radioisotope safety, and waste management, as well as discussion of the transactinides and future elements

  19. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    The disposition of actinide elements released from high-level waste glasses into a tuff groundwater in laboratory tests at 90 degrees C at various glass surface area/leachant volume ratios (S/V) between dissolved, suspended, and sorbed fractions has been measured. While the maximum release of actinides is controlled by the corrosion rate of the glass matrix, their solubility and sorption behavior affects the amounts present in potentially mobile phases. Actinide solubilities are affected by the solution pH and the presence of complexants released from the glass, such as sulfate, phosphate, and chloride, radiolytic products, such as nitrate and nitrite, and carbonate. Sorption onto inorganic colloids formed during lass corrosion may increase the amounts of actinides in solution, although subsequent sedimentation of these colloids under static conditions leads to a significant reduction in the amount of actinides in solution. The solution chemistry and observed actinide behavior depend on the S/V of the test. Tests at high S/V lead to higher pH values, greater complexant concentrations, and generate colloids more quickly than tests at low S/V. The S/V also affects the rate of glass corrosion

  20. Alignment and integration of complex networks by hypergraph-based spectral clustering

    Science.gov (United States)

    Michoel, Tom; Nachtergaele, Bruno

    2012-11-01

    Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.

  1. Synthesis of molecular hexatechnetium clusters by means of dimensional reduction of their polymeric complexes

    International Nuclear Information System (INIS)

    Ikai, T.; Yoshimura, T.; Shinohara, A.; Takayama, T.; Sekine, T.

    2006-01-01

    Selenide capping hexatechnetium cluster complex [Tc 6 (μ 3 -Se) 8 CN 6 ] 4- (1) was prepared by the reactions of one-dimensional polymer complex [Tc 6 (μ 3 -Se) 8 Br 4 ] 2- and cyanides at high temperature. Similar reaction of sulfide capping hexatechnetium cluster complex, [Tc 6 (μ 3 -S) 8 Br 6 ] 4- with cyanide gave the terminal substituted complex [Tc 6 (μ 3 -S) 8 CN 6 ] 4- (2). The single-crystal X-ray analysis of 1 and 2, showed that the Tc-Tc bond lengths become longer with lager ionic radius of the face capping ligands in the order S -1 , and that of 2 showed it at 2119 cm -1 . Each of cyclic voltammogram of 1 and 2 showed a reversible one electron redox wave assignable to the Tc 6 III /Tc 5 III Tc IV process. These redox potentials shift to the positive about 0.4V compared to those of the Re cluster analogs. (author)

  2. Actinide/crown ether chemistry

    International Nuclear Information System (INIS)

    Benning, M.M.

    1988-01-01

    A structural survey of actinide/crown ether compounds was conducted in order to investigate the solid state chemistry of these complexes. Several parameters - the metal size, crown type, counterion, solvent systems and reaction and crystallization conditions - were varied to correlate their importance in complexation. Under atmospheric conditions, two types of complexes were isolated, those containing only hydrogen-bonded crown interactions and instances where the crown interacts directly with the metal center. In both cases, water seems to play a very important role. When coordinated to the metal, water molecules exhibit the necessary donor properties required for the formation of hydrogen-bonded contacts. The water molecules also provide fierce competition with the crown ethers for metal-binding sites and in most cases prohibit the formation of complexes in which direct metal-ligand association exists. The results of this study indicate that direct interaction between the metal atoms and the crown ethers, in the presence of water, can only occur with polyether conformations which limit the steric replusions within the metal coordination sphere

  3. Segregation and Clustering Effects on Complex Boron Redistribution in Strongly Doped Polycrystalline-Silicon Layers

    International Nuclear Information System (INIS)

    Abadli, S.; Mansour, F.

    2011-01-01

    This work deals with the investigation of the complex phenomenon of boron (B) transient enhanced diffusion (TED) in strongly implanted silicon (Si) layers. It concerns the instantaneous influences of the strong B concentrations, the Si layers crystallization, the clustering and the B trapping/segregation during thermal post-implantation annealing. We have used Si thin layers obtained from disilane (Si2H6) by low pressure chemical vapor deposition (LPCVD) and then B implanted with a dose of 4 x 1015 atoms/cm2 at an energy of 15 keV. To avoid long redistributions, thermal annealing was carried out at relatively low-temperatures (700, 750 and 800 'deg'C) for various short-times ranging between 1 and 30 minutes. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of Si-LPCVD layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the TED process in strongly doped Si-LPCVD layers. It was found that boron TED is strongly affected by the simultaneous complex kinetics of clustering, crystallization, trapping and segregation during annealing. The fast formation of small Si-B clusters enhances the B diffusivity whereas the evolution of the clusters and segregation reduce this enhancement. (author)

  4. Electrorecovery of actinides at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, Michael E [Los Alamos National Laboratory; Oldham, Warren J [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  5. Thermal neutron actinide data

    International Nuclear Information System (INIS)

    Tellier, H.

    1992-01-01

    During the 70's, the physicists involved in the cross section measurements for the low energy neutrons were almost exclusively interested in the resonance energy range. The thermal range was considered as sufficiently known. In the beginning of the 80's, reactor physicists had again to deal with the delicate problem of the power reactor temperature coefficient, essentially for the light water reactors. The measured value of the reactivity temperature coefficient does not agree with the computed one. The later is too negative. For obvious safety reasons, it is an important problem which must be solved. Several causes were suggested to explain this discrepancy. Among all these causes, the spectral shift in the thermal energy range seems to be very important. Sensibility calculations shown that this spectral shift is very sensitive to the shape of the neutron cross sections of the actinides for energies below one electron-volt. Consequently, reactor physicists require new and accurate measurements in the thermal and subthermal energy ranges. A part of these new measurement results were recently released and reviewed. The purpose of this study is to complete the preceding review with the new informations which are now available. In reactor physics the major actinides are the fertile nuclei, uranium 238, thorium 232 and plutonium 240 and the fissile nuclei, uranium 233, uranium 235 and plutonium 239. For the fertile nuclei the main datum is the capture cross section, for the fissile nuclei the data of interest are nu-bar, the fission and capture cross sections or a combination of these data such as η or α. In the following sections, we will review the neutron data of the major actinides for the energy below 1 eV

  6. Gene expression patterns of oxidative phosphorylation complex I subunits are organized in clusters.

    Directory of Open Access Journals (Sweden)

    Yael Garbian

    Full Text Available After the radiation of eukaryotes, the NUO operon, controlling the transcription of the NADH dehydrogenase complex of the oxidative phosphorylation system (OXPHOS complex I, was broken down and genes encoding this protein complex were dispersed across the nuclear genome. Seven genes, however, were retained in the genome of the mitochondrion, the ancient symbiote of eukaryotes. This division, in combination with the three-fold increase in subunit number from bacteria (N = approximately 14 to man (N = 45, renders the transcription regulation of OXPHOS complex I a challenge. Recently bioinformatics analysis of the promoter regions of all OXPHOS genes in mammals supported patterns of co-regulation, suggesting that natural selection favored a mechanism facilitating the transcriptional regulatory control of genes encoding subunits of these large protein complexes. Here, using real time PCR of mitochondrial (mtDNA- and nuclear DNA (nDNA-encoded transcripts in a panel of 13 different human tissues, we show that the expression pattern of OXPHOS complex I genes is regulated in several clusters. Firstly, all mtDNA-encoded complex I subunits (N = 7 share a similar expression pattern, distinct from all tested nDNA-encoded subunits (N = 10. Secondly, two sub-clusters of nDNA-encoded transcripts with significantly different expression patterns were observed. Thirdly, the expression patterns of two nDNA-encoded genes, NDUFA4 and NDUFA5, notably diverged from the rest of the nDNA-encoded subunits, suggesting a certain degree of tissue specificity. Finally, the expression pattern of the mtDNA-encoded ND4L gene diverged from the rest of the tested mtDNA-encoded transcripts that are regulated by the same promoter, consistent with post-transcriptional regulation. These findings suggest, for the first time, that the regulation of complex I subunits expression in humans is complex rather than reflecting global co-regulation.

  7. Interdependence of laminin-mediated clustering of lipid rafts and the dystrophin complex in astrocytes.

    Science.gov (United States)

    Noël, Geoffroy; Tham, Daniel Kai Long; Moukhles, Hakima

    2009-07-17

    Astrocyte endfeet surrounding blood vessels are active domains involved in water and potassium ion transport crucial to the maintenance of water and potassium ion homeostasis in brain. A growing body of evidence points to a role for dystroglycan and its interaction with perivascular laminin in the targeting of the dystrophin complex and the water-permeable channel, aquaporin 4 (AQP4), at astrocyte endfeet. However, the mechanisms underlying such compartmentalization remain poorly understood. In the present study we found that AQP4 resided in Triton X-100-insoluble fraction, whereas dystroglycan was recovered in the soluble fraction in astrocytes. Cholesterol depletion resulted in the translocation of a pool of AQP4 to the soluble fraction indicating that its distribution is indeed associated with cholesterol-rich membrane domains. Upon laminin treatment AQP4 and the dystrophin complex, including dystroglycan, reorganized into laminin-associated clusters enriched for the lipid raft markers GM1 and flotillin-1 but not caveolin-1. Reduced diffusion rates of GM1 in the laminin-induced clusters were indicative of the reorganization of raft components in these domains. In addition, both cholesterol depletion and dystroglycan silencing reduced the number and area of laminin-induced clusters of GM1, AQP4, and dystroglycan. These findings demonstrate the interdependence between laminin binding to dystroglycan and GM1-containing lipid raft reorganization and provide novel insight into the dystrophin complex regulation of AQP4 polarization in astrocytes.

  8. Actinide uptake by transferrin and ferritin metalloproteins

    International Nuclear Information System (INIS)

    Den Auwer, C.; Llorens, I.; Moisy, Ph.; Vidaud, C.; Goudard, F.; Barbot, C.; Solari, P.L.; Funke, H.

    2005-01-01

    In order to better understand the mechanisms of actinide uptake by specific biomolecules, it is essential to explore the intramolecular interactions between the cation and the protein binding site. Although this has long been done for widely investigated transition metals, very few studies have been devoted to complexation mechanisms of actinides by active chelation sites of metalloproteins. In this field, X-ray absorption spectroscopy has been extensively used as a structural and electronic metal cation probe. The two examples that are presented here are related to two metalloproteins in charge of iron transport and storage in eukaryote cells: transferrin and ferritin. U(VI)O 2 2+ , Np(IV) and Pu(IV) have been selected because of their possible role as contaminant from the geosphere. (orig.)

  9. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  10. Separation and preconcentration of actinides from acidic media by extraction chromatography

    International Nuclear Information System (INIS)

    Horwitz, E. Philip; Chiarizia, Renato; Dietz, Mark L.; Diamond, Herbert; Nelson, Donald M.

    1993-01-01

    A systematic examination of the effect of nitric and hydrochloric acid concentrations and of macro levels of selected elements on the sorption of actinide ions by a novel extraction chromatographic resin comprised of a solution of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide in tri-n-butyl phosphate supported on an inert polymeric substrate is described. Actinide sorption is demonstrated to be most efficient at high (>1 M) nitric acid concentrations, although tetra- and hexavalent actinides are strongly retained even from dilute (e.g., 0.05 M) nitric acid solutions. Macro concentrations of several common anions (e.g., PO 4 3- and SO 4 2- ) or complexing agents (e.g., oxalic acid) are shown not to adversely affect the sorption of trivalent actinides, while reducing the sorption of tetravalents. Such effects, together with oxidation state adjustments, are shown to provide a basis for the sequential elution of individual actinides and for actinide isolation from environmental and biological matrices

  11. Actinide AMS at DREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Khojasteh, Nasrin B.; Merchel, Silke; Rugel, Georg; Scharf, Andreas; Ziegenruecker, Rene [HZDR, Dresden (Germany); Pavetich, Stefan [HZDR, Dresden (Germany); ANU, Canberra (Australia)

    2016-07-01

    Radionuclides such as {sup 236}U and {sup 239}Pu were introduced into the environment by atmospheric nuclear weapon tests, reactor accidents (Chernobyl, Fukushima), releases from nuclear reprocessing facilities (Sellafield, La Hague), radioactive waste disposal, and accidents with nuclear devices (Palomares, Thule) [1]. Accelerator Mass Spectrometry (AMS) is the most sensitive method to measure these actinides. The DREsden AMS (DREAMS) facility is located at a 6 MV accelerator, which is shared with ion beam analytics and implantation users, preventing major modifications of the accelerator and magnetic analyzers. DREAMS was originally designed for {sup 10}Be, {sup 26}Al, {sup 36}Cl, {sup 41}Ca, and {sup 129}I. To modify the system for actinide AMS, a Time-of-Flight (TOF) beamline at the high-energy side has been installed and performance tests are on-going. Ion beam and detector simulations are carried out to design a moveable ionization chamber. Especially, the detector window and anode dimensions have to be optimized. This ionization chamber will act as an energy detector of the system and its installation is planned as closely as possible to the stop detector of the TOF beamline for highest detection efficiency.

  12. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  13. Actinide production in 136Xe bombardments of 249Cf

    International Nuclear Information System (INIS)

    Gregorich, K.E.

    1985-08-01

    The production cross sections for the actinide products from 136 Xe bombardments of 249 Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these 136 Xe + 249 Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the 136 Xe + 248 Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs

  14. Synthesis, chemistry and catalytic activity of complexes of lanthanide and actinide metals in unusual oxidation states and coordination environments. Progress report, February 1, 1978--January 31, 1979

    International Nuclear Information System (INIS)

    Evans, W.J.

    1978-11-01

    Previous syntheses of Ln(olefin) complexes and their catalytic effect on the hydrogenation of the olefin are discussed. The tert-butyl complexes of Sn, Er, and Yb were synthesized and their decomposition studied

  15. Aqueous complexes of lanthanides(III) and actinides(III) with the carbonate and sulphate ions. Thermodynamic study by time-resolved laser-induced fluorescence spectroscopy and electro-spray-ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Vercouter, Th.

    2005-03-01

    The prediction of the environmental impact of a possible geological disposal of radioactive wastes is supported by the thermodynamic modelling of the radionuclides behaviour in the groundwater. In this framework, the analogy between lanthanides and actinides(III) is confirmed by a critical analysis of the literature and the comparison with experimental results obtained here. The limiting complex, Eu(CO 3 ) 3 3- , is identified by solubility measurements in Na 2 CO 3 solutions. Then the formation constants of the complexes Eu(CO 3 ) i 3-2i (i=1-3) and Eu(SO 4 ) i 3-2i (i=1-2) are measured by TRLFS. The formation of aqueous LaSO 4 + is studied by ESI-MS and is in good agreement with the expected speciation. The enthalpy and entropy of the reaction Cm(CO 3 ) 2 - + CO 3 2- ↔ Cm(CO 3 ) 3 3- are deduced from TRLFS measurements of the equilibrium constant between 10 and 70 C. The ionic strength effect is calculated using the SIT formula. (author)

  16. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd, E-mail: gerd.meyer@uni-koeln.de

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  17. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  18. clusters

    Indian Academy of Sciences (India)

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  19. Cell surface clustering of Cadherin adhesion complex induced by antibody coated beads

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cadherin receptors mediate cell-cell adhesion, signal transduction and assembly of cytoskeletons. How a single transmembrane molecule Cadherin can be involved in multiple functions through modulating its binding activities with many membrane adhesion molecules and cytoskeletal components is an unanswered question which can be elucidated by clues from bead experiments. Human lung cells expressing N-Cadherin were examined. After co-incubation with anti-N-Cadherin monoclonal antibody coated beads, cell surface clustering of N-Cadherin was induced. Immunofluorescent detection demonstrated that in addition to Cadherin, β-Catenin, α-Catenin, α-Actinin and Actin fluorescence also aggregated respectively at the membrane site of bead attachment. Myosin heavy chain (MHC), another major component of Actin cytoskeleton, did not aggregate at the membrane site of bead attachment. Adhesion unrelated protein Con A and polylysine conjugated beads did not induce the clustering of adhesion molecules. It is indicated that the Cadherin/Catenins/α-Actinin/Actin complex is formed at Cadherin mediated cell adherens junction; occupancy and cell surface clustering of Cadherin is crucial for the formation of Cadherin adhesion protein complexes.

  20. Young stellar population and star formation history ofW4 HII region/Cluster Complex

    Science.gov (United States)

    Panwar, Neelam

    2018-04-01

    The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.

  1. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides.

    Science.gov (United States)

    Allred, Benjamin E; Rupert, Peter B; Gauny, Stacey S; An, Dahlia D; Ralston, Corie Y; Sturzbecher-Hoehne, Manuel; Strong, Roland K; Abergel, Rebecca J

    2015-08-18

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.

  2. Cluster-Expansion Model for Complex Quinary Alloys: Application to Alnico Permanent Magnets

    Science.gov (United States)

    Nguyen, Manh Cuong; Zhou, Lin; Tang, Wei; Kramer, Matthew J.; Anderson, Iver E.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-11-01

    An accurate and transferable cluster-expansion model for complex quinary alloys is developed. Lattice Monte Carlo simulation enabled by this cluster-expansion model is used to investigate temperature-dependent atomic structure of alnico alloys, which are considered as promising high-performance non-rare-earth permanent-magnet materials for high-temperature applications. The results of the Monte Carlo simulations are consistent with available experimental data and provide useful insights into phase decomposition, selection, and chemical ordering in alnico. The simulations also reveal a previously unrecognized D 03 alloy phase. This phase is very rich in Ni and exhibits very weak magnetization. Manipulating the size and location of this phase provides a possible route to improve the magnetic properties of alnico, especially coercivity.

  3. Uncovering and testing the fuzzy clusters based on lumped Markov chain in complex network.

    Science.gov (United States)

    Jing, Fan; Jianbin, Xie; Jinlong, Wang; Jinshuai, Qu

    2013-01-01

    Identifying clusters, namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. By means of a lumped Markov chain model of a random walker, we propose two novel ways of inferring the lumped markov transition matrix. Furthermore, some useful results are proposed based on the analysis of the properties of the lumped Markov process. To find the best partition of complex networks, a novel framework including two algorithms for network partition based on the optimal lumped Markovian dynamics is derived to solve this problem. The algorithms are constructed to minimize the objective function under this framework. It is demonstrated by the simulation experiments that our algorithms can efficiently determine the probabilities with which a node belongs to different clusters during the learning process and naturally supports the fuzzy partition. Moreover, they are successfully applied to real-world network, including the social interactions between members of a karate club.

  4. Concentration of actinides in the food chain

    International Nuclear Information System (INIS)

    Bulman, R.A.

    1976-06-01

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  5. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  6. Mathematical modeling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems

  7. Mathematical modelling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.M.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and hence, the mobility of actinides in subsurface environments. We combined mathematical modelling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bioutilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modelling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems. (orig.)

  8. Projected benefits of actinide partitioning

    International Nuclear Information System (INIS)

    Braun, C.; Goldstein, M.

    1976-05-01

    Possible benefits that could accrue from actinide separation and transmutations are presented. The time frame for implementing these processes is discussed and the expected benefits are qualitatively described. These benefits are provisionally quantified in a sample computation

  9. Environmental research on actinide elements

    International Nuclear Information System (INIS)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G.

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers

  10. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  11. Selective extraction of actinides from high level liquid wastes. Study of the possibilities offered by the Redox properties of actinides

    International Nuclear Information System (INIS)

    Adnet, J.M.

    1991-07-01

    Partitioning of high level liquid wastes coming from nuclear fuel reprocessing by the PUREX process, consists in the elimination of minor actinides (Np, Am, and traces of Pu and U). Among the possible processes, the selective extraction of actinides with oxidation states higher than three is studied. First part of this work deals with a preliminary step; the elimination of the ruthenium from fission products solutions using the electrovolatilization of the RuO4 compound. The second part of this work concerns the complexation and oxidation reactions of the elements U, Np, Pu and Am in presence of a compound belonging to the insaturated polyanions family: the potassium phosphotungstate. For actinide ions with oxidation state (IV) complexed with phosphotungstate anion the extraction mechanism by dioctylamine was studied and the use of a chromatographic extraction technic permitted successful separations between tetravalents actinides and trivalents actinides. Finally, in accordance with the obtained results, the basis of a separation scheme for the management of fission products solutions is proposed

  12. CHEMICAL ABUNDANCES IN NGC 5053: A VERY METAL-POOR AND DYNAMICALLY COMPLEX GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2015-05-10

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin–Indiana–Yale–NOAO–Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ∼ 75–90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of −2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na–O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  13. Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  14. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    2014-10-01

    Full Text Available Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2, in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  15. Synthetic and mechanistic study of oxycarbene-like coupling reaction patterns of actinide eta2-acyl complexes with carbon monoxide and isocyanides

    International Nuclear Information System (INIS)

    Moloy, K.G.; Fagan, P.J.; Manriquez, J.M.; Marks, T.J.

    1986-01-01

    This contribution reports the synthesis and characterization of the ylide complexes Cp' 2 Th[OC(CH 2 -t-Bu)C-(PR 3 )O[(Cl) (Cp' = eta 5 -C 5 Me 5 ; R = Me, Ph) formed by the carbonylation of Cp' 2 Th(Cl)(eta 2 -COCH 2 -t-Bu) (1) in the presence of phosphines. Isotopic tracer studies with 13 CO indicate that the labeled carbon atom is incorporated regiospecifically at the ylide α-carbon atom position. The carbonylation of 1 to yield the enedionediolate (Cp' 2 Th[OC(CH 2 -t-Bu)CO](Cl)] 2 (2) or the ylide complexes was found to obey a second-order rate law where rate = kP/sub CO/[1]; k = 1.50 (5) x 10 -5 min -1 torr -1 for both carbonylations at 30.8 0 C. The rate of formation of the ylide complexes was also found to be independent of solvent, phosphine concentration, and type of phosphine used. The carbonylation of 1 is therefore inferred to involve a rate-determining coupling of CO with the acyl to yield an intermediate ketene or ketene-like complex. 51 references, 4 figures, 3 tables

  16. Synthesis, chemistry and catalytic activity of complexes of lanthanide and actinide metals in unusual oxidation states and coordination environments. Progress report, February 1, 1979-January 31, 1980

    International Nuclear Information System (INIS)

    Evans, W.J.

    1979-10-01

    The new synthetic and catalytic reactions involving lanthanide metals which were discovered in the first years of this project have been examined in more detail in the past year. Synthetic and catalytic model systems have been theoretically developed and experimental testing of these hypotheses is in progress. New techniques are being applied to the lanthanide metals to further elucidate the chemistry of these complexes

  17. Cluster as a Tool to Increase the Competitiveness and Innovative Activity of Enterprises of the Defense Industry Complex

    Directory of Open Access Journals (Sweden)

    Katrina B. Dobrova

    2017-01-01

    Full Text Available Purpose: the main goal of the publication is to make a comprehensive study of the possible application of the cluster approach to improve the competitiveness and innovation activity of enterprises of the defense industry complex.Methods: the methodology of the research is based on the collection and analysis of initial data and information, the article uses a systematic approach to the study of socio-economic processes and phenomena. The research is based on modern theory of competition, innovation, as well as the modern paradigm of cluster development of the economy. In preparing the study, practical materials from Corporation “Rostec”.Results: the article gives the notion of cluster, the prospects for the use of the cluster approach to enhance competitiveness and innovation enterprises of the military-industrial complex. It is noted that the activation of interaction with the “civil sector” is particularly relevant in the context of the reduction of the state defense order, and the theory and practice of cluster management offers a number of forms of cluster interaction between the enterprises of the defense industry and the civil sector. It is emphasized that the development of cluster mechanisms can solve a number of problems related to the insufficient financial stability of defense industry enterprises in the context of a reduction in the state defense order, low innovation activity and the lack of developed models of interaction with small innovative enterprises. Ultimately, the use of cluster mechanisms in the development of defense enterprises is intended to enhance the competitiveness of the complex, both nationally and globally. It is stated that the existing clusters are not able to fully solve a number of specific tasks related to the diversification of integrated defense industry structures. Attention is drawn to the fact that existing clusters are not able to fully solve a number of specific tasks related to the

  18. Interaction of actinides with natural microporous materials: a review

    International Nuclear Information System (INIS)

    Misaelides, P.; Godelitsas, A.

    1998-01-01

    Natural microporous materials include several types of minerals such as zeolites, clay minerals, micas, iron- and manganese-oxides/hydroxides/oxyhydroxides present in various geological environments and soil formations. The transport of the actinide elements in the environment is mainly performed through aquatic pathways (streams, rivers, underground waters) and their mobility is strongly related to the interaction of their dissolved species with geological materials and especially with the highly sorptive microporous minerals. The existing studies mainly concern the sorption of Th, U, Np, Pu and Am from aqueous media by clay minerals and zeolites as well as the determination of the corresponding chemical processes taking place at the mineral-water interface. The investigation techniques also include advanced spectroscopic methods such as Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS), Rutherford Backscattered Spectroscopy (RBS), X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy. These techniques significantly contribute to the characterization of the reacted mineral surfaces and to the explanation of the structural and compositional characteristics of the sorbed actinide species. Theoretical models regarding the aqueous chemistry and speciation of the actinides have also been developed aiming the elucidation of the complex actinide sorption mechanisms. Finally, this contribution also includes some recently obtained data concerning the interaction of actinides with todorokite (a naturally occurring microporous manganese-oxide of technological importance) and granitic micas (biotite) correlated with the nuclear waste disposal in geological formations

  19. Thermodynamic properties of actinide aqueous species relevant to geochemical problems

    International Nuclear Information System (INIS)

    Fuger, J.

    1992-01-01

    The status of our knowledge of the basic thermodynamic properties of the aqueous complexes of the actinides in their different valency states with two environmentally important ligands, namely hydroxide and carbonate is overviewed. Even in the case of uranium which has been the most studied, gaps are found among the relative wealth of trustworthy formation constants, especially for the less stable valence states. The need for substantial improvement of our knowledge in the case of the other actinides, especially transuranium elements, is outlined. The relative scarcity of enthalpy of formation data is also stressed. (orig.)

  20. STAR CLUSTER COMPLEXES AND THE HOST GALAXY IN THREE H II GALAXIES: Mrk 36, UM 408, AND UM 461

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, P. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Telles, E. [Observatorio Nacional, Rua Jose Cristino, 77, Rio de Janeiro 20921-400 (Brazil); Nigoche-Netro, A. [Instituto de Astrofisica de Andalucia (IAA), Glorieta de la Astronomia s/n, 18008 Granada (Spain); Carrasco, E. R., E-mail: plagos@astro.up.pt, E-mail: etelles@on.br, E-mail: nigoche@iaa.es, E-mail: rcarrasco@gemini.edu [Gemini Observatory/AURA, Southern Operations Center, Casilla 603, La Serena (Chile)

    2011-11-15

    We present a stellar population study of three H II galaxies (Mrk 36, UM 408, and UM 461) based on the analysis of new ground-based high-resolution near-infrared J, H, and K{sub p} broadband and Br{gamma} narrowband images obtained with Gemini/NIRI. We identify and determine the relative ages and masses of the elementary star clusters and/or star cluster complexes of the starburst regions in each of these galaxies by comparing the colors with evolutionary synthesis models that include the contribution of stellar continuum, nebular continuum, and emission lines. We found that the current star cluster formation efficiency in our sample of low-luminosity H II galaxies is {approx}10%. Therefore, most of the recent star formation is not in massive clusters. Our findings seem to indicate that the star formation mode in our sample of galaxies is clumpy, and that these complexes are formed by a few massive star clusters with masses {approx}>10{sup 4} M{sub Sun }. The age distribution of these star cluster complexes shows that the current burst started recently and likely simultaneously over short timescales in their host galaxies, triggered by some internal mechanism. Finally, the fraction of the total cluster mass with respect to the low surface brightness (or host galaxy) mass, considering our complete range in ages, is less than 1%.

  1. Actinides and heavy fermions

    International Nuclear Information System (INIS)

    Smith, J.L.; Fisk, Z.; Ott, H.R.

    1987-01-01

    The actinide series of elements begins with f-shell electrons forming energy bands, contributing to the bonding, and possessing no magnetic moments. At americium the series switches over to localized f electrons with magnetic moments. In metallic compounds this crossover of behavior can be modified and studied. In this continuum of behavior a few compounds on the very edge of localized f-electron behavior exhibit enormous electronic heat capacities at low temperatures. This is associated with an enhanced thermal mass of the conduction electrons, which is well over a hundred times the free electron mass, and is what led to the label heavy fermion for such compounds. A few of these become superconducting at even lower temperatures. The excitement in this field comes from attempting to understand how this heaviness arises and from the likelihood that the superconductivity is different from that of previously known superconductors. The effects of thorium impurities in UBe 13 were studied as a representative system for studying the nature of the superconductivity

  2. Advancing the scientific basis of trivalent actinide-lanthanide separations

    International Nuclear Information System (INIS)

    Nash, K.L.

    2013-01-01

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl - ). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  3. Actinide burning and waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T H [University of California, Berkeley, CA (United States)

    1990-07-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  4. Actinide burning and waste disposal

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1990-01-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  5. Molecular and electronic structure of actinide hexa-cyanoferrates; Structure moleculaire et electronique des hexacyanoferrates d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Bonhoure, I

    2001-07-01

    The goal of this work is to improve our knowledge on the actinide-ligand bond properties. To this end, the hexacyanoferrate entities have been used as pre-organized ligand. We have synthesized, using mild chemistry, the following series of complexes: An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Th, U, Np, Pu); Am{sup III}[Fe{sup III}(CN){sub 6}].xH{sub 2}O; Pu {sup III}[Co{sup III}(CN){sub 6}].xH{sub 2}O and K(H?)An{sup III}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Pu, Am). The metal oxidation states have been obtained thanks to the {nu}{sub CN}, stretching vibration and to the actinide L{sub III} absorption edge studies. As Prussian Blue, the An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Np, Pu) are class II of Robin and Day compounds. X-ray Diffraction has shown besides that these complexes crystallize in the P6{sub 3}/m space group, as the isomorphic LaKFe(CN){sub 6}.4H{sub 2}O complex used as structural model. The EXAFS oscillations at the iron K edge and at the An L{sub III} edge allowed to determine the An-N, An-O, Fe-C and Fe-N distances. The display of the multiple scattering paths for both edges explains the actinide contribution absence at the iron edge, whereas the iron signature is present at the actinide edge. We have shown that the actinide coordination sphere in actinides hexa-cyanoferrates is comparable to the one of lanthanides. However, the actinides typical behavior towards the lanthanides is brought to the fore by the An{sup IV} versus Ln{sup III} ions presence in this family of complexes. Contrarily to the 4f electrons, the 5f electrons influence the electronic properties of the compounds of this family. However, the gap between the An-N and Ln-N distances towards the corresponding metals ionic radii do not show any covalence bond evolution between the actinide and lanthanide series. (author)

  6. Modeling of retention of some fission products and actinides by ion-exchange chromatography with a complexing agent. Application to the determination of selectivity coefficients

    International Nuclear Information System (INIS)

    Gurdale-Tack, K.; Aubert, M.; Chartier, F.

