WorldWideScience

Sample records for cluster supernova survey

  1. THE TYPE II SUPERNOVA RATE IN z {approx} 0.1 GALAXY CLUSTERS FROM THE MULTI-EPOCH NEARBY CLUSTER SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M. L.; Sand, D. J. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Bildfell, C. J.; Pritchet, C. J. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria BC V8W 3P6 (Canada); Zaritsky, D.; Just, D. W.; Herbert-Fort, S. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Hoekstra, H. [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Sivanandam, S. [Dunlap Institute for Astronomy and Astrophysics, 50 St. George St., Toronto, ON M5S 3H4 (Canada); Foley, R. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-07-01

    We present seven spectroscopically confirmed Type II cluster supernovae (SNe II) discovered in the Multi-Epoch Nearby Cluster Survey, a supernova survey targeting 57 low-redshift 0.05 < z < 0.15 galaxy clusters with the Canada-France-Hawaii Telescope. We find the rate of Type II supernovae within R{sub 200} of z {approx} 0.1 galaxy clusters to be 0.026{sup +0.085}{sub -0.018}(stat){sup +0.003}{sub -0.001}(sys) SNuM. Surprisingly, one SN II is in a red-sequence host galaxy that shows no clear evidence of recent star formation (SF). This is unambiguous evidence in support of ongoing, low-level SF in at least some cluster elliptical galaxies, and illustrates that galaxies that appear to be quiescent cannot be assumed to host only Type Ia SNe. Based on this single SN II we make the first measurement of the SN II rate in red-sequence galaxies, and find it to be 0.007{sup +0.014}{sub -0.007}(stat){sup +0.009}{sub -0.001}(sys) SNuM. We also make the first derivation of cluster specific star formation rates (sSFR) from cluster SN II rates. We find that for all galaxy types the sSFR is 5.1{sup +15.8}{sub -3.1}(stat) {+-} 0.9(sys) M{sub Sun} yr{sup -1} (10{sup 12} M{sub Sun }){sup -1}, and for red-sequence galaxies only it is 2.0{sup +4.2}{sub -0.9}(stat) {+-} 0.4(sys) M{sub Sun} yr{sup -1} (10{sup 12} M{sub Sun }){sup -1}. These values agree with SFRs measured from infrared and ultraviolet photometry, and H{alpha} emission from optical spectroscopy. Additionally, we use the SFR derived from our SNII rate to show that although a small fraction of cluster Type Ia SNe may originate in the young stellar population and experience a short delay time, these results do not preclude the use of cluster SN Ia rates to derive the late-time delay time distribution for SNe Ia.

  2. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    International Nuclear Information System (INIS)

    Graur, O.; Rodney, S. A.; Riess, A. G.; Medezinski, E.; Maoz, D.; Jha, S. W.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Postman, M.; Dahlen, T.; Strolger, L.-G.; Coe, D.; Bradley, L.; Koekemoer, A.; Benítez, N.; Molino, A.; Jouvel, S.; Nonino, M.; Balestra, I.

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00 −0.06(0.10) +0.06(0.09) (statistical) −0.08 +0.12 (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.

  3. A MEASUREMENT OF THE RATE OF TYPE Ia SUPERNOVAE IN GALAXY CLUSTERS FROM THE SDSS-II SUPERNOVA SURVEY

    International Nuclear Information System (INIS)

    Dilday, Benjamin; Jha, Saurabh W.; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Hopp, Ulrich; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, LluIs; Miquel, Ramon; Garnavich, Peter; Goobar, Ariel; Ihara, Yutaka; Kessler, Richard; Lampeitl, Hubert; Nichol, Robert C.; Marriner, John; Molla, Mercedes

    2010-01-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z ≤ 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 ≤ z ≤ 0.3. We find values for the cluster SN Ia rate of (0.37 +0.17+0.01 -0.12-0.01 ) SNur h 2 and (0.55 +0.13+0.02 -0.11-0.01 ) SNur h 2 (SNux = 10 -12 L -1 xsun yr -1 ) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31 +0.18+0.01 -0.12-0.01 ) SNur h 2 and (0.49 +0.15+0.02 -0.11-0.01 ) SNur h 2 in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04 +1.99+0.07 -1.11-0.04 ) SNur h 2 and (0.36 +0.84+0.01 -0.30-0.01 ) SNur h 2 in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94 +1.31+0.043 -0.91-0.015 and 3.02 +1.31+0.062 -1.03-0.048 , for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r L = [(0.49 +0.15 -0.14 )+(0.91 +0.85 -0.81 ) x z] SNuB h 2 . A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most three hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are hostless to be (9.4 +8.3 -5.1 )%.

  4. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter; /Notre Dame U.; Goobar, Ariel; /Stockholm U., OKC /Stockholm U.; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.

    2010-03-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are

  5. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    Science.gov (United States)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; hide

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  6. Requirements on the Redshift Accuracy for future Supernova and Number Count Surveys

    International Nuclear Information System (INIS)

    Huterer, Dragan; Kim, Alex; Broderick, Tamara

    2004-01-01

    We investigate the required redshift accuracy of type Ia supernova and cluster number-count surveys in order for the redshift uncertainties not to contribute appreciably to the dark energy parameter error budget. For the SNAP supernova experiment, we find that, without the assistance of ground-based measurements, individual supernova redshifts would need to be determined to about 0.002 or better, which is a challenging but feasible requirement for a low-resolution spectrograph. However, we find that accurate redshifts for z < 0.1 supernovae, obtained with ground-based experiments, are sufficient to immunize the results against even relatively large redshift errors at high z. For the future cluster number-count surveys such as the South Pole Telescope, Planck or DUET, we find that the purely statistical error in photometric redshift is less important, and that the irreducible, systematic bias in redshift drives the requirements. The redshift bias will have to be kept below 0.001-0.005 per redshift bin (which is determined by the filter set), depending on the sky coverage and details of the definition of the minimal mass of the survey. Furthermore, we find that X-ray surveys have a more stringent required redshift accuracy than Sunyaev-Zeldovich (SZ) effect surveys since they use a shorter lever arm in redshift; conversely, SZ surveys benefit from their high redshift reach only so long as some redshift information is available for distant (zgtrsim1) clusters

  7. Near-IR search for lensed supernovae behind galaxy clusters. II. First detection and future prospects

    OpenAIRE

    Goobar, A.; Paech, K.; Stanishev, V.; Amanullah, R.; Dahlén, T.; Jönsson, J.; Kneib, J. P.; Lidman, C.; Limousin, M.; Mörtsell, E.; Nobili, S.; Richard, J.; Riehm, T.; von Strauss, M.

    2009-01-01

    Aims. Powerful gravitational telescopes in the form of massive galaxy clusters can be used to enhance the light collecting power over a limited field of view by about an order of magnitude in flux. This effect is exploited here to increase the depth of a survey for lensed supernovae at near-IR wavelengths. Methods. We present a pilot supernova search programme conducted with the ISAAC camera at VLT. Lensed galaxies behind the massive clusters A1689, A1835, and AC114 were observed for a tot...

  8. THE MULTI-EPOCH NEARBY CLUSTER SURVEY: TYPE Ia SUPERNOVA RATE MEASUREMENT IN z {approx} 0.1 CLUSTERS AND THE LATE-TIME DELAY TIME DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Sand, David J.; Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Bildfell, Chris; Pritchet, Chris [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria BC V8W 3P6 (Canada); Zaritsky, Dennis; Just, Dennis W.; Herbert-Fort, Stephane [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Sivanandam, Suresh [Dunlap Institute for Astronomy and Astrophysics, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mahdavi, Andisheh, E-mail: dsand@lcogt.net [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States)

    2012-02-20

    We describe the Multi-Epoch Nearby Cluster Survey, designed to measure the cluster Type Ia supernova (SN Ia) rate in a sample of 57 X-ray selected galaxy clusters, with redshifts of 0.05 < z < 0.15. Utilizing our real-time analysis pipeline, we spectroscopically confirmed twenty-three cluster SNe Ia, four of which were intracluster events. Using our deep Canada-France-Hawaii Telescope/MegaCam imaging, we measured total stellar luminosities in each of our galaxy clusters, and we performed detailed supernova (SN) detection efficiency simulations. Bringing these ingredients together, we measure an overall cluster SN Ia rate within R{sub 200} (1 Mpc) of 0.042{sup +0.012}{sub -0.010}{sup +0.010}{sub -0.008} SNuM (0.049{sup +0.016}{sub -0.014}{sup +0.005}{sub -0.004} SNuM) and an SN Ia rate within red-sequence galaxies of 0.041{sup +0.015}{sub -0.015}{sup +0.005}{sub -0.010} SNuM (0.041{sup +0.019}{sub -0.015}{sup +0.005}{sub -0.004} SNuM). The red-sequence SN Ia rate is consistent with published rates in early-type/elliptical galaxies in the 'field'. Using our red-sequence SN Ia rate, and other cluster SN measurements in early-type galaxies up to z {approx} 1, we derive the late-time (>2 Gyr) delay time distribution (DTD) of SN Ia assuming a cluster early-type galaxy star formation epoch of z{sub f} = 3. Assuming a power-law form for the DTD, {Psi}(t){proportional_to}t{sup s} , we find s = -1.62 {+-} 0.54. This result is consistent with predictions for the double degenerate SN Ia progenitor scenario (s {approx} -1) and is also in line with recent calculations for the double detonation explosion mechanism (s {approx} -2). The most recent calculations of the single degenerate scenario DTD predicts an order-of-magnitude drop-off in SN Ia rate {approx}6-7 Gyr after stellar formation, and the observed cluster rates cannot rule this out.

  9. Supernova blast wave within a stellar cluster outflow

    Science.gov (United States)

    Rodríguez-Ramírez, J. C.; Raga, A. C.; Velázquez, P. F.; Rodríguez-González, A.; Toledo-Roy, J. C.

    2014-11-01

    In this paper, we develop a semi-analytic model of a supernova which goes off in the centre of a stellar cluster. The supernova remnant interacts with a stratified, pre-existent outflow produced by the winds of the cluster stars. We compare our semi-analytic model with numerical simulations using the spherically symmetric Euler equations with appropriate mass and energy source terms. We find good agreement between these two approaches, and we find that for typical parameters the blast wave is likely to reach the Taylor-Sedov regime outside the cluster radius. We also calculate the predicted X-ray luminosity of the flow as a function of time, and we obtain its dependence on the outer radius and the number of stars of the cluster.

  10. Clustered supernovae versus the gaseous disk and halo

    International Nuclear Information System (INIS)

    Heiles, C.

    1990-01-01

    The effects of clustered supernovae on the two-dimensional porosity parameter Q(2D) and the rates M of mass injection of both hot and cold gas into the halo are reconsidered. The effects of high-absolute value z, low-density extension of the neutral gas layer are theoretically calculated and the distribution of H-alpha luminosities of extragalactic H II regions is observationally determined. These results are used to estimate the birth rate of star clusters having N supernovae as a function of N. A Galaxy-wide average of Q(2D) roughly 0.30 is obtained, corresponding to an area filling factor of 0.23. Area filling factors and mass injection rates into the halo due to breakthrough bubbles with large N are calculated for different types of galaxy. The calculations are related to the area covered by H I 'holes' and the area covered by giant H II regions. The effects of supernova clusters that are too small to produce breakthrough bubbles are discussed. 53 refs

  11. The Core Collapse Supernova Rate from the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Matt; Cinabro, David; Dilday, Ben; Galbany, Lluis; Gupta, Ravi R.; Kessler, R.; Marriner, John; Nichol, Robert C.; Richmond, Michael; Schneider, Donald P.; Sollerman, Jesper

    2014-08-26

    We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03 < z < 0.09). Using a sample of 89 CCSN, we find a volume-averaged rate of 1.06 ± 0.19 × 10(–)(4)((h/0.7)(3)/(yr Mpc(3))) at a mean redshift of 0.072 ± 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.

  12. Synoptic sky surveys and the diffuse supernova neutrino background: Removing astrophysical uncertainties and revealing invisible supernovae

    International Nuclear Information System (INIS)

    Lien, Amy; Fields, Brian D.; Beacom, John F.

    2010-01-01

    The cumulative (anti)neutrino production from all core-collapse supernovae within our cosmic horizon gives rise to the diffuse supernova neutrino background (DSNB), which is on the verge of detectability. The observed flux depends on supernova physics, but also on the cosmic history of supernova explosions; currently, the cosmic supernova rate introduces a substantial (±40%) uncertainty, largely through its absolute normalization. However, a new class of wide-field, repeated-scan (synoptic) optical sky surveys is coming online, and will map the sky in the time domain with unprecedented depth, completeness, and dynamic range. We show that these surveys will obtain the cosmic supernova rate by direct counting, in an unbiased way and with high statistics, and thus will allow for precise predictions of the DSNB. Upcoming sky surveys will substantially reduce the uncertainties in the DSNB source history to an anticipated ±5% that is dominated by systematics, so that the observed high-energy flux thus will test supernova neutrino physics. The portion of the universe (z < or approx. 1) accessible to upcoming sky surveys includes the progenitors of a large fraction (≅87%) of the expected 10-26 MeV DSNB event rate. We show that precision determination of the (optically detected) cosmic supernova history will also make the DSNB into a strong probe of an extra flux of neutrinos from optically invisible supernovae, which may be unseen either due to unexpected large dust obscuration in host galaxies, or because some core-collapse events proceed directly to black hole formation and fail to give an optical outburst.

  13. First-Year Spectroscopy for the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chen; Romani, Roger W.; Sako, Masao; Marriner, John; Bassett, Bruce; Becker, Andrew; Choi, Changsu; Cinabro, David; DeJongh, Fritz; Depoy, Darren L.; Dilday, Ben; Doi, Mamoru; Frieman, Joshua A.; Garnavich, Peter M.; Hogan, Craig J.; Holtzman, Jon; Im, Myungshin; Jha, Saurabh; Kessler, Richard; Konishi, Kohki; Lampeitl, Hubert

    2008-03-25

    This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05-0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.

  14. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    Science.gov (United States)

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-06

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. Copyright © 2015, American Association for the Advancement of Science.

  15. Supernovae in Low-Redshift Galaxy Clusters: Observations by the Wise Observatory Optical Transient Search (WOOTS)

    OpenAIRE

    Gal-Yam, Avishay; Maoz, Dan; Guhathakurta, Puragra; Filippenko, Alexei V.

    2007-01-01

    We describe the Wise Observatory Optical Transient Search (WOOTS), a survey for supernovae (SNe) and other variable and transient objects in the fields of redshift 0.06-0.2 Abell galaxy clusters. We present the survey design and data-analysis procedures, and our object detection and follow-up strategies. We have obtained follow-up spectroscopy for all viable SN candidates, and present the resulting SN sample here. Out of the 12 SNe we have discovered, seven are associated with our target clus...

  16. SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, J. P.; Kuhlmann, S.; Biswas, R.; Kovacs, E.; Crane, I.; Hufford, T. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, R.; Frieman, J. A. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Aldering, G.; Kim, A. G.; Nugent, P. [E. O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); D' Andrea, C. B.; Nichol, R. C. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Finley, D. A.; Marriner, J.; Reis, R. R. R. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Jarvis, M. J. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Mukherjee, P.; Parkinson, D. [Department of Physics and Astronomy, Pevensey 2 Building, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Sako, M. [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); and others

    2012-07-10

    We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg{sup 2} search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05 supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.

  17. SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY

    International Nuclear Information System (INIS)

    Bernstein, J. P.; Kuhlmann, S.; Biswas, R.; Kovacs, E.; Crane, I.; Hufford, T.; Kessler, R.; Frieman, J. A.; Aldering, G.; Kim, A. G.; Nugent, P.; D'Andrea, C. B.; Nichol, R. C.; Finley, D. A.; Marriner, J.; Reis, R. R. R.; Jarvis, M. J.; Mukherjee, P.; Parkinson, D.; Sako, M.

    2012-01-01

    We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg 2 search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05 < z < 1.2 and (2) that the increased red efficiency of the DES camera will significantly improve high-redshift color measurements. The redshift of each supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.

  18. Regulation of the X-ray luminosity of clusters of galaxies by cooling and supernova feedback.

    Science.gov (United States)

    Voit, G M; Bryan, G L

    2001-11-22

    Clusters of galaxies are thought to contain about ten times as much dark matter as baryonic matter. The dark component therefore dominates the gravitational potential of a cluster, and the baryons confined by this potential radiate X-rays with a luminosity that depends mainly on the gas density in the cluster's core. Predictions of the X-rays' properties based on models of cluster formation do not, however, agree with the observations. If the models ignore the condensation of cooling gas into stars and feedback from the associated supernovae, they overestimate the X-ray luminosity because the density of the core gas is too high. An early episode of uniformly distributed supernova feedback could rectify this by heating the uncondensed gas and therefore making it harder to compress into the core, but such a process seems to require an implausibly large number of supernovae. Here we show how radiative cooling of intergalactic gas and subsequent supernova heating conspire to eliminate highly compressible low-entropy gas from the intracluster medium. This brings the core entropy and X-ray luminosities of clusters into agreement with the observations, in a way that depends little on the efficiency of supernova heating in the early Universe.

  19. The sloan digital sky survey-II supernova survey

    DEFF Research Database (Denmark)

    Frieman, Joshua A.; Bassett, Bruce; Becker, Andrew

    2008-01-01

    The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5° wide...

  20. THE MULTI-EPOCH NEARBY CLUSTER SURVEY: TYPE Ia SUPERNOVA RATE MEASUREMENT IN z ∼ 0.1 CLUSTERS AND THE LATE-TIME DELAY TIME DISTRIBUTION

    International Nuclear Information System (INIS)

    Sand, David J.; Graham, Melissa L.; Bildfell, Chris; Pritchet, Chris; Zaritsky, Dennis; Just, Dennis W.; Herbert-Fort, Stéphane; Hoekstra, Henk; Sivanandam, Suresh; Foley, Ryan J.; Mahdavi, Andisheh

    2012-01-01

    We describe the Multi-Epoch Nearby Cluster Survey, designed to measure the cluster Type Ia supernova (SN Ia) rate in a sample of 57 X-ray selected galaxy clusters, with redshifts of 0.05 200 (1 Mpc) of 0.042 +0.012 –0.010 +0.010 –0.008 SNuM (0.049 +0.016 –0.014 +0.005 –0.004 SNuM) and an SN Ia rate within red-sequence galaxies of 0.041 +0.015 –0.015 +0.005 –0.010 SNuM (0.041 +0.019 –0.015 +0.005 –0.004 SNuM). The red-sequence SN Ia rate is consistent with published rates in early-type/elliptical galaxies in the 'field'. Using our red-sequence SN Ia rate, and other cluster SN measurements in early-type galaxies up to z ∼ 1, we derive the late-time (>2 Gyr) delay time distribution (DTD) of SN Ia assuming a cluster early-type galaxy star formation epoch of z f = 3. Assuming a power-law form for the DTD, Ψ(t)∝t s , we find s = –1.62 ± 0.54. This result is consistent with predictions for the double degenerate SN Ia progenitor scenario (s ∼ –1) and is also in line with recent calculations for the double detonation explosion mechanism (s ∼ –2). The most recent calculations of the single degenerate scenario DTD predicts an order-of-magnitude drop-off in SN Ia rate ∼6-7 Gyr after stellar formation, and the observed cluster rates cannot rule this out.

  1. Potential for supernova-induced chemical enrichment of protoglobular cluster clouds

    International Nuclear Information System (INIS)

    Dopita, M.A.; Smith, G.H.; Dominion Astrophysical Observatory, Victoria, Canada)

    1986-01-01

    This paper seeks to explain the large internal abundance variations that are seen in the globular cluster Omega Cen in terms of supernova-induced chemical enrichment that occurred when the cluster was still largely in a gaseous phase and star formation was continuing. Using a simple power-law density model of this protoglobular gas cloud, the conditions under which this can occur have been established analytically. Clouds less massive than about 100,000 solar masses are completely disrupted by supernova explosions in their adiabatic phase. In clouds of greater mass, supernova explosions occurring near the tidal radius tend to lose their hot gas and metals to the intercloud medium. For explosions occurring closer to the mass center the ejecta must be slowed below the escape velocity, and this can only occur in clouds more massive than about 3 x 10 to the 6th solar masses. If this condition is met, then the slow isothermal momentum-conserving shocks generated by the supernova explosions may eventually induce secondary star formation. For such shocks converging on the mass center, it is found that a cloud mass of at least 10 to the 7th solar masses is required for this process to be efficient. From the observed properties of Omega Cen, a primordial mass of order 10 to the 8th solar masses is estimated, which emphasizes the unusual character of this object. 39 references

  2. The Carnegie Supernova Project: The Low-Redshift Survey

    Science.gov (United States)

    Hamuy, Mario; Folatelli, Gastón; Morrell, Nidia I.; Phillips, Mark M.; Suntzeff, Nicholas B.; Persson, S. E.; Roth, Miguel; Gonzalez, Sergio; Krzeminski, Wojtek; Contreras, Carlos; Freedman, Wendy L.; Murphy, D. C.; Madore, Barry F.; Wyatt, P.; Maza, José; Filippenko, Alexei V.; Li, Weidong; Pinto, P. A.

    2006-01-01

    Supernovae are essential to understanding the chemical evolution of the universe. Type Ia supernovae also provide the most powerful observational tool currently available for studying the expansion history of the universe and the nature of dark energy. Our basic knowledge of supernovae comes from the study of their photometric and spectroscopic properties. However, the presently available data sets of optical and near-infrared light curves of supernovae are rather small and/or heterogeneous, and employ photometric systems that are poorly characterized. Similarly, there are relatively few supernovae whose spectral evolution has been well sampled, both in wavelength and phase, with precise spectrophotometric observations. The low-redshift portion of the Carnegie Supernova Project (CSP) seeks to remedy this situation by providing photometry and spectrophotometry of a large sample of supernovae taken on telescope/filter/detector systems that are well understood and well characterized. During a 5 year program that began in 2004 September, we expect to obtain high-precision u'g'r'i'BVYJHKs light curves and optical spectrophotometry for about 250 supernovae of all types. In this paper we provide a detailed description of the CSP survey observing and data reduction methodology. In addition, we present preliminary photometry and spectra obtained for a few representative supernovae during the first observing campaign.

  3. The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary

    Energy Technology Data Exchange (ETDEWEB)

    Frieman, Joshua A.; /Fermilab /KICP, Chicago /Chicago U., Astron. Astrophys. Ctr.; Bassett, Bruce; /Cape Town U. /South African Astron. Observ.; Becker, Andrew; /Washington; Choi, Changsu; /Seoul Natl. U.; Cinabro, David; /Wayne State U.; DeJongh, Don Frederic; /Fermilab; Depoy, Darren L.; /Ohio State U.; Doi, Mamoru; /Tokyo U.; Garnavich, Peter M.; /Notre Dame U.; Hogan, Craig J.; /Washington U., Seattle, Astron. Dept.; Holtzman, Jon; /New Mexico State U.; Im, Myungshin; /Seoul Natl. U.; Jha, Saurabh; /Stanford U., Phys. Dept.; Konishi, Kohki; /Tokyo U.; Lampeitl, Hubert; /Baltimore, Space Telescope Sci.; Marriner, John; /Fermilab; Marshall, Jennifer L.; /Ohio State U.; McGinnis,; /Fermilab; Miknaitis, Gajus; /Fermilab; Nichol, Robert C.; /Portsmouth U.; Prieto, Jose Luis; /Ohio State U. /Rochester Inst. Tech. /Stanford U., Phys. Dept. /Pennsylvania U.

    2007-09-14

    The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5 degrees wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for discovery of new objects. Supernova imaging observations are being acquired between 1 September and 30 November of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.

  4. Cosmological analysis of galaxy clusters surveys in X-rays

    International Nuclear Information System (INIS)

    Clerc, N.

    2012-01-01

    Clusters of galaxies are the most massive objects in equilibrium in our Universe. Their study allows to test cosmological scenarios of structure formation with precision, bringing constraints complementary to those stemming from the cosmological background radiation, supernovae or galaxies. They are identified through the X-ray emission of their heated gas, thus facilitating their mapping at different epochs of the Universe. This report presents two surveys of galaxy clusters detected in X-rays and puts forward a method for their cosmological interpretation. Thanks to its multi-wavelength coverage extending over 10 sq. deg. and after one decade of expertise, the XMM-LSS allows a systematic census of clusters in a large volume of the Universe. In the framework of this survey, the first part of this report describes the techniques developed to the purpose of characterizing the detected objects. A particular emphasis is placed on the most distant ones (z ≥ 1) through the complementarity of observations in X-ray, optical and infrared bands. Then the X-CLASS survey is fully described. Based on XMM archival data, it provides a new catalogue of 800 clusters detected in X-rays. A cosmological analysis of this survey is performed thanks to 'CR-HR' diagrams. This new method self-consistently includes selection effects and scaling relations and provides a means to bypass the computation of individual cluster masses. Propositions are made for applying this method to future surveys as XMM-XXL and eRosita. (author) [fr

  5. The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters

    Science.gov (United States)

    Li, Xue; Hjorth, Jens; Richard, Johan

    2012-11-01

    Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector and determine cosmological parameters. We here present an analysis of the time-delay distribution of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability distribution functions are well represented by P(log Δt) = 5.3 × 10-4Δttilde beta/M2502tilde beta, with tilde beta = 0.77, where M250 is the projected cluster mass inside 250 kpc (in 1014M⊙), and tilde beta is the power-law slope of the distribution. The resultant probability distribution function enables us to estimate the time-delay distribution in a lensing cluster of known mass. For a cluster with M250 = 2 × 1014M⊙, the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an example, its dark halo and brightest galaxies, with central velocity dispersions σ>=500kms-1, mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating smaller time delays. We estimate the probability of observing multiple images of a supernova in the known images of Abell 1689. A two-component model of estimating the supernova rate is applied in this work. For a magnitude threshold of mAB = 26.5, the yearly rate of Type Ia (core-collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the magnitude threshold is lowered to mAB ~ 27.0, the rate of core-collapse supernovae suitable for time delay observation is 0.044±0.015 per year.

  6. The Data Release of the Sloan Digital Sky Survey-II Supernova Survey

    DEFF Research Database (Denmark)

    Sako, Masao; Bassett, Bruce; C. Becker, Andrew

    2014-01-01

    This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources discovered through repeat ugriz imaging of SDSS S...

  7. Photometry of High-Redshift Gravitationally Lensed Type Ia Supernovae

    Science.gov (United States)

    Haynie, Annastasia

    2018-01-01

    Out of more than 1100 well-identified Type Ia Supernovae, only roughly 10 of them are at z> 1.5. High redshift supernovae are hard to detect but this is made easier by taking advantage of the effects of gravitational lensing, which magnifies objects in the background field of massive galaxy clusters. Supernova Nebra (z= ~1.8), among others, was discovered during observations taken as part of the RELICS survey, which focused on fields of view that experience strong gravitational lensing effects. SN Nebra, which sits behind galaxy cluster Abell 1763, is magnified and therefore appears closer and easier to see than with HST alone. Studying high-redshift supernovae like SN Nebra is an important step towards creating cosmological models that accurately describe the behavior of dark energy in the early Universe. Recent efforts have been focused on improving photometry and the building and fitting of preliminary light curves.

  8. Spectroscopic standardisation of Ia type supernovae within the frame of the Supernovae Legacy Survey

    International Nuclear Information System (INIS)

    Le Du, Jeremy

    2008-09-01

    This research thesis first proposes an overview of cosmology science since antiquity until modern times, of its fast development during the 20. century (discovery of galaxies, introduction of general relativity), of the standard cosmological model (Friedman-Lemaitre-Robertson-Walker metrics, equations of Friedman-Lemaitre, universe radius and curvature, universe evolution, energetic assessment), of the issue of black matter and black energy, and of cosmological probes (diffuse cosmological background, gravitational lenses). The second part presents supernovae: origin, explosion mechanisms, diversity, Ia supernovae). The third part presents the Supernovae Legacy Survey (SNLS): objectives and instruments of the SNLS program, detection strategy. The fourth part describes the spectroscopy of SNLS candidates to the VLT (Very Large Telescope): reduction of spectral data, subtraction of the host galaxy and identification of the supernova, assessment of method performance, flux and position errors, assessment of VLT observations. The fifth part discusses the variability of spectral characteristics of Ia supernovae: measurement of spectral indicators, study of SiII(4128A) line, study of the CaHandK region, equivalent depth as a new spectral indicator. The sixth part discusses cosmological implications of the SNLS, and the last part briefly reports and comments the measurement of spectroscopic indicators in the SNAP/JDEM experiment

  9. Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants

    DEFF Research Database (Denmark)

    Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.

    2016-01-01

    The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for micr......The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism...... for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends...

  10. Measurement of the evolution of type Ia supernovae explosion rate as a function of redshift in the SuperNovae Legacy Survey

    International Nuclear Information System (INIS)

    Ripoche, Pascal

    2007-01-01

    This research thesis reports works performed within the frame of the SuperNovae Legacy Survey (SNLS) which is one of the second-generation experiment exploiting Ia supernovae as cosmological source, and allows 8 billions or years of universe expansion to be observed by means of the Canada France Hawaii Telescope and a systematic detection of supernovae. The first part addresses cosmology and supernovae, and notably shows how Ia supernovae can used as cosmological probe to constraint cosmological parameters. Other methods of measurement of these parameters are briefly explained. The SNLS experiment is then presented: description of the experiment and of the supernovae detection chain, image processing. The author then presents a detailed simulation which has been developed to simulate Ia supernovae on the experiment images. He also presents associated tools and tests. This simulation is then used to study the efficiencies and weaknesses of supernovae detection by the SNLS. The measurement of the Ia supernovae explosion rate is then measured with respect to cosmic evolution [fr

  11. Offline analysis of the SuperNova Legacy Survey data

    International Nuclear Information System (INIS)

    Bazin, Gurvan

    2008-01-01

    This thesis aims at developing a photometry-based procedure for the selection of Type Ia Supernovae. More precisely, a first objective is to confirm possible biases in the spectroscopic selection of the SuperNova Legacy Survey (SNLS), and to determine their consequence on the distance module. A second one is to to study the feasibility of a purely photometric analysis within the perspective of future large projects in cosmology. After a presentation of supernovae, of their physical properties, and more particularly those which are used in cosmology, i.e. Type Ia Supernovae (SNe Ia), the author presents the cosmological framework, and the parameters of the standard cosmological model (Hubble constant, matter density, black energy density). The experimental context is then presented with measurements of the Canada France Hawaii Telescope Legacy Survey (CFHTLS), and a method used to search for SNe Ia. In the next part, the author describes the different steps of the differed procedure of data processing, from raw images directly extracted from the telescope to the characterisation of light curves of detected objects. Different tools are presented: the SALT2 model of light curves, the simulation of SNe Ia light curves, and an image simulation. The purely photometric selection of SNe Ia is then presented along with steps used to eliminate background noise. Obtained results are then discussed and compared with real time analysis [fr

  12. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  13. A Moderate Redshift Supernova Search Program

    Science.gov (United States)

    Adams, M. T.; Wheeler, J. C.; Ward, M.; Wren, W. R.; Schmidt, B. P.

    1995-12-01

    We report on a recently initiated supernova (SN) search program using the McDonald Observatory 0.76m telescope and Prime Focus Camera (PFC). This SN search program takes advantage of the PFC's 42.6 x 42.6 arcmin FOV to survey moderate redshift Abell clusters in single Kron-Cousins R-band images. Our scientific goal is to discover and provide quality BVRI photometric follow-up, to R \\ +21, for a significant SNe sample at 0.03 group (Perlmutter et al 1995, ApJ, 440, L41), and the High Redshift SN Search Team (Schmidt et al 1995, Aiguiblava NATO ASI Proceedings). The McDonald SN search program includes a sample of the Abell clusters used by Lauer and Postman (1994, ApJ, 425, 418) to analyze Local Group motion. SNe discovered in these clusters contribute to the resolution of the Local Group motion controversy. We present an overview of the McDonald Observatory supernova search program, and discuss recent results.

  14. The sloan digital sky Survey-II supernova survey: search algorithm and follow-up observations

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Becker, Andrew; Hogan, Craig J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Cinabro, David [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); DeJongh, Fritz; Frieman, Joshua A.; Marriner, John; Miknaitis, Gajus [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Depoy, D. L.; Prieto, Jose Luis [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210-1173 (United States); Dilday, Ben; Kessler, Richard [Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue Chicago, IL 60637 (United States); Doi, Mamoru [Institute of Astronomy, Graduate School of Science, University of Tokyo 2-21-1, Osawa, Mitaka, Tokyo 181-0015 (Japan); Garnavich, Peter M. [University of Notre Dame, 225 Nieuwland Science, Notre Dame, IN 46556-5670 (United States); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Jha, Saurabh [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, P.O. Box 20450, MS29, Stanford, CA 94309 (United States); Konishi, Kohki [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan); Lampeitl, Hubert [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Nichol, Robert C. [Institute of Cosmology and Gravitation, Mercantile House, Hampshire Terrace, University of Portsmouth, Portsmouth PO1 2EG (United Kingdom); and others

    2008-01-01

    The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg{sup 2} region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the type Ia SNe, the main driver for the survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

  15. The Sloan Digital Sky Survey-II Supernova Survey:Search Algorithm and Follow-up Observations

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao; /Pennsylvania U. /KIPAC, Menlo Park; Bassett, Bruce; /Cape Town U. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Cinabro, David; /Wayne State U.; DeJongh, Don Frederic; /Fermilab; Depoy, D.L.; /Ohio State U.; Doi, Mamoru; /Tokyo U.; Garnavich, Peter M.; /Notre Dame U.; Craig, Hogan, J.; /Washington U., Seattle, Astron. Dept.; Holtzman, Jon; /New Mexico State U.; Jha, Saurabh; /Stanford U., Phys. Dept.; Konishi, Kohki; /Tokyo U.; Lampeitl, Hubert; /Baltimore, Space; Marriner, John; /Fermilab; Miknaitis, Gajus; /Fermilab; Nichol, Robert C.; /Portsmouth U.; Prieto, Jose Luis; /Ohio State U.; Richmond, Michael W.; /Rochester Inst.; Schneider, Donald P.; /Penn State U., Astron. Astrophys.; Smith, Mathew; /Portsmouth U.; SubbaRao, Mark; /Chicago U. /Tokyo U. /Tokyo U. /South African Astron. Observ. /Tokyo

    2007-09-14

    The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg2 region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, Galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the Type Ia SNe, the main driver for the Survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

  16. The Foundation Supernova Survey: motivation, design, implementation, and first data release

    Science.gov (United States)

    Foley, Ryan J.; Scolnic, Daniel; Rest, Armin; Jha, S. W.; Pan, Y.-C.; Riess, A. G.; Challis, P.; Chambers, K. C.; Coulter, D. A.; Dettman, K. G.; Foley, M. M.; Fox, O. D.; Huber, M. E.; Jones, D. O.; Kilpatrick, C. D.; Kirshner, R. P.; Schultz, A. S. B.; Siebert, M. R.; Flewelling, H. A.; Gibson, B.; Magnier, E. A.; Miller, J. A.; Primak, N.; Smartt, S. J.; Smith, K. W.; Wainscoat, R. J.; Waters, C.; Willman, M.

    2018-03-01

    The Foundation Supernova Survey aims to provide a large, high-fidelity, homogeneous, and precisely calibrated low-redshift Type Ia supernova (SN Ia) sample for cosmology. The calibration of the current low-redshift SN sample is the largest component of systematic uncertainties for SN cosmology, and new data are necessary to make progress. We present the motivation, survey design, observation strategy, implementation, and first results for the Foundation Supernova Survey. We are using the Pan-STARRS telescope to obtain photometry for up to 800 SNe Ia at z ≲ 0.1. This strategy has several unique advantages: (1) the Pan-STARRS system is a superbly calibrated telescopic system, (2) Pan-STARRS has observed 3/4 of the sky in grizyP1 making future template observations unnecessary, (3) we have a well-tested data-reduction pipeline, and (4) we have observed ˜3000 high-redshift SNe Ia on this system. Here, we present our initial sample of 225 SN Ia grizP1 light curves, of which 180 pass all criteria for inclusion in a cosmological sample. The Foundation Supernova Survey already contains more cosmologically useful SNe Ia than all other published low-redshift SN Ia samples combined. We expect that the systematic uncertainties for the Foundation Supernova Sample will be two to three times smaller than other low-redshift samples. We find that our cosmologically useful sample has an intrinsic scatter of 0.111 mag, smaller than other low-redshift samples. We perform detailed simulations showing that simply replacing the current low-redshift SN Ia sample with an equally sized Foundation sample will improve the precision on the dark energy equation-of-state parameter by 35 per cent, and the dark energy figure of merit by 72 per cent.

  17. A Type II Supernova Hubble diagram from the CSP-I, SDSS-II, and SNLS surveys

    OpenAIRE

    de Jaeger, T.; González-Gaitán, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutiérrez, C. P.; Hook, I. M.; Howell, D. Andrew; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.

    2016-01-01

    The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and th...

  18. The dark energy survey Y1 supernova search: Survey strategy compared to forecasts and the photometric type Is SN volumetric rate

    Science.gov (United States)

    Fischer, John Arthur

    For 70 years, the physics community operated under the assumption that the expansion of the Universe must be slowing due to gravitational attraction. Then, in 1998, two teams of scientists used Type Ia supernovae to discover that cosmic expansion was actually acceler- ating due to a mysterious "dark energy." As a result, Type Ia supernovae have become the most cosmologically important transient events in the last 20 years, with a large amount of effort going into their discovery as well as understanding their progenitor systems. One such probe for understanding Type Ia supernovae is to use rate measurements to de- termine the time delay between star formation and supernova explosion. For the last 30 years, the discovery of individual Type Ia supernova events has been accelerating. How- ever, those discoveries were happening in time-domain surveys that probed only a portion of the redshift range where expansion was impacted by dark energy. The Dark Energy Survey (DES) is the first project in the "next generation" of time-domain surveys that will discovery thousands of Type Ia supernovae out to a redshift of 1.2 (where dark energy be- comes subdominant) and DES will have better systematic uncertainties over that redshift range than any survey to date. In order to gauge the discovery effectiveness of this survey, we will use the first season's 469 photometrically typed supernovee and compare it with simulations in order to update the full survey Type Ia projections from 3500 to 2250. We will then use 165 of the 469 supernovae out to a redshift of 0.6 to measure the supernovae rate both as a function of comoving volume and of the star formation rate as it evolves with redshift. We find the most statistically significant prompt fraction of any survey to date (with a 3.9? prompt fraction detection). We will also reinforce the already existing tension in the measurement of the delayed fraction between high (z > 1.2) and low red- shift rate measurements, where we find no

  19. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    Energy Technology Data Exchange (ETDEWEB)

    Möller, A. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J. [Irfu, SPP, CEA Saclay, F-91191 Gif sur Yvette Cedex (France); Carlberg, R. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Lidman, C. [Australian Astronomical Observatory, North Ryde, NSW 2113 (Australia); Pritchet, C., E-mail: anais.moller@anu.edu.au, E-mail: vanina.ruhlmann-kleider@cea.fr, E-mail: clement.leloup@cea.fr, E-mail: jneveu@lal.in2p3.fr, E-mail: nathalie.palanque-delabrouille@cea.fr, E-mail: james.rich@cea.fr, E-mail: raymond.carlberg@utoronto.ca, E-mail: chris.lidman@aao.gov.au, E-mail: pritchet@uvic.ca [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada)

    2016-12-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.

  20. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    International Nuclear Information System (INIS)

    Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J.; Carlberg, R.; Lidman, C.; Pritchet, C.

    2016-01-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.

  1. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Smith, Mathew; /Cape Town U., Dept. Math. /Portsmouth U.; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Filippenko, Alexei V.; /UC, Berkeley; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

  2. THE EXTENDED HUBBLE SPACE TELESCOPE SUPERNOVA SURVEY: THE RATE OF CORE COLLAPSE SUPERNOVAE TO z {approx} 1

    Energy Technology Data Exchange (ETDEWEB)

    Dahlen, Tomas; Riess, Adam G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Strolger, Louis-Gregory [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Mattila, Seppo; Kankare, Erkki [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Mobasher, Bahram, E-mail: dahlen@stsci.edu [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2012-09-20

    We use a sample of 45 core collapse supernovae detected with the Advanced Camera for Surveys on board the Hubble Space Telescope to derive the core collapse supernova rate in the redshift range 0.1 < z < 1.3. In redshift bins centered on (z) = 0.39, (z) = 0.73, and (z) = 1.11, we find rates of 3.00{sup +1.28}{sub -0.94} {sup +1.04}{sub -0.57}, 7.39{sup +1.86}{sub -1.52} {sup +3.20}{sub -1.60}, and 9.57{sup +3.76}{sub -2.80} {sup +4.96}{sub -2.80}, respectively, given in units of yr{sup -1} Mpc{sup -3} 10{sup -4} h {sup 3}{sub 70}. The rates have been corrected for host galaxy extinction, including supernovae missed in highly dust-enshrouded environments in infrared bright galaxies. The first errors are statistical while the second ones are the estimated systematic errors. We perform a detailed discussion of possible sources of systematic errors and note that these start to dominate over statistical errors at z > 0.5, emphasizing the need to better control the systematic effects. For example, a better understanding of the amount of dust extinction in the host galaxies and knowledge of the supernova luminosity function, in particular the fraction of faint M {approx}> -15 supernovae, is needed to better constrain the rates. When comparing our results with the core collapse supernova rate based on the star formation rate, we find a good agreement, consistent with the supernova rate following the star formation rate, as expected.

