Labanc, Daniel; Šulka, Martin; Pitoňák, Michal; Černušák, Ivan; Urban, Miroslav; Neogrády, Pavel
2018-05-01
We present a computational study of the stability of small homonuclear beryllium clusters Be7 - 12 in singlet electronic states. Our predictions are based on highly correlated CCSD(T) coupled cluster calculations. Basis set convergence towards the complete basis set limit as well as the role of the 1s core electron correlation are carefully examined. Our CCSD(T) data for binding energies of Be7 - 12 clusters serve as a benchmark for performance assessment of several density functional theory (DFT) methods frequently used in beryllium cluster chemistry. We observe that, from Be10 clusters on, the deviation from CCSD(T) benchmarks is stable with respect to size, and fluctuating within 0.02 eV error bar for most examined functionals. This opens up the possibility of scaling the DFT binding energies for large Be clusters using CCSD(T) benchmark values for smaller clusters. We also tried to find analogies between the performance of DFT functionals for Be clusters and for the valence-isoelectronic Mg clusters investigated recently in Truhlar's group. We conclude that it is difficult to find DFT functionals that perform reasonably well for both beryllium and magnesium clusters. Out of 12 functionals examined, only the M06-2X functional gives reasonably accurate and balanced binding energies for both Be and Mg clusters.
Energy Technology Data Exchange (ETDEWEB)
Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.
2013-01-01
We report the first optimum geometries and harmonic vibrational frequencies for the ring pentamer and several water hexamer (prism, cage, cyclic and two book) at the CCSD(T)/aug-cc-pVDZ level of theory. All five hexamer isomer minima previously reported by MP2 are also minima on the CCSD(T) potential energy surface (PES). In addition, all CCSD(T) minimum energy structures for the n=2-6 cluster isomers are quite close to the ones previously obtained by MP2 on the respective PESs, as confirmed by a modified Procrustes analysis that quantifies the difference between any two cluster geometries. The CCSD(T) results confirm the cooperative effect of the homodromic ring networks (systematic contraction of the nearest-neighbor (nn) intermolecular separations with cluster size) previously reported by MP2, albeit with O-O distances shorter by ~0.02 Å, indicating that MP2 overcorrects this effect. The harmonic frequencies at the minimum geometries were obtained by the double differentiation of the CCSD(T) energy using an efficient scheme based on internal coordinates that reduces the number of required single point energy evaluations by ~15% when compared to the corresponding double differentiation using Cartesian coordinates. Negligible differences between MP2 and CCSD(T) are found for the librational modes, while uniform increases of ~15 and ~25 cm^{-1} are observed for the bending and “free” OH harmonic frequencies. The largest differences between MP2 and CCSD(T) are observed for the harmonic hydrogen bonded frequencies. The CCSD(T) red shifts from the monomer frequencies (Δω) are smaller than the MP2 ones, due to the fact that the former produces shorter elongations (ΔR) of the respective hydrogen bonded OH lengths from the monomer value with respect to the latter. Both the MP2 and CCSD(T) results for the hydrogen bonded frequencies were found to closely follow the relation - Δω = s · ΔR, with a rate of s = 20.3 cm^{-1} / 0.001 Å. The CCSD(T
Czech Academy of Sciences Publication Activity Database
Demovičová, L.; Hobza, Pavel; Řezáč, Jan
2014-01-01
Roč. 16, č. 36 (2014), s. 19115-19121 ISSN 1463-9076 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ 1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : coupled-cluster theory * electron correlation * CCSD(T) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014
Lutnaes, Ola B; Teale, Andrew M; Helgaker, Trygve; Tozer, David J; Ruud, Kenneth; Gauss, Jürgen
2009-10-14
An accurate set of benchmark rotational g tensors and magnetizabilities are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster single-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the results obtained is established for the rotational g tensors by careful comparison with experimental data, taking into account zero-point vibrational corrections. After an analysis of the basis sets employed, extrapolation techniques are used to provide estimates of the basis-set-limit quantities, thereby establishing an accurate benchmark data set. The utility of the data set is demonstrated by examining a wide variety of density functionals for the calculation of these properties. None of the density-functional methods are competitive with the CCSD or CCSD(T) methods. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of density-functional calculations constrained to give the same electronic density. The importance of current dependence in exchange-correlation functionals is discussed in light of this comparison.
Guo, Yang; Becker, Ute; Neese, Frank
2018-03-01
Local correlation theories have been developed in two main flavors: (1) "direct" local correlation methods apply local approximation to the canonical equations and (2) fragment based methods reconstruct the correlation energy from a series of smaller calculations on subsystems. The present work serves two purposes. First, we investigate the relative efficiencies of the two approaches using the domain-based local pair natural orbital (DLPNO) approach as the "direct" method and the cluster in molecule (CIM) approach as the fragment based approach. Both approaches are applied in conjunction with second-order many-body perturbation theory (MP2) as well as coupled-cluster theory with single-, double- and perturbative triple excitations [CCSD(T)]. Second, we have investigated the possible merits of combining the two approaches by performing CIM calculations with DLPNO methods serving as the method of choice for performing the subsystem calculations. Our cluster-in-molecule approach is closely related to but slightly deviates from approaches in the literature since we have avoided real space cutoffs. Moreover, the neglected distant pair correlations in the previous CIM approach are considered approximately. Six very large molecules (503-2380 atoms) were studied. At both MP2 and CCSD(T) levels of theory, the CIM and DLPNO methods show similar efficiency. However, DLPNO methods are more accurate for 3-dimensional systems. While we have found only little incentive for the combination of CIM with DLPNO-MP2, the situation is different for CIM-DLPNO-CCSD(T). This combination is attractive because (1) the better parallelization opportunities offered by CIM; (2) the methodology is less memory intensive than the genuine DLPNO-CCSD(T) method and, hence, allows for large calculations on more modest hardware; and (3) the methodology is applicable and efficient in the frequently met cases, where the largest subsystem calculation is too large for the canonical CCSD(T) method.
International Nuclear Information System (INIS)
Shen Jun; Piecuch, Piotr
2012-01-01
Graphical abstract: The key ideas behind biorthogonal moment expansions in coupled-cluster theory are discussed. Methods that enable merging active-space and renormalized coupled-cluster approaches are proposed and tested. Abstract: After reviewing recent progress in the area of the development of coupled-cluster (CC) methods for quasi-degenerate electronic states that are characterized by stronger non-dynamical correlation effects, including new generations of single- and multi-reference approaches that can handle bond breaking and excited states dominated by many-electron transitions, and after discussing the key elements of the left-eigenstate completely renormalized (CR) CC and equation-of-motion (EOM) CC methods, and the underlying biorthogonal method of moments of CC (MMCC) equations [P. Piecuch, M. Włoch, J. Chem. Phys. 123 (2005) 224105; P. Piecuch, M. Włoch, J.R. Gour, A. Kinal, Chem. Phys. Lett. 418 (2006) 467; M. Włoch, M.D. Lodriguito, P. Piecuch, J.R. Gour, Mol. Phys. 104 (2006) 2149], it is argued that it is beneficial to merge the CR-CC/EOMCC and active-space CC/EOMCC [P. Piecuch, Mol. Phys. 108 (2010) 2987, and references therein] theories into a single formalism. In order to accomplish this goal, the biorthogonal MMCC theory, which provides compact many-body expansions for the differences between the full configuration interaction and CC or, in the case of excited states, EOMCC energies, obtained using conventional truncation schemes in the cluster operator T and excitation operator R μ , is generalized, so that one can correct the CC/EOMCC energies obtained with arbitrary truncations in T and R μ for the selected many-electron correlation effects of interest. The resulting moment expansions, defining the new, Flexible MMCC (Flex-MMCC) formalism, and the ensuing CC(P; Q) hierarchy, proposed in the present work, enable one to correct energies obtained in the active-space CC and EOMCC calculations, in which one selects higher many
Xu, Enhua; Li, Shuhua
2015-03-07
An externally corrected CCSDt (coupled cluster with singles, doubles, and active triples) approach employing four- and five-body clusters from the complete active space self-consistent field (CASSCF) wave function (denoted as ecCCSDt-CASSCF) is presented. The quadruple and quintuple excitation amplitudes within the active space are extracted from the CASSCF wave function and then fed into the CCSDt-like equations, which can be solved in an iterative way as the standard CCSDt equations. With a size-extensive CASSCF reference function, the ecCCSDt-CASSCF method is size-extensive. When the CASSCF wave function is readily available, the computational cost of the ecCCSDt-CASSCF method scales as the popular CCSD method (if the number of active orbitals is small compared to the total number of orbitals). The ecCCSDt-CASSCF approach has been applied to investigate the potential energy surface for the simultaneous dissociation of two O-H bonds in H2O, the equilibrium distances and spectroscopic constants of 4 diatomic molecules (F2(+), O2(+), Be2, and NiC), and the reaction barriers for the automerization reaction of cyclobutadiene and the Cl + O3 → ClO + O2 reaction. In most cases, the ecCCSDt-CASSCF approach can provide better results than the CASPT2 (second order perturbation theory with a CASSCF reference function) and CCSDT methods.
International Nuclear Information System (INIS)
Sun, Yin-Yin; Li, Jin-Feng; Li, Miao-Miao; Zhou, Fu-Qiang; Li, Jian-Li; Yin, Bing
2016-01-01
A systematic density functional theory study including 17 exchange-correlation functionals was performed on different types of superhalogens with high level coupled-cluster single double including perturbative triple excitations (CCSD(T)) results as the reference. The superhalogens selected here cover the ranges from mononuclear to polynuclear structures and from structures with halogen-atom ligands to those with non-halogen ligands, e.g., [MgX 3 ] − , [Mg 2 X 5 ] − , and [Mg 3 X 7 ] − (X = F, Cl, CN). It is clearly indicated that three double-hybrid functionals B2T-PLYP, B2GP-PLYP, B2K-PLYP as well as the range-separated hybrid functional ωB97X are capable of providing results which approach the accuracy at the CCSD(T) level. The basis set effect is usually moderate and, in most cases, it is enough to utilize the basis set of triple-ξ quality, e.g., Def2-TZVP. In addition, the results of the HF and MP2 method are also acceptable here, especially for polynuclear superhalogens where CCSD(T) is probably unpractical
Shen, Jun; Piecuch, Piotr
2012-06-01
After reviewing recent progress in the area of the development of coupled-cluster (CC) methods for quasi-degenerate electronic states that are characterized by stronger non-dynamical correlation effects, including new generations of single- and multi-reference approaches that can handle bond breaking and excited states dominated by many-electron transitions, and after discussing the key elements of the left-eigenstate completely renormalized (CR) CC and equation-of-motion (EOM) CC methods, and the underlying biorthogonal method of moments of CC (MMCC) equations [P. Piecuch, M. Włoch, J. Chem. Phys. 123 (2005) 224105; P. Piecuch, M. Włoch, J.R. Gour, A. Kinal, Chem. Phys. Lett. 418 (2006) 467; M. Włoch, M.D. Lodriguito, P. Piecuch, J.R. Gour, Mol. Phys. 104 (2006) 2149], it is argued that it is beneficial to merge the CR-CC/EOMCC and active-space CC/EOMCC [P. Piecuch, Mol. Phys. 108 (2010) 2987, and references therein] theories into a single formalism. In order to accomplish this goal, the biorthogonal MMCC theory, which provides compact many-body expansions for the differences between the full configuration interaction and CC or, in the case of excited states, EOMCC energies, obtained using conventional truncation schemes in the cluster operator T and excitation operator Rμ, is generalized, so that one can correct the CC/EOMCC energies obtained with arbitrary truncations in T and Rμ for the selected many-electron correlation effects of interest. The resulting moment expansions, defining the new, Flexible MMCC (Flex-MMCC) formalism, and the ensuing CC(P; Q) hierarchy, proposed in the present work, enable one to correct energies obtained in the active-space CC and EOMCC calculations, in which one selects higher many-body components of T and Rμ via active orbitals and which recover much of the relevant non-dynamical and some dynamical electron correlation effects in applications involving potential energy surfaces (PESs) along bond breaking coordinates, for the
Eriksen, Janus J; Matthews, Devin A; Jørgensen, Poul; Gauss, Jürgen
2016-05-21
The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T-n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test set of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T-n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T-n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.
Energy Technology Data Exchange (ETDEWEB)
Eriksen, Janus J., E-mail: janusje@chem.au.dk; Jørgensen, Poul [qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Matthews, Devin A. [The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Gauss, Jürgen [Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany)
2016-05-21
The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T–n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test set of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T–n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T–n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.
Eriksen, Janus J; Matthews, Devin A; Jørgensen, Poul; Gauss, Jürgen
2016-05-21
We extend our assessment of the potential of perturbative coupled cluster (CC) expansions for a test set of open-shell atoms and organic radicals to the description of quadruple excitations. Namely, the second- through sixth-order models of the recently proposed CCSDT(Q-n) quadruples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the prominent CCSDT(Q) and ΛCCSDT(Q) models. From a comparison of the models in terms of their recovery of total CC singles, doubles, triples, and quadruples (CCSDTQ) energies, we find that the performance of the CCSDT(Q-n) models is independent of the reference used (unrestricted or restricted (open-shell) Hartree-Fock), in contrast to the CCSDT(Q) and ΛCCSDT(Q) models, for which the accuracy is strongly dependent on the spin of the molecular ground state. By further comparing the ability of the models to recover relative CCSDTQ total atomization energies, the discrepancy between them is found to be even more pronounced, stressing how a balanced description of both closed- and open-shell species-as found in the CCSDT(Q-n) models-is indeed of paramount importance if any perturbative CC model is to be of chemical relevance for high-accuracy applications. In particular, the third-order CCSDT(Q-3) model is found to offer an encouraging alternative to the existing choices of quadruples models used in modern computational thermochemistry, since the model is still only of moderate cost, albeit markedly more costly than, e.g., the CCSDT(Q) and ΛCCSDT(Q) models.
Pathak, Arup Kumar; Samanta, Alok Kumar; Maity, Dilip Kumar
2011-04-07
We report conformationally averaged VDEs (VDE(w)(n)) for different sizes of NO(3)(-)·nH(2)O clusters calculated by using uncorrelated HF, correlated hybrid density functional (B3LYP, BHHLYP) and correlated ab intio (MP2 and CCSD(T)) theory. It is observed that the VDE(w)(n) at the B3LYP/6-311++G(d,p), B3LYP/Aug-cc-Pvtz and CCSD(T)/6-311++G(d,p) levels is very close to the experimentally measured VDE. It is shown that the use of calculated results of the conformationally averaged VDE for small-sized solvated negatively-charged clusters and a microscopic theory-based general expression for the same provides a route to obtain the VDE for a wide range of cluster sizes, including bulk.
Gold chloride clusters with Au(III) and Au(I) probed by FT-ICR mass spectrometry and MP2 theory.
Lemke, Kono H
2014-05-07
Microsolvated clusters of gold chloride are probed by electrospray ionization mass spectrometry (ESI-MS) and scalar relativistic electronic structure calculations. Electrospray ionization of aqueous AuCl3 leads to mononuclear clusters of types [AuCl2](+)(H2O)n (n = 0-4), [AuOHCl](+)(H2O)n (n = 0-1) and [AuCl2](+)(HCl)2(H2O)n (n = 0-4). In addition, strong ion signals due to dinuclear [Au2Cl5-xOHx](+)(H2O)n (x = 0-1) are present in ESI mass spectra of aqueous AuCl3, with the abundance of individual dinuclear species controlled by the concentration-dependent variation of the precursor complexes [AuCl2-xOHx](+)(H2O)n and AuCl3. Equilibrium structures, energies and thermodynamic properties of mono- and dinuclear gold clusters have been predicted using MP2 and CCSD(T) theory, and these data have been applied to examine the influence of microsolvation on cluster stability. Specifically, results from CCSD(T) calculations indicate that non-covalently bound ion-neutral complexes Au(+)(Cl2)(H2O)n, with formal Au(I), are the dominant forms of mononuclear gold with n = 0-2, while higher hydrates (n > 2) are covalently bound [AuCl2](+)(H2O)n complexes in which gold exists as Au(III). MP2 calculations show that the lowest energy structure of dinuclear gold is an ion-molecule cluster [Au2Cl(Cl2)2](+) consisting of a single-bridged digold-chloronium ion bound end-on to two dichlorine ligands, with two higher energy isomers, single-bridged [Au2Cl3(Cl2)](+) and double-bridged [Au2Cl5](+) clusters. Finally, AuAu interactions in the singly-bridged clusters [Au2Cl(Cl2)2](+)(H2O)n and [Au2Cl3(Cl2)](+)(H2O)n are examined employing a wide range of computational tools, including natural bond order (NBO) analysis and localized orbital locator (LOL) profiles.
Theoretical studies of the global minima and polarizabilities of small lithium clusters
Energy Technology Data Exchange (ETDEWEB)
Hu, Hanshi; Zhao, Ya-Fan; Hammond, Jeffrey R.; Bylaska, Eric J.; Apra, Edoardo; van Dam, Hubertus JJ; Li, Jun; Govind, Niranjan; Kowalski, Karol
2016-01-16
Lithium clusters Lin (n=1-20) have been investigated with density functional theory (DFT) and coupled—cluster (CC) methods. The global-minimum structures are located via an improved basin---hopping algorithm and the lowest energy Lin isomers are confirmed with DFT geometry optimizations, CCSD(T) energy calculations, and by comparing simulated and experimental polarizabilities. The tetrahedral Li4 structure is found to be the basic building block of lithium clusters Lin (n=6-20). Simulated polarizabilities, including thermal effects at room temperature, are in good agreement with measured isotropic polarizabilities.
CCSD[T] Describes Noncovalent Interactions Better than the CCSD(T), CCSD(TQ), and CCSDT Methods
Czech Academy of Sciences Publication Activity Database
Řezáč, Jan; Šimová, Lucia; Hobza, Pavel
2013-01-01
Roč. 9, č. 1 (2013), s. 364-369 ISSN 1549-9618 Grant - others:European Social Foundation(XE) CZ1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : potential-energy curve * coupled-cluster theory * electron-correlation * thermophysical properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013
Projected coupled cluster theory.
Qiu, Yiheng; Henderson, Thomas M; Zhao, Jinmo; Scuseria, Gustavo E
2017-08-14
Coupled cluster theory is the method of choice for weakly correlated systems. But in the strongly correlated regime, it faces a symmetry dilemma, where it either completely fails to describe the system or has to artificially break certain symmetries. On the other hand, projected Hartree-Fock theory captures the essential physics of many kinds of strong correlations via symmetry breaking and restoration. In this work, we combine and try to retain the merits of these two methods by applying symmetry projection to broken symmetry coupled cluster wave functions. The non-orthogonal nature of states resulting from the application of symmetry projection operators furnishes particle-hole excitations to all orders, thus creating an obstacle for the exact evaluation of overlaps. Here we provide a solution via a disentanglement framework theory that can be approximated rigorously and systematically. Results of projected coupled cluster theory are presented for molecules and the Hubbard model, showing that spin projection significantly improves unrestricted coupled cluster theory while restoring good quantum numbers. The energy of projected coupled cluster theory reduces to the unprojected one in the thermodynamic limit, albeit at a much slower rate than projected Hartree-Fock.
Czech Academy of Sciences Publication Activity Database
Li, F.; Wang, L.; Zhao, J.; Xie, J. R. H.; Riley, Kevin Eugene; Chen, Z.
2011-01-01
Roč. 130, 2/3 (2011), s. 341-352 ISSN 1432-881X Institutional research plan: CEZ:AV0Z40550506 Keywords : water cluster * density functional theory * MP2 . CCSD(T) * basis set * relative energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.162, year: 2011
Energy Technology Data Exchange (ETDEWEB)
Piecuch, Piotr; Li, Wei; Lutz, Jesse J. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Włoch, Marta [Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931 (United States); Gour, Jeffrey R. [Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA and Department of Chemistry, Stanford University, Stanford, California 94305 (United States)
2015-01-22
Coupled-cluster (CC) theory has become the de facto standard for high-accuracy molecular calculations, but the widely used CC and equation-of-motion (EOM) CC approaches, such as CCSD(T) and EOMCCSD, have difficulties with capturing stronger electron correlations that characterize multi-reference molecular problems. This presentation demonstrates that many of these difficulties can be addressed by exploiting the completely renormalized (CR) CC and EOMCC approaches, such as CR-CC(2,3), CR-EOMCCSD(T), and CR-EOMCC(2,3), and their local correlation counterparts applicable to systems with hundreds of atoms, and the active-space CC/EOMCC approaches, such as CCSDt and EOMCCSDt, and their extensions to valence systems via the electron-attached and ionized formalisms.
Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics
Ünal, Aslı; Bozkaya, Uǧur
2018-03-01
An extensive study of structures and energetics for anionic pentamer and hexamer clusters is performed employing high level ab initio quantum chemical methods, such as the density-fitted orbital-optimized linearized coupled-cluster doubles (DF-OLCCD), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] methods. In this study, sixteen anionic pentamer clusters and eighteen anionic hexamer clusters are reported. Relative, binding, and vertical detachment energies (VDE) are presented at the complete basis set limit (CBS), extrapolating energies of aug4-cc-pVTZ and aug4-cc-pVQZ custom basis sets. The largest VDE values obtained at the CCSD(T)/CBS level are 9.9 and 11.2 kcal mol-1 for pentamers and hexamers, respectively, which are in very good agreement with the experimental values of 9.5 and 11.1 kcal mol-1. Our binding energy results, at the CCSD(T)/CBS level, indicate strong bindings in anionic clusters due to hydrogen bond interactions. The average binding energy per water molecules is -5.0 and -5.3 kcal mol-1 for pentamers and hexamers, respectively. Furthermore, our results demonstrate that the DF-OLCCD method approaches to the CCSD(T) quality for anionic clusters. The inexpensive analytic gradients of DF-OLCCD compared to CCSD or CCSD(T) make it very attractive for high-accuracy studies.
Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration.
Soniat, Marielle; Rogers, David M; Rempe, Susan B
2015-07-14
A challenge in density functional theory is developing functionals that simultaneously describe intermolecular electron correlation and electron delocalization. Recent exchange-correlation functionals address those two issues by adding corrections important at long ranges: an atom-centered pairwise dispersion term to account for correlation and a modified long-range component of the electron exchange term to correct for delocalization. Here we investigate how those corrections influence the accuracy of binding free energy predictions for sodium-water clusters. We find that the dual-corrected ωB97X-D functional gives cluster binding energies closest to high-level ab initio methods (CCSD(T)). Binding energy decomposition shows that the ωB97X-D functional predicts the smallest ion-water (pairwise) interaction energy and larger multibody contributions for a four-water cluster than most other functionals - a trend consistent with CCSD(T) results. Also, ωB97X-D produces the smallest amounts of charge transfer and the least polarizable waters of the density functionals studied, which mimics the lower polarizability of CCSD. When compared with experimental binding free energies, however, the exchange-corrected CAM-B3LYP functional performs best (error <1 kcal/mol), possibly because of its parametrization to experimental formation enthalpies. For clusters containing more than four waters, "split-shell" coordination must be considered to obtain accurate free energies in comparison with experiment.
International Nuclear Information System (INIS)
Hirata, So
2003-01-01
We develop a symbolic manipulation program and program generator (Tensor Contraction Engine or TCE) that automatically derives the working equations of a well-defined model of second-quantized many-electron theories and synthesizes efficient parallel computer programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs valid contractions of creation and annihilation operators according to Wick's theorem, consolidates identical terms, and reduces the expressions into the form of multiple tensor contractions acted by permutation operators. Subsequently, it determines the binary contraction order for each multiple tensor contraction with the minimal operation and memory cost, factorizes common binary contractions (defines intermediate tensors), and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and index permutations is translated into an optimized program that is combined with the NWChem and UTChem computational chemistry software packages. The programs synthesized by TCE take advantage of spin symmetry, Abelian point-group symmetry, and index permutation symmetry at every stage of calculations to minimize the number of arithmetic operations and storage requirement, adjust the peak local memory usage by index range tiling, and support parallel I/O interfaces and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic derivation and implementation of parallel programs for various models of configuration-interaction theory (CISD, CISDT, CISDTQ), many-body perturbation theory[MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and CCSDTQ)
Photodetachment and UV-Vis spectral properties of Cl2rad -·nHO clusters: Extrapolation to bulk
Pathak, A. K.; Mukherjee, T.; Maity, D. K.
2008-03-01
Vertical detachment energy (VDE) and UV-Vis spectra of Cl2rad -·nHO clusters ( n = 1-11) are reported based on first principle electronic structure calculations. VDE of the hydrated clusters are calculated following second order Moller-Plesset perturbation (MP2) as well as coupled cluster theory with 6-311++G(d,p) set of basis function. The excess electron in these hydrated clusters is mainly localized over the solute Cl atoms. A linear relationship is obtained for VDE vs. ( n + 2.6) -1/3 and bulk VDE of Cl2rad - aqueous solution is calculated as 10.61 eV at CCSD(T) level of theory. UV-Vis spectra of these hydrated clusters are calculated applying CI with single electron (CIS) excitation procedure. Simulated UV-Vis spectra of Cl2rad -·10HO cluster is noted to be in excellent agreement with the reported spectra of Cl2rad - (aq) system, λmax for Cl2rad -·11HO system is calculated to be red shifted though.
Karthikeyan, S; Singh, Jiten N; Park, Mina; Kumar, Rajesh; Kim, Kwang S
2008-06-28
Important structural isomers of NH(4) (+)(H(2)O)(n=4,6) have been studied by using density functional theory, Moller-Plesset second order perturbation theory, and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The zero-point energy (ZPE) correction to the complete basis set limit of the CCSD(T) binding energies and free energies is necessary to identify the low energy structures for NH(4) (+)(H(2)O)(n=4,6) because otherwise wrong structures could be assigned for the most probable structures. For NH(4) (+)(H(2)O)(6), the cage-type structure, which is more stable than the previously reported open structure before the ZPE correction, turns out to be less stable after the ZPE correction. In first principles Car-Parrinello molecular dynamics simulations around 100 K, the combined power spectrum of three lowest energy isomers of NH(4) (+)(H(2)O)(4) and two lowest energy isomers of NH(4) (+)(H(2)O)(6) explains each experimental IR spectrum.
Computational Aspects of Nuclear Coupled-Cluster Theory
International Nuclear Information System (INIS)
Dean, David Jarvis; Hagen, Gaute; Hjorth-Jensen, M.; Papenbrock, T.F.
2008-01-01
Coupled-cluster theory represents an important theoretical tool that we use to solve the quantum many-body problem. Coupled-cluster theory also lends itself to computation in a parallel computing environment. In this article, we present selected results from ab initio studies of stable and weakly bound nuclei utilizing computational techniques that we employ to solve coupled-cluster theory. We also outline several perspectives for future research directions in this area.
Energy Technology Data Exchange (ETDEWEB)
Azar, Richard Julian, E-mail: julianazar2323@berkeley.edu; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2015-05-28
Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidation of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order.
Richard, Ryan M.
2016-01-05
© 2016 American Chemical Society. In designing organic materials for electronics applications, particularly for organic photovoltaics (OPV), the ionization potential (IP) of the donor and the electron affinity (EA) of the acceptor play key roles. This makes OPV design an appealing application for computational chemistry since IPs and EAs are readily calculable from most electronic structure methods. Unfortunately reliable, high-accuracy wave function methods, such as coupled cluster theory with single, double, and perturbative triples [CCSD(T)] in the complete basis set (CBS) limit are too expensive for routine applications to this problem for any but the smallest of systems. One solution is to calibrate approximate, less computationally expensive methods against a database of high-accuracy IP/EA values; however, to our knowledge, no such database exists for systems related to OPV design. The present work is the first of a multipart study whose overarching goal is to determine which computational methods can be used to reliably compute IPs and EAs of electron acceptors. This part introduces a database of 24 known organic electron acceptors and provides high-accuracy vertical IP and EA values expected to be within ±0.03 eV of the true non-relativistic, vertical CCSD(T)/CBS limit. Convergence of IP and EA values toward the CBS limit is studied systematically for the Hartree-Fock, MP2 correlation, and beyond-MP2 coupled cluster contributions to the focal point estimates.
Chaos theory perspective for industry clusters development
Yu, Haiying; Jiang, Minghui; Li, Chengzhang
2016-03-01
Industry clusters have outperformed in economic development in most developing countries. The contributions of industrial clusters have been recognized as promotion of regional business and the alleviation of economic and social costs. It is no doubt globalization is rendering clusters in accelerating the competitiveness of economic activities. In accordance, many ideas and concepts involve in illustrating evolution tendency, stimulating the clusters development, meanwhile, avoiding industrial clusters recession. The term chaos theory is introduced to explain inherent relationship of features within industry clusters. A preferred life cycle approach is proposed for industrial cluster recessive theory analysis. Lyapunov exponents and Wolf model are presented for chaotic identification and examination. A case study of Tianjin, China has verified the model effectiveness. The investigations indicate that the approaches outperform in explaining chaos properties in industrial clusters, which demonstrates industrial clusters evolution, solves empirical issues and generates corresponding strategies.
Theory of homogeneous condensation from small nuclei. I. Modified Mayer theory of physical clusters
International Nuclear Information System (INIS)
Lockett, A.M. III
1980-01-01
A theory of physical clusters is developed within the framework of the Theory of Imperfect Gases. Physical monomers and clusters are redefined diagrammatically thereby removing the unphysical nature of the usual Mayer clusters while retaining essentially all of the desirable features of the Mayer theory. The resulting formulation is simple, unambiguous, and well suited for incorporation into a kinetic theory of condensation which is computationally tractable
DEFF Research Database (Denmark)
Faber, Rasmus; Buczek, Aneta; Kupka, Teobald
2017-01-01
), coupled cluster singles and doubles (CCSD), coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)) and Kohn-Sham density functional theory (DFT) with the B3LYP exchange-correlation functional methods in combination with the second order vibrational perturbation theory (VPT2...
de Lara-Castells, María Pilar; Stoll, Hermann; Mitrushchenkov, Alexander O
2014-08-21
As a prototypical dispersion-dominated physisorption problem, we analyze here the performance of dispersionless and dispersion-accounting methodologies on the helium interaction with cluster models of the TiO2(110) surface. A special focus has been given to the dispersionless density functional dlDF and the dlDF+Das construction for the total interaction energy (K. Pernal, R. Podeswa, K. Patkowski, and K. Szalewicz, Phys. Rev. Lett. 2009, 109, 263201), where Das is an effective interatomic pairwise functional form for the dispersion. Likewise, the performance of symmetry-adapted perturbation theory (SAPT) method is evaluated, where the interacting monomers are described by density functional theory (DFT) with the dlDF, PBE, and PBE0 functionals. Our benchmarks include CCSD(T)-F12b calculations and comparative analysis on the nuclear bound states supported by the He-cluster potentials. Moreover, intra- and intermonomer correlation contributions to the physisorption interaction are analyzed through the method of increments (H. Stoll, J. Chem. Phys. 1992, 97, 8449) at the CCSD(T) level of theory. This method is further applied in conjunction with a partitioning of the Hartree-Fock interaction energy to estimate individual interaction energy components, comparing them with those obtained using the different SAPT(DFT) approaches. The cluster size evolution of dispersionless and dispersion-accounting energy components is then discussed, revealing the reduced role of the dispersionless interaction and intramonomer correlation when the extended nature of the surface is better accounted for. On the contrary, both post-Hartree-Fock and SAPT(DFT) results clearly demonstrate the high-transferability character of the effective pairwise dispersion interaction whatever the cluster model is. Our contribution also illustrates how the method of increments can be used as a valuable tool not only to achieve the accuracy of CCSD(T) calculations using large cluster models but also to
Excess electrons in methanol clusters: Beyond the one-electron picture
Pohl, Gábor; Mones, Letif; Turi, László
2016-10-01
We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.
Rapacioli, Mathias; Spiegelman, Fernand; Talbi, Dahbia; Mineva, Tzonka; Goursot, Annick; Heine, Thomas; Seifert, Gotthard
2009-06-01
The density functional based tight binding (DFTB) is a semiempirical method derived from the density functional theory (DFT). It inherits therefore its problems in treating van der Waals clusters. A major error comes from dispersion forces, which are poorly described by commonly used DFT functionals, but which can be accounted for by an a posteriori treatment DFT-D. This correction is used for DFTB. The self-consistent charge (SCC) DFTB is built on Mulliken charges which are known to give a poor representation of Coulombic intermolecular potential. We propose to calculate this potential using the class IV/charge model 3 definition of atomic charges. The self-consistent calculation of these charges is introduced in the SCC procedure and corresponding nuclear forces are derived. Benzene dimer is then studied as a benchmark system with this corrected DFTB (c-DFTB-D) method, but also, for comparison, with the DFT-D. Both methods give similar results and are in agreement with references calculations (CCSD(T) and symmetry adapted perturbation theory) calculations. As a first application, pyrene dimer is studied with the c-DFTB-D and DFT-D methods. For coronene clusters, only the c-DFTB-D approach is used, which finds the sandwich configurations to be more stable than the T-shaped ones.
GW and Bethe-Salpeter study of small water clusters
Energy Technology Data Exchange (ETDEWEB)
Blase, Xavier, E-mail: xavier.blase@neel.cnrs.fr; Boulanger, Paul [CNRS, Institut NEEL, F-38042 Grenoble (France); Bruneval, Fabien [CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette (France); Fernandez-Serra, Marivi [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Duchemin, Ivan [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France)
2016-01-21
We study within the GW and Bethe-Salpeter many-body perturbation theories the electronic and optical properties of small (H{sub 2}O){sub n} water clusters (n = 1-6). Comparison with high-level CCSD(T) Coupled-Cluster at the Single Double (Triple) levels and ADC(3) Green’s function third order algebraic diagrammatic construction calculations indicates that the standard non-self-consistent G{sub 0}W{sub 0}@PBE or G{sub 0}W{sub 0}@PBE0 approaches significantly underestimate the ionization energy by about 1.1 eV and 0.5 eV, respectively. Consequently, the related Bethe-Salpeter lowest optical excitations are found to be located much too low in energy when building transitions from a non-self-consistent G{sub 0}W{sub 0} description of the quasiparticle spectrum. Simple self-consistent schemes, with update of the eigenvalues only, are shown to provide a weak dependence on the Kohn-Sham starting point and a much better agreement with reference calculations. The present findings rationalize the theory to experiment possible discrepancies observed in previous G{sub 0}W{sub 0} and Bethe-Salpeter studies of bulk water. The increase of the optical gap with increasing cluster size is consistent with the evolution from gas to dense ice or water phases and results from an enhanced screening of the electron-hole interaction.
What Qualifies as a Cluster Theory?
DEFF Research Database (Denmark)
Maskell, Peter; Kebir, Leïla
2005-01-01
This paper investigates the theoretical backgrounds of the `cluster' and proposes a framework aiming at drawing the contour of cluster theory.The profundity of the notion of `clusters' is arguably conditional on the coherence of four fundamental issues associated with the concept: 1) the economic...... and social benefits that may accrue to firms when clustering or co-locating (the existence argument); 2) the diseconomiesencountered when clustering exceeds certain geographical and sectoral thresholds (the extension argument); 3) the advantages obtained by exploiting intra-cluster synergies rather engaging...... in external interaction (the exchange argument); and, finally, 4) the possible erosionof economies and onset of diseconomies over the lifecycle of the cluster (the exhaustion argument).Each of these four issues is examined in terms of three relevant major theoretical frameworks that can be brought to bear...
A view on coupled cluster perturbation theory using a bivariational Lagrangian formulation.
Kristensen, Kasper; Eriksen, Janus J; Matthews, Devin A; Olsen, Jeppe; Jørgensen, Poul
2016-02-14
We consider two distinct coupled cluster (CC) perturbation series that both expand the difference between the energies of the CCSD (CC with single and double excitations) and CCSDT (CC with single, double, and triple excitations) models in orders of the Møller-Plesset fluctuation potential. We initially introduce the E-CCSD(T-n) series, in which the CCSD amplitude equations are satisfied at the expansion point, and compare it to the recently developed CCSD(T-n) series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)], in which not only the CCSD amplitude, but also the CCSD multiplier equations are satisfied at the expansion point. The computational scaling is similar for the two series, and both are term-wise size extensive with a formal convergence towards the CCSDT target energy. However, the two series are different, and the CCSD(T-n) series is found to exhibit a more rapid convergence up through the series, which we trace back to the fact that more information at the expansion point is utilized than for the E-CCSD(T-n) series. The present analysis can be generalized to any perturbation expansion representing the difference between a parent CC model and a higher-level target CC model. In general, we demonstrate that, whenever the parent parameters depend upon the perturbation operator, a perturbation expansion of the CC energy (where only parent amplitudes are used) differs from a perturbation expansion of the CC Lagrangian (where both parent amplitudes and parent multipliers are used). For the latter case, the bivariational Lagrangian formulation becomes more than a convenient mathematical tool, since it facilitates a different and faster convergent perturbation series than the simpler energy-based expansion.
Fragmentation of neutral carbon clusters formed by high velocity atomic collision
International Nuclear Information System (INIS)
Martinet, G.
2004-05-01
The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)
Homological methods, representation theory, and cluster algebras
Trepode, Sonia
2018-01-01
This text presents six mini-courses, all devoted to interactions between representation theory of algebras, homological algebra, and the new ever-expanding theory of cluster algebras. The interplay between the topics discussed in this text will continue to grow and this collection of courses stands as a partial testimony to this new development. The courses are useful for any mathematician who would like to learn more about this rapidly developing field; the primary aim is to engage graduate students and young researchers. Prerequisites include knowledge of some noncommutative algebra or homological algebra. Homological algebra has always been considered as one of the main tools in the study of finite-dimensional algebras. The strong relationship with cluster algebras is more recent and has quickly established itself as one of the important highlights of today’s mathematical landscape. This connection has been fruitful to both areas—representation theory provides a categorification of cluster algebras, wh...
Morgan, W James; Matthews, Devin A; Ringholm, Magnus; Agarwal, Jay; Gong, Justin Z; Ruud, Kenneth; Allen, Wesley D; Stanton, John F; Schaefer, Henry F
2018-03-13
Geometric energy derivatives which rely on core-corrected focal-point energies extrapolated to the complete basis set (CBS) limit of coupled cluster theory with iterative and noniterative quadruple excitations, CCSDTQ and CCSDT(Q), are used as elements of molecular gradients and, in the case of CCSDT(Q), expansion coefficients of an anharmonic force field. These gradients are used to determine the CCSDTQ/CBS and CCSDT(Q)/CBS equilibrium structure of the S 0 ground state of H 2 CO where excellent agreement is observed with previous work and experimentally derived results. A fourth-order expansion about this CCSDT(Q)/CBS reference geometry using the same level of theory produces an exceptional level of agreement to spectroscopically observed vibrational band origins with a MAE of 0.57 cm -1 . Second-order vibrational perturbation theory (VPT2) and variational discrete variable representation (DVR) results are contrasted and discussed. Vibration-rotation, anharmonicity, and centrifugal distortion constants from the VPT2 analysis are reported and compared to previous work. Additionally, an initial application of a sum-over-states fourth-order vibrational perturbation theory (VPT4) formalism is employed herein, utilizing quintic and sextic derivatives obtained with a recursive algorithmic approach for response theory.
Assessing Many-Body Effects of Water Self-Ions. I: OH-(H2O) n Clusters.
Egan, Colin K; Paesani, Francesco
2018-04-10
The importance of many-body effects in the hydration of the hydroxide ion (OH - ) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the CCSD(T) level of theory, extrapolated to the complete basis set limit, for the low-lying isomers of OH - (H 2 O) n clusters, with n = 1-5. This is accomplished by partitioning individual fragments extracted from the whole clusters into "groups" that are classified by both the number of OH - and water molecules and the hydrogen bonding connectivity within each fragment. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method, this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling OH - hydration. Furthermore, the rapid convergence of the many-body expansion of the interaction energy also suggests a rigorous path for the development of analytical potential energy functions capable of describing individual OH - -water many-body terms, with chemical accuracy. Finally, a comparison between the reference CCSD(T) many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that range-separated, dispersion-corrected, hybrid functionals exhibit the highest accuracy, while GGA functionals, with or without dispersion corrections, are inadequate to describe OH - -water interactions.
Singlet-paired coupled cluster theory for open shells
Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2016-06-01
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.
Singlet-paired coupled cluster theory for open shells
International Nuclear Information System (INIS)
Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2016-01-01
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.
CCSD(T) calculations of stabilities and properties of confined systems
Energy Technology Data Exchange (ETDEWEB)
Holka, F.; Urban, M. [Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Bottova 25, SK-917 24 Trnava (Slovakia); Melicherčík, M.; Neogrády, P. [Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava (Slovakia); Paldus, J. [Department of Applied Mathematics, University of Waterloo, N2L 3G1, Ontario (Canada)
2015-01-22
We analyze energies, electron affinities and polarizabilities of small anions exposed to an external confinement. The second electron in free O{sup 2−} and S{sup 2−} anions is unbound. We investigate the stabilizing effect of the spherical harmonic-oscillator confining potential ω. on these anions employing the Hartree-Fock stability analysis as introduced by Čížek and Paldus. With increasing strength of the external harmonic-oscillator confinement potential ω the broken symmetry (BS) solutions are systematically eliminated. For ω larger than 0.1 all BS solutions for O{sup 2−} disappear. For ω larger than 0.13 the CCSD(T) energy of O{sup 2−} becomes more negative than the energy of the singly charged O{sup −} anion. We relate the harmonic-oscillator confining potential to a crystalline environment in which the O{sup 2−} and S{sup 2−} anions are stable. We also present a model allowing calculations of the in-crystal polarizabilities of anions. The model is based on CCSD(T) calculations of static polarizabilities of selected anions exposed to the spherical harmonic-oscillator confining potential ω This artificial confinement potential ω is then related to the ionic radii of the cation in representative crystal lattices. We investigate the polarizability of O{sup 2−} and S{sup 2−} anions in MgO, MgS, CaO, CaS, SrO, SrS, BaO and BaS crystals. We compare our results with alternative models for in-crystal polarizabilities. External confinement also stabilizes the uracil anion U{sup −}, as is shown by calculations with a stepwise micro-hydration of U{sup −}. Upon hydration is the CCSD(T) adiabatic electron affinity (AEA) of uracil enhanced by about 250 up to 570 meV in comparison with AEA of the isolated molecule, depending on the geometry of the hydrated uracil anion complex. We tried to find an analogy of the stabilization effect of the external confinement on the otherwise unstable anions. In uracil and its anion is the external
Three- and four-body nonadditivities in nucleic acid tetramers: a CCSD(T) study
Czech Academy of Sciences Publication Activity Database
Pitoňák, Michal; Neogrady, P.; Hobza, Pavel
2010-01-01
Roč. 12, č. 6 (2010), s. 1369-1378 ISSN 1463-9076 R&D Projects: GA MŠk LC512 Grant - others:VEGA(SK) 1/0428/09 Institutional research plan: CEZ:AV0Z40550506 Keywords : DNA * dispersion energy * nonadditivity * CCSD(T) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010
Issues of branch clusters development: from theory to practice
Directory of Open Access Journals (Sweden)
Bondarenko N. E.
2016-07-01
Full Text Available the article deals with objective preconditions of forming stable bases of the cluster theory and its specific features, the attention is paid to historical aspects of dialectical development of the cluster theory. The authors highlighted the main tasks, accomplishment of which is necessary for achieving an effective cluster policy in the system of the national economy. The opportunity of using the advantages and potential opportunities of clusters in respect of the agricultural sphere of the national economy is grounded. The model of agro-industrial clusters is considered as one of the ways to increase competitive advantage of the agro-industrial complex, to achieve reproduction on an enlarged scale and to solve tasks of the national victualling. An algorithm of analyzing factors of forming clusters in the agricultural sector of russian economy is proposed.
Stochastic coupled cluster theory: Efficient sampling of the coupled cluster expansion
Scott, Charles J. C.; Thom, Alex J. W.
2017-09-01
We consider the sampling of the coupled cluster expansion within stochastic coupled cluster theory. Observing the limitations of previous approaches due to the inherently non-linear behavior of a coupled cluster wavefunction representation, we propose new approaches based on an intuitive, well-defined condition for sampling weights and on sampling the expansion in cluster operators of different excitation levels. We term these modifications even and truncated selections, respectively. Utilising both approaches demonstrates dramatically improved calculation stability as well as reduced computational and memory costs. These modifications are particularly effective at higher truncation levels owing to the large number of terms within the cluster expansion that can be neglected, as demonstrated by the reduction of the number of terms to be sampled when truncating at triple excitations by 77% and hextuple excitations by 98%.
Theoretical characterization of the F(2)O(3) molecule by coupled-cluster methods.
Huang, Ming-Ju; Watts, John D
2010-09-23
Coupled-cluster calculations with extended basis sets that include noniterative connected triple excitations (CCSD(T)) have been used to study the FOOOF isomer of F(2)O(3). Second-order Moller-Plessett perturbation theory (MP2) and density-functional theory (B3LYP functional) calculations have also been performed for comparison. Two local minima of similar energy, namely, conformers of C(2) and C(s) symmetry have been located. Structures, harmonic vibrational frequencies, and standard enthalpies and free energies of formation have been calculated. The calculated bond lengths of F(2)O(3) are more characteristic of those in F(2)O and a "normal" peroxide than the unusual bond lengths in F(2)O(2). Both conformers have equal F-O and O-O bond lengths, contrary to a recent suggestion of an unsymmetrical structure. The harmonic vibrational frequencies can aid possible identification of gaseous F(2)O(3). The calculated Δ(f)H° and Δ(f)G° are 110 and 173 kJ mol(-1), respectively. These values are based on extrapolation of CCSD(T) results with augmented triple- and quadruple-ζ basis sets and are expected to be within chemical accuracy (i.e., 1 kcal mol(-1) or 4 kJ mol(-1)). F(2)O(3) is calculated to be stable to decomposition to either FO + FOO or F(2) + O(3), but unstable to decomposition to its elements, to F(2)O(2) + (1)/(2)O(2), and to F(2)O + O(2).
Energy Technology Data Exchange (ETDEWEB)
Peng, Bo; Govind, Niranjan; Apra, Edoardo; Klemm, Michael; Hammond, Jeff R.; Kowalski, Karol
2017-02-03
In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent of nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.
Can Single-Reference Coupled Cluster Theory Describe Static Correlation?
Bulik, Ireneusz W; Henderson, Thomas M; Scuseria, Gustavo E
2015-07-14
While restricted single-reference coupled cluster theory truncated to singles and doubles (CCSD) provides very accurate results for weakly correlated systems, it usually fails in the presence of static or strong correlation. This failure is generally attributed to the qualitative breakdown of the reference, and can accordingly be corrected by using a multideterminant reference, including higher-body cluster operators in the ansatz, or allowing symmetry breaking in the reference. None of these solutions are ideal; multireference coupled cluster is not black box, including higher-body cluster operators is computationally demanding, and allowing symmetry breaking leads to the loss of good quantum numbers. It has long been recognized that quasidegeneracies can instead be treated by modifying the coupled cluster ansatz. The recently introduced pair coupled cluster doubles (pCCD) approach is one such example which avoids catastrophic failures and accurately models strong correlations in a symmetry-adapted framework. Here, we generalize pCCD to a singlet-paired coupled cluster model (CCD0) intermediate between coupled cluster doubles and pCCD, yielding a method that possesses the invariances of the former and much of the stability of the latter. Moreover, CCD0 retains the full structure of coupled cluster theory, including a fermionic wave function, antisymmetric cluster amplitudes, and well-defined response equations and density matrices.
Bartlett, Rodney J; Musiał, Monika
2006-11-28
The nCC hierarchy of coupled-cluster approximations, where n guarantees exactness for n electrons and all products of n electrons are derived and applied to several illustrative problems. The condition of exactness for n=2 defines nCCSD=2CC, with nCCSDT=3CC and nCCSDTQ=4CC being exact for three and four electrons. To achieve this, the minimum number of diagrams is evaluated, which is less than in the corresponding CC model. For all practical purposes, nCC is also the proper definition of a size-extensive CI. 2CC is also an orbitally invariant coupled electron pair approximation. The numerical results of nCC are close to those for the full CC variant, and in some cases are closer to the full CI reference result. As 2CC is exact for separated electron pairs, it is the natural zeroth-order approximation for the correlation problem in molecules with other effects introduced as these units start to interact. The nCC hierarchy of approximations has all the attractive features of CC including its size extensivity, orbital invariance, and orbital insensitivity, but in a conceptually appealing form suited to bond breaking, while being computationally less demanding. Excited states from the equation of motion (EOM-2CC) are also reported, which show results frequently approaching those of EOM-CCSDT.
A gluon cluster solution of effective Yang-Mills theory
Pavlovsky, O V
2001-01-01
A classical solution of the effective Yang-Mills (YM) theory with a finite energy and nonstandard Lagrangian was obtained. Influence of vacuum polarization on gluon cluster formation was discussed. Appearance of cluster solutions in the theory of non-Abelian fields can take place only if the result goes beyond the framework of pure YM theory. It is shown that account of quantum effects of polarized vacuum in the presence of a classical gluon field can also result in formation of the solutions. Solutions with the finite intrinsic energy are provided. Besides, fields of colour groups SU(2) were studied
Scaled MP3 Non-Covalent Interaction Energies Agree Closely with Accurate CCSD(T) Benchmark Data
Czech Academy of Sciences Publication Activity Database
Pitoňák, Michal; Neogrady, P.; Černý, Jiří; Grimme, S.; Hobza, Pavel
2009-01-01
Roč. 10, č. 1 (2009), s. 282-289 ISSN 1439-4235 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : Scaled MP3 * CCSD(T) Benchmark Data * Extended Data Set Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.453, year: 2009
Characterization of solvated electrons in hydrogen cyanide clusters: (HCN)n- (n=3, 4)
Wu, Di; Li, Ying; Li, Zhuo; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung
2006-02-01
Theoretical studies of the solvated electrons (HCN)n- (n =3, 4) reveal a variety of electron trapping possibilities in the (HCN)n (n =3, 4) clusters. Two isomers for (HCN)3- and four isomers for (HCN)4- are obtained at the MP2/aug -cc-pVDZ+dBF (diffusive bond functions) level of theory. In view of vertical electron detachment energies (VDEs) at the CCSD(T) level, the excess electron always "prefers" locating in the center of the system, i.e., the isomer with higher coordination number shows larger VDE value. However, the most stable isomers of the solvated electron state (HCN)3- and (HCN)4- are found to be the linear C∞ν and D∞h structures, respectively, but not the fullyl symmetric structures which have the largest VDE values.
Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin
2012-10-01
This work reports refinements of the energetic ordering of the known low-energy structures of sulphate-water clusters ? (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second-order Møller-Plesset theory. Harmonic zero-point energy (ZPE), included at the B3LYP/6-311 + + G(3df,3pd) level, was found to have a significant effect on the energetic ordering. In fact, we show that the energetic ordering is a result of a delicate balance between the electronic and vibrational energies. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPEs, even alters the global minimum for n = 5. Experiments on deuterated clusters, as well as more sophisticated vibrational calculations, may therefore be quite interesting.
Coupled Cluster Theory for Large Molecules
DEFF Research Database (Denmark)
Baudin, Pablo
This thesis describes the development of local approximations to coupled cluster (CC) theory for large molecules. Two different methods are presented, the divide–expand–consolidate scheme (DEC), for the calculation of ground state energies, and a local framework denoted LoFEx, for the calculation...
Cluster-enriched Yang-Baxter equation from SUSY gauge theories
Yamazaki, Masahito
2018-04-01
We propose a new generalization of the Yang-Baxter equation, where the R-matrix depends on cluster y-variables in addition to the spectral parameters. We point out that we can construct solutions to this new equation from the recently found correspondence between Yang-Baxter equations and supersymmetric gauge theories. The S^2 partition function of a certain 2d N=(2,2) quiver gauge theory gives an R-matrix, whereas its FI parameters can be identified with the cluster y-variables.
Concept and theory of clustered-cavity gyroklystrons
International Nuclear Information System (INIS)
Nusinovich, G.S.; Guo, H.; Antonsen, T.M. Jr.; Granatstein, V.L.
2002-01-01
The concept of clustered cavities was originally proposed by R. Symons for use in linear-beam klystrons operating in TM-modes. It was proven experimentally that the use of this concept allows developers to double the instantaneous bandwidth of klystrons without changing their overall dimensions or sacrificing gain and bandwidth. Recently, H. Guo suggested applying this concept to gyroklystrons operating in TE-modes. In the present paper this concept is formulated and a simple analytical theory describing qualitatively the performance of clustered-cavity gyroklystrons is developed. Results of the analysis of a simple two-stage gyroklystron indicate that the clustered-cavity concept has potential for improving the performance of gyroklystrons
The Innovation Clusters in the Developments by the Scandinavian School of Cluster Theory
Directory of Open Access Journals (Sweden)
Onipko Tetiana A.
2017-08-01
Full Text Available The article generalizes and analyzes the developments by the Scandinavian School of cluster theory (scientists from Sweden, Norway and Denmark on innovative clusters. It has been found that the Scandinavian scientists considered innovative clusters as an integral component of both the regional and the national innovation systems. It has been clarified that the efficiency of an innovative cluster depends largely on the «knowledge base». It was emphasized that innovative clusters, by facilitating interactive training and generating new ideas, stimulate the development of the «economy of training». It has been determined that the coordinating structures of innovative clusters are the institutions of cooperation that facilitate interaction between enterprises, scientific centres, and authorities. It has been specified that innovative clusters contribute to the emerging of benefits for participants, including the growing opportunities for innovation, improved conditions for establishing a business, and increased productivity. It has been concluded that the development of the inner environment of an innovative cluster depends largely on its relationships to the external environment.
Structure, Stabilities, Thermodynamic Properties, and IR Spectra of Acetylene Clusters (C2H2)n=2-5.
Karthikeyan, S; Lee, Han Myoung; Kim, Kwang S
2010-10-12
There are no clear conclusions over the structures of the acetylene clusters. In this regard, we have carried out high-level calculations for acetylene clusters (C2H2)2-5 using dispersion-corrected density functional theory (DFT-D), Møller-Plesset second-order perturbation theory (MP2); and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)] at the complete basis set limit. The lowest energy structure of the acetylene dimer has a T-shaped structure of C2v symmetry, but it is nearly isoenergetic to the displaced stacked structure of C2h symmetry. We find that the structure shows the quantum statistical distribution for configurations between the T-shaped and displaced stacked structures for which the average angle (|θ̃|) between two acetylene molecules would be 53-78°, close to the T-shaped structure. The trimer has a triangular structure of C3h symmetry. The tetramer has two lowest energy isomers of S4 and C2h symmetry in zero-point energy (ZPE)-uncorrected energy (ΔEe), but one lowest energy isomer of C2v symmetry in ZPE-corrected energy (ΔE0). For the pentamer, the global minimum structure is C1 symmetry with eight sets of T-type π-H interactions and a set of π-π interactions. Our high-level ab initio calculations are consistent with available experimental data.
Pathak, Arup Kumar; Mukherjee, Tulsi; Maity, Dilip Kumar
2010-01-18
The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine-dimer radical-anion clusters, I(2)(*-) x n H(2)O (n=1-10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum-energy structure by applying a Monte Carlo simulated annealing procedure including spin-orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I-I stretching band but enhances the intensity of the O-H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O-H bonds in a cyclic water network are observed for I(2)(*-) x n H(2)O clusters with n > or = 3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite-size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I(2)(*-) in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl(2)(*-) and Br(2)(*-).
On the cluster propagator in quantum field theory
International Nuclear Information System (INIS)
Mogilevskij, O.A.
1983-01-01
The problem is discussed whether it is possible to describe the multiple production processes within the framework of nonlocal quantum field theory. The interaction between the cluster field and the field of scalar particles is introduced. By means of summing up a definite class of Feynman diagrams the cluster propagator with the decreasing imaginary part containing the information about the hadron mass spectrum is obtained
Non-Higgsable clusters for 4D F-theory models
International Nuclear Information System (INIS)
Morrison, David R.; Taylor, Washington
2015-01-01
We analyze non-Higgsable clusters of gauge groups and matter that can arise at the level of geometry in 4D F-theory models. Non-Higgsable clusters seem to be generic features of F-theory compactifications, and give rise naturally to structures that include the nonabelian part of the standard model gauge group and certain specific types of potential dark matter candidates. In particular, there are nine distinct single nonabelian gauge group factors, and only five distinct products of two nonabelian gauge group factors with matter, including SU(3)×SU(2), that can be realized through 4D non-Higgsable clusters. There are also more complicated configurations involving more than two gauge factors; in particular, the collection of gauge group factors with jointly charged matter can exhibit branchings, loops, and long linear chains.
Theoretical study of IR and photoelectron spectra of small gallium-arsenide clusters
Energy Technology Data Exchange (ETDEWEB)
Pouchan, Claude; Marchal, Rémi; Hayashi, Shinsuke [Université de Pau et des Pays de l' Adour, IPREM/ECP, UMR CNRS 5254 (France)
2015-01-22
Relative stabilities of small Ga{sub n}As{sub m} clusters, as well as their structural electronic and vibrational properties, were computed and analysed using a CCSD(T) reference method since experimental data in this area are sparse or unknown. With the aim of investigating larger clusters, we explored several DFT functionals and basis sets able to mimic the reliable CCSD(T) approach. Among them, the PBE0/SBKJC+sp,d appears as the most efficient to describe the structural and vibrational properties since average differences of about 0.042Å and 5.1cm{sup −1} were obtained for bond lengths and fundamental vibrational frequencies, respectively for the first small clusters [1] of the series found from our GSAM method [2]. As further test, this model is used in order to investigate and revisit an experimental IR spectrum of Ga{sub n}As{sub m} mixture previously published by Li et al. [3]. More complicated is the difficulty which arises in the electronic description due to the presence of numerous low lying electronic states nearly degenerated to correctly describe the electronic structure. The case of Ga{sub 2}As will be discussed and the photoelectron spectra of the Ga{sub 2}As anion reanalyzed on the ground of our calculations [4] comparatively to the experimental spectra obtained by Neumark and co-workers [5].
Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.
Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M
2015-09-08
We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.
Minenkov, Yury; Bistoni, Giovanni; Riplinger, Christoph; Auer, Alexander A.; Neese, Frank; Cavallo, Luigi
2017-01-01
In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes
Gravitational instability theory of galaxy formation and clustering - Some recent developments
International Nuclear Information System (INIS)
Fall, S.M.; Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.)
1980-01-01
Some recent developments in the gravitational instability theory of galaxy formation and clustering are discussed including a comparison with observational data. On the theoretical side, N-body computer simulations have helped to sharpen the predictions of the theory and several new ideas have emerged on the roles of dissipation in protogalactic fragmentation and in galaxy collisions. On the observational side, the clustering properties of galaxies have been analyzed in new ways that demand a detailed comparison with theory. More and better measurements of the sizes, masses, and rotations of galaxies continue to accumulate
Microscopic description of the nuclear-cluster theory
International Nuclear Information System (INIS)
Tang, Y.C.
1980-01-01
The purpose of this series of lectures is to explain the foundation of, the techniques used in, and the results obtained by microscopic cluster theory (MCT). In particular, the important role played by the Pauli principle in determining nuclear characteristics will be extensively discussed
Enforcing conservation laws in nonequilibrium cluster perturbation theory
Gramsch, Christian; Potthoff, Michael
2017-05-01
Using the recently introduced time-local formulation of the nonequilibrium cluster perturbation theory (CPT), we construct a generalization of the approach such that macroscopic conservation laws are respected. This is achieved by exploiting the freedom for the choice of the starting point of the all-order perturbation theory in the intercluster hopping. The proposed conserving CPT is a self-consistent propagation scheme which respects the conservation of energy, particle number, and spin, which treats short-range correlations exactly up to the linear scale of the cluster, and which represents a mean-field-like approach on length scales beyond the cluster size. Using Green's functions, conservation laws are formulated as local constraints on the local spin-dependent particle and the doublon density. We consider them as conditional equations to self-consistently fix the time-dependent intracluster one-particle parameters. Thanks to the intrinsic causality of the CPT, this can be set up as a step-by-step time propagation scheme with a computational effort scaling linearly with the maximum propagation time and exponentially in the cluster size. As a proof of concept, we consider the dynamics of the two-dimensional, particle-hole-symmetric Hubbard model following a weak interaction quench by simply employing two-site clusters only. Conservation laws are satisfied by construction. We demonstrate that enforcing them has strong impact on the dynamics. While the doublon density is strongly oscillating within plain CPT, a monotonic relaxation is observed within the conserving CPT.
Feller, David; Peterson, Kirk A
2013-08-28
The effectiveness of the recently developed, explicitly correlated coupled cluster method CCSD(T)-F12b is examined in terms of its ability to reproduce atomization energies derived from complete basis set extrapolations of standard CCSD(T). Most of the standard method findings were obtained with aug-cc-pV7Z or aug-cc-pV8Z basis sets. For a few homonuclear diatomic molecules it was possible to push the basis set to the aug-cc-pV9Z level. F12b calculations were performed with the cc-pVnZ-F12 (n = D, T, Q) basis set sequence and were also extrapolated to the basis set limit using a Schwenke-style, parameterized formula. A systematic bias was observed in the F12b method with the (VTZ-F12/VQZ-F12) basis set combination. This bias resulted in the underestimation of reference values associated with small molecules (valence correlation energies 0.5 E(h)) and an even larger overestimation of atomization energies for bigger systems. Consequently, caution should be exercised in the use of F12b for high accuracy studies. Root mean square and mean absolute deviation error metrics for this basis set combination were comparable to complete basis set values obtained with standard CCSD(T) and the aug-cc-pVDZ through aug-cc-pVQZ basis set sequence. However, the mean signed deviation was an order of magnitude larger. Problems partially due to basis set superposition error were identified with second row compounds which resulted in a weak performance for the smaller VDZ-F12/VTZ-F12 combination of basis sets.
Clustered Pricing in the Corporate Loan Market: Theory and Empirical Evidence
Bajoori, Elnaz; Nandeibam, Shasikanta; Chaudhry, Sajid Mukhtar
2016-01-01
Existing theories explaining security price clustering as well as clustering in the retail depositand mortgage markets are incompatible with the clustering in the corporate loan market. Wedevelop a new theoretical argument that the attitude of the lender toward the uncertaintyabout the quality of the borrower leads to the clustering of spreads. Our empirical resultssupport these arguments and we find that clustering increases with the degree of uncertaintybetween the lender and the borrower. ...
Seniority zero pair coupled cluster doubles theory
International Nuclear Information System (INIS)
Stein, Tamar; Henderson, Thomas M.; Scuseria, Gustavo E.
2014-01-01
Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems
Variational cluster perturbation theory for Bose-Hubbard models
International Nuclear Information System (INIS)
Koller, W; Dupuis, N
2006-01-01
We discuss the application of the variational cluster perturbation theory (VCPT) to the Mott-insulator-to-superfluid transition in the Bose-Hubbard model. We show how the VCPT can be formulated in such a way that it gives a translation invariant excitation spectrum-free of spurious gaps-despite the fact that it formally breaks translation invariance. The phase diagram and the single-particle Green function in the insulating phase are obtained for one-dimensional systems. When the chemical potential of the cluster is taken as a variational parameter, the VCPT reproduces the dimensional dependence of the phase diagram even for one-site clusters. We find a good quantitative agreement with the results of the density-matrix renormalization group when the number of sites in the cluster becomes of order 10. The extension of the method to the superfluid phase is discussed
Theory of small atomic-like 2D dust clusters
International Nuclear Information System (INIS)
Amiranashvili, Sh.G.; Gousein-zade, N.G.; Tsytovich, V.N.
2002-01-01
In several experiments atom-like dust clusters with parabolic confining potential were observed [1-3]. Here we present a general theory of 2D clusters confined by (1/2)m dω 0 2 r2 potential with arbitrary pair interaction potential depending on the inter-dust distance. It describes the equilibrium conditions, normal modes, their frequencies and possible instabilities of clusters with arbitrary N number of grains. The mono-layer clusters can have 2N frequencies of oscillations in the cluster plane among which 3 modes are trivial (ω = 0 and double degenerate frequency of oscillation in the potential well). The 2N - 3 non-trivial modes are considered. For example, for square dust cluster with potential V(r) the equilibrium is described by ω 0 2 = -(4/m) [V'(√(2)R) + V'(2R)], the frequency of radial oscillations is ω2 = (16R2/m) [V''(√(2)R) + 2V''(2R)], the two single modes frequencies are ω2 (32R2/m)V''(2R); ω2 = (16R2/m)V''(√(2)r) and one double degenerated mode frequency is ω2 = (1/m) [V'√(2)R) - V'(2R) + 4R2V''(√(2)R)] where ' corresponds to the differentiation of the potential V(r) with respect to √(r). The general stability criterion was found and investigated for N ≥ 4. The pair interaction potential V(r) is considered as a sum of different attraction and repulsion terms , including that which describe the non-screened collective and non collective attraction, the screened non-Coulomb interaction and the non-screened repulsion. The collective non-screened potential causes the absence of equilibria at certain dust cluster sizes. For screened Coulomb potential Vc(r) = (Z d 2 e2αscr/r)exp(-r/λscr) the clusters with the size R are considered. The pentagon cluster is found to be stable for R < 3.3λscr and the clusters with N ≥ 6 are found to be always unstable. The measurements of the frequencies of the cluster modes, the thresholds of cluster equilibria and the stability of the clusters can be used for detection of the dust
International Nuclear Information System (INIS)
Nakatsuji, H.; Hirao, K.
1978-01-01
The symmetry-adapted-cluster (SAC) expansion of an exact wavefunction is given. It is constructed from the generators of the symmetry-adapted excited configurations having the symmetry under consideration, and includes their higher-order effect and self-consistency effect. It is different from the conventional cluster expansions in several important points, and is suitable for applications to open-shell systems as well as closed-shell systems. The variational equation for the SAC wavefunction has a form similar to the generalized Brillouin theorem in accordance with the inclusion of the higher-order effect and the self-consistency effect. We have expressed some existing open-shell orbital theories equivalently in the conventional cluster expansion formulas, and on this basis, we have given the pseudo-orbital theory which is an extension of open-shell orbital theory in the SAC expansion formula
Kinetic aspects of the embedded clusters: Reaction - Rate Theory
International Nuclear Information System (INIS)
Despa, F.; Apostol, M.
1995-07-01
The main stages of the cluster growth process are reviewed using Reaction - Rate Theory. The precipitation stage is shown as a relaxation of the solute towards a cluster state characterized by a higher stability. The kinetic of the late stage of phase separation, the coarsening process, is analyzed by an off-centre diffusion mechanism. The theoretical results are compared to the experimental ones. (author). 37 refs, 6 figs
Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe
2015-01-01
Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.
Jedidi, Abdesslem
2015-11-13
Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.
2D Dust Clusters in Theory and Experiments
International Nuclear Information System (INIS)
Tsytovich, V.N.; Gousein-zade, N.G.; Morfill, G.E.
2005-01-01
The theory is applied for more detail analysis of existing experiments of 2D dust clusters with parabolic confinement. It is shown that the equilibrium condition and the frequency of one of the modes of the cluster determines all dimensionless parameters of the cluster allowing to predict the value of other modes and compare them with existing experimental data. This comparison depends on the shielding model, the calculations starting with N = 4 cluster breathing mode predict for Debye shielding model without attraction the frequency of the antisymmetric mode in disagreement with the observed value about 6 standard deviations, while the same calculations for the non-linear screening model gives disagreement about 1 standard deviation. Including the attraction provides an agrement with observations only for non-linear screening model showing the sensitivity of cluster structure to dust attraction. The value of the obtained attractions coefficient is in reasonable agreement with the theoretically expected value. It is shown theoretically that in absence of external parabolic confinement a weak shadow attraction can provide an existence of equilibria for 2D clusters. The equilibrium radius is rapidly decreasing with an increase of the attraction coefficient and with number of grains N in a cluster. The energies of one shell clusters with different N and the energies of N - 1 grain clusters with additional grain in the center of the shell are calculated as functions of attraction coefficient. It is demonstrated that a dissociation of cluster in several smaller clusters needs less energy than a removal of one grain from the cluster. The calculations were performed for Yukawa screening and for non-linear screening and demonstrate the sensitivity of cluster structures to the screening. Frequencies of all modes are calculated up to N = 7 for one shell structure. Stable and unstable modes as well as universal magic numbers are found
Energy Technology Data Exchange (ETDEWEB)
Martinet, G
2004-05-01
The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)
Vogels, Sjoerd N.; Karman, Tijs; Kłos, Jacek; Besemer, Matthieu; Onvlee, Jolijn; van der Avoird, Ad; Groenenboom, Gerrit C.; van de Meerakker, Sebastiaan Y. T.
2018-02-01
Over the last 25 years, the formalism known as coupled-cluster (CC) theory has emerged as the method of choice for the ab initio calculation of intermolecular interaction potentials. The implementation known as CCSD(T) is often referred to as the gold standard in quantum chemistry. It gives excellent agreement with experimental observations for a variety of energy-transfer processes in molecular collisions, and it is used to calibrate density functional theory. Here, we present measurements of low-energy collisions between NO radicals and H2 molecules with a resolution that challenges the most sophisticated quantum chemistry calculations at the CCSD(T) level. Using hitherto-unexplored anti-seeding techniques to reduce the collision energy in a crossed-beam inelastic-scattering experiment, a resonance structure near 14 cm-1 is clearly resolved in the state-to-state integral cross-section, and a unique resonance fingerprint is observed in the corresponding differential cross-section. This resonance structure discriminates between two NO-H2 potentials calculated at the CCSD(T) level and pushes the required accuracy beyond the gold standard.
Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.
2017-06-01
The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.
Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali
2009-10-29
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.
International Nuclear Information System (INIS)
Singh, BirBikram; Patra, S. K.; Gupta, Raj K.
2010-01-01
We have studied the (ground-state) cluster radioactive decays within the preformed cluster model (PCM) of Gupta and collaborators [R. K. Gupta, in Proceedings of the 5th International Conference on Nuclear Reaction Mechanisms, Varenna, edited by E. Gadioli (Ricerca Scientifica ed Educazione Permanente, Milano, 1988), p. 416; S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989)]. The relativistic mean-field (RMF) theory is used to obtain the nuclear matter densities for the double folding procedure used to construct the cluster-daughter potential with M3Y nucleon-nucleon interaction including exchange effects. Following the PCM approach, we have deduced empirically the preformation probability P 0 emp from the experimental data on both the α- and exotic cluster-decays, specifically of parents in the trans-lead region having doubly magic 208 Pb or its neighboring nuclei as daughters. Interestingly, the RMF-densities-based nuclear potential supports the concept of preformation for both the α and heavier clusters in radioactive nuclei. P 0 α(emp) for α decays is almost constant (∼10 -2 -10 -3 ) for all the parent nuclei considered here, and P 0 c(emp) for cluster decays of the same parents decrease with the size of clusters emitted from different parents. The results obtained for P 0 c(emp) are reasonable and are within two to three orders of magnitude of the well-accepted phenomenological model of Blendowske-Walliser for light clusters.
Communication: A Jastrow factor coupled cluster theory for weak and strong electron correlation
International Nuclear Information System (INIS)
Neuscamman, Eric
2013-01-01
We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N 2 bond breaking. In double-ζ treatments of the HF and H 2 O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation
Energy Technology Data Exchange (ETDEWEB)
Wahlen-Strothman, J. M. [Rice Univ., Houston, TX (United States); Henderson, T. H. [Rice Univ., Houston, TX (United States); Hermes, M. R. [Rice Univ., Houston, TX (United States); Degroote, M. [Rice Univ., Houston, TX (United States); Qiu, Y. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)
2018-01-03
Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories. We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection and coupled cluster doubles individually fail in different correlation limits, whereas models that merge these two theories are highly successful over the entire phase diagram. Despite the simplicity of the Lipkin Hamiltonian, the lessons learned in this work will be useful for building an ab initio symmetry projected coupled cluster theory that we expect to be accurate in the weakly and strongly correlated limits, as well as the recoupling regime.
Near-Edge X-ray Absorption Fine Structure within Multilevel Coupled Cluster Theory.
Myhre, Rolf H; Coriani, Sonia; Koch, Henrik
2016-06-14
Core excited states are challenging to calculate, mainly because they are embedded in a manifold of high-energy valence-excited states. However, their locality makes their determination ideal for local correlation methods. In this paper, we demonstrate the performance of multilevel coupled cluster theory in computing core spectra both within the core-valence separated and the asymmetric Lanczos implementations of coupled cluster linear response theory. We also propose a visualization tool to analyze the excitations using the difference between the ground-state and excited-state electron densities.
Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe
2015-12-03
Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.
Black, Joshua A.; Knowles, Peter J.
2018-06-01
The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.
Czech Academy of Sciences Publication Activity Database
Řezáč, Jan; Nachtigallová, Dana; Mazzoni, F.; Pasquini, M.; Pietraperzia, G.; Becucci, M.; Müller-Dethlefs, K.; Hobza, Pavel
2015-01-01
Roč. 21, č. 18 (2015), s. 6740-6746 ISSN 0947-6539 R&D Projects: GA ČR GBP208/12/G016 Grant - others:GA MŠk(CZ) ED2.1.00/03.0058 Program:ED Institutional support: RVO:61388963 Keywords : binding energy * noncovalent interactions * pi stacking * laser spectroscopy * CCSD(T) calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.771, year: 2015
Energy Technology Data Exchange (ETDEWEB)
White, Jeff; Ackad, Edward [Department of Physics, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026 (United States)
2015-02-15
The outer-ionization of an electron from a cluster is an unambiguous quantity, while the inner-ionization threshold is not, resulting in different microscopic quantum-classical hybrid models used in laser-cluster interactions. A simple local ionization threshold model for the change in the ionization energy is proposed and examined, for atoms and ions, at distances in between the initial configuration of the cluster to well into the cluster's disintegration. This model is compared with a full Hartree-Fock energy calculation which accounts for the electron correlation effects using the coupled cluster method with single and double excitations with perturbative triples (CCSD(T)). Good agreement is found between the two lending a strong theoretical support to works which rely on such models for the final and transient properties of the laser-cluster interaction.
Energy Technology Data Exchange (ETDEWEB)
Balzer, Matthias
2008-07-01
The central goal of this thesis is the examination of strongly correlated electron systems on the basis of the two-dimensional Hubbard model. We analyze how the properties of the Mott insulator change upon doping and with interaction strength. The numerical evaluation is done using quantum cluster approximations, which allow for a thermodynamically consistent description of the ground state properties. The framework of self-energy-functional theory offers great flexibility for the construction of cluster approximations. A detailed analysis sheds light on the quality and the convergence properties of different cluster approximations within the self-energy-functional theory. We use the one-dimensional Hubbard model for these examinations and compare our results with the exact solution. In two dimensions the ground state of the particle-hole symmetric model at half-filling is an antiferromagnetic insulator, independent of the interaction strength. The inclusion of short-range spatial correlations by our cluster approach leads to a considerable improvement of the antiferromagnetic order parameter as compared to dynamical mean-field theory. In the paramagnetic phase we furthermore observe a metal-insulator transition as a function of the interaction strength, which qualitatively differs from the pure mean-field scenario. Starting from the antiferromagnetic Mott insulator a filling-controlled metal-insulator transition in a paramagnetic metallic phase can be observed. Depending on the cluster approximation used an antiferromagnetic metallic phase may occur at first. In addition to long-range antiferromagnetic order, we also considered superconductivity in our calculations. The superconducting order parameter as a function of doping is in good agreement with other numerical methods, as well as with experimental results. (orig.)
Lee, Timothy J.; Arnold, James O. (Technical Monitor)
1994-01-01
A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.
Quantum kinetic theory of metal clusters in an intense electromagnetic field
Directory of Open Access Journals (Sweden)
M.Bonitz
2004-01-01
Full Text Available A quantum kinetic theory for weakly inhomogeneous charged particle systems is derived within the framework of nonequilibrium Green's functions. The results are of relevance for valence electrons of metal clusters as well as for confined Coulomb systems, such as electrons in quantum dots or ultracold ions in traps and similar systems. To be specific, here we concentrate on the application to metal clusters, but the results are straightforwardly generalized. Therefore, we first give an introduction to the physics of correlated valence electrons of metal clusters in strong electromagnetic fields. After a brief overview on the jellium model and the standard density functional approach to the ground state properties, we focus on the extension of the theory to nonequilibrium. To this end a general gauge-invariant kinetic theory is developed. The results include the equations of motion of the two-time correlation functions, the equation for the Wigner function and an analysis of the spectral function. Here, the concept of an effective quantum potential is introduced which retains the convenient local form of the propagators. This allows us to derive explicit results for the spectral function of electrons in a combined strong electromagnetic field and a weakly inhomogeneous confinement potential.
Nagy, Péter R.; Kállay, Mihály
2017-06-01
An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor.
Higher-order equation-of-motion coupled-cluster methods for ionization processes.
Kamiya, Muneaki; Hirata, So
2006-08-21
Compact algebraic equations defining the equation-of-motion coupled-cluster (EOM-CC) methods for ionization potentials (IP-EOM-CC) have been derived and computer implemented by virtue of a symbolic algebra system largely automating these processes. Models with connected cluster excitation operators truncated after double, triple, or quadruple level and with linear ionization operators truncated after two-hole-one-particle (2h1p), three-hole-two-particle (3h2p), or four-hole-three-particle (4h3p) level (abbreviated as IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively) have been realized into parallel algorithms taking advantage of spin, spatial, and permutation symmetries with optimal size dependence of the computational costs. They are based on spin-orbital formalisms and can describe both alpha and beta ionizations from open-shell (doublet, triplet, etc.) reference states into ionized states with various spin magnetic quantum numbers. The application of these methods to Koopmans and satellite ionizations of N2 and CO (with the ambiguity due to finite basis sets eliminated by extrapolation) has shown that IP-EOM-CCSD frequently accounts for orbital relaxation inadequately and displays errors exceeding a couple of eV. However, these errors can be systematically reduced to tenths or even hundredths of an eV by IP-EOM-CCSDT or CCSDTQ. Comparison of spectroscopic parameters of the FH+ and NH+ radicals between IP-EOM-CC and experiments has also underscored the importance of higher-order IP-EOM-CC treatments. For instance, the harmonic frequencies of the A 2Sigma- state of NH+ are predicted to be 1285, 1723, and 1705 cm(-1) by IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively, as compared to the observed value of 1707 cm(-1). The small adiabatic energy separation (observed 0.04 eV) between the X 2Pi and a 4Sigma- states of NH+ also requires IP-EOM-CCSDTQ for a quantitative prediction (0.06 eV) when the a 4Sigma- state has the low-spin magnetic quantum number (s(z) = 1/2). When the
Derivation of the density functional theory from the cluster expansion.
Hsu, J Y
2003-09-26
The density functional theory is derived from a cluster expansion by truncating the higher-order correlations in one and only one term in the kinetic energy. The formulation allows self-consistent calculation of the exchange correlation effect without imposing additional assumptions to generalize the local density approximation. The pair correlation is described as a two-body collision of bound-state electrons, and modifies the electron- electron interaction energy as well as the kinetic energy. The theory admits excited states, and has no self-interaction energy.
Self-consistent cluster theory for systems with off-diagonal disorder
International Nuclear Information System (INIS)
Kaplan, T.; Leath, P.L.; Gray, L.J.; Diehl, H.W.
1980-01-01
A self-consistent cluster theory for elementary excitations in systems with diagonal, off-diagonal, and environmental disorder is presented. The theory is developed in augmented space where the configurational average over the disorder is replaced by a ground-state matrix element in a translationally invariant system. The analyticity of the resulting approximate Green's function is proved. Numerical results for the self-consistent single-site and pair approximations are presented for the vibrational and electronic properties of disordered linear chains with diagonal, off-diagonal, and environmental disorder
Ab initio investigation of the N2 endash HF complex: Accurate structure and energetics
International Nuclear Information System (INIS)
Woon, D.E.; Dunning, T.H. Jr.; Peterson, K.A.
1996-01-01
Augmented correlation consistent basis sets of double (aug-cc-pVDZ), triple (aug-cc-pVTZ), and modified quadruple zeta (aug-cc-pVQZ') quality have been employed to describe the N 2 endash HF potential energy surface at the Hartree endash Fock level and with single reference correlated wave functions including Mo/ller endash Plesset perturbation theory (MP2, MP3, MP4) and coupled cluster methods [CCSD, CCSD(T)]. The most accurate computed equilibrium binding energies D e are (with counterpoise correction) 810 cm -1 (MP4/aug-cc-pVQZ') and 788 cm -1 [CCSD(T)/aug-cc-pVQZ']. Estimated complete basis set limits of 814 cm -1 (MP4) and 793 cm -1 [CCSD(T)] indicate that the large basis set results are essentially converged. Harmonic frequencies and zero-point energies were determined through the aug-cc-pVTZ level. Combining the zero point energies computed at the aug-cc-pVTZ level with the equilibrium binding energies computed at the aug-cc-pVQZ' level, we predict D 0 values of 322 and 296 cm -1 , respectively, at the MP4 and CCSD(T) levels of theory. Using experimental anharmonic frequencies, on the other hand, the CCSD(T) value of D 0 is increased to 415 cm -1 , in good agreement with the experimental value recently reported by Miller and co-workers, 398±2 cm -1 . copyright 1996 American Institute of Physics
Boron-doped hydrogenated Al{sub 3} clusters: A material for hydrogen storage
Energy Technology Data Exchange (ETDEWEB)
Muz, İskender, E-mail: iskender.muz@nevsehir.edu.tr [Faculty of Education, Department of Science Education, Nevsehir Haci Bektas Veli University, 50300, Nevsehir (Turkey); Atiş, Murat [Kayseri Vocational School, Electricity and Energy Department, Erciyes University, 38300, Kayseri (Turkey)
2016-05-15
The energetic and structural stabilities of Al{sub 3}BH{sub 2n} (n = 0–6) clusters are investigated using ab initio calculations. Structural isomers are found using the stochastic search method to search for minima structures, followed by B3LYP optimizations; single-point CCSD(T) calculations are performed to compute relative energies. Chemical bonding analysis is also performed using the adaptive natural density partitioning method to investigate the chemical bonding in the clusters and to elucidate their structural evolution. Our results and analyses indicate that the stability of the boron-doped hydrogenated Al{sub 3} clusters increases as more hydrogen molecules are adsorbed, whereas the H{sub 2} loss energy decreases. The results are in good agreement with available theoretical findings. - Highlights: • The boron-doped hydrogenated Al{sub 3} clusters are generated using stochastic search method. • The energetic and structural stabilities are investigated in detail. • The chemical bonding analysis is performed by using AdNDP analysis. • The doping by boron allows development of better aluminum-based metal hydrides.
Mode 3 knowledge production: Systems and systems theory, clusters and networks
Carayannis, Elias G.; Campbell, David F. J.; Rehman, Scheherazade S.
2016-01-01
With the comprehensive term of "Mode 3," we want to draw a conceptual link between systems and systems theory and want to demonstrate further how this can be applied to knowledge in the next steps. Systems can be understood as being composed of "elements", which are tied together by a "self-rationale". For innovation, often innovation clusters and innovation networks are being regarded as important. By leveraging systems theory for innovation concepts, one can implement references between the...
Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory
Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara
2018-05-01
We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.
Similarity-transformed equation-of-motion vibrational coupled-cluster theory
Faucheaux, Jacob A.; Nooijen, Marcel; Hirata, So
2018-02-01
A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.
Energy Technology Data Exchange (ETDEWEB)
Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu [Department of Chemistry and Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States); Perera, Ajith [Department of Chemistry and Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States); Department of Chemistry, Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States)
2013-11-07
Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate
A theoretical study of lithium-doped gallium clusters by density functional theory
Energy Technology Data Exchange (ETDEWEB)
Sentuerk, Suekrue; Ekincioglu, Yavuz [Dumlupinar Univ., Kutahya (Turkey). Dept. of Physics
2012-05-15
The geometrical structures, stabilities, and electronic properties of Ga{sub n}Li (n = 1-13) clusters were investigated within the density functional theory (DFT). The impurity lithium atom enhances the stability of Ga{sub n}Li (n = 1-13) clusters, especially Ga{sub n}Li (n = 9-13) compared to Ga{sub n} (n = 9-14), that is at either apex position or side position. The dissociation energy, second-order energy differences, and the energy gaps between highest occupied and lowest unoccupied molecular orbital (HOMO-LUMO) indicate that the Ga{sub 7}Li, Ga{sub 9}Li, and Ga{sub 11}Li clusters are more stable within the studied cluster range. Moreover, the variation of the average bond length of Ga - Li is due to the surface effect, and the binding strength increases resulting from the increase of charge amount. (orig.)
Molecular cluster theory of chemical bonding in actinide oxide
International Nuclear Information System (INIS)
Ellis, D.E.; Gubanov, V.A.; Rosen, A.
1978-01-01
The electronic structure of actinide monoxides AcO and dioxides AcO 2 , where Ac = Th, U, Np, Pu, Am, Cm and Bk has been studied by molecular cluster methods based on the first-principles one-electron local density theory. Molecular orbitals for nearest neighbor clusters AcO 10- 6 and AcO 12- 8 representative of monoxide and dioxide lattices were obtained using non-relativistic spin-restricted and spin-polarized Hartree-Fock-Slater models for the entire series. Fully relativistic Dirac-Slater calculations were performed for ThO, UO and NpO in order to explore magnitude of spin-orbit splittings and level shifts in valence structure. Self-consistent iterations were carried out for NpO, in which the NpO 6 cluster was embedded in the molecular field of the solid. Finally, a ''moment polarized'' model which combines both spin-polarization and relativistic effects in a consistent fashion was applied to the NpO system. Covalent mixing of oxygen 2p and Ac 5f orbitals was found to increase rapidly across the actinide series; metal s,p,d covalency was found to be nearly constant. Mulliken atomic population analysis of cluster eigenvectors shows that free-ion crystal field models are unreliable, except for the light actinides. X-ray photoelectron line shapes have been calculated and are found to compare rather well with experimental data on the dioxides
Ab initio characterization of the structure and energetics of the ArHF complex
International Nuclear Information System (INIS)
van Mourik, T.; Dunning, T.H. Jr.
1997-01-01
The ArHF complex has been investigated using correlation consistent basis sets at several levels of theory, including Mo/ller endash Plesset perturbation theory (MP2, MP3, MP4) and coupled cluster techniques [CCSD, CCSD(T)]. The three stationary points (the primary linear Ar endash HF minimum, the secondary linear Ar endash FH minimum, and the interposed transition state TS) on the counterpoise-corrected potential energy surface have been characterized. Calculations with the aug-cc-pV5Z basis set predict D e for the Ar endash HF minimum to be (with estimated complete basis set limits in parentheses) -215 (-218)cm -1 for MP4 and -206 (-211)cm -1 for CCSD(T). For the Ar endash FH minimum and the TS, calculations with the d-aug-cc-pVQZ sets predict D e close-quote s (and CBS limits) of -97 (-99) and -76 (-78)cm -1 (MP4) and -93 (-94) and -75 (-76)cm -1 [CCSD(T)], respectively. The corresponding values for the H6(4,3,2) potential of Hutson [J. Chem. Phys. 96, 6752 (1992)] are -211.1±4cm -1 , -108.8±10cm -1 , and -82.6±10cm -1 . While the agreement of our CCSD(T) estimate with Hutson close-quote s value is excellent for the global minimum, it is less so for the other two stationary points, suggesting that the H6(4,3,2) potential may be too attractive around the secondary minimum and the transition state. copyright 1997 American Institute of Physics
Lattice cluster theory for dense, thin polymer films.
Freed, Karl F
2015-04-07
While the application of the lattice cluster theory (LCT) to study the miscibility of polymer blends has greatly expanded our understanding of the monomer scale molecular details influencing miscibility, the corresponding theory for inhomogeneous systems has not yet emerged because of considerable technical difficulties and much greater complexity. Here, we present a general formulation enabling the extension of the LCT to describe the thermodynamic properties of dense, thin polymer films using a high dimension, high temperature expansion. Whereas the leading order of the LCT for bulk polymer systems is essentially simple Flory-Huggins theory, the highly non-trivial leading order inhomogeneous LCT (ILCT) for a film with L layers already involves the numerical solution of 3(L - 1) coupled, highly nonlinear equations for the various density profiles in the film. The new theory incorporates the essential "transport" constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and as implemented in self-consistent theories of polymer adsorption at interfaces. The ILCT is illustrated by presenting examples of the computed profiles of the density, the parallel and perpendicular bonds, and the chain ends for free standing and supported films as a function of average film density, chain length, temperature, interaction with support, and chain stiffness. The results generally agree with expected general trends.
Lattice cluster theory for dense, thin polymer films
International Nuclear Information System (INIS)
Freed, Karl F.
2015-01-01
While the application of the lattice cluster theory (LCT) to study the miscibility of polymer blends has greatly expanded our understanding of the monomer scale molecular details influencing miscibility, the corresponding theory for inhomogeneous systems has not yet emerged because of considerable technical difficulties and much greater complexity. Here, we present a general formulation enabling the extension of the LCT to describe the thermodynamic properties of dense, thin polymer films using a high dimension, high temperature expansion. Whereas the leading order of the LCT for bulk polymer systems is essentially simple Flory-Huggins theory, the highly non-trivial leading order inhomogeneous LCT (ILCT) for a film with L layers already involves the numerical solution of 3(L − 1) coupled, highly nonlinear equations for the various density profiles in the film. The new theory incorporates the essential “transport” constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and as implemented in self-consistent theories of polymer adsorption at interfaces. The ILCT is illustrated by presenting examples of the computed profiles of the density, the parallel and perpendicular bonds, and the chain ends for free standing and supported films as a function of average film density, chain length, temperature, interaction with support, and chain stiffness. The results generally agree with expected general trends
International Nuclear Information System (INIS)
Balzer, Matthias
2008-01-01
The central goal of this thesis is the examination of strongly correlated electron systems on the basis of the two-dimensional Hubbard model. We analyze how the properties of the Mott insulator change upon doping and with interaction strength. The numerical evaluation is done using quantum cluster approximations, which allow for a thermodynamically consistent description of the ground state properties. The framework of self-energy-functional theory offers great flexibility for the construction of cluster approximations. A detailed analysis sheds light on the quality and the convergence properties of different cluster approximations within the self-energy-functional theory. We use the one-dimensional Hubbard model for these examinations and compare our results with the exact solution. In two dimensions the ground state of the particle-hole symmetric model at half-filling is an antiferromagnetic insulator, independent of the interaction strength. The inclusion of short-range spatial correlations by our cluster approach leads to a considerable improvement of the antiferromagnetic order parameter as compared to dynamical mean-field theory. In the paramagnetic phase we furthermore observe a metal-insulator transition as a function of the interaction strength, which qualitatively differs from the pure mean-field scenario. Starting from the antiferromagnetic Mott insulator a filling-controlled metal-insulator transition in a paramagnetic metallic phase can be observed. Depending on the cluster approximation used an antiferromagnetic metallic phase may occur at first. In addition to long-range antiferromagnetic order, we also considered superconductivity in our calculations. The superconducting order parameter as a function of doping is in good agreement with other numerical methods, as well as with experimental results. (orig.)
International Nuclear Information System (INIS)
Cannon, R.D.
1984-01-01
The author attempts to: (i) discuss some of the data which are available for testing the theory of evolution of low mass stars; and (ii) point out some problem areas where observations and theory do not seem to agree very well. He concentrates on one particular aspect, namely the study of star clusters and especially their colour-magnitude (CM) diagrams. Star clusters provide large samples of stars at the same distance and with the same age, and the CM diagram gives the easiest way of comparing theoretical predictions with observations, although crucial evidence is also provided by spectroscopic abundance analyses and studies of variable stars. Since this is primarily a review of observational data it is natural to divide it into two parts: (i) galactic globular clusters, and (ii) old and intermediate-age open clusters. Some additional evidence comes from Local Group galaxies, especially now that CM diagrams which reach the old main sequence are becoming available. For each class of cluster successive stages of evolution from the main sequence, up the hydrogen-burning red giant branch, and through the helium-burning giant phase are considered. (Auth.)
Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10
Balla, R. Jeffrey; Everhart, Joel L.
2012-01-01
In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.
Czech Academy of Sciences Publication Activity Database
Šimová, L.; Řezáč, Jan; Hobza, Pavel
2013-01-01
Roč. 9, č. 8 (2013), s. 3420-3428 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ 1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : electron correlation * CCSDT model * quadruple excitations * perturbation- theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013
2017-05-05
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9724 Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Equilibrium Structures and Absorption...and electronic excited-state absorption spectra for eqilibrium structures of SixOy molecular clusters using density function theory (DFT) and time
Cluster model in reaction theory
International Nuclear Information System (INIS)
Adhikari, S.K.
1979-01-01
A recent work by Rosenberg on cluster states in reaction theory is reexamined and generalized to include energies above the threshold for breakup into four composite fragments. The problem of elastic scattering between two interacting composite fragments is reduced to an equivalent two-particle problem with an effective potential to be determined by extremum principles. For energies above the threshold for breakup into three or four composite fragments effective few-particle potentials are introduced and the problem is reduced to effective three- and four-particle problems. The equivalent three-particle equation contains effective two- and three-particle potentials. The effective potential in the equivalent four-particle equation has two-, three-, and four-body connected parts and a piece which has two independent two-body connected parts. In the equivalent three-particle problem we show how to include the effect of a weak three-body potential perturbatively. In the equivalent four-body problem an approximate simple calculational scheme is given when one neglects the four-particle potential the effect of which is presumably very small
Yen, Tsung-Wen; Lim, Thong-Leng; Yoon, Tiem-Leong; Lai, S. K.
2017-11-01
We combined a new parametrized density functional tight-binding (DFTB) theory (Fihey et al. 2015) with an unbiased modified basin hopping (MBH) optimization algorithm (Yen and Lai 2015) and applied it to calculate the lowest energy structures of Au clusters. From the calculated topologies and their conformational changes, we find that this DFTB/MBH method is a necessary procedure for a systematic study of the structural development of Au clusters but is somewhat insufficient for a quantitative study. As a result, we propose an extended hybridized algorithm. This improved algorithm proceeds in two steps. In the first step, the DFTB theory is employed to calculate the total energy of the cluster and this step (through running DFTB/MBH optimization for given Monte-Carlo steps) is meant to efficiently bring the Au cluster near to the region of the lowest energy minimum since the cluster as a whole has explicitly considered the interactions of valence electrons with ions, albeit semi-quantitatively. Then, in the second succeeding step, the energy-minimum searching process will continue with a skilledly replacement of the energy function calculated by the DFTB theory in the first step by one calculated in the full density functional theory (DFT). In these subsequent calculations, we couple the DFT energy also with the MBH strategy and proceed with the DFT/MBH optimization until the lowest energy value is found. We checked that this extended hybridized algorithm successfully predicts the twisted pyramidal structure for the Au40 cluster and correctly confirms also the linear shape of C8 which our previous DFTB/MBH method failed to do so. Perhaps more remarkable is the topological growth of Aun: it changes from a planar (n =3-11) → an oblate-like cage (n =12-15) → a hollow-shape cage (n =16-18) and finally a pyramidal-like cage (n =19, 20). These varied forms of the cluster's shapes are consistent with those reported in the literature.
Synaptic clustering within dendrites: an emerging theory of memory formation
Kastellakis, George; Cai, Denise J.; Mednick, Sara C.; Silva, Alcino J.; Poirazi, Panayiota
2015-01-01
It is generally accepted that complex memories are stored in distributed representations throughout the brain, however the mechanisms underlying these representations are not understood. Here, we review recent findings regarding the subcellular mechanisms implicated in memory formation, which provide evidence for a dendrite-centered theory of memory. Plasticity-related phenomena which affect synaptic properties, such as synaptic tagging and capture, synaptic clustering, branch strength potentiation and spinogenesis provide the foundation for a model of memory storage that relies heavily on processes operating at the dendrite level. The emerging picture suggests that clusters of functionally related synapses may serve as key computational and memory storage units in the brain. We discuss both experimental evidence and theoretical models that support this hypothesis and explore its advantages for neuronal function. PMID:25576663
Vogt, Natalja; Marochkin, Ilya I; Rykov, Anatolii N
2018-04-18
The accurate molecular structure of picolinic acid has been determined from experimental data and computed at the coupled cluster level of theory. Only one conformer with the O[double bond, length as m-dash]C-C-N and H-O-C[double bond, length as m-dash]O fragments in antiperiplanar (ap) positions, ap-ap, has been detected under conditions of the gas-phase electron diffraction (GED) experiment (Tnozzle = 375(3) K). The semiexperimental equilibrium structure, rsee, of this conformer has been derived from the GED data taking into account the anharmonic vibrational effects estimated from the ab initio force field. The equilibrium structures of the two lowest-energy conformers, ap-ap and ap-sp (with the synperiplanar H-O-C[double bond, length as m-dash]O fragment), have been fully optimized at the CCSD(T)_ae level of theory in conjunction with the triple-ζ basis set (cc-pwCVTZ). The quality of the optimized structures has been improved due to extrapolation to the quadruple-ζ basis set. The high accuracy of both GED determination and CCSD(T) computations has been disclosed by a correct comparison of structures having the same physical meaning. The ap-ap conformer has been found to be stabilized by the relatively strong NH-O hydrogen bond of 1.973(27) Å (GED) and predicted to be lower in energy by 16 kJ mol-1 with respect to the ap-sp conformer without a hydrogen bond. The influence of this bond on the structure of picolinic acid has been analyzed within the Natural Bond Orbital model. The possibility of the decarboxylation of picolinic acid has been considered in the GED analysis, but no significant amounts of pyridine and carbon dioxide could be detected. To reveal the structural changes reflecting the mesomeric and inductive effects due to the carboxylic substituent, the accurate structure of pyridine has been also computed at the CCSD(T)_ae level with basis sets from triple- to 5-ζ quality. The comprehensive structure computations for pyridine as well as for
The coupled cluster theory of quantum lattice systems
International Nuclear Information System (INIS)
Bishop, R.; Xian, Yang
1994-01-01
The coupled cluster method is widely recognized nowadays as providing an ab initio method of great versatility, power, and accuracy for handling in a fully microscopic and systematic way the correlations between particles in quantum many-body systems. The number of successful applications made to date within both chemistry and physics is impressive. In this article, the authors review recent extensions of the method which now provide a unifying framework for also dealing with strongly interacting infinite quantum lattice systems described by a Hamiltonian. Such systems include both spin-lattice models (such as the anisotropic Heisenberg or XXZ model) exhibiting interesting magnetic properties, and electron lattice models (such as the tJ and Hubbard models), where the spins or fermions are localized on the sites of a regular lattice; as well as lattice gauge theories [such as the Abelian U(1) model of quantum electrodynamics and non-Abelian SU(n) models]. Illustrative results are given for both the XXZ spin lattice model and U(1) lattice gauge theory
Guided basin-hopping search of small boron clusters with density functional theory
Energy Technology Data Exchange (ETDEWEB)
Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melacca Campus, 75450 Melaka (Malaysia)
2015-04-24
The search for the ground state structures of Boron clusters has been a difficult computational task due to the unique metalloid nature of Boron atom. Previous research works had overcome the problem in the search of the Boron ground-state structures by adding symmetry constraints prior to the process of locating the local minima in the potential energy surface (PES) of the Boron clusters. In this work, we shown that, with the deployment of a novel computational approach that incorporates density functional theory (DFT) into a guided global optimization search algorithm based on basin-hopping, it is possible to directly locate the local minima of small Boron clusters in the PES at the DFT level. The ground-state structures search algorithm as proposed in this work is initiated randomly and needs not a priori symmetry constraint artificially imposed throughout the search process. Small sized Boron clusters so obtained compare well to the results obtained by similar calculations in the literature. The electronic properties of each structures obtained are calculated within the DFT framework.