    2000-01-01

    For an accurate determination of the isotopic and elemental composition of americium (Am), curium (Cm), neodymium (Nd) and cesium (Cs) in spent nuclear fuels, performed by Thermal Ionization Mass Spectrometry (TIMS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), it is necessary to separate these elements before analysis. This separation is mandatory because of isobaric interferences between americium and curium, neodymium and samarium (Sm) and between cesium and barium (Ba). This is the reason why Ba and Sm are analyzed with the other four elements. Separation is carried out by cation-exchange chromatography on a silica-based stationary phase in the presence of a complexing eluent. The complexing agent is 2-hydroxy-2-methyl butanoic acid (HMB), a monoprotic acid (HL) with a pK a of 3.6. Cations (M n+ ) interact with it to form ML y (n-y)+ complexes. Optimization of chromatographic separation conditions requires monitoring of the pH and eluent composition. The influence of each parameter on metal ion retention and on selectivity was investigated. The first studies on standard solutions with Sm(III), Nd(III), Cs(I) and Ba(II) showed that four conditions allow efficient separation. However, only one allows good separation with a real solution of spent nuclear fuels. This condition is a chelating agent concentration of 0.1 mol.l -1 and a pH of 4.2. With the other conditions, co-elution is observed for Cs(I) and Am(III). The overall results were used to study the retention mechanisms. The aim of this modeling is a closer knowledge of the form in which (M n+ and/or ML y (n-y)+ ...) each cationic element is extracted into the stationary phase. In fact, while cations can exist in the eluent in various forms depending on the analytical conditions, their forms may be different in the stationary phase. (authors)

  7. 33rd Actinide Separations Conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  8. 33rd Actinide Separations Conference

    International Nuclear Information System (INIS)

    McDonald, L.M.; Wilk, P.A.

    2009-01-01

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  9. NEW CONSTRAINTS ON A COMPLEX RELATION BETWEEN GLOBULAR CLUSTER COLORS AND ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Powalka, Mathieu; Lançon, Ariane [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Puzia, Thomas H.; Alamo-Martínez, Karla; Ángel, Simón [Institute of Astrophysics, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Peng, Eric W.; Lim, Sungsoon [Department of Astronomy, Peking University, Beijing 100871 (China); Schönebeck, Frederik; Grebel, Eva K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Blakeslee, John P.; Côté, Patrick; Ferrarese, Laura; Gwyn, S. D. J. [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Cuillandre, Jean-Charles; Duc, Pierre-Alain [AIM Paris Saclay, CNRS/INSU, CEA/Irfu, Université Paris Diderot, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Durrell, Patrick [Department of Physics and Astronomy, Youngstown State University, One University Plaza, Youngstown, OH 44555 (United States); Guhathakurta, Puragra [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Kuntschner, Harald, E-mail: mathieu.powalka@astro.unistra.fr [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); and others

    2016-09-20

    We present an analysis of high-quality photometry for globular clusters (GCs) in the Virgo cluster core region, based on data from the Next Generation Virgo Cluster Survey (NGVS) pilot field, and in the Milky Way (MW), based on Very Large Telescope/X-Shooter spectrophotometry. We find significant discrepancies in color–color diagrams between sub-samples from different environments, confirming that the environment has a strong influence on the integrated colors of GCs. GC color distributions along a single color are not sufficient to capture the differences we observe in color–color space. While the average photometric colors become bluer with increasing radial distance to the cD galaxy M87, we also find a relation between the environment and the slope and intercept of the color–color relations. A denser environment seems to produce a larger dynamic range in certain color indices. We argue that these results are not due solely to differential extinction, Initial Mass Function variations, calibration uncertainties, or overall age/metallicity variations. We therefore suggest that the relation between the environment and GC colors is, at least in part, due to chemical abundance variations, which affect stellar spectra and stellar evolution tracks. Our results demonstrate that stellar population diagnostics derived from model predictions which are calibrated on one particular sample of GCs may not be appropriate for all extragalactic GCs. These results advocate a more complex model of the assembly history of GC systems in massive galaxies that goes beyond the simple bimodality found in previous decades.

  10. NEW CONSTRAINTS ON A COMPLEX RELATION BETWEEN GLOBULAR CLUSTER COLORS AND ENVIRONMENT

    International Nuclear Information System (INIS)

    Powalka, Mathieu; Lançon, Ariane; Puzia, Thomas H.; Alamo-Martínez, Karla; Ángel, Simón; Peng, Eric W.; Lim, Sungsoon; Schönebeck, Frederik; Grebel, Eva K.; Blakeslee, John P.; Côté, Patrick; Ferrarese, Laura; Gwyn, S. D. J.; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Guhathakurta, Puragra; Kuntschner, Harald

    2016-01-01

    We present an analysis of high-quality photometry for globular clusters (GCs) in the Virgo cluster core region, based on data from the Next Generation Virgo Cluster Survey (NGVS) pilot field, and in the Milky Way (MW), based on Very Large Telescope/X-Shooter spectrophotometry. We find significant discrepancies in color–color diagrams between sub-samples from different environments, confirming that the environment has a strong influence on the integrated colors of GCs. GC color distributions along a single color are not sufficient to capture the differences we observe in color–color space. While the average photometric colors become bluer with increasing radial distance to the cD galaxy M87, we also find a relation between the environment and the slope and intercept of the color–color relations. A denser environment seems to produce a larger dynamic range in certain color indices. We argue that these results are not due solely to differential extinction, Initial Mass Function variations, calibration uncertainties, or overall age/metallicity variations. We therefore suggest that the relation between the environment and GC colors is, at least in part, due to chemical abundance variations, which affect stellar spectra and stellar evolution tracks. Our results demonstrate that stellar population diagnostics derived from model predictions which are calibrated on one particular sample of GCs may not be appropriate for all extragalactic GCs. These results advocate a more complex model of the assembly history of GC systems in massive galaxies that goes beyond the simple bimodality found in previous decades.

  11. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    Science.gov (United States)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  12. Studies of the charge instabilities in the complex nano-objects: clusters and bio-molecular systems

    International Nuclear Information System (INIS)

    Manil, B.

    2007-11-01

    For the last 6 years, my main research works focused on i) the Coulomb instabilities and the fragmentation processes of fullerenes and clusters of fullerenes ii) the stability and the reactivity of complex bio-molecular systems. Concerning the clusters of fullerenes, which are van der Waals type clusters, we have shown that the multiply charged species, obtained in collisions with slow highly charged ions, keep their structural properties but become very good electric conductor. In another hand, with the aim to understand the role of the biologic environment at the molecular scale in the irradiation damage of complex biomolecules, we have studied the charge stabilities of clusters of small biomolecules and the dissociation processes of larger nano-hydrated biomolecules. Theses studies have shown that first, specific molecular recognition mechanisms continue to exist in gas phase and secondly, a small and very simple biochemical environment is enough to change the dynamics of instabilities. (author)

  13. Hyperspectral clustering and unmixing for studying the ecology of state formation and complex societies

    Science.gov (United States)

    Kwong, Justin D.; Messinger, David W.; Middleton, William D.

    2009-08-01

    This project is an application of hyperspectral classification and unmixing in support of an ongoing archaeological study. The study region is the Oaxaca Valley located in the state of Oaxaca, Mexico on the southern coast. This was the birthplace of the Zapotec civilization which grew into a complex state level society. Hyperion imagery is being collected over a 30,000 km2 area. Classification maps of regions of interest are generated using K-means clustering and a novel algorithm called Gradient Flow. Gradient Flow departs from conventional stochastic or deterministic approaches, using graph theory to cluster spectral data. Spectral unmixing is conducted using the RIT developed algorithm Max-D to automatically find end members. Stepwise unmixing is performed to better model the data using the end members found be Max-D. Data are efficiently shared between imaging scientists and archaeologists using Google Earth to stream images over the internet rather than downloading them. The overall goal of the project is to provide archaeologists with useful information maps without having to interpret the raw data.

  14. The Sustainable Development of Industry Clusters: Emergent Knowledge Networks and Socio Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Susu Nousala

    2009-10-01

    Full Text Available In a highly competitive global economy the development of sustainable, innovative responses from Industry is now vital. Many industries globally need to respond rather than react to current economic climate through sustainable (economically and environmentally development. The steel industry is a critical player in the urban landscape. Like many industries, small, medium enterprises (SMEs are vital players within the steel industry supply chain. The Australian SME steel housing sector (based in rural and regional areas are still developing systemic capabilities with the aim of realizing its full potential. The question of an effective sustainable industry is much larger than any one player. This paper aims to present a proposed methodological approach for sustainable cluster development based on previous industry wide investigations. Through the lens of scalability of a socio complex adaptive system, SME development becomes arguably the most significant player with regards to industry cluster development. By starting with SME development it's possible to build an understanding of a simultaneous two layered approach, "bottom up – top down" whilst including a very diversified group.

  15. Hyperplane distance neighbor clustering based on local discriminant analysis for complex chemical processes monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chunhong; Xiao, Shaoqing; Gu, Xiaofeng [Jiangnan University, Wuxi (China)

    2014-11-15

    The collected training data often include both normal and faulty samples for complex chemical processes. However, some monitoring methods, such as partial least squares (PLS), principal component analysis (PCA), independent component analysis (ICA) and Fisher discriminant analysis (FDA), require fault-free data to build the normal operation model. These techniques are applicable after the preliminary step of data clustering is applied. We here propose a novel hyperplane distance neighbor clustering (HDNC) based on the local discriminant analysis (LDA) for chemical process monitoring. First, faulty samples are separated from normal ones using the HDNC method. Then, the optimal subspace for fault detection and classification can be obtained using the LDA approach. The proposed method takes the multimodality within the faulty data into account, and thus improves the capability of process monitoring significantly. The HDNC-LDA monitoring approach is applied to two simulation processes and then compared with the conventional FDA based on the K-nearest neighbor (KNN-FDA) method. The results obtained in two different scenarios demonstrate the superiority of the HDNC-LDA approach in terms of fault detection and classification accuracy.

  16. The contribution of cluster and discriminant analysis to the classification of complex aquifer systems.

    Science.gov (United States)

    Panagopoulos, G P; Angelopoulou, D; Tzirtzilakis, E E; Giannoulopoulos, P

    2016-10-01

    This paper presents an innovated method for the discrimination of groundwater samples in common groups representing the hydrogeological units from where they have been pumped. This method proved very efficient even in areas with complex hydrogeological regimes. The proposed method requires chemical analyses of water samples only for major ions, meaning that it is applicable to most of cases worldwide. Another benefit of the method is that it gives a further insight of the aquifer hydrogeochemistry as it provides the ions that are responsible for the discrimination of the group. The procedure begins with cluster analysis of the dataset in order to classify the samples in the corresponding hydrogeological unit. The feasibility of the method is proven from the fact that the samples of volcanic origin were separated into two different clusters, namely the lava units and the pyroclastic-ignimbritic aquifer. The second step is the discriminant analysis of the data which provides the functions that distinguish the groups from each other and the most significant variables that define the hydrochemical composition of the aquifer. The whole procedure was highly successful as the 94.7 % of the samples were classified to the correct aquifer system. Finally, the resulted functions can be safely used to categorize samples of either unknown or doubtful origin improving thus the quality and the size of existing hydrochemical databases.

  17. The Mystery of Globular Clusters: Uncovering the Complexities of Their Evolution

    Science.gov (United States)

    O'Malley, Erin Marie

    In recent years, evidence has grown for the existence of multiple stellar populations in globular clusters (GCs). However, questions remain regarding the nature of these populations. Photometric observations clearly show discrete populations while spectroscopic observations seem to show a continuous spread. This dissertation provides steps to better understanding GCs and the complexities associated with their evolution. Calibration of stellar evolution models at low metallicity is necessary for comparison to GCs. Accurate abundances of metal-poor subdwarfs are determined and used in this calibration. A Monte Carlo analysis is then performed in order to determine accurate distances, absolute ages, and integrated orbital trajectories for 24 GCs. These results are of critical importance as they not only incorporate the observational uncertainty, but also the uncertainty incurred by the models themselves. Lastly, high resolution spectra of three GCs (NGC 6681, NGC 6584 and NGC 7099) are obtained for a detailed abundance analysis of red giant branch stars. The high resolution and signal-to-noise achieved in these observations allows for the discovery of a statistically significant Na-O anticorrelation in all three clusters, the populations of which agree with those from photometric observations. Although we cannot determine precisely the nature of the polluters that were the predecessors to the enhanced populations, we do know that both s-process and r-process mechanisms contributed to the evolution and these results can be used to help constrain future models of GC polluter candidates.

  18. Hyperplane distance neighbor clustering based on local discriminant analysis for complex chemical processes monitoring

    International Nuclear Information System (INIS)

    Lu, Chunhong; Xiao, Shaoqing; Gu, Xiaofeng

    2014-01-01

    The collected training data often include both normal and faulty samples for complex chemical processes. However, some monitoring methods, such as partial least squares (PLS), principal component analysis (PCA), independent component analysis (ICA) and Fisher discriminant analysis (FDA), require fault-free data to build the normal operation model. These techniques are applicable after the preliminary step of data clustering is applied. We here propose a novel hyperplane distance neighbor clustering (HDNC) based on the local discriminant analysis (LDA) for chemical process monitoring. First, faulty samples are separated from normal ones using the HDNC method. Then, the optimal subspace for fault detection and classification can be obtained using the LDA approach. The proposed method takes the multimodality within the faulty data into account, and thus improves the capability of process monitoring significantly. The HDNC-LDA monitoring approach is applied to two simulation processes and then compared with the conventional FDA based on the K-nearest neighbor (KNN-FDA) method. The results obtained in two different scenarios demonstrate the superiority of the HDNC-LDA approach in terms of fault detection and classification accuracy

  19. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Mukaiyama, Takehiko; Takano, Hideki; Ogawa, Toru; Osakabe, Masahiro.

    1989-07-01

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  20. Reversible optical sensor for the analysis of actinides in solution

    International Nuclear Information System (INIS)

    Lesage, B.; Picard, S.; Serein-Spirau, F.; Lereporte, J.P.

    2007-01-01

    In this work is presented a concept of reversible optical sensor for actinides. It is composed of a p doped conducing polymer support and of an anion complexing the actinides. The chosen conducing polymer is the thiophene-2,5-di-alkoxy-benzene whose solubility and conductivity are perfectly known. The actinides selective ligand is a lacunar poly-oxo-metallate such as P 2 W 17 O 61 10- or SiW 11 O 39 8- which are strong anionic complexing agents of actinides at the oxidation state (IV) even in a very acid medium. The sensor is prepared by spin coating of the composite mixture 'polymer + ligand' on a conducing glass electrode and then tested towards its optical and electrochemical answer in presence of uranium (IV). The absorption change due to the formation of cations complexes by poly-oxo-metallate reveals the presence of uranium (IV). After the measurement, the sensor is regenerated by anodic polarization of the support and oxidation of the uranium (IV) into uranium (VI) which weakly interacts with the poly-oxo-metallate and is then released in solution. (O.M.)

  1. Complexes of DNA bases and Watson-Crick base pairs with small neutral gold clusters.

    Science.gov (United States)

    Kryachko, E S; Remacle, F

    2005-12-08

    The nature of the DNA-gold interaction determines and differentiates the affinity of the nucleobases (adenine, thymine, guanine, and cytosine) to gold. Our preliminary computational study [Kryachko, E. S.; Remacle, F. Nano Lett. 2005, 5, 735] demonstrates that two major bonding factors govern this interaction: the anchoring, either of the Au-N or Au-O type, and the nonconventional N-H...Au hydrogen bonding. In this paper, we offer insight into the nature of nucleobase-gold interactions and provide a detailed characterization of their different facets, i.e., geometrical, energetic, and spectroscopic aspects; the gold cluster size and gold coordination effects; proton affinity; and deprotonation energy. We then investigate how the Watson-Crick DNA pairing patterns are modulated by the nucleobase-gold interaction. We do so in terms of the proton affinities and deprotonation energies of those proton acceptors and proton donors which are involved in the interbase hydrogen bondings. A variety of properties of the most stable Watson-Crick [A x T]-Au3 and [G x C]-Au3 hybridized complexes are described and compared with the isolated Watson-Crick A x T and G x C ones. It is shown that enlarging the gold cluster size to Au6 results in a rather short gold-gold bond in the Watson-Crick interbase region of the [G x C]-Au6 complex that bridges the G x C pair and thus leads to a significant strengthening of G x C pairing.

  2. MASSIVE STARS IN THE Cl 1813-178 CLUSTER: AN EPISODE OF MASSIVE STAR FORMATION IN THE W33 COMPLEX

    International Nuclear Information System (INIS)

    Messineo, Maria; Davies, Ben; Figer, Donald F.; Trombley, Christine; Kudritzki, R. P.; Valenti, Elena; Najarro, F.; Michael Rich, R.

    2011-01-01

    Young massive (M > 10 4 M sun ) stellar clusters are a good laboratory to study the evolution of massive stars. Only a dozen of such clusters are known in the Galaxy. Here, we report about a new young massive stellar cluster in the Milky Way. Near-infrared medium-resolution spectroscopy with UIST on the UKIRT telescope and NIRSPEC on the Keck telescope, and X-ray observations with the Chandra and XMM satellites, of the Cl 1813-178 cluster confirm a large number of massive stars. We detected 1 red supergiant, 2 Wolf-Rayet stars, 1 candidate luminous blue variable, 2 OIf, and 19 OB stars. Among the latter, twelve are likely supergiants, four giants, and the faintest three dwarf stars. We detected post-main-sequence stars with masses between 25 and 100 M sun . A population with age of 4-4.5 Myr and a mass of ∼10, 000 M sun can reproduce such a mixture of massive evolved stars. This massive stellar cluster is the first detection of a cluster in the W33 complex. Six supernova remnants and several other candidate clusters are found in the direction of the same complex.

  3. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wenchuan [Univ. of California, Berkeley, CA (United States)

    1994-11-01

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S2 state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S2 state with the g~4 electron paramagnetic resonance (EPR) signal (S2-g4 state) was compared with that in the S2 state with multiline signal (S2-MLS state) and the S1 state. The S2-g4 state has a higher XAS inflection point energy than that of the S1 state, indicating the oxidation of Mn in the advance from the S1 to the S2-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S2-g4 state is different from that in the S2-MLS or the S1 state. In the S2-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 Å and 2.85 Å. Very little distance disorder exists in the second shell of the S1 or S2-MLS states. The third shell of the S2-g4 state at about 3.3 Å also contains increased heterogeneity relative to that of the S2-MLS or the S1 state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct "pure" S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S1 → S2 transition.

  4. Fusion barrier characteristics of actinides

    Science.gov (United States)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-03-01

    We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6 projectile target combinations. The values produced by the present formula are also compared with experiments. The present pocket formula produces fusion barrier characteristics of actinides with the simple inputs of mass number (A) and atomic number (Z) of projectile-targets.

  5. ALMR potential for actinide consumption

    International Nuclear Information System (INIS)

    Cockey, C.L.; Thompson, M.L.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. This reactor combines a high degree of passive safety characteristics with a high level of modularity and factory fabrication to achieve attractive economics. The current reference design is a 471 MWt modular reactor fueled with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and for makeup. Actinide transmutation may be accomplished in the ALMR core by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behavior throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. Waste disposal impacts are discussed. (author)

  6. Thin layers in actinide research

    International Nuclear Information System (INIS)

    Gouder, T.

    1998-01-01

    Surface science research at the ITU is focused on the synthesis and surface spectroscopy studies of thin films of actinides and actinide compounds. The surface spectroscopies used are X-ray and ultra violet photoelectron spectroscopy (XPS and UPS, respectively), and Auger electron spectroscopy (AES). Thin films of actinide elements and compounds are prepared by sputter deposition from elemental targets. Alloy films are deposited from corresponding alloy targets and could be used, in principle, as replicates of these targets. However, there are deviations between alloy film and target composition, which depend on the deposition conditions, such as pressure and target voltage. Mastering of these effects may allow us to study stoichiometric film replicates instead of thick bulk compounds. As an example, we discuss the composition of U-Ni films prepared from a UNi 5 target. (orig.)

  7. Nuclear waste forms for actinides

    Science.gov (United States)

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  8. Extraction chromatogrpahy of actinides, ch. 7

    International Nuclear Information System (INIS)

    Mueller, W.

    1975-01-01

    This review on extraction chromatography of actinides emphasizes the important usage of neutral (Tributylphosphate), basic (substituted ammonium salts), and acidic (HDEHP) extractants, and their application to separations of actinides in the di-to hexavalent oxidation state. Furthermore, the actinide extraction by ketones, ethers, alcohols and β-diketones is discussed

  9. Actinides integral measurements on FCA assemblies

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko; Okajima, Shigeaki

    1984-01-01

    Actinide integral measurements were performed on eight assemblies of FCA where neutron energy spectra were shifted systematically from soft to hard in order to evaluate and modify the nuclear cross section data of major actinides. Experimental values on actinide fission rates and sample reactivity worths are compared with the calculated values using JENDL-2 and ENDF/B-V (or IV) data sets. (author)

  10. Moessbauer effect studies with actinides

    International Nuclear Information System (INIS)

    Stone, J.A.

    1966-01-01

    Moessbauer resonance studies in the actinide elements offer a new technique for measuring solid-state properties to a region of the periodic chart where such information is relatively sparse. It is well known that the actinides, the elements with atomic numbers from 90 to 103, form a transition series due to filling of the 5f electron shell, analogous to the rare-earth series in which the 4f shell is filled. Like the rare earths, the actinide metals and compounds are expected to exhibit a variety of interesting magnetic properties, but, unlike the rare earths, there have been few studies of the magnetic behaviour of actinides, and these properties are largely unknown. The chemical properties of the actinides have been studied somewhat more extensively, and, in contrast to the rare earths, form a multiplicity of stable valence states, especially in the lighter members of the series. It is just these properties, magnetic and chemical, for which the Moessbauer effect is a valuable probe, sensitive to the magnetic and electric environment of an atom. The rare-earth series has been a particularly fruitful region in terms of the number of elements which have been shown to exhibit the Moessbauer effect, and for this reason the exploitation of the Moessbauer effect to yield new solid-state and chemical information on the rare earths is a highly active field of research today. There is every reason to believe that the actinides can be similarly studied by the Moessbauer effect. 43 refs, 6 figs, 4 tabs

  11. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    Science.gov (United States)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  12. Preliminary considerations concerning actinide solubilities

    International Nuclear Information System (INIS)

    Newton, T.W.; Bayhurst, B.P.; Daniels, W.R.; Erdal, B.R.; Ogard, A.E.

    1980-01-01

    Work at the Los Alamos Scientific Laboratory on the fundamental solution chemistry of the actinides has thus far been confined to preliminary considerations of the problems involved in developing an understanding of the precipitation and dissolution behavior of actinide compounds under environmental conditions. Attempts have been made to calculate solubility as a function of Eh and pH using the appropriate thermodynamic data; results have been presented in terms of contour maps showing lines of constant solubility as a function of Eh and pH. Possible methods of control of the redox potential of rock-groundwater systems by the use of Eh buffers (redox couples) is presented

  13. Orbital effects in actinide systems

    International Nuclear Information System (INIS)

    Lander, G.H.

    1983-01-01

    Actinide magnetism presents a number of important challenges; in particular, the proximity of 5f band to the Fermi energy gives rise to strong interaction with both d and s like conduction electrons, and the extended nature of the 5f electrons means that they can interact with electron orbitals from neighboring atoms. Theory has recently addressed these problems. Often neglected, however, is the overwhelming evidence for large orbital contributions to the magnetic properties of actinides. Some experimental evidence for these effects are presented briefly in this paper. They point, clearly incorrectly, to a very localized picture for the 5f electrons. This dichotomy only enhances the nature of the challenge

  14. Cation-Cation Complexes of Pentavalent Uranyl: From Disproportionation Intermediates to Stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Mougel, Victor; Horeglad, Pawel; Nocton, Gregory; Pecaut, Jacques; Mazzanti, Marinella [CEA, INAC, SCIB, Laboratoire de Reconnaissance Ionique et Chimie de Coordination, CEA-Grenoble, 38054 GRENOBLE, Cedex 09 (France)

    2010-07-01

    Three new cation cation complexes of pentavalent uranyl, stable with respect to the disproportionation reaction, have been prepared from the reaction of the precursor [(UO{sub 2}py{sub 5})-(KI{sub 2}py{sub 2})]{sub n} (1) with the Schiff base ligands salen{sup 2-}, acacen{sup 2-}, and salophen{sup 2-} (H{sub 2}salen N, N'-ethylene-bis(salicylidene-imine), H{sub 2}acacen=-N, N'-ethylenebis(acetylacetone-imine), H{sub 2}salophen=N, N'-phenylene-bis(salicylidene-imine)). The preparation of stable complexes requires a careful choice of counter ions and reaction conditions. Notably the reaction of 1 with salophen{sup 2-} in pyridine leads to immediate disproportionation, but in the presence of [18]crown-6 ([18]C-6) a stable complex forms. The solid-state structure of the four tetra-nuclear complexes ([UO{sub 2}-(acacen)]{sub 4}[{mu}{sub 8}-]{sub 2}[K([18]C-6)(py)]{sub 2}) (3) and ([UO{sub 2}(acacen)](4)[{mu}{sub 8}-]).2[K([222])(py)] (4) ([UO{sub 2}(salophen)](4)[{mu}{sub 8}-K]{sub 2}[mu(5)-KI]{sub 2}[(K([18]C-6)]).2 [K([18]C-6)-(thf){sub 2}].2I (5), and ([UO{sub 2}(salen)(4)][{mu}{sub 8}-Rb]{sub 2}[Rb([18]C-6)]{sub 2}) (9) ([222] = [222]cryptand, py =pyridine), presenting a T-shaped cation cation interaction has been determined by X-ray crystallographic studies. NMR spectroscopic and UV/Vis studies show that the tetra-nuclear structure is maintained in pyridine solution for the salen and acacen complexes. Stable mononuclear complexes of pentavalent uranyl are also obtained by reduction of the hexavalent uranyl Schiff base complexes with cobaltocene in pyridine in the absence of coordinating cations. The reactivity of the complex [U{sup V}O{sub 2}(salen)(py)][Cp*{sub 2}Co] with different alkali ions demonstrates the crucial effect of coordinating cations on the stability of cation cation complexes. The nature of the cation plays a key role in the preparation of stable cation cation complexes. Stable tetra-nuclear complexes form in the presence of K

  15. Adaptive capacity of geographical clusters: Complexity science and network theory approach

    Science.gov (United States)

    Albino, Vito; Carbonara, Nunzia; Giannoccaro, Ilaria

    This paper deals with the adaptive capacity of geographical clusters (GCs), that is a relevant topic in the literature. To address this topic, GC is considered as a complex adaptive system (CAS). Three theoretical propositions concerning the GC adaptive capacity are formulated by using complexity theory. First, we identify three main properties of CAS s that affect the adaptive capacity, namely the interconnectivity, the heterogeneity, and the level of control, and define how the value of these properties influence the adaptive capacity. Then, we associate these properties with specific GC characteristics so obtaining the key conditions of GCs that give them the adaptive capacity so assuring their competitive advantage. To test these theoretical propositions, a case study on two real GCs is carried out. The considered GCs are modeled as networks where firms are nodes and inter-firms relationships are links. Heterogeneity, interconnectivity, and level of control are considered as network properties and thus measured by using the methods of the network theory.

  16. Archetypes for actinide-specific chelating agents

    International Nuclear Information System (INIS)

    Smith, W.L.

    1980-01-01

    The complexes of uranium and thorium with monomeric hydroxamic acids can serve as archetypes for an optimized macrochelate designed for tetravalent actinides. The eight-coordinate complexes, Th(i-PrN(O)C(O)R) 4 , where R = tert-butyl or R = neopentyl, have been synthesized and their structures have been determined by x-ray diffraction. The bulky alkyl substituents impart remarkable volatility and hydrocarbon solubility to these complexes, and the steric interactions of these substituents largely determine the structures. When R = tert-butyl, the substituents occupy the corners of a tetrahedron and force the complex into a distorted cubic geometry with crystallographic S 4 symmetry. Insertion of a methylene group between the carbonyl carbon and the tert-butyl group relaxes the steric requirements, and the coordination polyhedron of the neopentyl derivative is close to the mmmm isomer of the trigonal-faced dodecahedron. Uranium tetrachloride was quantitatively oxidized via an oxygen transfer reaction with two equivalents of N-phenylbenzohydroxamic acid anion (PBHA) in tetrahydrofuran (THF) to form UO 2 Cl(PBHA)(THF) 2 and benzanilide. The structure of the uranyl complex has been determined from x-ray diffraction data; the linear uranyl ion is surrounded by a planar pentagonal array composed of two hydroxamate oxygen atoms, a chloride ion and two THF oxygens, such that the chloride ion is opposite the hydroxamate group. That the THF and phenyl rings are twisted from this equatorial plane limits the molecular geometry to that of the C 1 point group. Some aspects of the chemistry of hydroxamic acids and of their incorporation into molecules that may serve as precursors of tetravalent actinide specific sequestering agents have also been investigated

  17. Safe actinide disposition in molten salt reactors

    International Nuclear Information System (INIS)

    Gat, U.