  3. Analysis of the 5-year final dataset of the Supernova Legacy Survey project

    International Nuclear Information System (INIS)

    Fourmanoit, N.

    2010-01-01

    The Supernova Legacy Survey (SNLS) is a program that aims at discovering and photometrically following hundreds of Type Ia supernovae (SNe Ia). Its goal is to measure the expansion history of the Universe in order to constrain the nature of the dark energy, namely its equation of state w DE . The survey completed its data taking during summer 2008 after 5 years of program. This thesis work consists in the analysis of these 5 years of SNLS data and the photometry of the 419 Type Ia supernovae discovered and spectroscopically identified. For each supernova, the light-curves are produced in the g M r M i M z M bands, calibrated and fitted with a spectrophotometric model. A new photometric method which does not make use of any pixel re-sampling has also been implemented and tested. This method preserves the pixels statistical properties, and produces this way more accurate flux measurement statistical uncertainties, that can be propagated to cosmological measurements. Both photometry results were checked and compared using calibration stars and supernovae, proving that the accuracy of the new method flux measurement uncertainty is indeed better, and that the photometric accuracy and stability of both techniques are similar. A sample of supernovae with unprecedented statistics and quality is now available for cosmological analysis. With the complement of an external nearby supernovae sample, a measurement within 5% of the dark energy equation of state of dark energy is thus for the first time within reach. (author)

  4. A HIGHLY MAGNIFIED SUPERNOVA AT z = 1.703 BEHIND THE MASSIVE GALAXY CLUSTER A1689

    Energy Technology Data Exchange (ETDEWEB)

    Amanullah, R.; Goobar, A.; Joensson, J.; Moertsell, E.; Nordin, J. [Department of Physics, Stockholm University, Albanova University Centre, SE 106-91 Stockholm (Sweden); Clement, B.; Cuby, J.-G.; Kneib, J.-P.; Limousin, M. [Laboratoire d' Astrophysique de Marseille, UMR 6610, CNRS-Universite de Provence, 13388 Marseille Cedex 13 (France); Dahle, H. [Institute of Theoretical Astrophysics, University of Oslo, Blindern, N-0315 Oslo (Norway); Dahlen, T. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Hjorth, J.; Milvang-Jensen, B.; Richard, J.; Watson, D. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Fabbro, S. [Department of Physics and Astronomy, University of Victoria, Victoria BC V8T 1M8 (Canada); Lidman, C. [Australian Astronomical Observatory, Epping, NSW 1710 (Australia); Paech, K. [Physikalisches Institut, Universitaet Bonn, 53115 Bonn (Germany); Riehm, T. [The Oskar Klein Centre, Physics Department, Stockholm University, Albanova University Centre, SE 106-91 Stockholm (Sweden); Stanishev, V., E-mail: rahman@fysik.su.se [CENTRA-Centro Multidisciplinar de Astrofisica, IST, 1049-001 Lisboa (Portugal)

    2011-11-20

    Our ability to study the most remote supernova explosions, crucial for the understanding of the evolution of the high-redshift universe and its expansion rate, is limited by the light collection capabilities of telescopes. However, nature offers unique opportunities to look beyond the range within reach of our unaided instruments thanks to the light-focusing power of massive galaxy clusters. Here we report on the discovery of one of the most distant supernovae ever found, at redshift z = 1.703. Due to a lensing magnification factor of 4.3 {+-} 0.3, we are able to measure a light curve of the supernova, as well as spectroscopic features of the host galaxy with a precision comparable to what would otherwise only be possible with future generation telescopes.

  5. High-redshift supernova rates measured with the gravitational telescope A 1689

    OpenAIRE

    Petrushevska, T.; Amanullah, R.; Goobar, A.; Fabbro, S.; Johansson, J.; Kjellsson, T.; Lidman, C.; Paech, K.; Richard, J.; Dahle, Håkon; Ferretti, R.; Kneib, J.-P.; Limousin, M.; Nordin, J.; Stanishev, V.

    2016-01-01

    Aims. We present a ground-based, near-infrared search for lensed supernovae behind the massive cluster Abell 1689 at z = 0.18, which is one of the most powerful gravitational telescopes that nature provides. Methods. Our survey was based on multi-epoch J-band observations with the HAWK-I instrument on VLT, with supporting optical data from the Nordic Optical Telescope. Results. Our search resulted in the discovery of five photometrically classified, core-collapse supernovae with high re...

  6. Type Ia supernova rate studies from the SDSS-II Supernova Study

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin [Univ. of Chicago, IL (United States)

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  7. REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Perrett, K.; Conley, A.; Carlberg, R.; Balam, D.; Hook, I. M.; Sullivan, M.; Pritchet, C.; Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Basa, S.; Fouchez, D.; Howell, D. A.

    2010-01-01

    The Supernova Legacy Survey (SNLS) has produced a high-quality, homogeneous sample of Type Ia supernovae (SNe Ia) out to redshifts greater than z = 1. In its first four years of full operation (to 2007 June), the SNLS discovered more than 3000 transient candidates, 373 of which have been spectroscopically confirmed as SNe Ia. Use of these SNe Ia in precision cosmology critically depends on an analysis of the observational biases incurred in the SNLS survey due to the incomplete sampling of the underlying SN Ia population. This paper describes our real-time supernova detection and analysis procedures, and uses detailed Monte Carlo simulations to examine the effects of Malmquist bias and spectroscopic sampling. Such sampling effects are found to become apparent at z ∼ 0.6, with a significant shift in the average magnitude of the spectroscopically confirmed SN Ia sample toward brighter values for z ∼> 0.75. We describe our approach to correct for these selection biases in our three-year SNLS cosmological analysis (SNLS3) and present a breakdown of the systematic uncertainties involved.

  8. Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404

    DEFF Research Database (Denmark)

    Gall, C.; Stritzinger, M. D.; Ashall, C.

    2018-01-01

    We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Delta m(15)(B) decline-rate values of...

  9. The Data Release of the Sloan Digital Sky Survey-II Supernova Survey

    Science.gov (United States)

    Sako, Masao; Bassett, Bruce; Becker, Andrew C.; Brown, Peter J.; Campbell, Heather; Wolf, Rachel; Cinabro, David; D’Andrea, Chris B.; Dawson, Kyle S.; DeJongh, Fritz; Depoy, Darren L.; Dilday, Ben; Doi, Mamoru; Filippenko, Alexei V.; Fischer, John A.; Foley, Ryan J.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Goobar, Ariel; Gupta, Ravi R.; Hill, Gary J.; Hayden, Brian T.; Hlozek, Renée; Holtzman, Jon A.; Hopp, Ulrich; Jha, Saurabh W.; Kessler, Richard; Kollatschny, Wolfram; Leloudas, Giorgos; Marriner, John; Marshall, Jennifer L.; Miquel, Ramon; Morokuma, Tomoki; Mosher, Jennifer; Nichol, Robert C.; Nordin, Jakob; Olmstead, Matthew D.; Östman, Linda; Prieto, Jose L.; Richmond, Michael; Romani, Roger W.; Sollerman, Jesper; Stritzinger, Max; Schneider, Donald P.; Smith, Mathew; Wheeler, J. Craig; Yasuda, Naoki; Zheng, Chen

    2018-06-01

    This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources discovered through repeat ugriz imaging of SDSS Stripe 82, a 300 deg2 area along the celestial equator. This data release is comprised of all transient sources brighter than r ≃ 22.5 mag with no history of variability prior to 2004. Dedicated spectroscopic observations were performed on a subset of 889 transients, as well as spectra for thousands of transient host galaxies using the SDSS-III BOSS spectrographs. Photometric classifications are provided for the candidates with good multi-color light curves that were not observed spectroscopically, using host galaxy redshift information when available. From these observations, 4607 transients are either spectroscopically confirmed, or likely to be, supernovae, making this the largest sample of supernova candidates ever compiled. We present a new method for SN host-galaxy identification and derive host-galaxy properties including stellar masses, star formation rates, and the average stellar population ages from our SDSS multi-band photometry. We derive SALT2 distance moduli for a total of 1364 SN Ia with spectroscopic redshifts as well as photometric redshifts for a further 624 purely photometric SN Ia candidates. Using the spectroscopically confirmed subset of the three-year SDSS-II SN Ia sample and assuming a flat ΛCDM cosmology, we determine Ω M = 0.315 ± 0.093 (statistical error only) and detect a non-zero cosmological constant at 5.7σ.

  10. The Data Release of the Sloan Digital Sky Survey-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao; et al.

    2014-01-14

    This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources discovered through repeat ugriz imaging of SDSS Stripe 82, a 300 deg2 area along the celestial equator. This data release is comprised of all transient sources brighter than r~22.5 mag with no history of variability prior to 2004. Dedicated spectroscopic observations were performed on a subset of 889 transients, as well as spectra for thousands of transient host galaxies using the SDSS-III BOSS spectrographs. Photometric classifications are provided for the candidates with good multi-color light curves that were not observed spectroscopically. From these observations, 4607 transients are either spectroscopically confirmed, or likely to be, supernovae, making this the largest sample of supernova candidates ever compiled. We present a new method for SN host-galaxy identification and derive host-galaxy properties including stellar masses, star-formation rates, and the average stellar population ages from our SDSS multi-band photometry. We derive SALT2 distance moduli for a total of 1443 SN Ia with spectroscopic redshifts as well as photometric redshifts for a further 677 purely-photometric SN Ia candidates. Using the spectroscopically confirmed subset of the three-year SDSS-II SN Ia sample and assuming a flat Lambda-CDM cosmology, we determine Omega_M = 0.315 +/- 0.093 (statistical error only) and detect a non-zero cosmological constant at 5.7 sigmas.

  11. SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Conley, A.; Carlberg, R. G.; Perrett, K. M.; Guy, J.; Regnault, N.; Astier, P.; Balland, C.; Hardin, D.; Pain, R.; Sullivan, M.; Hook, I. M.; Basa, S.; Fouchez, D.; Howell, D. A.; Palanque-Delabrouille, N.; Rich, J.; Ruhlmann-Kleider, V.; Pritchet, C. J.; Balam, D.; Baumont, S.

    2011-01-01

    We combine high-redshift Type Ia supernovae from the first three years of the Supernova Legacy Survey (SNLS) with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe (123 low-z, 93 SDSS, 242 SNLS, and 14 Hubble Space Telescope). SN data alone require cosmic acceleration at >99.999% confidence, including systematic effects. For the dark energy equation of state parameter (assumed constant out to at least z = 1.4) in a flat universe, we find w = -0.91 +0.16 -0.20 (stat) +0.07 -0.14 (sys) from SNe only, consistent with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing them using a systematic covariance matrix that incorporates the redshift dependence of these effects, as well as the shape-luminosity and color-luminosity relationships. Unlike previous work, we include the effects of systematic terms on the empirical light-curve models. The total systematic uncertainty is dominated by calibration terms. We describe how the systematic uncertainties can be reduced with soon to be available improved nearby and intermediate-redshift samples, particularly those calibrated onto USNO/SDSS-like systems.

  12. TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD

    International Nuclear Information System (INIS)

    D'Andrea, Chris B.; Sako, Masao; Dilday, Benjamin; Jha, Saurabh; Frieman, Joshua A.; Kessler, Richard; Holtzman, Jon; Konishi, Kohki; Yasuda, Naoki; Schneider, D. P.; Sollerman, Jesper; Wheeler, J. Craig; Cinabro, David; Nichol, Robert C.; Lampeitl, Hubert; Smith, Mathew; Atlee, David W.; Bassett, Bruce; Castander, Francisco J.; Goobar, Ariel

    2010-01-01

    We apply the Standardized Candle Method (SCM) for Type II Plateau supernovae (SNe II-P), which relates the velocity of the ejecta of a SN to its luminosity during the plateau, to 15 SNe II-P discovered over the three season run of the Sloan Digital Sky Survey-II Supernova Survey. The redshifts of these SNe-0.027 0.01) as all of the current literature on the SCM combined. We find that the SDSS SNe have a very small intrinsic I-band dispersion (0.22 mag), which can be attributed to selection effects. When the SCM is applied to the combined SDSS-plus-literature set of SNe II-P, the dispersion increases to 0.29 mag, larger than the scatter for either set of SNe separately. We show that the standardization cannot be further improved by eliminating SNe with positive plateau decline rates, as proposed in Poznanski et al. We thoroughly examine all potential systematic effects and conclude that for the SCM to be useful for cosmology, the methods currently used to determine the Fe II velocity at day 50 must be improved, and spectral templates able to encompass the intrinsic variations of Type II-P SNe will be needed.

  13. Observational Constraints on the Nature of the Dark Energy: First Cosmological Results From the ESSENCE Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, W.Michael; Miknaitis, G.; Stubbs, C.W.; Jha, S.; Riess, A.G.; Garnavich, P.M.; Kirshner, R.P.; Aguilera, C.; Becker, A.C.; Blackman, J.W.; Blondin, S.; Challis, P.; Clocchiatti, A.; Conley, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Foley, R.J.; Garg, A.; Hicken, M.; Krisciunas, K.; /Harvard-Smithsonian Ctr. Astrophys.

    2007-01-05

    We present constraints on the dark energy equation-of-state parameter, w = P/({rho}c{sup 2}), using 60 Type Ia supernovae (SNe Ia) from the ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat Universe. By including constraints on ({Omega}{sub M}, w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1.05{sub -0.12}{sup +0.13} (stat 1{sigma}) {+-} 0.13 (sys) and {Omega}{sub M} = 0.274{sub -0.020}{sup +0.033} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.96. These results are consistent with those reported by the Super-Nova Legacy Survey in a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic currently with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the SuperNova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1.07{sub -0.09}{sup +0.09} (stat 1{sigma}) {+-} 0.13 (sys), {Omega}{sub M} = 0.267{sub -0.018}{sup +0.028} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.91. The current SNe Ia data are fully consistent with a cosmological constant.

  14. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  15. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  16. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Liotine, Camille; Pomian, Katarzyna [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, Richard; Scolnic, Daniel M. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Goldstein, Daniel A. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); D’Andrea, Chris B.; Nichol, Robert C.; Papadopoulos, Andreas [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sullivan, Mark [Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Carretero, Jorge; Castander, Francisco J. [Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Bellaterra, Barcelona (Spain); Finley, David A. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fischer, John A.; Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Foley, Ryan J. [Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Kim, Alex G., E-mail: raviryan@gmail.com [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  17. Cosmology with cluster surveys

    Indian Academy of Sciences (India)

    Abstract. Surveys of clusters of galaxies provide us with a powerful probe of the den- sity and nature of the dark energy. The red-shift distribution of detected clusters is highly sensitive to the dark energy equation of state parameter w. Upcoming Sunyaev–. Zel'dovich (SZ) surveys would provide us large yields of clusters to ...

  18. Spectroscopic Determination of the Low Redshift Type Ia Supernova Rate from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Krughoff, K.Simon; Connolly, Andrew J.; Frieman, Joshua; SubbaRao, Mark; Kilper, Gary; Schneider, Donald P.

    2011-04-10

    Supernova rates are directly coupled to high mass stellar birth and evolution. As such, they are one of the few direct measures of the history of cosmic stellar evolution. In this paper we describe an probabilistic technique for identifying supernovae within spectroscopic samples of galaxies. We present a study of 52 type Ia supernovae ranging in age from -14 days to +40 days extracted from a parent sample of \\simeq 50,000 spectra from the SDSS DR5. We find a Supernova Rate (SNR) of 0.472^{+0.048}_{-0.039}(Systematic)^{+0.081}_{-0.071}(Statistical)SNu at a redshift of = 0.1. This value is higher than other values at low redshift at the 1{\\sigma}, but is consistent at the 3{\\sigma} level. The 52 supernova candidates used in this study comprise the third largest sample of supernovae used in a type Ia rate determination to date. In this paper we demonstrate the potential for the described approach for detecting supernovae in future spectroscopic surveys.

  19. Galaxy clusters, type Ia supernovae and the fine structure constant

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, R.F.L. [Departamento de Física, Universidade Estadual da Paraíba, street Baraúnas, Campina Grande, PB, 58429-500 (Brazil); Busti, V.C. [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP, CEP 05508-090 Brazil (Brazil); Colaço, L.R. [Departamento de Física, Universidade Federal de Campina Grande, street Aprígio Veloso, Campina Grande, PB, 58429-900 (Brazil); Alcaniz, J.S. [Observatório Nacional, Street José Cristino, Rio de Janeiro, RJ, 20921-400 (Brazil); Landau, S.J., E-mail: holanda@uepb.edu.br, E-mail: viniciusbusti@gmail.com, E-mail: colacolrc@gmail.com, E-mail: alcaniz@on.br, E-mail: slandau@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Viamonte, Buenos Aires, 1053 Argentina (Argentina)

    2016-08-01

    As is well known, measurements of the Sunyaev-Zeldovich effect can be combined with observations of the X-ray surface brightness of galaxy clusters to estimate the angular diameter distance to these structures. In this paper, we show that this technique depends on the fine structure constant, α. Therefore, if α is a time-dependent quantity, e.g., α = α{sub 0}φ( z ), where φ is a function of redshift, we argue that current data do not provide the real angular diameter distance, D {sub A}( z ), to the cluster, but instead D {sub A}{sup data}( z ) = φ( z ){sup 2} D {sub A}( z ). We use this result to derive constraints on a possible variation of α for a class of dilaton runaway models considering a sample of 25 measurements of D {sub A}{sup data}( z ) in redshift range 0.023 < z < 0.784 and estimates of D {sub A}( z ) from current type Ia supernovae observations. We find no significant indication of variation of α with the present data.

  20. The ASAS-SN bright supernova catalogue - III. 2016

    DEFF Research Database (Denmark)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    2017-01-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d......This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d...

  1. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  2. Exploring the Outer Solar System with the ESSENCE Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Becker, A.C.; /Washington U., Seattle, Astron. Dept.; Arraki, K.; /Washington U., Seattle, Astron. Dept.; Kaib, N.A.; /Washington U., Seattle, Astron. Dept.; Wood-Vasey, W.M.; /Harvard-Smithsonian Ctr. Astrophys.; Aguilera, C.; /Cerro-Tololo InterAmerican Obs.; Blackman, J.W.; /Australian Natl. U., Canberra; Blondin, S.; /Harvard-Smithsonian Ctr. Astrophys.; Challis, P.; /Harvard-Smithsonian Ctr. Astrophys.; Clocchiatti, A.; /Rio de Janeiro, Pont. U. Catol.; Covarrubias, R.; /Kyushu Sangyo U.; Damke, G.; /Cerro-Tololo InterAmerican Obs.; Davis, T.M.; /Bohr Inst. /Queensland U.; Filippenko, A.V.; /UC, Berkeley; Foley, R.J.; /UC, Berkeley; Garg, A.; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Garnavich, P.M.; /Notre Dame U.; Hicken, M.; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Jha, S.; /Harvard U. /SLAC; Kirshner, R.P.; /Harvard-Smithsonian Ctr. Astrophys.; Krisciunas, K.; /Notre Dame U. /Texas A-M; Leibundgut, B.; /Munich, Tech. U. /UC, Berkeley /NOAO, Tucson /Washington U., Seattle, Astron. Dept. /Fermilab /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Chile U., Santiago /Ohio State U. /Cerro-Tololo InterAmerican Obs. /Harvard U. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Australian Natl. U., Canberra /Australian Natl. U., Canberra /Cerro-Tololo InterAmerican Obs. /Munich, Tech. U. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Cerro-Tololo InterAmerican Obs. /Texas A-M /Cerro-Tololo InterAmerican Obs.

    2011-11-10

    We report the discovery and orbital determination of 14 trans-Neptunian objects (TNOs) from the ESSENCE Supernova Survey difference imaging data set. Two additional objects discovered in a similar search of the SDSS-II Supernova Survey database were recovered in this effort. ESSENCE repeatedly observed fields far from the solar system ecliptic (-21{sup o} < {beta} < -5{sup o}), reaching limiting magnitudes per observation of I {approx} 23.1 and R {approx} 23.7. We examine several of the newly detected objects in detail, including 2003 UC{sub 414}, which orbits entirely between Uranus and Neptune and lies very close to a dynamical region that would make it stable for the lifetime of the solar system. 2003 SS{sub 422} and 2007 TA{sub 418} have high eccentricities and large perihelia, making them candidate members of an outer class of TNOs. We also report a new member of the 'extended' or 'detached' scattered disk, 2004 VN{sub 112}, and verify the stability of its orbit using numerical simulations. This object would have been visible to ESSENCE for only {approx}2% of its orbit, suggesting a vast number of similar objects across the sky. We emphasize that off-ecliptic surveys are optimal for uncovering the diversity of such objects, which in turn will constrain the history of gravitational influences that shaped our early solar system.

  3. Handbook of supernovae

    CERN Document Server

    Murdin, Paul

    2017-01-01

    This reference work gathers all of the latest research in the supernova field areas to create a definitive source book on supernovae, their remnants and related topics. It includes each distinct subdiscipline, including stellar types, progenitors, stellar evolution, nucleosynthesis of elements, supernova types, neutron stars and pulsars, black holes, swept up interstellar matter, cosmic rays, neutrinos from supernovae, supernova observations in different wavelengths, interstellar molecules and dust. While there is a great deal of primary and specialist literature on supernovae, with a great many scientific groups around the world focusing on the phenomenon and related subdisciplines, nothing else presents an overall survey. This handbook closes that gap at last. As a comprehensive and balanced collection that presents the current state of knowledge in the broad field of supernovae, this is to be used as a basis for further work and study by graduate students, astronomers and astrophysicists working in close/r...

  4. SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES

    International Nuclear Information System (INIS)

    Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao; Fischer, John A.; March, Marisa C.; Fischer, Johanna-Laina; D’Andrea, Chris B.; Smith, Mathew; Kessler, Rick; Scolnic, Daniel M.; Jha, Saurabh W.; Campbell, Heather; Nichol, Robert C.; Olmstead, Matthew D.; Richmond, Michael; Schneider, Donald P.

    2016-01-01

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties from the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.

  5. Supernova Photometric Lightcurve Classification

    Science.gov (United States)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  6. The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    OpenAIRE

    Graham, M. L.; Pritchet, C. J.; Sullivan, M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Pain, R.

    2009-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always

  7. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, E. P. J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Portegies Zwart, S. F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  8. A New Method to Constrain Supernova Fractions Using X-ray Observations of Clusters of Galaxies

    Science.gov (United States)

    Bulbul, Esra; Smith, Randall K.; Loewenstein, Michael

    2012-01-01

    Supernova (SN) explosions enrich the intracluster medium (ICM) both by creating and dispersing metals. We introduce a method to measure the number of SNe and relative contribution of Type Ia supernovae (SNe Ia) and core-collapse supernovae (SNe cc) by directly fitting X-ray spectral observations. The method has been implemented as an XSPEC model called snapec. snapec utilizes a single-temperature thermal plasma code (apec) to model the spectral emission based on metal abundances calculated using the latest SN yields from SN Ia and SN cc explosion models. This approach provides a self-consistent single set of uncertainties on the total number of SN explosions and relative fraction of SN types in the ICM over the cluster lifetime by directly allowing these parameters to be determined by SN yields provided by simulations. We apply our approach to XMM-Newton European Photon Imaging Camera (EPIC), Reflection Grating Spectrometer (RGS), and 200 ks simulated Astro-H observations of a cooling flow cluster, A3112.We find that various sets of SN yields present in the literature produce an acceptable fit to the EPIC and RGS spectra of A3112. We infer that 30.3% plus or minus 5.4% to 37.1% plus or minus 7.1% of the total SN explosions are SNe Ia, and the total number of SN explosions required to create the observed metals is in the range of (1.06 plus or minus 0.34) x 10(exp 9), to (1.28 plus or minus 0.43) x 10(exp 9), fromsnapec fits to RGS spectra. These values may be compared to the enrichment expected based on well-established empirically measured SN rates per star formed. The proportions of SNe Ia and SNe cc inferred to have enriched the ICM in the inner 52 kiloparsecs of A3112 is consistent with these specific rates, if one applies a correction for the metals locked up in stars. At the same time, the inferred level of SN enrichment corresponds to a star-to-gas mass ratio that is several times greater than the 10% estimated globally for clusters in the A3112 mass range.

  9. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE

    International Nuclear Information System (INIS)

    Galbany, Lluis; Hamuy, Mario; Jaeger, Thomas de; Moraga, Tania; González-Gaitán, Santiago; Gutiérrez, Claudia P.; Phillips, Mark M.; Morrell, Nidia I.; Thomas-Osip, Joanna; Suntzeff, Nicholas B.; Maza, José; González, Luis; Antezana, Roberto; Wishnjewski, Marina; Krisciunas, Kevin; Krzeminski, Wojtek; McCarthy, Patrick; Anderson, Joseph P.; Stritzinger, Maximilian; Folatelli, Gastón

    2016-01-01

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C and T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values

  10. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis; Hamuy, Mario; Jaeger, Thomas de; Moraga, Tania; González-Gaitán, Santiago; Gutiérrez, Claudia P. [Millennium Institute of Astrophysics, Universidad de Chile (Chile); Phillips, Mark M.; Morrell, Nidia I.; Thomas-Osip, Joanna [Carnegie Observatories, Las Campanas Observatory, Casilla 60, La Serena (Chile); Suntzeff, Nicholas B. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Maza, José; González, Luis; Antezana, Roberto; Wishnjewski, Marina [Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Krisciunas, Kevin [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Krzeminski, Wojtek [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); McCarthy, Patrick [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago (Chile); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University (Denmark); Folatelli, Gastón, E-mail: lgalbany@das.uchile.cl [Instituto de Astrofísica de La Plata (IALP, CONICET) (Argentina); and others

    2016-02-15

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C and T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.

  11. A Type II Supernova Hubble Diagram from the CSP-I, SDSS-II, and SNLS Surveys

    Science.gov (United States)

    de Jaeger, T.; González-Gaitán, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutiérrez, C. P.; Hook, I. M.; Howell, D. Andrew; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.; Folatelli, G.; Pritchet, C.; Basa, S.

    2017-02-01

    The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and the Supernova Legacy Survey. Applying the Photometric Color Method (PCM) to 73 SNe II with a redshift range of 0.01-0.5 and with no spectral information, we derive an intrinsic dispersion of 0.35 mag. A comparison with the Standard Candle Method (SCM) using 61 SNe II is also performed and an intrinsic dispersion in the Hubble diagram of 0.27 mag, I.e., 13% in distance uncertainties, is derived. Due to the lack of good statistics at higher redshifts for both methods, only weak constraints on the cosmological parameters are obtained. However, assuming a flat universe and using the PCM, we derive the universe’s matter density: {{{Ω }}}m={0.32}-0.21+0.30 providing a new independent evidence for dark energy at the level of two sigma. This paper includes data gathered with the 6.5 m Magellan Telescopes, with the du Pont and Swope telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program N-2005A-Q-11, GN-2005B-Q-7, GN-2006A-Q-7, GS-2005A-Q-11, GS-2005B-Q-6, and GS-2008B-Q-56). Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programmes 076.A-0156,078.D-0048, 080.A-0516, and 082.A-0526).

  12. From supernovae to galaxy clusters : observing the chemical enrichment in the hot intra-cluster medium

    NARCIS (Netherlands)

    Mernier, F.D.M.

    2017-01-01

    Whereas the extreme conditions of the first minutes after the Big Bang have produced nearly all the hydrogen and helium in the Universe, heavier elements - or metals - are synthesised in the core of stars and in supernova explosions. Currently, however, the behaviour of supernovae (and their stellar

  13. Supernovae and cosmology with future European facilities.

    Science.gov (United States)

    Hook, I M

    2013-06-13

    Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST.

  14. Studying dark energy with galaxy cluster surveys

    International Nuclear Information System (INIS)

    Mohr, Joseph J.; O'Shea, Brian; Evrard, August E.; Bialek, John; Haiman, Zoltan

    2003-01-01

    Galaxy cluster surveys provide a powerful means of studying the density and nature of the dark energy. The redshift distribution of detected clusters in a deep, large solid angle SZE or X-ray survey is highly sensitive to the dark energy equation of state. Accurate constraints at the 5% level on the dark energy equation of state require that systematic biases in the mass estimators must be controlled at better than the ∼10% level. Observed regularity in the cluster population and the availability of multiple, independent mass estimators suggests these precise measurements are possible. Using hydrodynamical simulations that include preheating, we show that the level of preheating required to explain local galaxy cluster structure has a dramatic effect on X-ray cluster surveys, but only a mild effect on SZE surveys. This suggests that SZE surveys may be optimal for cosmology while X-ray surveys are well suited for studies of the thermal history of the intracluster medium

  15. EVOLUTION IN THE VOLUMETRIC TYPE Ia SUPERNOVA RATE FROM THE SUPERNOVA LEGACY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Perrett, K.; Gonzalez-Gaitan, S.; Carlberg, R. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Sullivan, M.; Hook, I. M. [Department of Physics (Astrophysics), University of Oxford, DWB, Keble Road, Oxford OX1 3RH (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593 (United States); Fouchez, D. [CPPM, CNRS-IN2P3 and University Aix Marseille II, Case 907, 13288 Marseille cedex 9 (France); Ripoche, P. [Lawrence Berkeley National Laboratory, Mail Stop 50-232, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Neill, J. D. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125 (United States); Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N. [LPNHE, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, 75005 Paris (France); Balam, D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Basa, S. [Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, 38, rue Frederic Joliot-Curie, 13388 Marseille cedex 13 (France); Howell, D. A. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Palanque-Delabrouille, N. [DSM/IRFU/SPP, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Pritchet, C., E-mail: perrett@astro.utoronto.ca, E-mail: sullivan@astro.ox.ac.uk [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC, V8W 3P6 (Canada); and others

    2012-08-15

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate (SNR{sub Ia}) as a function of redshift for the first four years of data from the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). This analysis includes 286 spectroscopically confirmed and more than 400 additional photometrically identified SNe Ia within the redshift range 0.1 {<=} z {<=} 1.1. The volumetric SNR{sub Ia} evolution is consistent with a rise to z {approx} 1.0 that follows a power law of the form (1+z){sup {alpha}}, with {alpha} = 2.11 {+-} 0.28. This evolutionary trend in the SNLS rates is slightly shallower than that of the cosmic star formation history (SFH) over the same redshift range. We combine the SNLS rate measurements with those from other surveys that complement the SNLS redshift range, and fit various simple SN Ia delay-time distribution (DTD) models to the combined data. A simple power-law model for the DTD (i.e., {proportional_to}t{sup -{beta}}) yields values from {beta} = 0.98 {+-} 0.05 to {beta} = 1.15 {+-} 0.08 depending on the parameterization of the cosmic SFH. A two-component model, where SNR{sub Ia} is dependent on stellar mass (M{sub stellar}) and star formation rate (SFR) as SNR{sub Ia}(z) = A Multiplication-Sign M{sub stellar}(z) + B Multiplication-Sign SFR(z), yields the coefficients A = (1.9 {+-} 0.1) Multiplication-Sign 10{sup -14} SNe yr{sup -1} M{sup -1}{sub Sun} and B = (3.3 {+-} 0.2) Multiplication-Sign 10{sup -4} SNe yr{sup -1} (M{sub Sun} yr{sup -1}){sup -1}. More general two-component models also fit the data well, but single Gaussian or exponential DTDs provide significantly poorer matches. Finally, we split the SNLS sample into two populations by the light-curve width (stretch), and show that the general behavior in the rates of faster-declining SNe Ia (0.8 {<=} s < 1.0) is similar, within our measurement errors, to that of the slower objects (1.0 {<=} s < 1.3) out to z {approx} 0.8.

  16. Discovery of a Supernova in HST imaging of the MACSJ0717 Frontier Field

    Science.gov (United States)

    Rodney, Steven A.; Lotz, Jennifer; Strolger, Louis-Gregory

    2013-10-01

    We report the discovery of a supernova (SN) in Hubble Space Telescope (HST) observations centered on the galaxy cluster MACSJ0717. It was discovered in the F814W (i) band of the Advanced Camera for Surveys (ACS), in observations that were collected as part of the ongoing HST Frontier Fields (HFF) program (PI:J.Lotz, HST PID 13498). The FrontierSN ID for this object is SN HFF13Zar (nicknamed "SN Zara").

  17. Gravitational lensing in the supernova legacy survey (SNLS)

    Science.gov (United States)

    Kronborg, T.; Hardin, D.; Guy, J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Jönsson, J.; Pain, R.; Pedersen, K.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Sullivan, M.; Palanque-Delabrouille, N.; Ruhlmann-Kleider, V.

    2010-05-01

    Aims: The observed brightness of type Ia supernovae is affected by gravitational lensing caused by the mass distribution along the line of sight, which introduces an additional dispersion into the Hubble diagram. We look for evidence of lensing in the SuperNova Legacy Survey 3-year data set. Methods: We investigate the correlation between the residuals from the Hubble diagram and the gravitational magnification based on a modeling of the mass distribution of foreground galaxies. A deep photometric catalog, photometric redshifts, and well established mass luminosity relations are used. Results: We find evidence of a lensing signal with a 2.3σ significance. The current result is limited by the number of SNe, their redshift distribution, and the other sources of scatter in the Hubble diagram. Separating the galaxy population into a red and a blue sample has a positive impact on the significance of the signal detection. On the other hand, increasing the depth of the galaxy catalog, the precision of photometric redshifts or reducing the scatter in the mass luminosity relations have little effect. We show that for the full SuperNova Legacy Survey sample (~400 spectroscopically confirmed type Ia SNe and ~200 photometrically identified type Ia SNe), there is an 80% probability of detecting the lensing signal with a 3σ significance. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on observations obtained at the European Southern Observatory using the Very Large Telescope on

  18. The Gaia-ESO Survey: the present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters

    Science.gov (United States)

    Spina, L.; Randich, S.; Magrini, L.; Jeffries, R. D.; Friel, E. D.; Sacco, G. G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; Klutsch, A.; Montes, D.; Gilmore, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Hourihane, A.; Jofré, P.; Lewis, J.; Lind, K.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Context. The radial metallicity distribution in the Galactic thin disc represents a crucial constraint for modelling disc formation and evolution. Open star clusters allow us to derive both the radial metallicity distribution and its evolution over time. Aims: In this paper we perform the first investigation of the present-day radial metallicity distribution based on [Fe/H] determinations in late type members of pre-main-sequence clusters. Because of their youth, these clusters are therefore essential for tracing the current interstellar medium metallicity. Methods: We used the products of the Gaia-ESO Survey analysis of 12 young regions (age ages is not easily explained by the models. Our results reveal a complex interplay of several processes (e.g. star formation activity, initial mass function, supernova yields, gas flows) that controlled the recent evolution of the Milky Way. Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey).Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A70

  19. Dusty supernovae running the thermodynamics of the matter reinserted within young and massive super stellar clusters

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Martínez-González, Sergio [Instituto Nacional de Astrofísica Óptica y Electrónica, AP 51, 72000 Puebla (Mexico); Muñoz-Tuñón, Casiana [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Palouš, Jan; Wünsch, Richard, E-mail: gtt@inaoep.mx, E-mail: cmt@ll.iac.es [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, 141 31 Prague (Czech Republic)

    2013-12-01

    Following the observational and theoretical evidence that points at core-collapse supernovae (SNe) as major producers of dust, here we calculate the hydrodynamics of the matter reinserted within young and massive super stellar clusters under the assumption of gas and dust radiative cooling. The large SN rate expected in massive clusters allows for a continuous replenishment of dust immersed in the high temperature thermalized reinserted matter and warrants a stationary presence of dust within the cluster volume during the type II SN era. We first show that such a balance determines the range of the dust-to-gas-mass ratio, and thus the dust cooling law. We then search for the critical line that separates stationary cluster winds from the bimodal cases in the cluster mechanical luminosity (or cluster mass) versus cluster size parameter space. In the latter, strong radiative cooling reduces considerably the cluster wind mechanical energy output and affects particularly the cluster central regions, leading to frequent thermal instabilities that diminish the pressure and inhibit the exit of the reinserted matter. Instead, matter accumulates there and is expected to eventually lead to gravitational instabilities and to further stellar formation with the matter reinserted by former massive stars. The main outcome of the calculations is that the critical line is almost two orders of magnitude or more, depending on the assumed value of V {sub A∞}, lower than when only gas radiative cooling is applied. And thus, many massive clusters are predicted to enter the bimodal regime.

  20. A Precision Photometric Comparison between SDSS-II and CSP Type Ia Supernova Data

    DEFF Research Database (Denmark)

    Mosher, J.; Sako, M.; Corlies, L.

    2012-01-01

    Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data...

  1. The ASAS-SN bright supernova catalogue - III. 2016

    Science.gov (United States)

    Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Bose, S.; Beacom, J. F.; Bersier, D.; Chen, Ping; Chomiuk, L.; Falco, E.; Godoy-Rivera, D.; Morrell, N.; Pojmanski, G.; Shields, J. V.; Strader, J.; Stritzinger, M. D.; Thompson, Todd A.; Woźniak, P. R.; Bock, G.; Cacella, P.; Conseil, E.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Marples, P.; Masi, G.; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Post, R. S.; Stone, G.; Wiethoff, W. S.

    2017-11-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (mpeak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al. This is the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.

  2. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam,D.; Basa, S.; Carlberg, R.G.; Fabbro, S.; Fouchez, D.; Hook, I.M.; Howell, D.A.; Lafoux, H.; Neill, J.D.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C.J.; Rich, J.; Sullivan, M.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Courtois, H.; Ellis, R.S.; Filiol, M.; Goncalves, A.C.; Goobar, A.; Guide, D.; Hardin, D.; Lusset, V.; Lidman, C.; McMahon, R.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Tao, C.; Walton, N.

    2005-10-14

    We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multiband photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results: {Omega}{sub M} = 0.263 {+-} 0.042 (stat) {+-} 0.032 (sys) for a flat {Lambda}CDM model; and w = -1.023 {+-} 0.090 (stat) {+-} 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.

  3. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda, and w from the First Year Data Set

    Science.gov (United States)

    Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Lafoux, H.; Neill, J. D.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Rich, J.; Sullivan, M.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Courtois, H.; Ellis, R. S.; Filiol, M.; Goncalves, A. C.; Goobar, A.; Guide, D.; Hardin, D.; Lusset, V.; Lidman, C.; McMahon, R.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Tao, C.; Walton, N.

    2005-10-14

    We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multiband photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results: {Omega}{sub M} = 0.263 {+-} 0.042 (stat) {+-} 0.032 (sys) for a flat {Lambda}CDM model; and w = -1.023 {+-} 0.090 (stat) {+-} 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.

  4. Cluster cosmology with next-generation surveys.

    Science.gov (United States)

    Ascaso, B.

    2017-03-01

    The advent of next-generation surveys will provide a large number of cluster detections that will serve the basis for constraining cos mological parameters using cluster counts. The main two observational ingredients needed are the cluster selection function and the calibration of the mass-observable relation. In this talk, we present the methodology designed to obtain robust predictions of both ingredients based on realistic cosmological simulations mimicking the following next-generation surveys: J-PAS, LSST and Euclid. We display recent results on the selection functions for these mentioned surveys together with others coming from other next-generation surveys such as eROSITA, ACTpol and SPTpol. We notice that the optical and IR surveys will reach the lowest masses between 0.3surveys and introduce very preliminary results.