Guided basin-hopping search of small boron clusters with density functional theory
International Nuclear Information System (INIS)
Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng
2015-01-01
The search for the ground state structures of Boron clusters has been a difficult computational task due to the unique metalloid nature of Boron atom. Previous research works had overcome the problem in the search of the Boron ground-state structures by adding symmetry constraints prior to the process of locating the local minima in the potential energy surface (PES) of the Boron clusters. In this work, we shown that, with the deployment of a novel computational approach that incorporates density functional theory (DFT) into a guided global optimization search algorithm based on basin-hopping, it is possible to directly locate the local minima of small Boron clusters in the PES at the DFT level. The ground-state structures search algorithm as proposed in this work is initiated randomly and needs not a priori symmetry constraint artificially imposed throughout the search process. Small sized Boron clusters so obtained compare well to the results obtained by similar calculations in the literature. The electronic properties of each structures obtained are calculated within the DFT framework
International Nuclear Information System (INIS)
Veals, Jeffrey D.; Thompson, Donald L.
2014-01-01
Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO 2 or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO 2 elimination by N–N and C–N bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO 2 group elimination or by a concerted H-atom and nitroalkyl NO 2 group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO 2 elimination by N–N bond fission, HONO elimination involving the nitramine NO 2 group, HONO elimination involving a nitroalkyl NO 2 group, and finally NO 2 elimination by C–N bond fission
Veals, Jeffrey D.; Thompson, Donald L.
2014-04-01
Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO2 or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO2 elimination by N-N and C-N bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO2 group elimination or by a concerted H-atom and nitroalkyl NO2 group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO2 elimination by N-N bond fission, HONO elimination involving the nitramine NO2 group, HONO elimination involving a nitroalkyl NO2 group, and finally NO2 elimination by C-N bond fission.
Energy Technology Data Exchange (ETDEWEB)
Sylvetsky, Nitai, E-mail: gershom@weizmann.ac.il; Martin, Jan M. L., E-mail: gershom@weizmann.ac.il [Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot (Israel); Peterson, Kirk A., E-mail: kipeters@wsu.edu [Department of Chemistry, Washington State University, Pullman, Washington 99164-4630 (United States); Karton, Amir, E-mail: amir.karton@uwa.edu.au [School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009 (Australia)
2016-06-07
In the context of high-accuracy computational thermochemistry, the valence coupled cluster with all singles and doubles (CCSD) correlation component of molecular atomization energies presents the most severe basis set convergence problem, followed by the (T) component. In the present paper, we make a detailed comparison, for an expanded version of the W4-11 thermochemistry benchmark, between, on the one hand, orbital-based CCSD/AV{5,6}Z + d and CCSD/ACV{5,6}Z extrapolation, and on the other hand CCSD-F12b calculations with cc-pVQZ-F12 and cc-pV5Z-F12 basis sets. This latter basis set, now available for H–He, B–Ne, and Al–Ar, is shown to be very close to the basis set limit. Apparent differences (which can reach 0.35 kcal/mol for systems like CCl{sub 4}) between orbital-based and CCSD-F12b basis set limits disappear if basis sets with additional radial flexibility, such as ACV{5,6}Z, are used for the orbital calculation. Counterpoise calculations reveal that, while total atomization energies with V5Z-F12 basis sets are nearly free of BSSE, orbital calculations have significant BSSE even with AV(6 + d)Z basis sets, leading to non-negligible differences between raw and counterpoise-corrected extrapolated limits. This latter problem is greatly reduced by switching to ACV{5,6}Z core-valence basis sets, or simply adding an additional zeta to just the valence orbitals. Previous reports that all-electron approaches like HEAT (high-accuracy extrapolated ab-initio thermochemistry) lead to different CCSD(T) limits than “valence limit + CV correction” approaches like Feller-Peterson-Dixon and Weizmann-4 (W4) theory can be rationalized in terms of the greater radial flexibility of core-valence basis sets. For (T) corrections, conventional CCSD(T)/AV{Q,5}Z + d calculations are found to be superior to scaled or extrapolated CCSD(T)-F12b calculations of similar cost. For a W4-F12 protocol, we recommend obtaining the Hartree-Fock and valence CCSD components from CCSD-F12b
Iordanov, Ivan; Gunaratne, Dasitha; Harmon, Christopher; Sofo, Jorge; Castleman, A. W., Jr.
2012-02-01
Angular-resolved photoelectron spectroscopy (PES) studies of the MO2- (M=Ti, Zr, Hf, Co, Rh) clusters are presented for the first time along with theoretical calculations of their properties. We confirm previously reported non-angular PES results for the vertical detachment energies (VDE), vibrational energies and geometric structures of these clusters and further explore the effect of the 'lanthanide contraction' on the MO2- clusters by comparing the electronic spectra of 4d and 5d transition metal dioxides. Angular-resolved PES provides the angular momentum contributions to the HOMO of these clusters and we use theoretical calculations to examine the HOMO and compare to our experimental results. First-principles calculations are done using both density functional theory (DFT) and the coupled-cluster, singles, doubles and triples (CCSD(T)) methods.
Data clustering theory, algorithms, and applications
Gan, Guojun; Wu, Jianhong
2007-01-01
Cluster analysis is an unsupervised process that divides a set of objects into homogeneous groups. This book starts with basic information on cluster analysis, including the classification of data and the corresponding similarity measures, followed by the presentation of over 50 clustering algorithms in groups according to some specific baseline methodologies such as hierarchical, center-based, and search-based methods. As a result, readers and users can easily identify an appropriate algorithm for their applications and compare novel ideas with existing results. The book also provides examples of clustering applications to illustrate the advantages and shortcomings of different clustering architectures and algorithms. Application areas include pattern recognition, artificial intelligence, information technology, image processing, biology, psychology, and marketing. Readers also learn how to perform cluster analysis with the C/C++ and MATLAB® programming languages.
Density functional theory and surface reactivity study of bimetallic AgnYm (n+m = 10) clusters
Hussain, Riaz; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid; Hussain, Riaz; Hanif, Usman; Ayub, Khurshid
2018-06-01
Density functional theory calculations have been performed on pure silver (Agn), yttrium (Ym) and bimetallic silver yttrium clusters AgnYm (n + m = 2-10) for reactivity descriptors in order to realize sites for nucleophilic and electrophilic attack. The reactivity descriptors of the clusters, studied as a function of cluster size and shape, reveal the presence of different type of reactive sites in a cluster. The size and shape of the pure silver, yttrium and bimetallic silver yttrium cluster (n = 2-10) strongly influences the number and position of active sites for an electrophilic and/or nucleophilic attack. The trends of reactivities through reactivity descriptors are confirmed through comparison with experimental data for CO binding with silver clusters. Moreover, the adsorption of CO on bimetallic silver yttrium clusters is also evaluated. The trends of binding energies support the reactivity descriptors values. Doping of pure cluster with the other element also influence the hardness, softness and chemical reactivity of the clusters. The softness increases as we increase the number of silver atoms in the cluster, whereas the hardness decreases. The chemical reactivity increases with silver doping whereas it decreases by increasing yttrium concentration. Silver atoms are nucleophilic in small clusters but changed to electrophilic in large clusters.
Diagrammatic analysis of correlations in polymer fluids: Cluster diagrams via Edwards' field theory
International Nuclear Information System (INIS)
Morse, David C.
2006-01-01
Edwards' functional integral approach to the statistical mechanics of polymer liquids is amenable to a diagrammatic analysis in which free energies and correlation functions are expanded as infinite sums of Feynman diagrams. This analysis is shown to lead naturally to a perturbative cluster expansion that is closely related to the Mayer cluster expansion developed for molecular liquids by Chandler and co-workers. Expansion of the functional integral representation of the grand-canonical partition function yields a perturbation theory in which all quantities of interest are expressed as functionals of a monomer-monomer pair potential, as functionals of intramolecular correlation functions of non-interacting molecules, and as functions of molecular activities. In different variants of the theory, the pair potential may be either a bare or a screened potential. A series of topological reductions yields a renormalized diagrammatic expansion in which collective correlation functions are instead expressed diagrammatically as functionals of the true single-molecule correlation functions in the interacting fluid, and as functions of molecular number density. Similar renormalized expansions are also obtained for a collective Ornstein-Zernicke direct correlation function, and for intramolecular correlation functions. A concise discussion is given of the corresponding Mayer cluster expansion, and of the relationship between the Mayer and perturbative cluster expansions for liquids of flexible molecules. The application of the perturbative cluster expansion to coarse-grained models of dense multi-component polymer liquids is discussed, and a justification is given for the use of a loop expansion. As an example, the formalism is used to derive a new expression for the wave-number dependent direct correlation function and recover known expressions for the intramolecular two-point correlation function to first-order in a renormalized loop expansion for coarse-grained models of
Hu, Zhongwei; Autschbach, Jochen; Jensen, Lasse
2014-09-28
Resonance hyper-Rayleigh scattering (HRS) of molecules and metal clusters have been simulated based on a time-dependent density functional theory approach. The resonance first-order hyperpolarizability (β) is obtained by implementing damped quadratic response theory using the (2n + 1) rule. To test this implementation, the prototypical dipolar molecule para-nitroaniline (p-NA) and the octupolar molecule crystal violet are used as benchmark systems. Moreover, small silver clusters Ag 8 and Ag 20 are tested with a focus on determining the two-photon resonant enhancement arising from the strong metal transition. Our results show that, on a per atom basis, the small silver clusters possess two-photon enhanced HRS comparable to that of larger nanoparticles. This finding indicates the potential interest of using small metal clusters for designing new nonlinear optical materials.
Seniority-based coupled cluster theory
International Nuclear Information System (INIS)
Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.; Stein, Tamar
2014-01-01
Doubly occupied configuration interaction (DOCI) with optimized orbitals often accurately describes strong correlations while working in a Hilbert space much smaller than that needed for full configuration interaction. However, the scaling of such calculations remains combinatorial with system size. Pair coupled cluster doubles (pCCD) is very successful in reproducing DOCI energetically, but can do so with low polynomial scaling (N 3 , disregarding the two-electron integral transformation from atomic to molecular orbitals). We show here several examples illustrating the success of pCCD in reproducing both the DOCI energy and wave function and show how this success frequently comes about. What DOCI and pCCD lack are an effective treatment of dynamic correlations, which we here add by including higher-seniority cluster amplitudes which are excluded from pCCD. This frozen pair coupled cluster approach is comparable in cost to traditional closed-shell coupled cluster methods with results that are competitive for weakly correlated systems and often superior for the description of strongly correlated systems
Karamanis, Panaghiotis; Pouchan, Claude; Leszczynski, Jerzy
2008-12-25
the hyperpolarizabilities of those species converge when an augmented triple-zeta quality basis set is used and, also, that the second order Møller-Plesset approximation (MP2) overestimates considerably their second hyperpolarizabilities with respect to the highest level of coupled cluster theory applied in this study (CCSD(T)).
Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.
Freed, Karl F
2009-02-14
A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.
Bozkaya, Uǧur; Turney, Justin M.; Yamaguchi, Yukio; Schaefer, Henry F.; Sherrill, C. David
2011-09-01
Using a Lagrangian-based approach, we present a more elegant derivation of the equations necessary for the variational optimization of the molecular orbitals (MOs) for the coupled-cluster doubles (CCD) method and second-order Møller-Plesset perturbation theory (MP2). These orbital-optimized theories are referred to as OO-CCD and OO-MP2 (or simply "OD" and "OMP2" for short), respectively. We also present an improved algorithm for orbital optimization in these methods. Explicit equations for response density matrices, the MO gradient, and the MO Hessian are reported both in spin-orbital and closed-shell spin-adapted forms. The Newton-Raphson algorithm is used for the optimization procedure using the MO gradient and Hessian. Further, orbital stability analyses are also carried out at correlated levels. The OD and OMP2 approaches are compared with the standard MP2, CCD, CCSD, and CCSD(T) methods. All these methods are applied to H2O, three diatomics, and the O_4^+ molecule. Results demonstrate that the CCSD and OD methods give nearly identical results for H2O and diatomics; however, in symmetry-breaking problems as exemplified by O_4^+, the OD method provides better results for vibrational frequencies. The OD method has further advantages over CCSD: its analytic gradients are easier to compute since there is no need to solve the coupled-perturbed equations for the orbital response, the computation of one-electron properties are easier because there is no response contribution to the particle density matrices, the variational optimized orbitals can be readily extended to allow inactive orbitals, it avoids spurious second-order poles in its response function, and its transition dipole moments are gauge invariant. The OMP2 has these same advantages over canonical MP2, making it promising for excited state properties via linear response theory. The quadratically convergent orbital-optimization procedure converges quickly for OMP2, and provides molecular properties that
Energy Technology Data Exchange (ETDEWEB)
Hehn, Anna-Sophia; Holzer, Christof; Klopper, Wim, E-mail: klopper@kit.edu
2016-11-10
Highlights: • Ring-coupled-cluster-doubles approach now implemented with exchange terms. • Ring-coupled-cluster-doubles approach now implemented with F12 functions. • Szabo–Ostlund scheme (SO2) implemented for use in SAPT. • Fast convergence to the limit of a complete basis. • Implementation in the TURBOMOLE program system. - Abstract: Random-phase-approximation (RPA) methods have proven to be powerful tools in electronic-structure theory, being non-empirical, computationally efficient and broadly applicable to a variety of molecular systems including small-gap systems, transition-metal compounds and dispersion-dominated complexes. Applications are however hindered due to the slow basis-set convergence of the electron-correlation energy with the one-electron basis. As a remedy, we present approximate explicitly-correlated RPA approaches based on the ring-coupled-cluster-doubles formulation including exchange contributions. Test calculations demonstrate that the basis-set convergence of correlation energies is drastically accelerated through the explicitly-correlated approach, reaching 99% of the basis-set limit with triple-zeta basis sets. When implemented in close analogy to early work by Szabo and Ostlund [36], the new explicitly-correlated ring-coupled-cluster-doubles approach including exchange has the perspective to become a valuable tool in the framework of symmetry-adapted perturbation theory (SAPT) for the computation of dispersion energies of molecular complexes of weakly interacting closed-shell systems.
Lattice cluster theory of associating polymers. I. Solutions of linear telechelic polymer chains.
Dudowicz, Jacek; Freed, Karl F
2012-02-14
The lattice cluster theory (LCT) for the thermodynamics of a wide array of polymer systems has been developed by using an analogy to Mayer's virial expansions for non-ideal gases. However, the high-temperature expansion inherent to the LCT has heretofore precluded its application to systems exhibiting strong, specific "sticky" interactions. The present paper describes a reformulation of the LCT necessary to treat systems with both weak and strong, "sticky" interactions. This initial study concerns solutions of linear telechelic chains (with stickers at the chain ends) as the self-assembling system. The main idea behind this extension of the LCT lies in the extraction of terms associated with the strong interactions from the cluster expansion. The generalized LCT for sticky systems reduces to the quasi-chemical theory of hydrogen bonding of Panyioutou and Sanchez when correlation corrections are neglected in the LCT. A diagrammatic representation is employed to facilitate the evaluation of the corrections to the zeroth-order approximation from short range correlations. © 2012 American Institute of Physics
Clusters of atoms and molecules theory, experiment, and clusters of atoms
1994-01-01
Clusters of Atoms and Molecules is devoted to theoretical concepts and experimental techniques important in the rapidly expanding field of cluster science. Cluster properties are dicussed for clusteres composed of alkali metals, semiconductors, transition metals, carbon, oxides and halides of alkali metals, rare gases, and neutral molecules. The book is composed of several well-integrated treatments all prepared by experts. Each contribution starts out as simple as possible and ends with the latest results so that the book can serve as a text for a course, an introduction into the field, or as a reference book for the expert.
International Nuclear Information System (INIS)
Curtiss, L.A.; Raghavachari, K.; Pople, J.A.
1995-01-01
The performance of Gaussian-2 theory is investigated when higher level theoretical methods are included for correlation effects, geometries, and zero-point energies. A higher level of correlation treatment is examined using Brueckner doubles [BD(T)] and coupled cluster [CCSD(T)] methods rather than quadratic configuration interaction [QCISD(T)]. The use of geometries optimized at the QCISD level rather than the second-order Moller--Plesset level (MP2) and the use of scaled MP2 zero-point energies rather than scaled Hartree--Fock (HF) zero-point energies have also been examined. The set of 125 energies used for validation of G2 theory [J. Chem. Phys. 94, 7221 (1991)] is used to test out these variations of G2 theory. Inclusion of higher levels of correlation treatment has little effect except in the cases of multiply-bonded systems. In these cases better agreement is obtained in some cases and poorer agreement in others so that there is no improvement in overall performance. The use of QCISD geometries yields significantly better agreement with experiment for several cases including the ionization potentials of CS and O 2 , electron affinity of CN, and dissociation energies of N 2 , O 2 , CN, and SO 2 . This leads to a slightly better agreement with experiment overall. The MP2 zero-point energies gives no overall improvement. These methods may be useful for specific systems
International Nuclear Information System (INIS)
Piecuch, Piotr; Wloch, Marta; Gour, Jeffrey R.; Dean, David J.; Papenbrock, Thomas; Hjorth-Jensen, Morten
2005-01-01
We review basic elements of the single-reference coupled-cluster theory and discuss large scale ab initio calculations of ground and excited states of 15O, 16O, and 17O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we obtain the converged results for 16O and promising preliminary results for 15O and 17O at the level of two-body interactions. The calculated properties other than energies include matter density, charge radius, and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to 7 or 8 major oscillator shells, for which non-truncated shell-model calculations for nuclei with A = 15 17 active particles are presently not possible. We argue that the use of coupled-cluster methods and computer algorithms developed by quantum chemists to calculate properties of nuclei is an important step toward the development of accurate and affordable many-body theories that cross the boundaries of various physical sciences
Zhumagulov, Yaroslav V.; Krasavin, Andrey V.; Kashurnikov, Vladimir A.
2018-05-01
The method is developed for calculation of electronic properties of an ensemble of metal nanoclusters with the use of cluster perturbation theory. This method is applied to the system of gold nanoclusters. The Greens function of single nanocluster is obtained by ab initio calculations within the framework of the density functional theory, and then is used in Dyson equation to group nanoclusters together and to compute the Greens function as well as the electron density of states of the whole ensemble. The transition from insulator state of a single nanocluster to metallic state of bulk gold is observed.
International Nuclear Information System (INIS)
Liu Huoyan; Lel Xueling; Chen Hang; Liu Zhifeng; Liu Liren; Zhu Hengjiang
2011-01-01
The equilibrium structures, electronic properties and magnetisms of FeB N (N ≤ 15) clusters have been investigated by generalized gradient approximation (GGA) of density functional theory at different spin multiplicities. The average atomic binding energies, second-order energy differences and gaps of ground-state structures are calculated and discussed. The results show that FeB 3 , FeB 8 , FeB 12 and FeB 14 possess relatively higher stabilities. Moreover, there is a distinct hybridization between the d orbital of Fe and the p orbital of B for the ground-state cluster. The total magnetic moment for groundstate cluster is mainly provided by 3 d orbital of Fe atom, and exhibits the odd-even oscillation tendency with the increasing of cluster size. (authors)
Energy Technology Data Exchange (ETDEWEB)
Tran, Quoc Tri; Tran, Van Tan, E-mail: tvtan@dthu.edu.vn [Theoretical and Physical Chemistry Division, Dong Thap University, 783-Pham Huu Lau, Cao Lanh City, Ward 6, Dong Thap (Viet Nam)
2016-06-07
The geometrical and electronic structures of ScSi{sub 3}{sup −/0} clusters have been studied with the B3LYP, CCSD(T), and CASPT2 methods. The ground state of the anionic cluster was evaluated to be the {sup 1}A{sub 1} of rhombic η{sup 2}-(Si{sub 3})Sc{sup −} isomer, whereas that of the neutral cluster was computed to be the {sup 2}A{sub 1} of the same isomer. All features in the 266 and 193 nm photoelectron spectra of ScSi{sub 3}{sup −} cluster were interpreted by the one- and two-electron detachments from the {sup 1}A{sub 1} of rhombic η{sup 2}-(Si{sub 3})Sc{sup −} isomer. The Franck-Condon factor simulation results show that the first broad band starting at 1.78 eV in the spectra comprises several vibrational progression peaks of two totally symmetric modes with the corresponding frequencies of 296 and 354 cm{sup −1}.
Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian
2015-04-01
Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O40/- clusters. The measured PES spectra of B4O4- exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4- (2A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4- (2B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O40/- clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O40/- clusters. This work is the first experimental study on a molecular system with an o-bond.
Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian
2015-04-07
Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O4 (0/-) clusters. The measured PES spectra of B4O4 (-) exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4 (-) ((2)A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4 (-) ((2)B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O4 (0/-) clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O4 (0/-) clusters. This work is the first experimental study on a molecular system with an o-bond.
Richard, Ryan M.; Marshall, Michael S.; Dolgounitcheva, O.; Ortiz, J. V.; Bredas, Jean-Luc; Marom, Noa; Sherrill, C. David
2016-01-01
. This makes OPV design an appealing application for computational chemistry since IPs and EAs are readily calculable from most electronic structure methods. Unfortunately reliable, high-accuracy wave function methods, such as coupled cluster theory with single
Energy Technology Data Exchange (ETDEWEB)
Veals, Jeffrey D.; Thompson, Donald L. [Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)
2014-04-21
Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO{sub 2} or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO{sub 2} elimination by N–N and C–N bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO{sub 2} group elimination or by a concerted H-atom and nitroalkyl NO{sub 2} group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO{sub 2} elimination by N–N bond fission, HONO elimination involving the nitramine NO{sub 2} group, HONO elimination involving a nitroalkyl NO{sub 2} group, and finally NO{sub 2} elimination by C–N bond fission.
Tai, Truong Ba; Kadłubański, Paweł; Roszak, Szczepan; Majumdar, Devashis; Leszczynski, Jerzy; Nguyen, Minh Tho
2011-11-18
We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Tian, Wen-Juan; Chen, Qiang; Ou, Ting; Li, Si-Dian; Zhao, Li-Juan; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin
2015-01-01
Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B 4 O 4 0/− clusters. The measured PES spectra of B 4 O 4 − exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of C s B 4 O 4 − ( 2 A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D 2h B 4 O 4 − ( 2 B 2g ) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B 2 O 2 core bonded with terminal BO and/or BO 2 groups. The same Y-shaped and rhombic structures are also located for the B 4 O 4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B 4 O 4 0/− clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B 4 O 4 0/− clusters. This work is the first experimental study on a molecular system with an o-bond
Theory of boundary-free two-dimensional dust clusters
International Nuclear Information System (INIS)
Tsytovich, V.N.; Gousein-zade, N.G.; Morfill, G.E.
2006-01-01
It is shown theoretically that a stable two-dimensional (2D) grain cluster can exist in plasmas without external confinement if the shadow attraction of grains is taken into account. These are considered as boundary-free clusters. The equilibrium radius of the clusters is investigated numerically. It is found that it is rapidly decreasing with an increase of the attraction coefficient and with an increase of the number of grains N in the cluster. Comparison of energies of one shell cluster containing N grains with the energies of a cluster with N-1 grains in the shell and an additional one grain in the center as functions of the attraction coefficient is used to find the magic numbers for new shell creation. It is demonstrated that a dissociation of the cluster in several smaller clusters requires less energy than a removal of one of the grains from the cluster. The computations were performed for the Debye screening and for the nonlinear screening models and show that the structure of the clusters is sensitive to the type of screening. Frequencies of all collective modes of the 2D boundary-free clusters are calculated up to N=7 grains in the cluster for the case where all grains form one shell cluster and for the case where N=6 grains form one shell cluster and one of the grains is located at the center of the cluster. The frequencies of the modes increase with a decrease of the cluster radius. Stable and unstable modes are investigated as a function of the attraction coefficient. The presence of instability indicates that this type of equilibrium cluster does not correspond to the minimum energy in all directions and will be converted into another stable configuration. The universal magic number N m of grains in one shell cluster, such that for N=N m +1 the modes of the shell start to be unstable and the cluster converts to the cluster with N m grains in the shell and one grain in the center, is found for both the Yukawa screening and for the nonlinear screening
Bayesian Decision Theoretical Framework for Clustering
Chen, Mo
2011-01-01
In this thesis, we establish a novel probabilistic framework for the data clustering problem from the perspective of Bayesian decision theory. The Bayesian decision theory view justifies the important questions: what is a cluster and what a clustering algorithm should optimize. We prove that the spectral clustering (to be specific, the…
Varandas, António J. C.
2018-04-01
Because the one-electron basis set limit is difficult to reach in correlated post-Hartree-Fock ab initio calculations, the low-cost route of using methods that extrapolate to the estimated basis set limit attracts immediate interest. The situation is somewhat more satisfactory at the Hartree-Fock level because numerical calculation of the energy is often affordable at nearly converged basis set levels. Still, extrapolation schemes for the Hartree-Fock energy are addressed here, although the focus is on the more slowly convergent and computationally demanding correlation energy. Because they are frequently based on the gold-standard coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)], correlated calculations are often affordable only with the smallest basis sets, and hence single-level extrapolations from one raw energy could attain maximum usefulness. This possibility is examined. Whenever possible, this review uses raw data from second-order Møller-Plesset perturbation theory, as well as CCSD, CCSD(T), and multireference configuration interaction methods. Inescapably, the emphasis is on work done by the author's research group. Certain issues in need of further research or review are pinpointed.
Predicted thermochemistry and unimolecular kinetics of nitrous sulfide
DEFF Research Database (Denmark)
Marshall, Paul; Gao, Yide; Glarborg, Peter
2011-01-01
The geometry of N2S was obtained at the CCSD(T)/aug-cc-pV(T + d)Z level of theory and energies with coupled-cluster single double triple (CCSD(T)) and basis sets up to aug-cc-pV(6 + d)Z. After correction for anharmonic zero-point energy, core-valence correlation, correlation up to CCSDT...... crossing point between singlet and triplet potential energy curves is found at r(N-N) approximate to 1.105 angstrom and r(N-S) approximate to 2.232 angstrom, with an energy 72 kJ mol (1) above N-2 + S(P-3). Application of Troe's unimolecular formalism yields the low-pressure-limiting rate constant......(Q) and relativistic effects, D-0 for the N-S bond is estimated as 71.9 kJ mol (1), and the corresponding thermochemistry for N2S is Delta H-f(0)degrees = 205.4 kJ mol(-1) and Delta H-f(298)degrees = 202.6 kJ mol(-1) with an uncertainty of +/- 2.5 kJ mol(-1). Using CCSD(T)/aug-cc-pV(T + d) theory the minimum energy...
Xu, Yulong; Zhang, Jingxue; Wang, Dunyou
2015-06-28
The CH3Cl + CN(-) reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ∼11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.
The determination of accurate dipole polarizabilities alpha and gamma for the noble gases
Rice, Julia E.; Taylor, Peter R.; Lee, Timothy J.; Almloef, Jan
1989-01-01
The static dipole polarizabilities alpha and gamma for the noble gases helium through xenon were determined using large flexible one-particle basis sets in conjunction with high-level treatments of electron correlation. The electron correlation methods include single and double excitation coupled-cluster theory (CCSD), an extension of CCSD that includes a perturbational estimate of connected triple excitations, CCSD(T), and second order perturbation theory (MP2). The computed alpha and gamma values are estimated to be accurate to within a few percent. Agreement with experimental data for the static hyperpolarizability gamma is good for neon and xenon, but for argon and krypton the differences are larger than the combined theoretical and experimental uncertainties. Based on our calculations, we suggest that the experimental value of gamma for argon is too low; adjusting this value would bring the experimental value of gamma for krypton into better agreement with our computed result. The MP2 values for the polarizabilities of neon, argon, krypton and zenon are in reasonabe agreement with the CCSD and CCSD(T) values, suggesting that this less expensive method may be useful in studies of polarizabilities for larger systems.
Marianski, Mateusz; Oliva, Antoni
2012-01-01
We reevaluate the interaction of pyridine and p-benzoquinone using functionals designed to treat dispersion. We compare the relative energies of four different structures: stacked, T-shaped (identified for the first time) and two planar H-bonded geometries using these functionals (B97-D, ωB97x-D, M05, M05-2X, M06, M06L, M06-2X), other functionals (PBE1PBE, B3LYP, X3LYP), MP2 and CCSD(T) using basis sets as large as cc-pVTZ. The functionals designed to treat dispersion behave erratically as the predictions of the most stable structure vary considerably. MP2 predicts the experimentally observed structure (H-bonded) to be the least stable, while single point CCSD(T) at the MP2 optimized geometry correctly predicts the observed structure to be most stable. We have confirmed the assignment of the experimental structure using new calculations of the vibrational frequency shifts previously used to identify the structure. The MP2/cc-pVTZ vibrational calculations are in excellent agreement with the observations. All methods used to calculate the energies provide vibrational shifts that agree with the observed structure even though most do not predict this structure to be most stable. The implications for evaluating possible π-stacking in biologically important systems are discussed. PMID:22765283
Marianski, Mateusz; Oliva, Antoni; Dannenberg, J J
2012-08-02
We reevaluate the interaction of pyridine and p-benzoquinone using functionals designed to treat dispersion. We compare the relative energies of four different structures: stacked, T-shaped (identified for the first time), and two planar H-bonded geometries using these functionals (B97-D, ωB97x-D, M05, M05-2X, M06, M06L, and M06-2X), other functionals (PBE1PBE, B3LYP, X3LYP), MP2, and CCSD(T) using basis sets as large as cc-pVTZ. The functionals designed to treat dispersion behave erratically as the predictions of the most stable structure vary considerably. MP2 predicts the experimentally observed structure (H-bonded) to be the least stable, while single-point CCSD(T) at the MP2 optimized geometry correctly predicts the observed structure to be the most stable. We have confirmed the assignment of the experimental structure using new calculations of the vibrational frequency shifts previously used to identify the structure. The MP2/cc-pVTZ vibrational calculations are in excellent agreement with the observations. All methods used to calculate the energies provide vibrational shifts that agree with the observed structure even though most do not predict this structure to be most stable. The implications for evaluating possible π-stacking in biologically important systems are discussed.
Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De; Wan, Jian Guo
2016-07-07
An optimization strategy combining global semiempirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (GaSb)n clusters up to n = 9. The growth pattern of the clusters differed from those of previously reported group III-V binary clusters. A cagelike configuration was found for cluster sizes n ≤ 7. The structure of (GaSb)6 deviated from that of other III-V clusters. Competition existed between core-shell and hollow cage structures of (GaSb)7. Novel noncagelike structures were energetically preferred over the cages for the (GaSb)8 and (GaSb)9 clusters. Electronic properties, such as vertical ionization potential, adiabatic electron affinities, HOMO-LUMO gaps, and average on-site charges on Ga or Sb atoms, as well as binding energies, were computed.
The same number of optimized parameters scheme for determining intermolecular interaction energies
DEFF Research Database (Denmark)
Kristensen, Kasper; Ettenhuber, Patrick; Eriksen, Janus Juul
2015-01-01
We propose the Same Number Of Optimized Parameters (SNOOP) scheme as an alternative to the counterpoise method for treating basis set superposition errors in calculations of intermolecular interaction energies. The key point of the SNOOP scheme is to enforce that the number of optimized wave...... as numerically. Numerical results for second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster with single, double, and approximate triple excitations (CCSD(T)) show that the SNOOP scheme in general outperforms the uncorrected and counterpoise approaches. Furthermore, we show that SNOOP...
DEFF Research Database (Denmark)
Paidarová, Ivana; Sauer, Stephan P. A.
2012-01-01
We have compared the performance of density functional theory (DFT) using five different exchange-correlation functionals with four coupled cluster theory based wave function methods in the calculation of geometrical derivatives of the polarizability tensor of methane. The polarizability gradient...
Energy Technology Data Exchange (ETDEWEB)
Degroote, M. [Rice Univ., Houston, TX (United States); Henderson, T. M. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)
2018-01-03
We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero. Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.
Which Density Functional Should Be Used to Describe Protonated Water Clusters?
Shi, Ruili; Huang, Xiaoming; Su, Yan; Lu, Hai-Gang; Li, Si-Dian; Tang, Lingli; Zhao, Jijun
2017-04-27
Protonated water cluster is one of the most important hydrogen-bond network systems. Finding an appropriate DFT method to study the properties of protonated water clusters can substantially improve the economy in computational resources without sacrificing the accuracy compared to high-level methods. Using high-level MP2 and CCSD(T) methods as well as experimental results as benchmark, we systematically examined the effect of seven exchange-correlation GGA functionals (with BLYP, B3LYP, X3LYP, PBE0, PBE1W, M05-2X, and B97-D parametrizations) in describing the geometric parameters, interaction energies, dipole moments, and vibrational properties of protonated water clusters H + (H 2 O) 2-9,12 . The overall performance of all these functionals is acceptable, and each of them has its advantage in certain aspects. X3LYP is the best to describe the interaction energies, and PBE0 and M05-2X are also recommended to investigate interaction energies. PBE0 gives the best anharmonic frequencies, followed by PBE1W, B97-D and BLYP methods. PBE1W, B3LYP, B97-D, and X3LYP can yield better geometries. The capability of B97-D to distinguish the relative energies between isomers is the best among all the seven methods, followed by M05-2X and PBE0.
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.
DEFF Research Database (Denmark)
Mikosch, Thomas Valentin; Wintenberger, Olivier
2014-01-01
We introduce the cluster index of a multivariate stationary sequence and characterize the index in terms of the spectral tail process. This index plays a major role in limit theory for partial sums of sequences. We illustrate the use of the cluster index by characterizing infinite variance stable...... limit distributions and precise large deviation results for sums of multivariate functions acting on a stationary Markov chain under a drift condition....
Hammaecher, Catherine; Canneaux, Sébastien; Louis, Florent; Cantrel, Laurent
2011-06-23
The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.
Adaptive capacity of geographical clusters: Complexity science and network theory approach
Albino, Vito; Carbonara, Nunzia; Giannoccaro, Ilaria
This paper deals with the adaptive capacity of geographical clusters (GCs), that is a relevant topic in the literature. To address this topic, GC is considered as a complex adaptive system (CAS). Three theoretical propositions concerning the GC adaptive capacity are formulated by using complexity theory. First, we identify three main properties of CAS s that affect the adaptive capacity, namely the interconnectivity, the heterogeneity, and the level of control, and define how the value of these properties influence the adaptive capacity. Then, we associate these properties with specific GC characteristics so obtaining the key conditions of GCs that give them the adaptive capacity so assuring their competitive advantage. To test these theoretical propositions, a case study on two real GCs is carried out. The considered GCs are modeled as networks where firms are nodes and inter-firms relationships are links. Heterogeneity, interconnectivity, and level of control are considered as network properties and thus measured by using the methods of the network theory.
Röttmer, Nicole
2009-01-01
This research provides a novel, empirically tested, actionable theory of cluster innovativeness. Cluster innovativeness has for long been subject of research and resulting policy efforts. The cluster's endowment with assets, such as specialized labor, firms, research institutes, existing regional
International Nuclear Information System (INIS)
Gardet, G.
1995-01-01
A systematic study of small lithium clusters (with size less than 19), within the Density Functional Theory (DFT) formalism is presented. We examine structural properties of the so called local level of approximation. For clusters with size smaller than 8, the conformations are well known from ab initio calculations and are found here at much lower computational cost, with only small differences. For bigger clusters, two growth pattern have been used, based upon the increase of the number of pentagonal subunits in the clusters by absorption of one or two Li atoms. Several new stable structures are proposed. Then DFT gradient-corrected functionals have been used for relative stability determination of these clusters. Ionisation potentials and binding energies are also investigated in regard to clusters size and geometry. Calculations of excited states of lithium clusters (with size less than 9) have been performed within two different approaches. Using a set of Kohn-Sham orbitals to construct wave functions, oscillator strengths calculation of the electric dipole transitions is performed. Transition energies, oscillator strengths and optical absorption presented here are generally in reasonable agreement with the experimental data and the Configuration Interaction calculations. (author)
Landau, Arie
2013-07-07
This paper presents a new method for calculating spectroscopic properties in the framework of response theory utilizing a sequence of similarity transformations (STs). The STs are preformed using the coupled cluster (CC) and Fock-space coupled cluster operators. The linear and quadratic response functions of the new similarity transformed CC response (ST-CCR) method are derived. The poles of the linear response yield excitation-energy (EE) expressions identical to the ones in the similarity transformed equation-of-motion coupled cluster (STEOM-CC) approach. ST-CCR and STEOM-CC complement each other, in analogy to the complementarity of CC response (CCR) and equation-of-motion coupled cluster (EOM-CC). ST-CCR/STEOM-CC and CCR/EOM-CC yield size-extensive and size-intensive EEs, respectively. Other electronic-properties, e.g., transition dipole strengths, are also size-extensive within ST-CCR, in contrast to STEOM-CC. Moreover, analysis suggests that in comparison with CCR, the ST-CCR expressions may be confined to a smaller subspace, however, the precise scope of the truncation can only be determined numerically. In addition, reformulation of the time-independent STEOM-CC using the same parameterization as in ST-CCR, as well as an efficient truncation scheme, is presented. The shown convergence of the time-dependent and time-independent expressions displays the completeness of the presented formalism.
Piñeiro, Yolanda; Buceta, David; Calvo, Javier; Huseyinova, Shahana; Cuerva, Miguel; Pérez, Ángel; Domínguez, Blanca; López-Quintela, M Arturo
2015-07-01
Clusters are stable catalytic species, which are produced during the synthesis of nanoparticles (NPs). Their existence contradicts the thermodynamic principles used to explain the formation of NPs by the classical nucleation and growth theories (NGTs). Using chemical and electrochemical methods we will show that depending on the experimental conditions one can produce either Ag clusters or Ag NPs. Moreover, using already prepared Ag clusters one can observe the disappearance of the usual induction period observed for the kinetics of NP formation, indicating that clusters catalyze the formation of NPs. Taking these data together with some previous examples of cluster-catalyzed anisotropic growth, we derived a qualitative approach to include the catalytic activities of clusters into the formation of NPs, which is incorporated into the NGT. Some qualitative conclusions about the main experimental parameters, which affect the formation of clusters versus NPs, as well as the catalytic mechanism versus the non-catalytic one, are also described. Copyright © 2015 Elsevier Inc. All rights reserved.
A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network.
Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue
2016-02-19
Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.
A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network
Directory of Open Access Journals (Sweden)
Yuzhong Chen
2016-02-01
Full Text Available Vehicular ad hoc networks (VANETs have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.
Cluster algebras in mathematical physics
International Nuclear Information System (INIS)
Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-01-01
This special issue of Journal of Physics A: Mathematical and Theoretical contains reviews and original research articles on cluster algebras and their applications to mathematical physics. Cluster algebras were introduced by S Fomin and A Zelevinsky around 2000 as a tool for studying total positivity and dual canonical bases in Lie theory. Since then the theory has found diverse applications in mathematics and mathematical physics. Cluster algebras are axiomatically defined commutative rings equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations. A cluster algebra of rank n can be viewed as a subring of the field of rational functions in n variables. Rather than being presented, at the outset, by a complete set of generators and relations, it is constructed from the initial seed via an iterative procedure called mutation producing new seeds successively to generate the whole algebra. A seed consists of an n-tuple of rational functions called cluster variables and an exchange matrix controlling the mutation. Relations of cluster algebra type can be observed in many areas of mathematics (Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals, Somos sequences and Hirota equations to name just a few examples). The cluster variables enjoy a remarkable combinatorial pattern; in particular, they exhibit the Laurent phenomenon: they are expressed as Laurent polynomials rather than more general rational functions in terms of the cluster variables in any seed. These characteristic features are often referred to as the cluster algebra structure. In the last decade, it became apparent that cluster structures are ubiquitous in mathematical physics. Examples include supersymmetric gauge theories, Poisson geometry, integrable systems, statistical mechanics, fusion products in infinite dimensional algebras, dilogarithm
Structural and electronic properties of V{sub 2}B{sub n} (n = 1–10) clusters
Energy Technology Data Exchange (ETDEWEB)
Zhang, Li-Nan; Jia, Jianfeng, E-mail: jiajf@dns.sxnu.edu.cn; Wu, Hai-Shun, E-mail: wuhs@mail.sxnu.edu.cn
2015-09-28
Highlights: • Ground state isomers of V{sub 2}B{sub n} clusters are presented. • The growth pattern of V{sub 2}B{sub n} clusters is discussed. • V{sub 2}B{sub 6} is found to be the magically stable cluster. • The different ground state structure of V{sub 2}B{sub n} from that of Ta{sub 2}B{sub n} is caused by the small atomic radius of V atom. - Abstract: Inspired by the discovery of a series of Ta{sub 2}B{sub n} clusters, the geometric structures, stabilities, and electronic properties of V{sub 2}B{sub n} clusters up to n = 10 have been systematically investigated based on the density-functional B3LYP method and the CCSD(T) method. Among the small size clusters, the V{sub 2}B{sub 5} cluster was observed to have different geometric motif than Sc{sub 2}B{sub 5}, Ti{sub 2}B{sub 5} and Ta{sub 2}B{sub 5}. For V{sub 2}B{sub n} clusters with an n ⩾ 6, the bipyramidal structure is energetically favored, as for Sc{sub 2}B{sub n} and Ti{sub 2}B{sub n}. The second-order difference of energies, binding energies, dissociation energies, vertical ionization potentials, vertical electron affinities and chemical hardness of the V{sub 2}B{sub n} clusters were calculated and analyzed. The V{sub 2}B{sub 6} cluster was determined to be stable thermodynamically and might be observed in a future experiment. To understand the stability of the V{sub 2}B{sub 6} cluster, a detailed inspection of its occupied valence orbitals was performed.
Li, Peifang; Mei, Tingting; Lv, Linxia; Lu, Cheng; Wang, Weihua; Bao, Gang; Gutsev, Gennady L
2017-08-31
The geometrical structure and electronic properties of the neutral RhB n and singly negatively charged RhB n - clusters are obtained in the range of 3 ≤ n ≤ 10 using the unbiased CALYPSO structure search method and density functional theory (DFT). A combination of the PBE0 functional and the def2-TZVP basis set is used for determining global minima on potential energy surfaces of the Rh-doped B n clusters. The photoelectron spectra of the anions are simulated using the time-dependent density functional theory (TD-DFT) method. Good agreement between our simulated and experimentally obtained photoelectron spectra for RhB 9 - provides support to the validity of our theoretical method. The relative stabilities of the ground-state RhB n and RhB n - clusters are estimated using the calculated binding energies, second-order total energy differences, and HOMO-LUMO gaps. It is found that RhB 7 and RhB 8 - are the most stable species in the neutral and anionic series, respectively. The chemical bonding analysis reveals that the RhB 8 - cluster possesses two sets of delocalized σ and π bonds. In both cases, the Hückel 4N + 2 rule is fulfilled and this cluster possesses both σ and π aromaticities.
Directory of Open Access Journals (Sweden)
Gareev Timur
2012-01-01
Full Text Available This article addresses the problem of definition and identification of clusters as localized mesoeconomic systems with fuzzy boundaries that stimulate the development of these systems. The author analyses the influence of the inductive approach to the formation of cluster theory and juxtaposes different typologies of clusters and other types of localized economic systems. The article offers an overview of the existing methodological approaches to the problem of cluster identification and emphasises the major role of institutional dimension in the identification (and functioning of clusters, especially in comparison to cluster formation theory based on the technological connection of adjacent units. The author comes to a conclusion that, without the inclusion of institutional factors, alongside localising and technological ones (demonstrated through different variables, it is virtually impossible to develop an independent cluster theory, different from the general agglomeration theory. For the first time, a hierarchy of institutions affecting the formation of local economic systems is considered against the background of the identification of institutional levels, whose full development makes it possible to speak of the formation of clusters as most successful mesoeconomic systems. At the same time, the author emphasizes that, in economies gravitating towards the market type of organisation, the development of mesoeconomic systems is closely connected to competition for innovative rent. The article outlines the methodology for cluster studies, which makes it possible to consider such relatively new to the regional science phenomena as innovative and “transborder” clusters.
Measurement of initial clustering on the radon decay product 218Po
International Nuclear Information System (INIS)
Strydom, R.
1989-01-01
The formation of water clusters on 218 Po ions is studied. The formation of the water clusters is discussed in the light of the classical theory of clustering, the clustering theory of Hawrynski and a kinetic model of clustering. The design of a specialized electric mobility spectrometer to measure the electric mobilities of the water clusters at various humidity levels is discussed. From the mobilities the radii of, and a number of water molecules in, the clusters are calculated using kinetic gas theory. The determinations were done for humidity levels between 0,16 and 96% relative humidity, and the results compared with the theoretical predictions. It was found that the classical theory underestimates the sizes of the clusters and the theory of Hawrynski overestimates the cluster sizes. It is concluded that the spectrometer is capable of high resolution measurement of the electric mobility of the small clusters. The underlying result of the clustering theories is that stable clusters with particular radii are formed at each humidity level. 91 refs., 70 figs., 11 tabs
Bistoni, Giovanni
2017-06-12
The validity of the main approximations used in canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) in standard chemical applications is discussed. In particular, we investigate the dependence of the results on the number of electrons included in the correlation treatment in frozen-core (FC) calculations and on the main threshold governing the accuracy of DLPNO all-electron (AE) calculations. Initially, scalar relativistic orbital energies for the ground state of the atoms from Li to Rn in the periodic table are calculated. An energy criterion is applied for determining the orbitals that can be excluded from the correlation treatment in FC coupled cluster calculations without significant loss of accuracy. The heterolytic dissociation energy (HDE) of a series of metal compounds (LiF, NaF, AlF3, CaF2, CuF, GaF3, YF3, AgF, InF3, HfF4 and AuF) is calculated at the canonical CCSD(T) level, and the dependence of the results on the number of correlated electrons is investigated. Although for many of the studied reactions sub-valence correlation effects contribute significantly to the HDE, the use of an energy criterion permits a conservative definition of the size of the core, allowing FC calculations to be performed in a black-box fashion while retaining chemical accuracy. A comparison of the CCSD and the DLPNO-CCSD methods in describing the core-core, core-valence and valence-valence components of the correlation energy is given. It is found that more conservative thresholds must be used for electron pairs containing at least one core electron in order to achieve high accuracy in AE DLPNO-CCSD calculations relative to FC calculations. With the new settings, the DLPNO-CCSD method reproduces canonical CCSD results in both AE and FC calculations with the same accuracy.
Bistoni, Giovanni; Riplinger, Christoph; Minenkov, Yury; Cavallo, Luigi; Auer, Alexander A.; Neese, Frank
2017-01-01
The validity of the main approximations used in canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) in standard chemical applications is discussed. In particular, we investigate the dependence of the results on the number of electrons included in the correlation treatment in frozen-core (FC) calculations and on the main threshold governing the accuracy of DLPNO all-electron (AE) calculations. Initially, scalar relativistic orbital energies for the ground state of the atoms from Li to Rn in the periodic table are calculated. An energy criterion is applied for determining the orbitals that can be excluded from the correlation treatment in FC coupled cluster calculations without significant loss of accuracy. The heterolytic dissociation energy (HDE) of a series of metal compounds (LiF, NaF, AlF3, CaF2, CuF, GaF3, YF3, AgF, InF3, HfF4 and AuF) is calculated at the canonical CCSD(T) level, and the dependence of the results on the number of correlated electrons is investigated. Although for many of the studied reactions sub-valence correlation effects contribute significantly to the HDE, the use of an energy criterion permits a conservative definition of the size of the core, allowing FC calculations to be performed in a black-box fashion while retaining chemical accuracy. A comparison of the CCSD and the DLPNO-CCSD methods in describing the core-core, core-valence and valence-valence components of the correlation energy is given. It is found that more conservative thresholds must be used for electron pairs containing at least one core electron in order to achieve high accuracy in AE DLPNO-CCSD calculations relative to FC calculations. With the new settings, the DLPNO-CCSD method reproduces canonical CCSD results in both AE and FC calculations with the same accuracy.
Equation-of-motion coupled cluster method for high spin double electron attachment calculations
Energy Technology Data Exchange (ETDEWEB)
Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A. [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland)
2014-03-21
The new formulation of the equation-of-motion (EOM) coupled cluster (CC) approach applicable to the calculations of the double electron attachment (DEA) states for the high spin components is proposed. The new EOM equations are derived for the high spin triplet and quintet states. In both cases the new equations are easier to solve but the substantial simplification is observed in the case of quintets. Out of 21 diagrammatic terms contributing to the standard DEA-EOM-CCSDT equations for the R{sub 2} and R{sub 3} amplitudes only four terms survive contributing to the R{sub 3} part. The implemented method has been applied to the calculations of the excited states (singlets, triplets, and quintets) energies of the carbon and silicon atoms and potential energy curves for selected states of the Na{sub 2} (triplets) and B{sub 2} (quintets) molecules.
International Nuclear Information System (INIS)
Pal, Sourav; Sajeev, Y.; Vaval, Nayana
2006-01-01
The Fock space multi-reference coupled-cluster (FSMRCC) method is used for the study of the shape resonance energy and width in an electron-atom/molecule collision. The procedure is based upon combining a complex absorbing potential (CAP) with FSMRCC theory. Accurate resonance parameters are obtained by solving a small non-Hermitian eigen-value problem. We study the shape resonances in e - -C 2 H 4 and e - -Mg
International Nuclear Information System (INIS)
Schaeffer, R.
1987-01-01
The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory
A note on the accuracy of KS-DFT densities
Ranasinghe, Duminda S.; Perera, Ajith; Bartlett, Rodney J.
2017-11-01
The accuracy of the density of wave function methods and Kohn-Sham (KS) density functionals is studied using moments of the density, ⟨rn ⟩ =∫ ρ (r )rnd τ =∫0∞4 π r2ρ (r ) rnd r ,where n =-1 ,-2,0,1,2 ,and 3 provides information about the short- and long-range behavior of the density. Coupled cluster (CC) singles, doubles, and perturbative triples (CCSD(T)) is considered as the reference density. Three test sets are considered: boron through neon neutral atoms, two and four electron cations, and 3d transition metals. The total density and valence only density are distinguished by dropping appropriate core orbitals. Among density functionals tested, CAMQTP00 and ωB97x show the least deviation for boron through neon neutral atoms. They also show accurate eigenvalues for the HOMO indicating that they should have a more correct long-range behavior for the density. For transition metals, some density functional approximations outperform some wave function methods, suggesting that the KS determinant could be a better starting point for some kinds of correlated calculations. By using generalized many-body perturbation theory (MBPT), the convergence of second-, third-, and fourth-order KS-MBPT for the density is addressed as it converges to the infinite-order coupled cluster result. For the transition metal test set, the deviations in the KS density functional theory methods depend on the amount of exact exchange the functional uses. Functionals with exact exchange close to 25% show smaller deviations from the CCSD(T) density.