    1997-01-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs

  18. Burning actinides in very hard spectrum reactors

    International Nuclear Information System (INIS)

    Robinson, A.H.; Shirley, G.W.; Prichard, A.W.; Trapp, T.J.

    1978-01-01

    The major unresolved problem in the nuclear industry is the ultimate disposition of the waste products of light water reactors. The study demonstrates the feasibility of designing a very hard spectrum actinide burner reactor (ABR). A 1100 MW/sub t/ ABR design fueled entirely with actinides reprocessed from light water reactor (LWR) wastes is proposed as both an ultimate disposal mechanism for actinides and a means of concurrently producing usable power. Actinides from discharged ABR fuel are recycled to the ABR while fission products are routed to a permanent repository. As an integral part of a large energy park, each such ABR would dispose of the waste actinides from 2 LWRs

  19. Citrate based ''TALSPEAK'' lanthanide-actinide separation process

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ''geological'' periods of time. The costs of building, maintaining, and operating a ''geological TRU repository'' can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ''TALSPEAK'' process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced

  20. Actinides and environmental interfaces: striving for molecular-level understanding

    International Nuclear Information System (INIS)

    Heino Nitsche

    2005-01-01

    Actinides can undergo a variety of complex chemical reactions in the environment. In addition to the formation of solid precipitates, colloids and dissolved solution species common to aqueous systems, actinide ions can interact with the surrounding geo and biomedia to change oxidation states or sorb on surfaces and colloids. The rate of migration is determined by aqueous solubility, and interactions with solid surfaces such as minerals, soils, natural organic matter, and soil microorganisms Sorption of aqueous actinide species on biological and geological matrices can be quantitatively described by a surface complexation or site-binding model. The disadvantage of this model is the difficulty in the experimental determination of the model parameters and surface reaction constants. Usually, a set of surface reactions and species are proposed based on knowledge of the solution speciation of the solute, and the reaction constants are usually derived by fitting computer-calculated absorption curves to experimental data. Because this process typically involves a large number of potentially adjustable parameters, it is likely to lead to non-unique parameter fitting and does not always result in a consistent set of parameters for the same systems. A fundamental molecular-level understanding of sorption processes of actinides on environmental surfaces is required to better understand and predict their transport behavior in nature. Several different surface spectroscopic techniques have been applied to the characterization of the adsorbed species and surface reactions and a direct determination of the sorbed species and surface reactions has become possible. The non-linear optical techniques of second harmonic and sum frequency generation (SHG and SFG) are ideally suited to study surfaces and interfaces of mineral oxides, biosurfactants and biopolymers, organic adlayers adsorbed on solid/mineral surfaces and soil organic matter, including humic and fulvic acids. Resonant

  1. The Raman and vibronic activity of intermolecular vibrations in aromatic-containing complexes and clusters

    International Nuclear Information System (INIS)

    Maxton, P.M.; Schaeffer, M.W.; Ohline, S.M.; Kim, W.; Venturo, V.A.; Felker, P.M.

    1994-01-01

    Theoretical and experimental results pertaining to the excitation of intermolecular vibrations in the Raman and vibronic spectra of aromatic-containing, weakly bound complexes and clusters are reported. The theoretical analysis of intermolecular Raman activity is based on the assumption that the polarizability tensor of a weakly bound species is given by the sum of the polarizability tensors of its constituent monomers. The analysis shows that the van der Waals bending fundamentals in aromatic--rare gas complexes may be expected to be strongly Raman active. More generally, it predicts strong Raman activity for intermolecular vibrations that involve the libration or internal rotation of monomer moieties having appreciable permanent polarizability anisotropies. The vibronic activity of intermolecular vibrations in aromatic-rare gas complexes is analyzed under the assumption that every vibronic band gains its strength from an aromatic-localized transition. It is found that intermolecular vibrational excitations can accompany aromatic-localized vibronic excitations by the usual Franck--Condon mechanism or by a mechanism dependent on the librational amplitude of the aromatic moiety during the course of the pertinent intermolecular vibration. The latter mechanism can impart appreciable intensity to bands that are forbidden by rigid-molecule symmetry selection rules. The applicability of such rules is therefore called into question. Finally, experimental spectra of intermolecular transitions, obtained by mass-selective, ionization-detected stimulated Raman spectroscopies, are reported for benzene--X (X=Ar, --Ar 2 , N 2 , HCl, CO 2 , and --fluorene), fluorobenzene--Ar and --Kr, aniline--Ar, and fluorene--Ar and --Ar 2 . The results support the conclusions of the theoretical analyses and provide further evidence for the value of Raman methods in characterizing intermolecular vibrational level structures

  2. Proceedings of the symposium Actinides 2006 - Basic Science, Applications and Technology

    International Nuclear Information System (INIS)

    Blobaum, Kerri J.M.; Chandler, Elaine A.; Havela, Ladislav; Maple, M. Brian; Neu, Mary P.

    2007-01-01

    These proceedings from the September 2006 symposium includes papers presented on experimental and modeling work with the intention of broadening understanding of the field of actinide research. Actinides have gained attention recently because of their roles in the threat of nuclear terrorism (e.g., 'dirty bombs') and the use of nuclear power to offset fossil fuel consumption. Actinide science is the study of the elements with atomic numbers in the range of 90 to 103, which includes uranium and plutonium. Beyond the well-known nuclear reactions of these heavy radioactive metals, the large electron clouds with 5f electrons in the outer shell yield fascinating and complex chemistries, crystal structures, and physical properties. Traditionally, actinide research has been divided among three scientific disciplines: chemistry (nuclear chemistry and radiochemistry); physics (condensed matter physics and electronic structure); and materials science (metallurgy). Modern actinide research, however, has become an interdisciplinary blend of these traditional fields, and it also incorporates developing fields such as environmental chemistry and superconductivity. Improved scientific understanding of actinides is needed for development of materials for actinide detection and nuclear fuels, and for safer management of nuclear waste. Recently, there has been a resurgence of actinide science at national laboratories and universities. The current multidisciplinary approach to actinide science lays the groundwork for understanding the connection between the 5f electronic structure and observed chemical reactions and physical properties such as structural phase transformations and novel ground states. This work provides many opportunities for new researchers in actinide science. These proceedings gather 25 selected papers among the 53 presentations given at this symposium

  3. A Chemical Composition Survey of the Iron-complex Globular Cluster NGC 6273 (M19)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I.; Caldwell, Nelson [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States); Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Mateo, Mario [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Bailey, John I. III [Leiden Observatory, Leiden University, P.O. Box 9513, 2300RA Leiden (Netherlands); Clarkson, William I. [Department of Natural Sciences, University of Michigan–Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States); Olszewski, Edward W. [Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Walker, Matthew G., E-mail: cjohnson@cfa.harvard.edu, E-mail: ncaldwell@cfa.harvard.edu, E-mail: rmr@astro.ucla.edu, E-mail: mmateo@umich.edu, E-mail: baileyji@strw.leidenuniv.nl, E-mail: wiclarks@umich.edu, E-mail: eolszewski@as.arizona.edu, E-mail: mgwalker@andrew.cmu.edu [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)

    2017-02-20

    Recent observations have shown that a growing number of the most massive Galactic globular clusters contain multiple populations of stars with different [Fe/H] and neutron-capture element abundances. NGC 6273 has only recently been recognized as a member of this “iron-complex” cluster class, and we provide here a chemical and kinematic analysis of >300 red giant branch and asymptotic giant branch member stars using high-resolution spectra obtained with the Magellan –M2FS and VLT–FLAMES instruments. Multiple lines of evidence indicate that NGC 6273 possesses an intrinsic metallicity spread that ranges from about [Fe/H] = −2 to −1 dex, and may include at least three populations with different [Fe/H] values. The three populations identified here contain separate first (Na/Al-poor) and second (Na/Al-rich) generation stars, but a Mg–Al anti-correlation may only be present in stars with [Fe/H] ≳ −1.65. The strong correlation between [La/Eu] and [Fe/H] suggests that the s-process must have dominated the heavy element enrichment at higher metallicities. A small group of stars with low [ α /Fe] is identified and may have been accreted from a former surrounding field star population. The cluster’s large abundance variations are coupled with a complex, extended, and multimodal blue horizontal branch (HB). The HB morphology and chemical abundances suggest that NGC 6273 may have an origin that is similar to ω Cen and M54.

  4. ENDF/B-V actinides

    International Nuclear Information System (INIS)

    Kocherov, N.; Lemmel, H.D.

    1981-01-01

    This document summarizes the contents of the actinides part of the ENDF/B-V nuclear data library released by the US National Nuclear Data Center. This library or selective retrievals of it, are available from the IAEA Nuclear Data Section. (author)

  5. Environmental research on actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  6. Photochemical reactions of actinide ions

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi

    1995-01-01

    This paper reviews the results of photochemical studies of actinide ions, which have been performed in our research group for past several years as follows: I) behavior of the excited uranyl(VI) ion; II) photo-reductions of the uranyl ion with organic and inorganic compounds; III) photo-oxidations of uranium(IV) and plutonium(III) in nitric acid solutions. (author)

  7. Angular overlap model in actinides

    International Nuclear Information System (INIS)

    Gajek, Z.; Mulak, J.

    1991-01-01

    Quantitative foundations of the Angular Overlap Model in actinides based on ab initio calculations of the crystal field effect in the uranium (III) (IV) and (V) ions in various crystals are presented. The calculations justify some common simplifications of the model and fix up the relations between the AOM parameters. Traps and limitations of the AOM phenomenology are discussed

  8. Angular overlap model in actinides

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z.; Mulak, J. (Polska Akademia Nauk, Wroclaw (PL). Inst. Niskich Temperatur i Badan Strukturalnych)

    1991-01-01

    Quantitative foundations of the Angular Overlap Model in actinides based on ab initio calculations of the crystal field effect in the uranium (III) (IV) and (V) ions in various crystals are presented. The calculations justify some common simplifications of the model and fix up the relations between the AOM parameters. Traps and limitations of the AOM phenomenology are discussed.

  9. Towards a methodology for cluster searching to provide conceptual and contextual "richness" for systematic reviews of complex interventions: case study (CLUSTER).

    Science.gov (United States)

    Booth, Andrew; Harris, Janet; Croot, Elizabeth; Springett, Jane; Campbell, Fiona; Wilkins, Emma

    2013-09-28

    Systematic review methodologies can be harnessed to help researchers to understand and explain how complex interventions may work. Typically, when reviewing complex interventions, a review team will seek to understand the theories that underpin an intervention and the specific context for that intervention. A single published report from a research project does not typically contain this required level of detail. A review team may find it more useful to examine a "study cluster"; a group of related papers that explore and explain various features of a single project and thus supply necessary detail relating to theory and/or context.We sought to conduct a preliminary investigation, from a single case study review, of techniques required to identify a cluster of related research reports, to document the yield from such methods, and to outline a systematic methodology for cluster searching. In a systematic review of community engagement we identified a relevant project - the Gay Men's Task Force. From a single "key pearl citation" we conducted a series of related searches to find contextually or theoretically proximate documents. We followed up Citations, traced Lead authors, identified Unpublished materials, searched Google Scholar, tracked Theories, undertook ancestry searching for Early examples and followed up Related projects (embodied in the CLUSTER mnemonic). Our structured, formalised procedure for cluster searching identified useful reports that are not typically identified from topic-based searches on bibliographic databases. Items previously rejected by an initial sift were subsequently found to inform our understanding of underpinning theory (for example Diffusion of Innovations Theory), context or both. Relevant material included book chapters, a Web-based process evaluation, and peer reviewed reports of projects sharing a common ancestry. We used these reports to understand the context for the intervention and to explore explanations for its relative

  10. Cluster approach to realization of innovation development strategy for the agroindustrial complex of the region

    Directory of Open Access Journals (Sweden)

    Valentina Aleksandrovna Kundius

    2011-12-01

    Full Text Available This paper reviews cluster approach as an innovative management technology for the regional economy. The results of studying the theory and practice of clustering of the regional economy, the formation of agribusiness and food clusters in agribusiness are presented. Basic features and operation of the cluster systems are revealed and distinguished from other forms of cooperative and economic interactions between small and big business features, motivational components of integration into clusters. On the basis of scientific propositions, a model of regional economic clusters is formulated; specific territorial distribution and level of aggregation of clusters in the agricultural sector were distinguished. It is proposed to refer agroindustrial clusters to the clusters that represent the associations of organization of various fields in a single reproduction cycle from raw material to finished products sales including all stages of reproduction on the basis of innovation and investment activity. A structuring work on principles of agro-clusters was held, sustainable competitive advantage and the formation mechanisms of the development of agro-industrial clusters have been grounded.

  11. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    Science.gov (United States)

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    complexity can be realized by small amounts of Li replacing Zn atoms in the parent binary compounds CaZn 2 , CaZn 3 , and CaZn 5 ; their phase formation and bonding schemes can be rationalized by Fermi surface-Brillouin zone interactions between nearly free-electron states. "Cation-rich", electron-poor polar intermetallics have emerged using rare earth metals as the electropositive ("cationic") component together metal/metalloid clusters that mimic the backbones of aromatic hydrocarbon molecules, which give evidence of extensive electronic delocalization and multicenter bonding. Thus, we can identify three distinct, valence electron-poor, polar intermetallic systems that have yielded unprecedented phases adopting novel structures containing complex clusters and intriguing bonding characteristics. In this Account, we summarize our recent specific progress in the developments of novel Au-rich BaAl 4 -type related structures, shown in the "gold-rich grid", lithiation-modulated Ca-Li-Zn phases stabilized by different bonding characteristics, and rare earth-rich polar intermetallics containing unprecedented hydrocarbon-like planar Co-Ge metal clusters and pronounced delocalized multicenter bonding. We will focus mainly on novel structural motifs, bonding analyses, and the role of valence electrons for phase stability.

  12. Redox-flow battery of actinide complexes

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu

    2006-01-01

    Np battery and U battery were developed. We suggested that Np redox-flow battery should be (-)|Np 3+ ,Np 4+ ||NpO 2 + ,NpO 2 2+ |(+), and U battery (-)|[U III T 2 ] - ,[U IV T 2 ] 0 ||[U V O 2 T] - ,[U VI O 2 T] 0 |(+). The electromotive force at 50 % charge of Np and U battery is 1.10 V and 1.04 V, respectively. The energy efficiency of 70 mA/cm 2 of Np and U battery shows 99 % and 98 %, respectively. V redox-flow battery, electrode reactions of An battery, Np battery, U battery and future of U battery are described. The concept of V redox-flow battery, comparison of energy efficiency of Np, U and V battery, oxidation state and ionic species of 3d transition metals and main An, Purbe diagram of Np and U aqueous solution, shift of redox potential of β-diketones by pKa, and specifications of three redox-flow batteries are reported. (S.Y.)

  13. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    Science.gov (United States)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  14. Complex Structure of Galaxy Cluster Abell 1689: Evidence for a Merger from X-Ray Data?

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K

    2004-01-29

    Abell 1689 is a galaxy cluster at z = 0:183 where previous measurements of its mass using various techniques gave discrepant results. We present a new detailed measurement of the mass with the data based on X-ray observations with the European Photon Imaging Camera aboard the XMM-Newton Observatory, determined by using an unparameterized deprojection technique. Fitting the total mass profile to a Navarro-Frenk-White model yields halo concentration c = 7.2{sub -2.4}{sup +1.6} and r{sub 200} = 1.13 {+-} 0.21 h{sup -1} Mpc, corresponding to a mass which is less than half of what is found from gravitational lensing. Adding to the evidence of substructure from optical observations, X-ray analysis shows a highly asymmetric temperature profile and a non-uniform redshift distribution implying large scale relative motion of the gas. A lower than expected gas mass fraction f{sub gas} = 0.072 {+-} 0.008 (for a flat {Lambda}CDM cosmology) suggests a complex spatial and/or dynamical structure. We also find no signs of any additional absorbing component previously reported on the basis of the Chandra data, confirming the XMM low energy response using data from ROSAT.

  15. The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes.

    Science.gov (United States)

    Yeung, N; Gold, B; Liu, N L; Prathapam, R; Sterling, H J; Willams, E R; Butland, G

    2011-10-18

    Monothiol glutaredoxins (mono-Grx) represent a highly evolutionarily conserved class of proteins present in organisms ranging from prokaryotes to humans. Mono-Grxs have been implicated in iron sulfur (FeS) cluster biosynthesis as potential scaffold proteins and in iron homeostasis via an FeS-containing complex with Fra2p (homologue of E. coli BolA) in yeast and are linked to signal transduction in mammalian systems. However, the function of the mono-Grx in prokaryotes and the nature of an interaction with BolA-like proteins have not been established. Recent genome-wide screens for E. coli genetic interactions reported the synthetic lethality (combination of mutations leading to cell death; mutation of only one of these genes does not) of a grxD mutation when combined with strains defective in FeS cluster biosynthesis (isc operon) functions [Butland, G., et al. (2008) Nature Methods 5, 789-795]. These data connected the only E. coli mono-Grx, GrxD to a potential role in FeS cluster biosynthesis. We investigated GrxD to uncover the molecular basis of this synthetic lethality and observed that GrxD can form FeS-bound homodimeric and BolA containing heterodimeric complexes. These complexes display substantially different spectroscopic and functional properties, including the ability to act as scaffold proteins for intact FeS cluster transfer to the model [2Fe-2S] acceptor protein E. coli apo-ferredoxin (Fdx), with the homodimer being significantly more efficient. In this work, we functionally dissect the potential cellular roles of GrxD as a component of both homodimeric and heterodimeric complexes to ultimately uncover if either of these complexes performs functions linked to FeS cluster biosynthesis. © 2011 American Chemical Society

  16. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.

    Science.gov (United States)

    Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina

    2015-03-01

    Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new

  17. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-07-28

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  18. Actinide biocolloid formation in brine by halophilic bacteria

    International Nuclear Information System (INIS)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-01-01

    The authors examined the ability of a halophilic bacterium (WIPP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited solubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellularly as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide

  19. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    International Nuclear Information System (INIS)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-01-01

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide

  20. Program and presentations of the 33th Actinide Days

    International Nuclear Information System (INIS)

    2003-04-01

    The 'Journees des Actinides' (JDA) is an annual conference which provides a forum for discussions on all aspects related to the chemical and physical properties of the actinides. At the 2003 meeting, mainly the following properties were discussed of actinides and a number of actinide compounds and complexes: crystal structure, crystal-phase transformations and transformation temperatures; electrical properties including superconductivity and superconducting transition temperatures; magnetic properties; specific heat and other thermodynamic properties; electronic structure, especially in condensed matter; chemical and physico-chemical properties. The relevant experimental techniques were also dealt with, such as neutron diffraction; X-ray diffraction, in particular using synchrotron radiation; photoemission techniques, electron microscopy and spectroscopy, etc. Altogether 96 contributions were presented, of which 42 were oral presentations and 54 poster presentations. A program of the meeting and texts of both type of presentations were published in electronic form in the PDF format. All contributions were inputted to INIS; the full text of the program and the presentations has been incorporated into the INIS collection of non-conventional literature on CD-ROM. (A.K.)

  1. Actinide biocolloid formation in brine by halophilic bacteria

    International Nuclear Information System (INIS)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.B.; Papenguth, H.W.

    1998-01-01

    The authors examined the ability of a halophilic bacterium (WIPP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited solubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellularly as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide

  2. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    International Nuclear Information System (INIS)

    Sypula, Michal

    2013-01-01

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SF Ln/Am obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as a Zr

  3. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Sypula, Michal

    2013-07-01

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SF{sub Ln/Am} obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as

  4. Removal of actinide elements from high level radioactive waste by trialkylphosphine oxide (TRPO)

    International Nuclear Information System (INIS)

    Song Chongli; Yang Dazhu; He Longhai; Xu Jingming; Zhu Yongjun

    1992-03-01

    The modified TRPO process for removing actinide elements from synthetic solution, which was taken from reprocessing of power reactor nuclear fuel, was verified by cascade experiment. Neptunium valence was adjusted in the process for improving neptunium removing efficiency. At 1 mol/L concentration of HNO 3 of feed solution and after a few stages of extraction with 30% t=TRPO kerosene, over 99.9% of Am, Pu, Np and U could be removed from HAW (high level radioactive waste) solution. The stripping of actinides loaded in TRPO are accomplished by high concentration nitric acid, oxalic acid and sodium carbonate instead of amino carboxylic complexing agents used in previous process. The actinides stripped were divided into three groups, which are Am + RE, Np + Pu, and U, and the cross contamination between them is small. Behaviours of F.P. elements are divided into three types which are not extracted, little extracted and extracted elements. The extracted elements are rare earth and Pd, Zr and Mo which are co-extracted with actinides. The separation factor between actinides and other two types of F.P.elements will increase if more scrubbing sections are added in the process. The relative concentration profile of actinide elements and Tc in various stages as well as the distribution of actinides and F.P. elements in the process stream solutions are also presented

  5. Handbook on the physics and chemistry of the actinides. V. 3

    International Nuclear Information System (INIS)

    Freeman, A.J.; Keller, C.

    1985-01-01

    It is the purpose of the Handbook to describe in detail the present understanding of the actinides by means of comprehensive, critical, broad and up to date reviews covering both physics and chemistry of these exotic elements. Volume 3 is the first of two volumes to cover the more chemical, physico-chemical, structural and environmental aspects of the actinide elements. Leading scientists from Europe, USA and P.R. China present critical reviews on important aspects of the behaviour of this radioactive group of elements. In contrast to most other elements radioactivity has, to a degree, a profound influence on the chemical behaviour of the actinides. The unusual behaviour of the 5f-elements - delocalization of the electrons for the light actinides versus localization for the heavier ones - makes them an outstanding tool for the scientist, which can be seen by the variety of oxidation states ranging from +1 to +7. Special laboratory techniques must be developed to deal with the problem of the transcurium elements only being available in small amounts (nanograms to micrograms) or only in the tracer scale. Special emphasis is also placed on the fate of actinides released in the environment, e.g. their reaction to carbonate and organic complexing agents in aquatic systems. In contrast to volumes 1 and 2 which deal mainly with the less radioactive actinides, this volume and the forthcoming volume 4 cover all actinides, in particular those which can be prepared in weighable quantities (up to fermium, element 100). refs.; figs.; tabs

  6. FRONTIER FIELDS CLUSTERS: DEEP CHANDRA OBSERVATIONS OF THE COMPLEX MERGER MACS J1149.6+2223

    Energy Technology Data Exchange (ETDEWEB)

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.; Forman, W.; Andrade-Santos, F.; Murray, S. S.; Nulsen, P.; Bulbul, E.; Kraft, R.; Randall, S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dawson, W. A. [Lawrence Livermore National Lab, 7000 East Avenue, Livermore, CA 94550 (United States); Golovich, N. [University of California, One Shields Avenue, Davis, CA 95616 (United States); Roediger, E. [Astronomy and Astrophysics Section, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Zitrin, A.; Sayers, J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Goulding, A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Umetsu, K. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Mroczkowski, T. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Bonafede, A. [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Churazov, E., E-mail: gogrean@cfa.harvard.edu [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany); and others

    2016-03-10

    The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. We present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z  =  0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the line of sight. The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. If the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.

  7. Factors influencing the transport of actinides in the groundwater environment. Final report

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Kittrick, J.A.

    1983-01-01

    This report summarizes investigations of factors that significantly influence the transport of actinide cations in the groundwater environment. Briefly, measurements of diffusion coefficients for Am(III), Cm(III), and Np(V) in moist US soils indicated that diffusion is negligible compared to mass transport in flowing groundwater. Diffusion coefficients do, however, indicate that, in the absence of flowing water, actinide elements will migrate only a few centimeters in a thousand years. The remaining investigations were devoted to the determination of distribution ratios (K/sub d/s) for representative US soils, factors influencing them, and chemical and physical processes related to transport of actinides in groundwaters. The computer code GARD was modified to include complex formation to test the importance of humic acid complexing on the rate of transport of actinides in groundwaters. Use of the formation constant and a range of humic acid, even at rather low concentrations of 10 -5 to 10 -6 molar, significantly increases the actinide transport rate in a flowing aquifer. These computer calculations show that any strong complexing agent will have a similar effect on actinide transport in the groundwater environment. 32 references, 9 figures

  8. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  9. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  10. Complex open-framework germanate built by 8-coordinated Ge 10 clusters

    KAUST Repository

    Yue, Huijuan; Peskov, Maxim; Sun, Junliang; Zou, Xiaodong

    2012-01-01

    cluster building units can be concluded. The framework of SU-67 is based on an elaborate topological pattern of connected Ge 10 clusters forming intersecting 10- and 11-ring channels and has a low framework density (12.4 Ge atoms per 1000 ̊ 3). We have

  11. Analytical evaluation of actinide sensitivities

    International Nuclear Information System (INIS)

    Sola, A.

    1977-01-01

    The analytical evaluation of the sensitivities of actinides to various parameters such as cross sections, decay constants, flux and time is presented. The formulae are applied to isotopes of the Uranium, Neptunium, Plutonium and Americium series. The agreement between analytically obtained and computer evaluated sensitivities being always good, it is throught that the formulation includes all the important parameters entering in the evaluation of sensitivities. A study of the published data is made

  12. Partitioning of Mercury from Actinides in the TRUEX Process

    International Nuclear Information System (INIS)

    Fiskum, Sandra K.; Rapko, Brian M.; Lumetta, Gregg J.

    2000-01-01

    A mercury complexant, L-cysteine hydrochloride, was tested for use in separating Hg from actinides during TRUEX processing of wastes at the Idaho National Engineering and Environmental Laboratory (INEEL). Mercury, americium, plutonium and uranyl distributions from TRUEX solvent were characterized over a nitric acid concentration range of 0.01 to 2 M. The applicability of cysteine was also evaluated for selective Hg complexation in an INEEL sodium-bearing waste simulant. A test was also conducted to evaluate the applicability of cysteine to separate Hg from Sr in the SREX process with Sr Resin used as a stand-in for the SREX process solvent. In all cases, the use of L-cysteine HCl retained Hg in the aqueous phase while causing no or little perturbation in the actinide and Sr distribution behavior

  13. Investigation on leaching of actinide oxides into supercritical fluids

    International Nuclear Information System (INIS)

    Shafikov, D.N.; Kamachev, V.A.; Babain, V.A.; Murzin, A.A.; Shadrin, A.Yu.; Podojnitsin, S.V.

    2006-01-01

    The extraction of actinide oxides into solutions of the TBP-HNO 3 complex in supercritical (SC) CO 2 was investigated. Experiments on the extraction of the TBP-HNO 3 complex into SC CO 2 were first conducted. It was found that a constant concentration of TBP in SC CO 2 of 13.5-14.8 % vol. can be attained using a constant molar ratio of [HNO 3 ]:[TBP] about 2.5 : 1. Joint leaching of uranium, plutonium and neptunium from mixtures of actinide oxides with solutions of TBP-HNO 3 in SC CO 2 was found feasible. If the leaching of uranium is about 95 %, its purification coefficients from major gamma-emitting radionuclides (Cs and Sr) exceed 100, while the purification coefficients of uranium from rare earth elements are 10-20

  14. Sequestering agents for the removal of actinides from waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R. [Univ. of California, Berkeley, CA (United States)

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  15. Actinide separation of high-level waste using solvent extractants on magnetic microparticles

    International Nuclear Information System (INIS)

    Nunez, L.; Buchholz, B.A.; Kaminski, M.; Aase, S.B.; Brown, N.R.; Vandegrift, G.F.

    1994-01-01

    Polymeric-coated ferromagnetic particles with an absorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted by tributyl phosphate (TBP) are being evaluated for application in the separation and the recovery of low concentrations of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can be recovered from the waste solution using a magnet. The effectiveness of the extractant-absorbed particles at removing transuranics (TRU) from simulated solutions and various nitric acid solutions was measured by gamma and liquid scintillation counting of plutonium and americium. The HNO 3 concentration range was 0.01 M to 6M. The partition coefficients (K d ) for various actinides at 2M HNO 3 were determined to be between 3,000 and 30,000. These values are larger than those projected for TRU recovery by traditional liquid/liquid extraction. Results from transmission electron microscopy indicated a large dependence of K d on relative magnetite location within the polymer and the polymer surface area. Energy disperse spectroscopy demonstrated homogeneous metal complexation on the polymer surface with no metal clustering. The radiolytic stability of the particles was determined by using 60 Co gamma irradiation under various conditions. The results showed that K d more strongly depends on the nitric acid dissolution rate of the magnetite than the gamma irradiation dose. Results of actinide separation from simulated high-level waste representative of that at various DOE sites are also discussed

  16. Research in actinide chemistry. Progress report, March 1, 1980-February 28, 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The primary purpose of this research is to study the behavior of actinide cations in aqueous solution. The interaction of trivalent actinides with a wide variety of both inorganic and organic ligands has been investigated with emphasis on the thermodynamics and kinetics of complexation at tracer concentrations using radiochemical techniques. In order to expand the scope of the experimental techniques, thereby obtaining additional understanding of the fundamental processes involved, non-radioactive experiments with the trivalent lanthanides have been conducted. Visible spectroscopy, nmr ( 1 1 H, 6 13 C, 57 139 La) spectroscopy, potentiometry, solvent extraction and calorimetry are examples of techniques for these lanthanide studies which have allowed much more thorough interpretation of the actinide tracer data due to the close chemical similarity of the lanthanide and actinide families of trivalent cations. The following were investigated: nmr shifts of 139 La for both halate and chloroacetate complexes; interaction of Pu(VI) with carbonates and bicarbonates; Ca +2 , UO 2 +2 , and Th +4 reactions with halate and chloroacetate anions; complexation of the lanthanides by benzoic acid; thermodynamic formation constants for trivalent lanthanide ions with succinic, glutaric, and adipic acids; complexation of benzene polycarboxylates with lanthanides; complexation of lanthanide ions by AMP (adenosine monophosphate), ADP (adenosine diphosphate) and ATP (adenosine triphosphate); interaction of the actinides ions with humic acid; measurements of water and benzoic acid concentrations in several organic solvents by potentiometric and spectral methods; and plutonium and neptunium redox behavior in the presence of organic complexing agents

  17. Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment

    International Nuclear Information System (INIS)

    Luther, George W.; Rickard, David T.