  5. Supernovae Discovery Efficiency

    Science.gov (United States)

    John, Colin

    2018-01-01

    Abstract:We present supernovae (SN) search efficiency measurements for recent Hubble Space Telescope (HST) surveys. Efficiency is a key component to any search, and is important parameter as a correction factor for SN rates. To achieve an accurate value for efficiency, many supernovae need to be discoverable in surveys. This cannot be achieved from real SN only, due to their scarcity, so fake SN are planted. These fake supernovae—with a goal of realism in mind—yield an understanding of efficiency based on position related to other celestial objects, and brightness. To improve realism, we built a more accurate model of supernovae using a point-spread function. The next improvement to realism is planting these objects close to galaxies and of various parameters of brightness, magnitude, local galactic brightness and redshift. Once these are planted, a very accurate SN is visible and discoverable by the searcher. It is very important to find factors that affect this discovery efficiency. Exploring the factors that effect detection yields a more accurate correction factor. Further inquires into efficiency give us a better understanding of image processing, searching techniques and survey strategies, and result in an overall higher likelihood to find these events in future surveys with Hubble, James Webb, and WFIRST telescopes. After efficiency is discovered and refined with many unique surveys, it factors into measurements of SN rates versus redshift. By comparing SN rates vs redshift against the star formation rate we can test models to determine how long star systems take from the point of inception to explosion (delay time distribution). This delay time distribution is compared to SN progenitors models to get an accurate idea of what these stars were like before their deaths.

  6. THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY

    International Nuclear Information System (INIS)

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Jha, Saurabh W.; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Nordin, Jakob; Im, Myungshin; Marriner, John; Miquel, Ramon; Oestman, Linda; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Sollerman, Jesper

    2010-01-01

    We present an analysis of the host galaxy dependences of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2σ and 3σ) that SNe Ia are ≅0.1 ± 0.04 mag brighter in passive host galaxies than in star-forming hosts, after the SN Ia light curves have been standardized using the light-curve shape and color variations. This difference in brightness is present in both the SALT2 and MCLS2k2 light-curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R V = 1.0 ± 0.2, while SNe Ia in star-forming hosts require R V = 1.8 +0.2 -0.4 . The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of >4σ) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  7. Low-z Type Ia Supernova Calibration

    Science.gov (United States)

    Hamuy, Mario

    The discovery of acceleration and dark energy in 1998 arguably constitutes one of the most revolutionary discoveries in astrophysics in recent years. This paradigm shift was possible thanks to one of the most traditional cosmological tests: the redshift-distance relation between galaxies. This discovery was based on a differential measurement of the expansion rate of the universe: the current one provided by nearby (low-z) type Ia supernovae and the one in the past measured from distant (high-z) supernovae. This paper focuses on the first part of this journey: the calibration of the type Ia supernova luminosities and the local expansion rate of the universe, which was made possible thanks to the introduction of digital CCD (charge-coupled device) digital photometry. The new technology permitted us in the early 1990s to convert supernovae as precise tools to measure extragalactic distances through two key surveys: (1) the "Tololo Supernova Program" which made possible the critical discovery of the "peak luminosity-decline rate" relation for type Ia supernovae, the key underlying idea today behind precise cosmology from supernovae, and (2) the Calán/Tololo project which provided the low - z type Ia supernova sample for the discovery of acceleration.

  8. THE MASSIVE DISTANT CLUSTERS OF WISE SURVEY: THE FIRST DISTANT GALAXY CLUSTER DISCOVERED BY WISE

    International Nuclear Information System (INIS)

    Gettings, Daniel P.; Gonzalez, Anthony H.; Mancone, Conor; Stanford, S. Adam; Eisenhardt, Peter R. M.; Stern, Daniel; Brodwin, Mark; Zeimann, Gregory R.; Masci, Frank J.; Papovich, Casey; Tanaka, Ichi; Wright, Edward L.

    2012-01-01

    We present spectroscopic confirmation of a z = 0.99 galaxy cluster discovered using data from the Wide-field Infrared Survey Explorer (WISE). This is the first z ∼ 1 cluster candidate from the Massive Distant Clusters of WISE Survey to be confirmed. It was selected as an overdensity of probable z ∼> 1 sources using a combination of WISE and Sloan Digital Sky Survey DR8 photometric catalogs. Deeper follow-up imaging data from Subaru and WIYN reveal the cluster to be a rich system of galaxies, and multi-object spectroscopic observations from Keck confirm five cluster members at z = 0.99. The detection and confirmation of this cluster represents a first step toward constructing a uniformly selected sample of distant, high-mass galaxy clusters over the full extragalactic sky using WISE data.

  9. Comparing Dark Energy Survey and HST –CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Palmese, A.; Lahav, O.; Banerji, M.; Gruen, D.; Jouvel, S.; Melchior, P.; Aleksić, J.; Annis, J.; Diehl, H. T.; Hartley, W. G.; Jeltema, T.; Romer, A. K.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Suchyta, E.; Zhang, Y.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D.; Vikram, V.

    2016-08-20

    We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (five filters) with those from the Hubble Space Telescope Cluster Lensing And Supernova Survey (CLASH; 17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25 per cent of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f(star) = (6.8 +/- 1.7) x 10(-3) within a radius of r(200c) similar or equal to 2 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both data sets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the similar to 100 000 clusters that will be observed within this survey and yield important information about galaxy evolution.

  10. HD271791: dynamical versus binary-supernova ejection scenario

    Science.gov (United States)

    Gvaramadze, V. V.

    2009-05-01

    The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a =750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.

  11. LENSING NOISE IN MILLIMETER-WAVE GALAXY CLUSTER SURVEYS

    International Nuclear Information System (INIS)

    Hezaveh, Yashar; Vanderlinde, Keith; Holder, Gilbert; De Haan, Tijmen

    2013-01-01

    We study the effects of gravitational lensing by galaxy clusters of the background of dusty star-forming galaxies (DSFGs) and the cosmic microwave background (CMB), and examine the implications for Sunyaev-Zel'dovich-based (SZ) galaxy cluster surveys. At the locations of galaxy clusters, gravitational lensing modifies the probability distribution of the background flux of the DSFGs as well as the CMB. We find that, in the case of a single-frequency 150 GHz survey, lensing of DSFGs leads both to a slight increase (∼10%) in detected cluster number counts (due to a ∼50% increase in the variance of the DSFG background, and hence an increased Eddington bias) and a rare (occurring in ∼2% of clusters) 'filling-in' of SZ cluster signals by bright strongly lensed background sources. Lensing of the CMB leads to a ∼55% reduction in CMB power at the location of massive galaxy clusters in a spatially matched single-frequency filter, leading to a net decrease in detected cluster number counts. We find that the increase in DSFG power and decrease in CMB power due to lensing at cluster locations largely cancel, such that the net effect on cluster number counts for current SZ surveys is subdominant to Poisson errors

  12. Searching for supernovae in the multiply-imaged galaxies behind the gravitational telescope A370

    OpenAIRE

    Petrushevska, T.; Goobar, A.; Lagattuta, D. J.; Amanullah, R.; Hangard, L.; Fabbro, S.; Lidman, C.; Paech, K.; Richard, J.; Kneib, J. P.

    2018-01-01

    Strong lensing by massive galaxy clusters can provide magnification of the flux and even multiple images of the galaxies that lie behind them. This phenomenon facilitates observations of high-redshift supernovae (SNe), that would otherwise remain undetected. Type Ia supernovae (SNe Ia) detections are of particular interest because of their standard brightness, since they can be used to improve either cluster lensing models or cosmological parameter measurements. We present a ground-based, nea...

  13. Lensed Type Ia supernovae as probes of cluster mass models

    Science.gov (United States)

    Recherche Astronomique de Lyon, Université Lyon 1, 9 Avenue Charles Andre, F-69230 Saint Genis Laval calibrations will be crucial when next-generation Hubble Space Telescope cluster surveys (e.g. Frontier ) provide magnification maps that will, in turn, form the basis for the exploration of the high-redshift

  14. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints

    Science.gov (United States)

    Guy, J.; Sullivan, M.; Conley, A.; Regnault, N.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Fouchez, D.; Hardin, D.; Hook, I. M.; Howell, D. A.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K. M.; Pritchet, C. J.; Rich, J.; Ruhlmann-Kleider, V.; Balam, D.; Baumont, S.; Ellis, R. S.; Fabbro, S.; Fakhouri, H. K.; Fourmanoit, N.; González-Gaitán, S.; Graham, M. L.; Hsiao, E.; Kronborg, T.; Lidman, C.; Mourao, A. M.; Perlmutter, S.; Ripoche, P.; Suzuki, N.; Walker, E. S.

    2010-11-01

    Aims: We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Methods: Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. Results: A flat ΛCDM cosmological fit to 231 SNLS high redshift type Ia supernovae alone gives Ω_M = 0.211 ± 0.034(stat) ± 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of ±0.026 on Ω_M. No clear evidence is found for a possible evolution of the slope (β) of the colour-luminosity relation with redshift. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on observations obtained at the European Southern Observatory using the Very Large Telescope on the Cerro Paranal (ESO Large Programme 171.A-0486 & 176.A-0589). Based on observations (programs GS-2003B-Q-8, GN-2003B-Q-9, GS-2004A-Q-11, GN-2004A-Q-19, GS-2004B-Q-31, GN-2004B-Q-16, GS-2005A-Q-11, GN-2005A-Q-11, GS-2005B-Q-6, GN-2005B-Q-7, GN-2006A-Q-7, GN-2006B-Q-10) obtained at

  15. Expected impact from weak reactions with light nuclei in corecollapse supernova simulations

    Directory of Open Access Journals (Sweden)

    Fischer T.

    2016-01-01

    Full Text Available We study the role of light nuclear clusters in simulations of core-collapse supernovae. Expressions for the reaction rates are developed for a large selection of charged current absorption and scattering processes with light clusters. Medium modifications are taken into account at the mean-field level. We explore the possible impact on the supernova dynamics and the neutrino signal during the mass accretion phase prior to the possible explosion onset as well as during the subsequent protoneutron star deleptnoization after the explosion onset has been launched.

  16. The effect of peculiar velocities on supernova cosmology

    DEFF Research Database (Denmark)

    Davis, Tamara Maree; Hui, Lam; Frieman, Joshua A.

    2011-01-01

    We analyze the effect that peculiar velocities have on the cosmological inferences we make using luminosity distance indicators, such as Type Ia supernovae. In particular we study the corrections required to account for (1) our own motion, (2) correlations in galaxy motions, and (3) a possible lo...... when future surveys aim for percent-level accuracy and we recommend our statistical approach to down-weighting peculiar velocities as a more robust option than a sharp low-redshift cut....... local under- or overdensity. For all of these effects we present a case study showing the impact on the cosmology derived by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). Correcting supernova (SN) redshifts for the cosmic microwave background (CMB) dipole slightly overcorrects...... nearby SNe that share some of our local motion. We show that while neglecting the CMB dipole would cause a shift in the derived equation of state of ¿w ~ 0.04 (at fixed O m ), the additional local-motion correction is currently negligible (¿w

  17. The Type Ia Supernova Rate at z~0.5 from the Supernova Legacy Survey

    Science.gov (United States)

    Neill, J. D.; Sullivan, M.; Balam, D.; Pritchet, C. J.; Howell, D. A.; Perrett, K.; Astier, P.; Aubourg, E.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Pain, R.; Palanque-Delabrouille, N.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Ellis, R. S.; Filiol, M.; Gonçalves, A. C.; Hardin, D.; Kowalski, M.; Lidman, C.; Lusset, V.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Schlegel, D.; Tao, C.

    2006-09-01

    We present a measurement of the distant Type Ia supernova (SN Ia) rate derived from the first 2 yr of the Canada-France-Hawaii Telescope Supernova Legacy Survey. We observed four 1deg×1deg fields with a typical temporal frequency of ~4 observer-frame days over time spans of 158-211 days per season for each field, with breaks during the full Moon. We used 8-10 m class telescopes for spectroscopic follow-up to confirm our candidates and determine their redshifts. Our starting sample consists of 73 spectroscopically verified SNe Ia in the redshift range 0.2=0.47)=[0.42+0.13-0.09(syst.)+/-0.06(stat.)×10-4 yr-1 Mpc3, assuming h=0.7, Ωm=0.3, and a flat cosmology. Using recently published galaxy luminosity functions derived in our redshift range, we derive a SN Ia rate per unit luminosity of rL(=0.47)=0.154+0.048-0.033(syst.)+0.039-0.031(stat.) SN units. Using our rate alone, we place an upper limit on the component of SN Ia production that tracks the cosmic star formation history of 1 SN Ia per 103 Msolar of stars formed. Our rate and other rates from surveys using spectroscopic sample confirmation display only a modest evolution out to z=0.55. Based on observations obtained with MegaPrime/MegaCam, a joint project of the Canada-France-Hawaii Telescope (CFHT) and CEA/DAPNIA, at CFHT, which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. This work is also based on observations obtained at the European Southern Observatory using the Very Large Telescope on the Cerro Paranal (ESO Large Program 171.A-0486), and on observations (programs GN-2004A-Q-19, GS-2004A-Q-11, GN-2003B-Q-9, and GS-2003B-Q-8) obtained at the Gemini

  18. PHOTOMETRIC TYPE Ia SUPERNOVA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA

    International Nuclear Information System (INIS)

    Sako, Masao; Connolly, Brian; Gladney, Larry; Bassett, Bruce; Dilday, Benjamin; Cambell, Heather; Lampeitl, Hubert; Nichol, Robert C.; Frieman, Joshua A.; Kessler, Richard; Marriner, John; Miquel, Ramon; Schneider, Donald P.; Smith, Mathew; Sollerman, Jesper

    2011-01-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with ∼91% efficiency and with a contamination of ∼6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only ∼20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  19. Photometric type Ia supernova candidates from the three-year SDSS-II SN survey data

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao; /Pennsylvania U.; Bassett, Bruce; /South African Astron. Observ. /Cape Town U., Dept. Math.; Connolly, Brian; /Pennsylvania U.; Dilday, Benjamin; /Las Cumbres Observ. /UC, Santa Barbara /Rutgers U., Piscataway; Cambell, Heather; /Portsmouth U., ICG; Frieman, Joshua A.; /Chicago U. /Chicago U., KICP /Fermilab; Gladney, Larry; /Pennsylvania U.; Kessler, Richard; /Chicago U. /Chicago U., KICP; Lampeitl, Hubert; /Portsmouth U., ICG; Marriner, John; /Fermilab; Miquel, Ramon; /Barcelona, IFAE /ICREA, Barcelona /Portsmouth U., ICG

    2011-07-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with {approx}91% efficiency and with a contamination of {approx}6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only {approx}20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  20. Initial Hubble Diagram Results from the Nearby Supernova Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, S. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Aldering, G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antilogus, P. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Aragon, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Baltay, C. [Yale Univ., New Haven, CT (United States); Bongard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buton, C [Inst. of Nuclear Physics of Lyon (France); Childress, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Copin, Y. [Inst. of Nuclear Physics of Lyon (France); Gangler, E. [Inst. of Nuclear Physics of Lyon (France); Loken, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nugent, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pain, R. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Pecontal, E. [Center of Research Astrophysics of Lyon (CRAL) (France); Pereira, R. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Perlmutter, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rabinowitz, D. [Yale Univ., New Haven, CT (United States); Rigaudier, G. [Center of Research Astrophysics of Lyon (CRAL) (France); Ripoche, P. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Runge, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scalzo, R. [Yale Univ., New Haven, CT (United States); Smadja, G. [Inst. of Nuclear Physics of Lyon (France); Tao, C. [Inst. of Nuclear Physics of Lyon (France); Thomas, R. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, C. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France)

    2017-07-06

    The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagram (relative distance vs. redshift) and a description of some analyses using this rich dataset.

  1. Uniform Contribution of Supernova Explosions to the Chemical Enrichment of Abell 3112 out to R{sub 200}

    Energy Technology Data Exchange (ETDEWEB)

    Ezer, Cemile; Ercan, E. Nihal [Department of Physics, Boğaziçi University, Istanbul (Turkey); Bulbul, Esra; Bautz, Mark W.; McDonald, Mike; Miller, Eric D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Smith, Randall K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Loewenstein, Mike, E-mail: cemile.ezer@boun.edu.tr [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2017-02-10

    The spatial distribution of the metals residing in the intra-cluster medium (ICM) of galaxy clusters records all the information on a cluster’s nucleosynthesis and chemical enrichment history. We present measurements from a total of 1.2 Ms Suzaku XIS and 72 ks Chandra observations of the cool-core galaxy cluster Abell 3112 out to its virial radius (∼1470 kpc). We find that the ratio of the observed supernova type Ia explosions to the total supernova explosions has a uniform distribution at a level of 12%–16% out to the cluster’s virial radius. The observed fraction of type Ia supernova explosions is in agreement with the corresponding fraction found in our Galaxy and the chemical enrichment of our Galaxy. The non-varying supernova enrichment suggests that the ICM in cluster outskirts was enriched by metals at an early stage before the cluster itself was formed during a period of intense star formation activity. Additionally, we find that the 2D delayed detonation model CDDT produce significantly worse fits to the X-ray spectra compared to simple 1D W7 models. This is due to the relative overestimate of Si, and the underestimate of Mg in these models with respect to the measured abundances.

  2. A PRECISION PHOTOMETRIC COMPARISON BETWEEN SDSS-II AND CSP TYPE Ia SUPERNOVA DATA

    International Nuclear Information System (INIS)

    Mosher, J.; Sako, M.; Corlies, L.; Folatelli, G.; Frieman, J.; Kessler, R.; Holtzman, J.; Jha, S. W.; Marriner, J.; Phillips, M. M.; Morrell, N.; Stritzinger, M.; Schneider, D. P.

    2012-01-01

    Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter.

  3. Interacting supernovae and supernova impostors

    Science.gov (United States)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  4. The Extended Northern ROSAT Galaxy Cluster Survey (NORAS II). I. Survey Construction and First Results

    International Nuclear Information System (INIS)

    Böhringer, Hans; Chon, Gayoung; Trümper, Joachim; Retzlaff, Jörg; Meisenheimer, Klaus; Schartel, Norbert

    2017-01-01

    As the largest, clearly defined building blocks of our universe, galaxy clusters are interesting astrophysical laboratories and important probes for cosmology. X-ray surveys for galaxy clusters provide one of the best ways to characterize the population of galaxy clusters. We provide a description of the construction of the NORAS II galaxy cluster survey based on X-ray data from the northern part of the ROSAT All-Sky Survey. NORAS II extends the NORAS survey down to a flux limit of 1.8 × 10 −12 erg s −1 cm −2 (0.1–2.4 keV), increasing the sample size by about a factor of two. The NORAS II cluster survey now reaches the same quality and depth as its counterpart, the southern REFLEX II survey, allowing us to combine the two complementary surveys. The paper provides information on the determination of the cluster X-ray parameters, the identification process of the X-ray sources, the statistics of the survey, and the construction of the survey selection function, which we provide in numerical format. Currently NORAS II contains 860 clusters with a median redshift of z  = 0.102. We provide a number of statistical functions, including the log N –log S and the X-ray luminosity function and compare these to the results from the complementary REFLEX II survey. Using the NORAS II sample to constrain the cosmological parameters, σ 8 and Ω m , yields results perfectly consistent with those of REFLEX II. Overall, the results show that the two hemisphere samples, NORAS II and REFLEX II, can be combined without problems into an all-sky sample, just excluding the zone of avoidance.

  5. The Extended Northern ROSAT Galaxy Cluster Survey (NORAS II). I. Survey Construction and First Results

    Energy Technology Data Exchange (ETDEWEB)

    Böhringer, Hans; Chon, Gayoung; Trümper, Joachim [Max-Planck-Institut für Extraterrestrische Physik, D-85748 Garching (Germany); Retzlaff, Jörg [ESO, D-85748 Garching (Germany); Meisenheimer, Klaus [Max-Planck-Institut für Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Schartel, Norbert [ESAC, Camino Bajo del Castillo, Villanueva de la Cañada, E-28692 Madrid (Spain)

    2017-05-01

    As the largest, clearly defined building blocks of our universe, galaxy clusters are interesting astrophysical laboratories and important probes for cosmology. X-ray surveys for galaxy clusters provide one of the best ways to characterize the population of galaxy clusters. We provide a description of the construction of the NORAS II galaxy cluster survey based on X-ray data from the northern part of the ROSAT All-Sky Survey. NORAS II extends the NORAS survey down to a flux limit of 1.8 × 10{sup −12} erg s{sup −1} cm{sup −2} (0.1–2.4 keV), increasing the sample size by about a factor of two. The NORAS II cluster survey now reaches the same quality and depth as its counterpart, the southern REFLEX II survey, allowing us to combine the two complementary surveys. The paper provides information on the determination of the cluster X-ray parameters, the identification process of the X-ray sources, the statistics of the survey, and the construction of the survey selection function, which we provide in numerical format. Currently NORAS II contains 860 clusters with a median redshift of z  = 0.102. We provide a number of statistical functions, including the log N –log S and the X-ray luminosity function and compare these to the results from the complementary REFLEX II survey. Using the NORAS II sample to constrain the cosmological parameters, σ {sub 8} and Ω{sub m}, yields results perfectly consistent with those of REFLEX II. Overall, the results show that the two hemisphere samples, NORAS II and REFLEX II, can be combined without problems into an all-sky sample, just excluding the zone of avoidance.

  6. The CfA-Rosat Survey of Distant Clusters of Galaxies

    Science.gov (United States)

    McNamara, Brian

    1998-01-01

    We (Vikhlinin, McNamara, Forman, Jones, Hornstrup, Quintana) have completed a new survey of distant clusters of galaxies, which we use to to study cluster evolution over cosmological timescales. The clusters were identified as extended X-ray sources in 650 ROSAT PSPC images of high Galactic latitude fields. Our catalog of approximately 230 extended X-ray sources covers 160 square degrees on the sky. Ours is the largest of the several ROSAT serendipitous cluster surveys in progress (e.g. SHARC, Rosati, WARPS etc.). Using V,R,I imagery obtained at several observatories, we find that greater than 90% of the X-ray sources are associated with distant clusters of galaxies. We have obtained spectroscopic redshifts for nearly 80 clusters in our catalog, and we have measured photometric redshifts for the remaining clusters. Our sample contains more than 20 clusters at z > 0.5. I will discuss the logN-logS relationship for our clusters. Because our large survey area, we are able to confirm the evolution of the most luminous distant clusters first seen in the Einstein Extended Medium Sensitivity Survey. In addition, I will discuss the relationships between optical richness, core radius, and X-ray luminosity for distant, X-ray-selected clusters.

  7. THE NEXT GENERATION VIRGO CLUSTER SURVEY (NGVS). I. INTRODUCTION TO THE SURVEY

    International Nuclear Information System (INIS)

    Ferrarese, Laura; Côté, Patrick; Gwyn, S. D. J.; MacArthur, Lauren A.; McConnachie, Alan W.; Blakeslee, John P.; Cuillandre, Jean-Charles; Peng, Eric W.; Duc, Pierre-Alain; Boselli, A.; Mei, Simona; Erben, Thomas; Durrell, Patrick R.; Christopher Mihos, J.; Jordán, Andrés; Puzia, Thomas H.; Lançon, Ariane; Emsellem, Eric; Balogh, Michael L.; Van Waerbeke, Ludovic

    2012-01-01

    The Next Generation Virgo Cluster Survey (NGVS) is a program that uses the 1 deg 2 MegaCam instrument on the Canada-France-Hawaii Telescope to carry out a comprehensive optical imaging survey of the Virgo cluster, from its core to its virial radius—covering a total area of 104 deg 2 —in the u*griz bandpasses. Thanks to a dedicated data acquisition strategy and processing pipeline, the NGVS reaches a point-source depth of g ≈ 25.9 mag (10σ) and a surface brightness limit of μ g ∼ 29 mag arcsec –2 (2σ above the mean sky level), thus superseding all previous optical studies of this benchmark galaxy cluster. In this paper, we give an overview of the technical aspects of the survey, such as areal coverage, field placement, choice of filters, limiting magnitudes, observing strategies, data processing and calibration pipelines, survey timeline, and data products. We also describe the primary scientific topics of the NGVS, which include: the galaxy luminosity and mass functions; the color-magnitude relation; galaxy scaling relations; compact stellar systems; galactic nuclei; the extragalactic distance scale; the large-scale environment of the cluster and its relationship to the Local Supercluster; diffuse light and the intracluster medium; galaxy interactions and evolutionary processes; and extragalactic star clusters. In addition, we describe a number of ancillary programs dealing with 'foreground' and 'background' science topics, including the study of high-inclination trans-Neptunian objects; the structure of the Galactic halo in the direction of the Virgo Overdensity and Sagittarius Stream; the measurement of cosmic shear, galaxy-galaxy, and cluster lensing; and the identification of distant galaxy clusters, and strong-lensing events.

  8. THE SWIFT AGN AND CLUSTER SURVEY. II. CLUSTER CONFIRMATION WITH SDSS DATA

    International Nuclear Information System (INIS)

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.

    2016-01-01

    We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three-dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster candidates. We find 104 Swift clusters with a >3σ galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, brightest cluster galaxy (BCG) magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ∼85% of the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≲ 0.3 and is still 80% complete up to z ≃ 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further study of cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23, and 1 matches in optical, X-ray, and Sunyaev–Zel’dovich catalogs, respectively, and so the majority of these clusters are new detections

  9. Constraining Dark Energy with X-ray Galaxy Clusters, Supernovae and the Cosmic Microwave Background

    International Nuclear Information System (INIS)

    Rapetti, D

    2005-01-01

    We present new constraints on the evolution of dark energy from an analysis of Cosmic Microwave Background, supernova and X-ray galaxy cluster data. Our analysis employs a minimum of priors and exploits the complementary nature of these data sets. We examine a series of dark energy models with up to three free parameters: the current dark energy equation of state w 0 , the early time equation of state w et and the scale factor at transition, a t . From a combined analysis of all three data sets, assuming a constant equation of state and that the Universe is flat, we measure w 0 = 1.05 -0.12 +0.10 . Including w et as a free parameter and allowing the transition scale factor to vary over the range 0.5 t 0 = -1.27 -0.39 +0.33 and w et = -0.66 -0.62 +0.44 . We find no significant evidence for evolution in the dark energy equation of state parameter with redshift. Marginal hints of evolution in the supernovae data become less significant when the cluster constraints are also included in the analysis. The complementary nature of the data sets leads to a tight constraint on the mean matter density, (Omega) m and alleviates a number of other parameter degeneracies, including that between the scalar spectral index n s , the physical baryon density (Omega) b h 2 and the optical depth τ. This complementary nature also allows us to examine models in which we drop the prior on the curvature. For non-flat models with a constant equation of state, we measure w 0 = -1.09 -0.15 +0.12 and obtain a tight constraint on the current dark energy density, (Omega) de = 0.70 ± 0.03. For dark energy models other than a cosmological constant, energy-momentum conservation requires the inclusion of spatial perturbations in the dark energy component. Our analysis includes such perturbations, assuming a sound speed c s 2 = 1 in the dark energy fluid as expected for Quintessence scenarios. For our most general dark energy model, not including such perturbations would lead to spurious constraints

  10. Supernova Cosmology in the Big Data Era

    Science.gov (United States)

    Kessler, Richard

    Here we describe large "Big Data" Supernova (SN) Ia surveys, past and present, used to make precision measurements of cosmological parameters that describe the expansion history of the universe. In particular, we focus on surveys designed to measure the dark energy equation of state parameter w and its dependence on cosmic time. These large surveys have at least four photometric bands, and they use a rolling search strategy in which the same instrument is used for both discovery and photometric follow-up observations. These surveys include the Supernova Legacy Survey (SNLS), Sloan Digital Sky Survey II (SDSS-II), Pan-STARRS 1 (PS1), Dark Energy Survey (DES), and Large Synoptic Survey Telescope (LSST). We discuss the development of how systematic uncertainties are evaluated, and how methods to reduce them play a major role is designing new surveys. The key systematic effects that we discuss are (1) calibration, measuring the telescope efficiency in each filter band, (2) biases from a magnitude-limited survey and from the analysis, and (3) photometric SN classification for current surveys that don't have enough resources to spectroscopically confirm each SN candidate.

  11. TESTING THE DISTANCE-DUALITY RELATION WITH GALAXY CLUSTERS AND TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Holanda, R. F. L.; Lima, J. A. S.; Ribeiro, M. B.

    2010-01-01

    In this Letter, we propose a new and model-independent cosmological test for the distance-duality (DD) relation, η = D L (z)(1 + z) -2 /D A (z) = 1, where D L and D A are, respectively, the luminosity and angular diameter distances. For D L we consider two sub-samples of Type Ia supernovae (SNe Ia) taken from Constitution data whereas D A distances are provided by two samples of galaxy clusters compiled by De Filippis et al. and Bonamente et al. by combining Sunyaev-Zeldovich effect and X-ray surface brightness. The SNe Ia redshifts of each sub-sample were carefully chosen to coincide with the ones of the associated galaxy cluster sample (Δz A (z) ape D L (z), we have tested the DD relation by assuming that η is a function of the redshift parameterized by two different expressions: η(z) = 1 + η 0 z and η(z) = 1 + η 0 z/(1 + z), where η 0 is a constant parameter quantifying a possible departure from the strict validity of the reciprocity relation (η 0 = 0). In the best scenario (linear parameterization), we obtain η 0 = -0.28 +0.44 -0.44 (2σ, statistical + systematic errors) for the De Filippis et al. sample (elliptical geometry), a result only marginally compatible with the DD relation. However, for the Bonamente et al. sample (spherical geometry) the constraint is η 0 = -0.42 +0.34 -0.34 (3σ, statistical + systematic errors), which is clearly incompatible with the duality-distance relation.

  12. Gravitational lensing of the SNLS supernovae

    International Nuclear Information System (INIS)

    Kronborg, T.

    2011-01-01

    Type Ia supernovae have become an essential tool of modern observational cosmology. By studying the distance-redshift relation of a large number of supernovae, the nature of dark energy can be unveiled. Distances to Type Ia SNe are however affected by gravitational lensing which can induce systematic effects in the measurement of cosmology. The majority of the supernovae is slightly de-magnified whereas a small fraction is significantly magnified due to the mass distribution along the line of sight. This causes naturally an additional dispersion in the observed magnitudes. There are two different ways to estimate the magnification of a supernova. A first method consists in comparing the supernova luminosity, which is measured to about 15% precision, to the mean SN luminosity at the same redshift. Another estimate can be obtained from predicting the magnification induced by the foreground matter density modeled from the measurements of the luminosity of the galaxies with an initial prior on the mass-luminosity relation of the galaxies. A correlation between these 2 estimates will make it possible to tune the initially used mass-luminosity relation resulting in an independent measurement of the dark matter clustering based on the luminosity of SNe Ia. Evidently, this measurement depends crucially on the detection of this correlation also referred to as the lensing signal. This thesis is dedicated to the measurement of the lensing signal in the SNLS 3-year sample. (author)

  13. PHAT STELLAR CLUSTER SURVEY. I. YEAR 1 CATALOG AND INTEGRATED PHOTOMETRY

    International Nuclear Information System (INIS)

    Johnson, L. Clifton; Dalcanton, Julianne J.; Fouesneau, Morgan; Hodge, Paul W.; Weisz, Daniel R.; Williams, Benjamin F.; Beerman, Lori C.; Seth, Anil C.; Caldwell, Nelson; Gouliermis, Dimitrios A.; Larsen, Søren S.; Olsen, Knut A. G.; San Roman, Izaskun; Sarajedini, Ata; Bianchi, Luciana; Dolphin, Andrew E.; Girardi, Léo; Guhathakurta, Puragra; Kalirai, Jason; Lang, Dustin

    2012-01-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) survey is an ongoing Hubble Space Telescope (HST) multi-cycle program to obtain high spatial resolution imaging of one-third of the M31 disk at ultraviolet through near-infrared wavelengths. In this paper, we present the first installment of the PHAT stellar cluster catalog. When completed, the PHAT cluster catalog will be among the largest and most comprehensive surveys of resolved star clusters in any galaxy. The exquisite spatial resolution achieved with HST has allowed us to identify hundreds of new clusters that were previously inaccessible with existing ground-based surveys. We identify 601 clusters in the Year 1 sample, representing more than a factor of four increase over previous catalogs within the current survey area (390 arcmin 2 ). This work presents results derived from the first ∼25% of the survey data; we estimate that the final sample will include ∼2500 clusters. For the Year 1 objects, we present a catalog with positions, radii, and six-band integrated photometry. Along with a general characterization of the cluster luminosities and colors, we discuss the cluster luminosity function, the cluster size distributions, and highlight a number of individually interesting clusters found in the Year 1 search.

  14. PHAT STELLAR CLUSTER SURVEY. I. YEAR 1 CATALOG AND INTEGRATED PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. Clifton; Dalcanton, Julianne J.; Fouesneau, Morgan; Hodge, Paul W.; Weisz, Daniel R.; Williams, Benjamin F.; Beerman, Lori C. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gouliermis, Dimitrios A. [Institut fuer Theoretische Astrophysik, Zentrum fuer Astronomie der Universitaet Heidelberg, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Larsen, Soren S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Olsen, Knut A. G. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); San Roman, Izaskun; Sarajedini, Ata [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Bianchi, Luciana [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Girardi, Leo [Osservatorio Astronomico di Padova-INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Guhathakurta, Puragra [Department of Astronomy and Astrophysics, University of California Observatories/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Kalirai, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lang, Dustin, E-mail: lcjohnso@astro.washington.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); and others

    2012-06-20

    The Panchromatic Hubble Andromeda Treasury (PHAT) survey is an ongoing Hubble Space Telescope (HST) multi-cycle program to obtain high spatial resolution imaging of one-third of the M31 disk at ultraviolet through near-infrared wavelengths. In this paper, we present the first installment of the PHAT stellar cluster catalog. When completed, the PHAT cluster catalog will be among the largest and most comprehensive surveys of resolved star clusters in any galaxy. The exquisite spatial resolution achieved with HST has allowed us to identify hundreds of new clusters that were previously inaccessible with existing ground-based surveys. We identify 601 clusters in the Year 1 sample, representing more than a factor of four increase over previous catalogs within the current survey area (390 arcmin{sup 2}). This work presents results derived from the first {approx}25% of the survey data; we estimate that the final sample will include {approx}2500 clusters. For the Year 1 objects, we present a catalog with positions, radii, and six-band integrated photometry. Along with a general characterization of the cluster luminosities and colors, we discuss the cluster luminosity function, the cluster size distributions, and highlight a number of individually interesting clusters found in the Year 1 search.

  15. Hierarchical modeling of cluster size in wildlife surveys

    Science.gov (United States)

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  16. Confronting the sound speed of dark energy with future cluster surveys

    DEFF Research Database (Denmark)

    Basse, Tobias; Eggers Bjaelde, Ole; Hannestad, Steen

    2012-01-01

    Future cluster surveys will observe galaxy clusters numbering in the hundred thousands. We consider this work how these surveys can be used to constrain dark energy parameters: in particular, the equation of state parameter w and the non-adiabatic sound speed c_s^2. We demonstrate that, in combin......Future cluster surveys will observe galaxy clusters numbering in the hundred thousands. We consider this work how these surveys can be used to constrain dark energy parameters: in particular, the equation of state parameter w and the non-adiabatic sound speed c_s^2. We demonstrate that......, in combination with Cosmic Microwave Background (CMB) observations from Planck, cluster surveys such as that in the ESA Euclid project will be able to determine a time-independent w with subpercent precision. Likewise, if the dark energy sound horizon falls within the length scales probed by the cluster survey......, then c_s^2 can be pinned down to within an order of magnitude. In the course of this work, we also investigate the process of dark energy virialisation in the presence of an arbitrary sound speed. We find that dark energy clustering and virialisation can lead to dark energy contributing to the total...

  17. Supernova 1604, Kepler’s Supernova, and Its Remnant

    NARCIS (Netherlands)

    Vink, J.; Alsabti, A.W.; Murdin, P.

    2016-01-01

    Supernova 1604 is the last galactic supernova for which historical records exist. Johannes Kepler’s name is attached to it, as he published a detailed account of the observations made by himself and European colleagues. Supernova 1604 was very likely a type Ia supernova, which exploded 350–750 pc

  18. The Influence of Host Galaxies in Type Ia Supernova Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Syed A. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, Jiangshu (China); Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, VIC (Australia); Lidman, Chris; Zhang, Bonnie R. [Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Ruhlmann-Kleider, Vanina, E-mail: saushuvo@gmail.com [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette, Paris (France)

    2017-10-10

    We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.

  19. Constraining dark energy with clusters: Complementarity with other probes

    International Nuclear Information System (INIS)

    Cunha, Carlos; Huterer, Dragan; Frieman, Joshua A.

    2009-01-01

    The Figure of Merit Science Working Group recently forecast the constraints on dark energy that will be achieved prior to the Joint Dark Energy Mission by ground-based experiments that exploit baryon acoustic oscillations, type Ia supernovae, and weak gravitational lensing. We show that cluster counts from ongoing and near-future surveys should provide robust, complementary dark energy constraints. In particular, we find that optimally combined optical and Sunyaev-Zel'dovich effect cluster surveys should improve the Dark Energy Task Force figure of merit for pre-Joint Dark Energy Mission projects by a factor of 2 even without prior knowledge of the nuisance parameters in the cluster mass-observable relation. Comparable improvements are achieved in the forecast precision of parameters specifying the principal component description of the dark energy equation of state parameter, as well as in the growth index γ. These results indicate that cluster counts can play an important complementary role in constraining dark energy and modified gravity even if the associated systematic errors are not strongly controlled.

  20. Young supernova remnants and INTEGRAL: "4"4Ti lines and non-thermal emission

    International Nuclear Information System (INIS)

    Renaud, M.

    2006-10-01

    This thesis deals with the search for and the study of young galactic supernova remnants using the observations performed by IBIS/ISGRI, one of the two main coded-mask instruments onboard the european gamma-ray satellite INTEGRAL. This research is based on i) the study of gamma-ray lines coming from the radioactive decay of "4"4Ti, a short-lived nucleus (τ∼ 86 y) exclusively produced during the first stages of stellar explosions, and ii) the study of the nonthermal continuum mechanisms which take place inside the young supernova remnants. I separate the manuscript in four main parts. The first one presents an overview of supernovae from an observational and theoretical point of view. The second part describes the INTEGRAL satellite with its instruments, the techniques used for analyzing the data collected by IBIS/ISGRI, and my personal investigations concerning different developments such as: the spectral calibration of the IBIS/ISGRI instrument, the correction of noisy pixels on the camera, the creation of background maps, and the development of an alternative pipeline useful for dealing with a large amount of data. I also present a method for imaging extended sources with a coded-mask instrument such as IBIS/ISGRI, and its first application on the Coma Cluster. The results obtained on historical supernova remnants like Cas A, Tycho, RXJ0852-4622 (Vela Junior) are presented in the third part. The first chapter of the last part is devoted to the study of the detectability of supernovae in the optical domain with a model of the interstellar extinction. The second chapter reports on the search for missing and hidden young supernova remnants in the Milky Way with the IBIS/ISGRI galactic plane survey through the "4"4Sc gamma-ray lines as well as with a multi-wavelength approach, from the radio domain (VLA) to the new observational window at TeV energies (HESS). I also discuss the constraints on the supernova rate and the "4"4Ti production in core-collapse supernovae

  1. INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: sergiomtz@inaoep.mx [Instituto Nacional de Astrofísica Óptica y Electrónica, AP 51, 72000 Puebla (Mexico)

    2016-01-01

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of  infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results are based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.

  2. INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS

    International Nuclear Information System (INIS)

    Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy

    2016-01-01

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of  infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results are based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution

  3. The IMACS Cluster Building Survey. I. Description of the Survey and Analysis Methods

    Science.gov (United States)

    Oemler Jr., Augustus; Dressler, Alan; Gladders, Michael G.; Rigby, Jane R.; Bai, Lei; Kelson, Daniel; Villanueva, Edward; Fritz, Jacopo; Rieke, George; Poggianti, Bianca M.; hide

    2013-01-01

    The IMACS Cluster Building Survey uses the wide field spectroscopic capabilities of the IMACS spectrograph on the 6.5 m Baade Telescope to survey the large-scale environment surrounding rich intermediate-redshift clusters of galaxies. The goal is to understand the processes which may be transforming star-forming field galaxies into quiescent cluster members as groups and individual galaxies fall into the cluster from the surrounding supercluster. This first paper describes the survey: the data taking and reduction methods. We provide new calibrations of star formation rates (SFRs) derived from optical and infrared spectroscopy and photometry. We demonstrate that there is a tight relation between the observed SFR per unit B luminosity, and the ratio of the extinctions of the stellar continuum and the optical emission lines.With this, we can obtain accurate extinction-corrected colors of galaxies. Using these colors as well as other spectral measures, we determine new criteria for the existence of ongoing and recent starbursts in galaxies.