Structure and stability of small Li2 +(X2Σ+ g )-Xen (n = 1-6) clusters
Saidi, Sameh; Ghanmi, Chedli; Berriche, Hamid
2014-04-01
We have studied the structure and stability of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters for special symmetry groups. The potential energy surfaces of these clusters, are described using an accurate ab initio approach based on non-empirical pseudopotential, parameterized l-dependent polarization potential and analytic potential forms for the Li+Xe and Xe-Xe interactions. The pseudopotential technique has reduced the number of active electrons of Li2 +(X2Σ+ g )-Xe n ( n = 1-6) clusters to only one electron, the Li valence electron. The core-core interactions for Li+Xe are included using accurate CCSD(T) potential fitted using the analytical form of Tang and Toennies. For the Xe-Xe potential interactions we have used the analytical form of Lennard Jones (LJ6 - 12). The potential energy surfaces of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters are performed for a fixed distance of the Li2 +(X2Σ+ g ) alkali dimer, its equilibrium distance. They are used to extract information on the stability of the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters. For each n, the stability of the different isomers is examined by comparing their potential energy surfaces. Moreover, we have determined the quantum energies ( D 0), the zero-point-energies (ZPE) and the ZPE%. To our best knowledge, there are neither experimental nor theoretical works realized for the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters, our results are presented for the first time.
Luppino, G. A.; Gioia, I. M.
1995-01-01
During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.
Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data.
Pitonák, Michal; Neogrády, Pavel; Cerný, Jirí; Grimme, Stefan; Hobza, Pavel
2009-01-12
Scaled MP3 interaction energies calculated as a sum of MP2/CBS (complete basis set limit) interaction energies and scaled third-order energy contributions obtained in small or medium size basis sets agree very closely with the estimated CCSD(T)/CBS interaction energies for the 22 H-bonded, dispersion-controlled and mixed non-covalent complexes from the S22 data set. Performance of this so-called MP2.5 (third-order scaling factor of 0.5) method has also been tested for 33 nucleic acid base pairs and two stacked conformers of porphine dimer. In all the test cases, performance of the MP2.5 method was shown to be superior to the scaled spin-component MP2 based methods, e.g. SCS-MP2, SCSN-MP2 and SCS(MI)-MP2. In particular, a very balanced treatment of hydrogen-bonded compared to stacked complexes is achieved with MP2.5. The main advantage of the approach is that it employs only a single empirical parameter and is thus biased by two rigorously defined, asymptotically correct ab-initio methods, MP2 and MP3. The method is proposed as an accurate but computationally feasible alternative to CCSD(T) for the computation of the properties of various kinds of non-covalently bound systems.
International Nuclear Information System (INIS)
Brandow, B.H.
1977-01-01
The Brueckner--Goldstone form of linked-cluster perturbation theory is derived, together with its open-shell analog, by an elementary time-independent approach. This serves to focus attention on the physical interpretation of the results. The open-shell expansion is used to provide a straightforward justification for the effective π-electron Hamiltonians of planar organic molecules
Röttmer, Nicole
2009-01-01
This research provides a novel, empirically tested, actionable theory of cluster innovativeness. Cluster innovativeness has for long been subject of research and resulting policy efforts. The cluster's endowment with assets, such as specialized labor, firms, research institutes, existing regional networks and a specific culture are, among others, recognized as sources of innovativeness. While the asset structure of clusters as been subject to a variety of research efforts, the evidence on the...
Mechanism of electron attachment to van der Waals clusters: Application to carbon dioxide clusters
International Nuclear Information System (INIS)
Tsukada, M.; Shima, N.; Tsuneyuki, S.; Kageshima, H.; Kondow, T.
1987-01-01
A theory on the attachment of very slow electrons to van der Waals clusters was developed on the basis of the electronic structure theory, and was applied to clarify the mechanism of the collisional electron transfer from a high-Rydberg atom to a CO 2 cluster. The strong coupled electron--phonon model is found to afford a reasonable mechanism of the attachment. The equilibrium geometry of (CO 2 )/sub N/ (2≤N≤13) clusters are determined and their vertical affinity levels are obtained by the DV-X α-transition state method. Using this information, as well as some plausible assumptions on the values of the coupling constants, the attachment cross section σ is evaluated as a function of the energy of the incident electron. The theory predicts the existence of the threshold cluster size for the attachment and a sharp decrease of σ with the energy, which are consistent with the experimental results
The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth
Zentner, Andrew R.
I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set
Theory of mind predicts severity level in autism.
Hoogenhout, Michelle; Malcolm-Smith, Susan
2017-02-01
We investigated whether theory of mind skills can indicate autism spectrum disorder severity. In all, 62 children with autism spectrum disorder completed a developmentally sensitive theory of mind battery. We used intelligence quotient, Diagnostic and Statistical Manual of Mental Disorders (4th ed.) diagnosis and level of support needed as indicators of severity level. Using hierarchical cluster analysis, we found three distinct clusters of theory of mind ability: early-developing theory of mind (Cluster 1), false-belief reasoning (Cluster 2) and sophisticated theory of mind understanding (Cluster 3). The clusters corresponded to severe, moderate and mild autism spectrum disorder. As an indicator of level of support needed, cluster grouping predicted the type of school children attended. All Cluster 1 children attended autism-specific schools; Cluster 2 was divided between autism-specific and special needs schools and nearly all Cluster 3 children attended general special needs and mainstream schools. Assessing theory of mind skills can reliably discriminate severity levels within autism spectrum disorder.
Computational chemistry at the petascale: Are we there yet?
International Nuclear Information System (INIS)
Apra, E; Harrison, R J; Shelton, W A; Tipparaju, V; Vazquez-Mayagoitia, A
2009-01-01
We have run computational chemistry calculations approaching the Petascale level of performance (∼ 0.5 PFlops). We used the Coupled Cluster CCSD(T) module of the computational chemistry code NWChem to evaluate accurate energetics of water clusters on a 1.4 PFlops Cray XT5 computer.
Cremer, Dieter; Kraka, Elfi; Filatov, Michael
2008-01-01
Bond dissociation energies (BDEs) of neutral HgX and cationic HgX(+) molecules range from less than a kcal mol(-1) to as much as 60 kcal mol(-1). Using NESCICCCSD(T) [normalized elimination of the small component and coupled-cluster theory with all single and double excitations and a perturbative
Electronic structure and properties of designer clusters and cluster-assemblies
International Nuclear Information System (INIS)
Khanna, S.N.; Jena, P.
1995-01-01
Using self-consistent calculations based on density functional theory, we demonstrate that electronic shell filling and close atomic packing criteria can be used to design ultra-stable clusters. Interaction of these clusters with each other and with gas atoms is found to be weak confirming their chemical inertness. A crystal composed of these inert clusters is expected to have electronic properties that are markedly different from crystals where atoms are the building blocks. The recent observation of ferromagnetism in potassium clusters assembled in zeolite cages is discussed. (orig.)
A cluster randomized theory-guided oral hygiene trial in adolescents-A latent growth model.
Aleksejūnienė, J; Brukienė, V
2018-05-01
(i) To test whether theory-guided interventions are more effective than conventional dental instruction (CDI) for changing oral hygiene in adolescents and (ii) to examine whether such interventions equally benefit both genders and different socio-economic (SES) groups. A total of 244 adolescents were recruited from three schools, and cluster randomization allocated adolescents to one of the three types of interventions: two were theory-based interventions (Precaution Adoption Process Model or Authoritative Parenting Model) and CDI served as an active control. Oral hygiene levels % (OH) were assessed at baseline, after 3 months and after 12 months. A complete data set was available for 166 adolescents (the total follow-up rate: 69%). There were no significant differences in baseline OH between those who participated throughout the study and those who dropped out. Bivariate and multivariate analyses showed that theory-guided interventions produced significant improvements in oral hygiene and that there were no significant gender or socio-economic differences. Theory-guided interventions produced more positive changes in OH than CDI, and these changes did not differ between gender and SES groups. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Optical response of small magnesium clusters
DEFF Research Database (Denmark)
Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter
2004-01-01
We predict strong enhancement in the photoabsorption of small Mg clusters in the region of 4–5 eV due to the resonant excitation of the plasmon oscillations of cluster electrons. Photoabsorption spectra for neutral Mg clusters consisting of up to N = 11 atoms have been calculated using an ab initio...... framework based on the time-dependent density functional theory (TDDFT). The nature of predicted resonances has been elucidated by comparison of the results of the an ab initio calculations with the results of the classical Mie theory. The splitting of the plasmon resonances caused by the cluster...
Optimization of the Coupled Cluster Implementation in NWChem on Petascale Parallel Architectures
Energy Technology Data Exchange (ETDEWEB)
Anisimov, Victor; Bauer, Gregory H.; Chadalavada, Kalyana; Olson, Ryan M.; Glenski, Joseph W.; Kramer, William T.; Apra, Edoardo; Kowalski, Karol
2014-09-04
Coupled cluster singles and doubles (CCSD) algorithm has been optimized in NWChem software package. This modification alleviated the communication bottleneck and provided from 2- to 5-fold speedup in the CCSD iteration time depending on the problem size and available memory. Sustained 0.60 petaflop/sec performance on CCSD(T) calculation has been obtained on NCSA Blue Waters. This number included all stages of the calculation from initialization till termination, iterative computation of single and double excitations, and perturbative accounting for triple excitations. In the section of perturbative triples alone, the computation maintained 1.18 petaflop/sec performance level. CCSD computations have been performed on Guanine-Cytosine deoxydinucleotide monophosphate (GC-dDMP) to probe the conformational energy difference in DNA single strand in A- and B-conformations. The computation revealed significant discrepancy between CCSD and classical force fields in prediction of relative energy of A- and B-conformations of GC-dDMP.
Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F
2016-03-03
The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.
Symmetry broken and restored coupled-cluster theory: I. Rotational symmetry and angular momentum
International Nuclear Information System (INIS)
Duguet, T
2015-01-01
We extend coupled-cluster (CC) theory performed on top of a Slater determinant breaking rotational symmetry to allow for the exact restoration of the angular momentum at any truncation order. The main objective relates to the description of near-degenerate finite quantum systems with an open-shell character. As such, the newly developed many-body formalism offers a wealth of potential applications and further extensions dedicated to the ab initio description of, e.g., doubly open-shell atomic nuclei and molecule dissociation. The formalism, which encompasses both single-reference CC theory and projected Hartree–Fock theory as particular cases, permits the computation of usual sets of connected diagrams while consistently incorporating static correlations through the highly non-perturbative restoration of rotational symmetry. Interestingly, the yrast spectroscopy of the system, i.e. the lowest energy associated with each angular momentum, is accessed within a single calculation. A key difficulty presently overcome relates to the necessity to handle generalized energy and norm kernels for which naturally terminating CC expansions could be eventually obtained. The present work focuses on SU(2) but can be extended to any (locally) compact Lie group and to discrete groups, such as most point groups. In particular, the formalism will be soon generalized to U(1) symmetry associated with particle number conservation. This is relevant to Bogoliubov CC theory that was recently applied to singly open-shell nuclei. (paper)
International Nuclear Information System (INIS)
Woon, D.E.; Peterson, K.A.; Dunning, T.H. Jr.
1998-01-01
The interaction of Ar with H 2 and HCl has been studied using Moeller - Plesset perturbation theory (MP2, MP3, MP4) and coupled-cluster [CCSD, CCSD(T)] methods with augmented correlation consistent basis sets. Basis sets as large as triply augmented quadruple zeta quality were used to investigate the convergence trends. Interaction energies were determined using the supermolecule approach with the counterpoise correction to account for basis set superposition error. Comparison with the available empirical potentials finds excellent agreement for both binding energies and transition state. For Ar - H 2 , the estimated complete basis set (CBS) limits for the binding energies of the two equivalent minima and the connecting transition state (TS) are, respectively, 55 and 47cm -1 at the MP4 level and 54 and 46cm -1 at the CCSD(T) level, respectively [the XC(fit) empirical potential of Bissonnette et al. [J. Chem. Phys. 105, 2639 (1996)] yields 56.6 and 47.8cm -1 for H 2 (v=0)]. The estimated CBS limits for the binding energies of the two minima and transition state of Ar - HCl are 185, 155, and 109cm -1 at the MP4 level and 176, 147, and 105cm -1 at the CCSD(T) level, respectively [the H6(4,3,0) empirical potential of Hutson [J. Phys. Chem. 96, 4237 (1992)] yields 176.0, 148.3, and 103.3cm -1 for HCl (v=0)]. Basis sets containing diffuse functions of (dfg) symmetries were found to be essential for accurately modeling these two complexes, which are largely bound by dispersion and induction forces. Highly correlated wave functions were also required for accurate results. This was found to be particularly true for ArHCl, where significant differences in calculated binding energies were observed between MP2, MP4, and CCSD(T). copyright 1998 American Institute of Physics
Formation and stability of sputtered clusters
International Nuclear Information System (INIS)
Andersen, H.H.
1989-01-01
Current theory for the formation of sputtered clusters states that either atoms are sputtered individually and aggregate after having left the surface or they are sputtered as complete clusters. There is no totally sharp boundary between the two interpretations, but experimental evidence is mainly thought to favour the latter model. Both theories demand a criterion for the stability of the clusters. In computer simulations of sputtering, the idea has been to use the same interaction potential as in the lattice computations to judge the stability. More qualitatively, simple geometrical shapes have also been looked for. It is found here, that evidence for 'magic numbers' and electron parity effects in clusters have existed in the sputtering literature for a long time, making more sophisticated stability criteria necessary. The breakdown of originally sputtered metastable clusters into stable clusters gives strong support to the 'sputtered as clusters' hypothesis. (author)
The correlation functions for the clustering of galaxies and Abell clusters
International Nuclear Information System (INIS)
Jones, B.J.T.; Jones, J.E.; Copenhagen Univ.
1985-01-01
The difference in amplitudes between the galaxy-galaxy correlation function and the correlation function between Abell clusters is a consequence of two facts. Firstly, most Abell clusters with z<0.08 lie in a relatively small volume of the sampled space, and secondly, the fraction of galaxies lying in Abell clusters differs considerably inside and outside of this volume. (The Abell clusters are confined to a smaller volume of space than are the galaxies.) We discuss the implications of this interpretation of the clustering correlation functions and present a simple model showing how such a situation may arise quite naturally in standard theories for galaxy formation. (orig.)
Clusters, Connectivity and Catch-up
DEFF Research Database (Denmark)
Lorenzen, Mark; Mudambi, Ram
2013-01-01
In this article, we make two important contributions to the literature on clusters. First, we provide a broader theory of cluster connectivity that has hitherto focused on organization-based pipelines and MNE subsidiaries, by including linkages in the form of personal relationships. Second, we us...... by contrasting two emerging economy case studies: Bollywood, the Indian filmed entertainment cluster in Mumbai and the Indian software cluster in Bangalore....
International Nuclear Information System (INIS)
Arponen, J.S.; Bishop, R.F.
1991-01-01
The configuration-interaction method (CIM), normal coupled-cluster method (NCCM), and extended coupled-cluster method (ECCM) form a rather natural hierarchy of formulations of increasing sophistication for describing interacting systems of quantum-mechanical particles or fields. They are denoted generically as independent-cluster (IC) parameterizations in a view of the way in which they incorporate the many-body correlations via sets of amplitudes that describe the various correlated clusters within the interacting system as mutually independent entities. They differ primarily by the way in which they incorporate the exact locality and separability properties. Each method is shown to provide, in principle, an exact mapping of the original quantum-mechanical problem into a corresponding classical Hamiltonian mechanics in terms of a set of multiconfigurational canonical field amplitudes. In perturbation-theoretic terms the IC methods incorporate infinite classes of diagrams at each order of approximation. The diagrams differ in their connectivity or linkedness properties. The structure of the ECCM in particular makes it capable of describing such phenomena as phase transitions, spontaneous symmetry breaking , and topological states. The authors address such fundamentally important questions as the existence and convergence properties of the three IC parameterizations by formulating the holomorphic representation of each one for the class of single-mode bosonic field theories which include the anharmonic oscillators
Hoefener, S.; Ahlrichs, R.; Knecht, S.; Visscher, L.
2012-01-01
We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga
International Nuclear Information System (INIS)
Byrd, Jason N.; Lutz, Jesse J.; Jin, Yifan; Ranasinghe, Duminda S.; Perera, Ajith; Bartlett, Rodney J.; Montgomery, John A.; Duan, Xiaofeng F.; Burggraf, Larry W.; Sanders, Beverly A.
2016-01-01
The accurate determination of the preferred Si 12 C 12 isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for the opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies, and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC 3 to Si 12 C 12 . It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and coupled-cluster theory with singles and doubles extrapolation with triple-ζ (T) correlation, the closo Si 12 C 12 isomer is identified to be the preferred isomer in the support of previous calculations [X. F. Duan and L. W. Burggraf, J. Chem. Phys. 142, 034303 (2015)]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post-MBPT(2) correlation energy are found to be an excellent balance between efficiency and accuracy.
Energy Technology Data Exchange (ETDEWEB)
Demissie, Taye B., E-mail: taye.b.demissie@uit.no; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø (Norway); Jaszuński, Michał [Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01 224 Warszawa (Poland)
2015-10-28
We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.
Solvation effects on chemical shifts by embedded cluster integral equation theory.
Frach, Roland; Kast, Stefan M
2014-12-11
The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.
Structure and physical properties of silicon clusters and of vacancy clusters in bulk silicon
International Nuclear Information System (INIS)
Sieck, A.
2000-01-01
In this thesis the growth-pattern of free silicon clusters and vacancy clusters in bulk silicon is investigated. The aim is to describe and to better understand the cluster to bulk transition. Silicon structures in between clusters and solids feature new interesting physical properties. The structure and physical properties of silicon clusters can be revealed by a combination of theory and experiment, only. Low-energy clusters are determined with different optimization techniques and a density-functional based tight-binding method. Additionally, infrared and Raman spectra, and polarizabilities calculated within self-consistent field density-functional theory are provided for the smaller clusters. For clusters with 25 to 35 atoms an analysis of the shape of the clusters and the related mobilities in a buffer gas is given. Finally, the clusters observed in low-temperature experiments are identified via the best match between calculated properties and experimental data. Silicon clusters with 10 to 15 atoms have a tricapped trigonal prism as a common subunit. Clusters with up to about 25 atoms follow a prolate growth-path. In the range from 24 to 30 atoms the geometry of the clusters undergoes a transition towards compact spherical structures. Low-energy clusters with up to 240 atoms feature a bonding pattern strikingly different from the tetrahedral bonding in the solid. It follows that structures with dimensions of several Angstroem have electrical and optical properties different from the solid. The calculated stabilities and positron-lifetimes of vacancy clusters in bulk silicon indicate the positron-lifetimes of about 435 ps detected in irradiated silicon to be related to clusters of 9 or 10 vacancies. The vacancies in these clusters form neighboring hexa-rings and, therefore, minimize the number of dangling bonds. (orig.)
Canneaux, Sébastien; Xerri, Bertrand; Louis, Florent; Cantrel, Laurent
2010-09-02
The rate constants of the reactions of iodine atoms with H(2), H(2)O, HI, and OH have been estimated using 39, 21, 13, and 39 different levels of theory, respectively, and have been compared to the available literature values over the temperature range of 250-2500 K. The aim of this methodological work is to demonstrate that standard theoretical methods are adequate to obtain quantitative rate constants for the reactions involving iodine-containing species. Geometry optimizations and vibrational frequency calculations are performed using three methods (MP2, MPW1K, and BHandHLYP) combined with three basis sets (cc-pVTZ, cc-pVQZ, and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVnZ (n = T, Q, and 5), aug-cc-pVnZ (n = T, Q, and 5), 6-311G(d,p), 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Canonical transition state theory with a simple Wigner tunneling correction is used to predict the rate constants as a function of temperature. CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory provide accurate kinetic rate constants when compared to available literature data. The use of the CCSD(T)/cc-pVQZ//MP2/cc-pVTZ and CCSD(T)/6-311++G(3df,3pd) levels of theory allows one to obtain a better agreement with the literature data for all reactions with the exception of the I + H(2) reaction R(1) . This computational procedure has been also used to predict rate constants for some reactions where no available experimental data exist. The use of quantum chemistry tools could be therefore extended to other elements and next applied to develop kinetic networks involving various fission products, steam, and hydrogen in the absence of literature data. The final objective is to implement the kinetics of gaseous
Photoabsorption of small sodium and magnesium clusters
DEFF Research Database (Denmark)
Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter
2004-01-01
We predict the strong enhancement in the photoabsorption of small Mg clusters in the region of 4-5 eV due to the resonant excitation of the plasmon oscillations of cluster electrons. The photoabsorption spectra for neutral Mg clusters consisting of up to N=11 atoms have been calculated using it ab...... initio framework based on the time dependent density functional theory (TDDFT). The nature of predicted resonances has been elucidated by comparison of the results of the it ab initio calculations with the results of the classical Mie theory. The splitting of the plasmon resonances caused by the cluster...
A Linear Algebra Measure of Cluster Quality.
Mather, Laura A.
2000-01-01
Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)
Chen, Xiaojing; Bichoutskaia, Elena; Stace, Anthony J
2013-05-16
A series of five molecular dication clusters, (H2O)n(2+), (NH3)n(2+), (CH3CN)n(2+), (C5H5N)n(2+), and (C6H6)n(2+), have been studied for the purpose of identifying patterns of behavior close to the Rayleigh instability limit where the clusters might be expected to exhibit Coulomb fission. Experiments show that the instability limit for each dication covers a range of sizes and that on a time scale of 10(-4) s ions close to the limit can undergo either Coulomb fission or neutral evaporation. The observed fission pathways exhibit considerable asymmetry in the sizes of the charged fragments, and are associated with kinetic (ejection) energies of ~0.9 eV. Coulomb fission has been modeled using a theory recently formulated to describe how charged particles of dielectric materials interact with one another (Bichoutskaia et al. J. Chem. Phys. 2010, 133, 024105). The calculated electrostatic interaction energy between separating fragments accounts for the observed asymmetric fragmentation and for the magnitudes of the measured ejection energies. The close match between theory and experiment suggests that a significant fraction of excess charge resides on the surfaces of the fragment ions. The experiments provided support for a fundamental step in the electrospray ionization (ESI) mechanism, namely the ejection from droplets of small solvated charge carriers. At the same time, the theory shows how water and acetonitrile may behave slightly differently as ESI solvents. However, the theory also reveals deficiencies in the point-charge image-charge model that has previously been used to quantify Coulomb fission in the electrospray process.
Computational Study of Ethanol Conversion on Al _{8} O _{12} as a Model for γ-Al _{2} O _{3}
Energy Technology Data Exchange (ETDEWEB)
Fang, Zongtang; Wang, Yong; Dixon, David A.
2015-10-15
Correlated molecular orbital theory at the coupled cluster CCSD(T) level with density functional theory geometries is used to study ethanol dehydration, dehydrogenation, and condensation reactions on an the Al8O12 cluster which is a model for γ-Al2O3. The Al in the active site on the cluster is a strong Lewis acid. The reactions begin with formation of a very stable Lewis acid–base ethanol–cluster adduct. Dehydration proceeds by β-H transfer to a bicoordinate oxygen leading to the direct formation of ethylene and two OH groups following an E2 mechanism. Dehydrogenation proceeds directly by α-H transfer to the active metal center and a proton transfer to a bicoordinate bridge O to form acetaldehyde plus a metal hydride and a hydroxyl, again an E2 mechanism. After addition of a second ethanol, diethyl ether is generated by an α-C transfer from the first to the second ethanol, an acid-driven SN2 mechanism. Condensation and dehydration with two alcohols have comparable energy barriers. The addition of a second ethanol or a water molecule raises the energy barriers. Condensation and dehydration are predicted to be more likely than dehydrogenation. The computational results for the mechanism and the energetics agree well with the available experimental data.
Explicit hydration of ammonium ion by correlated methods employing molecular tailoring approach
Singh, Gurmeet; Verma, Rahul; Wagle, Swapnil; Gadre, Shridhar R.
2017-11-01
Explicit hydration studies of ions require accurate estimation of interaction energies. This work explores the explicit hydration of the ammonium ion (NH4+) employing Møller-Plesset second order (MP2) perturbation theory, an accurate yet relatively less expensive correlated method. Several initial geometries of NH4+(H2O)n (n = 4 to 13) clusters are subjected to MP2 level geometry optimisation with correlation consistent aug-cc-pVDZ (aVDZ) basis set. For large clusters (viz. n > 8), molecular tailoring approach (MTA) is used for single point energy evaluation at MP2/aVTZ level for the estimation of MP2 level binding energies (BEs) at complete basis set (CBS) limit. The minimal nature of the clusters upto n ≤ 8 is confirmed by performing vibrational frequency calculations at MP2/aVDZ level of theory, whereas for larger clusters (9 ≤ n ≤ 13) such calculations are effected via grafted MTA (GMTA) method. The zero point energy (ZPE) corrections are done for all the isomers lying within 1 kcal/mol of the lowest energy one. The resulting frequencies in N-H region (2900-3500 cm-1) and in O-H stretching region (3300-3900 cm-1) are in found to be in excellent agreement with the available experimental findings for 4 ≤ n ≤ 13. Furthermore, GMTA is also applied for calculating the BEs of these clusters at coupled cluster singles and doubles with perturbative triples (CCSD(T)) level of theory with aVDZ basis set. This work thus represents an art of the possible on contemporary multi-core computers for studying explicit molecular hydration at correlated level theories.
Local Clusters in a Globalized World
DEFF Research Database (Denmark)
Reinau, Kristian Hegner
Currently there is growing focus on how cluster internal and cluster external relations affect the creation of knowledge in companies placed in clusters. However, the current theories on this topic are too simple and the interplay between internal and external relations is relatively unknown. Thi...
Tappi, D.
2005-01-01
Over recent decades, clusters like industrial districts have increasingly attracted attention in economic debate. The study of clusters, particularly in the Italian literature, highlights the inadequacy of the mainstream body of explanation to provide a theory of the emergence and transformation
Indian Academy of Sciences (India)
2017-09-27
Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...
Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.
Otero-de-la-Roza, A; DiLabio, Gino A; Johnson, Erin R
2016-07-12
In this article, we develop an understanding of how errors from exchange-correlation functionals affect the modeling of noncovalent interactions in dispersion-corrected density-functional theory. Computed CCSD(T) reference binding energies for a collection of small-molecule clusters are decomposed via a molecular many-body expansion and are used to benchmark density-functional approximations, including the effect of semilocal approximation, exact-exchange admixture, and range separation. Three sources of error are identified. Repulsion error arises from the choice of semilocal functional approximation. This error affects intermolecular repulsions and is present in all n-body exchange-repulsion energies with a sign that alternates with the order n of the interaction. Delocalization error is independent of the choice of semilocal functional but does depend on the exact exchange fraction. Delocalization error misrepresents the induction energies, leading to overbinding in all induction n-body terms, and underestimates the electrostatic contribution to the 2-body energies. Deformation error affects only monomer relaxation (deformation) energies and behaves similarly to bond-dissociation energy errors. Delocalization and deformation errors affect systems with significant intermolecular orbital interactions (e.g., hydrogen- and halogen-bonded systems), whereas repulsion error is ubiquitous. Many-body errors from the underlying exchange-correlation functional greatly exceed in general the magnitude of the many-body dispersion energy term. A functional built to accurately model noncovalent interactions must contain a dispersion correction, semilocal exchange, and correlation components that minimize the repulsion error independently and must also incorporate exact exchange in such a way that delocalization error is absent.
Chen, Zhenhua; Hoffmann, Mark R
2012-07-07
A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4
Atomic cluster physics: new challenges for theory and experiment
Energy Technology Data Exchange (ETDEWEB)
Greiner, Walter [Frankfurt Institute for Advanced Studies, Max-von-Laue Str. 1, Frankfurt am Main 60438 (Germany); Solov' yov, Andrey [Frankfurt Institute for Advanced Studies, Max-von-Laue Str. 1, Frankfurt am Main 60438 (Germany)
2005-08-01
A brief introduction to atomic cluster physics, the inter-disciplinary field, which developed fairly successfully during last years, is presented. A review of recent achievements in the detailed ab initio description of structure and properties of atomic clusters and complex molecules is given. The main trends of development in the field are discussed and some of its new focuses are outlined. Particular attention is devoted to the role of quantum and many-body phenomena in the formation of complex multi-atomic systems and the methods of theoretical investigation of their specific properties. The role of the simplified model approaches accurately developed from the fundamental physical principles is stressed. Various illustrations are made for sodium, magnesium clusters, fullerenes and clusters of noble gas atoms.
Zhang, Weichao; Du, Benni
2013-07-01
We performed the first theoretical potential energy surface investigation on the mechanism and products of the reaction of OH+ cyclopentene in the absence and presence of O2 by using high-level quantum chemical methods CCSD(T)/6-311++G(d,p)//BH&HLYP/6-311++G(d,p)+ZPE × 0.9335. Energies for several species are also refined at the CCSD(T)/cc-pVTZ levels of theory. The calculations indicate that the major products are cyclopentanone, 1-cyclopenten-1-ol, and 2-cyclopenten-1-ol in the absence of O2, which are in qualitative accordance with the available experimental observations. In the presence of O2, the dominant products are predicted to be glutaraldehyde and 1,2-epoxycyclopentanol.
Thermochemistry and electronic structure of small boron clusters (B(n), n = 5-13) and their anions.
Truong, Ba Tai; Grant, Daniel J; Nguyen, Minh Tho; Dixon, David A
2010-01-21
Thermochemical parameters of a set of small-sized neutral (B(n)) and anionic (B(n)(-)) boron clusters, with n = 5-13, were determined using coupled-cluster theory CCSD(T) calculations with the aug-cc-pVnZ (n = D, T, and Q) basis sets extrapolated to the complete basis set limit (CBS) plus addition corrections and/or G3B3 calculations. Enthalpies of formation, adiabatic electron affinities (EA), vertical (VDE), and adiabatic (ADE) detachment energies were evaluated. Our calculated EAs are in good agreement with recent experiments (values in eV): B(5) (CBS, 2.29; G3B3, 2.48; exptl., 2.33 +/- 0.02), B(6) (CBS, 2.59; G3B3, 3.23; exptl., 3.01 +/- 0.04), B(7) (CBS, 2.62; G3B3, 2.67; exptl., 2.55 +/- 0.05), B(8) (CBS, 3.02; G3B3, 3.11; exptl., 3.02 +/- 0.02), B(9) (G3B3, 3.03; exptl., 3.39 +/- 0.06), B(10) (G3B3, 2.85; exptl., 2.88 +/- 0.09), B(11) (G3B4, 3.48;, exptl., 3.43 +/- 0.01), B(12) (G3B3, 2.33; exptl., 2.21 +/- 0.04), and B(13) (G3B3, 3.62; exptl., 3.78 +/- 0.02). The difference between the calculated adiabatic electron affinity and the adiabatic detachment energy for B(6) is due to the fact that the geometry of the anion is not that of the ground-state neutral. The calculated adiabatic detachment energies to the (3)A(u), C(2h) and (1)A(g), D(2h) excited states of B(6), which have geometries similar to the (1)A(g), D(2h) state of B(6)(-), are 2.93 and 3.06 eV, in excellent agreement with experiment. The VDEs were also well reproduced by the calculations. Partitioning of the electron localization functions into pi and sigma components allows probing of the partial and local delocalization in global nonaromatic systems. The larger clusters appear to exhibit multiple aromaticity. The binding energies per atom vary in a parallel manner for both neutral and anionic series and approach the experimental value for the heat of atomization of B. The resonance energies and the normalized resonance energies are convenient indices to quantify the stabilization of a cluster
International Nuclear Information System (INIS)
Li, Zhi; Zhao, Zhen
2017-01-01
The geometries, electronic properties, magnetic moments and growth strategies of the Fe_nN (n = 1–7) clusters are investigated using all-electron density functional theory. The results show that N doping significantly distorts the Fe_n clusters. Fe_4N and Fe_6N clusters are more stable structures than other considered Fe_nN clusters. Local peaks of HOMO-LUMO gap curve are found at n = 3, 7, implying that the chemical stability of the Fe_3N and Fe_7N clusters is higher. Fe_2N, Fe_4N and Fe_6N clusters have larger magnetic moments compared to other considered Fe_nN (n = 1–7) clusters. It can be seen that the Fe_5 clusters are easier to adsorb a Fe atom while the Fe_4 clusters are easier to adsorb a N atom. The considered Fe_mN clusters prefer to adsorb a Fe atom and larger Fe_mN clusters are easier to grow. - Highlights: • The structural stability of the Fe_4N and Fe_6N clusters is higher. • The chemical stability of the Fe_3N and Fe_7N clusters is higher. • Fe_5 clusters are easier to adsorb a Fe atom while Fe_4 clusters are easier to adsorb a N atom. • Fe_nN clusters prefer to adsorb a Fe atom.
Dynamical aspects of galaxy clustering
International Nuclear Information System (INIS)
Fall, S.M.
1980-01-01
Some recent work on the origin and evolution of galaxy clustering is reviewed, particularly within the context of the gravitational instability theory and the hot big-bang cosmological model. Statistical measures of clustering, including correlation functions and multiplicity functions, are explained and discussed. The close connection between galaxy formation and clustering is emphasized. Additional topics include the dependence of galaxy clustering on the spectrum of primordial density fluctuations and the mean mass density of the Universe. (author)
Estimation of cluster stability using the theory of electron density functional
International Nuclear Information System (INIS)
Borisov, Yu.A.
1985-01-01
Prospects of using simple versions of the electron density functional for studying the energy characteristics of cluster compounds Was discussed. These types of cluster compounds were considered: clusters of Cs, Be, B, Sr, Cd, Sc, In, V, Tl, I elements as intermediate form between molecule and solid body, metalloorganic Mo, W, Tc, Re, Rn clusters and elementoorganic compounds of nido-cluster type. The problem concerning changes in the binding energy of homoatomic clusters depending on their size and three-dimensional structure was analysed
DEFF Research Database (Denmark)
Kupka, Teobald; Stachów, Michal; Kaminsky, Jakub
2013-01-01
, estimated from calculations with the family of polarizationconsistent pcS-n basis sets is reported. This dependence was also supported by inspection of profiles of deviation between CBS estimated nuclear shieldings and obtained with significantly smaller basis sets pcS-2 and aug-cc-pVTZ-J for the selected......A linear correlation between isotropic nuclear magnetic shielding constants for seven model molecules (CH2O, H2O, HF, F2, HCN, SiH4 and H2S) calculated with 37 methods (34 density functionals, RHF, MP2 and CCSD(T) ), with affordable pcS-2 basis set and corresponding complete basis set results...... set of 37 calculation methods. It was possible to formulate a practical approach of estimating the values of isotropic nuclear magnetic shielding constants at the CCSD(T)/CBS and MP2/CBS levels from affordable CCSD(T)/pcS-2, MP2/pcS-2 and DFT/CBS calculations with pcS-n basis sets. The proposed method...
Minenkov, Yury; Bistoni, Giovanni; Riplinger, Christoph; Auer, Alexander A; Neese, Frank; Cavallo, Luigi
2017-04-05
In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes of Li, Be, Na, Mg, Ca, Sr, Ba and Pb(ii). Two strategies were investigated: in the former, only valence electrons were included in the correlation treatment, giving rise to the computationally very efficient FC (frozen core) approach; in the latter, all non-ECP electrons were included in the correlation treatment, giving rise to the AE (all electron) approach. Apart from reactions involving Li and Be, the FC approach resulted in non-homogeneous performance. The FC approach leads to very small errors (correlation effects. These large errors are reduced to a few kcal mol -1 if the AE approach is used or the sub-valence orbitals of metals are included in the correlation treatment. On the technical side, the CCSD(T) and DLPNO-CCSD(T) results differ by a fraction of kcal mol -1 , indicating the latter method as the perfect choice when the CPU efficiency is essential. For completely black-box applications, as requested in catalysis or thermochemical calculations, we recommend the DLPNO-CCSD(T) method with all electrons that are not covered by effective core potentials included in the correlation treatment and correlation-consistent polarized core valence basis sets of cc-pwCVQZ(-PP) quality.
Shi, Ruili; Wang, Pengju; Tang, Lingli; Huang, Xiaoming; Chen, Yonggang; Su, Yan; Zhao, Jijun
2018-04-05
Using a genetic algorithm incorporated in density functional theory, we explore the ground state structures of fluoride anion-water clusters F - (H 2 O) n with n = 1-10. The F - (H 2 O) n clusters prefer structures in which the F - anion remains at the surface of the structure and coordinates with four water molecules, as the F - (H 2 O) n clusters have strong F - -H 2 O interactions as well as strong hydrogen bonds between H 2 O molecules. The strong interaction between the F - anion and adjacent H 2 O molecule leads to a longer O-H distance in the adjacent molecule than in an individual water molecule. The simulated infrared (IR) spectra of the F - (H 2 O) 1-5 clusters obtained via second-order vibrational perturbation theory (VPT2) and including anharmonic effects reproduce the experimental results quite well. The strong interaction between the F - anion and water molecules results in a large redshift (600-2300 cm -1 ) of the adjacent O-H stretching mode. Natural bond orbital (NBO) analysis of the lowest-energy structures of the F - (H 2 O) 1-10 clusters illustrates that charge transfer from the lone pair electron orbital of F - to the antibonding orbital of the adjacent O-H is mainly responsible for the strong interaction between the F - anion and water molecules, which leads to distinctly different geometric and vibrational properties compared with neutral water clusters.
Lattice cluster theory for polymer melts with specific interactions
International Nuclear Information System (INIS)
Xu, Wen-Sheng; Freed, Karl F.
2014-01-01
Despite the long-recognized fact that chemical structure and specific interactions greatly influence the thermodynamic properties of polymer systems, a predictive molecular theory that enables systematically addressing the role of chemical structure and specific interactions has been slow to develop even for polymer melts. While the lattice cluster theory (LCT) provides a powerful vehicle for understanding the influence of various molecular factors, such as monomer structure, on the thermodynamic properties of polymer melts and blends, the application of the LCT has heretofore been limited to the use of the simplest polymer model in which all united atom groups within the monomers of a species interact with a common monomer averaged van der Waals energy. Thus, the description of a compressible polymer melt involves a single van der Waals energy. As a first step towards developing more realistic descriptions to aid in the analysis of experimental data and the design of new materials, the LCT is extended here to treat models of polymer melts in which the backbone and side groups have different interaction strengths, so three energy parameters are present, namely, backbone-backbone, side group-side group, and backbone-side group interaction energies. Because of the great algebraic complexity of this extension, we retain maximal simplicity within this class of models by further specializing this initial study to models of polymer melts comprising chains with poly(n-α-olefin) structures where only the end segments on the side chains may have different, specific van der Waals interaction energies with the other united atom groups. An analytical expression for the LCT Helmholtz free energy is derived for the new model. Illustrative calculations are presented to demonstrate the degree to which the thermodynamic properties of polymer melts can be controlled by specific interactions
Symmetry-adapted perturbation theory interaction energy decomposition for some noble gas complexes
Cukras, Janusz; Sadlej, Joanna
2008-06-01
This Letter contains a study of the interaction energy in HArF⋯N 2 and HArF⋯P 2 complexes. Symmetry-adapted perturbation theory (SAPT) has been applied to analyze the electrostatic, induction, dispersion and exchange contributions to the total interaction energy. The interaction energy has also been obtained by supermolecular method at the MP2, MP4, CCSD, CCSD(T) levels. The interaction energy for the studied complexes results from a partial cancelation of large attractive electrostatic, induction, dispersion terms by a strong repulsive exchange contribution. The induction and dispersion effects proved to be crucial in establishing the preference for the colinear HArF⋯N 2 and HArF⋯P 2 structures and shift direction of νHAr stretching vibrations.
Likos, Christos N; Mladek, Bianca M; Gottwald, Dieter; Kahl, Gerhard
2007-06-14
We demonstrate the accuracy of the hypernetted chain closure and of the mean-field approximation for the calculation of the fluid-state properties of systems interacting by means of bounded and positive pair potentials with oscillating Fourier transforms. Subsequently, we prove the validity of a bilinear, random-phase density functional for arbitrary inhomogeneous phases of the same systems. On the basis of this functional, we calculate analytically the freezing parameters of the latter. We demonstrate explicitly that the stable crystals feature a lattice constant that is independent of density and whose value is dictated by the position of the negative minimum of the Fourier transform of the pair potential. This property is equivalent with the existence of clusters, whose population scales proportionally to the density. We establish that regardless of the form of the interaction potential and of the location on the freezing line, all cluster crystals have a universal Lindemann ratio Lf=0.189 at freezing. We further make an explicit link between the aforementioned density functional and the harmonic theory of crystals. This allows us to establish an equivalence between the emergence of clusters and the existence of negative Fourier components of the interaction potential. Finally, we make a connection between the class of models at hand and the system of infinite-dimensional hard spheres, when the limits of interaction steepness and space dimension are both taken to infinity in a particularly described fashion.
Reduct Driven Pattern Extraction from Clusters
Directory of Open Access Journals (Sweden)
Shuchita Upadhyaya
2009-03-01
Full Text Available Clustering algorithms give general description of clusters, listing number of clusters and member entities in those clusters. However, these algorithms lack in generating cluster description in the form of pattern. From data mining perspective, pattern learning from clusters is as important as cluster finding. In the proposed approach, reduct derived from rough set theory is employed for pattern formulation. Further, reduct are the set of attributes which distinguishes the entities in a homogenous cluster, hence these can be clear cut removed from the same. Remaining attributes are then ranked for their contribution in the cluster. Pattern is formulated with the conjunction of most contributing attributes such that pattern distinctively describes the cluster with minimum error.
Modified genetic algorithms to model cluster structures in medium-size silicon clusters
International Nuclear Information System (INIS)
Bazterra, Victor E.; Ona, Ofelia; Caputo, Maria C.; Ferraro, Marta B.; Fuentealba, Patricio; Facelli, Julio C.
2004-01-01
This paper presents the results obtained using a genetic algorithm (GA) to search for stable structures of medium size silicon clusters. In this work the GA uses a semiempirical energy function to find the best cluster structures, which are further optimized using density-functional theory. For small clusters our results agree well with previously reported structures, but for larger ones different structures appear. This is the case of Si 36 where we report a different structure, with significant lower energy than those previously found using limited search approaches on common structural motifs. This demonstrates the need for global optimization schemes when searching for stable structures of medium-size silicon clusters
Energy Technology Data Exchange (ETDEWEB)
Byrd, Jason N., E-mail: byrd.jason@ensco.com [Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States); ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida 32940 (United States); Lutz, Jesse J., E-mail: jesse.lutz.ctr@afit.edu; Jin, Yifan; Ranasinghe, Duminda S.; Perera, Ajith; Bartlett, Rodney J., E-mail: rodbartl@ufl.edu [Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States); Montgomery, John A. [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Duan, Xiaofeng F. [Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433 (United States); Air Force Research Laboratory DoD Supercomputing Resource Center, Wright-Patterson Air Force Base, Ohio 45433 (United States); Burggraf, Larry W. [Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433 (United States); Sanders, Beverly A. [Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States); Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)
2016-07-14
The accurate determination of the preferred Si{sub 12}C{sub 12} isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for the opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies, and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC{sub 3} to Si{sub 12}C{sub 12}. It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and coupled-cluster theory with singles and doubles extrapolation with triple-ζ (T) correlation, the closo Si{sub 12}C{sub 12} isomer is identified to be the preferred isomer in the support of previous calculations [X. F. Duan and L. W. Burggraf, J. Chem. Phys. 142, 034303 (2015)]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post-MBPT(2) correlation energy are found to be an excellent balance between efficiency and accuracy.
Li, Jin-Feng; Li, Miao-Miao; Bai, Hongcun; Sun, Yin-Yin; Li, Jian-Li; Yin, Bing
2015-12-01
An ab initio study of the superhalogen properties of eighteen binuclear double-bridged [Mg2 (CN)5 ](-1) clusters is reported herein by using various theoretical methods. High-level CCSD(T) results indicate that all the clusters possess strong superhalogen properties owing to their high vertical electron detachment energies (VDEs), which exceed 6.8 eV (highest: 8.15 eV). The outer valence Green's function method provides inaccurate relative VDE values; hence, this method is not suitable for this kind of polynuclear superhalogens. Both the HF and MP2 results are generally consistent with the CCSD(T) level regarding the relative VDE values and-especially interesting-the average values of the HF and MP2 VDEs are extremely close to the CCSD(T) results. The distributions of the extra electrons of the anions are mainly aggregated into the terminal CN units. These distributions are apparently different from those of previously reported triple-bridged isomers and may be the reason for the decreased VDE values of the clusters. In addition, comparisons of the VDEs of binuclear and mononuclear superhalogens as well as studies of the thermodynamic stabilities with respect to the detachment of various CN(-1) ligands are also performed. These results confirm that polynuclear structures with pseudohalogen ligands can be considered as probable new superhalogens with enhanced properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Systematic Study of Au6 to Au12 Gold Clusters on MgO(100) F Centers Using Density-Functional Theory
DEFF Research Database (Denmark)
Vilhelmsen, Lasse; Hammer, Bjørk
2012-01-01
We present an optimized genetic algorithm used in conjunction with density-functional theory in the search for stable gold clusters and O2 adsorption ensembles in F centers at MgO(100). For Au8 the method recovers known structures and identifies several more stable ones. When O2 adsorption...
Evolution of the electronic and ionic structure of Mg clusters with increase in cluster size
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.
2003-01-01
The optimized structure and electronic properties of neutral and singly charged magnesium clusters have been investigated using ab initio theoretical methods based on density-functional theory and systematic post–Hartree-Fock many-body perturbation theory accounting for all electrons in the system....... We have investigated the appearance of the elements of the hcp structure and metallic evolution of the magnesium clusters, as well as the stability of linear chains and rings of magnesium atoms. The results obtained are compared with the available experimental data and the results of other...
Microscopic Cluster Theory for Exotic Nuclei
International Nuclear Information System (INIS)
Tomaselli, M; Kuehl, T; Ursescu, D; Fritzsche, S
2006-01-01
For a better understanding of the dynamics of complex exotic nuclei it is of crucial importance to develop a practical microscopic theory easy to be applied to a wide range of masses. In this paper we propose to calculate the structure of neutron-rich nuclei within a dynamic model based on the EoM theory
International Nuclear Information System (INIS)
Enders, Sabine; Browarzik, Dieter
2014-01-01
Graphical abstract: - Highlights: • Calculation of the (liquid + liquid) equilibrium of hyperbranched polymer solutions. • Description of branching effects by the lattice-cluster theory. • Consideration of self- and cross association by chemical association models. • Treatment of the molar-mass polydispersity by the use of continuous thermodynamics. • Improvement of the theoretical results by the incorporation of polydispersity. - Abstract: The (liquid + liquid) equilibrium of solutions of hyperbranched polymers of the Boltorn type is modeled in the framework of lattice-cluster theory. The association effects are described by the chemical association models CALM (for self association) and ECALM (for cross association). For the first time the molar mass polydispersity of the hyperbranched polymers is taken into account. For this purpose continuous thermodynamics is applied. Because the segment-molar excess Gibbs free energy depends on the number average of the segment number of the polymer the treatment is more general than in previous papers on continuous thermodynamics. The polydispersity is described by a generalized Schulz–Flory distribution. The calculation of the cloud-point curve reduces to two equations that have to be numerically solved. Conditions for the calculation of the spinodal curve and of the critical point are derived. The calculated results are compared to experimental data taken from the literature. For Boltorn solutions in non-polar solvents the polydispersity influence is small. In all other of the considered cases polydispersity influences the (liquid + liquid) equilibrium considerably. However, association and polydispersity influence phase equilibrium in a complex manner. Taking polydispersity into account the accuracy of the calculations is improved, especially, in the diluted region
Statistical measures of galaxy clustering
International Nuclear Information System (INIS)
Porter, D.H.
1988-01-01
Consideration is given to the large-scale distribution of galaxies and ways in which this distribution may be statistically measured. Galaxy clustering is hierarchical in nature, so that the positions of clusters of galaxies are themselves spatially clustered. A simple identification of groups of galaxies would be an inadequate description of the true richness of galaxy clustering. Current observations of the large-scale structure of the universe and modern theories of cosmology may be studied with a statistical description of the spatial and velocity distributions of galaxies. 8 refs
First UHF Implementation of the Incremental Scheme for Open-Shell Systems.
Anacker, Tony; Tew, David P; Friedrich, Joachim
2016-01-12
The incremental scheme makes it possible to compute CCSD(T) correlation energies to high accuracy for large systems. We present the first extension of this fully automated black-box approach to open-shell systems using an Unrestricted Hartree-Fock (UHF) wave function, extending the efficient domain-specific basis set approach to handle open-shell references. We test our approach on a set of organic and metal organic structures and molecular clusters and demonstrate standard deviations from canonical CCSD(T) values of only 1.35 kJ/mol using a triple ζ basis set. We find that the incremental scheme is significantly more cost-effective than the canonical implementation even for relatively small systems and that the ease of parallelization makes it possible to perform high-level calculations on large systems in a few hours on inexpensive computers. We show that the approximations that make our approach widely applicable are significantly smaller than both the basis set incompleteness error and the intrinsic error of the CCSD(T) method, and we further demonstrate that incremental energies can be reliably used in extrapolation schemes to obtain near complete basis set limit CCSD(T) reaction energies for large systems.
Hongo, Kenta; Cuong, Nguyen Thanh; Maezono, Ryo
2013-02-12
We report fixed-node diffusion Monte Carlo (DMC) calculations of stacking interaction energy between two adenine(A)-thymine(T) base pairs in B-DNA (AA:TT), for which reference data are available, obtained from a complete basis set estimate of CCSD(T) (coupled-cluster with singles, doubles, and perturbative triples). We consider four sets of nodal surfaces obtained from self-consistent field calculations and examine how the different nodal surfaces affect the DMC potential energy curves of the AA:TT molecule and the resulting stacking energies. We find that the DMC potential energy curves using the different nodes look similar to each other as a whole. We also benchmark the performance of various quantum chemistry methods, including Hartree-Fock (HF) theory, second-order Møller-Plesset perturbation theory (MP2), and density functional theory (DFT). The DMC and recently developed DFT results of the stacking energy reasonably agree with the reference, while the HF, MP2, and conventional DFT methods give unsatisfactory results.