    2005-01-01

    Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe-S, Zn-S and Cu-S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald's Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA

  18. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  19. Characterization Of Actinides In Simulated Alkaline Tank Waste Sludges And Leachates

    International Nuclear Information System (INIS)

    Nash, Kenneth L.

    2008-01-01

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  20. The Complexities of Implementing Cluster Supply Chain - Case Study of JCH

    Science.gov (United States)

    Xue, Xiao; Zhang, Jibiao; Wang, Yang

    As a new type of management pattern, "cluster supply chain" (CSC) can help SMEs to face the global challenges through all kinds of collaboration. However, a major challenge in implementing CSC is the gap between theory and practice in the field. In an effort to provide a better understanding of this emerging phenomenon, this paper presents the implementation process of CSC in the context of JingCheng Mechanical & Electrical Holding co., ltd.(JCH) as a case study. The cast study of JCH suggests that the key problems in the practice of cluster supply chain: How do small firms use cluster supply chain? Only after we clarify the problem, the actual construction and operation of cluster supply chain does show successful results as it should be.

  1. Pharmacokinetic and pharmaco-technological approaches of actinides decorporation by an in vivo sequestering agent. Application to the development of new treatments; Approches pharmacocinetique et pharmacotechnique de la decorporation d'actinides par un agent complexant in vivo. Application a la mise au point de nouveaux traitements

    Energy Technology Data Exchange (ETDEWEB)

    Phan, G.

    2005-05-24

    After internal contamination by transuranic actinides, diethylene-triamine-pentaacetic acid (DTPA) is the only treatment available to haste the decorporation i.e. the excretion from the body of these radio-contaminants by the natural pathways (urinary and faecal excretion). However, the effectiveness of DTPA is variable and seems to be limited to mobilize efficiently the radionuclides from their sites of deposit and retention which are mainly the liver and the skeleton. Indeed, this molecule displays unfavourable pharmacokinetics (a low tissue distribution and a high urinary excretion) which do not match with the distribution of the actinides in vivo. Moreover, because of its physicochemical properties, DTPA is not able to pass through the plasmic membranes and to penetrate in the cells. Consequently, the use of colloidal vectors such as liposomes could make it possible to modulate DTPA pharmacokinetics as well as to promote the access of the chelating agent to the intracellular compartment of the macrophages of the reticulo-endothelial system which also uptake the radionuclides. The objective of this thesis thus was to improve the treatment of decorporation treatments of transuranic actinides, in particular of plutonium (Pu) by the sequestering agent DTPA by a double approach. The strategy consisted in developing liposomes in order to encapsulate and to modify the distribution of DTPA in vivo. The encapsulation of the DTPA in large multi-lamellar (MLV) and conventional liposomes (composed of DOPC:CH:PG) and in stealth MLV liposomes (composed of DOPC:CH:DSPE-PEG) could modify DTPA pharmacokinetics by prolonging its circulation time and by increasing its distribution especially in the liver (conventional MLV) and in the skeleton (stealth MLV). These modifications of the distribution of DTPA were well correlated with an increased de-corporating effect on Pu in the rats. The reduction of the diameter of liposomes to approximately 100 nm made it possible to further

  2. Adsorption of actinides by chelating agents containing benzene rings, fixed on charcoal

    International Nuclear Information System (INIS)

    Valentini Ganzerli, M.T.; Crespi Caramella, V.; Maggi, L.

    1999-01-01

    The focus of this paper is on the analysis of the actinides in the hydrosphere to study their environmental dispersion. The 8-hydroxyquinoline family and the benzohydroxamic acid have a complexing ability towards the actinides, even if in different oxidation states. Taking advantage of this ability, their salts with some organic acids or bases were prepared. In this way compounds were obtained easily incorporated into active charcoal. Only a small amount of the prepared adsorber may be equilibrated with large sample volumes. Subsequently it can be recovered by filtration. The adsorbed ions may be then re-dissolved with a small volume of the appropriate eluting solution. The 8-hydroxy-quinolines and the 8-hydroxyquinoline produced salts with the benzilic acid. These compounds similarly behave and show wide adsorption coefficients for solutions of pH higher than 3. The adsorption takes place by means of the formation of a complex of the actinide ion with the hydroxyquinoline moiety and also with the benzilic anion. Provided that the active extracting agent is not dissolved in a medium but fixed into a solid phase, the whole adsorption process may be regarded as a solvent extraction reaction. The benzohydroxamic acid was treated with the diphenylamine or with the tribenzylamine to obtain salts, later adsorbed into the charcoal. The adsorption of actinide ions seems to take place by means of a precipitation mechanism of the actinide ions with the hydroxamate ions for solution of pH higher than 3.5. Also in this case high values were obtained for the distribution coefficients. The actinide ions act similarly in the +4 or +6 oxidation state towards the prepared adsorber series. Therefore, it is possible to use only one adsorber to concentrate all actinides. Methods of analysis of actinides in the environment may be suitably set up and the concentration step based on these new prepared adsorber may improve the whole procedure. (authors)

  3. Recovery of actinides from TBP-Na2Co3 scrub-waste solutions: the ARALEX process

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Bloomquist, C.A.A.; Mason, G.W.; Leonard, R.A.; Ziegler, A.A.

    1979-08-01

    A flowsheet for the recovery of actinides from TBP-Na 2 CO 3 scrub-waste solutions has been developed, based on batch extraction data, and tested, using laboratory-scale countercurrent extraction techniques. The process, called the ARALEX process, uses 2-ethyl-1-hexanol (2-EHOH) to extract the TBP degradation products (HDBP and H 2 MBP) from acidified Na 2 CO 3 scrub waste leaving the actinides in the aqueous phase. Dibutyl and monobutyl phosphoric acids are attached to the 2-EHOH molecules through hydrogen bonds, which also diminish the ability of the HDBP and H 2 MBP to complex actinides. Thus all actinides remain in the aqueous raffinate. Dilute sodium hydroxide solutions can be used to back-extract the dibutyl and monobutyl phosphoric acid esters as their sodium salts. The 2-EHOH can then be recycled. After extraction of the acidified carbonate waste with 2-EHOH, the actinides may be readily extracted from the raffinate with DHDECMP or, in the case of tetra- and hexavalent actinides, with TBP. The ARALEX process can also be applied to other actinide waste streams which contain appreciable concentrations of polar organic compounds (e.g., detergents) that interfere with conventional actinide ion exchange and liquid-liquid extraction procedures. 20 figures, 6 tables

  4. Analysis of large soil samples for actinides

    Science.gov (United States)

    Maxwell, III; Sherrod, L [Aiken, SC

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  5. Burn of actinides in MOX fuel cells

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2017-09-01

    The spent fuel from nuclear reactors is stored temporarily in dry repositories in many countries of the world. However, the main problem of spent fuel, which is its high radio-toxicity in the long term, is not solved. A new strategy is required to close the nuclear fuel cycle and for the sustain ability of nuclear power generation, this strategy could be the recycling of plutonium to obtain more energy and recycle the actinides generated during the irradiation of the fuel to transmute them in less radioactive radionuclides. In this work we evaluate the quantities of actinides generated in different fuels and the quantities of actinides that are generated after their recycling in a thermal reactor. First, we make a reference calculation with a regular enriched uranium fuel, and then is changed to a MOX fuel, varying the plutonium concentrations and determining the quantities of actinides generated. Finally, different amounts of actinides are introduced into a new fuel and the amount of actinides generated at the end of the fuel burn is calculated, in order to determine the reduction of minor actinides obtained. The results show that if the concentration of plutonium in the fuel is high, then the production of minor actinides is also high. The calculations were made using the cell code CASMO-4 and the results obtained are shown in section 6 of this work. (Author)

  6. Environmental chemistry of the actinide elements

    International Nuclear Information System (INIS)

    Rao Linfeng

    1986-01-01

    The environmental chemistry of the actinide elements is a new branch of science developing with the application of nuclear energy on a larger and larger scale. Various aspects of the environmental chemistry of the actinide elements are briefly reviewed in this paper, such as its significance in the nuclear waste disposal, its coverage of research fields and possible directions for future study

  7. Calculated Atomic Volumes of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  8. Minor Actinides Recycling in PWRs

    International Nuclear Information System (INIS)

    Delpech, M.; Golfier, H.; Vasile, A.; Varaine, F.; Boucher, L.; Greneche, D.

    2006-01-01

    Recycling of minor actinides in current and near future PWR is considered as one of the options of the general waste management strategy. This paper presents the analysis of this option both from the core physics and fuel cycle point of view. A first indicator of the efficiency of different neutron spectra for transmutation purposes is the capture to fission cross sections ratio which is less favourable by a factor between 5 to 10 in PWRs compared to fast reactors. Another indicator presented is the production of high ranking isotopes like Curium, Berkelium or Californium in the thermal or epithermal spectrum conditions of PWR cores by successive neutron captures. The impact of the accumulation of this elements on the fabrication process of such PWR fuels strongly penalizes this option. The main constraint on minor actinides loadings in PWR (or fast reactors) fuels are related to their direct impact (or the impact of their transmutation products) on the reactivity coefficients, the reactivity control means and the core kinetics parameters. The main fuel cycle physical parameters like the neutron source, the alpha decay power, the gamma and neutrons dose rate and the criticality aspects are also affected. Recent neutronic calculations based on a reference core of the Evolutionary Pressurized Reactor (EPR), indicates typical maximum values of 1 % loadings. Different fuel design options for minor actinides transmutation purposes in PWRs are presented: UOX and MOX, homogeneous and heterogeneous assemblies. In this later case, Americium loading is concentrated in specific pins of a standard UOX assembly. Recycling of Neptunium in UOX and MOX fuels was also studied to improve the proliferation resistance of the fuel. The impact on the core physics and penalties on Uranium enrichment were underlined in this case. (authors)

  9. PIE analysis for minor actinide

    International Nuclear Information System (INIS)

    Suyama, Kenya

    2005-01-01

    Minor actinide (MA) is generated in nuclear fuel during the operation of power reactor. For fuel design, reactivity decrease due to it should be considered. Out of reactors, MA plays key role to define the property of spent fuel (SF) such as α-radioactivity, neutron emission rate, and criticality of SF. In order to evaluate the calculation codes and libraries for predicting the amount of MA, comparison between calculation results and experimentally obtained data has been conducted. In this report, we will present the status of PIE data of MA taken by post irradiation examinations (PIE) and several calculation results. (author)

  10. NEARSOL, Aqueous Speciation and Solubility of Actinides for Waste Disposal

    International Nuclear Information System (INIS)

    Leach, S.J.; Pryke, D.C.

    1989-01-01

    A - Description of program or function: NEARSOL models the aqueous speciation and solubility of actinides under near-field conditions for disposal using a simple thermodynamic approach. B - Method of solution: The program draws information from a thermodynamic data base consisting of solubility products and complex formation constants for all known species, and standard electrode potentials, at 25 C, corrected for ionic strength effects. By minimising the free energy of the system through a series of iterations, a precipitating solid phase is predicted which limits the solubility, and the concentration of the main aqueous species are calculated as a function of pH. Initially the program evaluates only hydroxide and carbonate species, but the effect of sulphate, phosphate and fluoride anions can also be included. The program is simple to use, requiring inputs of: 1. Actinide(s); 2. pH range; 3. Ionic strength; 4. Redox conditions; 5. Ligand concentrations. Functions are included to calculate the distribution of the protonated and un-protonated forms of carbonate and phosphate and the value of Eh as a function of pH under disposal conditions as required. The program can further evaluate the role of free calcium ions. C - Restrictions on the complexity of the problem: None

  11. Review of actinide decorporation with chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/CETAMA), 30 - Marcoule (France); Amekraz, B.; Moulin, Ch. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR), 91 - Gif sur Yvette (France); Moulin, V. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares (DEN/DDIN/MR), 91 - Gif Sur Yvette (France); Taran, F. [CEA Saclay (DSV/DBJC/SMMCB), 91 - Gif-sur-Yvette (France); Bailly, Th.; Burgada, R. [Centre National de la Recherche Scientifique (CNRS/LCSB/UMR 7033), 93 - Bobigny (France); Henge-Napoli, M.H. [CEA Valrho, Site de Marcoule (INSTN), 30 (France); Jeanson, A.; Den Auwer, Ch.; Bonin, L.; Moisy, Ph. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/SCPS), 30 - Marcoule (France)

    2007-10-15

    In case of accidental release of radionuclides in a nuclear facility or in the environment, internal contamination (inhalation, ingestion or wound) with actinides represents a severe health risk to human beings. It is therefore important to provide effective chelation therapy or decorporation to reduce acute radiation damage, chemical toxicity, and late radiation effects. Speciation governs bioavailability and toxicity of elements and it is a prerequisite tool for the design and success of new ligands or chelating agents. The purpose of this review is to present the state-of-the-art of actinide decorporation within biological media, to recall briefly actinide metabolism, to list the basic constraints of actinide-ligand for development, to describe main tools developed and used for decorporation studies, to review mainly the chelating agents tested for actinides, and finally to conclude on the future trends in this field. (authors)

  12. {Ni4O4} Cluster Complex to Enhance the Reductive Photocurrent Response on Silicon Nanowire Photocathodes

    Directory of Open Access Journals (Sweden)

    Yatin J. Mange

    2017-02-01

    Full Text Available Metal organic {Ni4O4} clusters, known oxidation catalysts, have been shown to provide a valuable route in increasing the photocurrent response on silicon nanowire (SiNW photocathodes. {Ni4O4} clusters have been paired with SiNWs to form a new photocathode composite for water splitting. Under AM1.5 conditions, the combination of {Ni4O4} clusters with SiNWs gave a current density of −16 mA/cm2, which corresponds to an increase in current density of 60% when compared to bare SiNWs. The composite electrode was fully characterised and shown to be an efficient and stable photocathode for water splitting.

  13. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  14. Study on the leaching behavior of actinides from nuclear fuel debris

    Science.gov (United States)

    Kirishima, Akira; Hirano, Masahiko; Akiyama, Daisuke; Sasaki, Takayuki; Sato, Nobuaki

    2018-04-01

    For the prediction of the leaching behavior of actinides contained in the nuclear fuel debris generated by the Fukushima Daiichi nuclear power plant accident in Japan, simulated fuel debris consisting of a UO2-ZrO2 solid solution doped with 137Cs, 237Np, 236Pu, and 241Am tracers was synthesized and investigated. The synthesis of the debris was carried out by heat treatment at 1200 °C at different oxygen partial pressures, and the samples were subsequently used for leaching tests with Milli-Q water and seawater. The results of the leaching tests indicate that the leaching of actinides depends on the redox conditions under which the debris was generated; for example, debris generated under oxidative conditions releases more actinide nuclides to water than that generated under reductive conditions. Furthermore, we found that, as Zr(IV) increasingly substituted U(IV) in the fluorite crystal structure of the debris, the actinide leaching from the debris decreased. In addition, we found that seawater leached more actinides from the debris than pure water, which seems to be caused by the complexation of actinides by carbonate ions in seawater.

  15. Irradiation characteristics of metal-cluster-complex ions containing diverse multi-elements with large mass differences

    International Nuclear Information System (INIS)

    Fujiwara, Yukio; Kondou, Kouji; Teranishi, Yoshikazu; Nonaka, Hidehiko; Saito, Naoaki; Fujimoto, Toshiyuki; Kurokawa, Akira; Ichimura, Shingo; Tomita, Mitsuhiro

    2007-01-01

    Tetrairidium dodecacarbonyl, Ir 4 (CO) 12 , is a metal cluster complex which has a molecular weight of 1104.9. Using a metal-cluster-complex ion source, the interaction between Ir 4 (CO) n + ions (n=0-12) and silicon substrates was studied at a beam energy ranging from 2keV to 10keV at normal incidence. By adjusting Wien-filter voltage, the influence of CO ligands was investigated. Experimental results showed that sputtering yield of silicon bombarded with Ir 4 (CO) n + ions at 10keV decreased with the number of CO ligands. In the case of 2keV, deposition tended to be suppressed by removing CO ligands from the impinging cluster ions. The influence of CO ligands was explained by considering changes in surface properties caused by the irradiation of Ir 4 (CO) n + ions. It was also found that the bombardment with Ir 4 (CO) 7 + ions at 2.5keV caused deposition on silicon target

  16. Phylogenetic networks do not need to be complex: using fewer reticulations to represent conflicting clusters

    NARCIS (Netherlands)

    Iersel, van L.J.J.; Kelk, S.M.; Rupp, R.; Huson, D.H.

    2010-01-01

    Phylogenetic trees are widely used to display estimates of how groups of species are evolved. Each phylogenetic tree can be seen as a collection of clusters, subgroups of the species that evolved from a common ancestor. When phylogenetic trees are obtained for several datasets (e.g. for different

  17. Complex open-framework germanate built by 8-coordinated Ge 10 clusters

    KAUST Repository

    Yue, Huijuan

    2012-11-19

    A novel open-framework germanate |(C 5H 14N 2) 2(C 5H 12N 2) 0.5(H 2O) 2.5|[Ge 12.5O 26(OH) 2] with three-dimensional 10- and 11-ring channels, denoted as SU-67, has been synthesized under hydrothermal conditions using 2-methylpiperazine (MPP) as the structure-directing agent (SDA). The synthesis is intimately related to that of JLG-5, a tubular germanate built from Ge 7 clusters. The influences of synthesis parameters are discussed. A strong influence of the hydrofluoric acid quantity on the resulting cluster building units can be concluded. The framework of SU-67 is based on an elaborate topological pattern of connected Ge 10 clusters forming intersecting 10- and 11-ring channels and has a low framework density (12.4 Ge atoms per 1000 ̊ 3). We have discovered that the topology of SU-67 is a new 8-connected nce-8-I4 1/acd net. Strong hydrogen bonding among the organic SDAs, water molecules, and Ge 10 clusters resulted in helical networks in SU-67. © 2012 American Chemical Society.

  18. Actinide gas-phase chemistry: Reactions of An+ and AnO+ [An = Th, U, Np, Pu, Am] with nitriles and butylamine

    International Nuclear Information System (INIS)

    Gibson, J.K.

    1999-01-01

    Laser ablation with prompt reaction and detection was applied to study gas-phase reactions of actinide ions, An + and AnO + [An = Th, U, Pu, Np, Am], with nitriles and butylamine; Tb and Tm were included for comparison. Particular emphasis was on Np and Am as this is the region of the An series where a transition to Ln-like character is manifested. A goal was to assess the role of the coordinating N: site on actinide ion-molecule interactions. The results for the nitriles were generally reminiscent of those for reactions with alkenes and the inert character of Pu + and Am + with regard to dehydrogenation, despite adduct formation, indicated that Csingle bondH activation requires two non-5f electrons to produce a Csingle bondAn + single bondH complex. With the butyronitriles and valeronitrile, Am + produced AmC 2 H 4 + , possibly via an ion/dipole interaction. Most MO + exhibited only adduct formation with the nitriles although ThO + was distinctively reactive, consistent with a description of Th as a quasi-d-block element. Both Np + and Tb + were substantially effective at dehydrogenating butylamine and Am + exhibited a lesser degree of reactivity. Reactions of the MO + , TbO + , NpO + , and AmO + with butylamine revealed a dramatic effect of oxoligation: AmO + was at least as reactive as TbO + and NpO + . It is postulated that the MO + reactions proceeded via a multicentered intermediate without insertion into a C-H bond. Bis-complexes were produced with nitriles and butylamine, attesting to strong complexation with the :N functionality. An ancillary discovery was Am 2 ± An dimers/clusters should elucidate the nature of actinide intermetallic bonding, including the role of 5f electrons

  19. Identifying and ranking influential spreaders in complex networks by combining a local-degree sum and the clustering coefficient

    Science.gov (United States)

    Li, Mengtian; Zhang, Ruisheng; Hu, Rongjing; Yang, Fan; Yao, Yabing; Yuan, Yongna

    2018-03-01

    Identifying influential spreaders is a crucial problem that can help authorities to control the spreading process in complex networks. Based on the classical degree centrality (DC), several improved measures have been presented. However, these measures cannot rank spreaders accurately. In this paper, we first calculate the sum of the degrees of the nearest neighbors of a given node, and based on the calculated sum, a novel centrality named clustered local-degree (CLD) is proposed, which combines the sum and the clustering coefficients of nodes to rank spreaders. By assuming that the spreading process in networks follows the susceptible-infectious-recovered (SIR) model, we perform extensive simulations on a series of real networks to compare the performances between the CLD centrality and other six measures. The results show that the CLD centrality has a competitive performance in distinguishing the spreading ability of nodes, and exposes the best performance to identify influential spreaders accurately.

  20. Calcium EXAFS establishes the Mn-Ca cluster in the oxygen-evolving complex of Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Cinco, Roehl M.; McFarlane Holman, Karen L.; Robblee, John H.; Yano, Junko; Pizarro, Shelly A.; Bellacchio, Emanuele; Sauer, Kenneth; Yachandra, Vittal K.

    2002-08-02

    The proximity of Ca to the Mn cluster of the photosynthetic water-oxidation complex is demonstrated by X-ray absorption spectroscopy. We have collected EXAFS data at the Ca K-edge using active PS II membrane samples that contain approximately 2 Ca per 4 Mn. These samples are much less perturbed than previously investigated Sr-substituted samples, which were prepared subsequent to Ca depletion. The new Ca EXAFS clearly shows backscattering from Mn at 3.4 angstroms, a distance that agrees with that surmised from previously recorded Mn EXAFS. This result is also consistent with earlier related experiments at the Sr K-edge, using samples that contained functional Sr, that show Mn is {approx}; 3.5 angstroms distant from Sr. The totality of the evidence clearly advances the notion that the catalytic center of oxygen evolution is a Mn-Ca heteronuclear cluster.

  1. Production of complex particles in low energy spallation and in fragmentation reactions by in-medium random clusterization

    International Nuclear Information System (INIS)

    Lacroix, D.; Durand, D.

    2005-09-01

    Rules for in-medium complex particle production in nuclear reactions are proposed. These rules have been implemented in two models to simulate nucleon-nucleus and nucleus-nucleus reactions around the Fermi energy. Our work emphasizes the effect of randomness in cluster formation, the importance of the nucleonic Fermi motion as well as the role of conservation laws. The concepts of total available phase-space and explored phase-space under constraint imposed by the reaction are clarified. The compatibility of experimental observations with a random clusterization is illustrated in a schematic scenario of a proton-nucleus collision. The role of randomness under constraint is also illustrated in the nucleus-nucleus case. (authors)

  2. Theoretical Studies of the Electronic Structure of the Compounds of the Actinide Elements

    International Nuclear Information System (INIS)

    Kaltsoyannis, Nikolas; Hay, P.J.; Li, Jun; Blaudeau, Jean-Philippe; Bursten, Bruce E.

    2006-01-01

    In this chapter, we will present an overview of the theoretical and computational developments that have increased our understanding of the electronic structure of actinide-containing molecules and ions. The application of modern electronic structure methodologies to actinide systems remains one of the great challenges in quantum chemistry; indeed, as will be discussed below, there is no other portion of the periodic table that leads to the confluence of complexity with respect to the calculation of ground- and excited-state energies, bonding descriptions, and molecular properties. But there is also no place in the periodic table in which effective computational modeling of electronic structure can be more useful. The difficulties in creating, isolating, and handling many of the actinide elements provide an opportunity for computational chemistry to be an unusually important partner in developing the chemistry of these elements. The importance of actinide electronic structure begins with the earliest studies of uranium chemistry and predates the discovery of quantum mechanics. The fluorescence of uranyl compounds was observed as early as 1833, a presage of the development of actinometry as a tool for measuring photochemical quantum yields. Interest in nuclear fuels has stimulated tremendous interest in understanding the properties, including electronic properties, of small actinide-containing molecules and ions, especially the oxides and halides of uranium and plutonium. The synthesis of uranocene in 1968 led to the flurry of activity in the organometallic chemistry of the actinides that continues today. Actinide organometallics (or organoactinides) are nearly always molecular systems and are often volatile, which makes them amenable to an arsenal of experimental probes of molecular and electronic structure (Marks and Fischer, 1979). Theoretical and computational studies of the electronic structure of actinide systems have developed in concert with the experimental

  3. Vitrification of actinide solutions in SRS separations facilities

    International Nuclear Information System (INIS)

    Minichan, R.L.; Ramsey, W.G.

    1995-01-01

    The actinide vitrification system being developed at SRS provides the capability to convert specialized or unique forms of nuclear material into a stable solid glass product that can be safely shipped, stored or reprocessed according to the DOE complex mission. This project is an application of technology developed through funds from the Office of Technology Development (OTD). This technology is ideally suited for vitrifying relatively small quantities of fissile or special nuclear material since it is designed to be critically safe. Successful demonstration of this system to safely vitrify radioactive material could open up numerous opportunities for transferring this technology to applications throughout the DOE complex

  4. Minor actinide transmutation - a waste management option

    International Nuclear Information System (INIS)

    Koch, L.

    1986-01-01

    The incentive to recycle minor actinides results from the reduction of the long-term α-radiological risk rather than from a better utilization of the uranium resources. Nevertheless, the gain in generated electricity by minor actinide transmutation in a fast breeder reactor can compensate for the costs of their recovery and make-up into fuel elements. Different recycling options of minor actinides are discussed: transmutation in liquid metal fast breeder reactors (LMFBRs) is possible as long as plutonium is not recycled in light water reactors (LWRs). In this case a minor actinide burner with fuel of different composition has to be introduced. The development of appropriate minor actinide fuels and their properties are described. The irradiation experiments underway or planned are summarized. A review of minor actinide partitioning from the PUREX waste stream is given. From the present constraints of LMFBR technology a reduction of the long-term α-radiological risk by a factor of 200 is deduced relative to that from the direct storage of spent LWR fuel. Though the present accumulation of minor actinides is low, nuclear transmutation may be needed when nuclear energy production has grown. (orig.)

  5. Criteria for achieving actinide reduction goals

    International Nuclear Information System (INIS)

    Liljenzin, J.O.

    1996-01-01

    In order to discuss various criteria for achieving actinide reduction goals, the goals for actinide reduction must be defined themselves. In this context the term actinides is interpreted to mean plutonium and the so called ''minor actinides'' neptunium, americium and curium, but also protactinium. Some possible goals and the reasons behind these will be presented. On the basis of the suggested goals it is possible to analyze various types of devices for production of nuclear energy from uranium or thorium, such as thermal or fast reactors and accelerator driven system, with their associated fuel cycles with regard to their ability to reach the actinide reduction goals. The relation between necessary single cycle burn-up values, fuel cycle processing losses and losses to waste will be defined and discussed. Finally, an attempt is made to arrange the possible systems on order of performance with regard to their potential to reduce the actinide inventory and the actinide losses to wastes. (author). 3 refs, 3 figs, 2 tabs

  6. Actinides burnup in a sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Pineda A, R.; Martinez C, E.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The burnup of actinides in a nuclear reactor is been proposed as part of an advanced nuclear fuel cycle, this process would close the fuel cycle recycling some of the radioactive material produced in the open nuclear fuel cycle. These actinides are found in the spent nuclear fuel from nuclear power reactors at the end of their burnup in the reactor. Previous studies of actinides recycling in thermal reactors show that would be possible reduce the amounts of actinides at least in 50% of the recycled amounts. in this work, the amounts of actinides that can be burned in a fast reactor is calculated, very interesting results surge from the calculations, first, the amounts of actinides generated by the fuel is higher than for thermal fuel and the composition of the actinides vector is different as in fuel for thermal reactor the main isotope is the {sup 237}Np in the fuel for fast reactor the main isotope is the {sup 241}Am, finally it is concluded that the fast reactor, also generates important amounts of waste. (Author)

  7. The complex of measures on inclusion of small businesses in innovation clusters

    Directory of Open Access Journals (Sweden)

    A. V. Kupchinsky

    2016-01-01

    Full Text Available Modern practice of managing and its display in scientific publications demonstrate that development of world economy with all evidence proves the major role and the importance of sector of small business structures in national economy. In the modern world the national economy in many respects began to be determined by the balanced and sustainable development of the small business structures recognized now as conductors and creators of new opening and technologies, moreover, as the strategic instrument of the structural transformations of a modern economic system of the country often directed to high-quality increase in efficiency of reproduction process of regional economy. Now in Russia the level of development of an innovative entrepreneurship is very low. It is possible to state lack of properly created institutional environment for development of a small entrepreneurship in the innovative sphere. Clasterisation represents process of consolidation of a number of the organizations of various industries for increase in competitiveness, implementation of innovations, effective development and receipt of other benefits. According to separation of economy on real and virtual, the possibility of creation of both real, and virtual clusters increases. Creation and development of regional clusters will help to create the necessary level of activity of small business structures in innovative activities that will favorably affect increase in competitiveness of both regional, and national economy. The package of measures including measures for involvement of small business structures in clusters is developed for development of a cluster initiative and increase in innovative development of the region. Application of this program will allow to reach synergy effect at the expense of high degree of concentration and cooperation of small business structures and increase in effectiveness of their activities.

  8. Process analytical chemistry applied to actinide waste streams

    International Nuclear Information System (INIS)

    Day, R.S.

    1994-01-01

    The Department of Energy is being called upon to clean up it's legacy of waste from the nuclear complex generated during the cold war period. Los Alamos National Laboratory is actively involved in waste minimization and waste stream polishing activities associated with this clean up. The Advanced Testing Line for Actinide Separations (ATLAS) at Los Alamos serves as a developmental test bed for integrating flow sheet development of nitric acid waste streams with process analytical chemistry and process control techniques. The wastes require processing in glove boxes because of the radioactive components, thus adding to the difficulties of making analytical measurements. Process analytical chemistry methods provide real-time chemical analysis in support of existing waste stream operations and enhances the development of new waste stream polishing initiatives. The instrumentation and methods being developed on ATLAS are designed to supply near-real time analyses on virtually all of the chemical parameters found in nitric acid processing of actinide waste. These measurements supply information on important processing parameters including actinide oxidation states, free acid concentration, interfering anions and metal impurities

  9. Regulation of human Nfu activity in Fe-S cluster delivery-characterization of the interaction between Nfu and the HSPA9/Hsc20 chaperone complex.