  4. THE IMACS CLUSTER BUILDING SURVEY. I. DESCRIPTION OF THE SURVEY AND ANALYSIS METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr.; Dressler, Alan; Kelson, Daniel; Villanueva, Edward [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101-1292 (United States); Gladders, Michael G. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Rigby, Jane R. [Observational Cosmology Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bai Lei [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Rieke, George [Steward Observatory, University of Arizona, Tucson, AZ 8572 (United States); Poggianti, Bianca M.; Vulcani, Benedetta, E-mail: oemler@obs.carnegiescience.edu [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2013-06-10

    The IMACS Cluster Building Survey uses the wide field spectroscopic capabilities of the IMACS spectrograph on the 6.5 m Baade Telescope to survey the large-scale environment surrounding rich intermediate-redshift clusters of galaxies. The goal is to understand the processes which may be transforming star-forming field galaxies into quiescent cluster members as groups and individual galaxies fall into the cluster from the surrounding supercluster. This first paper describes the survey: the data taking and reduction methods. We provide new calibrations of star formation rates (SFRs) derived from optical and infrared spectroscopy and photometry. We demonstrate that there is a tight relation between the observed SFR per unit B luminosity, and the ratio of the extinctions of the stellar continuum and the optical emission lines. With this, we can obtain accurate extinction-corrected colors of galaxies. Using these colors as well as other spectral measures, we determine new criteria for the existence of ongoing and recent starbursts in galaxies.

  5. Supernova VLBI

    Science.gov (United States)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  6. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  7. X-ray emission from clusters and groups of galaxies

    Science.gov (United States)

    Mushotzky, R.

    1998-01-01

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  8. Intensive Monitoring Survey of Nearby Galaxies (IMSNG): Catching Early Light Curves of Supernovae

    Science.gov (United States)

    Im, Myungshin; IMSNG Team

    2018-01-01

    SNe light curves have been used to study the expansion history of the universe, and a lot of efforts have gone into understanding the overall shape of the radioactively powered light curve. However, we still have little direct observational evidence for the theorized SN progenitor systems. Recent studies suggest that the light curve of a supernova shortly after its explosion (world. Through this survey, we expect to catch the very early precursor emission as faint as R=21 mag (~0.1 Rsun for the progenitor). This poster outlines this project, and present a few scientific highlights, such as the early light curve of SN 2015F in NGC 2442.

  9. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    International Nuclear Information System (INIS)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.; Lablanche, Pierre-Yves; Agarwal, Shankar; Fonseca, José

    2017-01-01

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination in the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.

  10. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.; Lablanche, Pierre-Yves; Agarwal, Shankar [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945, Cape Town (South Africa); Fonseca, José, E-mail: rbreth001@myuct.ac.za, E-mail: michelle@aims.ac.za, E-mail: jfonseca@uwc.ac.za, E-mail: bruce.a.bassett@gmail.com, E-mail: plablanche@aims.ac.za, E-mail: agarwalshankar@aims.ac.za [Department of Physics and Astronomy, University of the Western Cape, Cape Town 7535 (South Africa)

    2017-10-01

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination in the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.

  11. The effect of weak lensing on distance estimates from supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mathew; Maartens, Roy [Department of Physics, University of the Western Cape, Cape Town 7535 (South Africa); Bacon, David J.; Nichol, Robert C.; Campbell, Heather; D' Andrea, Chris B. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Clarkson, Chris [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Bassett, Bruce A. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Cinabro, David [Wayne State University, Department of Physics and Astronomy, Detroit, MI 48202 (United States); Finley, David A.; Frieman, Joshua A. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Galbany, Lluis [CENTRA Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Olmstead, Matthew D. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Shapiro, Charles [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, La Canada Flintridge, CA 91109 (United States); Sollerman, Jesper, E-mail: matsmith2@gmail.com [The Oskar Klein Centre, Department of Astronomy, AlbaNova, SE-106 91 Stockholm (Sweden)

    2014-01-01

    Using a sample of 608 Type Ia supernovae from the SDSS-II and BOSS surveys, combined with a sample of foreground galaxies from SDSS-II, we estimate the weak lensing convergence for each supernova line of sight. We find that the correlation between this measurement and the Hubble residuals is consistent with the prediction from lensing (at a significance of 1.7σ). Strong correlations are also found between the residuals and supernova nuisance parameters after a linear correction is applied. When these other correlations are taken into account, the lensing signal is detected at 1.4σ. We show, for the first time, that distance estimates from supernovae can be improved when lensing is incorporated, by including a new parameter in the SALT2 methodology for determining distance moduli. The recovered value of the new parameter is consistent with the lensing prediction. Using cosmic microwave background data from WMAP7, H {sub 0} data from Hubble Space Telescope and Sloan Digital Sky Survey (SDSS) Baryon acoustic oscillations measurements, we find the best-fit value of the new lensing parameter and show that the central values and uncertainties on Ω {sub m} and w are unaffected. The lensing of supernovae, while only seen at marginal significance in this low-redshift sample, will be of vital importance for the next generation of surveys, such as DES and LSST, which will be systematics-dominated.

  12. Novae, supernovae, and the island universe hypothesis

    International Nuclear Information System (INIS)

    Van Den Bergh, S.

    1988-01-01

    Arguments in Curtis's (1917) paper related to the island universe hypothesis and the existence of novae in spiral nebulae are considered. It is noted that the maximum magnitude versus rate-of-decline relation for novae may be the best tool presently available for the calibration of the extragalactic distance scale. Light curve observations of six novae are used to determine a distance of 18.6 + or - 3.5 MPc to the Virgo cluster. Results suggest that Type Ia supernovae cannot easily be used as standard candles, and that Type II supernovae are unsuitable as distance indicators. Factors other than precursor mass are probably responsible for determining the ultimate fate of evolving stars. 83 references

  13. The HectoMAP Cluster Survey. I. redMaPPer Clusters

    Science.gov (United States)

    Sohn, Jubee; Geller, Margaret J.; Rines, Kenneth J.; Hwang, Ho Seong; Utsumi, Yousuke; Diaferio, Antonaldo

    2018-04-01

    We use the dense HectoMAP redshift survey to explore the properties of 104 redMaPPer cluster candidates. The redMaPPer systems in HectoMAP cover the full range of richness and redshift (0.08 systems included in the Subaru/Hyper Suprime-Cam public data release are bona fide clusters. The median number of spectroscopic members per cluster is ∼20. We include redshifts of 3547 member candidates listed in the redMaPPer catalog whether they are cluster members or not. We evaluate the redMaPPer membership probability spectroscopically. The purity (number of real systems) in redMaPPer exceeds 90% even at the lowest richness. Three massive galaxy clusters (M ∼ 2 × 1013 M ⊙) associated with X-ray emission in the HectoMAP region are not included in the public redMaPPer catalog with λ rich > 20, because they lie outside the cuts for this catalog.

  14. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  15. Data compression of measurements of peculiar velocities of supernovae type Ia

    International Nuclear Information System (INIS)

    Irsic, Vid; Slosar, Anze

    2011-01-01

    We study the compression of information present in the correlated perturbations to the luminosity distance in the low-redshift (z 2 P(k), where f is the logarithmic rate of growth of linear perturbations and P(k) is their power spectrum. We develop an optimal quadratic estimator and show that it recovers all information for ΛCDM models for surveys of N∼10,000 or more supernovae. We explicitly demonstrate robustness with respect to the assumed fiducial model and the number of power spectrum bins. Using mock catalogues of supernovae Ia we estimate that future low-redshift surveys will be able to probe σ 8 to 6% accuracy with 10 000 supernovae Ia.

  16. Discovery of 11 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Cacella, P.; Stone, G.; Fernandez, J. M.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Nicholls, B.; Post, R. S.

    2018-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from 14-cm telescopes in Hawaii, Texas, South Africa, and Chile, we discovered several new transient sources.

  17. Spectro-photometric calibration of the SuperNova Integral Field Spectrograph in the Nearby Supernova Factory collaboration framework

    International Nuclear Information System (INIS)

    Buton, Clement

    2009-01-01

    Ten years ago, type Ia supernovae used as distances indicators led to the discovery of the accelerating expansion of the universe. Today, a second generation of surveys has significantly increased the high-redshift type Ia supernovae sample. The low-redshift sample was however still limiting the cosmological analysis using SNe. In this framework, the Nearby Supernova Factory has followed 200 nearby type Ia supernovae using the dedicated Supernovae Integral Field Spectrograph with spectro-photometric capacities. My PhD thesis has been carried out at the Institut de Physique Nucleaire de Lyon and at the Lawrence Berkeley National Laboratory in the framework of the international cosmological project SNfactory. In order to reach the design spectrophotometric accuracy, attention has been focused on several key aspects of the calibration procedure, including: determination of a dedicated point spread function for 3D point source extraction, estimating the nightly photometric quality, derivation of the nightly sky extinction over the extended optical domain, its modeling in terms of physical components and its variability within a given night. A full multi-standards calibration pipeline has been implemented using approximately 4000 observations of spectrophotometric standard stars taken throughout the night over nearly 500 individual nights. Preliminary scientific results of the whole SNfactory collaboration will be presented at the end of this thesis. (author)

  18. The Dark Energy Survey and Operations: Years 1 to 3

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, H. T. [Fermilab

    2016-01-01

    The Dark Energy Survey (DES) is an operating optical survey aimed at understanding the accelerating expansion of the universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the 5000 sq-degree wide field and 30 sq-degree supernova surveys, the DES Collaboration built the Dark Energy Camera (DECam), a 3 square-degree, 570-Megapixel CCD camera that was installed at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). DES has completed its third observing season out of a nominal five. This paper describes DES “Year 1” (Y1) to “Year 3” (Y3), the strategy, an outline of the survey operations procedures, the efficiency of operations and the causes of lost observing time. It provides details about the quality of the first three season's data, and describes how we are adjusting the survey strategy in the face of the El Niño Southern Oscillation

  19. CLUMP-3D: Testing ΛCDM with Galaxy Cluster Shapes

    Science.gov (United States)

    Sereno, Mauro; Umetsu, Keiichi; Ettori, Stefano; Sayers, Jack; Chiu, I.-Non; Meneghetti, Massimo; Vega-Ferrero, Jesús; Zitrin, Adi

    2018-06-01

    The ΛCDM model of structure formation makes strong predictions on the concentration and shape of dark matter (DM) halos, which are determined by mass accretion processes. Comparison between predicted shapes and observations provides a geometric test of the ΛCDM model. Accurate and precise measurements needs a full three-dimensional (3D) analysis of the cluster mass distribution. We accomplish this with a multi-probe 3D analysis of the X-ray regular Cluster Lensing and Supernova survey with Hubble (CLASH) clusters combining strong and weak lensing, X-ray photometry and spectroscopy, and the Sunyaev–Zel’dovich effect (SZe). The cluster shapes and concentrations are consistent with ΛCDM predictions. The CLASH clusters are randomly oriented, as expected given the sample selection criteria. Shapes agree with numerical results for DM-only halos, which hints at baryonic physics being less effective in making halos rounder.

  20. Simulations of the WFIRST Supernova Survey and Forecasts of Cosmological Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Hounsell, R. [Illinois U., Urbana, Astron. Dept.; Scolnic, D. [Chicago U., KICP; Foley, R. J. [UC, Santa Cruz; Kessler, R. [Chicago U., KICP; Miranda, V. [Pennsylvania U.; Avelino, A. [Harvard-Smithsonian Ctr. Astrophys.; Bohlin, R. C. [Baltimore, Space Telescope Sci.; Filippenko, A. V. [UC, Berkeley; Frieman, J. [Fermilab; Jha, S. W. [Rutgers U., Piscataway; Kelly, P. L. [UC, Berkeley; Kirshner, R. P. [Xerox, Palo Alto; Mandel, K. [Harvard-Smithsonian Ctr. Astrophys.; Rest, A. [Baltimore, Space Telescope Sci.; Riess, A. G. [Johns Hopkins U.; Rodney, S. A. [South Carolina U.; Strolger, L. [Baltimore, Space Telescope Sci.

    2017-02-06

    The Wide Field InfraRed Survey Telescope (WFIRST) was the highest rankedlarge space-based mission of the 2010 New Worlds, New Horizons decadal survey.It is now a NASA mission in formulation with a planned launch in themid-2020's. A primary mission objective is to precisely constrain the nature ofdark energy through multiple probes, including Type Ia supernovae (SNe Ia).Here, we present the first realistic simulations of the WFIRST SN survey basedon current hardware specifications and using open-source tools. We simulate SNlight curves and spectra as viewed by the WFIRST wide-field channel (WFC)imager and integral field channel (IFC) spectrometer, respectively. We examine11 survey strategies with different time allocations between the WFC and IFC,two of which are based upon the strategy described by the WFIRST ScienceDefinition Team, which measures SN distances exclusively from IFC data. Wepropagate statistical and, crucially, systematic uncertainties to predict thedark energy task force figure of merit (DETF FoM) for each strategy. Theincrease in FoM values with SN search area is limited by the overhead times foreach exposure. For IFC-focused strategies the largest individual systematicuncertainty is the wavelength-dependent calibration uncertainty, whereas forWFC-focused strategies, it is the intrinsic scatter uncertainty. We find thatthe best IFC-focused and WFC-exclusive strategies have comparable FoM values.Even without improvements to other cosmological probes, the WFIRST SN surveyhas the potential to increase the FoM by more than an order of magnitude fromthe current values. Although the survey strategies presented here have not beenfully optimized, these initial investigations are an important step in thedevelopment of the final hardware design and implementation of the WFIRSTmission.

  1. Aspherical supernovae

    International Nuclear Information System (INIS)

    Kasen, Daniel Nathan

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  2. LoCuSS: weak-lensing mass calibration of galaxy clusters

    Science.gov (United States)

    Okabe, Nobuhiro; Smith, Graham P.

    2016-10-01

    We present weak-lensing mass measurements of 50 X-ray luminous galaxy clusters at 0.15 ≤ z ≤ 0.3, based on uniform high-quality observations with Suprime-Cam mounted on the 8.2-m Subaru telescope. We pay close attention to possible systematic biases, aiming to control them at the ≲4 per cent level. The dominant source of systematic bias in weak-lensing measurements of the mass of individual galaxy clusters is contamination of background galaxy catalogues by faint cluster and foreground galaxies. We extend our conservative method for selecting background galaxies with (V - I') colours redder than the red sequence of cluster members to use a colour-cut that depends on cluster-centric radius. This allows us to define background galaxy samples that suffer ≤1 per cent contamination, and comprise 13 galaxies per square arcminute. Thanks to the purity of our background galaxy catalogue, the largest systematic that we identify in our analysis is a shape measurement bias of 3 per cent, that we measure using simulations that probe weak shears up to g = 0.3. Our individual cluster mass and concentration measurements are in excellent agreement with predictions of the mass-concentration relation. Equally, our stacked shear profile is in excellent agreement with the Navarro Frenk and White profile. Our new Local Cluster Substructure Survey mass measurements are consistent with the Canadian Cluster Cosmology Project and Cluster Lensing And Supernova Survey with Hubble surveys, and in tension with the Weighing the Giants at ˜1σ-2σ significance. Overall, the consensus at z ≤ 0.3 that is emerging from these complementary surveys represents important progress for cluster mass calibration, and augurs well for cluster cosmology.

  3. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    Science.gov (United States)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  4. The Story of Supernova “Refsdal” Told by Muse

    NARCIS (Netherlands)

    Grillo, C.; Karman, W.; Suyu, S. H.; Rosati, P.; Balestra, I.; Mercurio, A.; Lombardi, M.; Treu, T.; Caminha, G. B.; Halkola, A.; Rodney, S. A.; Gavazzi, R.; Caputi, K. I.

    2016-01-01

    We present Multi Unit Spectroscopic Explorer (MUSE) observations in the core of the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, where the first magnified and spatially resolved multiple images of supernova (SN) "Refsdal" at redshift 1.489 were detected. Thanks to a Director's

  5. X-ray emission from clusters and groups of galaxies

    Science.gov (United States)

    Mushotzky, Richard

    1998-01-01

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to ≈1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2–4. The baryonic fractions vary by a factor of ≈3 from cluster to cluster and almost always exceed 0.09 h50−[3/2] and thus are in fundamental conflict with the assumption of Ω = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2–0.45 solar, and the abundances of O and Si for low redshift systems are 0.6–1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z ≈ 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1–0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50−2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures. PMID:9419327

  6. supernovae: Photometric classification of supernovae

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-05-01

    Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

  7. A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey

    International Nuclear Information System (INIS)

    Tie, S. S.; Martini, P.; Mudd, D.; Ostrovski, F.; Reed, S. L.

    2017-01-01

    In this paper, we present a study of quasar selection using the supernova fields of the Dark Energy Survey (DES). We used a quasar catalog from an overlapping portion of the SDSS Stripe 82 region to quantify the completeness and efficiency of selection methods involving color, probabilistic modeling, variability, and combinations of color/probabilistic modeling with variability. In all cases, we considered only objects that appear as point sources in the DES images. We examine color selection methods based on the Wide-field Infrared Survey Explorer (WISE) mid-IR W1-W2 color, a mixture of WISE and DES colors (g - i and i-W1), and a mixture of Vista Hemisphere Survey and DES colors (g - i and i - K). For probabilistic quasar selection, we used XDQSO, an algorithm that employs an empirical multi-wavelength flux model of quasars to assign quasar probabilities. Our variability selection uses the multi-band χ"2-probability that sources are constant in the DES Year 1 griz-band light curves. The completeness and efficiency are calculated relative to an underlying sample of point sources that are detected in the required selection bands and pass our data quality and photometric error cuts. We conduct our analyses at two magnitude limits, i 85% for both i-band magnitude limits and efficiencies of >80% to the bright limit and >60% to the faint limit; however, the giW1 and giW1+variability methods give the highest quasar surface densities. The XDQSOz method and combinations of W1W2/giW1/XDQSOz with variability are among the better selection methods when both high completeness and high efficiency are desired. We also present the OzDES Quasar Catalog of 1263 spectroscopically confirmed quasars from three years of OzDES observation in the 30 deg"2 of the DES supernova fields. Finally, the catalog includes quasars with redshifts up to z ~ 4 and brighter than i = 22 mag, although the catalog is not complete up to this magnitude limit.

  8. Learning from the scatter in type ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr.; Vallinotto, Alberto; /Fermilab /Chicago U.

    2005-11-01

    Type Ia Supernovae are standard candles so their mean apparent magnitude has been exploited to learn about the redshift-distance relationship. Besides intrinsic scatter in this standard candle, additional scatter is caused by gravitational magnification by large scale structure. Here they probe the dependence of this dispersion on cosmological parameters and show that information about the amplitude of clustering, {sigma}{sub s}, is contained in the scatter. In principle, it will be possible to constrain {sigma}{sub s} to within 5% with observations of 2000 Type Ia Supernovae. They identify three sources of systematic error--evolution of intrinsic scatter, baryon contributions to lensing, and non-Gaussianity of lensing--which will make this measurement difficult.

  9. Supernovae

    International Nuclear Information System (INIS)

    Petschek, A.

    1990-01-01

    This book offers papers incorporating the latest results and understanding about supernovae, including SN1987A. There are several chapters reviewing all the radio through infrared, visible, and ultraviolet to X-rays and gamma-rays but also neutrinos. Other chapters deal with the classification of supernovae, depending on their spectra and light curves. Three chapters treat supernovae theory, including an idea of a fractal burning front and another on the behavior of neutron stars

  10. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Sako, Masao; Gupta, Ravi R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce; Kunz, Martin [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945 (South Africa); Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Campbell, Heather [Institute of Astronomy, Madingley Road, Cambridge CB4 0HA (United Kingdom); D' Andrea, Chris B.; Lampeitl, Hubert [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Frieman, Joshua A. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Galbany, Lluís [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hlozek, Renee [Department of Astrophysics, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Jha, Saurabh W., E-mail: olmstead@physics.utah.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  11. Molecular clouds near supernova remnants

    International Nuclear Information System (INIS)

    Wootten, H.A.

    1978-01-01

    The physical properties of molecular clouds near supernova remnants were investigated. Various properties of the structure and kinematics of these clouds are used to establish their physical association with well-known remmnants. An infrared survey of the most massive clouds revealed embedded objects, probably stars whose formation was induced by the supernova blast wave. In order to understand the relationship between these and other molecular clouds, a control group of clouds was also observed. Excitation models for dense regions of all the clouds are constructed to evaluate molecular abundances in these regions. Those clouds that have embedded stars have lower molecular abundances than the clouds that do not. A cloud near the W28 supernova remnant also has low abundances. Molecular abundances are used to measure an important parameter, the electron density, which is not directly observable. In some clouds extensive deuterium fractionation is observed which confirms electron density measurements in those clouds. Where large deuterium fractionation is observed, the ionization rate in the cloud interior can also be measured. The electron density and ionization rate in the cloud near W28 are higher than in most clouds. The molecular abundances and electron densities are functions of the chemical and dynamical state of evolution of the cloud. Those clouds with lowest abundances are probably the youngest clouds. As low-abundance clouds, some clouds near supernova remnants may have been recently swept from the local interstellar material. Supernova remnants provide sites for star formation in ambient clouds by compressing them, and they sweep new clouds from more diffuse local matter

  12. PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

    Energy Technology Data Exchange (ETDEWEB)

    Lochner, Michelle; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); McEwen, Jason D., E-mail: dr.michelle.lochner@gmail.com [Mullard Space Science Laboratory, University College London, Surrey RH5 6NT (United Kingdom)

    2016-08-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k -nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  13. PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

    International Nuclear Information System (INIS)

    Lochner, Michelle; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.; McEwen, Jason D.

    2016-01-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k -nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  14. MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS)

    International Nuclear Information System (INIS)

    Rines, Kenneth; Geller, Margaret J.; Kurtz, Michael J.; Diaferio, Antonaldo

    2013-01-01

    The infall regions of galaxy clusters represent the largest gravitationally bound structures in a ΛCDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these halos. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1 200 , a new observational cosmological test in essential agreement with simulations. Summed profiles binned in M 200 and in L X demonstrate that the predicted Navarro-Frenk-White form of the density profile is a remarkably good representation of the data in agreement with weak lensing results extending to large radius. The concentration of these summed profiles is also consistent with theoretical predictions.

  15. New open cluster candidates discovered in the XSTPS-GAC survey

    Science.gov (United States)

    Guo, Jin-Cheng; Zhang, Hua-Wei; Zhang, Hui-Hua; Liu, Xiao-Wei; Yuan, Hai-Bo; Huang, Yang; Wang, Song; Chen, Li; Zhao, Hai-Bin; Liu, Ji-Feng; Chen, Bing-Qiu; Xiang, Mao-Sheng; Tian, Zhi-Jia; Huo, Zhi-Ying; Wang, Chun

    2018-03-01

    The Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center (XSTPS-GAC) is a photometric sky survey that covers nearly 6000 deg2 towards the Galactic Anti-center (GAC) in the g, r, i bands. Half of its survey field is located on the Galactic Anti-center disk, which makes XSTPS-GAC highly suitable to search for new open clusters in the GAC region. In this paper, we report new open cluster candidates discovered in this survey, as well as properties of these open cluster candidates, such as age, distance and reddening, derived by isochrone fitting in the color-magnitude diagram (CMD). These open cluster candidates are stellar density peaks detected in the star density maps by applying the method from Koposov et al. Each candidate is inspected in terms of its true color image composed from three XSTPS-GAC band images. Then its CMD is checked, in order to identify whether the central region stars have a clear isochrone-like trend differing from background stars. The parameters derived from isochrone fitting for these candidates are mainly based on three band photometry of XSTPS-GAC. Moreover, when these new candidates are able to be seen clearly in 2MASS data, their parameters are also derived based on the 2MASS (J – H, J) CMD. There are a total of 320 known open clusters rediscovered and 24 new open cluster candidates discovered in this work. Furthermore, the parameters of these new candidates, as well as another 11 previously known open clusters, are properly determined for the first time.

  16. Core-Collapse Supernovae and Gamma-Ray Bursts in TMT Era SB

    Indian Academy of Sciences (India)

    tation, possible thrust research areas towards core-collapse supernovae and gamma-ray bursts .... important for studies of time critical observations like SNe and GRBs. .... 28.5 mag/arcsec2 in galaxies well beyond the Virgo cluster. With this ...

  17. SHOCK BREAKOUT IN TYPE II PLATEAU SUPERNOVAE: PROSPECTS FOR HIGH-REDSHIFT SUPERNOVA SURVEYS

    International Nuclear Information System (INIS)

    Tominaga, N.; Morokuma, T.; Blinnikov, S. I.; Nomoto, K.; Baklanov, P.; Sorokina, E. I.

    2011-01-01

    Shock breakout is the brightest radiative phenomenon in a supernova (SN) but is difficult to be observed owing to the short duration and X-ray/ultraviolet (UV)-peaked spectra. After the first observation from the rising phase reported in 2008, its observability at high redshift is attracting enormous attention. We perform multigroup radiation hydrodynamics calculations of explosions for evolutionary presupernova models with various main-sequence masses M MS , metallicities Z, and explosion energies E. We present multicolor light curves of shock breakouts in Type II plateau SNe, being the most frequent core-collapse SNe, and predict apparent multicolor light curves of shock breakout at various redshifts z. We derive the observable SN rate and reachable redshift as functions of filter x and limiting magnitude m x,lim by taking into account an initial mass function, cosmic star formation history, intergalactic absorption, and host galaxy extinction. We propose a realistic survey strategy optimized for shock breakout. For example, the g'-band observable SN rate for m g',lim = 27.5 mag is 3.3 SNe deg -2 day -1 and half of them are located at z ≥ 1.2. It is clear that the shock breakout is a beneficial clue for probing high-z core-collapse SNe. We also establish ways to identify shock breakout and constrain SN properties from the observations of shock breakout, brightness, timescale, and color. We emphasize that the multicolor observations in blue optical bands with ∼hour intervals, preferably over ≥2 continuous nights, are essential to efficiently detect, identify, and interpret shock breakout.

  18. ON THE RATES OF TYPE Ia SUPERNOVAE IN DWARF AND GIANT HOSTS WITH ROTSE-IIIb

    International Nuclear Information System (INIS)

    Quimby, Robert M.; Yuan Fang; Akerlof, Carl; Wheeler, J. Craig; Warren, Michael S.

    2012-01-01

    We present a sample of 23 spectroscopically confirmed Type Ia supernovae (SNe Ia) that were discovered in the background of galaxy clusters targeted by ROTSE-IIIb and use up to 18 of these to determine the local (z-bar 0.05) volumetric rate. Since our survey is flux limited and thus biased against fainter objects, the pseudo-absolute magnitude distribution (pAMD) of SNe Ia in a given volume is an important concern, especially the relative frequency of high- to low-luminosity SNe Ia. We find that the pAMD derived from the volume-limited Lick Observatory Supernova Search (LOSS) sample is incompatible with the distribution of SNe Ia in a volume-limited (z B > –16) galaxies, whereas only 1 out of 79 nearby SDSS-II SNe Ia have such faint hosts. It is possible that previous works have undercounted either low-luminosity SNe Ia, SNe Ia in low-luminosity hosts, or peculiar SNe Ia (sometimes explicitly), and the total SNe Ia rate may be higher than the canonical value.

  19. Preparatory studies for the WFIRST supernova cosmology measurements

    Science.gov (United States)

    Perlmutter, Saul

    tune details, like the wavelength coverage and S/N requirements, of the WFIRST IFS to capitalize on these systematic error reduction methods. b) Supernova extraction and host galaxy subtractions. The underlying light of the host galaxy must be subtracted from the supernova images making up the lightcurves. Using the IFS to provide the lightcurve points via spectrophotometry requires the subtraction of a reference spectrum of the galaxy taken after the supernova light has faded to a negligible level. We plan to apply the expertise obtained from the SNfactory to develop galaxy background procedures that minimize the systematic errors introduced by this step in the analysis. c) Instrument calibration and ground to space cross calibration. Calibrating the entire supernova sample will be a challenge as no standard stars exist that span the range of magnitudes and wavelengths relevant to the WFIRST survey. Linking the supernova measurements to the relatively brighter standards will require several links. WFIRST will produce the high redshift sample, but the nearby supernova to anchor the Hubble diagram will have to come from ground based observations. Developing algorithms to carry out the cross calibration of these two samples to the required one percent level will be an important goal of our proposal. An integral part of this calibration will be to remove all instrumental signatures and to develop unbiased measurement techniques starting at the pixel level. We then plan to pull the above studies together in a synthesis to produce a correlated error matrix. We plan to develop a Fisher Matrix based model to evaluate the correlated error matrix due to the various systematic errors discussed above. A realistic error model will allow us to carry out a more reliable estimates of the eventual errors on the measurement of the cosmological parameters, as well as serve as a means of optimizing and fine tuning the requirements for the instruments and survey strategies.

  20. SPECTROSCOPIC CONFIRMATION OF A MASSIVE RED-SEQUENCE-SELECTED GALAXY CLUSTER AT z = 1.34 IN THE SpARCS-SOUTH CLUSTER SURVEY

    International Nuclear Information System (INIS)

    Wilson, Gillian; Demarco, Ricardo; Muzzin, Adam; Yee, H. K. C.; Lacy, Mark; Surace, Jason; Gilbank, David; Blindert, Kris; Hoekstra, Henk; Majumdar, Subhabrata; Gardner, Jonathan P.; Gladders, Michael D.; Lonsdale, Carol

    2009-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey, consisting of deep (z' ≅ 24 AB) observations made from both hemispheres using the CFHT 3.6 m and CTIO 4 m telescopes. The survey was designed with the primary aim of detecting galaxy clusters at z > 1. In tandem with pre-existing 3.6 μm observations from the Spitzer Space Telescope SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of the two-filter red-sequence cluster technique. The total effective area of the SpARCS cluster survey is 41.9 deg 2 . In this paper, we provide an overview of the 13.6 deg 2 Southern CTIO/MOSAIC II observations. The 28.3 deg 2 Northern CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al. In this paper, we also report spectroscopic confirmation of SpARCS J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the ELAIS-S1 field. To date, this is the highest spectroscopically confirmed redshift for a galaxy cluster discovered using the red-sequence technique. Based on nine confirmed members, SpARCS J003550-431224 has a preliminary velocity dispersion of 1050 ± 230 km s -1 . With its proven capability for efficient cluster detection, SpARCS is a demonstration that we have entered an era of large, homogeneously selected z > 1 cluster surveys.

  1. A SYSTEMATIC SURVEY FOR BROADENED CO EMISSION TOWARD GALACTIC SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Kilpatrick, Charles D.; Bieging, John H.; Rieke, George H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2016-01-01

    We present molecular spectroscopy toward 50 Galactic supernova remnants (SNRs) taken at millimeter wavelengths in {sup 12}CO J = 2 − 1. These observations are part of a systematic survey for broad molecular line (BML) regions indicative of interactions with molecular clouds (MCs). We detected BML regions toward 19 SNRs, including 9 newly identified BML regions associated with SNRs (G08.3–0.0, G09.9–0.8, G11.2–0.3, G12.2+0.3, G18.6–0.2, G23.6+0.3, 4C–04.71, G29.6+0.1, and G32.4+0.1). The remaining 10 SNRs with BML regions confirm previous evidence for MC interaction in most cases (G16.7+0.1, Kes 75, 3C 391, Kes 79, 3C 396, 3C 397, W49B, Cas A, and IC 443), although we confirm that the BML region toward HB 3 is associated with the W3(OH) H ii region, not the SNR. Based on the systemic velocity of each MC, molecular line diagnostics, and cloud morphology, we test whether these detections represent SNR–MC interactions. One of the targets (G54.1+0.3) had previous indications of a BML region, but we did not detect broadened emission toward it. Although broadened {sup 12}CO J = 2 − 1 line emission should be detectable toward virtually all SNR–MC interactions, we find relatively few examples; therefore, the number of interactions is low. This result favors mechanisms other than supernova feedback as the basic trigger for star formation. In addition, we find no significant association between TeV gamma-ray sources and MC interactions, contrary to predictions that SNR–MC interfaces are the primary venues for cosmic ray acceleration.

  2. Optical study of the DAFT/FADA galaxy cluster survey

    Science.gov (United States)

    Martinet, N.; Durret, F.; Clowe, D.; Adami, C.

    2013-11-01

    DAFT/FADA (Dark energy American French Team) is a large survey of ˜90 high redshift (0.42×10^{14} M_{⊙}) clusters with HST weak lensing oriented data, plus BVRIZJ 4m ground based follow up to compute photometric redshifts. The main goals of this survey are to constrain dark energy parameters using weak lensing tomography and to study a large homogeneous sample of high redshift massive clusters. We will briefly review the latest results of this optical survey, focusing on two ongoing works: the calculation of galaxy luminosity functions from photometric redshift catalogs and the weak lensing analysis of ground based data.

  3. RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey

    Science.gov (United States)

    Cerny, Catherine; Sharon, Keren; Andrade-Santos, Felipe; Avila, Roberto J.; Bradač, Maruša; Bradley, Larry D.; Carrasco, Daniela; Coe, Dan; Czakon, Nicole G.; Dawson, William A.; Frye, Brenda L.; Hoag, Austin; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Riess, Adam G.; Rodney, Steven A.; Ryan, Russell E.; Salmon, Brett; Sendra-Server, Irene; Stark, Daniel P.; Strolger, Louis-Gregory; Trenti, Michele; Umetsu, Keiichi; Vulcani, Benedetta; Zitrin, Adi

    2018-06-01

    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at {\\boldsymbol{z}}> 6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.

  4. CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS

    International Nuclear Information System (INIS)

    Vikhlinin, A.; Forman, W. R.; Jones, C.; Murray, S. S.; Kravtsov, A. V.; Burenin, R. A.; Voevodkin, A.; Ebeling, H.; Hornstrup, A.; Nagai, D.; Quintana, H.

    2009-01-01

    Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with (z) = 0.55 derived from 400 deg 2 ROSAT serendipitous survey and 49 brightest z ∼ 0.05 clusters detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires Ω Λ > 0 with a ∼5σ significance, and constrains the dark energy equation-of-state parameter to w 0 = -1.14 ± 0.21, assuming a constant w and a flat universe. Cluster information also significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, Wilkinson Microwave Anisotropy Probe, and baryonic acoustic oscillation measurements, we obtain w 0 = -0.991 ± 0.045 (stat) ±0.039 (sys), a factor of 1.5 reduction in statistical uncertainties, and nearly a factor of 2 improvement in systematics compared with constraints that can be obtained without clusters. The joint analysis of these four data sets puts a conservative upper limit on the masses of light neutrinos Σm ν M h and σ 8 from the low-redshift cluster mass function.

  5. A DEEP, WIDE-FIELD Hα SURVEY OF NEARBY CLUSTERS OF GALAXIES: DATA

    International Nuclear Information System (INIS)

    Sakai, Shoko; Kennicutt, Robert C. Jr.; Moss, Chris

    2012-01-01

    We present the results of a wide-field Hα imaging survey of eight nearby (z = 0.02-0.03) Abell clusters. We have measured Hα fluxes and equivalent widths for 465 galaxies, of which 360 are new detections. The survey was designed to obtain complete emission-line-selected inventories of star-forming galaxies in the inner regions of these clusters, extending to star formation rates below 0.1 M ☉ yr –1 . This paper describes the observations, data processing, and source identification procedures, and presents an Hα and R-band catalog of detected cluster members and other candidates. Future papers in the series will use these data to study the completeness of spectroscopically based star formation surveys, and to quantify the effects of cluster environment on the present-day populations of star-forming galaxies. The data will also provide a valuable foundation for imaging surveys of redshifted Hα emission in more distant clusters.

  6. The clustering of quasars from an objective-prism survey

    International Nuclear Information System (INIS)

    Webster, A.

    1982-01-01

    The positions and redshifts of 108 quasars from the Cerro Tololo objective-prism survey are subjected to Fourier Power Spectrum Analysis in a search for clustering in their spatial distribution. It is found that, on the whole, these quasars are not clustered but are scattered in space independently at random. The sole exception is a group of four quasars at z = 0.37 which has a low probability of being a chance event and which, with a size of about 100 Mpc, may therefore be the largest known structure in the Universe. The conclusions disagree with Arp's analysis of this catalogue: his 'clouds of quasars' ejected by certain low-redshift galaxies, for example, are attributable to sensitivity variations among the different plates of the survey. It is shown that analysis of deeper surveys is likely to show up quasar clusters even at high redshift, and could therefore provide a useful new cosmological probe. (author)

  7. A SPITZER SURVEY FOR DUST IN TYPE IIn SUPERNOVAE

    International Nuclear Information System (INIS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This paper presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from 10 targets (∼15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at ∼1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable progenitors.

  8. Deep Recurrent Neural Networks for Supernovae Classification

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-03-01

    We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.

  9. CLUSTER LENSING PROFILES DERIVED FROM A REDSHIFT ENHANCEMENT OF MAGNIFIED BOSS-SURVEY GALAXIES

    International Nuclear Information System (INIS)

    Coupon, Jean; Umetsu, Keiichi; Broadhurst, Tom

    2013-01-01

    We report the first detection of a redshift-depth enhancement of background galaxies magnified by foreground clusters. Using 300,000 BOSS survey galaxies with accurate spectroscopic redshifts, we measure their mean redshift depth behind four large samples of optically selected clusters from the Sloan Digital Sky Survey (SDSS) surveys, totaling 5000-15,000 clusters. A clear trend of increasing mean redshift toward the cluster centers is found, averaged over each of the four cluster samples. In addition, we find similar but noisier behavior for an independent X-ray sample of 158 clusters lying in the foreground of the current BOSS sky area. By adopting the mass-richness relationships appropriate for each survey, we compare our results with theoretical predictions for each of the four SDSS cluster catalogs. The radial form of this redshift enhancement is well fitted by a richness-to-mass weighted composite Navarro-Frenk-White profile with an effective mass ranging between M 200 ∼ 1.4-1.8 × 10 14 M ☉ for the optically detected cluster samples, and M 200 ∼ 5.0 × 10 14 M ☉ for the X-ray sample. This lensing detection helps to establish the credibility of these SDSS cluster surveys, and provides a normalization for their respective mass-richness relations. In the context of the upcoming bigBOSS, Subaru Prime Focus Spectrograph, and EUCLID-NISP spectroscopic surveys, this method represents an independent means of deriving the masses of cluster samples for examining the cosmological evolution, and provides a relatively clean consistency check of weak-lensing measurements, free from the systematic limitations of shear calibration

  10. Performance of small cluster surveys and the clustered LQAS design to estimate local-level vaccination coverage in Mali.

    Science.gov (United States)

    Minetti, Andrea; Riera-Montes, Margarita; Nackers, Fabienne; Roederer, Thomas; Koudika, Marie Hortense; Sekkenes, Johanne; Taconet, Aurore; Fermon, Florence; Touré, Albouhary; Grais, Rebecca F; Checchi, Francesco

    2012-10-12

    Estimation of vaccination coverage at the local level is essential to identify communities that may require additional support. Cluster surveys can be used in resource-poor settings, when population figures are inaccurate. To be feasible, cluster samples need to be small, without losing robustness of results. The clustered LQAS (CLQAS) approach has been proposed as an alternative, as smaller sample sizes are required. We explored (i) the efficiency of cluster surveys of decreasing sample size through bootstrapping analysis and (ii) the performance of CLQAS under three alternative sampling plans to classify local VC, using data from a survey carried out in Mali after mass vaccination against meningococcal meningitis group A. VC estimates provided by a 10 × 15 cluster survey design were reasonably robust. We used them to classify health areas in three categories and guide mop-up activities: i) health areas not requiring supplemental activities; ii) health areas requiring additional vaccination; iii) health areas requiring further evaluation. As sample size decreased (from 10 × 15 to 10 × 3), standard error of VC and ICC estimates were increasingly unstable. Results of CLQAS simulations were not accurate for most health areas, with an overall risk of misclassification greater than 0.25 in one health area out of three. It was greater than 0.50 in one health area out of two under two of the three sampling plans. Small sample cluster surveys (10 × 15) are acceptably robust for classification of VC at local level. We do not recommend the CLQAS method as currently formulated for evaluating vaccination programmes.

  11. SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY

    International Nuclear Information System (INIS)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Chiu, I.; Cho, H-M.; Clocchiatti, A.; Crites, A. T.; Haan, T. de

    2016-01-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m ⋆ ). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  12. SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey

    Science.gov (United States)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  13. DES13S2cmm: the first superluminous supernova from the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, A.; D' Andrea, C. B.; Sullivan, M.; Nichol, R. C.; Barbary, K.; Biswas, R.; Brown, P. J.; Covarrubias, R. A.; Finley, D. A.; Fischer, J. A.; Foley, R. J.; Goldstein, D.; Gupta, R. R.; Kessler, R.; Kovacs, E.; Kuhlmann, S. E.; Lidman, C.; March, M.; Nugent, P. E.; Sako, M.; Smith, R. C.; Spinka, H.; Wester, W.; Abbott, T. M. C.; Abdalla, F.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Carnero, A.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T.; Evrard, A. E.; Flaugher, B.; Frieman, J. A.; Gerdes, D.; Gruen, D.; Honscheid, K.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Ogando, R.; Plazas, A. A.; Roe, N. A.; Romer, A. K.; Rykoff, E.; Sanchez, E.; Santiago, B. X.; Scarpine, V.; Schubnell, M.; Sevilla, I.; Soares-Santos, M.; Suchyta, E.; Swanson, M.; Tarle, G.; Thaler, J.; Tucker, L. D.; Wechsler, R. H.; Zuntz, J.