Equation-of-motion coupled cluster perturbation theory revisited
DEFF Research Database (Denmark)
Eriksen, Janus Juul; Jørgensen, Poul; Olsen, Jeppe
2014-01-01
The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally con- verges towards the full configuration interaction energy limit. The series is based on a Møller-Ples......-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby rem- edying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873138]...
Energy Technology Data Exchange (ETDEWEB)
Pal, Ranjan [Univ. of Southern California, Los Angeles, CA (United States); Chelmis, Charalampos [Univ. of Southern California, Los Angeles, CA (United States); Aman, Saima [Univ. of Southern California, Los Angeles, CA (United States); Frincu, Marc [Univ. of Southern California, Los Angeles, CA (United States); Prasanna, Viktor [Univ. of Southern California, Los Angeles, CA (United States)
2015-07-15
The advent of smart meters and advanced communication infrastructures catalyzes numerous smart grid applications such as dynamic demand response, and paves the way to solve challenging research problems in sustainable energy consumption. The space of solution possibilities are restricted primarily by the huge amount of generated data requiring considerable computational resources and efficient algorithms. To overcome this Big Data challenge, data clustering techniques have been proposed. Current approaches however do not scale in the face of the “increasing dimensionality” problem where a cluster point is represented by the entire customer consumption time series. To overcome this aspect we first rethink the way cluster points are created and designed, and then design an efficient online clustering technique for demand response (DR) in order to analyze high volume, high dimensional energy consumption time series data at scale, and on the fly. Our online algorithm is randomized in nature, and provides optimal performance guarantees in a computationally efficient manner. Unlike prior work we (i) study the consumption properties of the whole population simultaneously rather than developing individual models for each customer separately, claiming it to be a ‘killer’ approach that breaks the “curse of dimensionality” in online time series clustering, and (ii) provide tight performance guarantees in theory to validate our approach. Our insights are driven by the field of sociology, where collective behavior often emerges as the result of individual patterns and lifestyles.
Momentum-space cluster dual-fermion method
Iskakov, Sergei; Terletska, Hanna; Gull, Emanuel
2018-03-01
Recent years have seen the development of two types of nonlocal extensions to the single-site dynamical mean field theory. On one hand, cluster approximations, such as the dynamical cluster approximation, recover short-range momentum-dependent correlations nonperturbatively. On the other hand, diagrammatic extensions, such as the dual-fermion theory, recover long-ranged corrections perturbatively. The correct treatment of both strong short-ranged and weak long-ranged correlations within the same framework is therefore expected to lead to a quick convergence of results, and offers the potential of obtaining smooth self-energies in nonperturbative regimes of phase space. In this paper, we present an exact cluster dual-fermion method based on an expansion around the dynamical cluster approximation. Unlike previous formulations, our method does not employ a coarse-graining approximation to the interaction, which we show to be the leading source of error at high temperature, and converges to the exact result independently of the size of the underlying cluster. We illustrate the power of the method with results for the second-order cluster dual-fermion approximation to the single-particle self-energies and double occupancies.
A Lagrangian framework for deriving triples and quadruples corrections to the CCSD energy
DEFF Research Database (Denmark)
Eriksen, Janus Juul; Kristensen, Kasper; Kjærgaard, Thomas
2014-01-01
Using the coupled cluster Lagrangian technique, we have determined perturbative corrections to the coupled cluster singles and doubles (CCSD) energy that converge towards the coupled cluster singles, doubles, and triples (CCSDT) and coupled cluster singles, doubles, triples, and quadruples (CCSDTQ......) energies, considering the CCSD state as the unperturbed reference state and the fluctua- tion potential as the perturbation. Since the Lagrangian technique is utilized, the energy corrections satisfy Wigner’s 2n + 1 rule for the cluster amplitudes and the 2n + 2 rule for the Lagrange multi- pliers...
Disentangling Porterian Clusters
DEFF Research Database (Denmark)
Jagtfelt, Tue
, contested theory become so widely disseminated and applied as a normative and prescriptive strategy for economic development? The dissertation traces the introduction of the cluster notion into the EU’s Lisbon Strategy and demonstrates how its inclusion originates from Porter’s colleagues: Professor Örjan...... to his membership on the Commission on Industrial Competitiveness, and that the cluster notion found in his influential book, Nations, represents a significant shift in his conception of cluster compared with his early conceptions. This shift, it is argued, is a deliberate attempt by Porter to create...... a paradigmatic textbook that follows Kuhn’s blueprint for scientific revolutions by instilling Nations with circular references and thus creating a local linguistic holism conceptualized through an encompassing notion of cluster. The dissertation concludes that the two research questions are philosophically...
Percolating cluster of center vortices and confinement
International Nuclear Information System (INIS)
Gliozzi, Ferdinando; Panero, Marco; Provero, Paolo
2003-01-01
We study the role of percolating clusters of center vortices in configurations of an Ising gauge theory in 3D. It is known that low energy features of gauge theories can be described in terms of an 'effective string picture', and that confinement properties are associated with topologically non-trivial configurations. We focus our attention upon percolating clusters of center vortices, and present numerical evidence for the fact that these objects play a preminent role in confinement phenomenon, since their removal sweeps off confinement altogether. Moreover, numerical simulations show that the string fluctuations, and in particular the Mischer term, are completely encoded in the percolating cluster
Quadrupole moments of Cd and Zn nuclei: When solid-state, molecular, atomic, and nuclear theory meet
DEFF Research Database (Denmark)
Haas, Heinz; Sauer, Stephan P. A.; Hemmingsen, Lars Bo Stegeager
2017-01-01
The nuclear quadrupole moment (Q) of the 5/2+ isomeric state of 111Cd, of particular importance to the interpretation of Perturbed Angular Correlation experiments in condensed matter, was determined by combining existing PAC data with high-level ab initio (CCSD(T)) calculations for Cd-dimethyl an......The nuclear quadrupole moment (Q) of the 5/2+ isomeric state of 111Cd, of particular importance to the interpretation of Perturbed Angular Correlation experiments in condensed matter, was determined by combining existing PAC data with high-level ab initio (CCSD(T)) calculations for Cd...
Fourth nuclear theory workshop 'clusters in nuclei'
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
This document gathers the slides of 3 lectures: 1) the R-matrix method, 2) from realistic NN-interactions to cluster structures in nuclei - in this part the unitary correlation operator method (UCOM) is applied to 3 domains: the fermionic molecular dynamics, the Hartree-Fock approximation, and the no-core shell model -, and 3) the shell model point of view on cluster states.
Monoxides of small terbium clusters: A density functional theory investigation
Energy Technology Data Exchange (ETDEWEB)
Zhang, G. L.; Yuan, H. K., E-mail: yhk10@swu.edu.cn; Chen, H.; Kuang, A. L.; Li, Y.; Wang, J. Z.; Chen, J. [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China)
2014-12-28
To investigate the effect of oxygen atom on the geometrical structures, electronic, and magnetic properties of small terbium clusters, we carried out the first-principles calculations on Tb{sub n}O (n = 1-14) clusters. The capping of an oxygen atom on one trigonal-facet of Tb{sub n} structures is always favored energetically, which can significantly improve the structural stability. The far-infrared vibrational spectroscopies are found to be different from those of corresponding bare clusters, providing a distinct signal to detect the characteristic structures of Tb{sub n}O clusters. The primary effect of oxygen atom on magnetic properties is to change the magnetic orderings among Tb atoms and to reduce small of local magnetic moments of the O-coordinated Tb atoms, both of which serve as the key reasons for the experimental magnetic evolution of an oscillating behavior. These calculations are consistent with, and help to account for, the experimentally observed magnetic properties of monoxide Tb{sub n}O clusters [C. N. Van Dijk et al., J. Appl. Phys. 107, 09B526 (2010)].
Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick
2013-03-28
Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this
International Nuclear Information System (INIS)
Golovanova, N.F.; Il'in, I.M.; Neudatchin, V.G.; Smirnov, Yu.F.; Tchuvil'sky, Yu.M.
1976-01-01
The quasi-elastic knock-out of nucleon clusters from nuclei by an incident high-energy hadron is considered within the framework of the Glauber-Sitenko multiple scattering theory. It is shown that the significant contribution to the cross section for the process comes not only from the hadron elastic scattering by a nonexcited virtual cluster but also from collisions with an excited virtual cluster, accompanied by de-excitation of this cluster. This necessitates modification of the usual theory of quasi-elastic cluster knock-out. First, the angular correlations of the knocked-out cluster and scattered hadron are no longer determined by the momentum distribution of the cluster in the nucleus. They are determined by another form factor F(q) which can be called the modified momentum distribution. Secondly, the meaning and values of the effective numbers of clusters Nsup(eff) have been changed. Thirdly, the characteristics of the processes depend not only on the modulus of momentum q, which the cluster had in the nucleus, but also on its direction relative to an incident beam. A method has been developed for the calculation of the fractional parentage coefficients, which are necessary for the calculation of the cluster knock-out from the p-shell nuclei. (Auth.)
Mass spectrometric studies of the cluster formation of radon progeny
Energy Technology Data Exchange (ETDEWEB)
Gong, S L [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry
1994-12-31
A new experimental system is developed to study the cluster formation of radon progeny with neutral molecules in the environment, which includes a modified mass spectrometer and a surface barrier detector. With the system, the cluster research is carried out at molecular level at which the mass of individual cluster formed is measured. A theory is also proposed to treat the cluster formation as a discrete process based on the ion-dipole and dipole-dipole interactions. Comparison between the theory and experiment is given. (author). 16 refs., 6 figs.
Mass spectrometric studies of the cluster formation of radon progeny
International Nuclear Information System (INIS)
Gong, S.L.
1993-01-01
A new experimental system is developed to study the cluster formation of radon progeny with neutral molecules in the environment, which includes a modified mass spectrometer and a surface barrier detector. With the system, the cluster research is carried out at molecular level at which the mass of individual cluster formed is measured. A theory is also proposed to treat the cluster formation as a discrete process based on the ion-dipole and dipole-dipole interactions. Comparison between the theory and experiment is given. (author). 16 refs., 6 figs
Energy Technology Data Exchange (ETDEWEB)
Li, Zhi, E-mail: lizhi81723700@163.com [School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051 (China); Zhao, Zhen [School of Chemistry and Life Science, Anshan Normal University, Anshan, 114007 (China)
2017-02-01
The geometries, electronic properties, magnetic moments and growth strategies of the Fe{sub n}N (n = 1–7) clusters are investigated using all-electron density functional theory. The results show that N doping significantly distorts the Fe{sub n} clusters. Fe{sub 4}N and Fe{sub 6}N clusters are more stable structures than other considered Fe{sub n}N clusters. Local peaks of HOMO-LUMO gap curve are found at n = 3, 7, implying that the chemical stability of the Fe{sub 3}N and Fe{sub 7}N clusters is higher. Fe{sub 2}N, Fe{sub 4}N and Fe{sub 6}N clusters have larger magnetic moments compared to other considered Fe{sub n}N (n = 1–7) clusters. It can be seen that the Fe{sub 5} clusters are easier to adsorb a Fe atom while the Fe{sub 4} clusters are easier to adsorb a N atom. The considered Fe{sub m}N clusters prefer to adsorb a Fe atom and larger Fe{sub m}N clusters are easier to grow. - Highlights: • The structural stability of the Fe{sub 4}N and Fe{sub 6}N clusters is higher. • The chemical stability of the Fe{sub 3}N and Fe{sub 7}N clusters is higher. • Fe{sub 5} clusters are easier to adsorb a Fe atom while Fe{sub 4} clusters are easier to adsorb a N atom. • Fe{sub n}N clusters prefer to adsorb a Fe atom.
Analysis of Aspects of Innovation in a Brazilian Cluster
Directory of Open Access Journals (Sweden)
Adriana Valélia Saraceni
2012-09-01
Full Text Available Innovation through clustering has become very important on the increased significance that interaction represents on innovation and learning process concept. This study aims to identify whereas a case analysis on innovation process in a cluster represents on the learning process. Therefore, this study is developed in two stages. First, we used a preliminary case study verifying a cluster innovation analysis and it Innovation Index, for further, exploring a combined body of theory and practice. Further, the second stage is developed by exploring the learning process concept. Both stages allowed us building a theory model for the learning process development in clusters. The main results of the model development come up with a mechanism of improvement implementation on clusters when case studies are applied.
Santra, Biswajit; Michaelides, Angelos; Scheffler, Matthias
2007-11-01
The ability of several density-functional theory (DFT) exchange-correlation functionals to describe hydrogen bonds in small water clusters (dimer to pentamer) in their global minimum energy structures is evaluated with reference to second order Møller-Plesset perturbation theory (MP2). Errors from basis set incompleteness have been minimized in both the MP2 reference data and the DFT calculations, thus enabling a consistent systematic evaluation of the true performance of the tested functionals. Among all the functionals considered, the hybrid X3LYP and PBE0 functionals offer the best performance and among the nonhybrid generalized gradient approximation functionals, mPWLYP and PBE1W perform best. The popular BLYP and B3LYP functionals consistently underbind and PBE and PW91 display rather variable performance with cluster size.
International Nuclear Information System (INIS)
Beck, Christian
2010-01-01
Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is presently one of the domains of heavy-ion nuclear physics facing both the greatest challenges and opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physics decided to team up in producing a comprehensive collection of lectures and tutorial reviews covering the field. This first volume, gathering seven extensive lectures, covers the follow topics: - Cluster Radioactivity - Cluster States and Mean Field Theories - Alpha Clustering and Alpha Condensates - Clustering in Neutron-rich Nuclei - Di-neutron Clustering - Collective Clusterization in Nuclei - Giant Nuclear Molecules By promoting new ideas and developments while retaining a pedagogical nature of presentation throughout, these lectures will both serve as a reference and as advanced teaching material for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)
Hellmann, Robert; Jäger, Benjamin; Bich, Eckard
2017-07-01
A new ab initio interatomic potential energy curve for two ground-state xenon atoms is presented. It is based on supermolecular calculations at the coupled-cluster level with single, double, and perturbative triple excitations [CCSD(T)] employing basis sets up to sextuple-zeta quality, which were developed as part of this work. In addition, corrections were determined for higher coupled-cluster levels up to CCSDTQ as well as for scalar and spin-orbit relativistic effects at the CCSD(T) level. A physically motivated analytical function was fitted to the calculated interaction energies and used to compute the vibrational spectrum of the dimer, the second virial coefficient, and the dilute gas transport properties. The agreement with the best available experimental data for the investigated properties is excellent; the new potential function is superior not only to previous ab initio potentials but also to the most popular empirical ones.
Hellmann, Robert; Jäger, Benjamin; Bich, Eckard
2017-07-21
A new ab initio interatomic potential energy curve for two ground-state xenon atoms is presented. It is based on supermolecular calculations at the coupled-cluster level with single, double, and perturbative triple excitations [CCSD(T)] employing basis sets up to sextuple-zeta quality, which were developed as part of this work. In addition, corrections were determined for higher coupled-cluster levels up to CCSDTQ as well as for scalar and spin-orbit relativistic effects at the CCSD(T) level. A physically motivated analytical function was fitted to the calculated interaction energies and used to compute the vibrational spectrum of the dimer, the second virial coefficient, and the dilute gas transport properties. The agreement with the best available experimental data for the investigated properties is excellent; the new potential function is superior not only to previous ab initio potentials but also to the most popular empirical ones.
Plasmon resonances in large noble-metal clusters
International Nuclear Information System (INIS)
Soennichsen, C; Franzl, T; Wilk, T; Plessen, G von; Feldmann, J
2002-01-01
We investigate the optical properties of spherical gold and silver clusters with diameters of 20 nm and larger. The light scattering spectra of individual clusters are measured using dark-field microscopy, thus avoiding inhomogeneous broadening effects. The dipolar plasmon resonances of the clusters are found to have nearly Lorentzian line shapes. With increasing size we observe polaritonic red-shifts of the plasmon line and increased radiation damping for both gold and silver clusters. Apart from some cluster-to-cluster variations of the plasmon lines, agreement with Mie theory is reasonably good for the gold clusters. However, it is less satisfactory for the silver clusters, possibly due to cluster faceting or chemical effects
Yin, Shi; Bernstein, Elliot R
2017-12-20
Single hydrogen containing iron hydrosulfide cluster anions (FeS) m H - (m = 2-4) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by Density Functional Theory (DFT) calculations. The structural properties, relative energies of different spin states and isomers, and the first calculated vertical detachment energies (VDEs) of different spin states for these (FeS) m H - (m = 2-4) cluster anions are investigated at various reasonable theory levels. Two types of structural isomers are found for these (FeS) m H - (m = 2-4) clusters: (1) the single hydrogen atom bonds to a sulfur site (SH-type); and (2) the single hydrogen atom bonds to an iron site (FeH-type). Experimental and theoretical results suggest such available different SH- and FeH-type structural isomers should be considered when evaluating the properties and behavior of these single hydrogen containing iron sulfide clusters in real chemical and biological systems. Compared to their related, respective pure iron sulfur (FeS) m - clusters, the first VDE trend of the diverse type (FeS) m H 0,1 - (m = 1-4) clusters can be understood through (1) the different electron distribution properties of their highest singly occupied molecular orbital employing natural bond orbital analysis (NBO/HSOMO), and (2) the partial charge distribution on the NBO/HSOMO localized sites of each cluster anion. Generally, the properties of the NBO/HSOMOs play the principal role with regard to the physical and chemical properties of all the anions. The change of cluster VDE from low to high is associated with the change in nature of their NBO/HSOMO from a dipole bound and valence electron mixed character, to a valence p orbital on S, to a valence d orbital on Fe, and to a valence p orbital on Fe or an Fe-Fe delocalized valence bonding orbital. For clusters having the same properties for NBO/HSOMOs, the partial charge distributions at the NBO/HSOMO localized sites additionally
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A
2016-02-05
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.
Hubert, Mickaël; Olsen, Jeppe; Loras, Jessica; Fleig, Timo
2013-11-21
We present a new implementation of general excitation rank coupled cluster theory for electronically excited states based on the single-reference multi-reference formalism. The method may include active-space selected and/or general higher excitations by means of the general active space concept. It may employ molecular integrals over the four-component Lévy-Leblond Hamiltonian or the relativistic spin-orbit-free four-component Hamiltonian of Dyall. In an initial application to ground- and excited states of the scandium monohydride molecule we report spectroscopic constants using basis sets of up to quadruple-zeta quality and up to full iterative triple excitations in the cluster operators. Effects due to spin-orbit interaction are evaluated using two-component multi-reference configuration interaction for assessing the accuracy of the coupled cluster results.
International Nuclear Information System (INIS)
Peterson, K.A.; Dunning, T.H. Jr.
1995-01-01
The hydrogen bond energy and geometry of the HF dimer have been investigated using the series of correlation consistent basis sets from aug-cc-pVDZ to aug-cc-pVQZ and several theoretical methods including Moller--Plesset perturbation and coupled cluster theories. Estimates of the complete basis set (CBS) limit have been derived for the binding energy of (HF) 2 at each level of theory by utilizing the regular convergence characteristics of the correlation consistent basis sets. CBS limit hydrogen bond energies of 3.72, 4.53, 4.55, and 4.60 kcal/mol are estimated at the SCF, MP2, MP4, and CCSD(T) levels of theory, respectively. CBS limits for the intermolecular F--F distance are estimated to be 2.82, 2.74, 2.73, and 2.73 A, respectively, for the same correlation methods. The effects of basis set superposition error (BSSE) on both the binding energies and structures have also been investigated for each basis set using the standard function counterpoise (CP) method. While BSSE has a negligible effect on the intramolecular geometries, the CP-corrected F--F distance and binding energy differ significantly from the uncorrected values for the aug-cc-pVDZ basis set; these differences decrease regularly with increasing basis set size, yielding the same limits in the CBS limit. Best estimates for the equilibrium properties of the HF dimer from CCSD(T) calculations are D e =4.60 kcal/mol, R FF =2.73 A, r 1 =0.922 A, r 2 =0.920 A, Θ 1 =7 degree, and Θ 2 =111 degree
Robust cluster analysis and variable selection
Ritter, Gunter
2014-01-01
Clustering remains a vibrant area of research in statistics. Although there are many books on this topic, there are relatively few that are well founded in the theoretical aspects. In Robust Cluster Analysis and Variable Selection, Gunter Ritter presents an overview of the theory and applications of probabilistic clustering and variable selection, synthesizing the key research results of the last 50 years. The author focuses on the robust clustering methods he found to be the most useful on simulated data and real-time applications. The book provides clear guidance for the varying needs of bot
Yin, Shi; Bernstein, Elliot R
2017-10-05
Iron sulfur cluster anions (FeS) m - (m = 2-8) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by density functional theory (DFT) calculations. The most probable structures and ground state spin multiplicities for (FeS) m - (m = 2-8) clusters are tentatively assigned through a comparison of their theoretical and experiment first vertical detachment energy (VDE) values. Many spin states lie within 0.5 eV of the ground spin state for the larger (FeS) m - (m ≥ 4) clusters. Theoretical VDEs of these low lying spin states are in good agreement with the experimental VDE values. Therefore, multiple spin states of each of these iron sulfur cluster anions probably coexist under the current experimental conditions. Such available multiple spin states must be considered when evaluating the properties and behavior of these iron sulfur clusters in real chemical and biological systems. The experimental first VDEs of (FeS) m - (m = 1-8) clusters are observed to change with the cluster size (number m). The first VDE trends noted can be related to the different properties of the highest singly occupied molecular orbitals (NBO, HSOMOs) of each cluster anion. The changing nature of the NBO/HSOMO of these (FeS) m - (m = 1-8) clusters from a p orbital on S, to a d orbital on Fe, and to an Fe-Fe bonding orbital is probably responsible for the observed increasing trend for their first VDEs with respect to m.
Quantum correlated cluster mean-field theory applied to the transverse Ising model.
Zimmer, F M; Schmidt, M; Maziero, Jonas
2016-06-01
Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
Asteroid clusters similar to asteroid pairs
Pravec, P.; Fatka, P.; Vokrouhlický, D.; Scheeres, D. J.; Kušnirák, P.; Hornoch, K.; Galád, A.; Vraštil, J.; Pray, D. P.; Krugly, Yu. N.; Gaftonyuk, N. M.; Inasaridze, R. Ya.; Ayvazian, V. R.; Kvaratskhelia, O. I.; Zhuzhunadze, V. T.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Világi, J.; Kornoš, L.; Gajdoš, Š.; Burkhonov, O.; Ehgamberdiev, Sh. A.; Donchev, Z.; Borisov, G.; Bonev, T.; Rumyantsev, V. V.; Molotov, I. E.
2018-04-01
We studied the membership, size ratio and rotational properties of 13 asteroid clusters consisting of between 3 and 19 known members that are on similar heliocentric orbits. By backward integrations of their orbits, we confirmed their cluster membership and estimated times elapsed since separation of the secondaries (the smaller cluster members) from the primary (i.e., cluster age) that are between 105 and a few 106 years. We ran photometric observations for all the cluster primaries and a sample of secondaries and we derived their accurate absolute magnitudes and rotation periods. We found that 11 of the 13 clusters follow the same trend of primary rotation period vs mass ratio as asteroid pairs that was revealed by Pravec et al. (2010). We generalized the model of the post-fission system for asteroid pairs by Pravec et al. (2010) to a system of N components formed by rotational fission and we found excellent agreement between the data for the 11 asteroid clusters and the prediction from the theory of their formation by rotational fission. The two exceptions are the high-mass ratio (q > 0.7) clusters of (18777) Hobson and (22280) Mandragora for which a different formation mechanism is needed. Two candidate mechanisms for formation of more than one secondary by rotational fission were published: the secondary fission process proposed by Jacobson and Scheeres (2011) and a cratering collision event onto a nearly critically rotating primary proposed by Vokrouhlický et al. (2017). It will have to be revealed from future studies which of the clusters were formed by one or the other process. To that point, we found certain further interesting properties and features of the asteroid clusters that place constraints on the theories of their formation, among them the most intriguing being the possibility of a cascade disruption for some of the clusters.
Do All O Stars Form in Star Clusters?
Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.
The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.
Felix Spectroscopy of Likely Astronomical Molecular Ions: HC_3O^+, C_2H_3CNH^+, and C_2H_5CNH^+
Thorwirth, Sven; Asvany, Oskar; Brünken, Sandra; Jusko, Pavol; Schlemmer, Stephan; Martin-Drumel, Marie-Aline; McCarthy, Michael C.
2017-06-01
Infrared signatures of three molecular ions of relevance to the interstellar medium and planetary atmospheres have been detected at the Free Electron Laser for Infrared eXperiments, FELIX, at Radboud University (Nijmegen, The Netherlands) in combination with the 4K FELion 22-pole ion trap facility. Mid-infrared vibrational modes of protonated tricarbon monoxide, HC_3O^+, protonated vinyl cyanide, C_2H_3CNH^+, and protonated ethyl cyanide, C_2H_5CNH^+, were detected using resonant photodissociation of the respective Ne-complexes by monitoring the depletion of their cluster mass signal as a function of wavenumber. The infrared fingerprints compare very favorably with results from high-level quantum-chemical calculations performed at the CCSD(T) level of theory.
International Nuclear Information System (INIS)
Recker, S.A.; Brunish, W.M.; Mathews, G.J.
1984-01-01
Young star clusters ( 8 yr) in the Magellanic Clouds (MC) can be used to test the current status of the theory of stellar evolution as applied to intermediate and massive stars. The color-magnitude diagram of many young clusters in the MC shows large numbers of stars in both the main sequence and post main sequence evolutionary phases. Using a grid of stellar evolution models, synthetic cluster H-R diagrams are constructed and compared to observed color-magnitude diagrams to determine the age, age spread, and composition for any given cluster. In addition, for those cases where the data is of high quality, detailed comparisons between theory and observation can provide a diagnostic of the accuracy of the stellar evolution models. Initial indications of these comparisons suggest that the theoretical models should be altered to include: a larger value for the mixing length parameter, a larger rate of mass loss during the asymptotic giant branch phase, and possibly convective overshoot during the core burning phases. (Auth.)
Star clusters in evolving galaxies
Renaud, Florent
2018-04-01
Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.
Modified Newtonian dynamics and the Coma cluster
International Nuclear Information System (INIS)
The, L.S.; White, S.D.M.
1988-01-01
The consistency of Milgrom's theory of modified Newtonian dynamics is checked against optical and X-ray data for the Coma cluster of galaxies. It is found that viable models for the cluster containing no dark matter can be constructed. They require an extensive gaseous atmosphere through which galaxies move on near-radial orbits. The gas temperature is predicted to have a shallow minimum near the cluster center; this structure may conflict with the best X-ray spectra of the cluster. 18 references
Convergence of the Light-Front Coupled-Cluster Method in Scalar Yukawa Theory
Usselman, Austin
We use Fock-state expansions and the Light-Front Coupled-Cluster (LFCC) method to study mass eigenvalue problems in quantum field theory. Specifically, we study convergence of the method in scalar Yukawa theory. In this theory, a single charged particle is surrounded by a cloud of neutral particles. The charged particle can create or annihilate neutral particles, causing the n-particle state to depend on the n + 1 and n - 1-particle state. Fock state expansion leads to an infinite set of coupled equations where truncation is required. The wave functions for the particle states are expanded in a basis of symmetric polynomials and a generalized eigenvalue problem is solved for the mass eigenvalue. The mass eigenvalue problem is solved for multiple values for the coupling strength while the number of particle states and polynomial basis order are increased. Convergence of the mass eigenvalue solutions is then obtained. Three mass ratios between the charged particle and neutral particles were studied. This includes a massive charged particle, equal masses and massive neutral particles. Relative probability between states can also be explored for more detailed understanding of the process of convergence with respect to the number of Fock sectors. The reliance on higher order particle states depended on how large the mass of the charge particle was. The higher the mass of the charged particle, the more the system depended on higher order particle states. The LFCC method solves this same mass eigenvalue problem using an exponential operator. This exponential operator can then be truncated instead to form a finite system of equations that can be solved using a built in system solver provided in most computational environments, such as MatLab and Mathematica. First approximation in the LFCC method allows for only one particle to be created by the new operator and proved to be not powerful enough to match the Fock state expansion. The second order approximation allowed one
Multilayer Spectral Graph Clustering via Convex Layer Aggregation: Theory and Algorithms
Chen, Pin-Yu; Hero, Alfred O.
2017-01-01
Multilayer graphs are commonly used for representing different relations between entities and handling heterogeneous data processing tasks. Non-standard multilayer graph clustering methods are needed for assigning clusters to a common multilayer node set and for combining information from each layer. This paper presents a multilayer spectral graph clustering (SGC) framework that performs convex layer aggregation. Under a multilayer signal plus noise model, we provide a phase transition analys...
Clustering impact regime with shocks in freely evolving granular gas
Isobe, Masaharu
2017-06-01
A freely cooling granular gas without any external force evolves from the initial homogeneous state to the inhomogeneous clustering state, at which the energy decay deviates from the Haff's law. The asymptotic behavior of energy in the inelastic hard sphere model have been predicted by several theories, which are based on the mode coupling theory or extension of inelastic hard rods gas. In this study, we revisited the clustering regime of freely evolving granular gas via large-scale molecular dynamics simulation with up to 16.7 million inelastic hard disks. We found novel regime regarding on collisions between "clusters" spontaneously appearing after clustering regime, which can only be identified more than a few million particles system. The volumetric dilatation pattern of semicircular shape originated from density shock propagation are well characterized on the appearing of "cluster impact" during the aggregation process of clusters.
Ruzmaikin, A.
1997-01-01
Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.
Computational Studies of Bridging Structures and Isomerism in Substituted Disilynes.
Serafin, Lukasz M; Law, Mark M; van Mourik, Tanja
2013-06-11
The substituted disilyne molecules, Si2Li2 and Si2HX, where X = Li, F, and Cl, have been investigated using the high-level CCSD(T) and CCSD(T)-F12 ab initio methods. The calculations have found or confirmed the existence of several isomeric forms and transition states for each molecule. Optimized geometries, relative energies, and harmonic vibration frequencies are reported. Bridging structures exist in all cases. Comparisons are made with existing literature results for the related Si2H2, C2X2, and C2HX isomerizing systems. Additionally, CCSD(T) and CCSD(T)-F12 calculations were performed for Si2H2, for which experimental spectroscopic data are available. Results calculated with CCSD(T)-F12 and the cc-pVTZ-F12 basis set are of comparable quality as those computed with CCSD(T) and the much larger cc-pV(6+d)Z basis set, at much less computational cost. We recommend the CCSD(T)-F12/cc-pVTZ-F12 level of theory as a very attractive alternative to conventional CCSD(T).
Cluster consensus in discrete-time networks of multiagents with inter-cluster nonidentical inputs.
Han, Yujuan; Lu, Wenlian; Chen, Tianping
2013-04-01
In this paper, cluster consensus of multiagent systems is studied via inter-cluster nonidentical inputs. Here, we consider general graph topologies, which might be time-varying. The cluster consensus is defined by two aspects: intracluster synchronization, the state at which differences between each pair of agents in the same cluster converge to zero, and inter-cluster separation, the state at which agents in different clusters are separated. For intra-cluster synchronization, the concepts and theories of consensus, including the spanning trees, scramblingness, infinite stochastic matrix product, and Hajnal inequality, are extended. As a result, it is proved that if the graph has cluster spanning trees and all vertices self-linked, then the static linear system can realize intra-cluster synchronization. For the time-varying coupling cases, it is proved that if there exists T > 0 such that the union graph across any T-length time interval has cluster spanning trees and all graphs has all vertices self-linked, then the time-varying linear system can also realize intra-cluster synchronization. Under the assumption of common inter-cluster influence, a sort of inter-cluster nonidentical inputs are utilized to realize inter-cluster separation, such that each agent in the same cluster receives the same inputs and agents in different clusters have different inputs. In addition, the boundedness of the infinite sum of the inputs can guarantee the boundedness of the trajectory. As an application, we employ a modified non-Bayesian social learning model to illustrate the effectiveness of our results.
Introduction to percolation theory
Stauffer, Dietrich
1991-01-01
Percolation theory deals with clustering, criticallity, diffusion, fractals, phase transitions and disordered systems. This book covers the basic theory for the graduate, and also professionals dealing with it for the first time
Cluster as a Form of Strategic Alliance
Directory of Open Access Journals (Sweden)
Marzena Godlewska
2007-07-01
Full Text Available The article presents the theory of clusters that are treated as natural elements of European model of economic development. There are highlighted Polish Forum of Lisbon Strategy point of view that indicated clusters as one of fundamental ideas recommended for Polish economy. In based on literature and observation of articles authors the concept, examples of Polish clusters and their role in strategic alliance are presented.
Cluster polylogarithms for scattering amplitudes
International Nuclear Information System (INIS)
Golden, John; Paulos, Miguel F; Spradlin, Marcus; Volovich, Anastasia
2014-01-01
Motivated by the cluster structure of two-loop scattering amplitudes in N=4 Yang-Mills theory we define cluster polylogarithm functions. We find that all such functions of weight four are made up of a single simple building block associated with the A 2 cluster algebra. Adding the requirement of locality on generalized Stasheff polytopes, we find that these A 2 building blocks arrange themselves to form a unique function associated with the A 3 cluster algebra. This A 3 function manifests all of the cluster algebraic structure of the two-loop n-particle MHV amplitudes for all n, and we use it to provide an explicit representation for the most complicated part of the n = 7 amplitude as an example. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)
A spectral scheme for Kohn-Sham density functional theory of clusters
Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.
2015-04-01
Starting from the observation that one of the most successful methods for solving the Kohn-Sham equations for periodic systems - the plane-wave method - is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn-Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn-Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.
DeYonker, Nathan J.; Halfen, DeWayne T.; Allen, Wesley D.; Ziurys, Lucy M.
2014-11-01
Six electronic states (X 4Σ-, A 4Π, B 4Δ, 2Φ, 2Δ, 2Σ+) of the vanadium monochloride cation (VCl+) are described using large basis set coupled cluster theory. For the two lowest quartet states (X 4Σ- and A 4Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, bar De, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X 4Σ-), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state (2Γ) has a Te of ˜11 200 cm-1. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.
The Observational and Theoretical Tidal Radii of Globular Clusters in M87
Webb, Jeremy J.; Sills, Alison; Harris, William E.
2012-02-01
Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.
THE OBSERVATIONAL AND THEORETICAL TIDAL RADII OF GLOBULAR CLUSTERS IN M87
International Nuclear Information System (INIS)
Webb, Jeremy J.; Sills, Alison; Harris, William E.
2012-01-01
Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.
Moehler, S.; Sweigart, A. V.; Landsman, W. B.; Heber, U.
2000-01-01
Atmospheric parameters (T(sub eff), log g), masses and helium abundances are derived for 42 hot horizontal branch (HB) stars in the globular cluster NGC6752. For 19 stars we derive magnesium and iron abundances as well and find that iron is enriched by a factor of 50 on average with respect to the cluster abundance whereas the magnesium abundances are consistent with the cluster abundance. Radiation pressure may levitate heavy elements like iron to the surface of the star in a diffusive process. Taking into account the enrichment of heavy elements in our spectroscopic analyses we find that high iron abundances can explain part, but not all, of the problem of anomalously low gravities along the blue HB. The blue HB stars cooler than about 15,100 K and the sdB stars (T(sub eff) greater than or = 20,000 K) agree well with canonical theory when analysed with metal-rich ([M/H] = +0.5) model atmospheres, but the stars in between these two groups remain offset towards lower gravities and masses. Deep Mixing in the red giant progenitor phase is discussed as another mechanism that may influence the position of the blue HB stars in the (T(sub eff), log g)-plane but not their masses.
Self-similar gravitational clustering
International Nuclear Information System (INIS)
Efstathiou, G.; Fall, S.M.; Hogan, C.
1979-01-01
The evolution of gravitational clustering is considered and several new scaling relations are derived for the multiplicity function. These include generalizations of the Press-Schechter theory to different densities and cosmological parameters. The theory is then tested against multiplicity function and correlation function estimates for a series of 1000-body experiments. The results are consistent with the theory and show some dependence on initial conditions and cosmological density parameter. The statistical significance of the results, however, is fairly low because of several small number effects in the experiments. There is no evidence for a non-linear bootstrap effect or a dependence of the multiplicity function on the internal dynamics of condensed groups. Empirical estimates of the multiplicity function by Gott and Turner have a feature near the characteristic luminosity predicted by the theory. The scaling relations allow the inference from estimates of the galaxy luminosity function that galaxies must have suffered considerable dissipation if they originally formed from a self-similar hierarchy. A method is also developed for relating the multiplicity function to similar measures of clustering, such as those of Bhavsar, for the distribution of galaxies on the sky. These are shown to depend on the luminosity function in a complicated way. (author)
Friederichs, Stijn Ah; Bolman, Catherine; Oenema, Anke; Lechner, Lilian
2015-01-01
In order to promote physical activity uptake and maintenance in individuals who do not comply with physical activity guidelines, it is important to increase our understanding of physical activity motivation among this group. The present study aimed to examine motivational profiles in a large sample of adults who do not comply with physical activity guidelines. The sample for this study consisted of 2473 individuals (31.4% male; age 44.6 ± 12.9). In order to generate motivational profiles based on motivational regulation, a cluster analysis was conducted. One-way analyses of variance were then used to compare the clusters in terms of demographics, physical activity level, motivation to be active and subjective experience while being active. Three motivational clusters were derived based on motivational regulation scores: a low motivation cluster, a controlled motivation cluster and an autonomous motivation cluster. These clusters differed significantly from each other with respect to physical activity behavior, motivation to be active and subjective experience while being active. Overall, the autonomous motivation cluster displayed more favorable characteristics compared to the other two clusters. The results of this study provide additional support for the importance of autonomous motivation in the context of physical activity behavior. The three derived clusters may be relevant in the context of physical activity interventions as individuals within the different clusters might benefit most from different intervention approaches. In addition, this study shows that cluster analysis is a useful method for differentiating between motivational profiles in large groups of individuals who do not comply with physical activity guidelines.
Simulation of circularly polarized luminescence spectra using coupled cluster theory
Energy Technology Data Exchange (ETDEWEB)
McAlexander, Harley R.; Crawford, T. Daniel, E-mail: crawdad@vt.edu [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)
2015-04-21
We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar that TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL
Special resonances in two- and three-cluster systems
International Nuclear Information System (INIS)
Orlowski, M.
1979-01-01
In the framework of Schmid's N-cluster theory the resonance theory of Wildermuth-Benoehr is extended to three clusters. This three-cluster resonance model is solved in a mathematically exact formalism. The main topic of this formalism is the asymptotic behaviour of the full three-body-resolvent in the differential directions of the six-dimensional position space of the Jacobi coordinates. The scattering amplitudes and cross sections in all two-body channels and breakup are explicitly presented. Furthermore a very illustrative kinematical three-body model, the so called 'three-body-neb', is developed. Special regards in this connection are devoted to the analysis of possible interference possibilities of the main three-body-resonance with other resonance types of the three-body model. In a further section the Pauli-resonances are studied i) in the Wildermuth resonating group theory, ii) in Schmid's simulation models. It is shown under which circumstances Pauli-resonances may be positive energy bound states. (orig./HSI) [de
Knowledge between communities of practice and firms in clusters
DEFF Research Database (Denmark)
Reinau, Kristian Hegner
. This paper presents a case study in which theory about knowledge, communities of practice and networks is used to understand how knowledge is developed in high-tech companies placed in a cluster. The case study illuminates how internal and external relations and factors affect the knowledge development...... which factors that affect the knowledge development process in communities in the case companies. By analysing the interplay between formal and informal relations utilized by the companies, the knowledge embedded in the persons constituting the communities as well as knowledge embedded in objects used......Currently there is growing focus on how cluster internal and cluster external relations affect the creation of knowledge in companies placed in clusters. However, the current theories on this topic are too simple and the interplay between internal and external relations is relatively unknown...
A spectral scheme for Kohn–Sham density functional theory of clusters
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Amartya S., E-mail: baner041@umn.edu; Elliott, Ryan S., E-mail: relliott@umn.edu; James, Richard D., E-mail: james@umn.edu
2015-04-15
Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.
A spectral scheme for Kohn–Sham density functional theory of clusters
International Nuclear Information System (INIS)
Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.
2015-01-01
Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed
Isomers of Cu6 cluster: a density function theory study
International Nuclear Information System (INIS)
Jia Yanhui; Wang Shanshan; Li Gongping
2008-01-01
The possible structure of Cu 6 cluster has been given with the GaussView that is a graphical user interface software. The structure optimization was performed on the B3LYP functional and SDD basic set of the quantum computational software of Gaussian03. And eight isomers of Cu 6 cluster were calculated. The binding energy and the structure of eight isomers have been investigated in detail. The result showed that the value of the binding energy was in reasonable agreement with available experimental data, as well as with other theoretical results, and the most stable structure was the triangle of plane. Three new isomers of the Cu 6 cluster have been got in our work, which would be the valuable data for the further theoretical and experimental study. (authors)
Special issue on cluster algebras in mathematical physics
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-02-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March
Orms, Natalie; Krylov, Anna I
2018-04-12
The experimental photoelectron spectra of di- and triatomic copper oxide anions have been reported previously. We present an analysis of the experimental spectra of the CuO - , Cu 2 O - , and CuO 2 - anions using equation-of-motion coupled-cluster (EOM-CC) methods. The open-shell electronic structure of each molecule demands a unique combination of EOM-CC methods to achieve an accurate and balanced representation of the multiconfigurational anionic- and neutral-state manifolds. Analysis of the Dyson orbitals associated with photodetachment from CuO - reveals the strong non-Koopmans character of the CuO states. For the lowest detachment energy, a good agreement between theoretical and experimental values is obtained with CCSD(T) (coupled-cluster with single and double excitations and perturbative account of triple excitations). The (T) correction is particularly important for Cu 2 O - . Use of a relativistic pseudopotential and matching basis set improves the quality of results in most cases. EOM-DIP-CCSD analysis of the low-lying states of CuO 2 - reveals multiple singlet and triplet anionic states near the triplet ground state, adding an extra layer of complexity to the interpretation of the experimental CuO 2 - photoelectron spectrum.
Constructive renormalization theory
International Nuclear Information System (INIS)
Rivasseau, Vincent
2000-01-01
These notes are the second part of a common course on Renormalization Theory given with Professor P. da Veiga. I emphasize here the rigorous non-perturbative or constructive aspects of the theory. The usual formalism for the renormalization group in field theory or statistical mechanics is reviewed, together with its limits. The constructive formalism is introduced step by step. Taylor forest formulas allow to perform easily the cluster and Mayer expansions which are needed for a single step of the renormalization group in the case of Bosonic theories. The iteration of this single step leads to further difficulties whose solution is briefly sketched. The second part of the course is devoted to Fermionic models. These models are easier to treat on the constructive level so they are very well suited to beginners in constructive theory. It is shown how the Taylor forest formulas allow to reorganize perturbation theory nicely in order to construct the Gross-Neveu 2 model without any need for cluster or Mayer expansions. Finally applications of this technique to condensed matter and renormalization group around Fermi surface are briefly reviewed. (author)
A possibilistic approach to clustering
Krishnapuram, Raghu; Keller, James M.
1993-01-01
Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering methods in that total commitment of a vector to a given class is not required at each image pattern recognition iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from the 'Fuzzy C-Means' (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Recently, we cast the clustering problem into the framework of possibility theory using an approach in which the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. We show the ability of this approach to detect linear and quartic curves in the presence of considerable noise.
Small gold clusters on graphene, their mobility and clustering: a DFT study
International Nuclear Information System (INIS)
Amft, Martin; Sanyal, Biplab; Eriksson, Olle; Skorodumova, Natalia V
2011-01-01
Motivated by the experimentally observed high mobility of gold atoms on graphene and their tendency to form nanometer-sized clusters, we present a density functional theory study of the ground state structures of small gold clusters on graphene, their mobility and clustering. Our detailed analysis of the electronic structures identifies the opportunity to form strong gold-gold bonds and the graphene-mediated interaction of the pre-adsorbed fragments as the driving forces behind gold's tendency to aggregate on graphene. While clusters containing up to three gold atoms have one unambiguous ground state structure, both gas phase isomers of a cluster with four gold atoms can be found on graphene. In the gas phase the diamond-shaped Au 4 D cluster is the ground state structure, whereas the Y-shaped Au 4 Y becomes the actual ground state when adsorbed on graphene. As we show, both clusters can be produced on graphene by two distinct clustering processes. We also studied in detail the stepwise formation of a gold dimer out of two pre-adsorbed adatoms, as well as the formation of Au 3 . All reactions are exothermic and no further activation barriers, apart from the diffusion barriers, were found. The diffusion barriers of all studied clusters range from 4 to 36 meV only, and are substantially exceeded by the adsorption energies of - 0.1 to - 0.59 eV. This explains the high mobility of Au 1-4 on graphene along the C-C bonds.
Energy Technology Data Exchange (ETDEWEB)
Brabec, Jiri; Pittner, Jiri; van Dam, Hubertus JJ; Apra, Edoardo; Kowalski, Karol
2012-02-01
A novel algorithm for implementing general type of multireference coupled-cluster (MRCC) theory based on the Jeziorski-Monkhorst exponential Ansatz [B. Jeziorski, H.J. Monkhorst, Phys. Rev. A 24, 1668 (1981)] is introduced. The proposed algorithm utilizes processor groups to calculate the equations for the MRCC amplitudes. In the basic formulation each processor group constructs the equations related to a specific subset of references. By flexible choice of processor groups and subset of reference-specific sufficiency conditions designated to a given group one can assure optimum utilization of available computing resources. The performance of this algorithm is illustrated on the examples of the Brillouin-Wigner and Mukherjee MRCC methods with singles and doubles (BW-MRCCSD and Mk-MRCCSD). A significant improvement in scalability and in reduction of time to solution is reported with respect to recently reported parallel implementation of the BW-MRCCSD formalism [J.Brabec, H.J.J. van Dam, K. Kowalski, J. Pittner, Chem. Phys. Lett. 514, 347 (2011)].
Energy Technology Data Exchange (ETDEWEB)
Hrenya, Christine [Univ. of Colorado, Boulder, CO (United States). Chemical and Biological Engineering
2014-09-20
Previous work has indicated that inelastic grains undergoing homogeneous cooling may be unstable, giving rise to the formation of velocity vortices and particle clusters for sufficiently large systems. Such instabilities are observed in industrial coal and biomass gasifiers and are known to influence gas-solid contact area, mixing dynamics, and heat/mass transfer rates. However, the driving mechanisms that lead to vortices and clusters are not well understood. Discrete-particle simulations provide a well-established method for understanding such mechanisms but are not a feasible technique for predicting the behavior of large-scale systems. Kinetic-theory-based continuum models offer an effective means of describing such flows, and instabilities present a stringent test of such models due to the transient, three-dimensional nature of instabilities and the large range of time and length scales over which these mechanisms occur.This work begins with the study, via a combination of continuum models and discrete- particle simulations, of a relatively simple flow and includes additional complexities in a stepwise manner to assess various driving mechanisms. Comparisons with discrete-particle simulations, which offer detailed, well-established (but computationally limited) descriptions of particle flows, indicate the ability of continuum models to accurately incorporate each mechanism. Specifically, the critical length scale for velocity vortices and/or particle clusters are studied via direct numerical simulation, molecular dynamics simulations, linear stability analyses of the continuum model, and transient simulations of the continuum model in a range of flow complexities, including moderate dissipation and particle concentration, frictional particles collisions, high gradients, and gas-solid flows. Strong agreement between kinetic-theory-based continuum models and discrete-particle simulations is found for a range for conditions. Furthermore, discrete
Scaling of cluster growth for coagulating active particles
Cremer, Peet; Löwen, Hartmut
2014-02-01
Cluster growth in a coagulating system of active particles (such as microswimmers in a solvent) is studied by theory and simulation. In contrast to passive systems, the net velocity of a cluster can have various scalings dependent on the propulsion mechanism and alignment of individual particles. Additionally, the persistence length of the cluster trajectory typically increases with size. As a consequence, a growing cluster collects neighboring particles in a very efficient way and thus amplifies its growth further. This results in unusual large growth exponents for the scaling of the cluster size with time and, for certain conditions, even leads to "explosive" cluster growth where the cluster becomes macroscopic in a finite amount of time.
Maximum-entropy clustering algorithm and its global convergence analysis
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm, is proposed based on optimization theory. This algorithm is a soft generalization of the hard C-means algorithm and possesses global convergence. Its relations with other clustering algorithms are discussed.
Tran, Van Tan; Nguyen, Minh Thao; Tran, Quoc Tri
2017-10-12
Density functional theory and the multiconfigurational CASSCF/CASPT2 method have been employed to study the low-lying states of VGe n -/0 (n = 1-4) clusters. For VGe -/0 and VGe 2 -/0 clusters, the relative energies and geometrical structures of the low-lying states are reported at the CASSCF/CASPT2 level. For the VGe 3 -/0 and VGe 4 -/0 clusters, the computational results show that due to the large contribution of the Hartree-Fock exact exchange, the hybrid B3LYP, B3PW91, and PBE0 functionals overestimate the energies of the high-spin states as compared to the pure GGA BP86 and PBE functionals and the CASPT2 method. On the basis of the pure GGA BP86 and PBE functionals and the CASSCF/CASPT2 results, the ground states of anionic and neutral clusters are defined, the relative energies of the excited states are computed, and the electron detachment energies of the anionic clusters are evaluated. The computational results are employed to give new assignments for all features in the photoelectron spectra of VGe 3 - and VGe 4 - clusters.
International Nuclear Information System (INIS)
Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.
2006-01-01
Near thermal energy reactive collisions of small mixed metal cluster cations Ag m Au n + (m+n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu 3 + and Ag 2 Au 2 + are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu 2 CO + . In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77 to 1.09 eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a ''head-on'' fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag 2 Au 2 + suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed
Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.