    Science.gov (United States)

    Wachnowsky, Christine; Liu, Yushi; Yoon, Taejin; Cowan, J A

    2018-01-01

    Iron-sulfur cluster biogenesis is a complex, but highly regulated process that involves de novo cluster formation from iron and sulfide ions on a scaffold protein, and subsequent delivery to final targets via a series of Fe-S cluster-binding carrier proteins. The process of cluster release from the scaffold/carrier for transfer to the target proteins may be mediated by a dedicated Fe-S cluster chaperone system. In human cells, the chaperones include heat shock protein HSPA9 and the J-type chaperone Hsc20. While the role of chaperones has been somewhat clarified in yeast and bacterial systems, many questions remain over their functional roles in cluster delivery and interactions with a variety of human Fe-S cluster proteins. One such protein, Nfu, has recently been recognized as a potential interaction partner of the chaperone complex. Herein, we examined the ability of human Nfu to function as a carrier by interacting with the human chaperone complex. Human Nfu is shown to bind to both chaperone proteins with binding affinities similar to those observed for IscU binding to the homologous HSPA9 and Hsc20, while Nfu can also stimulate the ATPase activity of HSPA9. Additionally, the chaperone complex was able to promote Nfu function by enhancing the second-order rate constants for Fe-S cluster transfer to target proteins and providing directionality in cluster transfer from Nfu by eliminating promiscuous transfer reactions. Together, these data support a hypothesis in which Nfu can serve as an alternative carrier protein for chaperone-mediated cluster release and delivery in Fe-S cluster biogenesis and trafficking. © 2017 Federation of European Biochemical Societies.

  10. Experimental studies of actinides in molten salts

    International Nuclear Information System (INIS)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  11. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  12. Neutron nuclear data evaluation for actinide nucleic

    International Nuclear Information System (INIS)

    Chen Guochang; Yu Baosheng; Duan Junfeng; Ge Zhigang; Cao Wentian; Tang Guoyou; Shi Zhaomin; Zou Yubin

    2010-01-01

    The nuclear data with high accuracy for minor actinides are playing an important role in nuclear technology applications, including reactor design and operation, fuel cycle concepts, estimation of the amount of minor actinides in high burn-up reactors and the minor actinides transmutation. Through describe the class of nuclear data and nuclear date library, and introduce the procedure of neutron nuclear data evaluation. 234 U(n, f) and 237 Np(n, 2n) reaction experimental data evaluation was evaluated. The fission nuclear data are updated and improved. (authors)

  13. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced...

  14. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    Avens, L.R.; Clifton, D.G.; Vigil, A.R.

    1984-01-01

    A new process for recovery of plutonium and americium from pyrochemical waste has been demonstrated. It is based on chloride solution anion exchange at low acidity, which eliminates corrosive HCl fumes. Developmental experiments of the process flowsheet concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 6 = from high chloride-low acid solution. Americium and other metals are washed from the ion exchange column with 1N HNO 3 -4.8M NaCl. The plutonium is recovered, after elution, via hydroxide precipitation, while the americium is recovered via NaHCO 3 precipitation. All filtrates from the process are discardable as low-level contaminated waste. Production-scale experiments are now in progress for MSE residues. Flow sheets for actinide recovery from electrorefining and direct oxide reduction residues are presented and discussed

  15. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    Avens, L.R.; Clifton, D.G.; Vigil, A.R.

    1985-05-01

    We demonstrated a new process for recovering plutonium and americium from pyrochemical waste. The method is based on chloride solution anion exchange at low acidity, or acidity that eliminates corrosive HCl fumes. Developmental experiments of the process flow chart concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 6 2- from high-chloride low-acid solution. Americium and other metals are washed from the ion exchange column with lN HNO 3 -4.8M NaCl. After elution, plutonium is recovered by hydroxide precipitation, and americium is recovered by NaHCO 3 precipitation. All filtrates from the process can be discardable as low-level contaminated waste. Production-scale experiments are in progress for MSE residues. Flow charts for actinide recovery from electro-refining and direct oxide reduction residues are presented and discussed

  16. Human major histocompatibility complex contains a minimum of 19 genes between the complement cluster and HLA-B

    International Nuclear Information System (INIS)

    Spies, T.; Bresnahan, M.; Strominger, J.L.

    1989-01-01

    A 600-kilobase (kb) DNA segment from the human major histocompatibility complex (MHC) class III region was isolated by extension of a previous 435-kb chromosome walk. The contiguous series of cloned overlapping cosmids contains the entire 555-kb interval between C2 in the complement gene cluster and HLA-B. This region is known to encode the tumor necrosis factors (TNFs) α and β, B144, and the major heat shock protein HSP70. Moreover, a cluster of genes, BAT1-BAT5 (HLA-B-associated transcripts) have been localized in the vicinity of the genes for TNFα and TNFβ. An additional four genes were identified by isolation of corresponding cDNA clones with cosmid DNA probes. These genes for BAT6-BAT9 were mapped near the gene for C2 within a 120-kb region that includes a HSP70 gene pair. These results, together with complementary data from a similar recent study, indicated the presence of a minimum of 19 genes within the C2-HLA-B interval of the MHC class III region. Although the functional properties of most of these genes are yet unknown, they may be involved in some aspects of immunity. This idea is supported by the genetic mapping of the hematopoietic histocompatibility locus-1 (Hh-1) in recombinant mice between TNFα and H-2S, which is homologous to the complement gene cluster in humans

  17. Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods

    Science.gov (United States)

    Ma, Xiaoke; Wang, Bingbo; Yu, Liang

    2018-01-01

    Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.

  18. Investigations of actinides in the context of final disposal of high-level radioactive waste. Trivalent actinides in aqueous solution

    International Nuclear Information System (INIS)

    Banik, N.L.; Boris Brendebach; Marquardt, Ch.M.

    2014-01-01

    The speciation of redox sensitive trivalent actinides Pu(III), Np(III), and U(III) has been studied in aqueous solution. The redox preparation, stabilization, and speciation of these trivalent actinides in aqueous systems are discussed here. The reductants investigated were rongalite, hydroxylamine hydrochloride, and acetohydroxamic acid and the An(III) species have been characterized by UV-Vis and XANES spectroscopy. The results show that the effectiveness of stabilization decreases generally in the order Pu(III) > Np(III) > U(III) and that the effectiveness of each reducing agent depends on the experimental conditions. More than 80 % of Pu(III) aquo species have been stabilized up to pH 5.5, whereas the Np(III) aquo ion could be stabilized in a pH range 0-2.5, and U(III) aquo ion is sufficiently stable at pH 1.0 and below over time periods suitable for experiments. However, this study gives a basis for the characterisation of the trivalent lighter actinides involved in complexation, sorption, and solid formation reactions in the future. (author)

  19. Constructing a graph of connections in clustering algorithm of complex objects

    Directory of Open Access Journals (Sweden)

    Татьяна Шатовская

    2015-05-01

    Full Text Available The article describes the results of modifying the algorithm Chameleon. Hierarchical multi-level algorithm consists of several phases: the construction of the count, coarsening, the separation and recovery. Each phase can be used various approaches and algorithms. The main aim of the work is to study the quality of the clustering of different sets of data using a set of algorithms combinations at different stages of the algorithm and improve the stage of construction by the optimization algorithm of k choice in the graph construction of k of nearest neighbors

  20. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes

    International Nuclear Information System (INIS)

    Tecmer, Paweł; Visscher, Lucas; Severo Pereira Gomes, André; Knecht, Stefan

    2014-01-01

    We present a study of the electronic structure of the [UO 2 ] + , [UO 2 ] 2 + , [UO 2 ] 3 + , NUO, [NUO] + , [NUO] 2 + , [NUN] − , NUN, and [NUN] + molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin–orbit coupling and Gaunt interactions are compared to results obtained with the Dirac–Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity)

  1. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes

    Science.gov (United States)

    Tecmer, Paweł; Severo Pereira Gomes, André; Knecht, Stefan; Visscher, Lucas

    2014-07-01

    We present a study of the electronic structure of the [UO2]+, [UO2]2 +, [UO2]3 +, NUO, [NUO]+, [NUO]2 +, [NUN]-, NUN, and [NUN]+ molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin-orbit coupling and Gaunt interactions are compared to results obtained with the Dirac-Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity).

  2. Semi-microdetermination of nitrogen in actinide compounds by Dumas method

    International Nuclear Information System (INIS)

    Nagar, M.S.; Ruikar, P.B.; Subramanian, M.S.

    1986-01-01

    This report describes the application of the Dumas method for the semi-micro determination of nitrogen in actinide compounds and actinide complexes with organic ligands. The usual set up has been modified to make it adaptable for glove box operations. The carbon dioxide generator and nitrometer assemblies were located outside the glove box while the reaction tube and combustion furnaces were housed inside. The nitrogen gas collected in the nitrometer was read with the help of a travelling microscope with a vernier attachment fitted in front of the nitrometer burette. The set up was standardised using acetanilide and employed for the determination of nirtogen in various substances such as uranium nitride, and a variety of substituted quinoline and pyrazolone derivatives of actinides as well as some ternary uranium-PMBR-sulphoxide complexes. Full details of the technique and the analytical data obtained are contained in this report. (author)

  3. Coordination polymers: trapping of radionuclides and chemistry of tetravalent actinides (Th, U) carboxylates

    International Nuclear Information System (INIS)

    Falaise, Clement

    2014-01-01

    The use of nuclear energy obviously raises the question of the presence of radionuclides in the environment. Currently, their mitigation is a major issue associated with nuclear chemistry. This thesis focuses on both the trapping of radionuclides by porous solids called Metal-Organic Frameworks (MOF) and the crystal chemistry of the carboxylate of tetravalent actinides (AnIV). The academic knowledge of the reactivity of carboxylate of AnIV could help the understanding of actinides speciation in environment. We focused on the sequestration of iodine by aluminum based MOF. The functionalization (electron-donor group) of the MOF drastically enhances the iodine capture capacity. The removal of light actinides (Th and U) from aqueous solution was also investigated as well as the stability of (Al)-MOF under γ radiation. More than twenty coordination polymers based on tetravalent actinides have been synthesized and characterized by single crystal X-ray diffraction. The use of controlled hydrolysis promotes the formation of coordination polymers exhibiting polynuclear cluster ([U 4 ], [Th 6 ], [U 6 ] and [U 38 ]). In order to understand the formation of the largest cluster, the ex-situ study of the solvo-thermal synthesis of compound {U 38 } has also been investigated. (author)

  4. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  5. Electronic structure and correlation effects in actinides

    International Nuclear Information System (INIS)

    Albers, R.C.

    1998-01-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related

  6. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  7. Research for actinides extractants from various wastes

    International Nuclear Information System (INIS)

    Musikas, C.; Cuillerdier, C.; Condamines, N.

    1990-01-01

    This paper is an overview of the actinides solvent extraction research undertaken in Fontenay-aux-Roses. Two kinds of extractants are investigated; those usable for the improvement of the nowadays nuclear fuels reprocessing and those necessary for advanced fuels cycles which include the minor actinides (Np, Am) recovery for a further elimination through nuclear reactions. In the first class the mono and diamides, alternative to the organophosphorus extractants, TBP and polyfunctional phosphonates, showed promising properties. The main results are discussed. For the future efficient extractants for trivalent actinides-lanthanides group separations are suitable. The point about the actinides (III) - lanthanides (III) group separation chemistry and the development of some of these extractants are given

  8. Actinide isotopes in the marine environment

    International Nuclear Information System (INIS)

    Holm, E.; Fukai, R.

    1986-01-01

    Studies of actinide isotopes in the environment are important not only from the viewpoint of their radiological effects on human life, but also from the fact that they act as excellent biochemical and geochemical tracers especially in the marine environment. For several of the actinide isotopes there is still a lack of basic data on concentration levels and further investigations on their chemical and physical speciation are required to understand their behaviour in the marine environment. The measured and estimated activity concentration levels of artificial actinides are at present in general a few orders of magnitude lower than those of the natural ones and their concentration factors in biota are relatively low, except in a few species of macroalgae and phytoplankton. The contribution from seafood to total ingestion of actinides by the world population is a few per cent and, therefore, the dose to man from these long-lived radionuclides caused by seafood ingestion is usually low. (orig.)

  9. Robust membrane systems for actinide separations

    International Nuclear Information System (INIS)

    Jarvinen, Gordon D.; McCleskey, T. Mark; Bluhm, Elizabeth A.; Abney, Kent D.; Ehler, Deborah S.; Bauer, Eve; Le, Quyen T.; Young, Jennifer S.; Ford, Doris K.; Pesiri, David R.; Dye, Robert C.; Robison, Thomas W.; Jorgensen, Betty S.; Redondo, Antonio; Pratt, Lawrence R.; Rempe, Susan L.

    2000-01-01

    Our objective in this project is to develop very stable thin membrane structures containing ionic recognition sites that facilitate the selective transport of target metal ions, especially the actinides

  10. Intermolecular vibronic spectroscopy of small van der Waals clusters: Phenol- and aniline-(argon)2 complexes

    International Nuclear Information System (INIS)

    Schmidt, M.; Mons, M.; Le Calve, J.

    1990-01-01

    We report the clear observation and assignment of the symmetric stretching and bending van der Waals modes in two three-body C 2ν complexes, phenol- and aniline-(Ar) 2 , using resonant two-photon ionization. (orig.)

  11. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions

    International Nuclear Information System (INIS)

    Keesee, R.G.; Lee, N.; Castleman, A.W. Jr.

    1980-01-01

    Ion--molecules association reactions of the form A - (B)/sub n1/-+B=A - (B)/sub n/ were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl - , I - , and NO 2 - with n ranging from one to three or four, and onto SO 2 - and SO 3 - with n equal to one; and (2) carbon dioxide onto Cl - , I - , NO 2 - , CO 3 - , and SO 3 - with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions. For any given ion, the relative order of the addition enthalpies among the neutrals was found to be dependent on the polarizabilities of the neutrals and on the covalency in the ion-neutral bond. Dispersion of charge via covalent bonding was found to affect significantly the succeeding clustering steps

  12. Clustered coding variants in the glutamate receptor complexes of individuals with schizophrenia and bipolar disorder.

    Directory of Open Access Journals (Sweden)

    René A W Frank

    2011-04-01

    Full Text Available Current models of schizophrenia and bipolar disorder implicate multiple genes, however their biological relationships remain elusive. To test the genetic role of glutamate receptors and their interacting scaffold proteins, the exons of ten glutamatergic 'hub' genes in 1304 individuals were re-sequenced in case and control samples. No significant difference in the overall number of non-synonymous single nucleotide polymorphisms (nsSNPs was observed between cases and controls. However, cluster analysis of nsSNPs identified two exons encoding the cysteine-rich domain and first transmembrane helix of GRM1 as a risk locus with five mutations highly enriched within these domains. A new splice variant lacking the transmembrane GPCR domain of GRM1 was discovered in the human brain and the GRM1 mutation cluster could perturb the regulation of this variant. The predicted effect on individuals harbouring multiple mutations distributed in their ten hub genes was also examined. Diseased individuals possessed an increased load of deleteriousness from multiple concurrent rare and common coding variants. Together, these data suggest a disease model in which the interplay of compound genetic coding variants, distributed among glutamate receptors and their interacting proteins, contribute to the pathogenesis of schizophrenia and bipolar disorders.

  13. Cluster analysis in soft X-ray spectromicroscopy: finding the patterns in complex specimens

    International Nuclear Information System (INIS)

    Lerotic, M.; Jacobsen, C.

    2004-01-01

    Full text: Soft x-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub-100 nanometer spatial resolution. When all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other situations such as in biology or environmental science, this approach may not be possible. A method to find natural groupings of data without prior knowledge of the spectra of all components will be presented. Principal component analysis is used to orthogonalize spectromicroscopy data, and discard much of the noise present in data set. Then cluster analysis is used to find a hierarchical classification of pixels with similar spectra, to extract representative, cluster-averaged spectra with good signal-to-noise ratio, and to obtain gradations of concentration of these representative spectra at each pixel. The method is illustrated with a simulated data set of organic compounds, and a mixture of lutetium in hematite used to understand colloidal transport properties of radionuclides. We gratefully acknowledge funding from the National Institutes for Health under contract R01 EB00479-01A1, and from the National Science Foundation under contracts OCE-0221029 and CHE-0221934

  14. Possible existence of backbending in actinide nuclei

    International Nuclear Information System (INIS)

    Dudek, J.; Nazarewicz, W.; Szymanski, Z.

    1982-01-01

    The possibilities for the backbending effect to occur in actinide nuclei are studied using the pairing-self-consistent independent quasiparticle method. The Hamiltonian used is that of the deformed Woods-Saxon potential plus monopole pairing term. The results of the calculations explain why there is no backbending in most actinide nuclei and simultaneously suggest that in some light neutron deficient nuclei around Th and 22 Ra a backbending effect may occur

  15. Lattice effects in the light actinides

    International Nuclear Information System (INIS)

    Lawson, A.C.; Cort, B.; Roberts, J.A.; Bennett, B.I.; Brun, T.O.; Dreele, R.B. von; Richardson, J.W. Jr.

    1998-01-01

    The light actinides show a variety of lattice effects that do not normally appear in other regions of the periodic table. The article will cover the crystal structures of the light actinides, their atomic volumes, their thermal expansion behavior, and their elastic behavior as reflected in recent thermal vibration measurements made by neutron diffraction. A discussion of the melting points will be given in terms of the thermal vibration measurements. Pressure effects will be only briefly indicated

  16. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  17. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than /sup 233/U, /sup 235/U, and /sup 239/Pu that have an odd number of neutrons in the nucleus; S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River

  18. Proposal for experiments with actinide elements

    International Nuclear Information System (INIS)

    Sanchez, R.G.

    1994-01-01

    An analytical study was conducted in which critical masses for some actinide isotopes were calculated with the Monte Carlo Neutron Photon (MCNP) Transport computer code. Different spherical computer models were used for even- and odd-neutron nuclides. Critical masses obtained are tabulated for Np-237, Pu-242, Am-241, Am-243, Pu-241, and Am-242m, together with indirect experimental data. Experimental data are needed for actinides with odd number of neutrons

  19. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    Science.gov (United States)

    2014-03-27

    actinide oxides . The work described here is an attempt to characterize the quality of crystals using positron annihilation spectroscopy (PALS). The...Upadhyaya, R. V. Muraleedharan, B. D. Sharma and K. G. Prasad, " Positron lifetime studies on thorium oxide powders," Philosohical Magazine A, vol. 45... crystals . A strong foundation for actinide PALS studies was laid, but further work is required to build a more effective system. Positron Spectroscopy

  20. Separation of actinides and their transmutation

    International Nuclear Information System (INIS)

    Bouchard, M.; Bathelier, M.; Cousin, M.

    1978-08-01

    Neutron irradiation of long-half-life actinides for transmutation into elements with shorter half-life is investigated as a means to reduce the long-term hazards of these actinides. The effectiveness of the method is analysed by applying it to fission product solutions from the first extraction cycle of fuel reprocessing plants. Basic principles, separation techniques and transmutation efficiencies are studied and discussed in detail

  1. The removal of actinide metals from solution

    International Nuclear Information System (INIS)

    Hancock, R.D.; Howell, I.V.

    1980-01-01

    A process is specified for removing actinide metals (e.g. uranium) from solutions. The solution is contacted with a substrate comprising the product obtained by reacting an inorganic solid containing surface hydroxyl groups (e.g. silica gel) with a compound containing a silane grouping, a nitrogen-containing group (e.g. an amine) and other specified radicals. After treatment, the actinide metal is recovered from the substrate. (U.K.)

  2. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  3. Chemical aspects of actinides in the geosphere: towards a rational nuclear materials management

    International Nuclear Information System (INIS)

    Allen, P; Sylwester, E

    2001-01-01

    A complete understanding of actinide interactions in the geosphere is paramount for developing a rational Nuclear and Environmental Materials Management Policy. One of the key challenges towards understanding the fate and transport of actinides is determining their speciation (i.e., oxidation state and structure). Since an element's speciation directly dictates physical properties such as toxicity and solubility, this information is critical for evaluating and controlling the evolution of an actinide element through the environment. Specific areas within nuclear and environmental management programs where speciation is important are (1) waste processing and separations; (2) wasteform materials for long-term disposition; and (3) aqueous geochemistry. The goal of this project was to develop Actinide X-ray Absorption Spectroscopy ( U S ) as a core capability at LLNL and integrate it with existing facilities, providing a multi-technique approach to actinide speciation. XAS is an element-specific structural probe which determines the oxidation state and structure for most atoms. XAS can be more incisive than other spectroscopies because it originates from an atomic process and the information is always attainable, regardless of an element's speciation. Despite the utility, XAS is relatively complex due to the need for synchrotron radiation and significant expertise with data acquisition and analysis. The coupling of these technical hurdles with the safe handling of actinides at a general user synchrotron facility such as the Stanford Synchrotron Radiation Facility (SSRL) make such experiments even more difficult. As a result, XAS has been underutilized by programs that could benefit by its application. We achieved our project goals by implementing key state-of-the-art Actinide XAS instrumentation at SSRL (Ge detector and remote positioning equipment), and by determining the chemical speciation of actinides (Th, U, and Np) in aqueous solutions, wasteform cements, and

  4. Sensitivity analysis of minor actinides transmutation to physical and technological parameters

    International Nuclear Information System (INIS)

    Kooyman, T.; Buiron, L.

    2015-01-01

    derived from this approach include the maximum neutron source and decay heat load acceptable at reprocessing and fabrication steps, which influence among other things the total minor actinides inventory, the overall complexity of the cycle and the size of the geological repository. Based on this analysis, a new methodology to assess transmutation strategies is proposed. (authors)

  5. Determination of microscopic interactions between actinides and humic substances

    International Nuclear Information System (INIS)

    Brunel, Benoit

    2015-01-01

    Large amount of plutonium has been introduced into the environment as a result of nuclear weapons testing, and nuclear power-plant accidents. Contaminated areas, which need a particular survey, have become a very interesting place to study and understand the plutonium behaviour in the environment. Until few years ago, it was admitted that plutonium introduced into subsurface environment is relatively immobile, owing to its low solubility in ground water and strong sorption onto rocks. However, studies of contaminated areas show that humic substances, which are ubiquitous in environment, can alter the speciation of metal ion, e.g. plutonium, and thus their migration. These humic substances are major components of the natural organic matter in soil and water as well as in geological organic deposits such as lake sediments, peats and brown coals. They are complex heterogeneous mixtures of polydisperse supra-molecules formed by biochemical and chemical reactions during the decay and transformation of plant and microbial remains. The knowledge of the impact of humic substances on the plutonium migration is required to assess their transport in natural systems. However, due to the complex and heterogeneous nature of humic substances, there are a lot of difficulties in the description of microscopic interactions. The aim of this PhD thesis is to evaluate as precisely as possible interactions between actinides and humic substances. This work is divided in two parts: on the one hand humic substances will be separated to identify each component, on the other hand the speciation of actinides with characterized humic substances will be studied. In the first part of this study, new methods are developed to study the speciation of actinides with humic substances using two kinds of mass spectrometers: an ICP-MS and a high resolution mass spectrometer using various ionization devices (ESI, APCI, DART, APPI) in order to determine all active molecules for the complexation. In the

  6. Microbial transformations of actinides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Livens, F R [Centre for Radiochemistry Research, School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Al-Bokari, M [Institute of Atomic Energy Research, King Abdulaziz City for Science and Technology, P. O. Box 6086, Riyadh 11442 (Saudi Arabia); Fomina, M; Gadd, G M [College of Life Sciences, University of Dundee, Dundee DD1 5EH (United Kingdom); Geissler, A; Lloyd, J R; Vaughan, D J [School of Earth, Atmospheric and Environmental Sciences, and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Renshaw, J C, E-mail: francis.livens@manchester.ac.uk [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)

    2010-03-15

    The diversity of microorganisms is still far from understood, although many examples of the microbial biotransformation of stable, pollutant and radioactive elements, involving Bacteria, Archaea and Fungi, are known. In estuarine sediments from the Irish Sea basin, which have been labelled by low level effluent discharges, there is evidence of an annual cycle in Pu solubility, and microcosm experiments have demonstrated both shifts in the bacterial community and changes in Pu solubility as a result of changes in redox conditions. In the laboratory, redox transformation of both U and Pu by Geobacter sulfurreducens has been demonstrated and EXAFS spectroscopy has been used to understand the inability of G. sufurreducens to reduce Np(V). Fungi promote corrosion of metallic U alloy through production of a range of carboxylic acid metabolites, and are capable of translocating the dissolved U before precipitating it externally to the hyphae, as U(VI) phosphate phases. These examples illustrate the far-reaching but complex effects which microorganisms can have on actinide behaviour.

  7. New Routes to Lanthanide and Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Jaques, B.J.; Osterberg, D.D. [Boise State University, 1910 University Dr., Boise, Idaho 83725-2075 (United States); Marx, B.M. [Concurrent Technologies Corporation, Johnstown, PA (United States); Callahan, P.G. [Carnegie Mellon University, Pittsburgh, PA (United States); Hamdy, A.S. [Central Metallurgical R and D Institute, Helwan, Cairo (Egypt)

    2009-06-15

    The future of nuclear energy in the U.S. and its expansion worldwide depends greatly on our ability to reduce the levels of high level waste to minimal levels, while maintaining proliferation resistance. Implicit in the so-called advanced fuel cycle is the need for higher levels of fuel burn-up and consequential use of complex nuclear fuels comprised of fissile materials such as Pu, Am, Np, and Cm. Advanced nitride fuels comprised ternary and quaternary mixtures of uranium and these actinides have been considered for applications in advanced power plants, but there remain many processing challenges as well as necessary qualification testing. In this presentation, the advantages and disadvantages of nitride fuels are discussed. Methods of synthesizing the raw materials and sintering of fuels are described including a discussion of novel, low cost routes to nitrides that have the potential for reducing the cost and footprint of a fuel processing plant. Phase pure nitrides were synthesized via four primary methods; reactive milling metal flakes in nitrogen at room temperature, directly nitriding metal flakes in a pure nitrogen atmosphere, hydriding metal flakes prior to nitridation, and carbo-thermically reducing the metal oxide and carbon mixture prior to nitridation. In the present study, the sintering of UN, DyN, and their solid solutions (U{sub x}, Dy{sub 1-x}) (x = 1 to 0.7) were also studied. (authors)

  8. High performance separation of lanthanides and actinides

    International Nuclear Information System (INIS)

    Sivaraman, N.; Vasudeva Rao, P.R.

    2011-01-01

    The major advantage of High Performance Liquid Chromatography (HPLC) is its ability to provide rapid and high performance separations. It is evident from Van Deemter curve for particle size versus resolution that packing materials with particle sizes less than 2 μm provide better resolution for high speed separations and resolving complex mixtures compared to 5 μm based supports. In the recent past, chromatographic support material using monolith has been studied extensively at our laboratory. Monolith column consists of single piece of porous, rigid material containing mesopores and micropores, which provide fast analyte mass transfer. Monolith support provides significantly higher separation efficiency than particle-packed columns. A clear advantage of monolith is that it could be operated at higher flow rates but with lower back pressure. Higher operating flow rate results in higher column permeability, which drastically reduces analysis time and provides high separation efficiency. The above developed fast separation methods were applied to assay the lanthanides and actinides from the dissolver solutions of nuclear reactor fuels

  9. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    1982-01-01

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  10. Rapid determination of actinides in seawater samples

    International Nuclear Information System (INIS)

    Maxwell, S.L.; Culligan, B.K.; Hutchison, J.B.; Utsey, R.C.; McAlister, D.R.

    2014-01-01

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti +3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1-2 weeks and provide chemical yields of ∼30-60 %. This new sample preparation method can be performed in 4-8 h with tracer yields of ∼85-95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort. (author)

  11. Cluster analysis in soft X-ray spectromicroscopy: Finding the patterns in complex specimens

    Energy Technology Data Exchange (ETDEWEB)

    Lerotic, M. [Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3800 (United States)]. E-mail: lerotic@xray1.physics.sunysb.edu; Jacobsen, C. [Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3800 (United States); Gillow, J.B. [Environmental Sciences Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Francis, A.J. [Environmental Sciences Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Wirick, S. [Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3800 (United States); Vogt, S. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Maser, J. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2005-06-15

    Soft X-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub-100 nanometer spatial resolution. If all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other situations such as in biology or environmental science, this approach may not be possible. We have previously described [M. Lerotic, C. Jacobsen, T. Schaefer, S. Vogt, Ultramicroscopy 100 (1-2) (2004) 35] the use of principle component analysis (PCA) to orthogonalize and noise-filter spectromicroscopy data, and cluster analysis (Canada) to classify the analyzed data and obtain thickness maps of representative spectra. We describe here an extension of that work employing an angle distance measure; this measure provides better classification based on spectral signatures alone in specimens with significant thickness variations. The method is illustrated using simulated data, and also to examine sporulation in the bacterium Clostridium sp.