    2015-03-20

    We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 +/- 0.001 based on the host-galaxy emission lines) and likely spectral type (Type I). Using this redshift, we find M-U(peak) = -21.05(-0.09)(+0.10) for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low-metallicity (subsolar), low stellar-mass host galaxy (log (M/M-circle dot) = 9.3 +/- 0.3), consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to 14 similarly well-observed SLSNe-I in the literature and find that it possesses one of the slowest declining tails (beyond +30 d rest-frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.2-0.3 mag between +25 and +30 d after peak (rest frame) depending on redshift range studied; this could be important for 'standardizing' such supernovae, as is done with the more common Type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I-the radioactive decay of Ni-56, and a magnetar - and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 d in the rest frame of the supernova.

  14. Measuring q0 using supernovae at z ∼ 0.3

    International Nuclear Information System (INIS)

    Newberg, H.J.M.

    1992-07-01

    The measurement of q o is extremely important for understanding the quantity of matter in our universe. The measurement of q o using supernovae of type Ia as standard candles is appealing because it requires less modeling than other methods using galaxies. The challenge with using supernovae to measure q o is in finding enough of them. In order to find supernovas, we have constructed a very popular f/1 camera for the 3.9m Anglo-Australian Telescope. The camera uses reducing optics that put a 17 in. x 17 in. field on a 1024 x 1024 pixel Thomson CCD. Using this system, we image to 23rd magnitude in five minutes. We have developed a software package that uses image subtraction to find supernovae that are approximately magnitude 22.4 or brighter in these images. One field can be processed every 6.6 minutes on a relatively unloaded VAX 6000-6510. We estimate that this system should find one supernova in every 105--139 images (about two nights of observation on the AAT). Throughout the two years of operation, we observed the equivalent of about four nights with seeing better than two arc seconds. Although we found many candidates, we were unable to confirm any supemovae. The next generation of this search is currently using the 2.5m Isaac Newton Telescope in the Canary Islands. We have solved many problems encountered with the AAT search by targeting distant clusters of galaxies, by operating at a site that allows higher resolution imaging, and by scheduling follow-up observations. This system, although still in its infancy, has yielded one event that could be a high redshift supernova. We estimate that it will require 36 type Ia supernovae, discovered at or before maximum, to find q o to within 0.2, and 144 such supernovae to measure q o within 0.1. Clearly, the program will have to be expanded to find this quantity of supernovae

  15. THE SUPERNOVA DELAY TIME DISTRIBUTION IN GALAXY CLUSTERS AND IMPLICATIONS FOR TYPE-Ia PROGENITORS AND METAL ENRICHMENT

    International Nuclear Information System (INIS)

    Maoz, Dan; Sharon, Keren; Avishay Gal-Yam

    2010-01-01

    Knowledge of the supernova (SN) delay time distribution (DTD)-the SN rate versus time that would follow a hypothetical brief burst of star formation-can shed light on SN progenitors and physics, as well as on the timescales of chemical enrichment in different environments. We compile recent measurements of the Type-Ia SN (SN Ia) rate in galaxy clusters at redshifts from z = 0 out to z = 1.45, just 2 Gyr after cluster star formation at z ∼ 3. We review the plausible range for the observed total iron-to-stellar mass ratio in clusters, based on the latest data and analyses, and use it to constrain the time-integrated number of SN Ia events in clusters. With these data, we recover the DTD of SNe Ia in cluster environments. The DTD is sharply peaked at the shortest time-delay interval we probe, 0Gyr -1.2±0.3 from t = 400 Myr to a Hubble time can satisfy both constraints. Shallower power laws such as t -1/2 cannot, assuming a single DTD, and a single star formation burst (either brief or extended) at high z. This implies that 50%-85% of SNe Ia explode within 1 Gyr of star formation. DTDs from double-degenerate (DD) models, which generically have ∼t -1 shapes over a wide range of timescales, match the data, but only if their predictions are scaled up by factors of 5-10. Single-degenerate (SD) DTDs always give poor fits to the data, due to a lack of delayed SNe and overall low numbers of SNe. The observations can also be reproduced with a combination of two SN Ia populations-a prompt SD population of SNe Ia that explodes within a few Gyr of star formation, and produces about 60% of the iron mass in clusters, and a DD population that contributes the events seen at z < 1.5. An alternative scenario of a single, prompt, SN Ia population, but a composite star formation history in clusters, consisting of a burst at high z, followed by a constant star formation rate, can reproduce the SN rates, but is at odds with direct measurements of star formation in clusters at 0 < z

  16. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  17. Simulating Supernova Light Curves

    International Nuclear Information System (INIS)

    Even, Wesley Paul; Dolence, Joshua C.

    2016-01-01

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth's atmosphere.

  18. THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Graham, M. L.; Pritchet, C. J.; Balam, D.; Fabbro, S.; Sullivan, M.; Hook, I. M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Basa, S.; Carlberg, R. G.; Perrett, K.; Conley, A.; Fouchez, D.; Rich, J.

    2010-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ∼1-5 times the rate in all early-type galaxies, and that any enhancement is always ∼<2σ. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.

  19. Masses of supernova progenitors

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1977-01-01

    The possible nature and masses of supernovae progenitors, and the bearing of empirical results on some unsolved theoretical problems concerning the origin of supernovae, are discussed. The author concentrates on two main questions: what is the lower mass limit for stars to die explosively and what stars initiate type I supernovae. The evidence considered includes local supernova rates, empirical estimates of msub(w) (the upper mass limit for death as a white dwarf), the distributions of supernovae among stellar populations in galaxies and the colors of supernova producing galaxies. (B.D.)

  20. Performance of small cluster surveys and the clustered LQAS design to estimate local-level vaccination coverage in Mali

    Directory of Open Access Journals (Sweden)

    Minetti Andrea

    2012-10-01

    Full Text Available Abstract Background Estimation of vaccination coverage at the local level is essential to identify communities that may require additional support. Cluster surveys can be used in resource-poor settings, when population figures are inaccurate. To be feasible, cluster samples need to be small, without losing robustness of results. The clustered LQAS (CLQAS approach has been proposed as an alternative, as smaller sample sizes are required. Methods We explored (i the efficiency of cluster surveys of decreasing sample size through bootstrapping analysis and (ii the performance of CLQAS under three alternative sampling plans to classify local VC, using data from a survey carried out in Mali after mass vaccination against meningococcal meningitis group A. Results VC estimates provided by a 10 × 15 cluster survey design were reasonably robust. We used them to classify health areas in three categories and guide mop-up activities: i health areas not requiring supplemental activities; ii health areas requiring additional vaccination; iii health areas requiring further evaluation. As sample size decreased (from 10 × 15 to 10 × 3, standard error of VC and ICC estimates were increasingly unstable. Results of CLQAS simulations were not accurate for most health areas, with an overall risk of misclassification greater than 0.25 in one health area out of three. It was greater than 0.50 in one health area out of two under two of the three sampling plans. Conclusions Small sample cluster surveys (10 × 15 are acceptably robust for classification of VC at local level. We do not recommend the CLQAS method as currently formulated for evaluating vaccination programmes.

  1. New Galactic star clusters discovered in the VVV survey

    Science.gov (United States)

    Borissova, J.; Bonatto, C.; Kurtev, R.; Clarke, J. R. A.; Peñaloza, F.; Sale, S. E.; Minniti, D.; Alonso-García, J.; Artigau, E.; Barbá, R.; Bica, E.; Baume, G. L.; Catelan, M.; Chenè, A. N.; Dias, B.; Folkes, S. L.; Froebrich, D.; Geisler, D.; de Grijs, R.; Hanson, M. M.; Hempel, M.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mauro, F.; Moni Bidin, C.; Rejkuba, M.; Saito, R. K.; Tamura, M.; Toledo, I.

    2011-08-01

    Context. VISTA Variables in the Vía Láctea (VVV) is one of the six ESO Public Surveys operating on the new 4-m Visible and Infrared Survey Telescope for Astronomy (VISTA). VVV is scanning the Milky Way bulge and an adjacent section of the disk, where star formation activity is high. One of the principal goals of the VVV Survey is to find new star clusters of differentages. Aims: In order to trace the early epochs of star cluster formation we concentrated our search in the directions to those of known star formation regions, masers, radio, and infrared sources. Methods: The disk area covered by VVV was visually inspected using the pipeline processed and calibrated KS-band tile images for stellar overdensities. Subsequently, we examined the composite JHKS and ZJKS color images of each candidate. PSF photometry of 15 × 15 arcmin fields centered on the candidates was then performed on the Cambridge Astronomy Survey Unit reduced images. After statistical field-star decontamination, color-magnitude and color-color diagrams were constructed and analyzed. Results: We report the discovery of 96 new infrared open clusters and stellar groups. Most of the new cluster candidates are faint and compact (with small angular sizes), highly reddened, and younger than 5 Myr. For relatively well populated cluster candidates we derived their fundamental parameters such as reddening, distance, and age by fitting the solar-metallicity Padova isochrones to the color-magnitude diagrams. Based on observations gathered with VIRCAM, VISTA of the ESO as part of observing programs 172.B-2002Appendix A is available in electronic form at http://www.aanda.orgTable 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/532/A131

  2. The Effects of Halo Assembly Bias on Self-Calibration in Galaxy Cluster Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao-Yi; Rozo, Eduardo; Wechsler, Risa H.

    2008-08-07

    Self-calibration techniques for analyzing galaxy cluster counts utilize the abundance and the clustering amplitude of dark matter halos. These properties simultaneously constrain cosmological parameters and the cluster observable-mass relation. It was recently discovered that the clustering amplitude of halos depends not only on the halo mass, but also on various secondary variables, such as the halo formation time and the concentration; these dependences are collectively termed 'assembly bias'. Applying modified Fisher matrix formalism, we explore whether these secondary variables have a significant impact on the study of dark energy properties using the self-calibration technique in current (SDSS) and the near future (DES, SPT, and LSST) cluster surveys. The impact of the secondary dependence is determined by (1) the scatter in the observable-mass relation and (2) the correlation between observable and secondary variables. We find that for optical surveys, the secondary dependence does not significantly influence an SDSS-like survey; however, it may affect a DES-like survey (given the high scatter currently expected from optical clusters) and an LSST-like survey (even for low scatter values and low correlations). For an SZ survey such as SPT, the impact of secondary dependence is insignificant if the scatter is 20% or lower but can be enhanced by the potential high scatter values introduced by a highly-correlated background. Accurate modeling of the assembly bias is necessary for cluster self-calibration in the era of precision cosmology.

  3. A Spitzer Survey for Dust in Type IIn Supernovae

    Science.gov (United States)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (greater than 100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (less than 10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days postdiscovery. The detection of late-time emission from ten targets (approximately 15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at approximately 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors.

  4. A Hubble Space Telescope Survey of the Disk Cluster Population of M31. II. Advanced Camera for Surveys Pointings

    Science.gov (United States)

    Krienke, O. K.; Hodge, P. W.

    2008-01-01

    This paper reports on a survey of star clusters in M31 based on archival images from the Hubble Space Telescope. Paper I reported results from images obtained with the Wide Field Planetary Camera 2 (WFPC2) and this paper reports results from the Advanced Camera for Surveys (ACS). The ACS survey has yielded a total of 339 star clusters, 52 of which—mostly globular clusters—were found to have been cataloged previously. As for the previous survey, the luminosity function of the clusters drops steeply for absolute magnitudes fainter than MV = -3 the implied cluster mass function has a turnover for masses less than a few hundred solar masses. The color-integrated magnitude diagram of clusters shows three significant features: (1) a group of very red, luminous objects: the globular clusters, (2) a wide range in color for the fainter clusters, representing a considerable range in age and reddening, and (3) a maximum density of clusters centered approximately at V = 21, B - V = 0.30, V - I = 0.50, where there are intermediate-age, intermediate-mass clusters with ages close to 500 million years and masses of about 2000 solar masses. We give a brief qualitative interpretation of the distribution of clusters in the CMDs in terms of their formation and destruction rates. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for research in astronomy, Inc., under NASA contract NAS 5-26555.

  5. An X-ray study of the supernova remnant G20.0-0.2 and its surroundings

    OpenAIRE

    Petriella, Alberto; Paron, Sergio; Giacani, Elsa

    2013-01-01

    Aims. We study the supernova remnant G20.0-0.2 and its surroundings in order to look for the high energy counterpart of the radio nebula and to find evidence of interaction between the shock front and the interstellar medium. Methods. We used Chandra archival observations to analyze the X-ray emission from the supernova remnant. The surrounding gas was investigated using data extracted from the Galactic Ring Survey, the VLA Galactic Plane Survey, the Galactic Legacy Infrared Midplane Survey E...

  6. The C4 clustering algorithm: Clusters of galaxies in the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Christopher J.; Nichol, Robert; Reichart, Dan; Wechsler, Risa H.; Evrard, August; Annis, James; McKay, Timothy; Bahcall, Neta; Bernardi, Mariangela; Boehringer,; Connolly, Andrew; Goto, Tomo; Kniazev, Alexie; Lamb, Donald; Postman, Marc; Schneider, Donald; Sheth, Ravi; Voges, Wolfgang; /Cerro-Tololo InterAmerican Obs. /Portsmouth U.,

    2005-03-01

    We present the ''C4 Cluster Catalog'', a new sample of 748 clusters of galaxies identified in the spectroscopic sample of the Second Data Release (DR2) of the Sloan Digital Sky Survey (SDSS). The C4 cluster-finding algorithm identifies clusters as overdensities in a seven-dimensional position and color space, thus minimizing projection effects that have plagued previous optical cluster selection. The present C4 catalog covers {approx}2600 square degrees of sky and ranges in redshift from z = 0.02 to z = 0.17. The mean cluster membership is 36 galaxies (with redshifts) brighter than r = 17.7, but the catalog includes a range of systems, from groups containing 10 members to massive clusters with over 200 cluster members with redshifts. The catalog provides a large number of measured cluster properties including sky location, mean redshift, galaxy membership, summed r-band optical luminosity (L{sub r}), velocity dispersion, as well as quantitative measures of substructure and the surrounding large-scale environment. We use new, multi-color mock SDSS galaxy catalogs, empirically constructed from the {Lambda}CDM Hubble Volume (HV) Sky Survey output, to investigate the sensitivity of the C4 catalog to the various algorithm parameters (detection threshold, choice of passbands and search aperture), as well as to quantify the purity and completeness of the C4 cluster catalog. These mock catalogs indicate that the C4 catalog is {approx_equal}90% complete and 95% pure above M{sub 200} = 1 x 10{sup 14} h{sup -1}M{sub {circle_dot}} and within 0.03 {le} z {le} 0.12. Using the SDSS DR2 data, we show that the C4 algorithm finds 98% of X-ray identified clusters and 90% of Abell clusters within 0.03 {le} z {le} 0.12. Using the mock galaxy catalogs and the full HV dark matter simulations, we show that the L{sub r} of a cluster is a more robust estimator of the halo mass (M{sub 200}) than the galaxy line-of-sight velocity dispersion or the richness of the cluster

  7. Smoking supernovae

    OpenAIRE

    Gomez, Haley Louise; Eales, Stephen Anthony; Dunne, L.

    2007-01-01

    The question ‘Are supernovae important sources of dust?’ is a contentious one. Observations with the Infrared Astronomical Satellite (IRAS) and the Infrared Space Observatory (ISO) only detected very small amounts of hot dust in supernova remnants. Here, we review observations of two young Galactic remnants with the Submillimetre Common User Bolometer Array (SCUBA), which imply that large quantities of dust are produced by supernovae. The association of dust with the Cassiopeia A remnant is i...

  8. The historical supernovae

    CERN Document Server

    Clark, David H

    1977-01-01

    The Historical Supernovae is an interdisciplinary study of the historical records of supernova. This book is composed of 12 chapters that particularly highlight the history of the Far East. The opening chapter briefly describes the features of nova and supernova, stars which spontaneously explode with a spectacular and rapid increase in brightness. The succeeding chapter deals with the search for the historical records of supernova from Medieval European monastic chronicles, Arabic chronicles, astrological works etc., post renaissance European scientific writings, and Far Eastern histories and

  9. Discovery of Ten ASAS-SN Supernovae

    Science.gov (United States)

    Nicholls, B.; Brimacombe, J.; Kiyota, S.; Stone, G.; Cruz, I.; Trappett, D.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the "Leavitt" telescope in Fort Davis, Texas, the "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  10. Discovery of 11 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Fernandez, J. M.; Stone, G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Nicholls, B.

    2018-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the "Leavitt" telescope in Fort Davis, Texas, the "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  11. Evolution of Supernova Remnants

    Science.gov (United States)

    Arbutina, B.

    2017-12-01

    This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.

  12. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  13. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    Totsuka, Y.

    1991-01-01

    On February 25, 1987, a sheet of telefax came to us from S. A. Bludman, saying Supernova went off in Large Magellanic Clouds. Can you see it? This is what we have been waiting 350 years for exclamation point In few hours, more information arrived. But it was still too early to definitely identify the supernova as type I or type II. This paper reports that the type I supernova is an explosion of a complete star due to uncontrolled nuclear fusion, while the type II supernova is triggered by gravitational collapse of the Fe core of a massive star (≥8 solar mass). It is this type II supernova that would leave a neutron star or a black hole after the liberation of an enormous amount of energy (3 x 10 53 erg) in the form of neutrinos. Therefore only the type II supernova is a relevant place to look for neutrino signals. It was also frustrating that the time when the stellar collapse actually took place was not definitely determined, because it was believed that the supernova brightened up about a day after the collapse and there was an ambiguity in a time lag of the optical observation. There was a possibility that it had happened well before February 24

  14. Dust in Supernovae and Supernova Remnants II: Processing and Survival

    Science.gov (United States)

    Micelotta, E. R.; Matsuura, M.; Sarangi, A.

    2018-03-01

    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.

  15. Nearby supernova factory announces 34 supernovae in one year'; best Rookie year ever for supernova search

    CERN Multimedia

    2003-01-01

    The Nearby Supernova Factory (SNfactory), an international collaboration based at Lawrence Berkeley National Laboratory, announced that it had discovered 34 supernovae during the first year of the prototype system's operation (2 pages).

  16. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    International Nuclear Information System (INIS)

    Janka, H.T.

    1996-01-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson's neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs

  17. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  18. SLOW-SPEED SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: TWO CHANNELS

    Energy Technology Data Exchange (ETDEWEB)

    White, Christopher J. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Kasliwal, Mansi M.; Piro, Anthony L. [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nugent, Peter E. [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Gal-Yam, Avishay; Ofek, Eran O.; Ben-Ami, Sagi [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Howell, D. Andrew [Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530 (United States); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Goobar, Ariel [The Oskar Klein Centre, Department of Physics, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden); Bloom, Joshua S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Kulkarni, Shrinivas R.; Cao, Yi [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Laher, Russ R.; Masci, Frank; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Hook, Isobel M. [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Jönsson, Jakob [Savantic AB, Rosenlundsgatan 50, SE-118 63 Stockholm (Sweden); Matheson, Thomas [National Optical Astronomy Observatory, Tucson, AZ 85719-4933 (United States); and others

    2015-01-20

    Since the discovery of the unusual prototype SN 2002cx, the eponymous class of Type I (hydrogen-poor) supernovae with low ejecta speeds has grown to include approximately two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 Type I supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover, we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: ''SN 2002cx-like'' supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to ''SN 2002es-like'' supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that the occurrence rate of these transients relative to Type Ia supernovae is 5.6{sub −3.8}{sup +22}% (90% confidence), lower compared to earlier estimates. Combining our objects with the literature sample, we propose that these subclasses have two distinct physical origins.

  19. Choosing a Cluster Sampling Design for Lot Quality Assurance Sampling Surveys.

    Directory of Open Access Journals (Sweden)

    Lauren Hund

    Full Text Available Lot quality assurance sampling (LQAS surveys are commonly used for monitoring and evaluation in resource-limited settings. Recently several methods have been proposed to combine LQAS with cluster sampling for more timely and cost-effective data collection. For some of these methods, the standard binomial model can be used for constructing decision rules as the clustering can be ignored. For other designs, considered here, clustering is accommodated in the design phase. In this paper, we compare these latter cluster LQAS methodologies and provide recommendations for choosing a cluster LQAS design. We compare technical differences in the three methods and determine situations in which the choice of method results in a substantively different design. We consider two different aspects of the methods: the distributional assumptions and the clustering parameterization. Further, we provide software tools for implementing each method and clarify misconceptions about these designs in the literature. We illustrate the differences in these methods using vaccination and nutrition cluster LQAS surveys as example designs. The cluster methods are not sensitive to the distributional assumptions but can result in substantially different designs (sample sizes depending on the clustering parameterization. However, none of the clustering parameterizations used in the existing methods appears to be consistent with the observed data, and, consequently, choice between the cluster LQAS methods is not straightforward. Further research should attempt to characterize clustering patterns in specific applications and provide suggestions for best-practice cluster LQAS designs on a setting-specific basis.

  20. Choosing a Cluster Sampling Design for Lot Quality Assurance Sampling Surveys.

    Science.gov (United States)

    Hund, Lauren; Bedrick, Edward J; Pagano, Marcello

    2015-01-01

    Lot quality assurance sampling (LQAS) surveys are commonly used for monitoring and evaluation in resource-limited settings. Recently several methods have been proposed to combine LQAS with cluster sampling for more timely and cost-effective data collection. For some of these methods, the standard binomial model can be used for constructing decision rules as the clustering can be ignored. For other designs, considered here, clustering is accommodated in the design phase. In this paper, we compare these latter cluster LQAS methodologies and provide recommendations for choosing a cluster LQAS design. We compare technical differences in the three methods and determine situations in which the choice of method results in a substantively different design. We consider two different aspects of the methods: the distributional assumptions and the clustering parameterization. Further, we provide software tools for implementing each method and clarify misconceptions about these designs in the literature. We illustrate the differences in these methods using vaccination and nutrition cluster LQAS surveys as example designs. The cluster methods are not sensitive to the distributional assumptions but can result in substantially different designs (sample sizes) depending on the clustering parameterization. However, none of the clustering parameterizations used in the existing methods appears to be consistent with the observed data, and, consequently, choice between the cluster LQAS methods is not straightforward. Further research should attempt to characterize clustering patterns in specific applications and provide suggestions for best-practice cluster LQAS designs on a setting-specific basis.

  1. Calibrating the Planck cluster mass scale with CLASH

    Science.gov (United States)

    Penna-Lima, M.; Bartlett, J. G.; Rozo, E.; Melin, J.-B.; Merten, J.; Evrard, A. E.; Postman, M.; Rykoff, E.

    2017-08-01

    We determine the mass scale of Planck galaxy clusters using gravitational lensing mass measurements from the Cluster Lensing And Supernova survey with Hubble (CLASH). We have compared the lensing masses to the Planck Sunyaev-Zeldovich (SZ) mass proxy for 21 clusters in common, employing a Bayesian analysis to simultaneously fit an idealized CLASH selection function and the distribution between the measured observables and true cluster mass. We used a tiered analysis strategy to explicitly demonstrate the importance of priors on weak lensing mass accuracy. In the case of an assumed constant bias, bSZ, between true cluster mass, M500, and the Planck mass proxy, MPL, our analysis constrains 1-bSZ = 0.73 ± 0.10 when moderate priors on weak lensing accuracy are used, including a zero-mean Gaussian with standard deviation of 8% to account for possible bias in lensing mass estimations. Our analysis explicitly accounts for possible selection bias effects in this calibration sourced by the CLASH selection function. Our constraint on the cluster mass scale is consistent with recent results from the Weighing the Giants program and the Canadian Cluster Comparison Project. It is also consistent, at 1.34σ, with the value needed to reconcile the Planck SZ cluster counts with Planck's base ΛCDM model fit to the primary cosmic microwave background anisotropies.

  2. Supernova cosmology

    International Nuclear Information System (INIS)

    Leibundgut, B.

    2005-01-01

    Supernovae have developed into a versatile tool for cosmology. Their impact on the cosmological model has been profound and led to the discovery of the accelerated expansion. The current status of the cosmological model as perceived through supernova observations will be presented. Supernovae are currently the only astrophysical objects that can measure the dynamics of the cosmic expansion during the past eight billion years. Ongoing experiments are trying to determine the characteristics of the accelerated expansion and give insight into what might be the physical explanation for the acceleration. (author)

  3. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the 56 Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed

  4. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583 (Japan)

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  5. Spectroscopic Classification of SN 2017ghm as a Type Ia Supernova

    Science.gov (United States)

    Vinko, J.; Wheeler, J. C.; Wang, X.; Li, W.; Li, Z.; Xiang, D.; Rui, L.; Lin, H.; Xu, Z.; Li, B.; Zhao, H.; Wang, L.; Tan, H.; Zhang, J.

    2017-09-01

    An optical spectrum (range 360-680 nm) of SN 2017ghm (=PTSS-17uyml), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), was obtained with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Rostopchin on 2017 Aug 31.17 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2.3 mag) around maximum light.

  6. THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Stritzinger, Maximilian D.; Phillips, M. M.; Campillay, Abdo; Morrell, Nidia; Krzeminski, Wojtek; Roth, Miguel; Boldt, Luis N.; Burns, Chris; Freedman, Wendy L.; Madore, Barry F.; Persson, Sven E.; Contreras, Carlos; Gonzalez, Sergio; Folatelli, Gaston; Salgado, Francisco; DePoy, D. L.; Marshall, J. L.; Rheault, Jean-Philippe; Suntzeff, Nicholas B.; Hamuy, Mario

    2011-01-01

    The Carnegie Supernova Project (CSP) was a five-year observational survey conducted at Las Campanas Observatory that obtained, among other things, high-quality light curves of ∼100 low-redshift Type Ia supernovae (SNe Ia). Presented here is the second data release of nearby SN Ia photometry consisting of 50 objects, with a subset of 45 having near-infrared follow-up observations. Thirty-three objects have optical pre-maximum coverage with a subset of 15 beginning at least five days before maximum light. In the near-infrared, 27 objects have coverage beginning before the epoch of B-band maximum, with a subset of 13 beginning at least five days before maximum. In addition, we present results of a photometric calibration program to measure the CSP optical (uBgVri) bandpasses with an accuracy of ∼1%. Finally, we report the discovery of a second SN Ia, SN 2006ot, similar in its characteristics to the peculiar SN 2006bt.

  7. THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Contreras, Carlos; Phillips, M. M.; Folatelli, Gaston; Stritzinger, Maximilian; Boldt, Luis; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Roth, Miguel; Salgado, Francisco; Hamuy, Mario; Maureira, MarIa Jose; Suntzeff, Nicholas B.; Persson, S. E.; Burns, Christopher R.; Freedman, W. L.; Madore, Barry F.; Murphy, David; Wyatt, Pamela; Li Weidong

    2010-01-01

    The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of ∼100 low-redshift Type Ia supernovae (SNe Ia) in a well-defined photometric system. Here we present the first release of photometric data that contains the optical light curves of 35 SNe Ia, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (Y JHK s ) data points in the natural system of the Swope telescope. Twenty-eight SNe have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate data sets of low-redshift SNe Ia published to date. When completed, the CSP data set will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of SNe Ia.

  8. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    International Nuclear Information System (INIS)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2013-01-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M * /M ☉ ) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  9. A plausible (overlooked) super-luminous supernova in the Sloan digital sky survey stripe 82 data

    International Nuclear Information System (INIS)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Wyrzykowski, Łukasz; Djorgovski, S. George; Mahabal, Ashish A.; Glikman, Eilat; Koposov, Sergey

    2013-01-01

    We present the discovery of a plausible super-luminous supernova (SLSN), found in the archival data of Sloan Digital Sky Survey (SDSS) Stripe 82, called PSN 000123+000504. The supernova (SN) peaked at m g < 19.4 mag in the second half of 2005 September, but was missed by the real-time SN hunt. The observed part of the light curve (17 epochs) showed that the rise to the maximum took over 30 days, while the decline time lasted at least 70 days (observed frame), closely resembling other SLSNe of SN 2007bi type. The spectrum of the host galaxy reveals a redshift of z = 0.281 and the distance modulus of μ = 40.77 mag. Combining this information with the SDSS photometry, we found the host galaxy to be an LMC-like irregular dwarf galaxy with an absolute magnitude of M B = –18.2 ± 0.2 mag and an oxygen abundance of 12+log [O/H]=8.3±0.2; hence, the SN peaked at M g < –21.3 mag. Our SLSN follows the relation for the most energetic/super-luminous SNe exploding in low-metallicity environments, but we found no clear evidence for SLSNe to explode in low-luminosity (dwarf) galaxies only. The available information on the PSN 000123+000504 light curve suggests the magnetar-powered model as a likely scenario of this event. This SLSN is a new addition to a quickly growing family of super-luminous SNe.

  10. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected Via the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; hide

    2010-01-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives (sigma)8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find (sigma)8 + 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernova which give (sigma)8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  11. Hydrogen-Poor Core-Collapse Supernovae

    Science.gov (United States)

    Pian, Elena; Mazzali, Paolo A.

    Hydrogen-poor core-collapse supernovae (SNe) signal the explosive death of stars more massive than the progenitors of hydrogen-rich core-collapse supernovae, i.e., approximately in the range 15-50 M⊙ in main sequence. Since hydrogen-poor core-collapse supernovae include those that accompany gamma-ray bursts (GRBs), which were all rigorously identified with type Ic supernovae, their explosion energies cover almost two decades. The light curves and spectra are consequently very heterogeneous and often bear the signature of an asymmetric, i.e., aspherical, explosion. Asphericity is best traced by early-time (within days of the explosion) optical spectropolarimetry and by late-epoch (more than ˜ 100 days after explosion) low-resolution spectroscopy. While the relationship between hydrogen-poor core-collapse supernovae to hydrogen-poor super-luminous supernovae is not understood, a known case of association between an ultra-long gamma-ray burst and a very luminous hydrogen-poor supernova may help unraveling the connection. This is tantalizingly pointing to a magnetar powering source for both phenomena, although this scenario is still highly speculative. Host galaxies of hydrogen-poor supernovae are always star forming; in those of completely stripped supernovae and gamma-ray burst supernovae, the spatial distribution of the explosions follows the blue/ultraviolet light, with a correlation that is more than linear.

  12. Peculiar Supernovae

    Science.gov (United States)

    Milisavljevic, Dan; Margutti, Raffaella

    2018-06-01

    What makes a supernova truly "peculiar?" In this review we attempt to address this question by tracing the history of the use of "peculiar" as a descriptor of non-standard supernovae back to the original binary spectroscopic classification of Type I vs. Type II proposed by Minkowski (Publ. Astron. Soc. Pac., 53:224, 1941). A handful of noteworthy examples are highlighted to illustrate a general theme: classes of supernovae that were once thought to be peculiar are later seen as logical branches of standard events. This is not always the case, however, and we discuss ASASSN-15lh as an example of a transient with an origin that remains contentious. We remark on how late-time observations at all wavelengths (radio-through-X-ray) that probe 1) the kinematic and chemical properties of the supernova ejecta and 2) the progenitor star system's mass loss in the terminal phases preceding the explosion, have often been critical in understanding the nature of seemingly unusual events.

  13. THERMAL AND CHEMICAL EVOLUTIONS OF GALAXY CLUSTERS OBSERVED WITH SUZAKU

    Directory of Open Access Journals (Sweden)

    Kosuke Sato

    2013-12-01

    Full Text Available We studied the properties of the intracluster medium (ICM of galaxy clusters to outer regions observed with Suzaku. The observed temperature dropped by about ~30% from the central region to the virial radius of the clusters. The derived entropy profile agreed with the expectation from simulations within r500, while the entropy profile in r > r500 indicated a flatter slope than the simulations. This would suggest that the cluster outskirts were out of hydrostatic equilibrium. As for the metallicity, we studied the metal abundances from O to Fe up to ~0.5 times the virial radius of galaxy groups and clusters. Comparing the results with supernova nucleosynthesis models, the number ratio of type II to Ia supernovae is estimated to be ~3.5. We also calculated not only Fe, but also O and Mg mass-to-light ratios (MLRs with K-band luminosity. The MLRs in the clusters had a similar feature.

  14. Type Ia Supernova Rate Measurements to Redshift 2.5 from Candles: Searching for Prompt Explosions in the Early Universe

    Science.gov (United States)

    Rodney, Steven A.; Riess, Adam G.; Strogler, Louis-Gregory; Dahlen, Tomas; Graur, Or; Casertano, Stefano; Dickinson, Mark E.; Ferguson, Henry C.; Garnavich, Peter; Cenko, Stephen Bradley

    2014-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope(HST) that surveyed a total area of approx. 0.25 deg(sup 2) with approx.900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z approx. 2.5. We classify approx. 24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only approx. 3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction isfP0.530.09stat0.100.10sys0.26, consistent with a delay time distribution that follows a simplet1power law for all timest40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20 of all SN Ia explosions though further analysis and larger samples will be needed to examine that suggestion.

  15. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Goldstein, Daniel A.; Nugent, Peter E.

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H _0, w , and Ω_m via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.

  16. VizieR Online Data Catalog: Absorption velocities for 21 super-luminous SNe Ic (Liu+, 2017)

    Science.gov (United States)

    Liu, Y.-Q.; Modjaz, M.; Bianco, F. B.

    2018-04-01

    We have collected the spectra of all available super-luminous supernovae (SLSNe) Ic that have a date of maximum light published before April of 2016. These SLSNe Ic were mainly discovered and observed by the All-Sky Automated Survey for Supernovae (ASAS-SN), the Catalina Real-Time Transient Survey, the Dark Energy Survey (DES), the Hubble Space Telescope Cluster Supernova Survey, the Pan-STARRS1 Medium Deep Survey (PS1), the Public ESO Spectroscopic Survey of Transient Objects (PESSTO), the Intermediate Palomar Transient Factory (iPTF) as well as the Palomar Transient Factory (PTF), and the Supernova Legacy Survey (SNLS). See table 1. (2 data files).

  17. Optimising cluster survey design for planning schistosomiasis preventive chemotherapy.

    Directory of Open Access Journals (Sweden)

    Sarah C L Knowles

    2017-05-01

    Full Text Available The cornerstone of current schistosomiasis control programmes is delivery of praziquantel to at-risk populations. Such preventive chemotherapy requires accurate information on the geographic distribution of infection, yet the performance of alternative survey designs for estimating prevalence and converting this into treatment decisions has not been thoroughly evaluated.We used baseline schistosomiasis mapping surveys from three countries (Malawi, Côte d'Ivoire and Liberia to generate spatially realistic gold standard datasets, against which we tested alternative two-stage cluster survey designs. We assessed how sampling different numbers of schools per district (2-20 and children per school (10-50 influences the accuracy of prevalence estimates and treatment class assignment, and we compared survey cost-efficiency using data from Malawi. Due to the focal nature of schistosomiasis, up to 53% simulated surveys involving 2-5 schools per district failed to detect schistosomiasis in low endemicity areas (1-10% prevalence. Increasing the number of schools surveyed per district improved treatment class assignment far more than increasing the number of children sampled per school. For Malawi, surveys of 15 schools per district and 20-30 children per school reliably detected endemic schistosomiasis and maximised cost-efficiency. In sensitivity analyses where treatment costs and the country considered were varied, optimal survey size was remarkably consistent, with cost-efficiency maximised at 15-20 schools per district.Among two-stage cluster surveys for schistosomiasis, our simulations indicated that surveying 15-20 schools per district and 20-30 children per school optimised cost-efficiency and minimised the risk of under-treatment, with surveys involving more schools of greater cost-efficiency as treatment costs rose.

  18. New VVV Survey Globular Cluster Candidates in the Milky Way Bulge

    Energy Technology Data Exchange (ETDEWEB)

    Minniti, Dante; Gómez, Matías [Departamento de Física, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. Fernandez Concha 700, Las Condes, Santiago (Chile); Geisler, Douglas; Fernández-Trincado, Jose G. [Departamento de Astronomía, Casilla 160-C, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Alonso-García, Javier; Beamín, Juan Carlos; Borissova, Jura; Catelan, Marcio; Ramos, Rodrigo Contreras; Kurtev, Radostin; Pullen, Joyce [Instituto Milenio de Astrofísica, Santiago (Chile); Palma, Tali; Clariá, Juan J. [Observatorio Astronómico, Universidad Nacional de Córdoba, Laprida 854, Córdoba (Argentina); Cohen, Roger E. [Space Telescope Science Institute, 2700 San Martin Drive, Baltimore (United States); Dias, Bruno [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Hempel, Maren [Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Av. Vicuña Mackenna 4860, Santiago (Chile); Ivanov, Valentin D. [European Southern Observatory, Karl-Schwarszchild-Str. 2, D-85748 Garching bei Muenchen (Germany); Lucas, Phillip W. [Dept. of Astronomy, University of Hertfordshire, Hertfordshire (United Kingdom); Moni-Bidin, Christian; Alegría, Sebastian Ramírez [Instituto de Astronomía, Universidad Católica del Norte, Antofagasta (Chile); and others

    2017-11-10

    It is likely that a number of Galactic globular clusters remain to be discovered, especially toward the Galactic bulge. High stellar density combined with high and differential interstellar reddening are the two major problems for finding globular clusters located toward the bulge. We use the deep near-IR photometry of the VISTA Variables in the Vía Láctea (VVV) Survey to search for globular clusters projected toward the Galactic bulge, and hereby report the discovery of 22 new candidate globular clusters. These objects, detected as high density regions in our maps of bulge red giants, are confirmed as globular cluster candidates by their color–magnitude diagrams. We provide their coordinates as well as their near-IR color–magnitude diagrams, from which some basic parameters are derived, such as reddenings and heliocentric distances. The color–magnitude diagrams reveal well defined red giant branches in all cases, often including a prominent red clump. The new globular cluster candidates exhibit a variety of extinctions (0.06 < A {sub Ks} < 2.77) and distances (5.3 < D < 9.5 kpc). We also classify the globular cluster candidates into 10 metal-poor and 12 metal-rich clusters, based on the comparison of their color–magnitude diagrams with those of known globular clusters also observed by the VVV Survey. Finally, we argue that the census for Galactic globular clusters still remains incomplete, and that many more candidate globular clusters (particularly the low luminosity ones) await to be found and studied in detail in the central regions of the Milky Way.

  19. Hα star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    International Nuclear Information System (INIS)

    Zeimann, Gregory R.; Stanford, S. A.; Brodwin, Mark; Gonzalez, Anthony H.; Mancone, Conor; Snyder, Gregory F.; Stern, Daniel; Eisenhardt, Peter; Dey, Arjun; Moustakas, John

    2013-01-01

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 Cluster Survey. We use Wide Field Camera 3 grism data to spectroscopically identify Hα emitters in both the cores of galaxy clusters as well as in field galaxies. We find a large cluster-to-cluster scatter in the star formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M * < 10.0 M ☉ ). We therefore conclude that environmental effects are still important at 1.0 clusters with log M * ≲ 10.0 M ☉ .

  20. THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY. II. INITIAL SPECTROSCOPIC CONFIRMATION OF z ∼ 1 GALAXY CLUSTERS SELECTED FROM 10,000 deg2

    International Nuclear Information System (INIS)

    Stanford, S. A.; Gonzalez, Anthony H.; Gettings, Daniel P.; Brodwin, Mark; Eisenhardt, Peter R. M.; Stern, Daniel; Wylezalek, Dominika

    2014-01-01

    We present optical and infrared imaging and optical spectroscopy of galaxy clusters which were identified as part of an all-sky search for high-redshift galaxy clusters, the Massive and Distant Clusters of WISE Survey (MaDCoWS). The initial phase of MaDCoWS combined infrared data from the all-sky data release of the Wide-field Infrared Survey Explorer (WISE) with optical data from the Sloan Digital Sky Survey to select probable z ∼ 1 clusters of galaxies over an area of 10,000 deg 2 . Our spectroscopy confirms 19 new clusters at 0.7 < z < 1.3, half of which are at z > 1, demonstrating the viability of using WISE to identify high-redshift galaxy clusters. The next phase of MaDCoWS will use the greater depth of the AllWISE data release to identify even higher redshift cluster candidates

  1. THE XMM CLUSTER SURVEY: THE STELLAR MASS ASSEMBLY OF FOSSIL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Craig D.; Miller, Christopher J. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Richards, Joseph W.; Deadman, Paul-James [Center for Time Domain Informatics, University of California, Berkeley, CA 94720 (United States); Lloyd-Davies, E. J.; Kathy Romer, A.; Mehrtens, Nicola; Liddle, Andrew R. [Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Hoyle, Ben [Institute of Sciences of the Cosmos (ICCUB) and IEEC, Physics Department, University of Barcelona, Barcelona 08024 (Spain); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Stott, John P.; Capozzi, Diego; Collins, Chris A. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Sahlen, Martin [Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Stanford, S. Adam [Physics Department, University of California, Davis, CA 95616 (United States); Viana, Pedro T. P., E-mail: craigha@umich.edu [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-06-10

    This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightest galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5 R{sub 200}, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters.