2006-09-01
Near thermal energy reactive collisions of small mixed metal cluster cations AgmAun+ (m +n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu3+ and Ag2Au2+ are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu2CO+. In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77to1.09eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag2Au2+ suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.
Balouchestani, Mohammadreza; Krishnan, Sridhar
2014-01-01
Long-term recording of Electrocardiogram (ECG) signals plays an important role in health care systems for diagnostic and treatment purposes of heart diseases. Clustering and classification of collecting data are essential parts for detecting concealed information of P-QRS-T waves in the long-term ECG recording. Currently used algorithms do have their share of drawbacks: 1) clustering and classification cannot be done in real time; 2) they suffer from huge energy consumption and load of sampling. These drawbacks motivated us in developing novel optimized clustering algorithm which could easily scan large ECG datasets for establishing low power long-term ECG recording. In this paper, we present an advanced K-means clustering algorithm based on Compressed Sensing (CS) theory as a random sampling procedure. Then, two dimensionality reduction methods: Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) followed by sorting the data using the K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers are applied to the proposed algorithm. We show our algorithm based on PCA features in combination with K-NN classifier shows better performance than other methods. The proposed algorithm outperforms existing algorithms by increasing 11% classification accuracy. In addition, the proposed algorithm illustrates classification accuracy for K-NN and PNN classifiers, and a Receiver Operating Characteristics (ROC) area of 99.98%, 99.83%, and 99.75% respectively.
Booth, Andrew; Harris, Janet; Croot, Elizabeth; Springett, Jane; Campbell, Fiona; Wilkins, Emma
2013-09-28
Systematic review methodologies can be harnessed to help researchers to understand and explain how complex interventions may work. Typically, when reviewing complex interventions, a review team will seek to understand the theories that underpin an intervention and the specific context for that intervention. A single published report from a research project does not typically contain this required level of detail. A review team may find it more useful to examine a "study cluster"; a group of related papers that explore and explain various features of a single project and thus supply necessary detail relating to theory and/or context.We sought to conduct a preliminary investigation, from a single case study review, of techniques required to identify a cluster of related research reports, to document the yield from such methods, and to outline a systematic methodology for cluster searching. In a systematic review of community engagement we identified a relevant project - the Gay Men's Task Force. From a single "key pearl citation" we conducted a series of related searches to find contextually or theoretically proximate documents. We followed up Citations, traced Lead authors, identified Unpublished materials, searched Google Scholar, tracked Theories, undertook ancestry searching for Early examples and followed up Related projects (embodied in the CLUSTER mnemonic). Our structured, formalised procedure for cluster searching identified useful reports that are not typically identified from topic-based searches on bibliographic databases. Items previously rejected by an initial sift were subsequently found to inform our understanding of underpinning theory (for example Diffusion of Innovations Theory), context or both. Relevant material included book chapters, a Web-based process evaluation, and peer reviewed reports of projects sharing a common ancestry. We used these reports to understand the context for the intervention and to explore explanations for its relative
Volume shift and charge instability of simple-metal clusters
Brajczewska, Marta; Vieira, Armando; Fiolhais, Carlos
1996-01-01
Experiment indicates that small clusters show changes (mostly contractions) of the bond lengths with respect to bulk values. We use the stabilized jellium model to study the self-expansion and self-compression of spherical clusters (neutral or ionized) of simple metals. Results from Kohn — Sham density functional theory are presented for small clusters of Al and Na, including negatively-charged ones. We also examine the stability of clusters with respect to charging
Volume shift and charge instability of simple-metal clusters
Brajczewska, M.; Vieira, A.; Fiolhais, C.; Perdew, J. P.
1996-12-01
Experiment indicates that small clusters show changes (mostly contractions) of the bond lengths with respect to bulk values. We use the stabilized jellium model to study the self-expansion and self-compression of spherical clusters (neutral or ionized) of simple metals. Results from Kohn - Sham density functional theory are presented for small clusters of Al and Na, including negatively-charged ones. We also examine the stability of clusters with respect to charging.
Energy Technology Data Exchange (ETDEWEB)
Hou, Xiao-Fei; Yan, Li-Li; Huang, Teng; Hong, Yu; Miao, Shou-Kui [Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Peng, Xiu-Qiu [School of Environmental Science & Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Yi-Rong, E-mail: liuyirong@aiofm.ac.cn [Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Wei, E-mail: huangwei6@ustc.edu.cn [Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Environmental Science & Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2016-06-15
The equilibrium geometric structures, relative stabilities, electronic stabilities, and electronic and magnetic properties of the Au{sub n}C and Au{sub n+1} (n = 1–9) clusters are systematically investigated using density functional theory (DFT) with hyper-generalized gradient approximation (GGA). The optimized geometries show that one Au atom added to the Au{sub n−1}C cluster is the dominant growth pattern for the Au{sub n}C clusters. In contrast to the pure gold clusters, the Au{sub n}C clusters are most stable in a quasi-planar or three-dimensional (3D) structure because the C dopant induces the local non-planarity, with exceptions of the Au{sub 6,8}C clusters who have 2D structures. The analysis of the relative and electronic stabilities reveals that the Au{sub 4}C and Au{sub 6} clusters are the most stable in the series of studied clusters, respectively. In addition, a natural bond orbital (NBO) analysis shows that the charges in the Au{sub n}C clusters transfer from the Au{sub n} host to the C atom. Moreover, the Au and C atoms interact with each other mostly via covalent bond rather than ionic bond, which can be confirmed through the average ionic character of the Au–C bond. Meanwhile, the charges mainly transfer between 2s and 2p orbitals within the C atom, and among 5d, 6s, and 6p orbitals within the Au atom for the Au{sub n}C clusters. As for the magnetic properties of the Au{sub n}C clusters, the total magnetic moments are 1 μ{sub B} for n = odd clusters, with the total magnetic moments mainly locating on the C atoms for Au{sub 1,3,9}C and on the Au{sub n} host for Au{sub 5,7}C clusters. However, the total magnetic moments of the Au{sub n}C clusters are zero for n = even clusters. Simultaneously, the magnetic moments mainly locate on the 2p orbital within the C atom and on the 5d, 6s orbitals within the Au atom.
Evaporation of Lennard-Jones clusters
International Nuclear Information System (INIS)
Roman, C.E.; Garzon, I.L.
1991-01-01
Extensive molecular dynamics simulations have been done to study the evaporation of a 13-atom Lennard-Jones cluster. The survival probability and the evaporative lifetime are calculated as a function of the cluster total energy from a classical trajectory analysis. The results are interpreted in terms of the RRK theory of unimolecular dissociation. The calculation of the binding energy of the evaporated species from the evaporation rate and the average kinetic energy release is discussed. (orig.)
Adaptive Scaling of Cluster Boundaries for Large-Scale Social Media Data Clustering.
Meng, Lei; Tan, Ah-Hwee; Wunsch, Donald C
2016-12-01
The large scale and complex nature of social media data raises the need to scale clustering techniques to big data and make them capable of automatically identifying data clusters with few empirical settings. In this paper, we present our investigation and three algorithms based on the fuzzy adaptive resonance theory (Fuzzy ART) that have linear computational complexity, use a single parameter, i.e., the vigilance parameter to identify data clusters, and are robust to modest parameter settings. The contribution of this paper lies in two aspects. First, we theoretically demonstrate how complement coding, commonly known as a normalization method, changes the clustering mechanism of Fuzzy ART, and discover the vigilance region (VR) that essentially determines how a cluster in the Fuzzy ART system recognizes similar patterns in the feature space. The VR gives an intrinsic interpretation of the clustering mechanism and limitations of Fuzzy ART. Second, we introduce the idea of allowing different clusters in the Fuzzy ART system to have different vigilance levels in order to meet the diverse nature of the pattern distribution of social media data. To this end, we propose three vigilance adaptation methods, namely, the activation maximization (AM) rule, the confliction minimization (CM) rule, and the hybrid integration (HI) rule. With an initial vigilance value, the resulting clustering algorithms, namely, the AM-ART, CM-ART, and HI-ART, can automatically adapt the vigilance values of all clusters during the learning epochs in order to produce better cluster boundaries. Experiments on four social media data sets show that AM-ART, CM-ART, and HI-ART are more robust than Fuzzy ART to the initial vigilance value, and they usually achieve better or comparable performance and much faster speed than the state-of-the-art clustering algorithms that also do not require a predefined number of clusters.
Dynamical evolution of galaxies in clusters
International Nuclear Information System (INIS)
Ostriker, J.P.
1977-01-01
In addition to the processes involved in the evolution of star clusters, there are three kinds of processes that are peculiar to, or far more important in, galaxy clusters than in star clusters: galaxy interactions with gas, high-velocity tidal interactions, and accretion and cannibalism. The latter is discussed at some length; analytical calculations for the apparent luminosity evolution of the first brightest galaxy and the apparent luminosity evolution of M 12 are described, along with the numerical simulation of cluster evolution. It appears that many of the notable features of centrally condensed clusters of galaxies, particularly the presence of very luminous but low-surface-brightness central cD systems, can be understood in terms of a straightforward dynamical theory of galactic cannibalism. It is possible to maintain the hypothesis that dynamical evolution gradually transforms Bautz--Morgan III clusters to type II systems or type I systems. 36 references, 5 figures
Kalescky, Robert; Kraka, Elfi; Cremer, Dieter
2014-02-01
The formic acid dimer in its C2h-symmetrical cyclic form is stabilized by two equivalent H-bonds. The currently accepted interaction energy is 18.75 kcal/mol whereas the experimental binding energy D0 value is only 14.22 ±0.12 kcal/mol [F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012)]. Calculation of the binding energies De and D0 at the CCSD(T) (Coupled Cluster with Single and Double excitations and perturbative Triple excitations)/CBS (Complete Basis Set) level of theory, utilizing CCSD(T)/CBS geometries and the frequencies of the dimer and monomer, reveals that there is a 3.2 kcal/mol difference between interaction energy and binding energy De, which results from (i) not relaxing the geometry of the monomers upon dissociation of the dimer and (ii) approximating CCSD(T) correlation effects with MP2. The most accurate CCSD(T)/CBS values obtained in this work are De = 15.55 and D0 = 14.32 kcal/mol where the latter binding energy differs from the experimental value by 0.1 kcal/mol. The necessity of employing augmented VQZ and VPZ calculations and relaxing monomer geometries of H-bonded complexes upon dissociation to obtain reliable binding energies is emphasized.
Turner, Walter E; Agarwal, Jay; Schaefer, Henry F
2015-12-03
The recent discovery of PN in the oxygen-rich shell of the supergiant star VY Canis Majoris points to the formation of several triatomic molecules involving oxygen, nitrogen, and phosphorus; these are also intriguing targets for main-group synthetic inorganic chemistry. In this research, high-level ab initio electronic structure computations were conducted on the potential circumstellar molecule OPN and several of its heavier group 15 and 16 congeners (SPN, SePN, TePN, OPP, OPAs, and OPSb). For each congener, four isomers were examined. Optimized geometries were obtained with coupled cluster theory [CCSD(T)] using large Dunning basis sets [aug-cc-pVQZ, aug-cc-pV(Q+d)Z, and aug-cc-pVQZ-PP], and relative energies were determined at the complete basis set limit of CCSDT(Q) from focal point analyses. The linear phosphorus-centered molecules were consistently the lowest in energy of the group 15 congeners by at least 6 kcal mol(-1), resulting from double-triple and single-double bond resonances within the molecule. The linear nitrogen-centered molecules were consistently the lowest in energy of the group 16 congeners by at least 5 kcal mol(-1), due to the electronegative central nitrogen atom encouraging electron delocalization throughout the molecule. For OPN, OPP, and SPN, anharmonic vibrational frequencies and vibrationally corrected rotational constants are predicted; good agreement with available experimental data is observed.
Effects of stomata clustering on leaf gas exchange.
Lehmann, Peter; Or, Dani
2015-09-01
A general theoretical framework for quantifying the stomatal clustering effects on leaf gaseous diffusive conductance was developed and tested. The theory accounts for stomatal spacing and interactions among 'gaseous concentration shells'. The theory was tested using the unique measurements of Dow et al. (2014) that have shown lower leaf diffusive conductance for a genotype of Arabidopsis thaliana with clustered stomata relative to uniformly distributed stomata of similar size and density. The model accounts for gaseous diffusion: through stomatal pores; via concentration shells forming at pore apertures that vary with stomata spacing and are thus altered by clustering; and across the adjacent air boundary layer. Analytical approximations were derived and validated using a numerical model for 3D diffusion equation. Stomata clustering increases the interactions among concentration shells resulting in larger diffusive resistance that may reduce fluxes by 5-15%. A similar reduction in conductance was found for clusters formed by networks of veins. The study resolves ambiguities found in the literature concerning stomata end-corrections and stomatal shape, and provides a new stomata density threshold for diffusive interactions of overlapping vapor shells. The predicted reduction in gaseous exchange due to clustering, suggests that guard cell function is impaired, limiting stomatal aperture opening. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
DEFF Research Database (Denmark)
Hofener, S.; Ahlrichs, R.; Knecht, S.
2012-01-01
We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga2 to Br2, the 5p-block dimers In2 to I2, and their atoms. Extended basis sets up...
Cluster Ion Implantation in Graphite and Diamond
DEFF Research Database (Denmark)
Popok, Vladimir
2014-01-01
Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite...... and diamond samples implanted by keV-energy size-selected cobalt and argon clusters. One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the development of scaling law for cluster...... implantation. Implantation of cobalt and argon clusters into two different allotropic forms of carbon, namely, graphite and diamond is analysed and compared in order to approach universal theory of cluster stopping in matter....
Clustering for data mining a data recovery approach
Mirkin, Boris
2005-01-01
Often considered more as an art than a science, the field of clustering has been dominated by learning through examples and by techniques chosen almost through trial-and-error. Even the most popular clustering methods--K-Means for partitioning the data set and Ward's method for hierarchical clustering--have lacked the theoretical attention that would establish a firm relationship between the two methods and relevant interpretation aids.Rather than the traditional set of ad hoc techniques, Clustering for Data Mining: A Data Recovery Approach presents a theory that not only closes gaps in K-Mean
International Nuclear Information System (INIS)
Browarzik, Dieter; Langenbach, Kai; Enders, Sabine; Browarzik, Christina
2013-01-01
Highlights: ► Liquid–liquid equilibrium (LLE) is calculated with the lattice–cluster theory (LCT). ► Equations of the LCT are reduced to only three geometrical parameters. ► Branching influence on the LLE is modeled for binary and ternary polymer solutions. ► Branched and linear solvents and polymers are compared in their influence on LLE. ► Solutions of branched polymers in branched solvents show the best miscibility. -- Abstract: The liquid–liquid equilibrium (LLE) of ternary model systems of the type solvent A + polymer B + solvent C is treated in the framework of lattice–cluster theory (LCT). There are a linear and a branched type of A-molecules as well as a linear and two types of strongly branched polymer molecules. The C-molecules are assumed to occupy only one lattice site. For nine binary and six ternary polymer solutions the branching influence on LLE is discussed. Currently, the LCT is the most useful model to take the architecture of the molecules into account. However, particularly for ternary systems the model is not comfortable because of the very numerous terms of the Gibbs energy. Using some relationships between the geometrical parameters of the model a considerable simplification is possible. In this paper the new and simpler equations of the LCT are presented. For comparison with experimental data critical temperatures of solutions of linear and branched polyethylene samples in diphenyl ether are calculated
Structure and Mobility of Metal Clusters in MOFs: Au, Pd, and AuPd Clusters in MOF-74
DEFF Research Database (Denmark)
Vilhelmsen, Lasse; Walton, Krista S.; Sholl, David S.
2012-01-01
is just as important for nanocluster adsorption as open Zn or Mg metal sites. Using the large number of clusters generated by the GA, we developed a systematic method for predicting the mobility of adsorbed clusters. Through the investigation of diffusion paths a relationship between the cluster......Understanding the adsorption and mobility of metal–organic framework (MOF)-supported metal nanoclusters is critical to the development of these catalytic materials. We present the first theoretical investigation of Au-, Pd-, and AuPd-supported clusters in a MOF, namely MOF-74. We combine density...... functional theory (DFT) calculations with a genetic algorithm (GA) to reliably predict the structure of the adsorbed clusters. This approach allows comparison of hundreds of adsorbed configurations for each cluster. From the investigation of Au8, Pd8, and Au4Pd4 we find that the organic part of the MOF...
International Nuclear Information System (INIS)
Wopperer, P.; Dinh, P.M.; Reinhard, P.-G.; Suraud, E.
2015-01-01
There are various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers observables such as total ionization, Photo-Electron Spectra (PES), Photoelectron Angular Distributions (PAD), and ideally combined PES/PAD. It has a long history in molecular physics and was increasingly used in cluster physics as well. Recent progress in the design of new light sources (high intensity, high frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on these observables, especially for the analysis of various dynamical scenarios, well beyond a simple access to electronic density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters up to such a complex and interesting system as C 60 . A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real time and on a spatial grid, and augmented by a Self-Interaction Correction (SIC). This provides a pertinent, robust, and efficient description of electronic emission including the detailed pattern of PES and PAD. A direct comparison between experiments and well founded elaborate microscopic theories is thus readily possible, at variance with more demanding observables such as for example fragmentation or dissociation cross sections. The purpose of this paper is to describe the theoretical tools developed on the basis of real-time and real-space TDDFT and to address in a realistic manner the analysis of electronic emission following irradiation of clusters and molecules by various laser pulses. After a general introduction, we shall present in a second part the available experimental results motivating such studies, starting from the simplest
White, S
1994-01-01
Galaxy clusters are the largest coherent objects in Universe. It has been known since 1933 that their dynamical properties require either a modification of the theory of gravity, or the presence of a dominant component of unseen material of unknown nature. Clusters still provide the best laboratories for studying the amount and distribution of this dark matter relative to the material which can be observed directly -- the galaxies themselves and the hot,X-ray-emitting gas which lies between them.Imaging and spectroscopy of clusters by satellite-borne X -ray telescopes has greatly improved our knowledge of the structure and composition of this intergalactic medium. The results permit a number of new approaches to some fundamental cosmological questions,but current indications from the data are contradictory. The observed irregularity of real clusters seems to imply recent formation epochs which would require a universe with approximately the critical density. On the other hand, the large baryon fraction observ...
Individualization as Driving Force of Clustering Phenomena in Humans
Maes, Michael; Flache, Andreas; Helbing, Dirk
2010-01-01
One of the most intriguing dynamics in biological systems is the emergence of clustering, in the sense that individuals self-organize into separate agglomerations in physical or behavioral space. Several theories have been developed to explain clustering in, for instance, multi-cellular organisms,
International Nuclear Information System (INIS)
Li Wei-Yin; Chen Fu-Yi
2014-01-01
We investigate the effects of shape and single-atom doping on the structural, optical absorption, Raman, and vibrational properties of Ag 13 , Ag 12 Cu 1 , Cu 13 , and Cu 12 Ag 1 clusters by using the (time-dependent) density functional theory. The results show that the most stable structures are cuboctahedron (COh) for Ag 13 and icosahedron (Ih) for Cu 13 , Ag 12 Cu 1core , and Cu 12 Ag 1sur . In the visible—near infrared optical absorption, the transitions consist of the interband and the intraband transitions. Moreover, red shifts are observed as follows: 1) clusters change from Ag 12 Cu 1core to Ag 13 to Ag 12 Cu 1sur with the same motifs, 2) the shapes of pure Ag 13 and Ag 12 Cu 1core clusters change from COh to Ih to decahedron (Dh), 3) the shape of Ag 12 Cu 1sur clusters changes from Ih to COh to Dh, and 4) the shapes of pure Cu 13 and Cu 12 Ag 1 clusters change from Ih to Dh to COh. All of the Raman and vibrational spectra exhibit many significant vibrational modes related to the shapes and the compositions of the clusters. The ranges of vibrational spectra of Ag 13 , Ag 12 Cu 1 or Cu 13 , and Cu 12 Ag 1 clusters become narrower and the vibrational intensities increase as the shape of the clusters changes from Ih to Dh to COh. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Pietropolli Charmet, Andrea; Cornaton, Yann
2018-05-01
This work presents an investigation of the theoretical predictions yielded by anharmonic force fields having the cubic and quartic force constants are computed analytically by means of density functional theory (DFT) using the recursive scheme developed by M. Ringholm et al. (J. Comput. Chem. 35 (2014) 622). Different functionals (namely B3LYP, PBE, PBE0 and PW86x) and basis sets were used for calculating the anharmonic vibrational spectra of two halomethanes. The benchmark analysis carried out demonstrates the reliability and overall good performances offered by hybrid approaches, where the harmonic data obtained at the coupled cluster with single and double excitations level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T), are combined with the fully analytic higher order force constants yielded by DFT functionals. These methods lead to reliable and computationally affordable calculations of anharmonic vibrational spectra with an accuracy comparable to that yielded by hybrid force fields having the anharmonic force fields computed at second order Møller-Plesset perturbation theory (MP2) level of theory using numerical differentiation but without the corresponding potential issues related to computational costs and numerical errors.
Dispersion interactions between neighboring Bi atoms in (BiH3 )2 and Te(BiR2 )2.
Haack, Rebekka; Schulz, Stephan; Jansen, Georg
2018-03-13
Triggered by the observation of a short Bi⋯Bi distance and a BiTeBi bond angle of only 86.6° in the crystal structure of bis(diethylbismuthanyl)tellurane quantum chemical computations on interactions between neighboring Bi atoms in Te(BiR 2 ) 2 molecules (R = H, Me, Et) and in (BiH 3 ) 2 were undertaken. Bi⋯Bi distances atoms were found to significantly shorten upon inclusion of the d shells of the heavy metal atoms into the electron correlation treatment, and it was confirmed that interaction energies from spin component-scaled second-order Møller-Plesset theory (SCS-MP2) agree well with coupled-cluster singles and doubles theory including perturbative triples (CCSD(T)). Density functional theory-based symmetry-adapted perturbation theory (DFT-SAPT) was used to study the anisotropy of the interplay of dispersion attraction and steric repulsion between the Bi atoms. Finally, geometries and relative stabilities of syn-syn and syn-anti conformers of Te(BiR 2 ) 2 (R = H, Me, Et) and interconversion barriers between them were computed. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
The deprotonation energies of BH5 and AlH5: Comparisons to GaH5
International Nuclear Information System (INIS)
Speakman, Lucas D.; Turney, Justin M.; Schaefer, Henry F.
2007-01-01
Hypercoordinate boron is most unusual, leading to considerable theoretical and experimental research on the parent BH 5 molecule. The deprotonation energies of BH 5 and the related molecules AlH 5 and GaH 5 have been of particular interest. Here the energy differences for XH 5 ->XH 4 - +H(X=BandAl) are computed to be 332.4 and 326.3kcalmol -1 , respectively, with an aug-cc-pVQZ basis set at the CCSD(T) level of theory. Vibrational frequencies for BH 4 - and AlH 4 - are also reported as 1098, 1210, 2263, and 2284cm -1 and 760, 779, 1658, and 1745cm -1 , respectively, again at the CCSD(T) aug-cc-pVQZ level of theory. Comparisons with the valence isoelectronic GaH 5 molecule are made
THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS
International Nuclear Information System (INIS)
Ricca, Alessandra; Bauschlicher, Charles W. Jr.; Allamandola, Louis J.
2013-01-01
The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster
THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS
Energy Technology Data Exchange (ETDEWEB)
Ricca, Alessandra [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Allamandola, Louis J., E-mail: Alessandra.Ricca-1@nasa.gov, E-mail: Charles.W.Bauschlicher@nasa.gov [Space Science Division, Mail Stop 245-6, NASA Ames Research Center, Moffett Field, CA 94035 (United States)
2013-10-10
The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.
The cluster model and the generalized Brody-Moshinsky coefficients
International Nuclear Information System (INIS)
Silvestre-Brac, B.
1985-01-01
Cluster theories, which rigorously eliminate the centre of mass motion, need intrinsic cluster coordinates. It is shown that the Jacobi coordinates of the various clusters are related by an orthogonal transformation and that the use of generalized Brody-Moshinsky coefficients allows an exact calculation of the exchange kernels. This procedure is illustrated by the description of nucleon-nucleon interaction in terms of constituent quarks
Exploration of the NH3-H2 van der Waals interaction by high level ab initio calculations
International Nuclear Information System (INIS)
Mladenovic, Mirjana; Lewerenz, Marius; Cilpa, Geraldine; Rosmus, Pavel; Chambaud, Gilberte
2008-01-01
The intermolecular potential energy for the van der Waals complex between ammonia and the hydrogen molecule has been studied by means of the coupled cluster CCSD(T) method and aug-cc-pVXZ (X = D, T, Q, 5) basis sets and with inclusion of the Boys and Bernardi counterpoise correction. For sufficiently large basis sets the only true electronic minimum energy structure of NH 3 -H 2 is found to possess C 3v point group symmetry. Various minimum energy paths for the relative motion of NH 3 and H 2 are analysed in order to understand the topography of the intermolecular potential. The complete basis set limit for the electronic dissociation energy is estimated to be about 253 cm -1 at the CCSD(T) level
Minenkov, Yury
2017-03-07
In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes of Li, Be, Na, Mg, Ca, Sr, Ba and Pb(ii). Two strategies were investigated: in the former, only valence electrons were included in the correlation treatment, giving rise to the computationally very efficient FC (frozen core) approach; in the latter, all non-ECP electrons were included in the correlation treatment, giving rise to the AE (all electron) approach. Apart from reactions involving Li and Be, the FC approach resulted in non-homogeneous performance. The FC approach leads to very small errors (<2 kcal mol-1) for some reactions of Na, Mg, Ca, Sr, Ba and Pb, while for a few reactions of Ca and Ba deviations up to 40 kcal mol-1 have been obtained. Large errors are both due to artificial mixing of the core (sub-valence) orbitals of metals and the valence orbitals of oxygen and halogens in the molecular orbitals treated as core, and due to neglecting core-core and core-valence correlation effects. These large errors are reduced to a few kcal mol-1 if the AE approach is used or the sub-valence orbitals of metals are included in the correlation treatment. On the technical side, the CCSD(T) and DLPNO-CCSD(T) results differ by a fraction of kcal mol-1, indicating the latter method as the perfect choice when the CPU efficiency is essential. For completely black-box applications, as requested in catalysis or thermochemical calculations, we recommend the DLPNO-CCSD(T) method with all electrons that are not covered by effective core potentials included in the correlation treatment and correlation-consistent polarized core valence basis sets of cc-pwCVQZ(-PP) quality.
Sharma, Lalita; Sahoo, Bijaya Kumar; Malkar, Pooja; Srivastava, Rajesh
2018-01-01
A relativistic coupled-cluster theory is implemented to study electron impact excitations of atomic species. As a test case, the electron impact excitations of the 3 s 2 S 1/2-3 p 2 P 1/2;3/2 resonance transitions are investigated in the singly charged magnesium (Mg+) ion using this theory. Accuracies of wave functions of Mg+ are justified by evaluating its attachment energies of the relevant states and compared with the experimental values. The continuum wave function of the projectile electron are obtained by solving Dirac equations assuming distortion potential as static potential of the ground state of Mg+. Comparison of the calculated electron impact excitation differential and total cross-sections with the available measurements are found to be in very good agreements at various incident electron energies. Further, calculations are carried out in the plasma environment in the Debye-Hückel model framework, which could be useful in the astrophysics. Influence of plasma strength on the cross-sections as well as linear polarization of the photon emission in the 3 p 2 P 3/2-3 s 2 S 1/2 transition is investigated for different incident electron energies.
Modified Gravity and its test on galaxy clusters
Nieuwenhuizen, Theodorus M.; Morandi, Andrea; Limousin, Marceau
2018-05-01
The MOdified Gravity (MOG) theory of J. Moffat assumes a massive vector particle which causes a repulsive contribution to the tensor gravitation. For the galaxy cluster A1689 new data for the X-ray gas and the strong lensing properties are presented. Fits to MOG are possible by adjusting the galaxy density profile. However, this appears to work as an effective dark matter component, posing a serious problem for MOG. New gas and strong lensing data for the cluster A1835 support these conclusions and point at a tendency of the gas alone to overestimate the lensing effects in MOG theory.
DEFF Research Database (Denmark)
Christensen, Thomas Budde
The cluster theory attributed to Michael Porter has significantly influenced industrial policies in countries across Europe and North America since the beginning of the 1990s. Institutions such as the EU, OECD and the World Bank and governments in countries such as the UK, France, The Netherlands...... or management. Both the Accelerate Wales and the Accelerate Cluster programmes target this issue by trying to establish networks between companies that can be used to supply knowledge from research institutions to manufacturing companies. The paper concludes that public sector interventions can make...... businesses. The universities were not considered by the participating companies to be important parts of the local business environment and inputs from universities did not appear to be an important source to access knowledge about new product development or new techniques in production, distribution...
Mück, Leonie Anna; Gauss, Jürgen
2012-03-21
We propose a generally applicable scheme for the computation of spin-orbit (SO) splittings in degenerate open-shell systems using multireference coupled-cluster (MRCC) theory. As a specific method, Mukherjee's version of MRCC (Mk-MRCC) in conjunction with an effective mean-field SO operator is adapted for this purpose. An expression for the SO splittings is derived and implemented using Mk-MRCC analytic derivative techniques. The computed SO splittings are found to be in satisfactory agreement with experimental data. Due to the symmetry properties of the SO operator, SO splittings can be considered a quality measure for the coupling between reference determinants in Jeziorski-Monkhorst based MRCC methods. We thus provide numerical insights into the coupling problem of Mk-MRCC theory. © 2012 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
DeYonker, Nathan J., E-mail: ndyonker@memphis.edu [Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152 (United States); Halfen, DeWayne T.; Ziurys, Lucy M. [Department of Chemistry, Department of Astronomy, Arizona Radio Observatory, and Steward Observatory, University of Arizona, Tucson, Arizona 85721 (United States); Allen, Wesley D. [Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602 (United States)
2014-11-28
Six electronic states (X {sup 4}Σ{sup −}, A {sup 4}Π, B {sup 4}Δ, {sup 2}Φ, {sup 2}Δ, {sup 2}Σ{sup +}) of the vanadium monochloride cation (VCl{sup +}) are described using large basis set coupled cluster theory. For the two lowest quartet states (X {sup 4}Σ{sup −} and A {sup 4}Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T{sub 0}) and spectroscopic constants (r{sub e}, r{sub 0}, B{sub e}, B{sub 0}, D{sup ¯}{sub e}, H{sub e}, ω{sub e}, v{sub 0}, α{sub e}, ω{sub e}x{sub e}) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X {sup 4}Σ{sup −}), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state ({sup 2}Γ) has a T{sub e} of ∼11 200 cm{sup −1}. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.
International Nuclear Information System (INIS)
Kind, Hans Jarle; Osmundsen, Petter; Tverteraas, Ragnar
2001-10-01
Enhanced understanding of the factors determining trans national companies' localisation decisions is important for regulators and other stake holders concerned about maintaining current activity levels in a petroleum producing country. This article discusses localisation decisions in the context of theories of industrial clusters and real portfolio optimisation theory (materiality), which we argue are two fruitful lines of explanation for trans national companies' behaviour. The industrial cluster literature is concerned about the level of positive externalities associated with geographic clustering of related production activities. The concept of materiality, implying that investment projects in an oil province must be of a certain minimum size in order to be interesting for oil companies, is evaluated empirically and compared to predictions of mainstream economic theory. (author)
Energy Technology Data Exchange (ETDEWEB)
Kind, Hans Jarle; Osmundsen, Petter; Tverteraas, Ragnar
2001-10-01
Enhanced understanding of the factors determining transnational companies' localisation decisions is important for regulators and other stakeholders concerned about maintaining current activity levels in a petroleum producing country. This article discusses localisation decisions in the context of theories of industrial clusters and real portfolio optimisation theory (materiality), which we argue are two fruitful lines of explanation for transnational companies' behaviour. The industrial cluster literature is concerned about the level of positive externalities associated with geographic clustering of related production activities. The concept of materiality, implying that investment projects in an oil province must be of a certain minimum size in order to be interesting for oil companies, is evaluated empirically and compared to predictions of mainstream economic theory. (author)
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-01
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-07
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two
Bartlett, Marcus A.; Liang, Tao; Pu, Liang; Schaefer, Henry F.; Allen, Wesley D.
2018-03-01
The n-propyl + O2 reaction is an important model of chain branching reactions in larger combustion systems. In this work, focal point analyses (FPAs) extrapolating to the ab initio limit were performed on the n-propyl + O2 system based on explicit quantum chemical computations with electron correlation treatments through coupled cluster single, double, triple, and perturbative quadruple excitations [CCSDT(Q)] and basis sets up to cc-pV5Z. All reaction species and transition states were fully optimized at the rigorous CCSD(T)/cc-pVTZ level of theory, revealing some substantial differences in comparison to the density functional theory geometries existing in the literature. A mixed Hessian methodology was implemented and benchmarked that essentially makes the computations of CCSD(T)/cc-pVTZ vibrational frequencies feasible and thus provides critical improvements to zero-point vibrational energies for the n-propyl + O2 system. Two key stationary points, n-propylperoxy radical (MIN1) and its concerted elimination transition state (TS1), were located 32.7 kcal mol-1 and 2.4 kcal mol-1 below the reactants, respectively. Two competitive β-hydrogen transfer transition states (TS2 and TS2') were found separated by only 0.16 kcal mol-1, a fact unrecognized in the current combustion literature. Incorporating TS2' in master equation (ME) kinetic models might reduce the large discrepancy of 2.5 kcal mol-1 between FPA and ME barrier heights for TS2. TS2 exhibits an anomalously large diagonal Born-Oppenheimer correction (ΔDBOC = 1.71 kcal mol-1), which is indicative of a nearby surface crossing and possible nonadiabatic reaction dynamics. The first systematic conformational search of three hydroperoxypropyl (QOOH) intermediates was completed, uncovering a total of 32 rotamers lying within 1.6 kcal mol-1 of their respective lowest-energy minima. Our definitive energetics for stationary points on the n-propyl + O2 potential energy surface provide key benchmarks for future studies
Fusion and fission of atomic clusters: recent advances
DEFF Research Database (Denmark)
Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.
2005-01-01
We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have...... developed an effective scheme of adding new atoms to stable cluster geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level...... of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na^2+_10 clusters....
Cu cluster shell structure at elevated temperatures
DEFF Research Database (Denmark)
Christensen, Ole Bøssing; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet
1991-01-01
Equilibrium structures of small (3–29)-atom Cu clusters are determined by simulated annealing, and finite-temperature ensembles are simulated by Monte Carlo techniques using the effective-medium theory for the energy calculation. Clusters with 8, 18, and 20 atoms are found to be particularly stable....... The equilibrium geometrical structures are determined and found to be determined by a Jahn-Teller distortion, which is found to affect the geometry also at high temperatures. The ‘‘magic’’ clusters retain their large stability even at elevated temperatures....
A dynamical theory of nucleation
Lutsko, James F.
2013-05-01
A dynamical theory of nucleation based on fluctuating hydrodynamics is described. It is developed in detail for the case of diffusion-limited nucleation appropriate to colloids and macro-molecules in solution. By incorporating fluctuations, realistic fluid-transport and realistic free energy models the theory is able to give a unified treatment of both the pre-critical development of fluctuations leading to a critical cluster as well as of post-critical growth. Standard results from classical nucleation theory are shown to follow in the weak noise limit while the generality of the theory allows for many extensions including the description of very high supersaturations (small clusters), multiple order parameters and strong-noise effects to name a few. The theory is applied to homogeneous and heterogeneous nucleation of a model globular protein in a confined volume and it is found that nucleation depends critically on the existence of long-wavelength, small-amplitude density fluctuations.
TRANSPORT AND LOGISTICS CLUSTER IN AN ECONOMIC SYSTEM OF A REGION
Directory of Open Access Journals (Sweden)
I.G. Menshenina
2008-09-01
Full Text Available The main types of clusters are described in the article. The function of a transport and logistics model is also described using the theory of graphs. The relationship of clusters is shown in the economic system of a region, and the main role of transport and logistics cluster is emphasized as a good condition for the effective functioning of other clusters in the region.
Near-field radiative heat transfer between clusters of dielectric nanoparticles
International Nuclear Information System (INIS)
Dong, J.; Zhao, J.M.; Liu, L.H.
2017-01-01
In this work, we explore the near-field radiative heat transfer between two clusters of silicon carbide (SiC) nanoparticles using the many-body radiative heat transfer theory. The effects of fractal dimension of clusters, many-body interaction between nanoparticles and relative orientation of clusters on the thermal conductance are studied. Meanwhile, the applicability of the equivalent volume spheres (EVS) approximation for near-field radiative heat transfer between clusters is examined. It is observed that the thermal conductance is larger for clusters with larger fractal dimension, which is more significant in the near-field. The thermal conductance of EVS resembles that of the clusters, but EVS overestimates the conductance of clusters, especially in the near-field. Compared to the case of two nanoparticles, the conductance of nanoparticle clusters decays much slower with increasing distance in the near-field, but shares similar dependence on the distance in the far-field. The thermal conductance of SiC nanoparticle clusters is inhibited by the many-body interaction when surface phonon polariton is supported but enhanced at frequencies close to the resonance frequency. The total thermal conductance is decreased due to many-body interaction among particles in the cluster. The relative orientation between the clusters is also an important factor in the near-field, especially for clusters with lower fractal dimension. - Highlights: • Near-field radiative heat transfer between clusters of nanoparticles is studied. • The many-body radiative heat transfer theory is applied for rigorous analysis. • The accuracy of equivalent volume spheres approximation is examined. • Clusters with larger fractal dimension have larger radiative thermal conductance. • Many-body interaction inhibits the total radiative thermal conductance.
A novel approach to the theory of homogeneous and heterogeneous nucleation.
Ruckenstein, Eli; Berim, Gersh O; Narsimhan, Ganesan
2015-01-01
A new approach to the theory of nucleation, formulated relatively recently by Ruckenstein, Narsimhan, and Nowakowski (see Refs. [7-16]) and developed further by Ruckenstein and other colleagues, is presented. In contrast to the classical nucleation theory, which is based on calculating the free energy of formation of a cluster of the new phase as a function of its size on the basis of macroscopic thermodynamics, the proposed theory uses the kinetic theory of fluids to calculate the condensation (W(+)) and dissociation (W(-)) rates on and from the surface of the cluster, respectively. The dissociation rate of a monomer from a cluster is evaluated from the average time spent by a surface monomer in the potential well as obtained from the solution of the Fokker-Planck equation in the phase space of position and momentum for liquid-to-solid transition and the phase space of energy for vapor-to-liquid transition. The condensation rates are calculated using traditional expressions. The knowledge of those two rates allows one to calculate the size of the critical cluster from the equality W(+)=W(-) as well as the rate of nucleation. The developed microscopic approach allows one to avoid the controversial application of classical thermodynamics to the description of nuclei which contain a few molecules. The new theory was applied to a number of cases, such as the liquid-to-solid and vapor-to-liquid phase transitions, binary nucleation, heterogeneous nucleation, nucleation on soluble particles and protein folding. The theory predicts higher nucleation rates at high saturation ratios (small critical clusters) than the classical nucleation theory for both solid-to-liquid as well as vapor-to-liquid transitions. As expected, at low saturation ratios for which the size of the critical cluster is large, the results of the new theory are consistent with those of the classical one. The present approach was combined with the density functional theory to account for the density
International Nuclear Information System (INIS)
Kim, Jong Deuk
2000-02-01
This book is composed of 8 chapters. It tells what interfacial phenomenon is by showing interfacial energy, characteristic of interface and system of interface from chapter 1. It also introduces interfacial energy and structure theory, molecular structure and orientation theory, and interfacial electricity phenomenon theory in the following 3 chapters. It still goes on by introducing super molecule cluster, disequilibrium dispersion, and surface and film through 3 chapters. And the last chapter is about colloid and application of interface.
Exact WKB analysis and cluster algebras
International Nuclear Information System (INIS)
Iwaki, Kohei; Nakanishi, Tomoki
2014-01-01
We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)
Innovation, learning and cluster dynamics
B. Nooteboom (Bart)
2004-01-01
textabstractThis chapter offers a theory and method for the analysis of the dynamics, i.e. the development, of clusters for innovation. It employs an analysis of three types of embedding: institutional embedding, which is often localized, structural embedding (network structure), and relational
Testing the Large-scale Environments of Cool-core and Non-cool-core Clusters with Clustering Bias
Energy Technology Data Exchange (ETDEWEB)
Medezinski, Elinor; Battaglia, Nicholas; Cen, Renyue; Gaspari, Massimo; Strauss, Michael A.; Spergel, David N. [Department of Astrophysical Sciences, 4 Ivy Lane, Princeton, NJ 08544 (United States); Coupon, Jean, E-mail: elinorm@astro.princeton.edu [Department of Astronomy, University of Geneva, ch. dEcogia 16, CH-1290 Versoix (Switzerland)
2017-02-10
There are well-observed differences between cool-core (CC) and non-cool-core (NCC) clusters, but the origin of this distinction is still largely unknown. Competing theories can be divided into internal (inside-out), in which internal physical processes transform or maintain the NCC phase, and external (outside-in), in which the cluster type is determined by its initial conditions, which in turn leads to different formation histories (i.e., assembly bias). We propose a new method that uses the relative assembly bias of CC to NCC clusters, as determined via the two-point cluster-galaxy cross-correlation function (CCF), to test whether formation history plays a role in determining their nature. We apply our method to 48 ACCEPT clusters, which have well resolved central entropies, and cross-correlate with the SDSS-III/BOSS LOWZ galaxy catalog. We find that the relative bias of NCC over CC clusters is b = 1.42 ± 0.35 (1.6 σ different from unity). Our measurement is limited by the small number of clusters with core entropy information within the BOSS footprint, 14 CC and 34 NCC clusters. Future compilations of X-ray cluster samples, combined with deep all-sky redshift surveys, will be able to better constrain the relative assembly bias of CC and NCC clusters and determine the origin of the bimodality.
Testing the Large-scale Environments of Cool-core and Non-cool-core Clusters with Clustering Bias
International Nuclear Information System (INIS)
Medezinski, Elinor; Battaglia, Nicholas; Cen, Renyue; Gaspari, Massimo; Strauss, Michael A.; Spergel, David N.; Coupon, Jean
2017-01-01
There are well-observed differences between cool-core (CC) and non-cool-core (NCC) clusters, but the origin of this distinction is still largely unknown. Competing theories can be divided into internal (inside-out), in which internal physical processes transform or maintain the NCC phase, and external (outside-in), in which the cluster type is determined by its initial conditions, which in turn leads to different formation histories (i.e., assembly bias). We propose a new method that uses the relative assembly bias of CC to NCC clusters, as determined via the two-point cluster-galaxy cross-correlation function (CCF), to test whether formation history plays a role in determining their nature. We apply our method to 48 ACCEPT clusters, which have well resolved central entropies, and cross-correlate with the SDSS-III/BOSS LOWZ galaxy catalog. We find that the relative bias of NCC over CC clusters is b = 1.42 ± 0.35 (1.6 σ different from unity). Our measurement is limited by the small number of clusters with core entropy information within the BOSS footprint, 14 CC and 34 NCC clusters. Future compilations of X-ray cluster samples, combined with deep all-sky redshift surveys, will be able to better constrain the relative assembly bias of CC and NCC clusters and determine the origin of the bimodality.
Protein sequences clustering of herpes virus by using Tribe Markov clustering (Tribe-MCL)
Bustamam, A.; Siswantining, T.; Febriyani, N. L.; Novitasari, I. D.; Cahyaningrum, R. D.
2017-07-01
The herpes virus can be found anywhere and one of the important characteristics is its ability to cause acute and chronic infection at certain times so as a result of the infection allows severe complications occurred. The herpes virus is composed of DNA containing protein and wrapped by glycoproteins. In this work, the Herpes viruses family is classified and analyzed by clustering their protein-sequence using Tribe Markov Clustering (Tribe-MCL) algorithm. Tribe-MCL is an efficient clustering method based on the theory of Markov chains, to classify protein families from protein sequences using pre-computed sequence similarity information. We implement the Tribe-MCL algorithm using an open source program of R. We select 24 protein sequences of Herpes virus obtained from NCBI database. The dataset consists of three types of glycoprotein B, F, and H. Each type has eight herpes virus that infected humans. Based on our simulation using different inflation factor r=1.5, 2, 3 we find a various number of the clusters results. The greater the inflation factor the greater the number of their clusters. Each protein will grouped together in the same type of protein.
Cluster Approach to Network Interaction in Pedagogical University
Chekaleva, Nadezhda V.; Makarova, Natalia S.; Drobotenko, Yulia B.
2016-01-01
The study presented in the article is devoted to the analysis of theory and practice of network interaction within the framework of education clusters. Education clusters are considered to be a novel form of network interaction in pedagogical education in Russia. The aim of the article is to show the advantages and disadvantages of the cluster…
Entrepreneurial Founder Effects in the Growth of Regional Clusters
DEFF Research Database (Denmark)
Dahl, Michael Slavensky; Pedersen, Christian Ø. R.; Dalum, Bent
How can the growth of regional clusters be explained? This paper studies in great detail the growth of the wireless communication cluster in Northern Denmark. Unlike the dominant theories, we argue that initial success of the first firms are the main driving force behind the generation of new firms...
Modeling Transfer of Knowledge in an Online Platform of a Cluster
Schmidt, Danilo Marcello; Böttcher, Lena; Wilberg, Julian; Kammerl, Daniel; Lindemann, Udo
2016-01-01
Dealing with knowledge as a relevant resource and factor for production has become increasingly important in the course of globalization. This work focuses on questions about transferring knowledge when many companies work together in a cluster of enterprises. We developed a model of this transfer based on the theory of clusters from the New Institutional Economics’ point of view and based on existing theories about knowledge and knowledge transfer. This theoretical construct is evaluated and...
International Nuclear Information System (INIS)
Mani, B. K.; Angom, D.; Latha, K. V. P.
2009-01-01
We have carried out a detailed and systematic study of the correlation energies of inert gas atoms Ne, Ar, Kr, and Xe using relativistic many-body perturbation theory and relativistic coupled-cluster theory. In the relativistic coupled-cluster calculations, we implement perturbative triples and include these in the correlation energy calculations. We then calculate the dipole polarizability of the ground states using perturbed coupled-cluster theory.
The growth of Fe clusters over graphene/Cu(111)
International Nuclear Information System (INIS)
Takahashi, Keisuke
2015-01-01
The growth of Fe clusters up to nine atoms over graphene/Cu(111) is investigated within the density functional theory. Graphene is weakly physisorbed on Cu(111) through van der Waals force. The structures of Fe clusters over graphene/Cu(111) grow differently compared to gas-phase Fe clusters where Fe clusters are predicted to form towards a pyramid-like structure on graphene/Cu(111). The graphene is negatively charged upon the adsorption of Fe clusters as a result of charge transfer from Fe to graphene. Despite the fact that the electronic structure of graphene is affected by Fe clusters, magnetic moment of Fe clusters over graphene/Cu(111) remains relatively high. This suggests that graphene can be a potential substrate for supporting Fe clusters towards applications in magnetism and catalysis. (paper)
Yin, Bing; Li, Teng; Li, Jin-Feng; Yu, Yang; Li, Jian-Li; Wen, Zhen-Yi; Jiang, Zhen-Yi
2014-03-01
The first theoretical exploration of superhalogen properties of polynuclear structures based on pseudohalogen ligand is reported here via a case study on eight triply-bridged [Mg2(CN)5]- clusters. From our high-level ab initio results, all these clusters are superhalogens due to their high vertical electron detachment energies (VDE), of which the largest value is 8.67 eV at coupled-cluster single double triple (CCSD(T)) level. Although outer valence Green's function results are consistent with CCSD(T) in most cases, it overestimates the VDEs of three anions dramatically by more than 1 eV. Therefore, the combined usage of several theoretical methods is important for the accuracy of purely theoretical prediction of superhalogen properties of new structures. Spatial distribution of the extra electron of high-VDE anions here indicates two features: remarkable aggregation on bridging CN units and non-negligible distribution on every CN unit. These two features lower the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to detachment of CN-1 were also investigated for these anions. The collection of these results indicates that polynuclear structures based on pseudohalogen ligand are promising candidates for new superhalogens with enhanced properties.
Ligand-protected gold clusters: the structure, synthesis and applications
Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.
2015-11-01
Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.
Clustering of near clusters versus cluster compactness
International Nuclear Information System (INIS)
Yu Gao; Yipeng Jing
1989-01-01
The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)
Guidez, Emilie B; Gordon, Mark S
2015-03-12
The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.
International Nuclear Information System (INIS)
Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)
1985-01-01
The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references
Nature of the three-electron bond in H2S∴SH2+
Bickelhaupt, F. Matthias; Diefenbach, Axel; De Visser, Sam P.; De Koning, Leo J.; Nibbering, Nico M.M.
1998-01-01
We have investigated the model system H2S∴-SH2+, i.e., the sulfur-sulfur bound dimer radical cation of H2S, using both density functional theory (LDA, BP86, PW91) and traditional ab initio theory (up to CCSD-(T)). Our purpose is to better understand the nature of the three-electron bond. The S-S
Ab initio calculations and modelling of atomic cluster structure
DEFF Research Database (Denmark)
Solov'yov, Ilia; Lyalin, Andrey G.; Solov'yov, Andrey V.
2004-01-01
The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...
Gravitational clustering of galaxies in the CfA slice
International Nuclear Information System (INIS)
Crane, P.; Saslaw, W.C.
1988-01-01
The clustering properties of the Galaxies in the CfA slice have been analyzed by comparing the properties of the neighbor distributions to the predictions of gravitational clustering theory. The agreement is excellent and implies that the observed structures can be explained by gravitational effects alone and do not require exotic explanations
Directory of Open Access Journals (Sweden)
Alwi Aslan
2014-03-01
Full Text Available This theory attempted to explore the possibility of using regular language further in image analysis, departing from the use of string to represent the region in the image. But we are not trying to show an alternative idea about how to generate a string region, where there are many different ways how the image or region produces strings representing, in this paper we propose a way how to generate regular language or group of languages which performs both classify the set of strings generated by a group of a number of image regions. Researchers began by showing a proof that there is always a regular language that accepts a set of strings that produced the image, and then use the language to perform the classification. Research then expanded to the pixel level, on whether the regular language can be used for clustering pixels in the image, the researchers propose a systematic solution of this question. As a tool used to explore regular language is deterministic finite automata. On the end part before conclusion of this paper, we add revision version of this theory. There is another point of view to revision version, added for make this method more precision and more powerfull from before.