  12. Solubilities of Actinide Oxides in the KURT Groundwater

    International Nuclear Information System (INIS)

    Kim, Seung Soo; Baik, Min Hoon; Choi, Jong Won

    2009-12-01

    For the estimation of solubilities of actinides in a deep underground condition, The solubilities of UO 2 , ThO 2 , NpO 2 and Am(OH) 3 in the KURT ground water have been measured under various redox conditions, and their solubilities and aqueous species in the same conditions as the experimental solutions were also calculated by using a geochemical code. Then these results were compared with each other as well as with literature results. For the calculation of solubility of a radionuclide, the thermodynamic data of the radionuclide complex from OECD/NEA, Nagra/PSI, KAERI, JAEA, SKB and recent literatures were collected and compared. Additionally, the methods for the correction of ionic strength and temperature of the solution were described in this report. The analysis techniques and recent research for measurement of species of actinides were also introduced. The concentrations of U, Th and Np dissolved were less than 10 -7 mol/L under Eh≤-0.2 of reducing condition from experiment and calculation, and the solubility of PuO 2 (cr) was estimated as lower than that of UO 2 (cr) by 1 ∼ 2 orders. However if amount of carbonate ion in the ground water increased, the concentration of tetra-valance actinides at pH 8 ∼ 11 would be greatly increased. The 1x10 -6 mol/L of americium might be a little conservative value in KURT groundwater. While carbonate or hydroxo-carbonatec complexes were presumed to be the dominant aqueous species in -0.2 ∼ -0.3 V of Eh and weakly alkaline solution, hydroxo complexes are dominant in strong reducing and high pH solution

  13. Simulations of the Thermodynamic and Diffusion Properties of Actinide Oxide Fuel Materials

    International Nuclear Information System (INIS)

    Becker, Udo

    2013-01-01

    Spent nuclear fuel from commercial reactors is comprised of 95-99 percent UO 2 and 1-5 percent fission products and transuranic elements. Certain actinides and fission products are of particular interest in terms of fuel stability, which affects reprocessing and waste materials. The transuranics found in spent nuclear fuels are Np, Pu, Am, and Cm, some of which have long half- lives (e.g., 2.1 million years for 237 Np). These actinides can be separated and recycled into new fuel matrices, thereby reducing the nuclear waste inventory. Oxides of these actinides are isostructural with UO 2 , and are expected to form solid solutions. This project will use computational techniques to conduct a comprehensive study on thermodynamic properties of actinide-oxide solid solutions. The goals of this project are to: Determine the temperature-dependent mixing properties of actinide-oxide fuels; Validate computational methods by comparing results with experimental results; Expand research scope to complex (ternary and quaternary) mixed actinide oxide fuels. After deriving phase diagrams and the stability of solid solutions as a function of temperature and pressure, the project team will determine whether potential phase separations or ordered phases can actually occur by studying diffusion of cations and the kinetics of potential phase separations or ordered phases. In addition, the team will investigate the diffusion of fission product gases that can also have a significant influence on fuel stability. Once the system has been established for binary solid solutions of Th, U, Np, and Pu oxides, the methodology can be quickly applied to new compositions that apply to ternaries and quaternaries, higher actinides (Am, Cm), burnable poisons (B, Gd, Hf), and fission products (Cs, Sr, Tc) to improve reactivity

  14. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management

    International Nuclear Information System (INIS)

    2008-01-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX TM process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel cycles

  15. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    International Nuclear Information System (INIS)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P.; Cassayre, L.

    2008-01-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl 3 . A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl 3 is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl 5 and UCl 6 . It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  16. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Cassayre, L. [Laboratoire de Genie Chimique (LGC), Universite Paul Sabatier, UMR CNRS 5503, 118 route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2008-07-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl{sub 3}. A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl{sub 3} is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl{sub 5} and UCl{sub 6}. It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  17. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    Science.gov (United States)

    Liu, Siqi; Xu, Yi-Jun

    2016-03-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters-TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability.

  18. Studies on cluster, salt and molecular complex of zinc-quinolinate

    Indian Academy of Sciences (India)

    Reactions of zinc halides with 8-hydroxyquinoline (hydroxQ) in equimolar ratio were carried out in different solvents. ... determination of surface area. We prepared a ..... resulted in the formation of de-solvated complex, which on standing at ...

  19. X-ray study of chemical bonding in actinides(IV) and lanthanides(III) hexa-cyanoferrates

    International Nuclear Information System (INIS)

    Dumas, T.

    2011-01-01

    Bimetallic cyanide molecular solids derived from Prussian blue are well known to foster long-range magnetic ordering and show an intense inter-valence charge transfer band resulting from an exchange interaction through the cyanide-bridge. For those reasons the ferrocyanide and ferricyanide building blocks have been chosen to study electronic delocalization and covalent character in actinide bonding using an experimental and theoretical approach based on X-ray absorption spectroscopy. In 2001, the actinide (IV) and early lanthanides (III) hexacyanoferrate have been found by powder X-ray diffraction to be isostructural (hexagonal, P6 3 /m group). Here, extended X-ray Absorption Fine Structure (EXAFS) at the iron K-edge and actinide L 3 -edge have been undertaken to probe the local environment of both actinides and iron cations. In an effort to describe the cyano bridge, a double edge fitting procedure including both iron and actinide edges and based on multiple scattering approach has been developed. We have also investigated the electronic properties of these molecular solids. Low energy electronic transitions have been used iron L 2,3 edge, nitrogen and carbon K-edge and also actinides N 4,5 edge to directly probe the valence molecular orbitals of the complex. Using a phenomenological approach, a clear distinctive behaviour between actinides and lanthanides has been shown. Then a theoretical approach using quantum chemistry calculation has shown more specifically the effect of covalency in the actinide-ferrocyanide bond. More specifically, π interactions were underlined by both theoretical and experimental methods. Finally, in agreement with the ionic character of the lanthanide bonding no inter-valence charge transfer has been observed in the corresponding optical spectra of these compounds. On the contrary, optical spectra for actinides adducts (except for thorium) show an intense inter-valence charge transfer band like in the transition metal cases which is

  20. Electrospray mass spectrometry for actinides and lanthanide speciation

    International Nuclear Information System (INIS)

    Moulin, C.; Amekraz, B.; Colette, S.; Doizi, D.; Jacopin, C.; Lamouroux, C.; Plancque, G.

    2006-01-01

    Electrospray mass spectrometry (ES-MS) is a new speciation technique that has the great interest to be able to probe the element, the ligand and the complex in order to reach the speciation. This paper will focus on the use of ES-MS for the speciation of actinides/lanthanides on several systems of interest in various fields such as the interaction between DTPA (decorporant) and europium, HEBP and uranium, BTP (new extracting agent) and lanthanides with comparison with known chemistry as well as whenever possible with other speciation techniques

  1. Geochemistry of actinides and fission products in natural aquifer systems

    International Nuclear Information System (INIS)

    Kim, J.I.

    1989-06-01

    The progress in the research area of the community project MIRAGE: 'Geochemistry of actinides and fission products in natural aquatic systems' has been reviewed. This programme belongs to a specific research and technical development programme for the European Atomic Energy Community in the field of management and storage of radioactive waste. The review summarizes research progresses in subject areas: complexation with organics, colloid generation in groundwater and basic retention mechanisms in the framework of the migration of radionuclides in the geosphere. The subject areas are being investigated by 23 laboratories under interlaboratory collaborations or independent studies. (orig.)

  2. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  3. Specific sequestering agents for iron and the actinides

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.

    1983-06-01

    The transuranium actinide ions represent one unique environmental hazard associated with the waste of the nuclear power industry. A major component associated with that waste and a potential hazard is plutonium. The synthesis of metal-ion-specific complexing agents for ions such as Pu(IV) potentially represents a powerful new approach to many of the problems posed by waste treatment. This document is a progress report of a rational approach to the synthesis of such chelating agents based on the similarities of Pu(IV) and Fe(III), the structures of naturally-occurring complexing agents which are highly specific for Fe(III), and the incorporation of the same kinds of ligating groups present in the iron complexes to make octadentate complexes highly specific for plutonium. Both thermodynamic and animal test results indicate that a relatively high degree of success has already been achieved in this aim.

  4. Product development strategy in the Danish agricultural complex: Global interaction with clusters of marketing excellence

    DEFF Research Database (Denmark)

    Kristensen, Preben Sander

    1992-01-01

    A study of the Danish foods industry shows that producers of food products have built up and maintain development of end-user products in interaction with customers in distant sophisticated markets. Concurrently, the Danish agro-industrial complex been singled out in other studies as a paradigmatic...... produce and utilize sticky and fastchanging information about production and markets respectively. It is precisely by not interacting wi market business-to-business demand from changing end-user market that the Danish agro-industrial complex has avoided being insulated. The managerial implication...... is that a company in search of partners for joint development in global agro-industra networks can realize a competitive advantage by applying a market view that is euclidean upstream and equidstant downstream....

  5. Silver-tellurolate polynuclear complexes: from isolated cluster units to extended polymer chains

    International Nuclear Information System (INIS)

    Corrigan, J.F.; Fenske, D.; Power, W.P.

    1997-01-01

    In the presence of tertiary phosphanes, AgCl reacts readily with the reagent Te(Ph)SiMe 3 to yield silver - tellurolate polynuclear complexes. In the case of PMe 3 , the polymer [Ag 10 (μ 3 -TePh) 10 (PMe 3 ) 2 ] ∞ (shown below) is formed, in which the TePh ligands seve as both inter- and intracluster bridges. (orig.)

  6. Application of chemical structure and bonding of actinide oxide materials for forensic science

    International Nuclear Information System (INIS)

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO 2 (An: U, Pu) to form non-stoichiometric species described as AnO 2+x . Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  7. Technical requirements for the actinide source-term waste test program

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Molecke, M.A.

    1993-10-01

    This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency`s 40 CFR Part 191B.

  8. Experimental measurements and integrated modelling studies of actinide sorption onto cement

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Baston, G.M.N.

    2003-01-01

    An Integrated Cement Sorption Model (ICSM) for actinides onto Ordinary Portland Cement (OPC) is developed. The experimental measurements using the batch sorption technique for actinides onto cement and constituent minerals, which were considered in the modelling calculations, are also described. The actinide elements studied (thorium, uranium, neptunium, plutonium and americium) were strongly sorbed onto OPC. An initial comparison of the experimental data relating the sorption values of actinides onto cement-component phases with those onto OPC is carried out. The results suggest that the Calcium Silicate Hydrate (C-S-H) phases were found to be the most likely candidates to be the dominant-sorbing phases in order to describe the sorption of a actinides onto OPC. An approach to develop the integrated cement sorption model, based on a thermodynamic surface complexation model, is described with discussions on the possible mineralogy and phase distribution of OPC. Another approach than sorption, assuming that co-precipitation on the surface of the cement phase dominates 'sorption', is proposed and discussed. A scoring system is introduced to assess the applicability of the proposed ICSMs. It is suggested that the thermodynamic sorption model is recommended for the sorption of ionic species and the surface co-precipitation model is recommended for the sorption of neutral species though the sorption model is still recommended to be used to model OPC-based systems. (author)

  9. Gastrointestinal absorption of actinides: a review with special reference to primate data

    International Nuclear Information System (INIS)

    Burkart, W.

    1984-01-01

    Large scale geological burial of transuranic wastes from fission power production may expose segments of future generations to trace amounts of actinides in water and food, which, via gastrointestinal absorption, could result in internal doses of alpha radiation. Gastrointestinal absorption of actinide elements is a poorly understood process. Experimental studies, primarily using rodents, often produce ambiguous results with order of magnitude fluctuations in estimates of GI absorption. Since experimental conditions like the chemical form of the fed actinides or reducing and complexing capacity of the stomach content, influence the GI transfer factor in seemingly unpredictable ways, only a better understanding of events at the molecular level will enable more reliable predictions to be made of the organ burdens resulting from actinides passing through the digestive tract. From a review of the existing literature it is apparent that in vitro research data in the area of GI uptake mechanisms (i.e. transport mediated by ion carriers in body fluids and across cell membranes) are virtually non-existant. In view of the uncertainties linked to in vivo uptake experiment, models which approximate man, i.e. derived from non-human primate studies, should be the best choice of experimental systems in which to determine reliable estimates for gastrointestinal transfer factors of actinide elements. (Auth.)

  10. Application of chemical structure and bonding of actinide oxide materials for forensic science

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Marianne Perry [Los Alamos National Laboratory

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  11. Technical requirements for the actinide source-term waste test program

    International Nuclear Information System (INIS)

    Phillips, M.L.F.; Molecke, M.A.

    1993-10-01

    This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency's 40 CFR Part 191B

  12. Synthesis of Uranium-based Microspheres for Transmutation of Minor Actinides

    International Nuclear Information System (INIS)

    Daniels, Henrik; Neumeier, Stefan; Modolo, Giuseppe

    2010-01-01

    Utilisation of the internal gelation process is a promising perspective for the fabrication of advanced nuclear fuels containing minor actinides (MA). The formulation of appropriate precursor solutions for this process is an important step towards a working process as the chemistry of uranium-MA systems is quite complex. In this work, actinide surrogates were utilised for basic research on their influence on the system. The ceramics obtained through thermal treatment of the gels were characterised to optimise the calcination and sintering process. (authors)

  13. Functionalized ionic liquids: new agents for the extraction of actinides/lanthanides

    International Nuclear Information System (INIS)

    Ouadi, A.; Hesemann, P.; Billard, I.; Gaillard, C.; Gadenne, B.; Moreau, Joel J.E; Moutiers, G.; Mariet, C.; Labet, A.

    2004-01-01

    The potentialities of hydrophobic ionic liquids BumimPF 6 and BumimTf 2 N for their use in the nuclear fuel cycle were investigated, in particular for the liquid liquid extraction. We demonstrate that the use of RTILs in replacement of the organic diluents for actinides partitioning is promising. In our contribution, we present the synthesis of several task-specific ionic liquids. Our results show that grafting metal complexing groups increases the affinity of metals to the IL phase and gives rise to suitable media for the liquid-liquid extraction of actinides. (authors)

  14. Actinide transmutation in nuclear reactors

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1995-01-01

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP)

  15. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J H

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  16. Lithium actinide recycle process demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.K.; Pierce, R.D.; McPheeters, C.C. [Argonne National Laboratory, IL (United States)

    1995-10-01

    Several pyrochemical processes have been developed in the Chemical Technology Division of Argonne Laboratory for recovery of actinide elements from LWR spent fuel. The lithium process was selected as the reference process from among the options. In this process the LWR oxide spent fuel is reduced by lithium at 650{degrees}C in the presence of molten LiCl. The Li{sub 2}O formed during the reduction process is soluble in the salt. The spent salt and lithium are recycled after the Li{sub 2}O is electrochemically reduced. The oxygen is liberated as CO{sub 2} at a carbon anode or oxygen at an inert anode. The reduced metal components of the LWR spent fuel are separated from the LiCL salt phase and introduced into an electrorefiner. The electrorefining step separates the uranium and transuranium (TRU) elements into two product streams. The uranium product, which comprises about 96% of the LWR spent fuel mass, may be enriched for recycle into the LWR fuel cycle, stored for future use in breeder reactors, or converted to a suitable form for disposal as waste. The TRU product can be recycled as fast reactor fuel or can be alloyed with constituents of the LWR cladding material to produce a stable waste form.

  17. Speciation of actinides in aqueous solution by time-resolved laser-induced fluorescence spectroscopy (TRLFS)

    International Nuclear Information System (INIS)

    Kimura, Takaumi; Kato, Yoshiharu; Meinrath, G.; Yoshida, Zenko; Choppin, G.R.

    1995-01-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) as a sensitive and selective method has been applied to the speciation of actinides in aqueous solution. Studies on hydrolysis and carbonate complexation of U(VI) and on determination of hydration number of Cm(III) are reported. (author)

  18. Hierarchical and Complex System Entropy Clustering Analysis Based Validation for Traditional Chinese Medicine Syndrome Patterns of Chronic Atrophic Gastritis.

    Science.gov (United States)

    Zhang, Yin; Liu, Yue; Li, Yannan; Zhao, Xia; Zhuo, Lin; Zhou, Ajian; Zhang, Li; Su, Zeqi; Chen, Cen; Du, Shiyu; Liu, Daming; Ding, Xia

    2018-03-22

    Chronic atrophic gastritis (CAG) is the precancerous stage of gastric carcinoma. Traditional Chinese Medicine (TCM) has been widely used in treating CAG. This study aimed to reveal core pathogenesis of CAG by validating the TCM syndrome patterns and provide evidence for optimization of treatment strategies. This is a cross-sectional study conducted in 4 hospitals in China. Hierarchical clustering analysis (HCA) and complex system entropy clustering analysis (CSECA) were performed, respectively, to achieve syndrome pattern validation. Based on HCA, 15 common factors were assigned to 6 syndrome patterns: liver depression and spleen deficiency and blood stasis in the stomach collateral, internal harassment of phlegm-heat and blood stasis in the stomach collateral, phlegm-turbidity internal obstruction, spleen yang deficiency, internal harassment of phlegm-heat and spleen deficiency, and spleen qi deficiency. By CSECA, 22 common factors were assigned to 7 syndrome patterns: qi deficiency, qi stagnation, blood stasis, phlegm turbidity, heat, yang deficiency, and yin deficiency. Combination of qi deficiency, qi stagnation, blood stasis, phlegm turbidity, heat, yang deficiency, and yin deficiency may play a crucial role in CAG pathogenesis. In accord with this, treatment strategies by TCM herbal prescriptions should be targeted to regulating qi, activating blood, resolving turbidity, clearing heat, removing toxin, nourishing yin, and warming yang. Further explorations are needed to verify and expand the current conclusions.

  19. Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering.

    Science.gov (United States)

    Xia, Yong; Han, Junze; Wang, Kuanquan

    2015-01-01

    Based on the idea of telemedicine, 24-hour uninterrupted monitoring on electrocardiograms (ECG) has started to be implemented. To create an intelligent ECG monitoring system, an efficient and quick detection algorithm for the characteristic waveforms is needed. This paper aims to give a quick and effective method for detecting QRS-complexes and R-waves in ECGs. The real ECG signal from the MIT-BIH Arrhythmia Database is used for the performance evaluation. The method proposed combined a wavelet transform and the K-means clustering algorithm. A wavelet transform is adopted in the data analysis and preprocessing. Then, based on the slope information of the filtered data, a segmented K-means clustering method is adopted to detect the QRS region. Detection of the R-peak is based on comparing the local amplitudes in each QRS region, which is different from other approaches, and the time cost of R-wave detection is reduced. Of the tested 8 records (total 18201 beats) from the MIT-BIH Arrhythmia Database, an average R-peak detection sensitivity of 99.72 and a positive predictive value of 99.80% are gained; the average time consumed detecting a 30-min original signal is 5.78s, which is competitive with other methods.

  20. Research in actinide chemistry. Progress report, March 1, 1980-February 28, 1981

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1981-01-01

    Visible spectroscopy, NMR ( 1 H 1 , 6 C 13 , 57 La 139 ) spectroscopy, potentiometry, and calorimetry were used in lanthanide studies which have allowed much more thorough interpretation of actinide tracer studies. In the last several years, the studies were expanded to include actinides in the IV, V and VI oxidation states. Part of the research during this time was directed to investigation of actinide interaction with naturally occurring polyelectrolytes such as humic and fulvic acids. Since redox reactions seemingly occur in some of these interactions, a study of plutonium and neptunium redox behavior in the presence of organic complexing agents was started. Preliminary data are given for reduction of Np(VI) by various organic acids

  1. Lewis base binding affinities and redox properties of plutonium complexes

    International Nuclear Information System (INIS)

    Oldham, Susan M.; Schake, Ann R.; Burns, Carol J.; Morgan, Arthur N. III; Schnabel, Richard C.; Warner, Benjamin P.; Costa, David A.; Smith, Wayne H.

    2000-01-01

    As part of the actinide molecular science competency development effort, the initial goal of this work is to synthesize and investigate several series of complexes, varying by actinide metal, ligand set, and oxidation state. We are examining the reactivity of plutonium and neptunium organometallic complexes to elucidate fundamental chemical parameters of the metals. These reactions will be compared to those of the known corresponding uranium complexes in order to recognize trends among the actinide elements and to document differences in chemical behavior

  2. Implementing a complex intervention to support personal recovery: a qualitative study nested within a cluster randomised controlled trial.

    Science.gov (United States)

    Leamy, Mary; Clarke, Eleanor; Le Boutillier, Clair; Bird, Victoria; Janosik, Monika; Sabas, Kai; Riley, Genevieve; Williams, Julie; Slade, Mike

    2014-01-01

    To investigate staff and trainer perspectives on the barriers and facilitators to implementing a complex intervention to help staff support the recovery of service users with a primary diagnosis of psychosis in community mental health teams. Process evaluation nested within a cluster randomised controlled trial (RCT). 28 interviews with mental health care staff, 3 interviews with trainers, 4 focus groups with intervention teams and 28 written trainer reports. 14 community-based mental health teams in two UK sites (one urban, one semi-rural) who received the intervention. The factors influencing the implementation of the intervention can be organised under two over-arching themes: Organisational readiness for change and Training effectiveness. Organisational readiness for change comprised three sub-themes: NHS Trust readiness; Team readiness; and Practitioner readiness. Training effectiveness comprised three sub-themes: Engagement strategies; Delivery style and Modelling recovery principles. Three findings can inform future implementation and evaluation of complex interventions. First, the underlying intervention model predicted that three areas would be important for changing practice: staff skill development; intention to implement; and actual implementation behaviour. This study highlighted the importance of targeting the transition from practitioners' intent to implement to actual implementation behaviour, using experiential learning and target setting. Second, practitioners make inferences about organisational commitment by observing the allocation of resources, Knowledge Performance Indicators and service evaluation outcome measures. These need to be aligned with recovery values, principles and practice. Finally, we recommend the use of organisational readiness tools as an inclusion criteria for selecting both organisations and teams in cluster RCTs. We believe this would maximise the likelihood of adequate implementation and hence reduce waste in research

  3. Implementing a complex intervention to support personal recovery: a qualitative study nested within a cluster randomised controlled trial.

    Directory of Open Access Journals (Sweden)

    Mary Leamy

    Full Text Available OBJECTIVE: To investigate staff and trainer perspectives on the barriers and facilitators to implementing a complex intervention to help staff support the recovery of service users with a primary diagnosis of psychosis in community mental health teams. DESIGN: Process evaluation nested within a cluster randomised controlled trial (RCT. PARTICIPANTS: 28 interviews with mental health care staff, 3 interviews with trainers, 4 focus groups with intervention teams and 28 written trainer reports. SETTING: 14 community-based mental health teams in two UK sites (one urban, one semi-rural who received the intervention. RESULTS: The factors influencing the implementation of the intervention can be organised under two over-arching themes: Organisational readiness for change and Training effectiveness. Organisational readiness for change comprised three sub-themes: NHS Trust readiness; Team readiness; and Practitioner readiness. Training effectiveness comprised three sub-themes: Engagement strategies; Delivery style and Modelling recovery principles. CONCLUSIONS: Three findings can inform future implementation and evaluation of complex interventions. First, the underlying intervention model predicted that three areas would be important for changing practice: staff skill development; intention to implement; and actual implementation behaviour. This study highlighted the importance of targeting the transition from practitioners' intent to implement to actual implementation behaviour, using experiential learning and target setting. Second, practitioners make inferences about organisational commitment by observing the allocation of resources, Knowledge Performance Indicators and service evaluation outcome measures. These need to be aligned with recovery values, principles and practice. Finally, we recommend the use of organisational readiness tools as an inclusion criteria for selecting both organisations and teams in cluster RCTs. We believe this would

  4. A highly efficient nano-cluster artificial peroxidase and its direct electrochemistry on a nano complex modified glassy carbon electrode.

    Science.gov (United States)

    Hong, Jun; Wang, Wei; Huang, Kun; Yang, Wei-Yun; Zhao, Ying-Xue; Xiao, Bao-Lin; Gao, Yun-Fei; Moosavi-Movahedi, Zainab; Ghourchian, Hedayatollah; Moosavi-Movahedi, Ali Akbar

    2012-01-01

    A nano-cluster with highly efficient peroxide activity was constructed based on nafion (NF) and cytochrome c (Cyt c). UV-Vis spectrometry and transmission electron microscopy (TEM) methods were utilized for characterization of the nano-structured enzyme or artificial peroxidase (AP). The nano-cluster was composed of a Chain-Ball structure, with an average ball size of about 40 nm. The Michaelis-Menten (K(m)) and catalytic rate (k(cat)) constants of the AP were determined to be 2.5 ± 0.4 µM and 0.069 ± 0.001 s(-1), respectively, in 50 mM PBS at pH 7.0. The catalytic efficiency of the AP was evaluated to be 0.028 ± 0.005 µM(-1) s(-1), which was 39 ± 5% as efficient as the native horseradish peroxidase (HRP). The AP was also immobilized on a functional multi-wall carbon nanotube (MWNCTs)-gold colloid nanoparticles (AuNPs) nano-complex modified glassy carbon (GC) electrode. The cyclic voltammetry of AP on the nano complex modified GC electrode showed a pair of well-defined redox peaks with a formal potential (E°') of -45 ± 2 mV (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer rate constant (k(s)) was evaluated to be 0.65 s(-1). The surface concentration of electroactive AP on GC electrode (Γ) was 7 × 10(-10) mol cm(-2). The apparent Michaelis-Menten constant (K(m)(app)) was 0.23 nM.

  5. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  6. Band structure studies of actinide systems

    International Nuclear Information System (INIS)

    Koelling, D.D.

    1976-01-01

    The nature of the f-orbitals in an actinide system plays a crucial role in determining the electronic properties. It has long been realized that when the actinide separation is small enough for the f-orbitals to interact directly, the system will exhibit itinerant electron properties: an absence of local moment due to the f-orbitals and sometimes even superconductivity. However, a number of systems with the larger actinide separation that should imply local moment behavior also exhibit intinerant properties. Such systems (URh 3 , UIr 3 , UGe 3 , UC) were examined to learn something about the other f-interactions. A preliminary observation made is that there is apparently a very large and ansiotropic mass enhancement in these systems. There is very good reason to believe that this is not solely due to large electron--electron correlations but to a large electron--phonon interaction as well. These features of the ''non-magnetic'', large actinide separation systems are discussed in light of our results to date. Finally, the results of some recent molecular calculations on actinide hexafluorides are used to illustrate the shielding effects on the intra-atomic Coulomb term U/sub f-f/ which would appear in any attempt to study the formation of local moments. As one becomes interested in materials for which a band structure is no longer an adequate model, this screened U/sub ff/ is the significant parameter and efforts must be made to evaluate it in solid state systems

  7. Strategies for minority actinides transmutation in fast reactors

    International Nuclear Information System (INIS)

    Perez-Martin, S.; Martin-Fuertes, F.; Alvarez-Velarde, F.

    2010-01-01

    Presentation of the strategies that can be followed in fast reactors designed for the fourth generation to reduce the inventory of minority actinides generated in current light water reactors, as the actinides generation in fast reactor.

  8. Interaction of particles with complex electrostatic structures and 3D clusters

    International Nuclear Information System (INIS)

    Antonova, Tetyana

    2007-01-01

    Particles of micrometer size externally introduced in plasmas usually find their positions of levitation in the plasma sheath, where the gravity force is compensated by the strong electric field. Here due to electrostatic interaction they form different structures, which are interesting objects for the investigation of strongly coupled systems and critical phenomena. Because of the low damping (e.g. in comparison to colloidal suspension) it is possible to measure the dynamics up to the relevant highest frequency (e.g. Einstein frequency) at the most elementary level of single particle motion. The task of this work was to analyze the three dimensional structure, dynamical processes and the limit of the cooperative behavior in small plasma crystals. In addition to the study of the systems formed, the immersed particles themselves may be used for diagnostics of the plasma environment: estimation of parameters or monitoring of the processes inside plasma. The laboratory experiments are performed in two radio-frequency (RF) plasma reactors with parallel plate electrodes, where the lower electrode is a so-called ''adaptive electrode''. This electrode is segmented into 57 small ''pixels'' independently driven in DC (direct current) and/or RF voltage. When RF voltage is applied to one of these pixels, a bright localized glow, ''secondary plasma ball'', appears above. Three dimensional dust crystals with less than 100 particles are formed inside this ''plasma ball'' - the ideal conditions for the investigation of the transition from cluster systems to collective systems. The investigation of the particle interactions in crystals is performed with an optical diagnostic, which allows determination of all three particle coordinates simultaneously with time resolution of 0.04 sec. The experimental results are: 1. The binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part, which is experimentally determined for the first

  9. Interaction of particles with complex electrostatic structures and 3D clusters

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, Tetyana

    2007-10-16

    Particles of micrometer size externally introduced in plasmas usually find their positions of levitation in the plasma sheath, where the gravity force is compensated by the strong electric field. Here due to electrostatic interaction they form different structures, which are interesting objects for the investigation of strongly coupled systems and critical phenomena. Because of the low damping (e.g. in comparison to colloidal suspension) it is possible to measure the dynamics up to the relevant highest frequency (e.g. Einstein frequency) at the most elementary level of single particle motion. The task of this work was to analyze the three dimensional structure, dynamical processes and the limit of the cooperative behavior in small plasma crystals. In addition to the study of the systems formed, the immersed particles themselves may be used for diagnostics of the plasma environment: estimation of parameters or monitoring of the processes inside plasma. The laboratory experiments are performed in two radio-frequency (RF) plasma reactors with parallel plate electrodes, where the lower electrode is a so-called 'adaptive electrode'. This electrode is segmented into 57 small 'pixels' independently driven in DC (direct current) and/or RF voltage. When RF voltage is applied to one of these pixels, a bright localized glow, 'secondary plasma ball', appears above. Three dimensional dust crystals with less than 100 particles are formed inside this 'plasma ball' - the ideal conditions for the investigation of the transition from cluster systems to collective systems. The investigation of the particle interactions in crystals is performed with an optical diagnostic, which allows determination of all three particle coordinates simultaneously with time resolution of 0.04 sec. The experimental results are: 1. The binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part, which is

  10. Calix[6]arenes functionalized with malondiamides at the upper rim as possible extractants for lanthanide and actinide cations

    International Nuclear Information System (INIS)

    Almaraz, M.; Esperanza, S.; Magrans, O.; Mendoza, J. de; Pradus, P.