  2. VizieR Online Data Catalog: HST/ACS Coma Cluster Survey. VI. (den Brok+, 2011)

    Science.gov (United States)

    den Brok, M.; Peletier, R. F.; Valentijn, E. A.; Balcells, M.; Carter, D.; Erwin, P.; Ferguson, H. C.; Goudfrooij, P.; Graham, A. W.; Hammer, D.; Lucey, J. R.; Trentham, N.; Guzman, R.; Hoyos, C.; Verdoes Kleijn, G.; Jogee, S.; Karick, A. M.; Marinova, I.; Mouhcine, M.; Weinzirl, T.

    2018-01-01

    We have used the data from the HST/ACS Coma Cluster Survey, a deep two-passband imaging survey of the Coma cluster. A full description of the observations and data reduction can be found in Paper I (Carter et al., 2008ApJS..176..424C). We have derived colour gradients for a sample of confirmed or very likely Coma cluster members. (2 data files).

  3. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Current Status

    Science.gov (United States)

    Frinchaboy, Peter; O'Connell, Julia; Donor, John; Cunha, Katia; Thompson, Benjamin; Melendez, Matthew; Shetrone, Matthew; Zasowski, Gail; Majewski, Steven R.; APOGEE TEAM

    2018-01-01

    The Open Cluster Chemical Analysis and Mapping (OCCAM) survey aims to produce a comprehensive, uniform, infrared-based data set forhundreds of open clusters, and constrain key Galactic dynamical and chemical parameters using the SDSS/APOGEE survey and follow-up from the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We report on multi-element radial abundance gradients obtained from a sample of over 30 disk open clusters. The APOGEE chemical abundances were derived automatically by the ASPCAP pipeline and these are part of the SDSS IV Data Release 14, optical follow-up were analyzed using equivalent width analysis and spectral synthesis. We present the current open cluster sample that spans a significant range in age allowing exploration of the evolution of the Galactic abundance gradients. This work is supported by an NSF AAG grants AST-1311835 & AST-1715662.

  4. LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Yasuda, Naoki; Fukugita, Masataka

    2010-01-01

    The sample of 137 low-redshift type Ia supernovae (SNe Ia) with 0.05 ≤ z ≤ 0.3 obtained from the Sloan Digital Sky Survey (SDSS)-II supernova survey for the southern equatorial stripe of 300 deg 2 is used to derive the luminosity functions (LFs) of SNe Ia and of their host galaxies in the g, r, i passbands. We show that the LF of SNe Ia host galaxies matches well with that of galaxies in the general field, suggesting that the occurrence of SNe Ia does not favor a particular type of galaxy but is predominantly proportional to the luminosity of galaxies. The evidence is weak that the SNe rate varies with the color of host galaxies. The only evidence that points to possible correlation between the SN rate and star formation activity is that the SN rate in late-type galaxies is higher than that in early-type galaxies by 31% ± 35%. In our low-redshift sample, the component of type Ia SN rate that is proportional to star formation activity is not evident in the integrated SN rate, while our observation is compatible with the current two-component models. The sample contains eight SNe Ia whose host galaxies were not identified, but it is shown that their occurrence is consistent with them occurring in low-luminous galaxies beyond the survey. The LF of SNe Ia is approximately Gaussian with the full width at half-maximum being a factor of σ = 0.24 mag or 1.67 in luminosity. The Gaussian distribution becomes tighter if the ratio of extinction to reddening, R V , is lower than the characteristic value for the Milky Way and if luminosity is corrected for the light-curve shape. The average color excess is ∼0.07 mag, which is significantly smaller than reddening expected for field galaxies. This color excess does not vary with the distance of the SNe from the center of the host galaxy to 15 kpc. This suggests that the major part of the color excess appears to be either intrinsic or reddening that arises in the immediate environment of SNe, rather than interstellar

  5. Type Ia Supernova Cosmology

    Science.gov (United States)

    Leibundgut, B.; Sullivan, M.

    2018-03-01

    The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

  6. Discovery of 7 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Castro, N.; Clocchiatti, A.; Stone, G.; Nicholls, B.; Fernandez, J. M.; Cacella, P.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.

    2018-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  7. Discovery of 9 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Castro, N.; Clocchiatti, A.; Cacella, P.; Wiethoff, W.; Krannich, G.; Stone, G.; Kiyota, S.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.

    2018-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  8. Discovery of 8 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Kiyota, S.; Wiethoff, W.; Stone, G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.

    2018-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  9. Discovery of Six ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Stone, G.; Kiyota, S.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Bock, G.; Cornect, R.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  10. Discovery of 8 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Tomasella, Lina; Krannich, G.; Stone, G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Nicholls, B.; Cacella, P.; Kiyota, S.

    2018-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  11. Discovery of Eight ASAS-SN Supernovae

    Science.gov (United States)

    Stone, G.; Brimacombe, J.; Cacella, P.; Farfan, R. G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Trappett, D.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  12. Discovery of Four ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Kiyota, S.; Cruz, I.; Stone, G.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  13. Discovery of Nine ASAS-SN Supernovae

    Science.gov (United States)

    Cacella, P.; Brimacombe, J.; Fernandez, J. M.; Kiyota, S.; Krannich, G.; Koff, R. A.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Aslan, L.; Bock, G.; Stone, G.

    2018-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  14. Discovery of Five ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Stone, G.; Kiyota, S.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  15. Dark energy constraints from the cosmic age and supernova

    International Nuclear Information System (INIS)

    Feng Bo; Wang Xiulian; Zhang Xinmin

    2005-01-01

    Using the low limit of cosmic ages from globular cluster and the white dwarfs: t 0 >12Gyr, together with recent new high redshift supernova observations from the HST/GOODS program and previous supernova data, we give a considerable estimation of the equation of state for dark energy, with uniform priors as weak as 0.2 m m h 2 <0.16. We find cosmic age limit plays a significant role in lowering the upper bound on the variation amplitude of dark energy equation of state. We propose in this Letter a new scenario of dark energy dubbed quintom, which gives rise to the equation of state larger than -1 in the past and less than -1 today, satisfying current observations. In addition we have also considered the implications of recent X-ray gas mass fraction data on dark energy, which favors a negative running of the equation of state

  16. Female cluster headache in the United States of America: what are the gender differences? Results from the United States Cluster Headache Survey.

    Science.gov (United States)

    Rozen, Todd D; Fishman, Royce S

    2012-06-15

    To present results from the United States Cluster Headache Survey regarding gender differences in cluster headache demographics, clinical characteristics, diagnostic delay, triggers, treatment response and personal burden. Very few studies have looked at the gender differences in cluster headache presentation. The United States Cluster Headache Survey is the largest study of cluster headache sufferers ever completed in the United States and it is also the largest study of female cluster headache patients ever presented. The total survey consisted of 187 multiple choice questions which dealt with various issues related to cluster headache including: demographics, clinical characteristics, concomitant medical conditions, family history, triggers, smoking history, diagnosis, treatment response and personal burden. A group of questions were specifically targeted to female cluster headache patients. The survey was placed on a website from October to December 2008. For all survey responders the diagnosis of cluster headache needed to be made by a neurologist but there was no validation of the headache diagnosis by the authors. 1134 individuals completed the survey (816 male, 318 female). Key Points that define the differences between female and male cluster headache include: a. Age of onset: women develop cluster headache at an earlier age than men and are more likely to develop a second peak of cluster headache onset after 50 years of age. b. Family history: woman cluster headache sufferers are more likely to have a family history of both cluster headache and migraine and have an increased familial risk of Parkinson's disease. c. Comorbid conditions: female cluster headaches sufferers are significantly more likely to experience depression and have asthma than males. d. Aura issues: aura with cluster headache is equally common in both sexes, but aura duration is shorter in women. Women are much more likely to experience sensory, language and brainstem auras. e. Pain

  17. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  18. The Dark Energy Survey: more than dark energy – an overview

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, Vinu; Abbott, T; Abdalla, F. B.; Allam, S.; Aleksic, J.; Amara, A.; Bacon, D.; Balbinot, E.; Banerji, M.; Bechtol, K.; Benoit-Levy, A.

    2016-03-21

    This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from ‘Science Verification’, and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be Λ+cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).

  19. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Daniel A.; Nugent, Peter E. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H {sub 0}, w , and Ω{sub m} via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.

  20. PS1-12sk IS A PECULIAR SUPERNOVA FROM A He-RICH PROGENITOR SYSTEM IN A BRIGHTEST CLUSTER GALAXY ENVIRONMENT

    International Nuclear Information System (INIS)

    Sanders, N. E.; Soderberg, A. M.; Foley, R. J.; Chornock, R.; Milisavljevic, D.; Margutti, R.; Drout, M. R.; Moe, M.; Berger, E.; Brown, W. R.; Lunnan, R.; Smartt, S. J.; Fraser, M.; Kotak, R.; Magill, L.; Smith, K. W.; Wright, D.; Huang, K.; Urata, Y.; Mulchaey, J. S.

    2013-01-01

    We report on our discovery and observations of the Pan-STARRS1 supernova (SN) PS1-12sk, a transient with properties that indicate atypical star formation in its host galaxy cluster or pose a challenge to popular progenitor system models for this class of explosion. The optical spectra of PS1-12sk classify it as a Type Ibn SN (SN Ibn; cf. SN 2006jc), dominated by intermediate-width (3 × 10 3 km s –1 ) and time variable He I emission. Our multi-wavelength monitoring establishes the rise time dt ∼ 9-23 days and shows an NUV-NIR spectral energy distribution with temperature ∼> 17 × 10 3 K and a peak magnitude of M z = –18.88 ± 0.02 mag. SN Ibn spectroscopic properties are commonly interpreted as the signature of a massive star (17-100 M ☉ ) explosion within an He-enriched circumstellar medium. However, unlike previous SNe Ibn, PS1-12sk is associated with an elliptical brightest cluster galaxy, CGCG 208–042 (z = 0.054) in cluster RXC J0844.9+4258. The expected probability of an event like PS1-12sk in such environments is low given the measured infrequency of core-collapse SNe in red-sequence galaxies compounded by the low volumetric rate of SN Ibn. Furthermore, we find no evidence of star formation at the explosion site to sensitive limits (Σ Hα ∼ –3 M ☉ yr –1 kpc –2 ). We therefore discuss white dwarf binary systems as a possible progenitor channel for SNe Ibn. We conclude that PS1-12sk represents either a fortuitous and statistically unlikely discovery, evidence for a top-heavy initial mass function in galaxy cluster cooling flow filaments, or the first clue suggesting an alternate progenitor channel for SNe Ibn.

  1. The next generation Virgo cluster survey. VIII. The spatial distribution of globular clusters in the Virgo cluster

    Energy Technology Data Exchange (ETDEWEB)

    Durrell, Patrick R.; Accetta, Katharine [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Côté, Patrick; Blakeslee, John P.; Ferrarese, Laura; McConnachie, Alan; Gwyn, Stephen [Herzberg Astronomy and Astrophysics, National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Peng, Eric W.; Zhang, Hongxin [Department of Astronomy, Peking University, Beijing 100871 (China); Mihos, J. Christopher [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Puzia, Thomas H.; Jordán, Andrés [Institute of Astrophysics, Pontificia Universidad Catolica, Av. Vicu' a Mackenna 4860, Macul 7820436, Santiago (Chile); Lançon, Ariane [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Liu, Chengze [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cuillandre, Jean-Charles [Canada-France-Hawaii Telescope Corporation, Kamuela, HI 96743 (United States); Boissier, Samuel; Boselli, Alessandro [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Courteau, Stéphane [Department of Physics, Engineering Physics and Astronomy, Queen' s University, Kingston, ON K7L 3N6 (Canada); Duc, Pierre-Alain [AIM Paris Saclay, CNRS/INSU, CEA/Irfu, Université Paris Diderot, Orme des Merisiers, F-91191 Gif sur Yvette cedex (France); Emsellem, Eric [Université de Lyon 1, CRAL, Observatoire de Lyon, 9 av. Charles André, F-69230 Saint-Genis Laval (France); CNRS, UMR 5574, ENS de Lyon (France); and others

    2014-10-20

    We report on a large-scale study of the distribution of globular clusters (GCs) throughout the Virgo cluster, based on photometry from the Next Generation Virgo Cluster Survey (NGVS), a large imaging survey covering Virgo's primary subclusters (Virgo A = M87 and Virgo B = M49) out to their virial radii. Using the g{sub o}{sup ′}, (g' – i') {sub o} color-magnitude diagram of unresolved and marginally resolved sources within the NGVS, we have constructed two-dimensional maps of the (irregular) GC distribution over 100 deg{sup 2} to a depth of g{sub o}{sup ′} = 24. We present the clearest evidence to date showing the difference in concentration between red and blue GCs over the full extent of the cluster, where the red (more metal-rich) GCs are largely located around the massive early-type galaxies in Virgo, while the blue (metal-poor) GCs have a much more extended spatial distribution with significant populations still present beyond 83' (∼215 kpc) along the major axes of both M49 and M87. A comparison of our GC maps to the diffuse light in the outermost regions of M49 and M87 show remarkable agreement in the shape, ellipticity, and boxiness of both luminous systems. We also find evidence for spatial enhancements of GCs surrounding M87 that may be indicative of recent interactions or an ongoing merger history. We compare the GC map to that of the locations of Virgo galaxies and the X-ray intracluster gas, and find generally good agreement between these various baryonic structures. We calculate the Virgo cluster contains a total population of N {sub GC} = 67, 300 ± 14, 400, of which 35% are located in M87 and M49 alone. For the first time, we compute a cluster-wide specific frequency S {sub N,} {sub CL} = 2.8 ± 0.7, after correcting for Virgo's diffuse light. We also find a GC-to-baryonic mass fraction ε {sub b} = 5.7 ± 1.1 × 10{sup –4} and a GC-to-total cluster mass formation efficiency ε {sub t} = 2.9 ± 0.5 × 10{sup –5

  2. A Detailed Study of Chemical Enrichment History of Galaxy Clusters out to Virial Radius

    Science.gov (United States)

    Loewenstein, Michael

    The origin of the metal enrichment of the intracluster medium (ICM) represents a fundamental problem in extragalactic astrophysics, with implications for our understanding of how stars and galaxies form, the nature of Type Ia supernova (SNIa) progenitors, and the thermal history of the ICM. These heavy elements are ultimately synthesized by supernova (SN) explosions; however, the details of the sites of metal production and mechanisms that transport metals to the ICM remain unclear. To make progress, accurate abundance profiles for multiple elements extending from the cluster core out to the virial radius (r180) are required for a significant cluster sample. We propose an X-ray spectroscopic study of a carefully-chosen sample of archival Suzaku and XMM-Newton observations of 23 clusters: XMM-Newton data probe the cluster temperature and abundances out to (0.5-1)r500, while Suzaku data probe the cluster outskirts. A method devised by our team to utilize all elements with emission lines in the X-ray bandpass to measure the relative contributions of supernova explosions by direct modeling of their X-ray spectra will be applied in order to constrain the demographics of the enriching supernova population. In addition we will conduct a stacking analysis of our already existing Suzaku and XMM-Newton cluster spectra to search for weak emssion lines that are important SN diagnostics, and to look for trends with cluster mass and redshift. The funding we propose here will also support the data analysis of our recent Suzaku observations of the archetypal cluster A3112 (200 ks each on the core and outskirts). Our data analysis, intepreted using theoretical models we have developed, will enable us to constrain the star formation history, SN demographics, and nature of SNIa progenitors associated with galaxy cluster stellar populations - and, hence, directly addresess NASA s Strategic Objective 2.4.2 in Astrophysics that aims to improve the understanding of how the Universe works

  3. Nucleosynthesis in Supernovae

    Science.gov (United States)

    Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter

    2018-04-01

    We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.

  4. A relativistic type Ibc supernova without a detected gamma-ray burst.

    Science.gov (United States)

    Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P

    2010-01-28

    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  5. A relativistic type Ibc supernova without a detected γ-ray burst

    Science.gov (United States)

    Soderberg, A. M.; Chakraborti, S.; Pignata, G.; Chevalier, R. A.; Chandra, P.; Ray, A.; Wieringa, M. H.; Copete, A.; Chaplin, V.; Connaughton, V.; Barthelmy, S. D.; Bietenholz, M. F.; Chugai, N.; Stritzinger, M. D.; Hamuy, M.; Fransson, C.; Fox, O.; Levesque, E. M.; Grindlay, J. E.; Challis, P.; Foley, R. J.; Kirshner, R. P.; Milne, P. A.; Torres, M. A. P.

    2010-01-01

    Long duration γ-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of γ-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their γ-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  6. THE SNAPSHOT HUBBLE U-BAND CLUSTER SURVEY (SHUCS). I. SURVEY DESCRIPTION AND FIRST APPLICATION TO THE MIXED STAR CLUSTER POPULATION OF NGC 4041

    Energy Technology Data Exchange (ETDEWEB)

    Konstantopoulos, I. S. [Australian Astronomical Observatory, P.O. Box 915, North Ryde NSW 1670 (Australia); Smith, L. J. [Space Telescope Science Institute and European Space Agency, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Adamo, A. [Max-Planck-Institut for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Silva-Villa, E. [Departement de Physique, de Genie Physique et d' Optique, and Centre de Recherche en Astrophysique du Quebec (CRAQ), Universite Laval, Quebec (Canada); Gallagher, J. S.; Ryon, J. E. [Department of Astronomy, University of Wisconsin-Madison, 5534 Sterling, 475 North Charter Street, Madison WI 53706 (United States); Bastian, N. [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead, CH41 1LD (United Kingdom); Westmoquette, M. S. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Zackrisson, E. [Department of Astronomy, Stockholm University, Oscar Klein Centre, AlbaNova, Stockholm SE-106 91 (Sweden); Larsen, S. S. [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Weisz, D. R. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Charlton, J. C., E-mail: iraklis@aao.gov.au [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2013-05-15

    We present the Snapshot Hubble U-band Cluster Survey (SHUCS), a project aimed at characterizing the star cluster populations of 10 nearby galaxies (d < 23 Mpc, half within Almost-Equal-To 12 Mpc) through new F336W (U-band equivalent) imaging from Wide Field Camera 3, and archival BVI-equivalent data with the Hubble Space Telescope. Completing the UBVI baseline reduces the age-extinction degeneracy of optical colors, thus enabling the measurement of reliable ages and masses for the thousands of clusters covered by our survey. The sample consists chiefly of face-on spiral galaxies at low inclination, in various degrees of isolation (isolated, in group, merging), and includes two active galactic nucleus hosts. This first paper outlines the survey itself, the observational datasets, the analysis methods, and presents a proof-of-concept study of the large-scale properties and star cluster population of NGC 4041, a massive SAbc galaxy at a distance of Almost-Equal-To 23 Mpc, and part of a small grouping of six giant members. We resolve two structural components with distinct stellar populations, a morphology more akin to merging and interacting systems. We also find strong evidence of a truncated, Schechter-type mass function, and a similarly segmented luminosity function. These results indicate that binning must erase much of the substructure present in the mass and luminosity functions, and might account for the conflicting reports on the intrinsic shape of these functions in the literature. We also note a tidal feature in the outskirts of the galaxy in Galaxy Evolution Explorer UV imaging, and follow it up with a comprehensive multi-wavelength study of NGC 4041 and its parent group. We deduce a minor merger as a likely cause of its segmented structure and the observed pattern of a radially decreasing star formation rate. We propose that combining the study of star cluster populations with broadband metrics is not only advantageous, but often easily achievable thorough

  7. H I SHELLS AND SUPERSHELLS IN THE I-GALFA H I 21 cm LINE SURVEY. I. FAST-EXPANDING H I SHELLS ASSOCIATED WITH SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.; Koo, B.-C. [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Gibson, S. J.; Newton, J. H. [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Kang, J.-H.; Lane, D. C.; Douglas, K. A. [Arecibo Observatory, HC 3 Box 53995, Arecibo, PR 00612 (United States); Peek, J. E. G. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Korpela, E. J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Heiles, C., E-mail: koo@astro.snu.ac.kr [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

    2013-11-01

    We search for fast-expanding H I shells associated with Galactic supernova remnants (SNRs) in the longitude range l ≈ 32° to 77° using 21 cm line data from the Inner-Galaxy Arecibo L-band Feed Array (I-GALFA) H I survey. Among the 39 known Galactic SNRs in this region, we find such H I shells in 4 SNRs: W44, G54.4-0.3, W51C, and CTB 80. All four were previously identified in low-resolution surveys, and three of those (excluding G54.4-0.3) were previously studied with the Arecibo telescope. A remarkable new result, however, is the detection of H I emission at both very high positive and negative velocities in W44 from the receding and approaching parts of the H I expanding shell, respectively. This is the first detection of both sides of an expanding shell associated with an SNR in H I 21 cm emission. The high-resolution I-GALFA survey data also reveal a prominent expanding H I shell with high circular symmetry associated with G54.4-0.3. We explore the physical characteristics of four SNRs and discuss what differentiates them from other SNRs in the survey area. We conclude that these four SNRs are likely the remnants of core-collapse supernovae interacting with a relatively dense (∼> 1 cm{sup –3}) ambient medium, and we discuss the visibility of SNRs in the H I 21 cm line.

  8. Choosing a Cluster Sampling Design for Lot Quality Assurance Sampling Surveys

    OpenAIRE

    Hund, Lauren; Bedrick, Edward J.; Pagano, Marcello

    2015-01-01

    Lot quality assurance sampling (LQAS) surveys are commonly used for monitoring and evaluation in resource-limited settings. Recently several methods have been proposed to combine LQAS with cluster sampling for more timely and cost-effective data collection. For some of these methods, the standard binomial model can be used for constructing decision rules as the clustering can be ignored. For other designs, considered here, clustering is accommodated in the design phase. In this paper, we comp...

  9. MAGNETAR-POWERED SUPERNOVAE IN TWO DIMENSIONS. I. SUPERLUMINOUS SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Woosley, S. E.; Sukhbold, Tuguldur, E-mail: ken.chen@nao.ac.jp [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-11-20

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.

  10. Supernova Explosions Stay In Shape

    Science.gov (United States)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular

  11. X-ray and optical substructures of the DAFT/FADA survey clusters

    Science.gov (United States)

    Guennou, L.; Durret, F.; Adami, C.; Lima Neto, G. B.

    2013-04-01

    We have undertaken the DAFT/FADA survey with the double aim of setting constraints on dark energy based on weak lensing tomography and of obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range 0.4-0.9 for which there were HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. Out of these, a spatial analysis was possible for 30 clusters, but only 23 had deep enough X-ray data for a really robust analysis. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. Altogether, the X-ray sample of 23 clusters and the optical sample of 26 clusters have 14 clusters in common. We present preliminary results on the coupled X-ray and dynamical analyses of these 14 clusters.

  12. Don't spin the pen: two alternative methods for second-stage sampling in urban cluster surveys

    Directory of Open Access Journals (Sweden)

    Rose Angela MC

    2007-06-01

    Full Text Available Abstract In two-stage cluster surveys, the traditional method used in second-stage sampling (in which the first household in a cluster is selected is time-consuming and may result in biased estimates of the indicator of interest. Firstly, a random direction from the center of the cluster is selected, usually by spinning a pen. The houses along that direction are then counted out to the boundary of the cluster, and one is then selected at random to be the first household surveyed. This process favors households towards the center of the cluster, but it could easily be improved. During a recent meningitis vaccination coverage survey in Maradi, Niger, we compared this method of first household selection to two alternatives in urban zones: 1 using a superimposed grid on the map of the cluster area and randomly selecting an intersection; and 2 drawing the perimeter of the cluster area using a Global Positioning System (GPS and randomly selecting one point within the perimeter. Although we only compared a limited number of clusters using each method, we found the sampling grid method to be the fastest and easiest for field survey teams, although it does require a map of the area. Selecting a random GPS point was also found to be a good method, once adequate training can be provided. Spinning the pen and counting households to the boundary was the most complicated and time-consuming. The two methods tested here represent simpler, quicker and potentially more robust alternatives to spinning the pen for cluster surveys in urban areas. However, in rural areas, these alternatives would favor initial household selection from lower density (or even potentially empty areas. Bearing in mind these limitations, as well as available resources and feasibility, investigators should choose the most appropriate method for their particular survey context.

  13. Innovation in Industrial Clusters: a Survey of Footwear Companies in Brazil

    Directory of Open Access Journals (Sweden)

    Hélcio Martins Tristão

    2013-09-01

    Full Text Available The aim of this study is to characterize the relationships in innovation and business clustering processes in the productive chain of small and medium enterprises (SME of Brazil. The object of study are SMEs the local procuctive cluster of the shoes in Franca, State of São Paulo. The conceptual model developed is based on the following constructs: vertical integration, innovation and characteristics of the cluster, and it is focused on identifying the agents that act predominantly in product innovation processes in the cluster. A survey was conducted. It was found that there is cooperation between the companies in the productive arrangement studied, and that shoe manufacturers are those who, predominantly, stimulate innovation within the cluster.

  14. Berkeley automated supernova search

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  15. Berkeley automated supernova search

    International Nuclear Information System (INIS)

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982

  16. The DAFT/FADA Survey status and latest results

    Science.gov (United States)

    Guennou, L.

    2011-12-01

    We present here the latest results obtained from the American French collaboration called the Dark energy American French Team/French American DArk energy Team (DAFT/FADA). The goal of the DAFT/FADA collaboration is to carry out a weak lensing tomography survey of z = 0.4-0.9 rich clusters of galaxies. Unlike supernovae or other methods such as cluster of galaxy counts, weak lensing tomography is purely based on geometry and does not depend on knowledge of the physics of the objects used as distance indicators. In addition, the reason for analyzing observations in the direction of clusters is that the shear signal is enhanced by about 10 over the field. Our work will eventually contain results obtained on 91 rich clusters from the HST archive combined with ground based work to obtain photo-zs. This combination of photo-z and weak lensing tomography will enable us to constrain the equation of state of dark energy. We present here the latest results obtained so far in this study.

  17. Probing the dark energy with quasar clustering.

    Science.gov (United States)

    Calvão, M O; de Mello Neto, J R T; Waga, I

    2002-03-04

    We show through Monte Carlo simulations that the Alcock-Paczyński test, as applied to quasar clustering, is a powerful tool to probe the cosmological density and equation of state parameters Omega(m0), Omega(x0), and w. By taking into account the effect of peculiar velocities upon the correlation function we obtain for the Two-Degree Field QSO Redshift Survey the predicted confidence contours for the cosmological constant (w = -1) and spatially flat (Omega(m0)+Omega(x0) = 1) cases. For w = -1, the test is especially sensitive to the difference Omega(m0)-Omega(Lambda0), thus being ideal to combine with cosmic microwave background results. For the flat case, it is competitive with future supernova and galaxy number count tests, besides being complementary to them.

  18. Discovery of Six ASAS-SN Supernova Candidates

    Science.gov (United States)

    Brimacombe, J.; Stone, G.; Vallely, P.; Stanek, K. Z.; Brown, J. S.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Conseil, E.

    2018-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  19. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    Type Ia supernovae (SNe) have long been the gold standard for precision cosmology and after several decades of intense research the supernova (SN) community was in 2011 honored by giving the Nobel Prize in physics for the discovery of Dark Energy to the leaders of the two big SN collaborations: S...

  20. Optimizing measurements of cluster velocities and temperatures for CCAT-prime and future surveys

    Science.gov (United States)

    Mittal, Avirukt; de Bernardis, Francesco; Niemack, Michael D.

    2018-02-01

    Galaxy cluster velocity correlations and mass distributions are sensitive probes of cosmology and the growth of structure. Upcoming microwave surveys will enable extraction of velocities and temperatures from many individual clusters for the first time. We forecast constraints on peculiar velocities, electron temperatures, and optical depths of galaxy clusters obtainable with upcoming multi-frequency measurements of the kinematic, thermal, and relativistic Sunyaev-Zeldovich effects. The forecasted constraints are compared for different measurement configurations with frequency bands between 90 GHz and 1 THz, and for different survey strategies for the 6-meter CCAT-prime telescope. We study methods for improving cluster constraints by removing emission from dusty star forming galaxies, and by using X-ray temperature priors from eROSITA. Cluster constraints are forecast for several model cluster masses. A sensitivity optimization for seven frequency bands is presented for a CCAT-prime first light instrument and a next generation instrument that takes advantage of the large optical throughput of CCAT-prime. We find that CCAT-prime observations are expected to enable measurement and separation of the SZ effects to characterize the velocity, temperature, and optical depth of individual massive clusters (~1015 Msolar). Submillimeter measurements are shown to play an important role in separating these components from dusty galaxy contamination. Using a modular instrument configuration with similar optical throughput for each detector array, we develop a rule of thumb for the number of detector arrays desired at each frequency to optimize extraction of these signals. Our results are relevant for a future "Stage IV" cosmic microwave background survey, which could enable galaxy cluster measurements over a larger range of masses and redshifts than will be accessible by other experiments.

  1. Prompt effects of supernovae

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1975-01-01

    Conflicting theories on the mechanisms of supernova production are examined. Supernova as sources of other phenomena such as comic rays, gamma rays, x-rays, and electromagnetic pulses are considered. 32 references

  2. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements

    Science.gov (United States)

    Melendez, Matthew; O'Connell, Julia; Frinchaboy, Peter M.; Donor, John; Cunha, Katia M. L.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Stassun, Keivan G.; APOGEE Team

    2017-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are very limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.This work is supported by an NSF AAG grant AST-1311835.

  3. First measurement of σ8 using supernova magnitudes only

    Science.gov (United States)

    Castro, Tiago; Quartin, Miguel

    2014-09-01

    A method was recently proposed which allows the conversion of the weak-lensing effects in the Type Ia supernova (SNeIa) Hubble diagram from noise into signal. Such signal is sensitive to the growth of structure in the universe, and in particular can be used as a measurement of σ8 independently from more traditional methods such as those based on the cosmic microwave background, cosmic shear or cluster abundance. We extend here that analysis to allow for intrinsic non-Gaussianities in the supernova probability distribution function, and discuss how this can be best modelled using the Bayes factor. Although it was shown that a precise measurement of σ8 requires ˜105 SNeIa, current data already allow an important proof of principle. In particular, we make use of the 706 supernovae with z ≤ 0.9 of the recent Joint Lightcurve Analysis catalogue and show that a simple treatment of intrinsic non-Gaussianities with a couple of nuisance parameters is enough for our method to yield the values σ _8 = 0.84^{+0.28}_{-0.65} or σ8 < 1.45 at a 2σ confidence level. This result is consistent with mock simulations and it is also in agreement with independent measurements and presents the first ever measurement of σ8 using SNeIa magnitudes alone.

  4. Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Rodney, Steven A.; Riess, Adam G.; Graur, Or; Jones, David O. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Strolger, Louis-Gregory; Dahlen, Tomas; Casertano, Stefano; Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Dickinson, Mark E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hayden, Brian [E.O. Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Jha, Saurabh W.; McCully, Curtis; Patel, Brandon [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Weiner, Benjamin J. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); and others

    2014-07-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ∼0.25 deg{sup 2} with ∼900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z ∼ 2.5. We classify ∼24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only ∼3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is f{sub P} = 0.53{sub stat0.10}{sup ±0.09}{sub sys0.26}{sup ±0.10}, consistent with a delay time distribution that follows a simple t {sup –1} power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions—though further analysis and larger samples will be needed to examine that suggestion.

  5. Core-Collapse Supernova Progenitors In The Era Of Untargeted Transient Searches

    Science.gov (United States)

    Sanders, Nathan Edward

    2014-04-01

    Core-collapse supernovae (SNe) are the highly energetic explosions of massive stars (≳ 8 M⊙) that are pervasive in their influence throughout astrophysics. They are the phenomenon with primary responsibility for enriching the universe with many of the heavy elements (like carbon and oxygen) that are needed for life, provide a critical feedback pressure which helps to shape the galaxies that host them, and are the likely formation mechanism for stellar mass black holes. In the past decade, the study of these explosions has been revolutionized by the advent of wide field, untargeted transient searches like Pan-STARRS1 (PS1). These new searches permit the discovery of SNe at unprecedented rates, and absent of many of the selection effects that have enforced biases on past, targeted transient searches. This thesis presents a broad survey of core-collapse SN phenomenology exhibited in the discoveries of untargeted searches, and statistically quantifies population properties of these explosions that link them to distinct classes of progenitor stars. Through studies of the host galaxy and explosion properties of extreme PS1-discovered events, and controlled samples of specific classes of core-collapse objects, we constrain the effect of progenitor star chemical composition (metallicity) on their eventual death states. We provide a new observational, photometric tool which lowers the cost of precisely and accurately measuring the metallicities of distant galaxies and supernova host environments. Moreover, we develop and apply a novel, multi-level Bayesian model for optical transient light curves which we apply to simultaneously interpret more than 20,000 PS1 images. This study illustrates how population-level modeling of data from large photometric surveys can yield improved physical inference on their progenitor stars through comparison to physical models. In the coming era, as next-generation facilities like the Large Synoptic Survey Telescope come online, the

  6. Global survey of star clusters in the Milky Way. VI. Age distribution and cluster formation history

    Science.gov (United States)

    Piskunov, A. E.; Just, A.; Kharchenko, N. V.; Berczik, P.; Scholz, R.-D.; Reffert, S.; Yen, S. X.

    2018-06-01

    Context. The all-sky Milky Way Star Clusters (MWSC) survey provides uniform and precise ages, along with other relevant parameters, for a wide variety of clusters in the extended solar neighbourhood. Aims: In this study we aim to construct the cluster age distribution, investigate its spatial variations, and discuss constraints on cluster formation scenarios of the Galactic disk during the last 5 Gyrs. Methods: Due to the spatial extent of the MWSC, we have considered spatial variations of the age distribution along galactocentric radius RG, and along Z-axis. For the analysis of the age distribution we used 2242 clusters, which all lie within roughly 2.5 kpc of the Sun. To connect the observed age distribution to the cluster formation history we built an analytical model based on simple assumptions on the cluster initial mass function and on the cluster mass-lifetime relation, fit it to the observations, and determined the parameters of the cluster formation law. Results: Comparison with the literature shows that earlier results strongly underestimated the number of evolved clusters with ages t ≳ 100 Myr. Recent studies based on all-sky catalogues agree better with our data, but still lack the oldest clusters with ages t ≳ 1 Gyr. We do not observe a strong variation in the age distribution along RG, though we find an enhanced fraction of older clusters (t > 1 Gyr) in the inner disk. In contrast, the distribution strongly varies along Z. The high altitude distribution practically does not contain clusters with t < 1 Gyr. With simple assumptions on the cluster formation history, the cluster initial mass function and the cluster lifetime we can reproduce the observations. The cluster formation rate and the cluster lifetime are strongly degenerate, which does not allow us to disentangle different formation scenarios. In all cases the cluster formation rate is strongly declining with time, and the cluster initial mass function is very shallow at the high mass end.

  7. Measurements of Ω and Λ from 42 High-Redshift Supernovae

    International Nuclear Information System (INIS)

    Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Nunes, N.J.; Pain, R.; Pennypacker, C.R.; Quimby, R.; Lidman, C.; Ellis, R.S.; Irwin, M.; McMahon, R.G.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B.J.; Filippenko, A.V.; Matheson, T.; Fruchter, A.S.; Panagia, N.; Newberg, H.J.; Couch, W.J.

    1999-01-01

    We report measurements of the mass density, Ω M , and cosmological-constant energy density, Ω Λ , of the universe based on the analysis of 42 type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these supernovae, at redshifts between 0.18 and 0.83, are fitted jointly with a set of supernovae from the Calacute an/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All supernova peak magnitudes are standardized using a SN Ia light-curve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8Ω M -0.6Ω Λ ∼-0.2±0.1 in the region of interest (Ω M approx-lt 1.5). For a flat (Ω M +Ω Λ =1) cosmology we find Ω flat M =0.28 +0.09 -0.08 (1 σ statistical) +0.05 -0.04 (identified systematics). The data are strongly inconsistent with a Λ=0 flat cosmology, the simplest inflationary universe model. An open, Λ=0 cosmology also does not fit the data well: the data indicate that the cosmological constant is nonzero and positive, with a confidence of P(Λ>0)=99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t flat 0 =14.9 +1.4 -1.1 (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calacute an/Tololo sample and our high-redshift sample. Excluding those few supernovae that are outliers in color excess or fit residual does not significantly change the results. The conclusions are also robust whether or not a width-luminosity relation is used to standardize the supernova peak magnitudes. We discuss and constrain, where possible, hypothetical alternatives to a cosmological constant

  8. SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES

    International Nuclear Information System (INIS)

    Sullivan, M.; Hook, I. M.; Guy, J.; Regnault, N.; Astier, P.; Balland, C.; Hardin, D.; Pain, R.; Conley, A.; Carlberg, R. G.; Perrett, K. M.; Basa, S.; Fouchez, D.; Howell, D. A.; Palanque-Delabrouille, N.; Rich, J.; Ruhlmann-Kleider, V.; Pritchet, C. J.; Balam, D.; Baumont, S.

    2011-01-01

    We present observational constraints on the nature of dark energy using the Supernova Legacy Survey three-year sample (SNLS3) of Guy et al. and Conley et al. We use the 472 Type Ia supernovae (SNe Ia) in this sample, accounting for recently discovered correlations between SN Ia luminosity and host galaxy properties, and include the effects of all identified systematic uncertainties directly in the cosmological fits. Combining the SNLS3 data with the full WMAP7 power spectrum, the Sloan Digital Sky Survey luminous red galaxy power spectrum, and a prior on the Hubble constant H 0 from SHOES, in a flat universe we find Ω m = 0.269 ± 0.015 and w = -1.061 +0.069 - 0 .068 (where the uncertainties include all statistical and SN Ia systematic errors)-a 6.5% measure of the dark energy equation-of-state parameter w. The statistical and systematic uncertainties are approximately equal, with the systematic uncertainties dominated by the photometric calibration of the SN Ia fluxes-without these calibration effects, systematics contribute only a ∼2% error in w. When relaxing the assumption of flatness, we find Ω m = 0.271 ± 0.015, Ω k = -0.002 ± 0.006, and w = -1.069 +0.091 -0.092 . Parameterizing the time evolution of w as w(a) = w 0 + w a (1 - a) gives w 0 = -0.905 ± 0.196, w a = -0.984 +1.094 -1.097 in a flat universe. All of our results are consistent with a flat, w = -1 universe. The size of the SNLS3 sample allows various tests to be performed with the SNe segregated according to their light curve and host galaxy properties. We find that the cosmological constraints derived from these different subsamples are consistent. There is evidence that the coefficient, β, relating SN Ia luminosity and color, varies with host parameters at >4σ significance (in addition to the known SN luminosity-host relation); however, this has only a small effect on the cosmological results and is currently a subdominant systematic.

  9. [FeII] as a tracer supernova rate

    International Nuclear Information System (INIS)

    Rosenberg, M J F; Van der Werf, P P; Israel, F P

    2012-01-01

    Supernovae play an integral role in the feedback of processed material into the ISM of galaxies and are responsible for most of the chemical enrichment of the universe. The rate of supernovae can also reveal the star formation histories. Supernova rate is usually measured through the non-thermal radio continuum luminosity, but in this paper we establish a quantitative relationship between the [FeII] 1.26 luminosity and supernova rate in a sample of 11 near-by starburst galaxies. SINFONI data cubes are used to perform a pixel pixel analysis of this correlation. Using Bry equivalent width and luminosity as the only observational inputs into Starburst 99, the supernova rate is derived at each pixel and a map of supernova rate is created. This is then compared morphologically and quantitatively to [FeII] 1.26 luminosity map. We find a strong linear and morphological correlation between supernova rate and [FeII] 1.26 on a pixel-pixel basis. The Starburst 99 derived supernova rates are also in good agreement with the radio derived supernova rates, which further demonstrates the strength of [FeII] as a tracer of supernova rate. With the strong correlation found in this sample of galaxies, we now qualitatively use [FeII] 1.26 to derive supernova rate on either a pixel-pixel or integrated galactic basis.