Magnetic properties of free alkali and transition metal clusters
International Nuclear Information System (INIS)
Heer, W. de; Milani, P.; Chatelain, A.
1991-01-01
The Stern-Gerlach deflections of small alkali clusters (N<6) and iron clusters (10< N<500) show that the paramagnetic alkali clusters always have a nondeflecting component, while the iron clusters always deflect in the high field direction. Both of these effects appear to be related to spin relaxation however in the case of alkali clusters it is shown that they are in fact caused by avoided level crossing in the Zeeman diagram. For alkali clusters the relatively weak couplings cause reduced magnetic moments where levels cross. For iron clusters however the total spin is strongly coupled to the molecular framework. Consequently this coupling is responsible for avoided level crossing which ultimately cause the total energy of the cluster to decrease with increasing magnetic field so that the iron clusters will deflect in one direction when introduced in an inhomogeneous magnetic field. Experiment and theory are discussed for both cases. (orig.)
Caricato, Marco
2018-04-01
We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.
Statistical clustering of primordial black holes
Energy Technology Data Exchange (ETDEWEB)
Carr, B J [Cambridge Univ. (UK). Inst. of Astronomy
1977-04-01
It is shown that Meszaros theory of galaxy formation, in which galaxies form from the density perturbations associated with the statistical fluctuation in the number density of primordial black holes, must be modified if the black holes are initially surrounded by regions of lower radiation density than average (as is most likely). However, even in this situation, the sort of effect Meszaros envisages does occur and could in principle cause galactic mass-scales to bind at the conventional time. In fact, the requirement that galaxies should not form prematurely implies that black holes could not have a critical density in the mass range above 10/sup 5/ M(sun). If the mass spectrum of primordial black holes falls off more slowly than m/sup -3/ (as expected), then the biggest black holes have the largest clustering effect. In this case the black hole clustering theory of galaxy formation reduces to the black hole seed theory of galaxy formation, in which each galaxy becomes bound under the gravitational influence of a single black hole nucleus. The seed theory could be viable only if the early Universe had a soft equation of state until a time exceeding 10/sup -4/ s or if something prevented black hole formation before 1 s.
Weygaert, R. van de
2006-01-01
Abstract: We discuss the intimate relationship between the filamentary features and the rare dense compact cluster nodes in this network, via the large scale tidal field going along with them, following the cosmic web theory developed Bond et al. The Megaparsec scale tidal shear pattern is
Electron attenuation in free, neutral ethane clusters.
Winkler, M; Myrseth, V; Harnes, J; Børve, K J
2014-10-28
The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.
Clusters and Groups of Galaxies : International Meeting
Giuricin, G; Mezzetti, M
1984-01-01
The large-scale structure of the Universe and systems Clusters, and Groups of galaxies are topics like Superclusters, They fully justify the meeting on "Clusters of great interest. and Groups of Galaxies". The topics covered included the spatial distribution and the clustering of galaxies; the properties of Superclusters, Clusters and Groups of galaxies; radio and X-ray observations; the problem of unseen matter; theories concerning hierarchical clustering, pancakes, cluster and galaxy formation and evolution. The meeting was held at the International Center for Theoretical Physics in Trieste (Italy) from September 13 to September 16, 1983. It was attended by about 150 participants from 22 nations who presented 67 invited lectures (il) and contributed papers (cp), and 45 poster papers (pp). The Scientific Organizing Committee consisted of F. Bertola, P. Biermann, A. Cavaliere, N. Dallaporta, D. Gerba1, M. Hack, J . V . Peach, D. Sciama (Chairman), G. Setti, M. Tarenghi. We are particularly indebted to D. Scia...
Quantum cluster algebra structures on quantum nilpotent algebras
Goodearl, K R
2017-01-01
All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.
Wang, Ying; Qian, Hu-Jun; Morokuma, Keiji; Irle, Stephan
2012-07-05
Ab initio coupled cluster and density functional theory studies of atomic hydrogen addition to the central region of pyrene and coronene as molecular models for graphene hydrogenation were performed. Fully relaxed potential energy curves (PECs) were computed at the spin-unrestricted B3LYP/cc-pVDZ level of theory for the atomic hydrogen attack of a center carbon atom (site A), the midpoint of a neighboring carbon bond (site B), and the center of a central hexagon (site C). Using the B3LYP/cc-pVDZ PEC geometries, we evaluated energies at the PBE density functional, as well as ab initio restricted open-shell ROMP2, ROCCSD, and ROCCSD(T) levels of theory, employing cc-pVDZ and cc-pVTZ basis sets, and performed a G2MS extrapolation to the ROCCSD(T)/cc-pVTZ level of theory. In agreement with earlier studies, we find that only site A attack leads to chemisorption. The G2MS entrance channel barrier heights, binding energies, and PEC profiles are found to agree well with a recent ab initio multireference wave function theory study (Bonfanti et al. J. Chem. Phys.2011, 135, 164701), indicating that single-reference open-shell methods including B3LYP are sufficient for the theoretical treatment of the interaction of graphene with a single hydrogen atom.
Satellite cluster flight using on-off cyclic control
Zhang, Hao; Gurfil, Pini
2015-01-01
Nano-satellite clusters and disaggregated satellites are new concepts in the realm of distributed satellite systems, which require complex cluster management - mainly regulating the maximal and minimal inter-satellite distances on time scales of years - while utilizing simple on-off propulsion systems. The simple actuators and long time scales require judicious astrodynamical modeling coupled with specialized orbit control. This paper offers a satellite cluster orbit control law which works for long time scales in a perturbed environment while utilizing fixed-magnitude thrusters. The main idea is to design a distributed controller which balances the fuel consumption among the satellites, thus mitigating the effect of differential drag perturbations. The underlying methodology utilizes a cyclic control algorithm based on a mean orbital elements feedback. Stability properties of the closed-loop cyclic control system do not adhere to the classical Lyapunov stability theory, so an effort is made to define and implement a suitable stability theory of noncompact equilibria sets. A state selection scheme is proposed for efficiently establishing a low Earth orbit cluster. Several simulations, including a real mission study, and several comparative investigations, are performed to show the strengths of the proposed control law.
Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei
Saleh Ahmed, Saad M.
2017-06-01
The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.
Recent developments in the kinetic theory of nucleation.
Ruckenstein, E; Djikaev, Y S
2005-12-30
A review of recent progress in the kinetics of nucleation is presented. In the conventional approach to the kinetic theory of nucleation, it is necessary to know the free energy of formation of a new-phase particle as a function of its independent variables at least for near-critical particles. Thus the conventional kinetic theory of nucleation is based on the thermodynamics of the process. The thermodynamics of nucleation can be examined by using various approaches, such as the capillarity approximation, density functional theory, and molecular simulation, each of which has its own advantages and drawbacks. Relatively recently a new approach to the kinetics of nucleation was proposed [Ruckenstein E, Nowakowski B. J Colloid Interface Sci 1990;137:583; Nowakowski B, Ruckenstein E. J Chem Phys 1991;94:8487], which is based on molecular interactions and does not employ the traditional thermodynamics, thus avoiding such a controversial notion as the surface tension of tiny clusters involved in nucleation. In the new kinetic theory the rate of emission of molecules by a new-phase particle is determined with the help of a mean first passage time analysis. This time is calculated by solving the single-molecule master equation for the probability distribution function of a surface layer molecule moving in a potential field created by the rest of the cluster. The new theory was developed for both liquid-to-solid and vapor-to-liquid phase transitions. In the former case the single-molecule master equation is the Fokker-Planck equation in the phase space which can be reduced to the Smoluchowski equation owing to the hierarchy of characteristic time scales. In the latter case, the starting master equation is a Fokker-Planck equation for the probability distribution function of a surface layer molecule with respect to both its energy and phase coordinates. Unlike the case of liquid-to-solid nucleation, this Fokker-Planck equation cannot be reduced to the Smoluchowski equation
Thermodynamically accessible titanium clusters TiN, N = 2-32.
Lazauskas, Tomas; Sokol, Alexey A; Buckeridge, John; Catlow, C Richard A; Escher, Susanne G E T; Farrow, Matthew R; Mora-Fonz, David; Blum, Volker W; Phaahla, Tshegofatso M; Chauke, Hasani R; Ngoepe, Phuti E; Woodley, Scott M
2018-05-10
We have performed a genetic algorithm search on the tight-binding interatomic potential energy surface (PES) for small TiN (N = 2-32) clusters. The low energy candidate clusters were further refined using density functional theory (DFT) calculations with the PBEsol exchange-correlation functional and evaluated with the PBEsol0 hybrid functional. The resulting clusters were analysed in terms of their structural features, growth mechanism and surface area. The results suggest a growth mechanism that is based on forming coordination centres by interpenetrating icosahedra, icositetrahedra and Frank-Kasper polyhedra. We identify centres of coordination, which act as centres of bulk nucleation in medium sized clusters and determine the morphological features of the cluster.
Atomic and electronic structure of clusters from car-Parrinello method
International Nuclear Information System (INIS)
Kumar, V.
1994-06-01
With the development of ab-initio molecular dynamics method, it has now become possible to study the static and dynamical properties of clusters containing up to a few tens of atoms. Here I present a review of the method within the framework of the density functional theory and pseudopotential approach to represent the electron-ion interaction and discuss some of its applications to clusters. Particular attention is focussed on the structure and bonding properties of clusters as a function of their size. Applications to clusters of alkali metals and Al, non-metal - metal transition in divalent metal clusters, molecular clusters of carbon and Sb are discussed in detail. Some results are also presented on mixed clusters. (author). 121 refs, 24 ifigs
Search for C+ C clustering in Mg ground state
Indian Academy of Sciences (India)
2017-01-04
Jan 4, 2017 ... Finite-range knockout theory predictions were much larger for (12C,212C) reaction, indicating a very small 12C−12C clustering in 24Mg. (g.s.) . Our present results contradict most of the proposed heavy cluster (12C+12C) structure models for the ground state of 24Mg. Keywords. Direct nuclear reactions ...
Structures, Energetics, and IR Spectra of Monohydrated Inorganic Acids: Ab initio and DFT Study.
Kołaski, Maciej; Zakharenko, Aleksey A; Karthikeyan, S; Kim, Kwang S
2011-10-11
We carried out extensive calculations of diverse inorganic acids interacting with a single water molecule, through a detailed analysis of many possible conformations. The optimized structures were obtained by using density functional theory (DFT) and the second order Møller-Plesset perturbation theory (MP2). For the most stable conformers, we calculated the interaction energies at the complete basis set (CBS) limit using coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The -OH stretching harmonic and anharmonic frequencies are provided as fingerprints of characteristic conformers. The zero-point energy (ZPE) uncorrected/corrected (ΔEe/ΔE0) interaction energies and the enthalpies/free energies (ΔHr/ΔGr at room temperature and 1 bar) are reported. Various comparisons are made between many diverse inorganic acids (HmXOn where X = B/N/P/Cl/Br/I, m = 1-3, and n = 0-4) as well as other simple inorganic acids. In many cases, we find that the dispersion-driven van der Waals interactions between X in inorganic acid molecules and O in water molecules as well as the X(+)···O(-) electrostatic interactions are important.
Kong, Fanjie; Hu, Yanfei
2014-03-01
The geometries, stabilities, and electronic and magnetic properties of Mg(n) X (X = Fe, Co, Ni, n = 1-9) clusters were investigated systematically within the framework of the gradient-corrected density functional theory. The results show that the Mg(n)Fe, Mg(n)Co, and Mg(n)Ni clusters have similar geometric structures and that the X atom in Mg(n)X clusters prefers to be endohedrally doped. The average atomic binding energies, fragmentation energies, second-order differences in energy, and HOMO-LUMO gaps show that Mg₄X (X = Fe, Co, Ni) clusters possess relatively high stability. Natural population analysis was performed and the results showed that the 3s and 4s electrons always transfer to the 3d and 4p orbitals in the bonding atoms, and that electrons also transfer from the Mg atoms to the doped atoms (Fe, Co, Ni). In addition, the spin magnetic moments were analyzed and compared. Several clusters, such as Mg₁,₂,₃,₄,₅,₆,₈,₉Fe, Mg₁,₂,₄,₅,₆,₈,₉Co, and Mg₁,₂,₅,₆,₇,₉Ni, present high magnetic moments (4 μ(B), 3 μ(B), and 2 μ(B), respectively).
Ligand-protected gold clusters: the structure, synthesis and applications
International Nuclear Information System (INIS)
Pichugina, D A; Kuz'menko, N E; Shestakov, A F
2015-01-01
Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Au n with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au 15 and Au 25 ) and on anchorage to a support surface (Au 25 /SiO 2 , Au 20 /C, Au 10 /FeO x ) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR) n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters M x Au n L m (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR) x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active
Directory of Open Access Journals (Sweden)
LAURA CISMAŞ
2010-01-01
Full Text Available The study of economic agents’ behaviour, whose nowadays tendency is togroup themselves in space as clusters, has an important place in the field of localizing industrialactivities. This is due to domestic scale economies, known as agglomerations economies.According to Edgar M. Hoover (Hoover, 1948, domestic scale economies are specific tocompanies; the economies of localizing - to a certain branch, whose companies form clusters incertain geographical arias, and the urbanization economies are specific to cities, where thereare clusters of companies from different branches. The specialty literature regarding localeconomic development, based on the idea of cluster starts from well-known economic theories,such as: agglomeration theory (Alfred Marshall, the theory of spatial localizing of industrialunits (Alfred Weber, the theory of interdependence of locations (Harold Hotelling, the diamondtheory (Michael Porter, the theory of entrepreneurship (Joseph Schumpeter, the theory ofgeographical concentration. Basically, the common point which links them are the conceptswhich occur in these theories, such as: industrial district, industrial agglomeration, spatialinterdependence, concepts which lie at the basis of the cluster idea. Clusters represent animportant instrument for promoting industrial development, innovation, competitiveness andeconomic growth. If, at the beginning, the effort to develop clusters belonged to private personsand companies, nowadays, the actors involved in their development are the governments andpublic institutions of national or regional level.The objective established within the Lisbon Strategy (2000, to make the EuropeanUnion “the most competitive and dynamic knowledge-based economy”, is tightly linked to thenew approaches of the European economic policy, to competitiveness. One of the policies isfocused on developing at the European Union level clusters in the high competitiveness fields. with an innovative character
Comparison of Theories of Anisotropy in Transformer Oil-Based Magnetic Fluids
Directory of Open Access Journals (Sweden)
Jozef Kudelcik
2013-01-01
Full Text Available The external magnetic field in transformer oil-based magnetic fluids leads to the aggregation of magnetic nanoparticles and formation of clusters. These aggregations are the result of the interaction between the external magnetic field and the magnetic moments of the nanoparticles occurs. However, the temperature of magnetic fluids has also very important influence on the structural changes because the mechanism of thermal motion acts against the cluster creation. The acoustic spectroscopy was used to study the anisotropy of transformer oil-based magnetic fluids upon the effect of an external magnetic field and temperature. In present the anisotropy of the magnetic fluids can be described by two theories. Taketomi theory assumes the existence of spherical clusters. These clusters form long chains, aligned in a magnetic field direction. Shliomis in his theory supposed that only nanoparticles formed chains. A comparison of the experimental results with the predictions of the Taketomi theory allowed a determination of the cluster radius and the number density of the colloidal particles. The proportions of the acoustic wave energy used for excitation of the translational and rotational motion were determined.
The Role of Semantic Clustering in Optimal Memory Foraging
Montez, Priscilla; Thompson, Graham; Kello, Christopher T.
2015-01-01
Recent studies of semantic memory have investigated two theories of optimal search adopted from the animal foraging literature: Lévy flights and marginal value theorem. Each theory makes different simplifying assumptions and addresses different findings in search behaviors. In this study, an experiment is conducted to test whether clustering in…
Russian Pharmaceutical Companies Export Potential in Emerging Regional Clusters
Directory of Open Access Journals (Sweden)
Elena Vladimirovna Sapir
2016-12-01
Full Text Available This article analyzes a diverse range of the enterprise’s export potential growth factors in emerging pharmaceutical clusters of Central European Russia. Classification and comparative analysis were used to identify export potential attributes (production, finance, labor and marketing, which have allowed to reveal the strong connection of cluster and regional factor groups with the results of export performance. The purpose of the study is to provide exports-seeking pharmaceutical companies with a set of tools to enhance their export potential. The hypothesis that the cumulative impact of the specified attributes leads to the strengthening of pharmaceutical cluster export potential and promotes an effective integration of the region in the world economic space, is developed and tested. The methodology combines the geo-economy-based theory with the theory of clusters competitive advantages. The impacts of export potential growth factors are estimated by using an econometric model based on math statistics. Thus, five Russian regional pharmaceutical clusters (Belgorod, Kaluga, Moscow, Oryol, Yaroslavl are shown. Findings identify an objective causal link between enterprise export potential growth and competitiveness factors of cluster origin (network business chains, production functions interconnectedness and flexibility, production localization. An action plan for the purpose of the maximum use of competitive advantages of the cluster organization for export activities of the entities of the pharmaceutical industry is developed. Conclusions and recommendations of the study are intended to enterprises in pharmaceutical industry and regions’ public authorities, implementing cluster development strategies. It is thus essential to improve marketing and organizational innovations, reduction of commercial expenses under the cluster environment, development of drugs production and delivery chains from R&D to end-users in order to enjoy greater
Structure and stability of small H clusters on graphene
DEFF Research Database (Denmark)
Sljivancanin, Zeljko; Andersen, Mie; Hammer, Bjørk
2011-01-01
The structure and stability of small hydrogen clusters adsorbed on graphene is studied by means of density functional theory (DFT) calculations. Clusters containing up to six H atoms are investigated systematically, with the clusters having either all H atoms on one side of the graphene sheet (cis......-clusters) or having the H atoms on both sides in an alternating manner (trans-clusters). The most stable cis-clusters found have H atoms in ortho- and para-positions with respect to each other (two H’s on neighboring or diagonally opposite carbon positions within one carbon hexagon), while the most stable trans......-clusters found have H atoms in ortho-trans-positions with respect to each other (two H’s on neighboring carbon positions, but on opposite sides of the graphene). Very stable trans-clusters with 13–22 H atoms were identified by optimizing the number of H atoms in ortho-trans-positions and thereby the number...
Short-range clustering and decomposition in copper-nickel and copper-nickel-iron alloys
International Nuclear Information System (INIS)
Aalders, T.J.A.
1982-07-01
The thermodynamic equilibrium state of short-range clustering and the kinetics of short-range clustering and decomposition has been studied for a number of CuNi(Fe)-alloys by means of neutron scattering. The validity of the theories, which are usually applied to describe spinodal decomposition, nucleation and growth, coarsening etc., was investigated. It was shown that for the investigated substances the conventional theory of spinodal decomposition is valid for the relaxation of short-range clustering only for the case that the initial and final states do not differ too much. The dynamical scaling procedure described by Lebowitz et al. did not lead to a time-independent scaled function F(x) for the relaxation of short-range clustering, for the early stages of decomposition and for the case that an alloy, which was already decomposed at the quench temperature T 1 , was annealed at a temperature T 2 (T 1 ). For the later stages of decomposition, however, the scaling procedure was indeed successful. The coarsening of the alloys could, except for the later stages, be described by the Lifshitz-Slyozov theory. (Auth.)
The deprotonation energies of BH{sub 5} and AlH{sub 5}: Comparisons to GaH{sub 5}
Energy Technology Data Exchange (ETDEWEB)
Speakman, Lucas D. [Center for Computational Chemistry, University of Georgia, 1004 Cedar Street, Athens, GA 30602-2556 (United States)], E-mail: speakman@ccqc.uga.edu; Turney, Justin M. [Center for Computational Chemistry, University of Georgia, 1004 Cedar Street, Athens, GA 30602-2556 (United States); Schaefer, Henry F. [Center for Computational Chemistry, University of Georgia, 1004 Cedar Street, Athens, GA 30602-2556 (United States)
2007-01-08
Hypercoordinate boron is most unusual, leading to considerable theoretical and experimental research on the parent BH{sub 5} molecule. The deprotonation energies of BH{sub 5} and the related molecules AlH{sub 5} and GaH{sub 5} have been of particular interest. Here the energy differences for XH{sub 5}->XH{sub 4}{sup -}+H(X=BandAl) are computed to be 332.4 and 326.3kcalmol{sup -1}, respectively, with an aug-cc-pVQZ basis set at the CCSD(T) level of theory. Vibrational frequencies for BH{sub 4}{sup -} and AlH{sub 4}{sup -} are also reported as 1098, 1210, 2263, and 2284cm{sup -1} and 760, 779, 1658, and 1745cm{sup -1}, respectively, again at the CCSD(T) aug-cc-pVQZ level of theory. Comparisons with the valence isoelectronic GaH{sub 5} molecule are made.
Percolation approach for atomic and molecular cluster formation
International Nuclear Information System (INIS)
Knospe, O.; Seifert, G.
1987-12-01
We apply a percolation approach for the theoretical analysis of mass spectra of molecular microclusters obtained by adiabatic expansion technique. The evolution of the shape of the experimental size distributions as function of stagnation pressure and stagnation temperature are theoretically reproduced by varying the percolation parameter. Remaining discrepancies between theory and experiment are discussed. In addition, the even-odd alternation as well as the 'magic' shell structure within metallic, secondary ion mass spectra are investigated by introducing statistical weights for the cluster formation probabilities. Shell correction energies of atomic clusters as function of cluster-size are deduced from the experimental data. (orig.)
The Globular Cluster NGC 2419: A Crucible for Theories of Gravity
Ibata, R.; Sollima, A.; Nipoti, C.; Bellazzini, M.; Chapman, S. C.; Dalessandro, E.
2011-09-01
We present the analysis of a kinematic data set of stars in the globular cluster NGC 2419, taken with the DEep Imaging Multi-Object Spectrograph at the Keck II telescope. Combined with a reanalysis of deep Hubble Space Telescope and Subaru Telescope imaging data, which provide an accurate luminosity profile of the cluster, we investigate the validity of a large set of dynamical models of the system, which are checked for stability via N-body simulations. We find that isotropic models in either Newtonian or Modified Newtonian Dynamics (MOND) are ruled out with extremely high confidence. However, a simple Michie model in Newtonian gravity with anisotropic velocity dispersion provides an excellent representation of the luminosity profile and kinematics of the cluster. The anisotropy profiles of these models ensure an isotropic center to the cluster, which progresses to extreme radial anisotropy toward the outskirts. In contrast, with MOND we find that Michie models that reproduce the luminosity profile either overpredict the velocity dispersion on the outskirts of the cluster if the mass-to-light ratio (M/L) is kept at astrophysically motivated values or else they underpredict the central velocity dispersion if the M/L is taken to be very small. We find that the best Michie model in MOND is a factor of ~104 less likely than the Newtonian model that best fits the system. A likelihood ratio of 350 is found when we investigate more general models by solving the Jeans equation with a Markov Chain Monte Carlo scheme. We verified with N-body simulations that these results are not significantly different when the MOND external field effect is accounted for. If the assumptions that the cluster is in dynamical equilibrium, spherical, not on a peculiar orbit, and possesses a single dynamical tracer population of constant M/L are correct, we conclude that the present observations provide a very severe challenge for MOND. Some of the data presented herein were obtained at the W
Bozkaya, Uǧur; Sherrill, C. David
2013-08-01
Orbital-optimized coupled-electron pair theory [or simply "optimized CEPA(0)," OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N6) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the λ2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%-43% and 38%-53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (ΔR is 0.0003 Å on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%-79% and 53%-79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm-1) is fortuitously even better than that of CCSD(T) (50 cm-1), while the MAEs of CEPA(0) (184 cm-1) and CCSD (84 cm-1) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol-1, which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol-1), and comparing to MP2 (7.7 kcal mol-1) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is only 0.1 kcal
Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.
Manzoor, Dar; Pal, Sourav
2015-06-18
Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.
The statistical clustering of primordial black holes
International Nuclear Information System (INIS)
Carr, B.J.
1977-01-01
It is shown that Meszaros theory of galaxy formation, in which galaxies form from the density perturbations associated with the statistical fluctuation in the number density of primordial black holes, must be modified if the black holes are initially surrounded by regions of lower radiation density than average (as is most likely). However, even in this situation, the sort of effect Meszaros envisages does occur and could in principle cause galactic mass-scales to bind at the conventional time. In fact, the requirement that galaxies should not form prematurely implies that black holes could not have a critical density in the mass range above 10 5 M(sun). If the mass spectrum of primordial black holes falls off more slowly than m -3 (as expected), then the biggest black holes have the largest clustering effect. In this case the black hole clustering theory of galaxy formation reduces to the black hole seed theory of galaxy formation, in which each galaxy becomes bound under the gravitational influence of a single black hole nucleus. The seed theory could be viable only if the early Universe had a soft equation of state until a time exceeding 10 -4 s or if something prevented black hole formation before 1 s. (orig.) [de
Liu, Peng; Li, Chen; Wang, Dunyou
2017-10-19
The Cl - + CH 3 I → CH 3 Cl + I - reaction in water was studied using combined multilevel quantum mechanism theories and molecular mechanics with an explicit water solvent model. The study shows a significant influence of aqueous solution on the structures of the stationary points along the reaction pathway. A detailed, atomic-level evolution of the reaction mechanism shows a concerted one-bond-broken and one-bond-formed mechanism, as well as a synchronized charge-transfer process. The potentials of mean force calculated with the CCSD(T) and DFT treatments of the solute produce a free activation barrier at 24.5 and 19.0 kcal/mol, respectively, which agrees with the experimental one at 22.0 kcal/mol. The solvent effects have also been quantitatively analyzed: in total, the solvent effects raise the activation energy by 20.2 kcal/mol, which shows a significant impact on this reaction in water.
Theoretical study on the spectroscopic properties of CO3(*-).nH2O clusters: extrapolation to bulk.
Pathak, Arup K; Mukherjee, Tulsi; Maity, Dilip K
2008-10-24
Vertical detachment energies (VDE) and UV/Vis absorption spectra of hydrated carbonate radical anion clusters, CO(3)(*-).nH(2)O (n=1-8), are determined by means of ab initio electronic structure theory. The VDE values of the hydrated clusters are calculated with second-order Moller-Plesset perturbation (MP2) and coupled cluster theory using the 6-311++G(d,p) set of basis functions. The bulk VDE value of an aqueous carbonate radical anion solution is predicted to be 10.6 eV from the calculated weighted average VDE values of the CO(3)(*-).nH(2)O clusters. UV/Vis absorption spectra of the hydrated clusters are calculated by means of time-dependent density functional theory using the Becke three-parameter nonlocal exchange and the Lee-Yang-Parr nonlocal correlation functional (B3LYP). The simulated UV/Vis spectrum of the CO(3)(*-).8H(2)O cluster is in excellent agreement with the reported experimental spectrum for CO(3)(*-) (aq), obtained based on pulse radiolysis experiments.
Static dipole polarizabilities of Scn (n ≤ 15) clusters
International Nuclear Information System (INIS)
Xi-Bo, Li; Jiang-Shan, Luo; Wei-Dong, Wu; Yong-Jian, Tang; Hong-Yan, Wang; Yun-Dong, Guo
2009-01-01
The static dipole polarizabilities of scandium clusters with up to 15 atoms are determined by using the numerically finite field method in the framework of density functional theory. The electronic effects on the polarizabilities are investigated for the scandium clusters. We examine a large highest occupied molecular orbital — the lowest occupied molecular orbital (HOMO–LUMO) gap of a scandium cluster usually corresponds to a large dipole moment. The static polarizability per atom decreases slowly and exhibits local minimum with increasing cluster size. The polarizability anisotropy and the ratio of mean static polarizability to the HOMO–LUMO gap can also reflect the cluster stability. The polarizability of the scandium cluster is partially related to the HOMO–LUMO gap and is also dependent on geometrical characteristics. A strong correlation between the polarizability and ionization energy is observed. (atomic and molecular physics)
International Nuclear Information System (INIS)
Trimble, V.
1977-01-01
Recent calculations suggest that the globular clusters could not have formed with more than 20 per cent of the normal Population I fraction of their stars in binary systems. The fact that the clusters have more than their fair share of novae and U Geminorum stars (three each out of approximately 200 of each known, while the clusters contain only about 10 -4 of the mass and 10 -3 of the luminosity of the galaxy) therefore becomes surprising. The hypothesis of binary capture within cluster cores suggested to account for the clusters' high X-ray luminosity provides a few extra systems, but neither it nor any of the similar encounter or capture mechanisms suggested can account for the novae and U Gen stars, which remain puzzling. The number of Algol-type and W UMa eclipsing binaries predicted by these hypotheses do not conflict with data presently available, but careful searches for them would constitute a critical test of the theories. (author)
On the applicability of the jellium model to the description of alkali clusters
International Nuclear Information System (INIS)
Matveentsev, A.; Lyalin, A.; Solovyov, I.A.; Solovyov, A.V.; Greiner, W.
2003-01-01
This work is devoted to the elucidation of the applicability of the jellium model to the description of alkali cluster properties. We compare the jellium model results with those derived within ab initio theoretical approaches and with experiments. On the basis of Hartree–Fock and local-density approximations we have calculated the binding energies per atom, ionization potentials, deformation parameters and optimized values of the Wigner–Seitz radii for neutral and singly charged sodium clusters with the number of atoms N ≤ 20. The characteristics calculated within the framework of the deformed jellium model are compared with the results derived from ab initio simulations of cluster electronic and ionic structure based on density functional theory and systematic post Hartree–Fock many-body perturbation theory accounting for all electrons in the system. The comparison performed demonstrates the great role of the cluster shape deformations in the formation cluster properties and quite reasonable level of applicability of the deformed jellium model. This elucidates the similarities of atomic cluster physics with the physics of atomic nuclei. (author)
Van der Waals coefficients for alkali metal clusters and their size
Indian Academy of Sciences (India)
In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, ...
International Nuclear Information System (INIS)
Yin, Bing; Wen, Zhen-Yi; Li, Teng; Li, Jin-Feng; Yu, Yang; Li, Jian-Li; Jiang, Zhen-Yi
2014-01-01
The first theoretical exploration of superhalogen properties of polynuclear structures based on pseudohalogen ligand is reported here via a case study on eight triply-bridged [Mg 2 (CN) 5 ] − clusters. From our high-level ab initio results, all these clusters are superhalogens due to their high vertical electron detachment energies (VDE), of which the largest value is 8.67 eV at coupled-cluster single double triple (CCSD(T)) level. Although outer valence Green's function results are consistent with CCSD(T) in most cases, it overestimates the VDEs of three anions dramatically by more than 1 eV. Therefore, the combined usage of several theoretical methods is important for the accuracy of purely theoretical prediction of superhalogen properties of new structures. Spatial distribution of the extra electron of high-VDE anions here indicates two features: remarkable aggregation on bridging CN units and non-negligible distribution on every CN unit. These two features lower the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to detachment of CN −1 were also investigated for these anions. The collection of these results indicates that polynuclear structures based on pseudohalogen ligand are promising candidates for new superhalogens with enhanced properties
Energy Technology Data Exchange (ETDEWEB)
Yin, Bing, E-mail: rayinyin@gmail.com; Wen, Zhen-Yi [MOE Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Institute of Modern Physics, Northwest University, Xi' an 710069 (China); Li, Teng; Li, Jin-Feng; Yu, Yang; Li, Jian-Li [MOE Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Jiang, Zhen-Yi [Institute of Modern Physics, Northwest University, Xi' an 710069 (China)
2014-03-07
The first theoretical exploration of superhalogen properties of polynuclear structures based on pseudohalogen ligand is reported here via a case study on eight triply-bridged [Mg{sub 2}(CN){sub 5}]{sup −} clusters. From our high-level ab initio results, all these clusters are superhalogens due to their high vertical electron detachment energies (VDE), of which the largest value is 8.67 eV at coupled-cluster single double triple (CCSD(T)) level. Although outer valence Green's function results are consistent with CCSD(T) in most cases, it overestimates the VDEs of three anions dramatically by more than 1 eV. Therefore, the combined usage of several theoretical methods is important for the accuracy of purely theoretical prediction of superhalogen properties of new structures. Spatial distribution of the extra electron of high-VDE anions here indicates two features: remarkable aggregation on bridging CN units and non-negligible distribution on every CN unit. These two features lower the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to detachment of CN{sup −1} were also investigated for these anions. The collection of these results indicates that polynuclear structures based on pseudohalogen ligand are promising candidates for new superhalogens with enhanced properties.
Investigations of Galaxy Clusters Using Gravitational Lensing
Energy Technology Data Exchange (ETDEWEB)
Wiesner, Matthew P. [Northern Illinois Univ., DeKalb, IL (United States)
2014-08-01
In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.
An improved K-means clustering algorithm in agricultural image segmentation
Cheng, Huifeng; Peng, Hui; Liu, Shanmei
Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.
An Adaptive Sweep-Circle Spatial Clustering Algorithm Based on Gestalt
Directory of Open Access Journals (Sweden)
Qingming Zhan
2017-08-01
Full Text Available An adaptive spatial clustering (ASC algorithm is proposed in this present study, which employs sweep-circle techniques and a dynamic threshold setting based on the Gestalt theory to detect spatial clusters. The proposed algorithm can automatically discover clusters in one pass, rather than through the modification of the initial model (for example, a minimal spanning tree, Delaunay triangulation, or Voronoi diagram. It can quickly identify arbitrarily-shaped clusters while adapting efficiently to non-homogeneous density characteristics of spatial data, without the need for prior knowledge or parameters. The proposed algorithm is also ideal for use in data streaming technology with dynamic characteristics flowing in the form of spatial clustering in large data sets.
EMACSS: Evolve Me A Cluster of StarS
Alexander, Poul E. R.; Gieles, Mark
2012-03-01
The star cluster evolution code Evolve Me A Cluster of StarS (EMACSS) is a simple yet physically motivated computational model that describes the evolution of some fundamental properties of star clusters in static tidal fields. The prescription is based upon the flow of energy within the cluster, which is a constant fraction of the total energy per half-mass relaxation time. According to Henon's predictions, this flow is independent of the precise mechanisms for energy production within the core, and therefore does not require a complete description of the many-body interactions therein. Dynamical theory and analytic descriptions of escape mechanisms is used to construct a series of coupled differential equations expressing the time evolution of cluster mass and radius for a cluster of equal-mass stars. These equations are numerically solved using a fourth-order Runge-Kutta integration kernel; the results were benchmarked against a data base of direct N-body simulations. EMACSS is publicly available and reproduces the N-body results to within 10 per cent accuracy for the entire post-collapse evolution of star clusters.
Evidence for cluster shape effects on the kinetic energy spectrum in thermionic emission.
Calvo, F; Lépine, F; Baguenard, B; Pagliarulo, F; Concina, B; Bordas, C; Parneix, P
2007-11-28
Experimental kinetic energy release distributions obtained for the thermionic emission from C(n) (-) clusters, 10theory, these different features are analyzed and interpreted as the consequence of contrasting shapes in the daughter clusters; linear and nonlinear isomers have clearly distinct signatures. These results provide a novel indirect structural probe for atomic clusters associated with their thermionic emission spectra.
International Nuclear Information System (INIS)
Binney, J.; Silk, J.
1978-01-01
Recent developments in relation to the origin of galaxies are cited: the discovery that the intergalactic medium which seems to pervade rich clusters of galaxies has an iron abundance that lies within an order of magnitude of the solar value; the discovery that elliptical galaxies rotate much more slowly than the models of these galaxies had predicted; and the results of studies of cosmological infall in the context of the formation of galaxies and galaxy clusters, which have shown that the resulting density profile is fairly insensitive to initial conditions. After discussing the implications of these recent observations of X-ray clusters and of the rotation of elliptical galaxies, an attempt is made to construct a picture of the formation of elliptical and spiral galaxies in which galaxies form continuously from redshift z approximately 100 onwards. It is suggested that at a redshift z of roughly 5, a fundamental change occurred in the manner in which the cosmic material fragmented into stellar objects. It seems possible that explanations of a variety of puzzling aspects of galactic evolution, including the formation of Population I disks, the origin of the hot intracluster gas, the mass-to-light ratio stratification of galaxies, and the nature of the galaxy luminosity function, should all be sought in the context of this change of regime. Some remarks are made about gas in poor groups of galaxies and the interaction of disk galaxies with their environments. (U.K.)
DEFF Research Database (Denmark)
Elm, Jonas; Norman, Patrick; Bilde, Merete
2014-01-01
The Rayleigh and hyper Rayleigh scattering properties of the binary (H 2SO4)(H2O)n and ternary (H 2SO4)(NH3)(H2O)n clusters are investigated using a quantum mechanical response theory approach. The molecular Rayleigh scattering intensities are expressed using the dipole polarizability α...... and hyperpolarizability β tensors. Using density functional theory, we elucidate the effect of cluster morphology on the scattering properties using a combinatorial sampling approach. We find that the Rayleigh scattering intensity depends quadratically on the number of water molecules in the cluster and that a single...... ammonia molecule is able to induce a high anisotropy, which further increases the scattering intensity. The hyper Rayleigh scattering activities are found to be extremely low. This study presents the first attempt to map the scattering of atmospheric molecular clusters using a bottom-up approach...
Electronic and atomic structure of the AlnHn+2 clusters
DEFF Research Database (Denmark)
Martinez, Jose Ignacio; Alonso, J.A.
2008-01-01
The electronic and atomic structure of the family of hydrogenated Al clusters AlnHn+2 with n=4-11 has been studied using the density functional theory with the generalized gradient approximation (GGA) for exchange and correlation. All these clusters have substantial gaps between the highest...... a polyhedron of n vertices and n H atoms form strong H-Al terminal bonds; one pair of electrons is involved in each of those bonds. The remaining n+1 electron pairs form a delocalized cloud over the surface of the Al cage. The clusters fulfilling the Wade-Mingos rule have wider HOMO-LUMO gaps...... and are chemically more stable. The trends in the gap have some reflections in the form of the photoabsorption spectra, calculated in the framework of time-dependent density functional theory using the GGA single-particle energies and orbitals and a local density approximation exchange-correlation kernel....
Is cluster theory in need of renewal? – Porter’s Diamond revised
Persson, Martin; Sabanovic, Adis; Wester, Henrik
2008-01-01
In the globalized world of today, ironically, companies find competitive advantages in locating in proximity of each other. These highly present industrial groupings are called clusters. A popular model to describe the benefits of a cluster environment is the Porter’s Diamond, also called the Diamond Model. Since the Diamond Model was published in 1990, there is a need of complements, in order for it to fit the dynamic business world of today. Hence, the purpose of this thesis is to examine t...
Density functional studies: First principles and semiempirical calculations of clusters and surfaces
International Nuclear Information System (INIS)
Sinnott, S.B.
1993-01-01
In the research presented here, various theoretical electronic structure techniques are utilized to analyze widely different systems from silicon clusters to transition metal solids and surfaces. For the silicon clusters, first principles density functional methods are used to investigate Si N for N = 2-8. The goal is to understand the different types of bonding that can occur in such small clusters where the coordination of the atoms differs substantially from that of the stable bulk tetrahedral bonding. Such uncoordinated structures can provide a good test of more approximate theories that can be used eventually to model silicon surfaces, of obvious technological importance. For the transition metal systems, non-self-consistent electronic structure methods are used to provide an understanding of the driving force for surface relaxations. An in-depth analysis of the results is presented and the physical basis of surface relaxation within the theory is discussed. In addition, the limitations inherent in calculations of metal surface relaxation are addressed. Finally, in an effort to increase understanding of approximate methods, a novel non-self-consistent density functional electronic structure method is developed that is ∼1000 times faster computationally than more sophisticated methods. This new method is tested for a variety of systems including diatomics, mixed clusters, surfaces and bulk lattices. The strengths and weaknesses of the new theory are discussed in detail, leading to greater understanding of non-self-consistent density functional theories as a whole
Clustering Coefficients for Correlation Networks
Directory of Open Access Journals (Sweden)
Naoki Masuda
2018-03-01
Full Text Available Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients
Clustering Coefficients for Correlation Networks.
Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu
2018-01-01
Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly
Clustering Coefficients for Correlation Networks
Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu
2018-01-01
Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly
Crossing rate of labelled Poisson cluster processes and their application in the reliability theory
International Nuclear Information System (INIS)
Schrupp, K.
1986-01-01
A load process is modelled within a given interdependency system and the failure probability of a structure is estimated using the crossing rate method. The term 'labelled cluster process' is formally introduced. An approximation is given by the expected value of the point process of the crossing from the safe range to the failure range. This expected value is explicitly calculated for the instationary cluster process, the stationary borderline process, and for various types of superpositions (clustering) of such processes. (DG) [de
International Nuclear Information System (INIS)
Meslin-Chiffon, E.
2007-11-01
The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)
Directory of Open Access Journals (Sweden)
Aldo Merlino
2007-01-01
Full Text Available Qualitative methods present a wide spectrum of application possibilities as well as opportunities for combining qualitative and quantitative methods. In the social sciences fruitful theoretical discussions and a great deal of empirical research have taken place. This article introduces an empirical investigation which demonstrates the logic of combining methodologies as well as the collection and interpretation, both sequential as simultaneous, of qualitative and quantitative data. Specifically, the investigation process will be described, beginning with a grounded theory methodology and its combination with the techniques of structural semiotics discourse analysis to generate—in a first phase—an instrument for quantitative measuring and to understand—in a second phase—clusters obtained by quantitative analysis. This work illustrates how qualitative methods allow for the comprehension of the discursive and behavioral elements under study, and how they function as support making sense of and giving meaning to quantitative data. URN: urn:nbn:de:0114-fqs0701219
Granular Leidenfrost effect: Experiment and theory of floating particle clusters
Eshuis, Peter; Eshuis, P.G.; van der Meer, Roger M.; van der Weele, J.P.; Lohse, Detlef
2005-01-01
Granular material is vertically vibrated in a 2D container: above a critical shaking strength, and for a sufficient number of beads, a crystalline cluster is elevated and supported by a dilute gaseous layer of fast beads underneath. We call this phenomenon the granular Leidenfrost effect. The
Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.
2018-02-01
Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.
Advanced cluster methods for correlated-electron systems
Energy Technology Data Exchange (ETDEWEB)
Fischer, Andre
2015-04-27
In this thesis, quantum cluster methods are used to calculate electronic properties of correlated-electron systems. A special focus lies in the determination of the ground state properties of a 3/4 filled triangular lattice within the one-band Hubbard model. At this filling, the electronic density of states exhibits a so-called van Hove singularity and the Fermi surface becomes perfectly nested, causing an instability towards a variety of spin-density-wave (SDW) and superconducting states. While chiral d+id-wave superconductivity has been proposed as the ground state in the weak coupling limit, the situation towards strong interactions is unclear. Additionally, quantum cluster methods are used here to investigate the interplay of Coulomb interactions and symmetry-breaking mechanisms within the nematic phase of iron-pnictide superconductors. The transition from a tetragonal to an orthorhombic phase is accompanied by a significant change in electronic properties, while long-range magnetic order is not established yet. The driving force of this transition may not only be phonons but also magnetic or orbital fluctuations. The signatures of these scenarios are studied with quantum cluster methods to identify the most important effects. Here, cluster perturbation theory (CPT) and its variational extention, the variational cluster approach (VCA) are used to treat the respective systems on a level beyond mean-field theory. Short-range correlations are incorporated numerically exactly by exact diagonalization (ED). In the VCA, long-range interactions are included by variational optimization of a fictitious symmetry-breaking field based on a self-energy functional approach. Due to limitations of ED, cluster sizes are limited to a small number of degrees of freedom. For the 3/4 filled triangular lattice, the VCA is performed for different cluster symmetries. A strong symmetry dependence and finite-size effects make a comparison of the results from different clusters difficult
Recent advances in coupled-cluster methods
Bartlett, Rodney J
1997-01-01
Today, coupled-cluster (CC) theory has emerged as the most accurate, widely applicable approach for the correlation problem in molecules. Furthermore, the correct scaling of the energy and wavefunction with size (i.e. extensivity) recommends it for studies of polymers and crystals as well as molecules. CC methods have also paid dividends for nuclei, and for certain strongly correlated systems of interest in field theory.In order for CC methods to have achieved this distinction, it has been necessary to formulate new, theoretical approaches for the treatment of a variety of essential quantities
International Nuclear Information System (INIS)
Zhang Meng; Feng Xiao-Juan; Zhao Li-Xia; Zhang Hong-Yu; Luo You-Hua
2012-01-01
Discovering highly stable metal fullerenes such as the celebrated C 60 is interesting in cluster science as they have potential applications as building blocks in new nanostructures. We here investigated the structural and electronic properties of the fullerenes M 12 @Au 20 (M = Na, Al, Ag, Sc, Y, La, Lu, and Au), using a first-principles investigation with the density functional theory. It is found that these compound clusters possess a similar cage structure to the icosahedral Au 32 fullerene. La 12 @Au 20 is found to be particularly stable among these clusters. The binding energy of La 12 @Au 20 is 3.43 eV per atom, 1.05 eV larger than that in Au 32 . The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap of La 12 @Au 20 is only 0.31 eV, suggesting that it should be relatively chemically reactive. (condensed matter: structural, mechanical, and thermal properties)
Impulsive Cluster Synchronization in Community Network with Nonidentical Nodes
International Nuclear Information System (INIS)
Deng Liping; Wu Zhaoyan
2012-01-01
In this paper, cluster synchronization in community network with nonidentical nodes and impulsive effects is investigated. Community networks with two kinds of topological structure are investigated. Positive weighted network is considered first and external pinning controllers are designed for achieving cluster synchronization. Cooperative and competitive network under some assumptions is investigated as well and can achieve cluster synchronization with only impulsive controllers. Based on the stability analysis of impulsive differential equation and the Lyapunov stability theory, several simple and useful synchronization criteria are derived. Finally, numerical simulations are provided to verify the effectiveness of the derived results.
Binding energies of cluster ions
International Nuclear Information System (INIS)
Parajuli, R.; Matt, S.; Scheier, P.; Echt, O.; Stamatovic, A.; Maerk, T.D.
2002-01-01
The binding energy of charged clusters may be measured by analyzing the kinetic energy released in the metastable decay of mass selected parent ions. Using finite heat bath theory to determine the binding energies of argon, neon, krypton, oxygen and nitrogen from their respective average kinetic energy released were carried out. A high-resolution double focussing two-sector mass spectrometer of reversed Nier-Johnson type geometry was used. MIKE ( mass-analysed ion kinetic energy) were measured to investigate decay reactions of mass-selected ions. For the inert gases neon (Ne n + ), argon (Ar n + ) and krypton (Kr n + ), it is found that the binding energies initially decrease with increasing size n and then level off at a value above the enthalpy of vaporization of the condensed phase. Oxygen cluster ions shown a characteristic dependence on cluster size (U-shape) indicating a change in the metastable fragmentation mechanism when going from the dimer to the decamer ion. (nevyjel)
Analysis of Health Behavior Theories for Clustering of Health Behaviors.
Choi, Seung Hee; Duffy, Sonia A
The objective of this article was to review the utility of established behavior theories, including the Health Belief Model, Theory of Reasoned Action, Theory of Planned Behavior, Transtheoretical Model, and Health Promotion Model, for addressing multiple health behaviors among people who smoke. It is critical to design future interventions for multiple health behavior changes tailored to individuals who currently smoke, yet it has not been addressed. Five health behavior theories/models were analyzed and critically evaluated. A review of the literature included a search of PubMed and Google Scholar from 2010 to 2016. Two hundred sixty-seven articles (252 studies from the initial search and 15 studies from the references of initially identified studies) were included in the analysis. Most of the health behavior theories/models emphasize psychological and cognitive constructs that can be applied only to one specific behavior at a time, thus making them not suitable to address multiple health behaviors. However, the Health Promotion Model incorporates "related behavior factors" that can explain multiple health behaviors among persons who smoke. Future multiple behavior interventions guided by the Health Promotion Model are necessary to show the utility and applicability of the model to address multiple health behaviors.
The Cognitive Limits to Economic Cluster Formation
Directory of Open Access Journals (Sweden)
Michael C. Carrol
2012-01-01
Full Text Available There has been increasing interest in the social dimensions of economic clusters. The literature now includes select examples of social network analysis plus an extensive discussion of learning regions. Unfortunately, much of this work treats the network as the primary unit of analysis. It may be that network attributes such as density, centrality, and power are primarily dependent on human limitations and not instituted factors. In other words, a human’s limited ability to process information may be a better determinant of cluster success than economic or network theory. The purpose of this paper is to highlight human limits in cluster formation. To do this, we draw on recent developments in the cognitive psychology and communications literatures. We explain that many of the factors that lead to underperforming cluster policies are the result of a human’s inability to develop and sustain a large number of social interactions. Any cluster policy must be cognizant of such limitations and carefully address these limits in the formation of the initial strategy.
The Parental Environment Cluster Model of Child Neglect: An Integrative Conceptual Model.
Burke, Judith; Chandy, Joseph; Dannerbeck, Anne; Watt, J. Wilson
1998-01-01
Presents Parental Environment Cluster model of child neglect which identifies three clusters of factors involved in parents' neglectful behavior: (1) parenting skills and functions; (2) development and use of positive social support; and (3) resource availability and management skills. Model offers a focal theory for research, structure for…
Alpha particle cluster states in (fp)-shell nuclei
International Nuclear Information System (INIS)
Merchant, A.C.