    2001-01-01

    Lipophilic malondiamides have been recently employed successfully as extractants for lanthanide and actinide cations from strongly acidic media. Many complexes between malondiamides and lanthanide-actinides cations have been studied by different techniques. For many of these complexes it has been observed that more than one malondiamide ligand participates in the complexation of each metallic cation. Incorporation of two or three malondiamide moieties into a calixarene platform would probably improve both extraction and selectivity with respect to the already tested malondiamides. According to CPK examination, a calix[6]arene substituted at the upper rim with two or three malondiamide moieties should constitute a promising ligand for lanthanide and actinide cations due to co-operative complexation with the malondiamides. Based on these considerations, we synthesised calix[6]arenes functionalized with malonic acid derivatives. (author)

  11. 1981 Annual Status Report. Plutonium fuels and actinide programme

    International Nuclear Information System (INIS)

    1981-01-01

    In this 1981 report the work carried out by the European Institute for Transuranium elements is reviewed. Main topics are: operation limits of plutonium fuels: swelling of advanced fuels, oxide fuel transients, equation of state of nuclear materials; actinide cycle safety: formation of actinides (FACT), safe handling of plutonium fuel (SHAPE), aspects of the head-end processing of carbide fuel (RECARB); actinide research: crystal chemistry, solid state studies, applied actinide research

  12. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    Science.gov (United States)

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  13. Room temperature electrodeposition of actinides from ionic solutions

    Science.gov (United States)

    Hatchett, David W.; Czerwinski, Kenneth R.; Droessler, Janelle; Kinyanjui, John

    2017-04-25

    Uranic and transuranic metals and metal oxides are first dissolved in ozone compositions. The resulting solution in ozone can be further dissolved in ionic liquids to form a second solution. The metals in the second solution are then electrochemically deposited from the second solutions as room temperature ionic liquid (RTIL), tri-methyl-n-butyl ammonium n-bis(trifluoromethansulfonylimide) [Me.sub.3N.sup.nBu][TFSI] providing an alternative non-aqueous system for the extraction and reclamation of actinides from reprocessed fuel materials. Deposition of U metal is achieved using TFSI complexes of U(III) and U(IV) containing the anion common to the RTIL. TFSI complexes of uranium were produced to ensure solubility of the species in the ionic liquid. The methods provide a first measure of the thermodynamic properties of U metal deposition using Uranium complexes with different oxidation states from RTIL solution at room temperature.

  14. Special actinide nuclides: Fuel or waste?

    International Nuclear Information System (INIS)

    Srinivasan, M.; Rao, K.S.; Dingankar, M.V.

    1989-01-01

    The special actinide nuclides such as Np, Cm, etc. which are produced as byproducts during the operation of fission reactors are presently looked upon as 'nuclear waste' and are proposed to be disposed of as part of high level waste in deep geological repositories. The potential hazard posed to future generations over periods of thousands of years by these long lived nuclides has been a persistent source of concern to critics of nuclear power. However, the authors have recently shown that each and every one of the special actinide nuclides is a better nuclear fuel than the isotopes of plutonium. This finding suggests that one does not have to resort to exotic neutron sources for transmuting/incinerating them as proposed by some researchers. Recovery of the special actinide elements from the waste stream and recycling them back into conventional fission reactors would eliminate one of the stigmas attached to nuclear energy

  15. Actinide distribution in the human skeleton

    International Nuclear Information System (INIS)

    Kathren, R.L.; McInroy, J.F.; Swint, M.J.

    1985-05-01

    Radiochemical analysis of two half skeletons donated to the United States Transuranium Registry, one from an individual with an occupationally incurred deposition of 241 Am and the other with a deposition of 239 Pu, revealed an inverse linear relationship between the concentration of actinide in the bone ash and the fraction of ash. Two distinct relationships were noted, one for the cranium and the other for the remainder of the skeleton. The results suggest that the actinide content of the skeleton as a whole, Q, can be obtained with an uncertainty of +-50% from analysis of a single sample of any bone (except the cranium) by Q = [(830 C/sub sample/)/(0.61 - f/sub sample/)], in which C/sub sample/ refers to the actinide content per g of ash and f/sub sample/ the fraction of ash (i.e., ratio of dry to wet weight) in the sample. 5 figs., 3 tabs

  16. Neutron scattering studies of the actinides

    International Nuclear Information System (INIS)

    Lander, G.H.

    1979-01-01

    The electronic structure of actinide materials presents a unique example of the interplay between localized and band electrons. Together with a variety of other techniques, especially magnetization and the Mossbauer effect, neutron studies have helped us to understand the systematics of many actinide compounds that order magnetically. A direct consequence of the localization of 5f electrons is the spin-orbit coupling and subsequent spin-lattice interaction that often leads to strongly anisotropic behavior. The unusual phase transition in UO 2 , for example, arises from interactions between quadrupole moments. On the other hand, in the monopnictides and monochalcogenides, the anisotropy is more difficult to understand, but probably involves an interaction between actinide and anion wave functions. A variety of neutron experiments, including form-factor studies, critical scattering and measurements of the elementary excitations have now been performed, and the conceptual picture emerging from these studies will be discussed

  17. Monazite as a suitable actinide waste form

    Energy Technology Data Exchange (ETDEWEB)

    Schlenz, Hartmut; Heuser, Julia; Schmitz, Stephan; Bosbach, Dirk [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie und Klimaforschung (IEK), Nukleare Entsorgung und Reaktorsicherheit (IEK-6); Neumann, Andreas [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie und Klimaforschung (IEK), Nukleare Entsorgung und Reaktorsicherheit (IEK-6); RWTH Aachen Univ. (Germany). Inst. for Crystallography

    2013-03-01

    The conditioning of radioactive waste from nuclear power plants and in some countries even of weapons plutonium is an important issue for science and society. Therefore the research on appropriate matrices for the immobilization of fission products and actinides is of great interest. Beyond the widely used borosilicate glasses, ceramics are promising materials for the conditioning of actinides like U, Np, Pu, Am, and Cm. Monazite-type ceramics with general composition LnPO{sub 4} (Ln = La to Gd) and solid solutions of monazite with cheralite or huttonite represent important materials in this field. Monazite appears to be a promising candidate material, especially because of its outstanding properties regarding radiation resistance and chemical durability. This article summarizes the most recent results concerning the characterization of monazite and respective solid solutions and the study of their chemical, thermal, physical and structural properties. The aim is to demonstrate the suitability of monazite as a secure and reliable waste form for actinides. (orig.)

  18. Actinide separations by supported liquid membranes

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.; Chiarizia, R.

    1984-01-01

    The work has demonstrated that actinide removal from synthetic waste solutions using both flat-sheet and hollow-fiber SLM's is a feasible chemical process at the laboratory scale level. The process is characterized by the typical features of SLM's processes: very small quantities of extractant required; the potential for operations with high feed/strip volume ratios, resulting in a corresponding concentration factor of the actinides; and simplicity of operation. Major obstacles to the implementation of the SLM technology to the decontamination of liquid nuclear wastes are the probable low resistance of polypropylene supports to high radiation fields, which may prevent the application to high-level nuclear wastes; the unknown lifetime of the SLM; and the high Na content of the separated actinide solution

  19. Research on Actinides in Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Park, Yong Joon; Cho, Young Hwan

    2010-04-01

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  20. Research on Actinides in Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyu Seok; Park, Yong Joon; Cho, Young Hwan

    2010-04-15

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  1. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...

  2. Structural insights into Rhino-Deadlock complex for germline piRNA cluster specification.

    Science.gov (United States)

    Yu, Bowen; Lin, Yu An; Parhad, Swapnil S; Jin, Zhaohui; Ma, Jinbiao; Theurkauf, William E; Zhang, Zz Zhao; Huang, Ying

    2018-06-01

    PIWI-interacting RNAs (piRNAs) silence transposons in germ cells to maintain genome stability and animal fertility. Rhino, a rapidly evolving heterochromatin protein 1 (HP1) family protein, binds Deadlock in a species-specific manner and so defines the piRNA-producing loci in the Drosophila genome. Here, we determine the crystal structures of Rhino-Deadlock complex in Drosophila melanogaster and simulans In both species, one Rhino binds the N-terminal helix-hairpin-helix motif of one Deadlock protein through a novel interface formed by the beta-sheet in the Rhino chromoshadow domain. Disrupting the interface leads to infertility and transposon hyperactivation in flies. Our structural and functional experiments indicate that electrostatic repulsion at the interaction interface causes cross-species incompatibility between the sibling species. By determining the molecular architecture of this piRNA-producing machinery, we discover a novel HP1-partner interacting mode that is crucial to piRNA biogenesis and transposon silencing. We thus explain the cross-species incompatibility of two sibling species at the molecular level. © 2018 The Authors.

  3. Small-volume potentiometric titrations: EPR investigations of Fe-S cluster N2 in mitochondrial complex I.

    Science.gov (United States)

    Wright, John J; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M

    2016-09-01

    EPR-based potentiometric titrations are a well-established method for determining the reduction potentials of cofactors in large and complex proteins with at least one EPR-active state. However, such titrations require large amounts of protein. Here, we report a new method that requires an order of magnitude less protein than previously described methods, and that provides EPR samples suitable for measurements at both X- and Q-band microwave frequencies. We demonstrate our method by determining the reduction potential of the terminal [4Fe-4S] cluster (N2) in the intramolecular electron-transfer relay in mammalian respiratory complex I. The value determined by our method, E m7 =-158mV, is precise, reproducible, and consistent with previously reported values. Our small-volume potentiometric titration method will facilitate detailed investigations of EPR-active centres in non-abundant and refractory proteins that can only be prepared in small quantities. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Superdeformation, Hyperdeformation and Clustering in the Actinide Region

    Science.gov (United States)

    Krasznahorkay, A.; Habs, D.; Hunyadi, M.; Gassmann, D.; Csatlos, M.; Eisermann, Y.; Faestermann, T.; Graw, G.; Gulyas, J.; Hertenberger, R.; Maier, H. J.; Mate, Z.; Metz, A.; Ott, J.; Thirolf, P.; van der Werf, S. Y.

    2001-03-01

    Excited states in the second minimum of 240Pu were populated by the 238U(α ,2n) reaction at Eα=25 MeV. Conversion electrons from electromagnetic transitions preceding the fission of the 3.7 ns 240fPu shape isomer have been measured. In a combined analysis of e- and high resolution γ -ray spectroscopy data previously established octupole bands could be studied in more detail. In order to study higher lying states in the second and third minimum the 239Pu(d,pf)240Pu, and the 233U(d,pf)234U reactions have been studied with high energy resolution. The observed fission resonances were described as members of rotational bands with rotational parameters characteristic to super- and hyperdeformed nuclear shapes. The level density of the most strongly excited states has been compared to the prediction of the back-shifted Fermi-gas formula and the energy of the ground state in third minimum has been estimated for the first time in 234U. The fission fragment mass distribution of the hyperdeformed states in 236U has also been measured. The width of the mass distribution, coincident with the hyperdeformed bands, is significantly smaller than the ones obtained in coincidence with background regions below and above the resonances, which suggests a pear-shaped di-nuclear configuration of 236U in the third well of the potential barrier.

  5. Minor Actinide Separations Using Ion Exchangers Or Ionic Liquids

    International Nuclear Information System (INIS)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-01-01

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  6. Advanced Silicon Carbide from Molecular Engineering and Actinide Fuels

    International Nuclear Information System (INIS)

    Meyer, D.J.M.; Garcia, J.; Guillaneux, D.; Wong-Chi-Man, M.; Moreau, J.J.E.

    2008-01-01

    In the frame of nuclear fuels studies for generation IV, carbides or oxycarbides assemblies are one of the engaged material for high temperature reactors. The design of the fuels is not yet defined but some structures are actually considered with SiC as matrix for the actinide fuel. In this work we have studied the synthesis of a multi-scale structure controlled SiC matrix using molecular silicon organometallic precursors. The aim of this work was to develop a way to obtain multi-scale SiC matrix material which could be engineered to fit in any fuel structure defined for generation IV fuels. The control of this multi-scale structure was done using several simulation methods specific of the low temperature solution synthesis of the precursor. In a first step, we have focused our effort on the synthesis of the SiC material. A first level of template was successfully done by the use of solid silica 500 nm balls. A second level of template was studied by the use of meso-porous silica, structured at a 50 nm level. At least, supra-molecular simulation in non aqueous media was considered with the difficulty to build a molecular assembly (inverse micelles). In a second step, we have functionalized the primary silane phase with actinide complexing agent in order to blend directly the actinide inside this primary phase in a controlled way. During these studies, a new one pot synthesis route to obtain the functionalized primary silane phase was developed. (authors)

  7. Sequential analysis of selected actinides in urine

    International Nuclear Information System (INIS)

    Kramer, G.H.

    1980-07-01

    The monitoring of personnel by urinalysis for suspected contamination by actinides necessitated the development and implementation of an analytical scheme that will separate and identify alpha emitting radionuclides of these elements. The present work deals with Pu, Am, and Th. These elements are separated from an ashed urine sample by means of coprecipitation and ion exchange techniques. The final analysis is carried out by electroplating the actinides and counting in a α-spectrometer. Mean recoveries of these elements from urine are: Pu 64%, Am 74% and Th 69%. (auth)

  8. Hydrothermal processing of actinide contaminated organic wastes

    International Nuclear Information System (INIS)

    Worl, A.; Buelow, S.J.; Le, L.A.; Padilla, D.D.; Roberts, J.H.

    1997-01-01

    Hydrothermal oxidation is an innovative process for the destruction of organic wastes, that occurs above the critical temperature and pressure of water. The process provides high destruction and removal efficiencies for a wide variety of organic and hazardous substances. For aqueous/organic mixtures, organic materials, and pure organic liquids hydrothermal processing removes most of the organic and nitrate components (>99.999%) and facilitates the collection and separation of the actinides. We have designed, built and tested a hydrothermal processing unit for the removal of the organic and hazardous substances from actinide contaminated liquids and solids. Here we present results for the organic generated at the Los Alamos National Laboratory Plutonium Facility

  9. A worldwide perspective on actinide burning

    International Nuclear Information System (INIS)

    Burch, W.D.

    1991-01-01

    Worldwide interest has been evident over the past few years in reexamining the merits of recovering the actinides from spent light-water reactor (LWR) fuel and transmuting them in fast reactors to reduce hazards in geologic repositories. This paper will summarize some of the recent activities in this field. Several countries are embarked on programs of reprocessing and vitrification of present wastes, from which removal of the actinides is largely precluded. The United States is assessing the ideas related to the fast reactor program and the potential application to defense wastes. 18 refs., 2 figs

  10. Molecular dynamics studies of actinide nitrides

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke; Minato, Kazuo

    2004-01-01

    The molecular dynamics (MD) calculation was performed for actinide nitrides (UN, NpN, and PuN) in the temperature range from 300 to 2800 K to evaluate the physical properties viz., the lattice parameter, thermal expansion coefficient, compressibility, and heat capacity. The Morse-type potential function added to the Busing-Ida type potential was employed for the ionic interactions. The interatomic potential parameters were determined by fitting to the experimental data of the lattice parameter. The usefulness and applicability of the MD method to evaluate the physical properties of actinide nitrides were studied. (author)

  11. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  12. Static and dynamic deformations of actinide nuclei

    International Nuclear Information System (INIS)

    Rozmej, P.

    1985-09-01

    The zero-point quadrupole-hexadecapole vibrations have been taken into account to calculate dynamical deformations for even-even actinide nuclei. The collective and intrinsic motions are separated according to the Born-Oppenheimer approximation. The collective Hamiltonian is constructed using the macroscopic-microscopic method in the potential energy part and the cranking model in the kinetic energy part. The BCS theory with a modified oscillator potential is applied to describe the intrinsic motion of nucleons. A new set of Nilsson potential parameters, which produces a much better description of the properties of light actinide nuclei, has also been found. (orig.)

  13. Spin–orbit coupling in actinide cations

    DEFF Research Database (Denmark)

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.

    2012-01-01

    The limiting case of Russell–Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin–orbit splitting is large enough to cause a significantly reduced...... spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell....

  14. Complexation of trivalent actinides and lanthanides with hydrophilic N-donor ligands for Am(III)/Cm(III) and An(III)/Ln(III) separation; Komplexierung von trivalenten Actiniden und Lanthaniden mit hydrophilen N-Donorliganden zur Am(III)/Cm(III)- bzw. An(III)/Ln(III)-Trennung

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Christoph

    2017-07-24

    The implementation of actinide recycling processes is considered in several countries, aiming at the reduction of long-term radiotoxicity and heat load of used nuclear fuel. This requires the separation of the actinides from the fission and corrosion products. The separation of the trivalent actinides (An(III)) Am(III) and Cm(III), however, is complicated by the presence of the chemically similar fission lanthanides (Ln(III)). Hydrophilic N-donor ligands are employed as An(III) or Am(III) selective complexing agents in solvent extraction to strip An(III) or Am(III) from an organic phase loaded with An(III) and Ln(III). Though they exhibit excellent selectivity, the complexation chemistry of these ligands and the complexes formed during solvent extraction are not sufficiently characterized. In the present thesis the complexation of An(III) and Ln(III) with hydrophilic N-donor ligands is studied by time resolved laser fluorescence spectroscopy (TRLFS), UV/Vis, vibronic sideband spectroscopy and solvent extraction. TRLFS studies on the complexation of Cm(III) and Eu(III) with the Am(III) selective complexing agent SO{sub 3}-Ph-BTBP (tetrasodium 3,3{sup '},3'',3{sup '''}-([2,2{sup '}-bipyridine]-6,6{sup '}-diylbis(1,2,4-triazine-3,5,6-triyl)) tetrabenzenesulfonate) revealed the formation of [M(SO{sub 3}-Ph-BTBP){sub n}]{sup (4n-3)-} complexes (M = Cm(III), Eu(III); n = 1, 2). The conditional stability constants were determined in different media yielding two orders of magnitude larger β{sub 2}-values for the Cm(III) complexes, independently from the applied medium. A strong impact of ionic strength on the stability and stoichiometry of the formed complexes was identified, resulting from the stabilization of the pentaanionic [M(SO{sub 3}-Ph-BTBP){sub 2}]{sup 5-} complex with increasing ionic strength. Thermodynamic studies of Cm(III)-SO{sub 3}-Ph-BTBP complexation showed that the proton concentration of the applied medium impacts

  15. Electronic structure of free and doped actinides: N and Z dependences of energy levels and electronic structure parameters

    International Nuclear Information System (INIS)

    Kulagin, N.

    2005-01-01

    Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f N and excited 5f N n'l' N' configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC +1 -AC +4 show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC +n :[L] k are compared, too

  16. Investigation of actinides speciation within the presence of ligands of interest for decorporation

    International Nuclear Information System (INIS)

    Bonin, L.

    2008-01-01

    Data about the behaviour of actinides in biological media are required in order to investigate their decorporation. Those data are obtained through in vivo experiments and the study of chemical speciation of actinides within the presence of biological constituents. A part of this work consists in the development of a method leading to the determination of the speciation of actinides at the oxidation state +IV within the presence of a complexing species, as well as its structure. The method was applied to two types of ligands: 1) a constituent of blood plasma: the citrate anion. The various complexes formed were investigated and their formation constants were quantified. The coordination mode of the ligand was then clarified through a structural study of the complexes, underlining the role of only one carboxylic site and of the alcohol function. 2) chelating agents used for decorporation. The formation constants of complexes of An(IV) with NTA and DTPA were determined. The coordination number of the metallic cation in those complexes as well as the role of the nitrogen atom were proved. Lastly, the behaviour of Pu(IV) within the presence of LIHOPO was investigated. This chelating agent, more efficient than DTPA in the case of in vivo decorporation of Np, forms very stable complexes with the metallic cation. One of those complexes can be assumed to present a stoichiometry 2:3. (author)

  17. Transmutation of waste actinides in light water reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-04-01

    Actinide recycle and transmutation calculations were made for three irradiation options of a light water reactor (LWR). The cases considered were: all actinides recycled in regular uranium fuel assemblies; transuranic actinides recycled in separate MOX assemblies with 235 U enrichment of uranium; and transuranic actinides recycled in separate MOX assemblies with plutonium enrichment of natural uranium. When all actinides were recycled in a uniform lattice, the transuranic inventory after ten recycles was 38% of the inventory accumulated without recycle. When the transuranics from two regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after five recycles

  18. Chemical compatibility of HLW borosilicate glasses with actinides

    International Nuclear Information System (INIS)

    Walker, C.T.; Scheffler, K.; Riege, U.

    1978-11-01

    During liquid storage of HLLW the formation of actinide enriched sludges is being expected. Also during melting of HLW glasses an increase of top-to-bottom actinide concentrations can take place. Both effects have been studied. Besides, the vitrification of plutonium enriched wastes from Pu fuel element fabrication plants has been investigated with respect to an isolated vitrification process or a combined one with the HLLW. It is shown that the solidification of actinides from HLLW and actinide waste concentrates will set no principal problems. The leaching of actinides has been measured in salt brine at 23 0 C and 115 0 C. (orig.) [de

  19. Actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    Beaman, S.L.

    1979-01-01

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs

  20. Transmutation of LWR waste actinides in thermal reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-01-01

    Recycle of actinides to a reactor for transmutation to fission products is being considered as a possible means of waste disposal. Actinide transmutation calculations were made for two irradiation options in a thermal (LWR) reactor. The cases considered were: all actinides recycled in regular uranium fuel assemblies, and transuranic actinides recycled in separate mixed oxide (MOX) assemblies. When all actinides were recycled in a uranium lattice, a reduction of 62% in the transuranic inventory was achieved after 10 recycles, compared to the inventory accumulated without recycle. When the transuranics from 2 regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after 5 recycles

  1. Mechanisms for the reduction of actinide ions by Geobacter sulfurreducens

    International Nuclear Information System (INIS)

    Renshaw, J.C.; Livens, F.R.; May, I.; Lloyd, J.R.

    2005-01-01

    disproportionates to give insoluble U(IV). Further studies showed that the [Np V O 2 ] + analogue (which is stable with respect to disproportionation) was not reduced by G. sulfurreducens. These results suggest that the reductive mechanism shows a surprising degree of selectivity for hexavalent actinides and illustrates the need for mechanistic understanding and care in devising in situ bio-remediation strategies for complex wastes containing other redox-active actinides. Our current studies are investigating the effect of G.sulfurreducens on the redox chemistry of plutonium. (authors)

  2. Heterogeneous all actinide recycling in LWR all actinide cycle closure concept

    International Nuclear Information System (INIS)

    Tondinelli, Luciano

    1980-01-01

    A project for the elimination of transuranium elements (Waste Actinides, WA) by neutron transmutation is developed in a commercial BWR with U-Pu (Fuel Actinides, FA) recycle. The project is based on the All Actinide Cycle Closure concept: 1) closure of the 'back end' of the fuel cycle, U-Pu coprocessing, 2) waste actinide disposal by neutron transmutation. The reactor core consists of Pu-island fuel assemblies containing WAs in target pins. Two parallel reprocessing lines for FAs and WAs are provided. Mass balance, hazard measure, spontaneous activity during 10 recycles are calculated. Conclusions are: the reduction in All Actinide inventory achieved by Heterogeneous All Actinide Recycling is on the order of 83% after 10 recycles. The U235 enrichment needed for a constant end of cycle reactivity decreases for increasing number of recycles after the 4th recycle. A diffusion-burnup calculation of the pin power peak factors in the fuel assembly shows that design limits can be satisfied. A strong effort should be devoted to the solution of the problems related to high values of spontaneous emission by the target pins

  3. Calculated investigation of actinide transmutation in the BOR-60 reactor

    International Nuclear Information System (INIS)

    Zhemkov, I.Yu.; Ishunina, O.V.; Yakovleva, I.V.

    2000-01-01

    One of the prospective actinide burner reactor type is the fast reactor with a 'hard' spectrum and small breeding factor, which is the BOR-60. The calculated investigations demonstrate that Loading up to 40% of minor-actinides to the BOR-60 reactor did not lead to the considerable change of neutron-physical characteristics. The performed calculations show that the BOR- 60 reactor possesses a high efficiency of the minor-actinide and plutonium bum-up (up to 37 kg/(TW · h)) hat is comparable with properties of the actinide burner-reactors under design. The BOR-60 reactor can provide a homogeneous minor-actinide Loading (minor-actinide addition to the standard fuel) to the core and heterogeneous Loading (as separate assemblies-targets with a high minor-actinide fraction) to the first rows of a radial blanket that allows the optimum usage of the reactor and its characteristics. (authors)

  4. ENDF/B-5 Actinides (Rev. 86)

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1986-05-01

    This document summarizes the contents of the Actinides part of the ENDF/B-5 nuclear data library released by the US National Nuclear Data Center. This library or selective retrievals of it, are available costfree from the IAEA Nuclear Data Section upon request. The present version of the library is the Revision of 1986. (author). Refs, figs and tabs

  5. Trends in actinide processing at Hanford

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1993-09-01

    In 1989, the mission at the Hanford Site began a dramatic and sometimes painful transition. The days of production--as we used to know it--are over. Our mission officially has become waste management and environmental cleanup. This mission change didn't eliminate many jobs--in fact, budgets have grown dramatically to support the new mission. Most all of the same skilled crafts, engineers, and scientists are still required for the new mission. This change has not eliminated the need for actinide processing, but it has certainly changed the focus that our actinide chemists and process engineers have. The focus used to be on such things as increasing capacity, improving separations efficiency, and product purity. Minimizing waste had become a more important theme in recent years and it is still a very important concept in the waste management and environmental cleanup arena. However, at Hanford, a new set of words dominates the actinide process scene as we work to deal with actinides that still reside in a variety of forms at the Hanford Site. These words are repackage, stabilize, remove, store and dispose. Some key activities in each of these areas are described in this report

  6. Report of the panel on inhaled actinides

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Some topics discussed are as follows: assessment of risks to man of inhaling actinides; use of estimates for developing protection standards; epidemiology of lung cancer in exposed human populations; development of respiratory tract models; and effects in animals: dose- and effect-modifying factors

  7. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  8. Placental transfer of plutonium and other actinides

    International Nuclear Information System (INIS)

    Griessl, I.; Stieve, F.E.

    1988-10-01

    The report is based on an extensive literature search. All data available from studies on placental transfer of plutonium and other actinides in man and animals have been collected and analysed, and the report presents the significant results as well as unresolved questions and knowledge gaps which may serve as a waypost to future research work. (orig./MG) [de

  9. Partitioning and Transmutation of minor actinides

    International Nuclear Information System (INIS)

    Koch, L.; Wellum, R.

    1991-01-01

    The partitioning of minor actinides from spent fuels and their transmutation into short-lived fission products has been the topic of two dedicated meetings organized jointly by the European Commission and the OECD. The conclusion of the last meeting in 1980, in short, was that partitioning and transmutation of minor actinides, especially in fast reactors, seemed possible. However, the incentive, which would be a reduction of the radiological hazard to the public, was too small if long-lived fission products were not included. Furthermore this meeting showed that minor actinide targets or possible nuclear fuels containing minor actinides for transmutation had not yet been developed. The European Institute for Transuranium Elements took up this task and has carried it out as a small activity for several years. Interests expressed recently by an expert meeting of the OECD/NEA (Paris, 25 April 1989), which was initiated by the proposed Japanese project Omega, led us to the conclusion that the present state of knowledge should be looked at in a workshop environment. Since the Japanese proposal within the project Omega is based on a broader approach we needed this evaluation to assess the relevance of our present activity and wanted to identifiy additional studies which might be needed to cover possible future demands from the public. This workshop was therefore organized, and participants active in the field from EC countries, the USA and Japan were invited

  10. Supercritical Carbon Dioxide-Soluble Ligands for Extracting Actinide Metal Ions from Porous Solids

    International Nuclear Information System (INIS)

    Dietz, Mark L.