  10. A Massive Star Census of the Starburst Cluster R136

    Science.gov (United States)

    Crowther, Paul

    2012-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  11. PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II

    Energy Technology Data Exchange (ETDEWEB)

    Hlozek, Renee [Oxford Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Kunz, Martin [Department de physique theorique, Universite de Geneve, 30, quai Ernest-Ansermet, CH-1211 Geneve 4 (Switzerland); Bassett, Bruce; Smith, Mat; Newling, James [African Institute for Mathematical Sciences, 68 Melrose Road, Muizenberg 7945 (South Africa); Varughese, Melvin [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, 7700 (South Africa); Kessler, Rick; Frieman, Joshua [The Kavli Institute for Cosmological Physics, The University of Chicago, 933 East 56th Street, Chicago, IL 60637 (United States); Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building Burnaby Road Portsmouth PO1 3FX (United Kingdom); Dilday, Ben [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Falck, Bridget; Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P., E-mail: rhlozek@astro.princeton.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-06-20

    Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10{sup 4} SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the {Omega}{sub m}, {Omega}{sub {Lambda}} contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are {Omega}{sup BEAMS}{sub m} = 0.194 {+-} 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

  12. PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II

    International Nuclear Information System (INIS)

    Hlozek, Renée; Kunz, Martin; Bassett, Bruce; Smith, Mat; Newling, James; Varughese, Melvin; Kessler, Rick; Frieman, Joshua; Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John; Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C.; Dilday, Ben; Falck, Bridget; Riess, Adam G.; Sako, Masao; Schneider, Donald P.

    2012-01-01

    Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10 4 SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the Ω m , Ω Λ contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are Ω BEAMS m = 0.194 ± 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

  13. Creation of a Unified Set of Core-Collapse Supernovae for Training of Photometric Classifiers

    Science.gov (United States)

    D'Arcy Kenworthy, William; Scolnic, Daniel; Kessler, Richard

    2017-01-01

    One of the key tasks for future supernova cosmology analyses is to photometrically distinguish type Ia supernovae (SNe) from their core collapse (CC) counterparts. In order to train programs for this purpose, it is necessary to train on a large number of core-collapse SNe. However, there are only a handful used for current programs. We plan to use the large amount of CC lightcurves available on the Open Supernova Catalog (OSC). Since this data is scraped from many different surveys, it is given in a number of photometric systems with different calibration and filters. We therefore created a program to fit smooth lightcurves (as a function of time) to photometric observations of arbitrary SNe. The Supercal method is then used to translate the smoothed lightcurves to a single photometric system. We can thus compile a training set of 782 supernovae, of which 127 are not type Ia. These smoothed lightcurves are also being contributed upstream to the OSC as derived data.

  14. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  15. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    International Nuclear Information System (INIS)

    Rest, A.; Welch, D.L.; Suntzeff, N.B.; Oaster, L.; Lanning, H.; Olsen, K.; Smith, R.C.; Becker, A.C.; Bergmann, M.; Challis, P.; Clocchiatti, A.; Cook, K.H.; Damke, G.; Garg, A.; Huber, M.E.; Matheson, T.; Minniti, D.; Prieto, J.L.; Wood-Vasey, W.M.

    2008-01-01

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane

  16. PS1-12sk IS A PECULIAR SUPERNOVA FROM A He-RICH PROGENITOR SYSTEM IN A BRIGHTEST CLUSTER GALAXY ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M.; Foley, R. J.; Chornock, R.; Milisavljevic, D.; Margutti, R.; Drout, M. R.; Moe, M.; Berger, E.; Brown, W. R.; Lunnan, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Smartt, S. J.; Fraser, M.; Kotak, R.; Magill, L.; Smith, K. W.; Wright, D. [Astrophysics Research Centre, School of Maths and Physics, Queens University, Belfast BT7 1NN (United Kingdom); Huang, K. [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Urata, Y. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Mulchaey, J. S., E-mail: nsanders@cfa.harvard.edu [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2013-05-20

    We report on our discovery and observations of the Pan-STARRS1 supernova (SN) PS1-12sk, a transient with properties that indicate atypical star formation in its host galaxy cluster or pose a challenge to popular progenitor system models for this class of explosion. The optical spectra of PS1-12sk classify it as a Type Ibn SN (SN Ibn; cf. SN 2006jc), dominated by intermediate-width (3 Multiplication-Sign 10{sup 3} km s{sup -1}) and time variable He I emission. Our multi-wavelength monitoring establishes the rise time dt {approx} 9-23 days and shows an NUV-NIR spectral energy distribution with temperature {approx}> 17 Multiplication-Sign 10{sup 3} K and a peak magnitude of M{sub z} = -18.88 {+-} 0.02 mag. SN Ibn spectroscopic properties are commonly interpreted as the signature of a massive star (17-100 M{sub Sun }) explosion within an He-enriched circumstellar medium. However, unlike previous SNe Ibn, PS1-12sk is associated with an elliptical brightest cluster galaxy, CGCG 208-042 (z = 0.054) in cluster RXC J0844.9+4258. The expected probability of an event like PS1-12sk in such environments is low given the measured infrequency of core-collapse SNe in red-sequence galaxies compounded by the low volumetric rate of SN Ibn. Furthermore, we find no evidence of star formation at the explosion site to sensitive limits ({Sigma}{sub H{alpha}} {approx}< 2 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2}). We therefore discuss white dwarf binary systems as a possible progenitor channel for SNe Ibn. We conclude that PS1-12sk represents either a fortuitous and statistically unlikely discovery, evidence for a top-heavy initial mass function in galaxy cluster cooling flow filaments, or the first clue suggesting an alternate progenitor channel for SNe Ibn.

  17. Pasta phases in core-collapse supernova matter

    International Nuclear Information System (INIS)

    Pais, Helena; Chiacchiera, Silvia; Providência, Constança

    2016-01-01

    The pasta phase in core-collapse supernova matter (finite temperatures and fixed proton fractions) is studied within relativistic mean field models. Three different calculations are used for comparison, the Thomas-Fermi (TF), the Coexisting Phases (CP) and the Compressible Liquid Drop (CLD) approximations. The effects of including light clusters in nuclear matter and the densities at which the transitions between pasta configurations and to uniform matter occur are also investigated. The free energy and pressure, in the space of particle number densities and temperatures expected to cover the pasta region, are calculated. Finally, a comparison with a finite temperature Skyrme-Hartree-Fock calculation is drawn. (paper)

  18. Centre-excised X-ray luminosity as an efficient mass proxy for future galaxy cluster surveys

    Science.gov (United States)

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; von der Linden, Anja

    2018-01-01

    The cosmological constraining power of modern galaxy cluster catalogues can be improved by obtaining low-scatter mass proxy measurements for even a small fraction of sources. In the context of large upcoming surveys that will reveal the cluster population down to the group scale and out to high redshifts, efficient strategies for obtaining such mass proxies will be valuable. In this work, we use high-quality weak-lensing and X-ray mass estimates for massive clusters in current X-ray-selected catalogues to revisit the scaling relations of the projected, centre-excised X-ray luminosity (Lce), which previous work suggests correlates tightly with total mass. Our data confirm that this is the case with Lce having an intrinsic scatter at fixed mass comparable to that of gas mass, temperature or YX. Compared to the other proxies, however, Lce is less susceptible to systematic uncertainties due to background modelling, and can be measured precisely with shorter exposures. This opens up the possibility of using Lce to estimate masses for large numbers of clusters discovered by new X-ray surveys (e.g. eROSITA) directly from the survey data, as well as for clusters discovered at other wavelengths with relatively short follow-up observations. We describe a simple procedure for making such estimates from X-ray surface brightness data, and comment on the spatial resolution required to apply this method as a function of cluster mass and redshift. We also explore the potential impact of Chandra and XMM-Newton follow-up observations over the next decade on dark energy constraints from new cluster surveys.

  19. Supernova 2010as: the lowest-velocity member of a family of flat-velocity type IIb supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gastón; Bersten, Melina C.; Nomoto, Ken' ichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kuncarayakti, Hanindyo; Hamuy, Mario [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Olivares Estay, Felipe; Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Holmbo, Simon; Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Morrell, Nidia; Contreras, Carlos; Phillips, Mark M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Förster, Francisco [Center for Mathematical Modelling, Universidad de Chile, Avenida Blanco Encalada 2120 Piso 7, Santiago (Chile); Prieto, José Luis [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Valenti, Stefano [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny, E-mail: gaston.folatelli@ipmu.jp [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85740 Garching (Germany); and others

    2014-09-01

    We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name 'flat-velocity' Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s{sup –1} for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M {sub ☉}. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor.

  20. A catalogue of clusters of galaxies identified from all sky surveys of 2MASS, WISE, and SuperCOSMOS

    Science.gov (United States)

    Wen, Z. L.; Han, J. L.; Yang, F.

    2018-03-01

    We identify 47 600 clusters of galaxies from photometric data of Two Micron All Sky Survey (2MASS), Wide-field Infrared Survey Explorer (WISE), and SuperCOSMOS, among which 26 125 clusters are recognized for the first time and mostly in the sky outside the Sloan Digital Sky Survey (SDSS) area. About 90 per cent of massive clusters of M500 > 3 × 1014 M⊙ in the redshift range of 0.025 < z < 0.3 have been detected from such survey data, and the detection rate drops down to 50 per cent for clusters with a mass of M500 ˜ 1 × 1014 M⊙. Monte Carlo simulations show that the false detection rate for the whole cluster sample is less than 5 per cent. By cross-matching with ROSAT and XMM-Newton sources, we get 779 new X-ray cluster candidates which have X-ray counterparts within a projected offset of 0.2 Mpc.

  1. An Open Catalog for Supernova Data

    International Nuclear Information System (INIS)

    Guillochon, James; Parrent, Jerod; Kelley, Luke Zoltan; Margutti, Raffaella

    2017-01-01

    We present the Open Supernova Catalog , an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova, which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova’s data being contained within a single JSON file bearing its name. The setup we present here, which is based on open-source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova data set to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova data set continues to grow, especially in the upcoming era of all-sky synoptic telescopes, which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.

  2. An Open Catalog for Supernova Data

    Energy Technology Data Exchange (ETDEWEB)

    Guillochon, James; Parrent, Jerod; Kelley, Luke Zoltan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Margutti, Raffaella, E-mail: jguillochon@cfa.harvard.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astrophysics, Northwestern University, Evanston, IL 60208 (United States)

    2017-01-20

    We present the Open Supernova Catalog , an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova, which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova’s data being contained within a single JSON file bearing its name. The setup we present here, which is based on open-source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova data set to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova data set continues to grow, especially in the upcoming era of all-sky synoptic telescopes, which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.

  3. Supernova observations at McDonald Observatory

    International Nuclear Information System (INIS)

    Wheeler, J.C.

    1984-01-01

    The programs to obtain high quality spectra and photometry of supernovae at McDonald Observatory are reviewed. Spectra of recent Type I supernovae in NGC 3227, NGC 3625, and NGC 4419 are compared with those of SN 1981b in NGC 4536 to quantitatively illustrate both the homogeneity of Type I spectra at similar epochs and the differences in detail which will serve as a probe of the physical processes in the explosions. Spectra of the recent supernova in NGC 0991 give for the first time quantitative confirmation of a spectrally homogeneous, but distinct subclass of Type I supernovae which appears to be less luminous and to have lower excitation at maximum light than classical Type I supernovae

  4. Offline analysis in SNLS: measurement of type-Ia supernovae explosion rate and cosmological parameters

    International Nuclear Information System (INIS)

    Lusset, Vincent

    2006-01-01

    The Supernova Legacy Survey is a second generation experiment for the measurement of cosmological parameters using type-la supernovae. Il follows the discovery of the acceleration of the expansion of the Universe, attributed to an unknown 'dark energy'. This thesis presents a type-la supernovae search using an offline analysis of SNLS data. It makes it possible to detect the supernovae that were missed online and to study possible selection biases. One of its principal characteristics is that it uses entirely automatic selection criteria. This type of automated offline analysis had never been carried out before for data reaching this redshift. This analysis enabled us to discover 73 additional SNIa candidates compared to those identified in the real time analysis on the same data, representing an increase of more than 50% of the number of supernovae. The final Hubble diagram contains 262 SNIa which gives us, for a flat ACDM model, the following values for the cosmological parameters: Ω_M = 0,31 ± 0,028 (stat) ± 0,036 (syst) et Ω_A = 0,69. This offline analysis of SNLS data opens new horizons, both by checking for possible biases in current measurements of cosmological parameters by supernovae experiments and by preparing the third generation experiments, on the ground or in space, which will detect thousands of SNIa. (author) [fr

  5. THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION A

    International Nuclear Information System (INIS)

    Lane, J.; Kirk, H.; Johnstone, D.; Mairs, S.; Francesco, J. Di; Sadavoy, S.; Hatchell, J.; Berry, D. S.; Jenness, T.; Hogerheijde, M. R.; Ward-Thompson, D.

    2016-01-01

    The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 and 450 μ m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.

  6. THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION A

    Energy Technology Data Exchange (ETDEWEB)

    Lane, J.; Kirk, H.; Johnstone, D.; Mairs, S.; Francesco, J. Di [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Sadavoy, S. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Hatchell, J. [Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Berry, D. S. [East Asian Observatory, 660 N. A‘ohōkū Place, University Park, Hilo, Hawaii 96720 (United States); Jenness, T. [Joint Astronomy Centre, 660 N. A‘ohōkū Place, University Park, Hilo, Hawaii 96720 (United States); Hogerheijde, M. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ward-Thompson, D. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancashire, PR1 2HE (United Kingdom); Collaboration: JCMT Gould Belt Survey Team

    2016-12-10

    The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 and 450 μ m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.

  7. Supernova real-time monitor system in Kamiokande

    International Nuclear Information System (INIS)

    Oyama, Y.; Yamada, M.; Ishida, T.; Yamaguchi, T.; Yokoyama, H.

    1994-01-01

    A data-analysis program to discover possible supernova neutrino bursts has been installed in the online data-acquisition computer of the Kamiokande experiment. The program automatically analyzes data within 20 min and gives an alarm to collaborators if a possible supernova neutrino burst is found. The detection efficiency of the program is 96% for a typical supernova located 50 kpc from Earth. After a careful analysis by the Kamiokande collaborators, it will be possible to inform all optical observatories in the world about the occurrence of a supernova within 3 h from the time of first detecting the neutrino burst. Information concerning the celestial position of a supernova will also be available for supernovae having a distance less than ∼ 10 kpc. This information will be helpful for observing the first optical emissions from the newly born supernova. (orig.)

  8. Super-AGB Stars and their Role as Electron Capture Supernova Progenitors

    Science.gov (United States)

    Doherty, Carolyn L.; Gil-Pons, Pilar; Siess, Lionel; Lattanzio, John C.

    2017-11-01

    We review the lives, deaths and nucleosynthetic signatures of intermediate-mass stars in the range ≈6-12 M⊙, which form super-AGB stars near the end of their lives. The critical mass boundaries both between different types of massive white dwarfs (CO, CO-Ne, ONe), and between white dwarfs and supernovae, are examined along with the relative fraction of super-AGB stars that end life either as an ONe white dwarf or as a neutron star (or an ONeFe white dwarf), after undergoing an electron capture supernova event. The contribution of the other potential single-star channel to electron-capture supernovae, that of the failed massive stars, is also discussed. The factors that influence these different final fates and mass limits, such as composition, rotation, the efficiency of convection, the nuclear reaction rates, mass-loss rates, and third dredge-up efficiency, are described. We stress the importance of the binary evolution channels for producing electron-capture supernovae. Recent nucleosynthesis calculations and elemental yield results are discussed and a new set of s-process heavy element yields is presented. The contribution of super-AGB star nucleosynthesis is assessed within a Galactic perspective, and the (super-)AGB scenario is considered in the context of the multiple stellar populations seen in globular clusters. A brief summary of recent works on dust production is included. Last, we conclude with a discussion of the observational constraints and potential future advances for study into these stars on the low mass/high mass star boundary.

  9. Effects of Combined Stellar Feedback on Star Formation in Stellar Clusters

    Science.gov (United States)

    Wall, Joshua Edward; McMillan, Stephen; Pellegrino, Andrew; Mac Low, Mordecai; Klessen, Ralf; Portegies Zwart, Simon

    2018-01-01

    We present results of hybrid MHD+N-body simulations of star cluster formation and evolution including self consistent feedback from the stars in the form of radiation, winds, and supernovae from all stars more massive than 7 solar masses. The MHD is modeled with the adaptive mesh refinement code FLASH, while the N-body computations are done with a direct algorithm. Radiation is modeled using ray tracing along long characteristics in directions distributed using the HEALPIX algorithm, and causes ionization and momentum deposition, while winds and supernova conserve momentum and energy during injection. Stellar evolution is followed using power-law fits to evolution models in SeBa. We use a gravity bridge within the AMUSE framework to couple the N-body dynamics of the stars to the gas dynamics in FLASH. Feedback from the massive stars alters the structure of young clusters as gas ejection occurs. We diagnose this behavior by distinguishing between fractal distribution and central clustering using a Q parameter computed from the minimum spanning tree of each model cluster. Global effects of feedback in our simulations will also be discussed.

  10. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VIII. PRELIMINARY PUBLIC CATALOG RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Soto, M.; Bellini, A.; Anderson, J.; Van der Marel, R. P.; Brown, T. M. [Space Telescope Science Institute, San Martin Drive 3700, Baltimore, MD 21218 (United States); Piotto, G.; Granata, V.; Ortolani, S.; Nardiello, D. [Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Bedin, L. R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Milone, A. P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT, 2611 (Australia); Cool, A. M. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); King, I. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Sarajedini, A. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Cassisi, S. [Osservatorio Astronomico di Teramo, Via Mentore Maggini s.n.c., I-64100 Teramo (Italy); Aparicio, A.; Hidalgo, S., E-mail: mario.soto@uda.cl [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands (Spain)

    2017-01-01

    The Hubble Space Telescope (HST) UV Legacy Survey of Galactic Globular Clusters (GO-13297) has been specifically designed to complement the existing F606W and F814W observations of the Advanced Camera for Surveys (ACS) Globular Cluster Survey (GO-10775) by observing the most accessible 47 of the previous survey’s 65 clusters in three WFC3/UVIS filters F275W, F336W, and F438W. The new survey also adds super-solar metallicity open cluster NGC 6791 to increase the metallicity diversity. The combined survey provides a homogeneous 5-band data set that can be used to pursue a broad range of scientific investigations. In particular, the chosen UV filters allow the identification of multiple stellar populations by targeting the regions of the spectrum that are sensitive to abundance variations in C, N, and O. In order to provide the community with uniform preliminary catalogs, we have devised an automated procedure that performs high-quality photometry on the new UV observations (along with similar observations of seven other programs in the archive). This procedure finds and measures the potential sources on each individual exposure using library point-spread functions and cross-correlates these observations with the original ACS-Survey catalog. The catalog of 57 clusters we publish here will be useful to identify stars in the different stellar populations, in particular for spectroscopic follow-up. Eventually, we will construct a more sophisticated catalog and artificial-star tests based on an optimal reduction of the UV survey data, but the catalogs presented here give the community the chance to make early use of this HST Treasury survey.

  11. The HST/ACS Coma Cluster Survey : VI. Colour gradients in giant and dwarf early-type galaxies

    NARCIS (Netherlands)

    den Brok, M.; Peletier, R. F.; Valentijn, E. A.; Balcells, Marc; Carter, D.; Erwin, P.; Ferguson, H. C.; Goudfrooij, P.; Graham, A. W.; Hammer, D.; Lucey, J. R.; Trentham, N.; Guzman, R.; Hoyos, C.; Kleijn, G. Verdoes; Jogee, S.; Karick, A. M.; Marinova, I.; Mouhcine, M.; Weinzirl, T.

    Using deep, high-spatial-resolution imaging from the Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) Coma Cluster Treasury Survey, we determine colour profiles of early-type galaxies in the Coma cluster. From 176 galaxies brighter than M-F814W(AB) = -15 mag that are either

  12. Understanding Core-Collapse Supernovae

    Science.gov (United States)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  13. Presupernova models and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Dept. of Earth Science and Astronomy; Nomoto, K I [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1980-02-01

    Present status of the theories for presupernova evolution and triggering mechanisms of supernova explosions are summarized and discussed from the standpoint of the theory of stellar structure and evolution. It is not intended to collect every detail of numerical results thus far obtained, but to extract physically clear-cut understanding from complexities of the numerical stellar models. For this purpose the evolution of stellar cores is discussed in a generalized fashion. The following types of the supernova explosions are discussed. The carbon deflagration supernova of intermediate mass star which results in the total disruption of the star. Massive star evolves into a supernova triggered by photo-dissociation of iron nuclei which results in a formation of a neutron star or a black hole depending on its mass. These two are typical types of the supernova. Between them there remains a range of mass for which collapse of the stellar core is triggered by electron captures, which has been recently shown to leave a neutron star despite oxygen deflagration competing with the electron captures. Also discussed are combustion and detonation of helium or carbon which take place in accreting white dwarfs, and the collapse which is triggered by electron-pair creation in very massive stars.

  14. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron CaptureAbundance Gradients

    Science.gov (United States)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Melendez, Matthew; Cunha, Katia; Majewski, Steven R.; Zasowski, Gail; APOGEE Team

    2017-06-01

    The evolution of elements, as a function or age, throughout the Milky Way disk provides a key constraint for galaxy evolution models. In an effort to provide these constraints, we have conducted an investigation into the r- and s- process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 survey. Stars were identified as cluster members by the Open Cluster Chemical Abundance & Mapping (OCCAM) survey, which culls member candidates by radial velocity, metallicity and proper motion from the observed APOGEE sample. To obtain data for neutron capture elements in these clusters, we conducted a long-term observing campaign covering three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We present Galactic neutron capture abundance gradients using 30+ clusters, within 6 kpc of the Sun, covering a range of ages from ~80 Myr to ~10 Gyr .

  15. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  16. Multiply imaged Transient Events in Cluster Lenses

    Science.gov (United States)

    Narasimha, Delampady

    2018-04-01

    ARIES had a successful gravitational microlens project during 1998-2002. A similar monitor for Transient Events in galaxies at high redshift lensed by rich galaxy-clusters provides a challenging possibility with important cosmological implications. Rich galaxy-clusters at intermediate redshifts are powerful gravitational lenses which produce multiple images, in the shape of giant arcs of 5-20" extent, of distant background galaxies in their field. Weak lens shear of the background galaxy distribution can reliably trace the lens mass profile. Multiple images of supernovae or GRBs in the background galaxies can be recorded in a systematic monitor of the system. An unlensed high redshift supernova might not be observable, but when lensed by a galaxy-cluster, it will stand out because the point event brightens relative to the host. The color profile of a high redshift lensed point event will be much more reliable than an unlensed one due to much less host contamination. An estimate of the time delay enables observation of the full light curve of the subsequent images of the event. ARIES can have outside collaboration for multiband simultaneous lightcurves of other images. The measured time delay and position of images of the transient event provide better cosmological constraints including distance scale of the Universe. The Devasthal telescope can detect one or more events by monitoring half a dozen cluster fields over three years time.

  17. Automated search for supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.

    1984-11-15

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion.

  18. Automated search for supernovae

    International Nuclear Information System (INIS)

    Kare, J.T.

    1984-01-01

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion

  19. Decays of supernova neutrinos

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2002-01-01

    Supernova neutrinos could be well-suited for probing neutrino decay, since decay may be observed even for very small decay rates or coupling constants. We will introduce an effective operator framework for the combined description of neutrino decay and neutrino oscillations for supernova neutrinos, which can especially take into account two properties: one is the radially symmetric neutrino flux, allowing a decay product to be re-directed towards the observer even if the parent neutrino had a different original direction of propagation. The other is decoherence because of the long baselines for coherently produced neutrinos. We will demonstrate how to use this effective theory to calculate the time-dependent fluxes at the detector. In addition, we will show the implications of a Majoron-like decay model. As a result, we will demonstrate that for certain parameter values one may observe some effects which could also mimic signals similar to the ones expected from supernova models, making it in general harder to separate neutrino and supernova properties

  20. Neutrino Emission from Supernovae

    Science.gov (United States)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  1. AMICO: optimized detection of galaxy clusters in photometric surveys

    Science.gov (United States)

    Bellagamba, Fabio; Roncarelli, Mauro; Maturi, Matteo; Moscardini, Lauro

    2018-02-01

    We present Adaptive Matched Identifier of Clustered Objects (AMICO), a new algorithm for the detection of galaxy clusters in photometric surveys. AMICO is based on the Optimal Filtering technique, which allows to maximize the signal-to-noise ratio (S/N) of the clusters. In this work, we focus on the new iterative approach to the extraction of cluster candidates from the map produced by the filter. In particular, we provide a definition of membership probability for the galaxies close to any cluster candidate, which allows us to remove its imprint from the map, allowing the detection of smaller structures. As demonstrated in our tests, this method allows the deblending of close-by and aligned structures in more than 50 per cent of the cases for objects at radial distance equal to 0.5 × R200 or redshift distance equal to 2 × σz, being σz the typical uncertainty of photometric redshifts. Running AMICO on mocks derived from N-body simulations and semi-analytical modelling of the galaxy evolution, we obtain a consistent mass-amplitude relation through the redshift range of 0.3 slope of ∼0.55 and a logarithmic scatter of ∼0.14. The fraction of false detections is steeply decreasing with S/N and negligible at S/N > 5.

  2. SN 2008jb: A 'LOST' CORE-COLLAPSE SUPERNOVA IN A STAR-FORMING DWARF GALAXY AT ∼10 Mpc

    International Nuclear Information System (INIS)

    Prieto, J. L.; Lee, J. C.; Drake, A. J.; Djorgovski, S. G.; McNaught, R.; Garradd, G.; Beacom, J. F.; Beshore, E.; Catelan, M.; Pojmanski, G.; Stanek, K. Z.; Szczygieł, D. M.

    2012-01-01

    We present the discovery and follow-up observations of SN 2008jb, a core-collapse supernova in the southern dwarf irregular galaxy ESO 302–14 (M B = –15.3 mag) at 9.6 Mpc. This nearby transient was missed by galaxy-targeted surveys and was only found in archival optical images obtained by the Catalina Real-time Transient Survey and the All-Sky Automated Survey. The well-sampled archival photometry shows that SN 2008jb was detected shortly after explosion and reached a bright optical maximum, V max ≅ 13.6 mag (M V,max ≅ –16.5). The shape of the light curve shows a plateau of ∼100 days, followed by a drop of ∼1.4 mag in the V band to a slow decline with an approximate 56 Co decay slope. The late-time light curve is consistent with 0.04 ± 0.01 M ☉ of 56 Ni synthesized in the explosion. A spectrum of the supernova obtained two years after explosion shows a broad, boxy Hα emission line, which is unusual for normal Type II-Plateau supernovae at late times. We detect the supernova in archival Spitzer and WISE images obtained 8-14 months after explosion, which show clear signs of warm (600-700 K) dust emission. The dwarf irregular host galaxy, ESO 302–14, has a low gas-phase oxygen abundance, 12 + log(O/H) = 8.2 (∼1/5 Z ☉ ), similar to those of the Small Magellanic Cloud and the hosts of long gamma-ray bursts and luminous core-collapse supernovae. This metallicity is one of the lowest among local (∼ 5 M ☉ for the star formation complex, assuming a single-age starburst. These properties are consistent with the expanding Hα supershells observed in many well-studied nearby dwarf galaxies, which are tell-tale signs of feedback from the cumulative effect of massive star winds and supernovae. The age estimated for the star-forming region where SN 2008jb exploded suggests a relatively high-mass progenitor star with an initial mass M ∼ 20 M ☉ and warrants further study. We discuss the implications of these findings in the study of core

  3. Positron Survival in Type II Supernovae

    Science.gov (United States)

    1989-05-01

    B: Computer Program and Flow Diagram 53 References 59 I. Introduction Since the discovery of Supernova 1987A (a Type II supernova) in February of 1987...the fewer number of decays depositing energy within the supernova. The rate of this cooling is unknown because it is uncertain whether a pulsar was

  4. Identifying Patient Attitudinal Clusters Associated with Asthma Control: The European REALISE Survey.

    Science.gov (United States)

    van der Molen, Thys; Fletcher, Monica; Price, David

    Asthma is a highly heterogeneous disease that can be classified into different clinical phenotypes, and treatment may be tailored accordingly. However, factors beyond purely clinical traits, such as patient attitudes and behaviors, can also have a marked impact on treatment outcomes. The objective of this study was to further analyze data from the REcognise Asthma and LInk to Symptoms and Experience (REALISE) Europe survey, to identify distinct patient groups sharing common attitudes toward asthma and its management. Factor analysis of respondent data (N = 7,930) from the REALISE Europe survey consolidated the 34 attitudinal variables provided by the study population into a set of 8 summary factors. Cluster analyses were used to identify patient clusters that showed similar attitudes and behaviors toward each of the 8 summary factors. Five distinct patient clusters were identified and named according to the key characteristics comprising that cluster: "Confident and self-managing," "Confident and accepting of their asthma," "Confident but dependent on others," "Concerned but confident in their health care professional (HCP)," and "Not confident in themselves or their HCP." Clusters showed clear variability in attributes such as degree of confidence in managing their asthma, use of reliever and preventer medication, and level of asthma control. The 5 patient clusters identified in this analysis displayed distinctly different personal attitudes that would require different approaches in the consultation room certainly for asthma but probably also for other chronic diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Dimming supernovae without cosmic acceleration

    International Nuclear Information System (INIS)

    Csaki, Csaba; Terning, John; Kaloper, Nemanja

    2002-01-01

    We present a simple model where photons propagating in extragalactic magnetic fields can oscillate into very light axions. The oscillations may convert some of the photons, departing a distant supernova, into axions, making the supernova appear dimmer and hence more distant than it really is. Averaging over different configurations of the magnetic field we find that the dimming saturates at about one-third of the light from the supernovae at very large redshifts. This results in a luminosity distance versus redshift curve almost indistinguishable from that produced by the accelerating Universe, if the axion mass and coupling scale are m∼10 -16 eV , M∼4x10 11 GeV . This phenomenon may be an alternative to the accelerating Universe for explaining supernova observations

  6. Supernovae anisotropy power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Ghodsi, Hoda; Baghram, Shant [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Habibi, Farhang, E-mail: h.ghodsi@mehr.sharif.ir, E-mail: baghram@sharif.edu, E-mail: habibi@lal.in2p3.fr [LAL-IN2P3/CNRS, BP 34, 91898 Orsay Cedex (France)

    2017-10-01

    We contribute another anisotropy study to this field of research using Type Ia supernovae (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Using the Union2.1 data set at all redshifts, we compare the spectrum of the residuals of the observed distance moduli to that expected from an isotropic universe affected by the Union2.1 observational uncertainties at low multipoles. Through this comparison we find a dipolar anisotropy with tension of less that 2σ towards l = 171° ± 21° and b = −26° ± 28° which is mainly induced by anisotropic spatial distribution of the SNe with z > 0.2 rather than being a cosmic effect. Furthermore, we find a tension of ∼ 4σ at ℓ = 4 between the two spectra. Our simulations are constructed with the characteristics of the upcoming surveys like the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipolar anisotropy that would be detectable by future SNe Ia surveys.

  7. UTILIZING TYPE Ia SUPERNOVAE IN A LARGE, FAST, IMAGING SURVEY TO CONSTRAIN DARK ENERGY

    International Nuclear Information System (INIS)

    Zentner, Andrew R.; Bhattacharya, Suman

    2009-01-01

    We study the utility of a large sample of Type Ia supernovae (SNe Ia) that might be observed in an imaging survey that rapidly scans a large fraction of the sky for constraining dark energy. We consider both the information contained in the traditional luminosity distance test as well as the spread in Ia SN fluxes at fixed redshift induced by gravitational lensing. As would be required from an imaging survey, we include a treatment of photometric redshift uncertainties in our analysis. Our primary result is that the information contained in the mean distance moduli of SNe Ia and the dispersion of SN Ia distance moduli complement each other, breaking a degeneracy between the present dark energy equation of state and its time variation without the need for a high-redshift (z ∼> 0.8) SN sample. Including lensing information also allows for some internal calibration of photometric redshifts. To address photometric redshift uncertainties, we present dark energy constraints as a function of the size of an external set of spectroscopically observed SNe that may be used for redshift calibration, N spec . Depending upon the details of potentially available, external SN data sets, we find that an imaging survey can constrain the dark energy equation of state at the epoch where it is best constrained w p , with a 1σ error of σ(w p ) ∼ 0.03-0.09. In addition, the marginal improvement in the error σ(w p ) from an increase in the spectroscopic calibration sample drops once N spec ∼ a few x 10 3 . This result is important because it is of the order of the size of calibration samples likely to be compiled in the coming decade and because, for samples of this size, the spectroscopic and imaging surveys individually place comparable constraints on the dark energy equation of state. In all cases, it is best to calibrate photometric redshifts with a set of spectroscopically observed SNe with relatively more objects at high redshift (z ∼> 0.5) than the parent sample of

  8. Fluid Instabilities of Magnetar-Powered Supernovae

    Science.gov (United States)

    Chen, Ke-Jung

    2017-05-01

    Magnetar-powered supernova explosions are competitive models for explaining very luminous optical transits. Until recently, these explosion models were mainly calculated in 1D. Radiation emitted from the magnetar snowplows into the previous supernovae ejecta and causes a nonphysical dense shell (spike) found in previous 1D studies. This suggests that strong fluid instabilities may have developed within the magnetar-powered supernovae. Such fluid instabilities emerge at the region where luminous transits later occur, so they can affect the consequent observational signatures. We examine the magnetar-powered supernovae with 2D hydrodynamics simulations and find that the 1D dense shell transforms into the development of Rayleigh-Taylor and thin shell instabilities in 2D. The resulting mixing is able to fragment the entire shell and break the spherical symmetry of supernovae ejecta.

  9. The Fornax Cluster VLT Spectroscopic Survey II - Planetary Nebulae kinematics within 200 kpc of the cluster core

    Science.gov (United States)

    Spiniello, C.; Napolitano, N. R.; Arnaboldi, M.; Tortora, C.; Coccato, L.; Capaccioli, M.; Gerhard, O.; Iodice, E.; Spavone, M.; Cantiello, M.; Peletier, R.; Paolillo, M.; Schipani, P.

    2018-06-01

    We present the largest and most spatially extended planetary nebulae (PNe) catalogue ever obtained for the Fornax cluster. We measured velocities of 1452 PNe out to 200 kpc in the cluster core using a counter-dispersed slitless spectroscopic technique with data from FORS2 on the Very Large Telescope (VLT). With such an extended spatial coverage, we can study separately the stellar haloes of some of the cluster main galaxies and the intracluster light. In this second paper of the Fornax Cluster VLT Spectroscopic Survey, we identify and classify the emission-line sources, describe the method to select PNe, and calculate their coordinates and velocities from the dispersed slitless images. From the PN 2D velocity map, we identify stellar streams that are possibly tracing the gravitational interaction of NGC 1399 with NGC 1404 and NGC 1387. We also present the velocity dispersion profile out to ˜200 kpc radii, which shows signatures of a superposition of the bright central galaxy and the cluster potential, with the latter clearly dominating the regions outside R ˜ 1000 arcsec (˜100 kpc).

  10. Rates and progenitors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, William Michael [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  11. Rates and progenitors of type Ia supernovae

    International Nuclear Information System (INIS)

    Wood-Vasey, William Michael

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  12. OPEN CLUSTERS IN THE MILKY WAY OUTER DISK: NEWLY DISCOVERED AND UNSTUDIED CLUSTERS IN THE SPITZER GLIMPSE-360, CYG-X, AND SMOG SURVEYS

    International Nuclear Information System (INIS)

    Zasowski, G.; Beaton, R. L.; Hamm, K. K.; Majewski, S. R.; Patterson, R. J.; Babler, B.; Churchwell, E.; Meade, M.; Whitney, B. A.; Benjamin, R. A.; Watson, C.

    2013-01-01

    Open stellar clusters are extremely valuable probes of Galactic structure, star formation, kinematics, and chemical abundance patterns. Near-infrared (NIR) data have enabled the detection of hundreds of clusters hidden from optical surveys, and mid-infrared (MIR) data are poised to offer an even clearer view into the most heavily obscured parts of the Milky Way. We use new MIR images from the Spitzer GLIMPSE-360, Cyg-X, and SMOG surveys to visually identify a large number of open cluster candidates in the outer disk of the Milky Way (65° < l < 265°). Using NIR color-magnitude diagrams, stellar isochrones, and stellar reddening estimates, we derive cluster parameters (metallicity, distance, reddening) for those objects without previous identification and/or parameters in the literature. In total, we present coordinates and sizes of 20 previously unknown open cluster candidates; for 7 of these we also present metallicity, distance, and reddening values. In addition, we provide the first estimates of these values for nine clusters that had been previously cataloged. We compare our cluster sizes and other derived parameters to those in the open cluster catalog of Dias et al. and find strong similarities except for a higher mean reddening for our objects, which signifies our increased detection sensitivity in regions of high extinction. The results of this cluster search and analysis demonstrate the ability of MIR imaging and photometry to augment significantly the current census of open clusters in the Galaxy

  13. The HST/ACS Coma Cluster Survey : II. Data Description and Source Catalogs

    NARCIS (Netherlands)

    Hammer, Derek; Kleijn, Gijs Verdoes; Hoyos, Carlos; den Brok, Mark; Balcells, Marc; Ferguson, Henry C.; Goudfrooij, Paul; Carter, David; Guzman, Rafael; Peletier, Reynier F.; Smith, Russell J.; Graham, Alister W.; Trentham, Neil; Peng, Eric; Puzia, Thomas H.; Lucey, John R.; Jogee, Shardha; Aguerri, Alfonso L.; Batcheldor, Dan; Bridges, Terry J.; Chiboucas, Kristin; Davies, Jonathan I.; del Burgo, Carlos; Erwin, Peter; Hornschemeier, Ann; Hudson, Michael J.; Huxor, Avon; Jenkins, Leigh; Karick, Arna; Khosroshahi, Habib; Kourkchi, Ehsan; Komiyama, Yutaka; Lotz, Jennifer; Marzke, Ronald O.; Marinova, Irina; Matkovic, Ana; Merritt, David; Miller, Bryan W.; Miller, Neal A.; Mobasher, Bahram; Mouhcine, Mustapha; Okamura, Sadanori; Percival, Sue; Phillipps, Steven; Poggianti, Bianca M.; Price, James; Sharples, Ray M.; Tully, R. Brent; Valentijn, Edwin

    The Coma cluster, Abell 1656, was the target of an HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially completed survey still covers ~50% of the core high-density region in

  14. Evolution of cluster X-ray luminosities and radii: Results from the 160 square degree rosat survey

    DEFF Research Database (Denmark)

    Vikhlinin, A.; McNamara, B.R.; Forman, W.

    1998-01-01

    We searched for cluster X-ray luminosity and radius evolution using our sample of 203 galaxy clusters detected in the 160 deg(2) survey with the ROSAT PSPC (Vikhlinin et al.). With such a large area survey, it is possible, for the first time with ROSAT, to test the evolution of luminous clusters, L......-X > 3 x 10(44) ergs s(-1) in the 0.5-2 keV band. We detect a factor of 3-4 deficit of such luminous clusters at z > 0.3 compared with the present. The evolution is much weaker or absent at modestly lower luminosities, (1-3) x 10(44) ergs s(-1). At still lower luminosities, we find no evolution from...... the analysis of the log N-log S relation. The results in the two upper L, bins are in agreement with the Einstein Extended Medium-Sensitivity Survey evolution result (Gioia et al.; Henry ct al.), which was obtained using a completely independent cluster sample. The low-L-X results are in agreement with other...

  15. The great supernova of 1987

    International Nuclear Information System (INIS)

    Woosley, S.E.

    1989-01-01

    Seven hundred day after the explosion of the brightest supernova in four centuries, astronomers continue to be both excited and perplexed by its behavior. By now, the supernova has received considerably attention in the literature. This paper emphasizes several aspects of the supernova that continue to be of special interest. These include: the evolution of the presupernova star, why it was blue, what its composition and core structure were; the iron core mass, explosion mechanism, and certain aspects of the neutrino burst; the detailed isotopic composition of the ejecta; the light curve and the requirement for mixing; the expected continued evolution of the supernova at all wavelengths given both the presence of several radioactivities as well as a central collapsed object as a power source; and late breaking news regarding the pulsar

  16. Are crab-type supernova remnants (plerions) short-lived

    International Nuclear Information System (INIS)

    Weiler, K.W.; Panagia, N.