1987-07-01
Alpha particle cluster structure is known experimentally to persist throughout the mass range 16 ≤ A ≤ 20, and has been very successfully described in this region in terms of the Buck-Dover-Vary local potential cluster model. It is argued that an analogous cluster structure should be present in nuclei at the beginning of the (fp) - shell, and the available experimental data are examined to determine likely alpha particle cluster state candidates in the mass range 40 ≤ A ≤ 44. Calculations of the cluster state spectra and mean square cluster-core separation distances (which may be readily used to evaluate E2 electromagnetic transition rates) for sup(40)Ca, sup(42)Ca, sup(42)Sc, sup(43)Sc, sup(43)Ti and sup(44)Ti using the above mentioned model are presented, and compared with experimental measurements where possible. The agreement between theory and experiment is generally good (although inferior to that obtained in the (sd)-shell) and points to the desirability of an extension and improvement of the measurements of the properties of the excited states in these nuclei. (author)
Aerosol cluster impact and break-up: model and implementation
International Nuclear Information System (INIS)
Lechman, Jeremy B.
2010-01-01
In this report a model for simulating aerosol cluster impact with rigid walls is presented. The model is based on JKR adhesion theory and is implemented as an enhancement to the granular (DEM) package within the LAMMPS code. The theory behind the model is outlined and preliminary results are shown. Modeling the interactions of small particles is relevant to a number of applications (e.g., soils, powders, colloidal suspensions, etc.). Modeling the behavior of aerosol particles during agglomeration and cluster dynamics upon impact with a wall is of particular interest. In this report we describe preliminary efforts to develop and implement physical models for aerosol particle interactions. Future work will consist of deploying these models to simulate aerosol cluster behavior upon impact with a rigid wall for the purpose of developing relationships for impact speed and probability of stick/bounce/break-up as well as to assess the distribution of cluster sizes if break-up occurs. These relationships will be developed consistent with the need for inputs into system-level codes. Section 2 gives background and details on the physical model as well as implementations issues. Section 3 presents some preliminary results which lead to discussion in Section 4 of future plans.
nIFTy galaxy cluster simulations II: radiative models
CSIR Research Space (South Africa)
Sembolini, F
2016-04-01
Full Text Available Valerio 2, I-34127 Trieste, Italy 12Physics Department, University of the Western Cape, Cape Town 7535, Sotuh Africa 13Physics Department, University of Western Cape, Bellville, Cape Town 7535, South Africa 14South African Astronomical Observatory, PO Box...IFTy cluster comparison project (Sembolini et al., 2015): a study of the latest state-of- the-art hydrodynamical codes using simulated galaxy clusters as a testbed for theories of galaxy formation. Simulations are indis- pensable tools in the interpretation...
International Nuclear Information System (INIS)
Liebrecht, M.
2014-01-01
The importance of van der Waals interactions in many diverse research fields such as, e. g., polymer science, nano--materials, structural biology, surface science and condensed matter physics created a high demand for efficient and accurate methods that can describe van der Waals interactions from first principles. These methods should be able to deal with large and complex systems to predict functions and properties of materials that are technologically and biologically relevant. Van der Waals interactions arise due to quantum mechanical correlation effects and finding appropriate models an numerical techniques to describe this type of interaction is still an ongoing challenge in electronic structure and condensed matter theory. This thesis introduces a new variational approach to obtain intermolecular interaction potentials between clusters and helium atoms by means of density functional theory and linear response methods. It scales almost linearly with the number of electrons and can therefore be applied to much larger systems than standard quantum chemistry techniques. The main focus of this work is the development of an ab-initio method to account for London dispersion forces, which are purely attractive and dominate the interaction of non--polar atoms and molecules at large distances. (author) [de
Perspective: Size selected clusters for catalysis and electrochemistry
Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; Vajda, Stefan
2018-03-01
Size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization, and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition, cluster-support interactions, and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modeling based on density functional theory sampling of local minima and energy barriers or ab initio molecular dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Finally, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.
Bounds on graviton mass using weak lensing and SZ effect in galaxy clusters
Rana, Akshay; Jain, Deepak; Mahajan, Shobhit; Mukherjee, Amitabha
2018-06-01
In General Relativity (GR), the graviton is massless. However, a common feature in several theoretical alternatives of GR is a non-zero mass for the graviton. These theories can be described as massive gravity theories. Despite many theoretical complexities in these theories, on phenomenological grounds the implications of massive gravity have been widely used to put bounds on graviton mass. One of the generic implications of giving a mass to the graviton is that the gravitational potential will follow a Yukawa-like fall off. We use this feature of massive gravity theories to probe the mass of graviton by using the largest gravitationally bound objects, namely galaxy clusters. In this work, we use the mass estimates of galaxy clusters measured at various cosmologically defined radial distances measured via weak lensing (WL) and Sunyaev-Zel'dovich (SZ) effect. We also use the model independent values of Hubble parameter H (z) smoothed by a non-parametric method, Gaussian process. Within 1σ confidence region, we obtain the mass of graviton mg 6.82 Mpc from weak lensing and mg 5.012 Mpc from SZ effect. This analysis improves the upper bound on graviton mass obtained earlier from galaxy clusters.
Weighted voting-based consensus clustering for chemical structure databases
Saeed, Faisal; Ahmed, Ali; Shamsir, Mohd Shahir; Salim, Naomie
2014-06-01
The cluster-based compound selection is used in the lead identification process of drug discovery and design. Many clustering methods have been used for chemical databases, but there is no clustering method that can obtain the best results under all circumstances. However, little attention has been focused on the use of combination methods for chemical structure clustering, which is known as consensus clustering. Recently, consensus clustering has been used in many areas including bioinformatics, machine learning and information theory. This process can improve the robustness, stability, consistency and novelty of clustering. For chemical databases, different consensus clustering methods have been used including the co-association matrix-based, graph-based, hypergraph-based and voting-based methods. In this paper, a weighted cumulative voting-based aggregation algorithm (W-CVAA) was developed. The MDL Drug Data Report (MDDR) benchmark chemical dataset was used in the experiments and represented by the AlogP and ECPF_4 descriptors. The results from the clustering methods were evaluated by the ability of the clustering to separate biologically active molecules in each cluster from inactive ones using different criteria, and the effectiveness of the consensus clustering was compared to that of Ward's method, which is the current standard clustering method in chemoinformatics. This study indicated that weighted voting-based consensus clustering can overcome the limitations of the existing voting-based methods and improve the effectiveness of combining multiple clusterings of chemical structures.
Unambiguous assignment of the ground state of a nearly degenerate cluster
International Nuclear Information System (INIS)
Gutsev, G. L.; Khanna, S. N.; Jena, P.
2000-01-01
A synergistic approach that combines first-principles theory and electron photodetachment experiment is shown to be able to uniquely identify the ground state of a nearly degenerate cluster in the gas phase. Additionally, this approach can complement the Stern-Gerlach technique in determining the magnetic moment of small clusters unambiguously. The method, applied to a Fe 3 cluster, reveals its ground state to have a magnetic moment of 10μ B --in contrast with earlier predictions. (c) 2000 The American Physical Society
Defects and permutation branes in the Liouville field theory
DEFF Research Database (Denmark)
Sarkissian, Gor
2009-01-01
The defects and permutation branes for the Liouville field theory are considered. By exploiting cluster condition, equations satisfied by permutation branes and defects reflection amplitudes are obtained. It is shown that two types of solutions exist, discrete and continuous families.......The defects and permutation branes for the Liouville field theory are considered. By exploiting cluster condition, equations satisfied by permutation branes and defects reflection amplitudes are obtained. It is shown that two types of solutions exist, discrete and continuous families....
Energy Technology Data Exchange (ETDEWEB)
Castro, A., E-mail: acastro@bifi.es [Institute for Biocomputation and Physics of Complex Systems (BIFI) and Zaragoza Scientific Center for Advanced Modelling (ZCAM), University of Zaragoza, 50018 Zaragoza (Spain); Isla, M. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain); Martinez, Jose I. [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, ES-28049 Madrid (Spain); Alonso, J.A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain)
2012-05-03
Graphical abstract: Two trajectories for the collision of a proton with the Lithium tetramer. On the left, the proton is scattered away, and a Li{sub 2} molecule plus two isolated Lithium atoms result. On the right, the proton is captured and a LiH molecule is created. Highlights: Black-Right-Pointing-Pointer Scattering of a proton with Lithium clusters described from first principles. Black-Right-Pointing-Pointer Description based on non-adiabatic molecular dynamics. Black-Right-Pointing-Pointer The electronic structure is described with time-dependent density-functional theory. Black-Right-Pointing-Pointer The method allows to discern reaction channels depending on initial parameters. - Abstract: We have employed non-adiabatic molecular dynamics based on time-dependent density-functional theory to characterize the scattering behavior of a proton with the Li{sub 4} cluster. This technique assumes a classical approximation for the nuclei, effectively coupled to the quantum electronic system. This time-dependent theoretical framework accounts, by construction, for possible charge transfer and ionization processes, as well as electronic excitations, which may play a role in the non-adiabatic regime. We have varied the incidence angles in order to analyze the possible reaction patterns. The initial proton kinetic energy of 10 eV is sufficiently high to induce non-adiabatic effects. For all the incidence angles considered the proton is scattered away, except in one interesting case in which one of the Lithium atoms captures it, forming a LiH molecule. This theoretical formalism proves to be a powerful, effective and predictive tool for the analysis of non-adiabatic processes at the nanoscale.
Directory of Open Access Journals (Sweden)
Poppy Ismalina
2012-11-01
Full Text Available Creative industries tend to cluster in specific places and the reasons for this phenomenon can be a multiplicity of elements linked mainly to culture, creativity, innovation and local development. In the international literature, it is pretty well recognized that creativity is frequently characterized by the agglomeration of firms so that creative industries are not homogeneously distributed across the territory but they are concentrated in the space. Three theories are becoming the dominant theoretical perspectives in agglomeration economies theory and they are increasingly being applied in industrial clusters analysis to study the effect of clustering industries. The theories are Marshall’s theoretical principles of localization economies, Schmitz’s collective efficiency and Porter’s five-diamond approach. However, those have adequately theorized neither the institutionalization process through which change takes place nor the socio-economic context of the institutional formations of clustering creative industries. This text begins by reviewing three main theories to more fully articulate institutionalization processes of an economic institution. Specifically, this paper incorporates new institutional economics (NIE and new economic sociology (NES to explain the processes associated with creating institutional practices within clustering creative industries. Both streams of institutional theory constitute that economic organizations are socially constructed. Next, this text proposes the framework that depicts the socio-economic context better and more directly addresses the dynamics of enacting, embedding and changing organizational features and processes within clustering creative industries. Some pertinent definitions are offered to be used in a conceptual framework of research about how economic institutions like clustering creative industries constitute their structures.
Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes
DEFF Research Database (Denmark)
Wang, J. G.; Lv, Y. A.; Li, X. N.
2009-01-01
The adhesion of various sizes of Pt clusters on the metallic (5,5) carbon nanotubes (CNTs) with and without the point defect has been investigated by means of density functional theory (DFT). The calculations show that the binding energies of Pt-n (n = 1-6) clusters on the defect free CNTs are mo...
A coupled-cluster study of photodetachment cross sections of closed-shell anions
Cukras, Janusz; Decleva, Piero; Coriani, Sonia
2014-11-01
We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H-, Li-, Na-, F-, Cl-, and OH-. The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.
The outskirts of the Coma cluster
Gavazzi, Giuseppe
Evolved Coma-like clusters of galaxies are constituted of relaxed cores composed of ''old'' early-type galaxies, embedded in large-scale structures, mostly constituted of unevolved (late-type) systems. According to the hierarchical theory of cluster formation the central regions are being fed with unevolved, low-mass systems infalling from the surroundings that are gradually transformed into elliptical/S0 galaxies by tidal galaxy-galaxy and galaxy-cluster interactions, taking place at some boundary distance. The Coma cluster, the most studied of all local clusters, provides us with the ideal test-bed for such an evolutionary study because of the completeness of the photometric and kinematic information already at hands. The field of view of the planned GALEX observations is not big enough to include the boundary interface where most transformations processes are expected to take place, including the truncation of the current star formation. We propose to complete the outskirt of Coma with an additional corona of 11 GALEX imaging fields of 1500 sec exposure each, matching the deepness (UV_{AB}=23.5 mag) of the fields observed in guarantee time. Given the priority of the target, we also propose one optional Central pointing that includes one bright star marginally exceeding the detector brightness limit.
Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T.; Dannenberg, J. J.
2012-10-01
We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states.
Directory of Open Access Journals (Sweden)
Cooper James B
2010-03-01
Full Text Available Abstract Background Clustering the information content of large high-dimensional gene expression datasets has widespread application in "omics" biology. Unfortunately, the underlying structure of these natural datasets is often fuzzy, and the computational identification of data clusters generally requires knowledge about cluster number and geometry. Results We integrated strategies from machine learning, cartography, and graph theory into a new informatics method for automatically clustering self-organizing map ensembles of high-dimensional data. Our new method, called AutoSOME, readily identifies discrete and fuzzy data clusters without prior knowledge of cluster number or structure in diverse datasets including whole genome microarray data. Visualization of AutoSOME output using network diagrams and differential heat maps reveals unexpected variation among well-characterized cancer cell lines. Co-expression analysis of data from human embryonic and induced pluripotent stem cells using AutoSOME identifies >3400 up-regulated genes associated with pluripotency, and indicates that a recently identified protein-protein interaction network characterizing pluripotency was underestimated by a factor of four. Conclusions By effectively extracting important information from high-dimensional microarray data without prior knowledge or the need for data filtration, AutoSOME can yield systems-level insights from whole genome microarray expression studies. Due to its generality, this new method should also have practical utility for a variety of data-intensive applications, including the results of deep sequencing experiments. AutoSOME is available for download at http://jimcooperlab.mcdb.ucsb.edu/autosome.
Xu, Zeshui
2014-01-01
This book provides the readers with a thorough and systematic introduction to hesitant fuzzy theory. It presents the most recent research results and advanced methods in the field. These includes: hesitant fuzzy aggregation techniques, hesitant fuzzy preference relations, hesitant fuzzy measures, hesitant fuzzy clustering algorithms and hesitant fuzzy multi-attribute decision making methods. Since its introduction by Torra and Narukawa in 2009, hesitant fuzzy sets have become more and more popular and have been used for a wide range of applications, from decision-making problems to cluster analysis, from medical diagnosis to personnel appraisal and information retrieval. This book offers a comprehensive report on the state-of-the-art in hesitant fuzzy sets theory and applications, aiming at becoming a reference guide for both researchers and practitioners in the area of fuzzy mathematics and other applied research fields (e.g. operations research, information science, management science and engineering) chara...
International Nuclear Information System (INIS)
Thompson, Michael C.; Weber, J. Mathias
2016-01-01
We report infrared photodissociation spectra of nitrous oxide cluster anions of the form (N 2 O) n O − (n = 1–12) and (N 2 O) n − (n = 7–15) in the region 800–1600 cm −1 . The charge carriers in these ions are NNO 2 − and O − for (N 2 O) n O − clusters with a solvation induced core ion switch, and N 2 O − for (N 2 O) n − clusters. The N–N and N–O stretching vibrations of N 2 O − (solvated by N 2 O) are reported for the first time, and they are found at (1595 ± 3) cm −1 and (894 ± 5) cm −1 , respectively. We interpret our infrared spectra by comparison with the existing photoelectron spectroscopy data and with computational data in the framework of density functional theory.
Madsen, Niels Kristian; Godtliebsen, Ian H.; Losilla, Sergio A.; Christiansen, Ove
2018-01-01
A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.
From virtual clustering analysis to self-consistent clustering analysis: a mathematical study
Tang, Shaoqiang; Zhang, Lei; Liu, Wing Kam
2018-03-01
In this paper, we propose a new homogenization algorithm, virtual clustering analysis (VCA), as well as provide a mathematical framework for the recently proposed self-consistent clustering analysis (SCA) (Liu et al. in Comput Methods Appl Mech Eng 306:319-341, 2016). In the mathematical theory, we clarify the key assumptions and ideas of VCA and SCA, and derive the continuous and discrete Lippmann-Schwinger equations. Based on a key postulation of "once response similarly, always response similarly", clustering is performed in an offline stage by machine learning techniques (k-means and SOM), and facilitates substantial reduction of computational complexity in an online predictive stage. The clear mathematical setup allows for the first time a convergence study of clustering refinement in one space dimension. Convergence is proved rigorously, and found to be of second order from numerical investigations. Furthermore, we propose to suitably enlarge the domain in VCA, such that the boundary terms may be neglected in the Lippmann-Schwinger equation, by virtue of the Saint-Venant's principle. In contrast, they were not obtained in the original SCA paper, and we discover these terms may well be responsible for the numerical dependency on the choice of reference material property. Since VCA enhances the accuracy by overcoming the modeling error, and reduce the numerical cost by avoiding an outer loop iteration for attaining the material property consistency in SCA, its efficiency is expected even higher than the recently proposed SCA algorithm.
Dependence of displacement fields on the damage cluster nucleus geometry
International Nuclear Information System (INIS)
Grigor'ev, A.N.; Zabela, A.G.; Nikolajchuk, L.I.; Prokhorenko, E.M.; Khizhnyak, N.A.
1988-01-01
Displacement fields in doped crystals of cubic and hexagonal structures containing extended defects are studied. The numerical results are presented depending on the damage cluster nucleus geometry. All calculations are based on analytical representations of displacement fields in an integral form using elasticity theory equations. The investigation results are vital for radiation physics as they permit to predict and calculate both the character and geometry of distortions near damaged region cluster and determine cluster parameters on the basis of the known structure of distortions. Dependences are obtained for the following monocrystals: Mg, ZnO, CdS, W, Au. 6 refs.; 3 figs
Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit
Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas
2018-04-01
Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.
Cluster expansion for ground states of local Hamiltonians
Directory of Open Access Journals (Sweden)
Alvise Bastianello
2016-08-01
Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Effective Hamiltonian theory: recent formal results and non-nuclear applications
International Nuclear Information System (INIS)
Brandow, B.H.
1981-01-01
Effective Hamiltonian theory is discussed from the points of view of the unitary transformation method and degenerate perturbation theory. It is shown that the two approaches are identical term by term. The main features of a formulation of the coupled-cluster method for open-shell systems are outlined. Finally, recent applications of the many-body linked-cluster form of degenerate perturbation theory are described: the derivation of effective spin Hamiltonians in magnetic insulator systems, the derivation and calculation ab initio of effective π-electron Hamiltonians for planar conjugated hydrocarbon molecules, and understanding the so-called valence fluctuation phenomenon exhibited by certain rare earth compounds
Guo, Yang
2018-01-04
In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).
Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank
2018-01-01
In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).
Motivic amplitudes and cluster coordinates
International Nuclear Information System (INIS)
Golden, J.K.; Goncharov, A.B.; Spradlin, M.; Vergu, C.; Volovich, A.
2014-01-01
In this paper we study motivic amplitudes — objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Conf n (ℙ 3 ) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MHV motivic amplitude A 7,2 M and find that like the previously known six-particle amplitude, it depends only on certain preferred coordinates known in the mathematics literature as cluster X-coordinates on Conf n (ℙ 3 ). We also find intriguing relations between motivic amplitudes and the geometry of generalized associahedrons, to which cluster coordinates have a natural combinatoric connection. For example, the obstruction to A 7,2 M being expressible in terms of classical polylogarithms is most naturally represented by certain quadrilateral faces of the appropriate associahedron. We also find and prove the first known functional equation for the trilogarithm in which all 40 arguments are cluster X-coordinates of a single algebra. In this respect it is similar to Abel’s 5-term dilogarithm identity
Electronic and magnetic properties of small rhodium clusters
Energy Technology Data Exchange (ETDEWEB)
Soon, Yee Yeen; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)
2015-04-24
We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.
Reliability Evaluation for Clustered WSNs under Malware Propagation
Shen, Shigen; Huang, Longjun; Liu, Jianhua; Champion, Adam C.; Yu, Shui; Cao, Qiying
2016-01-01
We consider a clustered wireless sensor network (WSN) under epidemic-malware propagation conditions and solve the problem of how to evaluate its reliability so as to ensure efficient, continuous, and dependable transmission of sensed data from sensor nodes to the sink. Facing the contradiction between malware intention and continuous-time Markov chain (CTMC) randomness, we introduce a strategic game that can predict malware infection in order to model a successful infection as a CTMC state transition. Next, we devise a novel measure to compute the Mean Time to Failure (MTTF) of a sensor node, which represents the reliability of a sensor node continuously performing tasks such as sensing, transmitting, and fusing data. Since clustered WSNs can be regarded as parallel-serial-parallel systems, the reliability of a clustered WSN can be evaluated via classical reliability theory. Numerical results show the influence of parameters such as the true positive rate and the false positive rate on a sensor node’s MTTF. Furthermore, we validate the method of reliability evaluation for a clustered WSN according to the number of sensor nodes in a cluster, the number of clusters in a route, and the number of routes in the WSN. PMID:27294934
Reliability Evaluation for Clustered WSNs under Malware Propagation.
Shen, Shigen; Huang, Longjun; Liu, Jianhua; Champion, Adam C; Yu, Shui; Cao, Qiying
2016-06-10
We consider a clustered wireless sensor network (WSN) under epidemic-malware propagation conditions and solve the problem of how to evaluate its reliability so as to ensure efficient, continuous, and dependable transmission of sensed data from sensor nodes to the sink. Facing the contradiction between malware intention and continuous-time Markov chain (CTMC) randomness, we introduce a strategic game that can predict malware infection in order to model a successful infection as a CTMC state transition. Next, we devise a novel measure to compute the Mean Time to Failure (MTTF) of a sensor node, which represents the reliability of a sensor node continuously performing tasks such as sensing, transmitting, and fusing data. Since clustered WSNs can be regarded as parallel-serial-parallel systems, the reliability of a clustered WSN can be evaluated via classical reliability theory. Numerical results show the influence of parameters such as the true positive rate and the false positive rate on a sensor node's MTTF. Furthermore, we validate the method of reliability evaluation for a clustered WSN according to the number of sensor nodes in a cluster, the number of clusters in a route, and the number of routes in the WSN.
Persistence drives gene clustering in bacterial genomes
Directory of Open Access Journals (Sweden)
Rocha Eduardo PC
2008-01-01
Full Text Available Abstract Background Gene clustering plays an important role in the organization of the bacterial chromosome and several mechanisms have been proposed to explain its extent. However, the controversies raised about the validity of each of these mechanisms remind us that the cause of this gene organization remains an open question. Models proposed to explain clustering did not take into account the function of the gene products nor the likely presence or absence of a given gene in a genome. However, genomes harbor two very different categories of genes: those genes present in a majority of organisms – persistent genes – and those present in very few organisms – rare genes. Results We show that two classes of genes are significantly clustered in bacterial genomes: the highly persistent and the rare genes. The clustering of rare genes is readily explained by the selfish operon theory. Yet, genes persistently present in bacterial genomes are also clustered and we try to understand why. We propose a model accounting specifically for such clustering, and show that indispensability in a genome with frequent gene deletion and insertion leads to the transient clustering of these genes. The model describes how clusters are created via the gene flux that continuously introduces new genes while deleting others. We then test if known selective processes, such as co-transcription, physical interaction or functional neighborhood, account for the stabilization of these clusters. Conclusion We show that the strong selective pressure acting on the function of persistent genes, in a permanent state of flux of genes in bacterial genomes, maintaining their size fairly constant, that drives persistent genes clustering. A further selective stabilization process might contribute to maintaining the clustering.
Li, Jin-Feng; Sun, Yin-Yin; Bai, Hongcun; Li, Miao-Miao; Li, Jian-Li; Yin, Bing
2015-06-01
The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M2(CN)5]-1 (M = Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca2(CN)5]-1 which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green's function (OVGF) method either overestimates or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties.
A coupled-cluster study of photodetachment cross sections of closed-shell anions
International Nuclear Information System (INIS)
Cukras, Janusz; Decleva, Piero; Coriani, Sonia
2014-01-01
We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H − , Li − , Na − , F − , Cl − , and OH − . The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species
A theoretical-spectroscopy, ab initio-based study of the electronic ground state of 121SbH3
International Nuclear Information System (INIS)
Yurchenko, Sergei N.; Carvajal, Miguel; Yachmenev, Andrey; Thiel, Walter; Jensen, Per
2010-01-01
For the stibine isotopologue 121 SbH 3 , we report improved theoretical calculations of the vibrational energies below 8000 cm -1 and simulations of the rovibrational spectrum in the 0-8000 cm -1 region. The calculations are based on a refined ab initio potential energy surface and on a new dipole moment surface obtained at the coupled cluster CCSD(T) level. The theoretical results are compared with the available experimental data in order to validate the ab initio surfaces and the TROVE computational method [Yurchenko SN, Thiel W, Jensen P. J Mol Spectrosc 2007;245:126-40] for calculating rovibrational energies and simulating rovibrational spectra of arbitrary molecules in isolated electronic states. A number of predicted vibrational energies of 121 SbH 3 are provided in order to stimulate new experimental investigations of stibine. The local-mode character of the vibrations in stibine is demonstrated through an analysis of the results in terms of local-mode theory.
The electric dipole moments in the ground states of gold oxide, AuO, and gold sulfide, AuS.
Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy C; Cheng, Lan
2017-02-14
The B 2 Σ - - X 2 Π 3/2 (0,0) bands of a cold molecular beam sample of gold monoxide, AuO, and gold monosulfide, AuS, have been recorded at high resolution both field free and in the presence of a static electric field. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ→ el , of 2.94±0.06 D and 2.22±0.05 D for the X 2 Π 3/2 (v = 0) states of AuO and AuS, respectively. A molecular orbital correlation diagram is used to rationalize the trend in ground state μ→ el values for AuX (X = F, Cl, O, and S) molecules. The experimentally determined μ→ el are compared to those computed at the coupled-cluster singles and doubles (CCSD) level augmented with a perturbative inclusion of triple excitations (CCSD(T)) level of theory.
Energy Technology Data Exchange (ETDEWEB)
Liu, Z.; Bessa, M. A.; Liu, W.K.
2017-10-25
A predictive computational theory is shown for modeling complex, hierarchical materials ranging from metal alloys to polymer nanocomposites. The theory can capture complex mechanisms such as plasticity and failure that span across multiple length scales. This general multiscale material modeling theory relies on sound principles of mathematics and mechanics, and a cutting-edge reduced order modeling method named self-consistent clustering analysis (SCA) [Zeliang Liu, M.A. Bessa, Wing Kam Liu, “Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials,” Comput. Methods Appl. Mech. Engrg. 306 (2016) 319–341]. SCA reduces by several orders of magnitude the computational cost of micromechanical and concurrent multiscale simulations, while retaining the microstructure information. This remarkable increase in efficiency is achieved with a data-driven clustering method. Computationally expensive operations are performed in the so-called offline stage, where degrees of freedom (DOFs) are agglomerated into clusters. The interaction tensor of these clusters is computed. In the online or predictive stage, the Lippmann-Schwinger integral equation is solved cluster-wise using a self-consistent scheme to ensure solution accuracy and avoid path dependence. To construct a concurrent multiscale model, this scheme is applied at each material point in a macroscale structure, replacing a conventional constitutive model with the average response computed from the microscale model using just the SCA online stage. A regularized damage theory is incorporated in the microscale that avoids the mesh and RVE size dependence that commonly plagues microscale damage calculations. The SCA method is illustrated with two cases: a carbon fiber reinforced polymer (CFRP) structure with the concurrent multiscale model and an application to fatigue prediction for additively manufactured metals. For the CFRP problem, a speed up estimated to be about
Constraints on H(0) from globular clusters
International Nuclear Information System (INIS)
Vandenberg, D.A.
1988-01-01
On the basis of canonical stellar evolutionary computations, the maximum age of the globular clusters is suggested to be near either 14 Gyr or 18 Gyr, depending on how (O/Fe) varies with (Fe/H) in the cluster stars. The lower estimate requires that H(0) = 65 km/s/Mpc or less, for all Omega(0) = O or greater, if the standard Big-Bang cosmological theory is correct - while the higher age value similarly constrains the Hubble constant to be smaller than 46 km/s/Mpc. Some reduction in the upper limit to cluster ages and a consequent increase in H(0) may be expected if helium diffusion is important in Population II stars; nevertheless, values of H(0) greater than 75 km/s/Mpc still appear to be precluded unless the cosmological constant is nonzero. 51 refs
SU(3) techniques for angular momentum projected matrix elements in multi-cluster problems
International Nuclear Information System (INIS)
Hecht, K.T.; Zahn, W.
1978-01-01
In the theory of integral transforms for the evaluation of the resonating group kernels needed for cluster model calculations, the evaluation of matrix elements in an angular momentum coupled basis has proved to be difficult for cluster problems involving more than two fragments. For multi-cluster wave functions SU(3) coupling and recoupling techniques can furnish a tool for the practical evaluation matrix elements in an angular momentum coupled basis if the several relative motion harmonic oscillator functions in Bargmann space have simple SU(3) coupling properties. The method is illustrated by a three-cluster problem, such as 12 C = α + α + α, involving three 1 S clusters. 2 references
International Nuclear Information System (INIS)
Xu Hao; Li Hui; Collins, David C.; Li, Shengtai; Norman, Michael L.
2011-01-01
Theory and simulations suggest that magnetic fields from radio jets and lobes powered by their central super massive black holes can be an important source of magnetic fields in the galaxy clusters. This is Paper II in a series of studies where we present self-consistent high-resolution adaptive mesh refinement cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus. We studied 12 different galaxy clusters with virial masses ranging from 1 x 10 14 to 2 x 10 15 M sun . In this work, we examine the effects of the mass and merger history on the final magnetic properties. We find that the evolution of magnetic fields is qualitatively similar to those of previous studies. In most clusters, the injected magnetic fields can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process with hierarchical mergers, while the amplification history and the magnetic field distribution depend on the cluster formation and magnetism history. This can be very different for different clusters. The total magnetic energies in these clusters are between 4 x 10 57 and 10 61 erg, which is mainly decided by the cluster mass, scaling approximately with the square of the total mass. Dynamically older relaxed clusters usually have more magnetic fields in their ICM. The dynamically very young clusters may be magnetized weakly since there is not enough time for magnetic fields to be amplified.
Saito, Norio; Cordier, Stéphane; Lemoine, Pierric; Ohsawa, Takeo; Wada, Yoshiki; Grasset, Fabien; Cross, Jeffrey S; Ohashi, Naoki
2017-06-05
The electronic and crystal structures of Cs 2 [Mo 6 X 14 ] (X = Cl, Br, I) cluster-based compounds were investigated by density functional theory (DFT) simulations and experimental methods such as powder X-ray diffraction, ultraviolet-visible spectroscopy, and X-ray photoemission spectroscopy (XPS). The experimentally determined lattice parameters were in good agreement with theoretically optimized ones, indicating the usefulness of DFT calculations for the structural investigation of these clusters. The calculated band gaps of these compounds reproduced those experimentally determined by UV-vis reflectance within an error of a few tenths of an eV. Core-level XPS and effective charge analyses indicated bonding states of the halogens changed according to their sites. The XPS valence spectra were fairly well reproduced by simulations based on the projected electron density of states weighted with cross sections of Al K α , suggesting that DFT calculations can predict the electronic properties of metal-cluster-based crystals with good accuracy.
π plasmon modes in C60 clusters
International Nuclear Information System (INIS)
Nguyen Van Giai; Lipparini, E.
1992-07-01
RPA correlations and collective excitations of π electrons in the C 60 cluster, the fullerene molecule are studied, by using the sum rule approach and linear response theory. The results for the excitation spectrum are discussed in relation to experimental data and to other theoretical approaches. (K.A.) 17 refs.; 4 figs
Geometric, stable and electronic properties of Aun–2Y2 (n = 3–8) clusters
International Nuclear Information System (INIS)
Kai-Tian, Qi; Yong, Sheng; Hua-Ping, Mao; Hong-Yan, Wang
2010-01-01
Employing first-principles methods, based on the density function theory, and using the LANL2DZ basis sets, the ground-state geometric, the stable and the electronic properties of Au n–2 Y 2 clusters are investigated in this paper. Meanwhile, the differences in property among pure gold clusters, pure yttrium clusters, gold clusters doped with one yttrium atom, and gold clusters doped with two yttrium atoms are studied. We find that when gold clusters are doped by two yttrium atoms, the odd-even oscillatory behaviours of Au n–1 Y and Au n disappear. The properties of Au n–2 Y 2 clusters are close to those of pure yttrium clusters
Hedgehog bases for A{sub n} cluster polylogarithms and an application to six-point amplitudes
Energy Technology Data Exchange (ETDEWEB)
Parker, Daniel E.; Scherlis, Adam; Spradlin, Marcus; Volovich, Anastasia [Department of Physics, Brown University, Providence RI 02912 (United States)
2015-11-20
Multi-loop scattering amplitudes in N=4 Yang-Mills theory possess cluster algebra structure. In order to develop a computational framework which exploits this connection, we show how to construct bases of Goncharov polylogarithm functions, at any weight, whose symbol alphabet consists of cluster coordinates on the A{sub n} cluster algebra. Using such a basis we present a new expression for the 2-loop 6-particle NMHV amplitude which makes some of its cluster structure manifest.
Finite-size modifications of the magnetic properties of clusters
DEFF Research Database (Denmark)
Hendriksen, Peter Vang; Linderoth, Søren; Lindgård, Per-Anker
1993-01-01
relative to the bulk, and the consequent neutron-scattering cross section exhibits discretely spaced wave-vector-broadened eigenstates. The implications of the finite size on thermodynamic properties, like the temperature dependence of the magnetization and the critical temperature, are also elucidated. We...... find the temperature dependence of the cluster magnetization to be well described by an effective power law, M(mean) is-proportional-to 1 - BT(alpha), with a size-dependent, but structure-independent, exponent larger than the bulk value. The critical temperature of the clusters is calculated from...... the spin-wave spectrum by a method based on the correlation theory and the spherical approximation generalized to the case of finite systems. A size-dependent reduction of the critical temperature by up to 50% for the smallest clusters is found. The trends found for the model clusters are extrapolated...
Structural transition of (InSb)n clusters at n = 6-10
Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De
2016-10-01
An optimization strategy combining global semi-empirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (InSb)n clusters with n = 6-10. A new structural growth pattern of the clusters was observed. The lowest energy structures of (InSb)6 and (InSb)8 were different from that of previously reported results. Competition existed between core-shell and cage-like structures of (InSb)8. The structural transition of (InSb)n clusters occurred at size n = 8-9. For (InSb)9 and (InSb)10 clusters, core-shell structure were more energetically favorable than the cage. The corresponding electronic properties were investigated.
Small traveling clusters in attractive and repulsive Hamiltonian mean-field models.
Barré, Julien; Yamaguchi, Yoshiyuki Y
2009-03-01
Long-lasting small traveling clusters are studied in the Hamiltonian mean-field model by comparing between attractive and repulsive interactions. Nonlinear Landau damping theory predicts that a Gaussian momentum distribution on a spatially homogeneous background permits the existence of traveling clusters in the repulsive case, as in plasma systems, but not in the attractive case. Nevertheless, extending the analysis to a two-parameter family of momentum distributions of Fermi-Dirac type, we theoretically predict the existence of traveling clusters in the attractive case; these findings are confirmed by direct N -body numerical simulations. The parameter region with the traveling clusters is much reduced in the attractive case with respect to the repulsive case.
The imprint of the interaction between dark sectors in galaxy clusters
International Nuclear Information System (INIS)
He, Jian-Hua; Wang, Bin; Abdalla, Elcio; Pavon, Diego
2010-01-01
Based on perturbation theory, we study the dynamics of how dark matter and dark energy in the collapsing system approach dynamical equilibrium when they are in interaction. We find that the interaction between dark sectors cannot ensure the dark energy to fully cluster along with dark matter. When dark energy does not trace dark matter, we present a new treatment on studying the structure formation in the spherical collapsing system. Furthermore we examine the cluster number counts dependence on the interaction between dark sectors and analyze how dark energy inhomogeneities affect cluster abundances. It is shown that cluster number counts can provide specific signature of dark sectors interaction and dark energy inhomogeneities
Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF)3- and (HF)4- anions
Ramaekers, Riet; Smith, Dayle M. A.; Smets, Johan; Adamowicz, Ludwik
1997-12-01
Ab initio calculations have been performed to determine structures and vertical electron detachment energy (VDE) of the hydrogen fluoride trimer and tetramer anions, (HF)3- and (HF)4-. In these systems the excess electron is bound by the dipole field of the complex. It was determined that, unlike the neutral complexes which prefer the cyclic structures, the equilibrium geometries of the anions have "zig-zag" shapes. For both complexes the predicted VDEs are positive [210 meV and 363 meV for (HF)3- and (HF)4-, respectively], indicating that the anions are stable systems with respect to the vertical electron detachment. These results were obtained at the coupled-cluster level of theory with single, double and triple excitations [CCSD(T) method; the triple-excitation contribution in this method is calculated approximately using the perturbation approach] with the anion geometries obtained using the second-order Møller-Plesset perturbation theory (MP2) method. The same approach was also used to determine the adiabatic electron affinities (AEA) of (HF)3 and (HF)4. In addition to the electronic contribution, we also calculated the contributions (using the harmonic approximation) resulting from different zero-point vibration energies of the neutral and anionic clusters. The calculations predicted that while the AEA of (HF)3 is positive (44 meV), the AEA for (HF)4 is marginally negative (-16 meV). This suggests that the (HF)3- anion should be a stable system, while the (HF)4- is probably metastable.
On the thermodynamics of the liquid-solid transition in a small cluster
International Nuclear Information System (INIS)
Zhukov, Alexander V.; Kraynyukova, Anastasiya S.; Cao Jianshu
2007-01-01
Physics of phase transformations in finite systems has a long history, but there are many unresolved issues. Although there is a satisfactory qualitative picture of the phase transformations within an isolated small cluster, the experimentally observed dependence of the melting temperature on the cluster size contradicts the prediction of classical results. No clear physical picture of such a transformation exists for a condensed cluster in contact with gaseous environment. We propose a thermodynamic theory, which generalize previous results to the case of cluster with fluctuating number of constituent particles (open cluster). In this case, phase transition occurs because of size change during the nucleation/evaporation process. This allows us to explain the underlying physics of recent simulations and experiments. Although we used the grand canonical approach, our main results can be applied to isolated clusters. Particularly, we give simple arguments to explain the deviations of the cluster melting temperature dependence on cluster size from classical results
Dispersion and Cluster Scales in the Ocean
Kirwan, A. D., Jr.; Chang, H.; Huntley, H.; Carlson, D. F.; Mensa, J. A.; Poje, A. C.; Fox-Kemper, B.
2017-12-01
Ocean flow space scales range from centimeters to thousands of kilometers. Because of their large Reynolds number these flows are considered turbulent. However, because of rotation and stratification constraints they do not conform to classical turbulence scaling theory. Mesoscale and large-scale motions are well described by geostrophic or "2D turbulence" theory, however extending this theory to submesoscales has proved to be problematic. One obvious reason is the difficulty in obtaining reliable data over many orders of magnitude of spatial scales in an ocean environment. The goal of this presentation is to provide a preliminary synopsis of two recent experiments that overcame these obstacles. The first experiment, the Grand LAgrangian Deployment (GLAD) was conducted during July 2012 in the eastern half of the Gulf of Mexico. Here approximately 300 GPS-tracked drifters were deployed with the primary goal to determine whether the relative dispersion of an initially densely clustered array was driven by processes acting at local pair separation scales or by straining imposed by mesoscale motions. The second experiment was a component of the LAgrangian Submesoscale Experiment (LASER) conducted during the winter of 2016. Here thousands of bamboo plates were tracked optically from an Aerostat. Together these two deployments provided an unprecedented data set on dispersion and clustering processes from 1 to 106 meter scales. Calculations of statistics such as two point separations, structure functions, and scale dependent relative diffusivities showed: inverse energy cascade as expected for scales above 10 km, a forward energy cascade at scales below 10 km with a possible energy input at Langmuir circulation scales. We also find evidence from structure function calculations for surface flow convergence at scales less than 10 km that account for material clustering at the ocean surface.
Turi, László
2016-04-01
We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.
Energy Technology Data Exchange (ETDEWEB)
Turi, László, E-mail: turi@chem.elte.hu [Department of Physical Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112 (Hungary)
2016-04-21
We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.
Structural and optical properties of Si-doped Ag clusters
Mokkath, Junais Habeeb
2014-03-06
The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.
Structural and optical properties of Si-doped Ag clusters
Mokkath, Junais Habeeb; Schwingenschlö gl, Udo
2014-01-01
The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.
International Nuclear Information System (INIS)
Cukovicova, M.; Cernusak, I.
2010-01-01
For our study we have chosen a series of diatomic molecules MeB (where Me = Li, Na, K, Rb, Cs, Fr). These molecules present experimentally unknown species, hence we were motivated to predict theoretically potential energy curves, equilibrium bond lengths, harmonic frequencies, constants of anharmonicity, dipole moments and dissociation energies for the ground and low-lying excited states using high level ab initio techniques. Based on previous state averaged MRCI calculations in ANO-S basis set of NaB and KB molecules, we have focused on four lowest-lying electronic states, ground state 3Π and excited states 1Σ+, 1Π and 3Σ+. All four states dissociate to the atoms in ground states 2P1/2(B) and 2S1/2(Me). 3Π, 1Σ+, 1Π and 3Σ+ electronic states we investigated employing CCSD(T) method using relativistic ANO-RCC basis set. Our calculations include scalar relativistic effects via the second order one-component (spin-free) Douglas-Kroll-Hess Hamiltonian. Relativistic effects become remarkable in the case of heavy atoms, hence properties of CsB and FrB molecules may differ from trend of properties in row from LiB to FrB. Spectroscopic properties of particular state were obtained from the analysis of the potential energy curves using VIBROT and DUNHAM programs.
Cluster-collision frequency. II. Estimation of the collision rate
International Nuclear Information System (INIS)
Amadon, A.S.; Marlow, W.H.
1991-01-01
Gas-phase cluster-collision rates, including effects of cluster morphology and long-range intermolecular forces, are calculated. Identical pairs of icosahedral or dodecahedral carbon tetrachloride clusters of 13, 33, and 55 molecules in two different relative orientations were discussed in the preceding paper [Phys. Rev. A 43, 5483 (1991)]: long-range interaction energies were derived based upon (i) exact calculations of the iterated, or many-body, induced-dipole interaction energies for the clusters in two fixed relative orientations; and (ii) bulk, or continuum descriptions (Lifshitz--van der Waals theory), of spheres of corresponding masses and diameters. In this paper, collision rates are calculated according to an exact description of the rates for small spheres interacting via realistic potentials. Utilizing the interaction energies of the preceding paper, several estimates of the collision rates are given by treating the discrete clusters in fixed relative orientations, by computing rotationally averaged potentials for the discrete clusters, and by approximating the clusters as continuum spheres. For the discrete, highly symmetric clusters treated here, the rates using the rotationally averaged potentials closely approximate the fixed-orientation rates and the values of the intercluster potentials for cluster surface separations under 2 A have negligible effect on the overall collision rates. While the 13-molecule cluster-collision rate differs by 50% from the rate calculated as if the cluster were bulk matter, the two larger cluster-collision rates differ by less than 15% from the macroscopic rates, thereby indicating the transition of microscopic to macroscopic behavior
A Kondo cluster-glass model for spin glass Cerium alloys
International Nuclear Information System (INIS)
Zimmer, F M; Magalhaes, S G; Coqblin, B
2011-01-01
There are clear indications that the presence of disorder in Ce alloys, such as Ce(Ni,Cu) or Ce(Pd,Rh), is responsible for the existence of a cluster spin glass state which changes continuously into inhomogeneous ferromagnetism at low temperatures. We present a study of the competition between magnetism and Kondo effect in a cluster-glass model composed by a random inter-cluster interaction term and an intra-cluster one, which contains an intra-site Kondo interaction J k and an inter-site ferromagnetic one J 0 . The random interaction is given by the van Hemmen type of randomness which allows to solve the problem without the use of the replica method. The inter-cluster term is solved within the cluster mean-field theory and the remaining intra-cluster interactions can be treated by exact diagonalization. Results show the behavior of the cluster glass order parameter and the Kondo correlation function for several sizes of the clusters, J k , J 0 and values of the ferromagnetic inter-cluster average interaction I 0 . Particularly, for small J k , the magnetic solution is strongly dependent on I 0 and J 0 and a Kondo cluster-glass or a mixed phase can be obtained, while, for large J k , the Kondo effect is still dominant, both in good agreement with experiment in Ce(Ni,Cu) or Ce(Pd,Rh) alloys.
Clustering of amines and hydrazines in atmospheric nucleation
Li, Siyang; Qu, Kun; Zhao, Hailiang; Ding, Lei; Du, Lin
2016-06-01
It has been proved that the presence of amines in the atmosphere can enhance aerosol formation. Hydrazine (HD) and its substituted derivatives, monomethylhydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH), which are organic derivatives of amine and ammonia, are common trace atmospheric species that may contribute to the growth of nucleation clusters. The structures of the hydrazine and amine clusters containing one or two common nucleation molecules (ammonia, water, methanol and sulfuric acid) have been optimized using density functional theory (DFT) methods. The clusters growth mechanism has been explored from the thermochemistry by calculating the Gibbs free energies of adding an ammonia, water, methanol or sulfuric acid molecule step by step at room temperature, respectively. The results show that hydrazine and its derivatives could enhance heteromolecular homogeneous nucleation in the earth's atmosphere.
Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics
Lau, Gabriel V.; Hunt, Patricia A.; Müller, Erich A.; Jackson, George; Ford, Ian J.
2015-12-01
Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.
Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Lau, Gabriel V.; Müller, Erich A.; Jackson, George [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hunt, Patricia A. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Ford, Ian J. [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2015-12-28
Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the “mitosis” or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.
Structure and Stability of GeAun, n = 1-10 clusters: A Density Functional Study
International Nuclear Information System (INIS)
Priyanka,; Dharamvir, Keya; Sharma, Hitesh
2011-01-01
The structures of Germanium doped gold clusters GeAu n (n = 1-10) have been investigated using ab initio calculations based on density functional theory (DFT). We have obtained ground state geometries of GeAu n clusters and have it compared with Silicon doped gold clusters and pure gold clusters. The ground state geometries of the GeAu n clusters show patterns similar to silicon doped gold clusters except for n = 5, 6 and 9. The introduction of germanium atom increases the binding energy of gold clusters. The binding energy per atom of germanium doped cluster is smaller than the corresponding silicon doped gold cluster. The HUMO-LOMO gap for Au n Ge clusters have been found to vary between 0.46 eV-2.09 eV. The mullikan charge analysis indicates that charge of order of 0.1e always transfers from germanium atom to gold atom.
Thermodynamics of Pore Filling Metal Clusters in Metal Organic Frameworks: Pd in UiO-66
DEFF Research Database (Denmark)
Vilhelmsen, Lasse; Sholl, David S.
2012-01-01
Metal organic frameworks (MOFs) have experimentally been demonstrated to be capable of supporting isolated transition-metal clusters, but the stability of these clusters with respect to aggregation is unclear. In this letter we use a genetic algorithm together with density functional theory...... calculations to predict the structure of Pd clusters in UiO-66. The cluster sizes examined are far larger than those in any previous modeling studies of metal clusters in MOFs and allow us to test the hypothesis that the physically separated cavities in UiO-66 could stabilize isolated Pd clusters. Our...... calculations show that Pd clusters in UiO-66 are, at best, metastable and will aggregate into connected pore filling structures at equilibrium....
DEFF Research Database (Denmark)
Carroll, Joseph; Clasen, Mathias; Jonsson, Emelie
2017-01-01
Biocultural theory is an integrative research program designed to investigate the causal interactions between biological adaptations and cultural constructions. From the biocultural perspective, cultural processes are rooted in the biological necessities of the human life cycle: specifically human...... of research as contributions to a coherent, collective research program. This article argues that a mature biocultural paradigm needs to be informed by at least 7 major research clusters: (a) gene-culture coevolution; (b) human life history theory; (c) evolutionary social psychology; (d) anthropological...... forms of birth, growth, survival, mating, parenting, and sociality. Conversely, from the biocultural perspective, human biological processes are constrained, organized, and developed by culture, which includes technology, culturally specific socioeconomic and political structures, religious...
Reliability Evaluation for Clustered WSNs under Malware Propagation
Directory of Open Access Journals (Sweden)
Shigen Shen
2016-06-01
Full Text Available We consider a clustered wireless sensor network (WSN under epidemic-malware propagation conditions and solve the problem of how to evaluate its reliability so as to ensure efficient, continuous, and dependable transmission of sensed data from sensor nodes to the sink. Facing the contradiction between malware intention and continuous-time Markov chain (CTMC randomness, we introduce a strategic game that can predict malware infection in order to model a successful infection as a CTMC state transition. Next, we devise a novel measure to compute the Mean Time to Failure (MTTF of a sensor node, which represents the reliability of a sensor node continuously performing tasks such as sensing, transmitting, and fusing data. Since clustered WSNs can be regarded as parallel-serial-parallel systems, the reliability of a clustered WSN can be evaluated via classical reliability theory. Numerical results show the influence of parameters such as the true positive rate and the false positive rate on a sensor node’s MTTF. Furthermore, we validate the method of reliability evaluation for a clustered WSN according to the number of sensor nodes in a cluster, the number of clusters in a route, and the number of routes in the WSN.
Knowledge Cluster Formation as a Science Policy in Malaysia: Lessons Learned
Directory of Open Access Journals (Sweden)
Hans-Dieter Evers
2015-01-01
Full Text Available Regional science policy aims to create productive knowledge clusters, which are central places within an epistemic landscape of knowledge production and dissemination. These so-called K-clusters are said to have the organisational capability to drive innovations and create new industries. Many governments have used cluster formation as one of their development strategies. This paper looks at Malaysiaâ€™s path towards a knowledge-based economy and offers some evidence on the current state of knowledge cluster formation in that country. If the formation of a knowledge cluster has been the government policy, what has been the result? Is there an epistemic landscape of knowledge clusters? Has the main knowledge cluster really materialised? Data collected from websites, directories, government publications and expert interviews have enabled us to construct the epistemic landscape of Peninsular Malaysia, and Penang in particular. We identify and describe several knowledge clusters with a high density of knowledge producing institutions and their knowledge workers. An analysis of the knowledge output, measured in terms of scientific publications, patents and trademarks, shows that knowledge clusters have indeed been productive â€“ as predicted by cluster theory â€“ although the internal working of clusters require further explanation.