    2001-01-01

    Numerous types of actinide-bearing waste materials are found throughout the DOE complex. Most of these wastes consist of large volumes of non-hazardous materials contaminated with relatively small quantities of actinide elements. Separation of these wastes into their inert and radioactive components would dramatically reduce the costs of stabilization and disposal. For example, the DOE is responsible for decontaminating concrete within 7000 surplus contaminated buildings. The best technology now available for removing surface contamination from concrete involves removing the surface layer by grit blasting, which produces a large volume of blasting residue containing a small amount of radioactive material. Disposal of this residue is expensive because of its large volume and fine particulate nature. Considerable cost savings would result from separation of the radioactive constituents and stabilization of the concrete dust. Similarly, gas diffusion plants for uranium enrichment contain valuable high-purity nickel in the form of diffusion barriers. Decontamination is complicated by the extremely fine pores in these barriers, which are not readily accessible by most cleaning techniques. A cost-effective method for the removal of radioactive contaminants would release this valuable material for salvage. The objective of this project is to develop novel, substituted diphosphonic acid ligands that can be used for supercritical carbon dioxide extraction of actinide ions from solid wastes. Specifically, selected diphosphonic acids, which are known to form extremely stable complexes with actinides in aqueous and organic solution, are to be rendered carbon dioxide-soluble by the introduction of appropriate alkyl- or silicon-containing substituents. The metal complexation chemistry of these new ligands in SC-CO2 will then be investigated and techniques for their use in actinide extraction from porous solids developed

  11. ACTINET: a European Network for Actinide Sciences

    International Nuclear Information System (INIS)

    Bernard Boullis; Pascal Chaix

    2006-01-01

    Full text of publication follows: The research in Actinide sciences appear as a strategic issue for the future of nuclear systems. Sustainability issues are clearly in connection with the way actinide elements are managed (either addressing saving natural resource, or decreasing the radiotoxicity of the waste). The recent developments in the field of minor actinide P and T offer convincing indications of what could be possible options, possible future processes for the selective recovery of minor actinides. But they point out, too, some lacks in the basic understanding of key-issues (such as for instance the control An versus Ln selectivity, or solvation phenomena in organic phases). Such lacks could be real obstacles for an optimization of future processes, with new fuel compounds and facing new recycling strategies. This is why a large and sustainable work appears necessary, here in the field of basic actinide separative chemistry. And similar examples could be taken from other aspects of An science, for various applications (nuclear fuel or transmutation targets design, or migration issues,): future developments need a strong, enlarged, scientific basis. The Network ACTINET, established with the support of the European Commission, has the following objectives: - significantly improve the accessibility of the major actinide facilities to the European scientific community, and form a set of pooled facilities, as the corner-stone of a progressive integration process, - improve mobility between the member organisations, in particular between Academic Institutions and National Laboratories holding the pooled facilities, - merge part of the research programs conducted by the member institutions, and optimise the research programs and infrastructure policy via joint management procedures, - strengthen European excellence through a selection process of joint proposals, and reduce the fragmentation of the community by putting critical mass of resources and expertise on

  12. Advanced techniques in actinide spectroscopy (ATAS 2014). Abstract book

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin

    2014-01-01

    In 2012, The Institute of Resource Ecology at the Helmholtz-Zentrum Dresden Rossendorf organized the first international workshop of Advanced Techniques in Actinide Spectroscopy (ATAS). A very positive feedback and the wish for a continuation of the workshop were communicated from several participants to the scientific committee during the workshop and beyond. Today, the ATAS workshop has been obviously established as an international forum for the exchange of progress and new experiences on advanced spectroscopic techniques for international actinide and lanthanide research. In comparison to already established workshops and conferences on the field of radioecology, one main focus of ATAS is to generate synergistic effects and to improve the scientific discussion between spectroscopic experimentalists and theoreticians. The exchange of ideas in particular between experimental and theoretical applications in spectroscopy and the presentation of new analytical techniques are of special interest for many research institutions working on the improvement of transport models of toxic elements in the environment and the food chain as well as on reprocessing technologies of nuclear and non-nuclear waste. Spectroscopic studies in combination with theoretical modelling comprise the exploration of molecular mechanisms of complexation processes in aqueous or organic phases and of sorption reactions of the contaminants on mineral surfaces to obtain better process understanding on a molecular level. As a consequence, predictions of contaminant's migration behaviour will become more reliable and precise. This can improve the monitoring and removal of hazardous elements from the environment and hence, will assist strategies for remediation technologies and risk assessment. Particular emphasis is placed on the results of the first inter-laboratory Round-Robin test on actinide spectroscopy (RRT). The main goal of RRT is the comprehensive molecular analysis of the actinide complex

  13. Advanced techniques in actinide spectroscopy (ATAS 2014). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2014-07-01

    In 2012, The Institute of Resource Ecology at the Helmholtz-Zentrum Dresden Rossendorf organized the first international workshop of Advanced Techniques in Actinide Spectroscopy (ATAS). A very positive feedback and the wish for a continuation of the workshop were communicated from several participants to the scientific committee during the workshop and beyond. Today, the ATAS workshop has been obviously established as an international forum for the exchange of progress and new experiences on advanced spectroscopic techniques for international actinide and lanthanide research. In comparison to already established workshops and conferences on the field of radioecology, one main focus of ATAS is to generate synergistic effects and to improve the scientific discussion between spectroscopic experimentalists and theoreticians. The exchange of ideas in particular between experimental and theoretical applications in spectroscopy and the presentation of new analytical techniques are of special interest for many research institutions working on the improvement of transport models of toxic elements in the environment and the food chain as well as on reprocessing technologies of nuclear and non-nuclear waste. Spectroscopic studies in combination with theoretical modelling comprise the exploration of molecular mechanisms of complexation processes in aqueous or organic phases and of sorption reactions of the contaminants on mineral surfaces to obtain better process understanding on a molecular level. As a consequence, predictions of contaminant's migration behaviour will become more reliable and precise. This can improve the monitoring and removal of hazardous elements from the environment and hence, will assist strategies for remediation technologies and risk assessment. Particular emphasis is placed on the results of the first inter-laboratory Round-Robin test on actinide spectroscopy (RRT). The main goal of RRT is the comprehensive molecular analysis of the actinide

  14. Actinide production from xenon bombardments of curium-248

    International Nuclear Information System (INIS)

    Welch, R.B.

    1985-01-01

    Production cross sections for many actinide nuclides formed in the reaction of 129 Xe and 132 Xe with 248 Cm at bombarding energies slightly above the coulomb barrier were determined using radiochemical techniques to isolate these products. These results are compared with cross sections from a 136 Xe + 248 Cm reaction at a similar energy. When compared to the reaction with 136 Xe, the maxima in the production cross section distributions from the more neutron deficient projectiles are shifted to smaller mass numbers, and the total cross section increases for the production of elements with atomic numbers greater than that of the target, and decreases for lighter elements. These results can be explained by use of a potential energy surface (PES) which illustrates the effect of the available energy on the transfer of nucleons and describes the evolution of the di-nuclear complex, an essential feature of deep-inelastic reactions (DIR), during the interaction. The other principal reaction mechanism is the quasi-elastic transfer (QE). Analysis of data from a similar set of reactions, 129 Xe, 132 Xe, and 136 Xe with 197 Au, aids in explaining the features of the Xe + Cm product distributions, which are additionally affected by the depletion of actinide product yields due to deexcitation by fission. The PES is shown to be a useful tool to predict the general features of product distributions from heavy ion reactions

  15. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB

    Directory of Open Access Journals (Sweden)

    Pratick Khara

    2014-01-01

    Full Text Available Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.

  16. European Europart integrated project on actinide partitioning

    International Nuclear Information System (INIS)

    Madic, C.; Hudson, M.J.

    2005-01-01

    This poster presents the objectives of EUROPART, a scientific integrated project between 24 European partners, mostly funded by the European Community within the FP6. EUROPART aims at developing chemical partitioning processes for the so-called minor actinides (MA) contained in nuclear wastes, i.e. from Am to Cf. In the case of dedicated spent fuels or targets, the actinides to be separated also include U, Pu and Np. The techniques considered for the separation of these radionuclides belong to the fields of hydrometallurgy and pyrometallurgy, as in the previous FP5 programs named PARTNEW and PYROREP. The two main axes of research within EUROPART will be: The partitioning of MA (from Am to Cf) from high burn-up UO x fuels and multi-recycled MOx fuels; the partitioning of the whole actinide family for recycling, as an option for advanced dedicated fuel cycles (and in connection with the studies to be performed in the EUROTRANS integrated project). In hydrometallurgy, the research is organised into five Work Packages (WP). Four WP are dedicated to the study of partitioning methods mainly based on the use of solvent extraction methods, one WP is dedicated to the development of actinide co-conversion methods for fuel or target preparation. The research in pyrometallurgy is organized into four WP, listed hereafter: development of actinide partitioning methods, study of the basic chemistry of trans-curium elements in molten salts, study of the conditioning of the wastes, some system studies. Moreover, a strong management team will be concerned not only with the technical and financial issues arising from EUROPART, but also with information, communication and benefits for Europe. Training and education of young researchers will also pertain to the project. EUROPART has also established collaboration with US DOE and Japanese CRIEPI. (authors)

  17. A new look at actinide recycle

    International Nuclear Information System (INIS)

    Burch, W.D.; Croff, A.G.; Rawlins, J.A.; Schulz, W.W.

    1991-01-01

    This paper will address the justification for reexamination of the value of recovering the minor actinides and certain fission products from spent light-water reactor fuels and describe some of the technical progress that has been made since the major studies of a decade ago. During this time, the US Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission have begun establishing detailed criteria and regulations for geologic repositories. An examination of the hazards of waste disposal relative to the EPA release standards reveals that removal of 99.9% of the actinides (Pu, Am, and Np) reduces these hazards quite close to the EPA standards after 300 years' decay of the strontium and cesium. It may be also useful to remove and separately manage and dispose of certain of the long-lived fission products, such as 99 Tc and 129 I. Much additional work is required to fully assess the appropriate target recoveries as the hazards and risks are more closely examined and as the standards are reworked and refined. The two decades before the projected start of the US repository may present a window of opportunity to introduce several better management practices that act to simplify the repository safety issues. From a technical standpoint, significant progress has been made on recovery of the actinides from aqueous wastes though use of the TRUEX process. Additional work is required to demonstrate the application of the process to spent LWR fuels, but it appears straightforward. In addition, work at the Argonne National Laboratory on the liquid-metal reactor metal fuel cycle shows the relative simplicity of recycle of the actinides in that fast reactor cycle. Much work remains to fully demonstrate that actinides from all secondary waste streams can be removed to the target levels from both the aqueous reprocessing of LWR fuel and the pyro processes for the metal-fueled fast reactor. 9 refs., 2 figs

  18. Synroc tailored waste forms for actinide immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, Daniel J.; Vance, Eric R. [Australian Nuclear Science and Technology Organisation, Kirrawee (Australia). ANSTOsynroc, Inst. of Materials Engineering

    2017-07-01

    Since the end of the 1970s, Synroc at the Australian Nuclear Science and Technology Organisation (ANSTO) has evolved from a focus on titanate ceramics directed at PUREX waste to a platform waste treatment technology to fabricate tailored glass-ceramic and ceramic waste forms for different types of actinide, high- and intermediate level wastes. The particular emphasis for Synroc is on wastes which are problematic for glass matrices or existing vitrification process technologies. In particular, nuclear wastes containing actinides, notably plutonium, pose a unique set of requirements for a waste form, which Synroc ceramic and glass-ceramic waste forms can be tailored to meet. Key aspects to waste form design include maximising the waste loading, producing a chemically durable product, maintaining flexibility to accommodate waste variations, a proliferation resistance to prevent theft and diversion, and appropriate process technology to produce waste forms that meet requirements for actinide waste streams. Synroc waste forms incorporate the actinides within mineral phases, producing products which are much more durable in water than baseline borosilicate glasses. Further, Synroc waste forms can incorporate neutron absorbers and {sup 238}U which provide criticality control both during processing and whilst within the repository. Synroc waste forms offer proliferation resistance advantages over baseline borosilicate glasses as it is much more difficult to retrieve the actinide and they can reduce the radiation dose to workers compared to borosilicate glasses. Major research and development into Synroc at ANSTO over the past 40 years has included the development of waste forms for excess weapons plutonium immobilization in collaboration with the US and for impure plutonium residues in collaboration with the UK, as examples. With a waste loading of 40-50 wt.%, Synroc would also be considered a strong candidate as an engineered waste form for used nuclear fuel and highly

  19. New field of actinides solution chemistry; electrochemical study on actinide ion transfer at the interface of two immiscible electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kitatsuji, Yoshihiro; Yoshida, Zenko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kudo, Hiroshi [Tohoku Univ., Graduate School of Science, Sendai, Miyagi (Japan); Kihara, Sorin [Kyoto Inst. of Technolgy, Dept. of Chemistry, Kyoto (Japan)

    2002-04-01

    A novel electrochemical method on the basis of a controlled electrolysis has been developed for the study of the ion transfer at the interface of two immiscible electrolyte solutions (ITIES). The controlled-potential electrolysis for ITIES (CPEITIES) was applied to the transfer of actinide ions, and Gibbs energies for the transfer of UO{sub 2}{sup 2+} and Am{sup 3+} from aqueous solution (w) to nitrobenzene solution (nb) were determined to be 71.7 and 113 kJ mol{sup -1}, respectively. The ion transfer potentials for the facilitated transfer of UO{sub 2{sup +}} and Am{sup 3+} from w to nb in the presence of bis(diphenylphosphoryl)methane were determined, from which the stability constants of UO{sub 2}(BDPPM){sub 3}{sup 2+} and Am(BDPPM){sub 3}{sup 3+} complexes involved in the facilitated ion transfer reaction, were calculated to be 10{sup 23.9} and 10{sup 27.5}, respectively. On the basis of the results of CPEITIES, a feasibility of a new separation method, i.e., an electrolytic ion transfer separation, of actinide ions is evaluated. (author)

  20. An Advanced TALSPEAK Concept for Separating Minor Actinides. Part 2. Flowsheet Test with Actinide-spiked Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Wilden, Andreas [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung – Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Jülich, Germany; Lumetta, Gregg J. [Nuclear Science and Engineering Group, Pacific Northwest National Laboratory, Richland, DC, USA; Sadowski, Fabian [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung – Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Jülich, Germany; Schmidt, Holger [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung – Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Jülich, Germany; Schneider, Dimitri [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung – Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Jülich, Germany; Gerdes, Markus [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung – Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Jülich, Germany; Law, Jack D. [Aqueous Separations and Radiochemistry Department, Idaho National Laboratory, Idaho Falls, ID, USA; Geist, Andreas [Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), Karlsruhe, Germany; Bosbach, Dirk [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung – Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Jülich, Germany; Modolo, Giuseppe [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung – Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Jülich, Germany

    2017-08-17

    A solvent extraction system has been developed for separating trivalent actinides from lanthanides. This “Advanced TALSPEAK” system uses 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester to extract the lanthanides into a n-dodecane-based solvent phase, while the actinides are retained in a citrate-buffered aqueous phase by complexation to N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid. Batch distribution measurements indicate that the separation of americium from the light lanthanides decreases as the pH decreases. For example, the separation factor between La and Am increases from 2.5 at pH 2.0 to 19.3 at pH 3.0. However, previous investigations indicated that the extraction rates for the heavier lanthanides decrease with increasing pH. So, a balance between these two competing effects is required. An aqueous phase in which the pH was set at 2.6 was chosen for further process development because this offered optimal separation, with a minimum separation factor of ~8.4, based on the separation between La and Am. Centrifugal contactor single-stage efficiencies were measured to characterize the performance of the system under flow conditions.

  1. Investigations on synthesis, coordination behaviour and actinide recovery of unexplored phosphine oxides

    International Nuclear Information System (INIS)

    Veerashekhar Goud, E.; Pavankumar, B.B.; Das, Dhrubajyothi

    2016-01-01

    The search for the development of an optimum extractant for effective separation of a particular metal from a mixture is an active field of research in both chemistry and chemical engineering. These extractants find extensive application in extractive metallurgy and in nuclear fuel cycle (for the separation of actinides from other fission products). In the case of the latter, solvent extraction and ion exchange are two widely employed separation techniques. In this connection, the present paper reports synthesis and structural characterization of various new phosphine oxide derivatives. The coordination behavior of these ligands is studied with some selected lanthanides and actinides shows the proposed structures of La(III) and Th(IV) metal complexes. The purity and structural characterization of the ligands and their corresponding metal complexes are analyzed by various analytical and spectroscopic techniques. Additionally, we have applied Density functional theory (DFT) calculations to understand the electronic structure of some metal complexes formed during the extraction process. (author)

  2. Evaluation and testing of sequestering agents for the removal of actinides from waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.C.; Romanovski, V.V.; Veeck, A.C. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-10-01

    The purpose of this project is to evaluate and test the complexing ability of a variety of promising new complexing agents synthesized by Professor Kenneth Raymond`s group at the University of California, Berkeley (ESP-CP TTP Number SF16C311). Some of these derivatives have already shown the potential for selectivity binding Pu(IV) in a wide range of solutions in the presence of other metals. Professor Raymond`s group uses molecular modeling to design and synthesize ligands based on modification of natural siderophores, or their analogs, for chelation of actinides. The ligands are then modified for use as liquid/liquid and solid/liquid extractants. The authors` group at the Glenn T. Seaborg Institute for Transactinium Science (ITS) at Lawrence Livermore National Laboratory determines the complex formation constants between the ligands and actinide ions, the capacity and time dependence for uptake on the resins, and the effect of other metal ions and pH.

  3. Sigma Team for Advanced Actinide Recycle FY2015 Accomplishments and Directions

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    The Sigma Team for Minor Actinide Recycle (STAAR) has made notable progress in FY 2015 toward the overarching goal to develop more efficient separation methods for actinides in support of the United States Department of Energy (USDOE) objective of sustainable fuel cycles. Research in STAAR has been emphasizing the separation of americium and other minor actinides (MAs) to enable closed nuclear fuel recycle options, mainly within the paradigm of aqueous reprocessing of used oxide nuclear fuel dissolved in nitric acid. Its major scientific challenge concerns achieving selectivity for trivalent actinides vs lanthanides. Not only is this challenge yielding to research advances, but technology concepts such as ALSEP (Actinide Lanthanide Separation) are maturing toward demonstration readiness. Efforts are organized in five task areas: 1) combining bifunctional neutral extractants with an acidic extractant to form a single process solvent, developing a process flowsheet, and demonstrating it at bench scale; 2) oxidation of Am(III) to Am(VI) and subsequent separation with other multivalent actinides; 3) developing an effective soft-donor solvent system for An(III) selective extraction using mixed N,O-donor or all-N donor extractants such as triazinyl pyridine compounds; 4) testing of inorganic and hybrid-type ion exchange materials for MA separations; and 5) computer-aided molecular design to identify altogether new extractants and complexants and theory-based experimental data interpretation. Within these tasks, two strategies are employed, one involving oxidation of americium to its pentavalent or hexavalent state and one that seeks to selectively complex trivalent americium either in the aqueous phase or the solvent phase. Solvent extraction represents the primary separation method employed, though ion exchange and crystallization play an important role. Highlights of accomplishments include: Confirmation of the first-ever electrolytic oxidation of Am(III) in a

  4. Methods for separation of actinides

    International Nuclear Information System (INIS)

    Keller, C.

    1976-01-01

    Methods of actinoids separation are reviewed, including precipitation, sublimation, paper chromatography and electrophoresis. Compounds typically used for co-precipitation of actinoid ions are listed. Ion-exchange methods considered include cation and ion exchange. Factors are described, which affect the efficiency of separation of transuranium elements in the same degrees of oxidation: complex-forming agents, temperature, ion-exchange resin, rate of elution, the size of the column, the influence of salts. Extraction of actinoid ions upon formation of solvate complexes, inner complex compounds and metal salts is discussed. Combining the advantages of ion exchange and extraction, the method of extraction chromatography can be widely used for separation of actinoids

  5. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.

    Science.gov (United States)

    Moreadith, R W; Batshaw, M L; Ohnishi, T; Kerr, D; Knox, B; Jackson, D; Hruban, R; Olson, J; Reynafarje, B; Lehninger, A L

    1984-09-01

    We report the case of an infant with hypoglycemia, progressive lactic acidosis, an increased serum lactate/pyruvate ratio, and elevated plasma alanine, who had a moderate to profound decrease in the ability of mitochondria from four organs to oxidize pyruvate, malate plus glutamate, citrate, and other NAD+-linked respiratory substrates. The capacity to oxidize the flavin adenine dinucleotide-linked substrate, succinate, was normal. The most pronounced deficiency was in skeletal muscle, the least in kidney mitochondria. Enzymatic assays on isolated mitochondria ruled out defects in complexes II, III, and IV of the respiratory chain. Further studies showed that the defect was localized in the inner membrane mitochondrial NADH-ubiquinone oxidoreductase (complex I). When ferricyanide was used as an artificial electron acceptor, complex I activity was normal, indicating that electrons from NADH could reduce the flavin mononucleotide cofactor. However, electron paramagnetic resonance spectroscopy performed on liver submitochondrial particles showed an almost total loss of the iron-sulfur clusters characteristic of complex I, whereas normal signals were noted for other mitochondrial iron-sulfur clusters. This infant is presented as the first reported case of congenital lactic acidosis caused by a deficiency of the iron-sulfur clusters of complex I of the mitochondrial electron transport chain.

  6. New strategies for the chemical separation of actinides and lanthanides

    International Nuclear Information System (INIS)

    Hudson, M.J.; Iveson, P.B.

    2002-01-01

    A general model is proposed for the effective design of ligands for partitioning. There is no doubt that the correct design of a molecule is required for the effective separation by separation of metal ions such as lanthanides(III) and actinides(III). Heterocyclic ligands with aromatic rings systems have a rich chemistry, which is only now becoming sufficiently well understood, in relation to the partitioning process. The synthesis, characterisation and structures of some chosen molecules will be introduced in order to illustrate some important features. For example, the molecule N-butyl-2-amino-4,6-di (2-pyridyl)-1,3,5-triazine (BADPTZ), which is an effective solvent extraction reagent for actinides and lanthanides, has been synthesised, characterised and its interaction with metal ions studied. The interesting and important features of this molecule will be compared with those of other heterocyclic molecules such as 2,6-bis(5-butyl-1,2,4-triazol-3-yl) pyridine (DBTZP), which is a candidate molecule for the commercial separation of actinides and lanthanide elements. Primary Coordination Sphere. One of the most critical features concerning whether a molecule is a suitable extraction reagent is the nature of the binding and co-ordination in the primary co-ordination sphere. This effect will be considered in depth for the selected heterocylic molecules. It will be shown how the bonding of the heterocyclic and nitrate ligands changes as the complete lanthanide series is traversed from lanthanum to lutetium. For effective solvent extraction, the ligand(s) should be able completely to occupy the primary co-ordination sphere of the metal ion to be extracted. Interactions in the secondary co-ordination sphere are of less importance. Inter-complex Hydrogen Bonding Interactions. Another feature that will be considered is the intermolecular binding between ligands when bound to the metal ion. Thus the intermolecular structures between complex molecules will be considered

  7. Is the largest aqueous gold cluster a superatom complex? Electronic structure & optical response of the structurally determined Au146(p-MBA)57.

    Science.gov (United States)

    López-Lozano, Xóchitl; Plascencia-Villa, G; Calero, G; Whetten, R L; Weissker, Hans-Christian

    2017-12-07

    The new water-soluble gold cluster Au 146 (p-MBA) 57 , the structure of which has been recently determined at sub-atomic resolution by Vergara et al., is the largest aqueous gold cluster ever structurally determined and likewise the smallest cluster with a stacking fault. The core presents a twinned truncated octahedron, while additional peripheral gold atoms follow a C 2 rotational symmetry. According to the usual counting rules of the superatom complex (SAC) model, the compound attains a number of 92 SAC electrons if the overall net charge is 3- (three additional electrons). As this is the number of electrons required for a major shell closing, the question arises of whether Au 146 (p-MBA) 57 should be regarded as a superatom complex. Starting from the experimental coordinates we have analyzed the structure using density-functional theory. The optimized (relaxed) structure retains all the connectivity of the experimental coordinates, while removing much of its irregularities in interatomic distances, thereby enhancing the C 2 -symmetry feature. On analyzing the angular-momentum-projected states, we show that, despite a small gap, the electronic structure does not exhibit SAC model character. In addition, optical absorption spectra are found to be relatively smooth compared to the example of the Au 144 (SR) 60 cluster. The Au 146 (SR) 57 does not derive its stability from SAC character; it cannot be considered as a superatom complex.

  8. Clusters and how to make it work : Cluster Strategy Toolkit

    NARCIS (Netherlands)

    Manickam, Anu; van Berkel, Karel

    2014-01-01

    Clusters are the magic answer to regional economic development. Firms in clusters are more innovative; cluster policy dominates EU policy; ‘top-sectors’ and excellence are the choice of national policy makers; clusters are ‘in’. But, clusters are complex, clusters are ‘messy’; there is no clear

  9. Synthesis and Evaluation of new Polyfunctional Molecules for Group Actinide Extraction

    International Nuclear Information System (INIS)

    Marie, C.

    2009-10-01

    The aim of this project is to design new extracting molecules for spent nuclear fuel reprocessing. In order to minimize the long-term residual radiotoxicity of the waste, the GANEX process is an option based on homogeneous recycling of actinides. All actinides (U, Np, Pu, Am, Cm), present in a highly acidic aqueous solution, would be extracted together and separated from fission products (especially from lanthanides) using liquid-liquid extraction. In this context, twenty new bi-topic ligands constituted of a nitrogen poly-aromatic unit functionalized by amide groups were synthesized. Liquid-liquid extraction tests with these ligands dissolved alone in the organic phase show that N, N, N', N'-tetra-alkyl-6, 6''(2, 2':6', 2''-terpyridine)-diamides are able to selectively extract actinides at different oxidation states (Np(V et VI), U(VI), Pu(IV), Am(III), Cm(III)) from an aqueous solution 3M HNO 3 . Nevertheless, actinides(III) are poorly extracted. According to crystallographic structures of complexes with Nd(III) and U(VI) determined by X-rays diffraction, these ligands are penta-dentate. In solution (methanol), complexes stoichiometries (1:1) of Nd(III), U(VI) and Pu(IV) were determined by electro-spray ionization mass spectrometry. Stability constants, evaluated by UV-visible spectrophotometry in MeOH/H 2 O solutions, confirm the selectivity of ligands toward actinides(III) with respect to lanthanides(III). Associate to nuclear magnetic resonance experiments and DFT calculations (Density Functional Theory), a better knowledge of their coordination mode was achieved. (author)

  10. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-08

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  11. Aqueous electrochemical mechanisms in actinide residue processing. 1998 annual progress report

    International Nuclear Information System (INIS)

    Blanchard, D.L. Jr.; Burns, C.J.; Morris, D.E.; Smith, W.H.

    1998-01-01

    'New and/or improved solutions to the stabilization and volume reduction of nuclear materials processing residues are urgently needed. Mediated electrochemical oxidation/reduction (MEO/R) processes are one such approach for incinerator ash, combustibles, and other solid residues. However, questions remain concerning the mechanisms of these processes, and how they might be optimized. In addition, further research is merited to extend their range of applicability. Recent advances in the study of heterogeneous electron transfer in solid substrates have opened the door for the re-examination of electron transfer processes associated with redox mediated actinide dissolution. The authors develop a deeper understanding of the thermodynamic and mechanistic aspects of heterogeneous electron transfer that lie at the heart of these MEO/R processes. They will also develop and test new approaches based on the results of these fundamental studies using actual residue materials. Key aspects of this proposal include: (1) determination of the potential windows for oxidation/reduction of colloidal actinide oxides and actinide-bearing oxide and organic substrates and the e transfer kinetic parameters that govern the current--overpotential characteristics; (2) development of adaptations of mediation schemes and application of co-mediation reagents for oxidative and reductive dissolution based on complexation of the surface-bound or solid-phase actinides and/or the dissolved redox mediator;and (3) execution of bench-scale tests of new MEO/R schemes on actual residue materials.'

  12. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management; Le traitement-recyclage du combustible nucleaire use. La separation des actinides - Application a la gestion des dechets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX{sup TM} process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel

  13. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    Energy Technology Data Exchange (ETDEWEB)

    Cassayre, L., E-mail: cassayre@chimie.ups-tlse.fr [Laboratoire de Genie Chimique (LGC), Departement Procedes Electrochimiques, CNRS-UMR 5503, Universite de Toulouse III - Paul Sabatier, 31062 Toulouse (France); Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany)

    2011-07-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl{sub 3}. A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl{sub 3} alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl{sub 2}/UAl{sub 3} molar ratio, providing complete chlorination of the alloy without formation of volatile UCl{sub 5} and UCl{sub 6}. The results showed high efficient chlorination at a temperature of 150 deg. C.

  14. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    International Nuclear Information System (INIS)

    Cassayre, L.; Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P.

    2011-01-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl 3 . A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl 3 alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl 2 /UAl 3 molar ratio, providing complete chlorination of the alloy without formation of volatile UCl 5 and UCl 6 . The results showed high efficient chlorination at a temperature of 150 deg. C.

  15. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  16. On the solvation of actinide ions

    International Nuclear Information System (INIS)

    Hagberg, D.

    2007-01-01

    Complete text of publication follows: Simulation of the universal ions in water solution is a standardized tool commonly used today. The route to simulation of actinide ions is normally tough because the evaluation of the simulation parameters are normally not given empirically and standard Hartree-Fock calculations are not accurate enough. We use multiconfigurational quantum chemical calculations when deriving the parameters for actinide ion-water potential [1]. The parameters are then simulated using classical molecular dynamics. A case study of the Cm 3+ ion will be presented on the poster. Results from the simulations will be also be discussed, e.g. the radial distribution functions and the coordination number. [1] D. Hagberg, G. Karlstrom, B.O. Roos and L. Gagliardi The coordination of uranyl in water: a combined quantum chemical and molecular simulation study J. Am. Chem. Soc. 127, 14250-14256 (2005)

  17. Rapid ion-exchange separations of actinides

    International Nuclear Information System (INIS)

    Usuda, Shigekazu

    1988-01-01

    For the purpose of studying short-lived actinide nuclides, three methods for rapid ion exchange separation of actinide elements with mineral acid-alcohol mixed media were developed: anion exchange with nitric acid-methyl alcohol mixed media to separate the transplutonium and rare earth elements from target material, U or Pu and Al catcher foils; anion exchange with hydrochloric acid-methyl alcohol media to separate Am+Cm, Bk and Cf+Fm from the target, catcher foils and major fission products; and cation exchange with hydrochloric acid-methyl alcohol media and with concentrated hydrochloric acid to separate the transplutonium elements as a group from the rare earths after eliminating the large amounts of U, Al, Cu, Fe etc. The methods enable one to perform rapid and effective separation at elevated temperature (90 deg C) and immediate source preparation for alpha-ray spectrometry. (author) 47 refs.; 10 figs

  18. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  19. Chemistry of the actinide elements. Second edition

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1987-01-01

    This is an exhaustive, updated discourse on the chemistry of Actinides, Volume 1 contains a systematic coverage of the elements Ac, Th, Pa, U, Np, and Pu, which constitutes Part 1 of the work. The characterization of each element is discussed in terms of its nuclear properties, occurrence, preparation, atomic and metallic properties, chemistry of specific compounds, and solution chemistry. The first part of Volume 2 follows the same format as Volume 1 but is confined to the elements Am, Cm, Bk, Cf, and Es, plus a more condensed coverage of the Transeinsteinium elements (Fm, Md, No, Lw, and 104-109). Part 2 of this volume is devoted to a discussion of the actinide elements in general, with a specific focus on electronic spectra, thermodynamic and magnetic properties, the metallic state, structural chemistry, solution kinetics, organometallic chemistry for σ- and π-bonded compounds, and some concluding remarks on the superheavy elements

  20. The thermodynamic functions of gaseous actinide elements

    International Nuclear Information System (INIS)

    Rand, M.H.

    1979-01-01

    The actinide gases have large number of unobserved energy states - up to 3 x 10 6 for Pu(g) - which could contribute to the partition function and its derivatives, from which the thermal functions of these gases are calculated. Existing compilations have simply ignored these levels. By making reasonable assumptions as to the distribution of these energy states, their effect on the functions can be calculated. It is concluded that the existing compilations will be inadequate above approximately 2000K. The effect is particularly marked on the heat capacity. For example, when unobserved levels for Pu(g) are included, the heat capacity of Pu(g) reaches a maximum value of more than 12R at 3200K. Similar considerations will apply to the gaseous actinide ions. (orig.) [de