    1978-01-01

    Arguments are given for a possible picture of the origin, maintenance, and lifetimes of the so-called Crab-like supernova remnants. It is suggested that these objects imply the existence of at least two distinct types of supernova events. A possible connection of the remnant types with the optically defined supernovae of Type I and Type II is discussed. Accepting that a pulsar is formed in at least some supernova events, the proposal is made that a rapidly rotating, rapidly slowing pulsar is necessary to create and maintain a Crab-like supernova remnant. Finally, arguments are presented that such a supernova remnant will be relatively short lived with respect to the more common shell-type of supernova remnant, perhaps surviving only 10000-20000 yr before fading into the Galactic background. The name of plerion is proposed for these filled-center supernova remnants and observational possiblities for confirming their nature are suggested. (orig.) [de

  17. Central regions of LIRGs: rings, hidden starbursts, Supernovae and star clusters

    International Nuclear Information System (INIS)

    Väisänen, Petri; Randriamanakoto, Zara; Escala, Andres; Kankare, Erkki; Mattila, Seppo; Reunanen, Juha; Kotilainen, Jari; Rajpaul, Vinesh; Ryder, Stuart; Zijlstra, Albert

    2012-01-01

    We study star formation (SF) in very active environments, in luminous IR galaxies, which are often interacting. A variety of phenomena are detected, such as central starbursts, circumnuclear SF, obscured SNe tracing the history of recent SF, massive super star clusters, and sites of strong off-nuclear SF. All of these can be ultimately used to define the sequence of triggering and propagation of star-formation and interplay with nuclear activity in the lives of gas rich galaxy interactions and mergers. In this paper we present analysis of high-spatial resolution integral field spectroscopy of central regions of two interacting LIRGs. We detect a nuclear 3.3 μm PAH ring around the core of NGC 1614 with thermal-IR IFU observations. The ring's characteristics and relation to the strong star-forming ring detected in recombination lines are presented, as well as a scenario of an outward expanding starburst likely initiated with a (minor) companion detected within a tidal feature. We then present NIR IFU observations of IRAS 19115-2124, aka the Bird, which is an intriguing triple encounter. The third component is a minor one, but, nevertheless, is the source of 3/4 of the SFR of the whole system. Gas inflows and outflows are detected in their nuclei locations. Finally, we briefly report on our on-going NIR adaptive optics imaging survey of several dozen LIRGs. We have detected highly obscured core-collapse SNe in the central kpc, and discuss the statistics of 'missing SNe' due to dust extinction. We are also determining the characteristics of hundreds of super star clusters in and around the core regions of LIRGs, as a function of host-galaxy properties.

  18. Substructures in DAFT/FADA survey clusters based on XMM and optical data

    Science.gov (United States)

    Durret, F.; DAFT/FADA Team

    2014-07-01

    The DAFT/FADA survey was initiated to perform weak lensing tomography on a sample of 90 massive clusters in the redshift range [0.4,0.9] with HST imaging available. The complementary deep multiband imaging constitutes a high quality imaging data base for these clusters. In X-rays, we have analysed the XMM-Newton and/or Chandra data available for 32 clusters, and for 23 clusters we fit the X-ray emissivity with a beta-model and subtract it to search for substructures in the X-ray gas. This study was coupled with a dynamical analysis for the 18 clusters with at least 15 spectroscopic galaxy redshifts in the cluster range, based on a Serna & Gerbal (SG) analysis. We detected ten substructures in eight clusters by both methods (X-rays and SG). The percentage of mass included in substructures is found to be roughly constant with redshift, with values of 5-15%. Most of the substructures detected both in X-rays and with the SG method are found to be relatively recent infalls, probably at their first cluster pericenter approach.

  19. Source selection for cluster weak lensing measurements in the Hyper Suprime-Cam survey

    Science.gov (United States)

    Medezinski, Elinor; Oguri, Masamune; Nishizawa, Atsushi J.; Speagle, Joshua S.; Miyatake, Hironao; Umetsu, Keiichi; Leauthaud, Alexie; Murata, Ryoma; Mandelbaum, Rachel; Sifón, Cristóbal; Strauss, Michael A.; Huang, Song; Simet, Melanie; Okabe, Nobuhiro; Tanaka, Masayuki; Komiyama, Yutaka

    2018-03-01

    We present optimized source galaxy selection schemes for measuring cluster weak lensing (WL) mass profiles unaffected by cluster member dilution from the Subaru Hyper Suprime-Cam Strategic Survey Program (HSC-SSP). The ongoing HSC-SSP survey will uncover thousands of galaxy clusters to z ≲ 1.5. In deriving cluster masses via WL, a critical source of systematics is contamination and dilution of the lensing signal by cluster members, and by foreground galaxies whose photometric redshifts are biased. Using the first-year CAMIRA catalog of ˜900 clusters with richness larger than 20 found in ˜140 deg2 of HSC-SSP data, we devise and compare several source selection methods, including selection in color-color space (CC-cut), and selection of robust photometric redshifts by applying constraints on their cumulative probability distribution function (P-cut). We examine the dependence of the contamination on the chosen limits adopted for each method. Using the proper limits, these methods give mass profiles with minimal dilution in agreement with one another. We find that not adopting either the CC-cut or P-cut methods results in an underestimation of the total cluster mass (13% ± 4%) and the concentration of the profile (24% ± 11%). The level of cluster contamination can reach as high as ˜10% at R ≈ 0.24 Mpc/h for low-z clusters without cuts, while employing either the P-cut or CC-cut results in cluster contamination consistent with zero to within the 0.5% uncertainties. Our robust methods yield a ˜60 σ detection of the stacked CAMIRA surface mass density profile, with a mean mass of M200c = [1.67 ± 0.05(stat)] × 1014 M⊙/h.

  20. The cosmological analysis of X-ray cluster surveys - I. A new method for interpreting number counts

    Science.gov (United States)

    Clerc, N.; Pierre, M.; Pacaud, F.; Sadibekova, T.

    2012-07-01

    We present a new method aimed at simplifying the cosmological analysis of X-ray cluster surveys. It is based on purely instrumental observable quantities considered in a two-dimensional X-ray colour-magnitude diagram (hardness ratio versus count rate). The basic principle is that even in rather shallow surveys, substantial information on cluster redshift and temperature is present in the raw X-ray data and can be statistically extracted; in parallel, such diagrams can be readily predicted from an ab initio cosmological modelling. We illustrate the methodology for the case of a 100-deg2XMM survey having a sensitivity of ˜10-14 erg s-1 cm-2 and fit at the same time, the survey selection function, the cluster evolutionary scaling relations and the cosmology; our sole assumption - driven by the limited size of the sample considered in the case study - is that the local cluster scaling relations are known. We devote special attention to the realistic modelling of the count-rate measurement uncertainties and evaluate the potential of the method via a Fisher analysis. In the absence of individual cluster redshifts, the count rate and hardness ratio (CR-HR) method appears to be much more efficient than the traditional approach based on cluster counts (i.e. dn/dz, requiring redshifts). In the case where redshifts are available, our method performs similar to the traditional mass function (dn/dM/dz) for the purely cosmological parameters, but constrains better parameters defining the cluster scaling relations and their evolution. A further practical advantage of the CR-HR method is its simplicity: this fully top-down approach totally bypasses the tedious steps consisting in deriving cluster masses from X-ray temperature measurements.

  1. The GALAH survey: chemical tagging of star clusters and new members in the Pleiades

    Science.gov (United States)

    Kos, Janez; Bland-Hawthorn, Joss; Freeman, Ken; Buder, Sven; Traven, Gregor; De Silva, Gayandhi M.; Sharma, Sanjib; Asplund, Martin; Duong, Ly; Lin, Jane; Lind, Karin; Martell, Sarah; Simpson, Jeffrey D.; Stello, Dennis; Zucker, Daniel B.; Zwitter, Tomaž; Anguiano, Borja; Da Costa, Gary; D'Orazi, Valentina; Horner, Jonathan; Kafle, Prajwal R.; Lewis, Geraint; Munari, Ulisse; Nataf, David M.; Ness, Melissa; Reid, Warren; Schlesinger, Katie; Ting, Yuan-Sen; Wyse, Rosemary

    2018-02-01

    The technique of chemical tagging uses the elemental abundances of stellar atmospheres to 'reconstruct' chemically homogeneous star clusters that have long since dispersed. The GALAH spectroscopic survey - which aims to observe one million stars using the Anglo-Australian Telescope - allows us to measure up to 30 elements or dimensions in the stellar chemical abundance space, many of which are not independent. How to find clustering reliably in a noisy high-dimensional space is a difficult problem that remains largely unsolved. Here, we explore t-distributed stochastic neighbour embedding (t-SNE) - which identifies an optimal mapping of a high-dimensional space into fewer dimensions - whilst conserving the original clustering information. Typically, the projection is made to a 2D space to aid recognition of clusters by eye. We show that this method is a reliable tool for chemical tagging because it can: (i) resolve clustering in chemical space alone, (ii) recover known open and globular clusters with high efficiency and low contamination, and (iii) relate field stars to known clusters. t-SNE also provides a useful visualization of a high-dimensional space. We demonstrate the method on a data set of 13 abundances measured in the spectra of 187 000 stars by the GALAH survey. We recover seven of the nine observed clusters (six globular and three open clusters) in chemical space with minimal contamination from field stars and low numbers of outliers. With chemical tagging, we also identify two Pleiades supercluster members (which we confirm kinematically), one as far as 6° - one tidal radius away from the cluster centre.

  2. Overview of the nearby supernova factory

    International Nuclear Information System (INIS)

    Aldering, Greg; Adam, Gilles; Antilogus, Pierre; Astier, Pierre; Bacon, Roland; Bongard, S.; Bonnaud, C.; Copin, Yannick; Hardin, D.; Howell, D. Andy; Lemmonnier, Jean-Pierre; Levy, J.-M.; Loken, S.; Nugent, Peter; Pain, Reynald; Pecontal, Arlette; Pecontal, Emmanuel; Perlmutter, Saul; Quimby, Robert; Schahmaneche, Kyan; Smadja, Gerard; Wood-Vasey, W. Michael

    2002-01-01

    The Nearby Supernova Factory (SNfactory) is an international experiment designed to lay the foundation for the next generation of cosmology experiments (such as CFHTLS, wP, SNAP and LSST) which will measure the expansion history of the Universe using Type Ia supernovae. The SNfactory will discover and obtain frequent lightcurve spectrophotometry covering 3200-10000 (angstrom) for roughly 300 Type Ia supernovae at the loW--redshift end of the smooth Hubble flow. The quantity, quality, breadth of galactic environments, and homogeneous nature of the SNfactory dataset will make it the premier source of calibration for the Type Ia supernova width-brightness relation and the intrinsic supernova colors used for K-correction and correction for extinction by host-galaxy dust. This dataset will also allow an extensive investigation of additional parameters which possibly influence the quality of Type Ia supernovae as cosmological probes. The SNfactory search capabilities and folloW--up instrumentation include wide-field CCD imagers on two 1.2-m telescopes (via collaboration with the Near Earth Asteroid Tracking team at JPL and the QUEST team at Yale), and a two-channel integral-field-unit optical spectrograph/imager being fabricated for the University of Hawaii 2.2-m telescope. In addition to ground-based folloW--up, UV spectra for a subsample of these supernovae will be obtained with HST. The pipeline to obtain, transfer via wireless and standard internet, and automatically process the search images is in operation. Software and hardware development is now underway to enable the execution of folloW--up spectroscopy of supernova candidates at the Hawaii 2.2-m telescope via automated remote control of the telescope and the IFU spectrograph/imager

  3. Gravitational collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.

    1989-01-01

    The collapse of the core of a massive star and the subsequent birth of a neutron star in a supernova explosion are discussed, and a model of the supernova mechanism is developed. The basic theory is then compared with the particular case of SN1987A, whose emitted neutrinos permitted the first direct test of the model. (author)

  4. Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, G; Althouse, W; Amanullah, R; Annis, J; Astier, P; Baltay, C; Barrelet, E; Basa, S; Bebek, C; Bergstrom, L; Bernstein, G; Bester, M; Bigelow, B; Blandford, R; Bohlin, R; Bonissent, A; Bower, C; Brown, M; Campbell, M; Carithers, W; Commins, E; Craig, W; Day, C; DeJongh, F; Deustua, S; Diehl, T; Dodelson, S; Ealet, A; Ellis, R; Emmet, W; Fouchez, D; Frieman, J; Fruchter, A; Gerdes, D; Gladney, L; Goldhaber, G; Goobar, A; Groom, D; Heetderks, H; Hoff, M; Holland, S; Huffer, M; Hui, L; Huterer, D; Jain, B; Jelinsky, P; Karcher, A; Kent, S; Kahn, S; Kim, A; Kolbe, W; Krieger, B; Kushner, G; Kuznetsova, N; Lafever, R; Lamoureux, J; Lampton, M; Fevre, OL; Levi, M; Limon, P; Lin, H; Linder, E; Loken, S; Lorenzon, W; Malina, R; Marriner, J; Marshall, P; Massey, R; Mazure, A; McKay, T; McKee, S; Miquel, R; Morgan, N; Mortsell, E; Mostek, N; Mufson, S; Musser, J; Nugent, P; Oluseyi, H; Pain, R; Palaio, N; Pankow, D; Peoples, J; Perlmutter, S; Prieto, E; Rabinowitz, D; Refregier, A; Rhodes, J; Roe, N; Rusin, D; Scarpine, V; Schubnell, M; Sholl, M; Smadja, G; Smith, RM; Smoot, G; Snyder, J; Spadafora, A; Stebbins, A; Stoughton, C; Szymkowiak, A; Tarle, G; Taylor, K; Tilquin, A; Tomasch, A; Tucker, D; Vincent, D; Lippe, HVD; Walder, J-P; Wang, G; Wester, W

    2004-05-12

    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy can be similarly measured to 5% for the present value w0 and ~0.1 for the time variation w'. The large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs.

  5. Too Little, Too Late: How the Tidal Evolution of Hot Jupiters Affects Transit Surveys of Clusters

    Science.gov (United States)

    Debes, John H.; Jackson, Brian

    2010-01-01

    The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense HST search for transits. We find that in older clusters one expects to detect fewer transiting planets by a factor of two for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of semi-major axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.

  6. SPATIAL ANISOTROPY OF GALAXY KINEMATICS IN SLOAN DIGITAL SKY SURVEY GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Skielboe, Andreas; Wojtak, Radosław; Pedersen, Kristian; Rozo, Eduardo; Rykoff, Eli S.

    2012-01-01

    Measurements of galaxy cluster kinematics are important in understanding the dynamical state and evolution of clusters of galaxies, as well as constraining cosmological models. While it is well established that clusters exhibit non-spherical geometries, evident in the distribution of galaxies on the sky, azimuthal variations of galaxy kinematics within clusters have yet to be observed. Here we measure the azimuthal dependence of the line-of-sight velocity dispersion profile in a stacked sample of 1743 galaxy clusters from the Sloan Digital Sky Survey (SDSS). The clusters are drawn from the SDSS DR8 redMaPPer catalog. We find that the line-of-sight velocity dispersion of galaxies lying along the major axis of the central galaxy is larger than those that lie along the minor axis. This is the first observational detection of anisotropic kinematics of galaxies in clusters. We show that the result is consistent with predictions from numerical simulations. Furthermore, we find that the degree of projected anisotropy is strongly dependent on the line-of-sight orientation of the galaxy cluster, opening new possibilities for assessing systematics in optical cluster finding.

  7. Simultaneous falsification of ΛCDM and quintessence with massive, distant clusters

    International Nuclear Information System (INIS)

    Mortonson, Michael J.; Hu, Wayne; Huterer, Dragan

    2011-01-01

    Observation of even a single massive cluster, especially at high redshift, can falsify the standard cosmological framework consisting of a cosmological constant and cold dark matter (ΛCDM) with Gaussian initial conditions by exposing an inconsistency between the well-measured expansion history and the growth of structure it predicts. Through a likelihood analysis of current cosmological data that constrain the expansion history, we show that the ΛCDM upper limits on the expected number of massive, distant clusters are nearly identical to limits predicted by all quintessence models where dark energy is a minimally coupled scalar field with a canonical kinetic term. We provide convenient fitting formulas for the confidence level at which the observation of a cluster of mass M at redshift z can falsify ΛCDM and quintessence given cosmological parameter uncertainties and sample variance, as well as for the expected number of such clusters in the light cone and the Eddington bias factor that must be applied to observed masses. By our conservative confidence criteria, which equivalently require masses 3 times larger than typically expected in surveys of a few hundred square degrees, none of the presently known clusters falsify these models. Various systematic errors, including uncertainties in the form of the mass function and differences between supernova light curve fitters, typically shift the exclusion curves by less than 10% in mass, making current statistical and systematic uncertainties in cluster mass determination the most critical factor in assessing falsification of ΛCDM and quintessence.

  8. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1984-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of the equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model forms the basis for the former, and we propose to further refine it by including curvature corrections to the surface energy and by considering other nuclear force parameters which are in better agreement with experimentally determined quantities. The development of the equation of state has another bonus - it can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes detailed neutrino transport and a fast, but accurate, approximation to the complete LLPR equation of state, which is necessary for numerical use. We propose to model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures - after all, neutrinos are the only direct method of observationally checking supernova theory. Complementary studies include modelling both mass accretion in the nuclei of galaxies (which is probably responsible for the quasar phenomenon) and investigations of galaxy clustering and the large scale structure of the universe

  9. The Chemistry of Population III Supernova Ejecta. II. The Nucleation of Molecular Clusters as a Diagnostic for Dust in the Early Universe

    Science.gov (United States)

    Cherchneff, Isabelle; Dwek, Eli

    2010-04-01

    We study the formation of molecular precursors to dust in the ejecta of Population III supernovae (Pop. III SNe) using a chemical kinetic approach to follow the evolution of small dust cluster abundances from day 100 to day 1000 after explosion. Our work focuses on zero-metallicity 20 M sun and 170 M sun progenitors, and we consider fully macroscopically mixed and unmixed ejecta. The dust precursors comprise molecular chains, rings, and small clusters of chemical composition relevant to the initial elemental composition of the ejecta under study. The nucleation stage for small silica, metal oxides and sulfides, pure metal, and carbon clusters is described with a new chemical reaction network highly relevant to the kinetic description of dust formation in hot circumstellar environments. We consider the effect of the pressure dependence of critical nucleation rates and test the impact of microscopically mixed He+ on carbon dust formation. Two cases of metal depletion on silica clusters (full and no depletion) are considered to derive upper limits to the amounts of dust produced in SN ejecta at 1000 days, while the chemical composition of clusters gives a prescription for the type of dust formed in Pop. III SNe. We show that the cluster mass produced in the fully mixed ejecta of a 170 M sun progenitor is ~ 25 M sun whereas its 20 M sun counterpart forms ~ 0.16 M sun of clusters. The unmixed ejecta of a 170 M sun progenitor SN synthesize ~5.6 M sun of small clusters, while its 20 M sun counterpart produces ~0.103 M sun. Our results point to smaller amounts of dust formed in the ejecta of Pop. III SNe by a factor of ~ 5 compared to values derived by previous studies, and to different dust chemical compositions. Such deviations result from some erroneous assumptions made, the inappropriate use of classical nucleation theory to model dust formation, and the omission of the synthesis of molecules in SN ejecta. We also find that the unmixed ejecta of massive Pop. III SNe

  10. Physics of supernovae

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1985-01-01

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs

  11. The SUMO project I. A survey of multiple populations in globular clusters

    Science.gov (United States)

    Monelli, M.; Milone, A. P.; Stetson, P. B.; Marino, A. F.; Cassisi, S.; del Pino Molina, A.; Salaris, M.; Aparicio, A.; Asplund, M.; Grundahl, F.; Piotto, G.; Weiss, A.; Carrera, R.; Cebrián, M.; Murabito, S.; Pietrinferni, A.; Sbordone, L.

    2013-05-01

    We present a general overview and the first results of the SUMO project (a SUrvey of Multiple pOpulations in Globular Clusters). The objective of this survey is the study of multiple stellar populations in the largest sample of globular clusters homogeneously analysed to date. To this aim we obtained high signal-to-noise (S/N > 50) photometry for main sequence stars with mass down to ˜0.5 M⊙ in a large sample of clusters using both archival and proprietary U, B, V and I data from ground-based telescopes. In this paper, we focus on the occurrence of multiple stellar populations in 23 clusters. We define a new photometric index, cU, B, I = (U - B) - (B - I), which turns out to be very effective for identifying multiple sequences along the red giant branch (RGB). We found that in the V-cU, B, I diagram all clusters presented in this paper show broadened or multimodal RGBs, with the presence of two or more components. We found a direct connection with the chemical properties of different sequences, which display different abundances of light elements (O, Na, C, N and Al). The cU, B, I index is also a powerful tool for identifying distinct sequences of stars along the horizontal branch and, for the first time in the case of NGC 104 (47 Tuc), along the asymptotic giant branch. Our results demonstrate that (i) the presence of more than two stellar populations is a common feature amongst globular clusters, as already highlighted in previous work; (ii) multiple sequences with different chemical contents can be easily identified by using standard Johnson photometry obtained with ground-based facilities; (iii) in the study of globular cluster multiple stellar populations the cU, B, I index is an alternative to spectroscopy, and has the advantage of larger statistics.

  12. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; der Linden, A. von; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2017-10-14

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z(median) = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z) M-500c/10(14)M(circle dot)) = A + 1.5ln (kT/7.2 keV) to A = 1.81(-0.14)(+0.24)(stat.)+/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c(200c) = 5.6(-1.8)(+3.7).

  13. Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    Science.gov (United States)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; von der Linden, A.; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2018-02-01

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (zmedian = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z)M500c/1014 M⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81^{+0.24}_{-0.14}(stat.) {± } 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  14. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Detailed Age and Abundance Gradients using DR12

    Science.gov (United States)

    Frinchaboy, Peter M.; Thompson, Benjamin A.; O'Connell, Julia; Meyer, Brianne; Donor, John; Majewski, Steven R.; Holtzman, Jon A.; Zasowski, Gail; Beers, Timothy C.; Beaton, Rachael; Cunha, Katia M. L.; Hearty, Fred; Nidever, David L.; Schiavon, Ricardo P.; Smith, Verne V.; Hayden, Michael R.

    2015-01-01

    We present detailed abundance results for Galactic open clusters as part of the Open Cluster Chemical Abundances and Mapping (OCCAM) Survey, which is based primarily on data from the Sloan Digital Sky Survey/ Apache Point Observatory Galactic Evolution Experiment. Using 100 open clusters from the uniformly observed complete SDSS-III/APOGEE-1 DR12 dataset, we present age and multi-element abundance gradients for the disk of the Milky Way.This work is supported by an NSF AAG grant AST-1311835.

  15. Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7

    Science.gov (United States)

    Barris, Brian J.; Tonry, John L.; Blondin, Stéphane; Challis, Peter; Chornock, Ryan; Clocchiatti, Alejandro; Filippenko, Alexei V.; Garnavich, Peter; Holland, Stephen T.; Jha, Saurabh; Kirshner, Robert P.; Krisciunas, Kevin; Leibundgut, Bruno; Li, Weidong; Matheson, Thomas; Miknaitis, Gajus; Riess, Adam G.; Schmidt, Brian P.; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Stubbs, Christopher W.; Suntzeff, Nicholas B.; Aussel, Hervé; Chambers, K. C.; Connelley, M. S.; Donovan, D.; Henry, J. Patrick; Kaiser, Nick; Liu, Michael C.; Martín, Eduardo L.; Wainscoat, Richard J.

    2004-02-01

    We present photometric and spectroscopic observations of 23 high-redshift supernovae (SNe) spanning a range of z=0.34-1.03, nine of which are unambiguously classified as Type Ia. These SNe were discovered during the IfA Deep Survey, which began in 2001 September and observed a total of 2.5 deg2 to a depth of approximately m~25-26 in RIZ over 9-17 visits, typically every 1-3 weeks for nearly 5 months, with additional observations continuing until 2002 April. We give a brief description of the survey motivations, observational strategy, and reduction process. This sample of 23 high-redshift SNe includes 15 at z>=0.7, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry et al. (2003), we calculate cosmological parameter density contours that are consistent with the flat universe indicated by the cosmic microwave background (Spergel et al. 2003). Adopting the constraint that Ωtotal=1.0, we obtain best-fit values of (Ωm,ΩΛ)=(0.33,0.67) using 22 SNe from this survey augmented by the literature compilation. We show that using the empty-beam model for gravitational lensing does not eliminate the need for ΩΛ>0. Experience from this survey indicates great potential for similar large-scale surveys while also revealing the limitations of performing surveys for z>1 SNe from the ground. CFHT: Based in part on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. CTIO: Based in part on observations taken at the Cerro Tololo Inter-American Observatory. Keck: Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership

  16. ON THE CLUSTER PHYSICS OF SUNYAEV-ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM

    International Nuclear Information System (INIS)

    Battaglia, N.; Bond, J. R.; Pfrommer, C.; Sievers, J. L.

    2012-01-01

    Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at l ∼ 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R 500 is ∼20% at l = 3000, thus clusters interiors (r 500 ) dominate the power spectrum amplitude at these angular scales.

  17. A survey for low-mass stellar and substellar members of the Hyades open cluster

    Science.gov (United States)

    Melnikov, Stanislav; Eislöffel, Jochen

    2018-03-01

    Context. Unlike young open clusters (with ages 2MASS JHKs photometry Results: We present a photometric and proper motion survey covering 23.4 deg2 in the Hyades cluster core region. Using optical/IR colour-magnitude diagrams, we identify 66 photometric cluster member candidates in the magnitude range 14.m7 < I < 20.m5. The proper motion measurements are based on several all-sky surveys with an epoch difference of 60-70 yr for the bright objects. The proper motions allowed us to discriminate the cluster members from field objects and resulted in 14 proper motion members of the Hyades. We rediscover Hy 6 as a proper motion member and classify it as a substellar object candidate (BD) based on the comparison of the observed colour-magnitude diagram with theoretical model isochrones. Conclusions: With our results, the mass function of the Hyades continues to be shallow below 0.15 M⊙ indicating that the Hyades have probably lost their lowest mass members by means of dynamical evolution. We conclude that the Hyades core represents the "VLM/BD desert" and that most of the substeller objects may have already left the volume of the cluster.

  18. THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS

    International Nuclear Information System (INIS)

    Xu, Bingxiao; Zheng, Wei; Postman, Marc; Bradley, Larry; Meneghetti, Massimo; Koekemoer, Anton; Seitz, Stella; Zitrin, Adi; Merten, Julian; Maoz, Dani; Frye, Brenda; Umetsu, Keiichi; Vega, Jesus

    2016-01-01

    We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm's arc elongation accuracy, completeness, and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4 ± 1 arcs (with length ≥6″ and length-to-width ratio ≥7) per cluster for the X-ray-selected CLASH sample, 4 ± 1 arcs per cluster for the MOKA-simulated sample, and 3 ± 1 arcs per cluster for the MUSIC-simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshift z s = 1.9 with 33% of the detected arcs having z s  > 3. We find that the arc abundance does not depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos (e.g., the c–M relation). Our results show that consistency between the observed and simulated distributions of lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to the selection criteria used in the observations

  19. The Detection and Statistics of Giant Arcs behind CLASH Clusters

    Science.gov (United States)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Seitz, Stella; Zitrin, Adi; Merten, Julian; Maoz, Dani; Frye, Brenda; Umetsu, Keiichi; Zheng, Wei; Bradley, Larry; Vega, Jesus; Koekemoer, Anton

    2016-02-01

    We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm's arc elongation accuracy, completeness, and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4 ± 1 arcs (with length ≥6″ and length-to-width ratio ≥7) per cluster for the X-ray-selected CLASH sample, 4 ± 1 arcs per cluster for the MOKA-simulated sample, and 3 ± 1 arcs per cluster for the MUSIC-simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshift zs = 1.9 with 33% of the detected arcs having zs > 3. We find that the arc abundance does not depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos (e.g., the c-M relation). Our results show that consistency between the observed and simulated distributions of lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to the selection criteria used in the observations.

  20. The swift UVOT stars survey. I. Methods and test clusters

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Michael H.; Porterfield, Blair L.; Linevsky, Jacquelyn S.; Bond, Howard E.; Hoversten, Erik A.; Berrier, Joshua L.; Gronwall, Caryl A. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Holland, Stephen T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Breeveld, Alice A. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Brown, Peter J., E-mail: siegel@astro.psu.edu, E-mail: blp14@psu.edu, E-mail: heb11@psu.edu, E-mail: caryl@astro.psu.edu, E-mail: sholland@stsci.edu, E-mail: aab@mssl.ucl.ac.uk, E-mail: grbpeter@yahoo.com [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States)

    2014-12-01

    We describe the motivations and background of a large survey of nearby stellar populations using the Ultraviolet Optical Telescope (UVOT) on board the Swift Gamma-Ray Burst Mission. UVOT, with its wide field, near-UV sensitivity, and 2.″3 spatial resolution, is uniquely suited to studying nearby stellar populations and providing insight into the near-UV properties of hot stars and the contribution of those stars to the integrated light of more distant stellar populations. We review the state of UV stellar photometry, outline the survey, and address problems specific to wide- and crowded-field UVOT photometry. We present color–magnitude diagrams of the nearby open clusters M67, NGC 188, and NGC 2539, and the globular cluster M79. We demonstrate that UVOT can easily discern the young- and intermediate-age main sequences, blue stragglers, and hot white dwarfs, producing results consistent with previous studies. We also find that it characterizes the blue horizontal branch of M79 and easily identifies a known post-asymptotic giant branch star.

  1. The swift UVOT stars survey. I. Methods and test clusters

    International Nuclear Information System (INIS)

    Siegel, Michael H.; Porterfield, Blair L.; Linevsky, Jacquelyn S.; Bond, Howard E.; Hoversten, Erik A.; Berrier, Joshua L.; Gronwall, Caryl A.; Holland, Stephen T.; Breeveld, Alice A.; Brown, Peter J.

    2014-01-01

    We describe the motivations and background of a large survey of nearby stellar populations using the Ultraviolet Optical Telescope (UVOT) on board the Swift Gamma-Ray Burst Mission. UVOT, with its wide field, near-UV sensitivity, and 2.″3 spatial resolution, is uniquely suited to studying nearby stellar populations and providing insight into the near-UV properties of hot stars and the contribution of those stars to the integrated light of more distant stellar populations. We review the state of UV stellar photometry, outline the survey, and address problems specific to wide- and crowded-field UVOT photometry. We present color–magnitude diagrams of the nearby open clusters M67, NGC 188, and NGC 2539, and the globular cluster M79. We demonstrate that UVOT can easily discern the young- and intermediate-age main sequences, blue stragglers, and hot white dwarfs, producing results consistent with previous studies. We also find that it characterizes the blue horizontal branch of M79 and easily identifies a known post-asymptotic giant branch star.

  2. CONSTRAINING CLUSTER PHYSICS WITH THE SHAPE OF X-RAY CLUSTERS: COMPARISON OF LOCAL X-RAY CLUSTERS VERSUS ΛCDM CLUSTERS

    International Nuclear Information System (INIS)

    Lau, Erwin T.; Nagai, Daisuke; Kravtsov, Andrey V.; Vikhlinin, Alexey; Zentner, Andrew R.

    2012-01-01

    Recent simulations of cluster formation have demonstrated that condensation of baryons into central galaxies during cluster formation can drive the shape of the gas distribution in galaxy clusters significantly rounder out to their virial radius. These simulations generally predict stellar fractions within cluster virial radii that are ∼2-3 times larger than the stellar masses deduced from observations. In this paper, we compare ellipticity profiles of simulated clusters performed with varying input physics (radiative cooling, star formation, and supernova feedback) to the cluster ellipticity profiles derived from Chandra and ROSAT observations, in an effort to constrain the fraction of gas that cools and condenses into the central galaxies within clusters. We find that local relaxed clusters have an average ellipticity of ε = 0.18 ± 0.05 in the radial range of 0.04 ≤ r/r 500 ≤ 1. At larger radii r > 0.1r 500 , the observed ellipticity profiles agree well with the predictions of non-radiative simulations. In contrast, the ellipticity profiles of simulated clusters that include dissipative gas physics deviate significantly from the observed ellipticity profiles at all radii. The dissipative simulations overpredict (underpredict) ellipticity in the inner (outer) regions of galaxy clusters. By comparing simulations with and without dissipative gas physics, we show that gas cooling causes the gas distribution to be more oblate in the central regions, but makes the outer gas distribution more spherical. We find that late-time gas cooling and star formation are responsible for the significantly oblate gas distributions in cluster cores, but the gas shapes outside of cluster cores are set primarily by baryon dissipation at high redshift (z ≥ 2). Our results indicate that the shapes of X-ray emitting gas in galaxy clusters, especially at large radii, can be used to place constraints on cluster gas physics, making it potential probes of the history of baryonic

  3. Disturbance Ecology from nearby Supernovae

    OpenAIRE

    Hartmann, D. H.; Kretschmer, K.; Diehl, R.

    2002-01-01

    Monte Carlo simulations of Galactic Supernovae are carried out to study the rate of nearby events, which may have a direct effect on Earth's ecology though ionizing radiation and cosmic ray bombardment. A nearby supernova may have left a radioactive imprint (60Fe) in recent galactic history.

  4. The VMC survey. XI. Radial stellar population gradients in the galactic globular cluster 47 Tucanae

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chengyuan; De Grijs, Richard [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Deng, Licai [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Rubele, Stefano; Girardi, Leo; Gullieuszik, Marco [INAF-Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Wang, Chuchu [Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Bekki, Kenji; For, Bi-Qing [ICRAR M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Cioni, Maria-Rosa L. [Department of Physics, Astronomy, and Mathematics, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Clementini, Gisella [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Emerson, Jim [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Groenewegen, Martin A. T. [Royal Observatory of Belgium, Ringlaan 3, 1180 Ukkel (Belgium); Guandalini, Roald [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D 2401, 3001 Leuven (Belgium); Marconi, Marcella; Ripepi, Vincenzo [INAF-Osservatorio Astronomico di Capodimonte, via Moiariello 16, I-80131 Naples (Italy); Piatti, Andrés E. [Observatorio Astrońomico, Universidad Nacional de Córdoba, Laprida 854, 5000 Córdoba (Argentina); Van Loon, Jacco Th., E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2014-07-20

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K{sub s} survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ∼0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.

  5. A COMPARATIVE ANALYSIS OF THE SUPERNOVA LEGACY SURVEY SAMPLE WITH ΛCDM AND THE Rh=ct UNIVERSE

    International Nuclear Information System (INIS)

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio; Maier, Robert S.

    2015-01-01

    The use of Type Ia supernovae (SNe Ia) has thus far produced the most reliable measurement of the expansion history of the universe, suggesting that ΛCDM offers the best explanation for the redshift–luminosity distribution observed in these events. However, analysis of other kinds of sources, such as cosmic chronometers, gamma-ray bursts, and high-z quasars, conflicts with this conclusion, indicating instead that the constant expansion rate implied by the R h = ct universe is a better fit to the data. The central difficulty with the use of SNe Ia as standard candles is that one must optimize three or four nuisance parameters characterizing supernova (SN) luminosities simultaneously with the parameters of an expansion model. Hence, in comparing competing models, one must reduce the data independently for each. We carry out such a comparison of ΛCDM and the R h = ct universe using the SN Legacy Survey sample of 252 SN events, and show that each model fits its individually reduced data very well. However, since R h = ct has only one free parameter (the Hubble constant), it follows from a standard model selection technique that it is to be preferred over ΛCDM, the minimalist version of which has three (the Hubble constant, the scaled matter density, and either the spatial curvature constant or the dark energy equation-of-state parameter). We estimate using the Bayes Information Criterion that in a pairwise comparison, the likelihood of R h = ct is ∼90%, compared with only ∼10% for a minimalist form of ΛCDM, in which dark energy is simply a cosmological constant. Compared to R h = ct, versions of the standard model with more elaborate parametrizations of dark energy are judged to be even less likely

  6. Testing the single degenerate channel for supernova Ia

    Science.gov (United States)

    Parsons, Steven

    2014-10-01

    The progenitors of supernova Ia are close binaries containing white dwarfs. Of crucial importance to the evolution of these systems is how much material the white dwarf can stably accrete and hence grow in mass. This occurs during a short-lived intense phase of mass transfer known as the super soft source (SSS) phase. The short duration of this phase and large extinction to soft X-rays means that only a handful are known in our Galaxy. Far more can be learned from the underlying SSS progenitor population of close white dwarf plus FGK type binaries. Unfortunately, these systems are hard to find since the main-sequence stars completely outshine the white dwarfs at optical wavelengths. Because of this, there are currently no known close white dwarf binaries with F, G or early K type companions, making it impossible to determine the contribution of the single degenerate channel towards supernova Ia. Using the GALEX and RAVE surveys we have now identified the first large sample of FGK stars with UV excesses, a fraction of which are these illusive, close systems. Following an intense ground based spectroscopic investigation of these systems, we have identified 5 definite close binaries, with periods of less than a few days. Here we apply for COS spectroscopic observations to measure the mass and temperature of the white dwarfs in order to determine the future evolution of these systems. This will provide a crucial test for the single degenerate channel towards supernova Ia.

  7. A NEW DISTANT MILKY WAY GLOBULAR CLUSTER IN THE PAN-STARRS1 3π SURVEY

    International Nuclear Information System (INIS)

    Laevens, Benjamin P. M.; Martin, Nicolas F.; Sesar, Branimir; Rix, Hans-Walter; Schlafly, Edward F.; Bernard, Edouard J.; Ferguson, Annette M. N.; Slater, Colin T.; Bell, Eric F.; Burgett, William S.; Chambers, Kenneth C.; Denneau, Larry; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Sweeney, William E.; Draper, Peter W.; Metcalfe, Nigel; Price, Paul A.

    2014-01-01

    We present a new satellite in the outer halo of the Galaxy, the first Milky Way satellite found in the stacked photometric catalog of the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1) Survey. From follow-up photometry obtained with WFI on the MPG/ESO 2.2 m telescope, we argue that the object, located at a heliocentric distance of 145 ± 17 kpc, is the most distant Milky Way globular cluster yet known. With a total magnitude of M V = –4.3 ± 0.2 and a half-light radius of 20 ± 2 pc, it shares the properties of extended globular clusters found in the outer halo of our Galaxy and the Andromeda galaxy. The discovery of this distant cluster shows that the full spatial extent of the Milky Way globular cluster system has not yet been fully explored

  8. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    NARCIS (Netherlands)

    Adamo, A.; Ryon, J.E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D.O.; Calzetti, D.; Lee, J.C.; Whitmore, B.C.; Elmegreen, B.G.; Ubeda, L.; Smith, L.J.; Bright, S.N.; Runnholm, A.; Andrews, J.E.; Fumagalli, M.; Gouliermis, D.A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T.M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G.C.; Dale, D.A.; de Mink, S.E.; Dobbs, C.; Elmegreen, D.M.; Evans, A.S.; Gallagher III, J.S.; Grebel, E.K.; Herrero, A.; Hunter, D.A.; Johnson, K.E.; Kennicutt, R.C.; Krumholz, M.R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M.W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S.D.; Zackrisson, E.

    2017-01-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify

  9. Distant Supernovae Indicate Ever-Expanding Universe

    Science.gov (United States)

    1998-12-01

    parameters, the age of the Universe and the geometry of space can be derived. They have been the focus of a large number of astronomical programmes over the past decades. Many aspects of the currently preferred cosmological model, the Hot Big Bang , have been impressively confirmed by observations of the expansion of the Universe, the cosmic background radiation, and also the explanation of the synthesis of light elements. Still, our knowledge about the dynamical state of the Universe, as well as the early formation of structures, i.e., of galaxies and stars, is far from complete - this remains a field of active research. Possibly, the simplest way to test our present assumptions in this direction is to measure accurate distances and compare them with the expected cosmic scale. This is where the recent results contribute to our understanding of the Universe. The key role of supernovae The two research teams, both with participation from ESO [1], have concentrated on the study of rare stellar explosions, during which certain old stars undergo internal incineration. In this process, explosive nuclear fusion burns matter into the most stable atomic nucleus, iron, and releases a gigantic amount of energy. ESO PR Photo 50a/98 ESO PR Photo 50a/98 [Preview - JPEG: 800 x 648 pix - 768k] [High-Res - JPEG: 3000 x 2431 pix - 8.5Mb] ESO PR Photo 50b/98 ESO PR Photo 50b/98 [Preview - JPEG: 800 x 649 pix - 784k] [High-Res - JPEG: 3000 x 2432 pix - 8.4Mb] These photos illustrate the follow-up observations on which the new results described in this Press Release are based. Sky fields with clusters of galaxies are monitored with the 4-m telescope at Cerro Tololo Interamerican Observatory (CTIO) in Chile and spectra are obtained of suddenly appearing star-like objects that may be supernovae. Confirmed Type Ia supernovae are then monitored by ESO telescopes at La Silla and at other observatories. In PR Photo 50a/98 , a supernova at redshift z = 0.51 [2] (corresponding to a distance of about 10

  10. Two Years and Five Images of Supernova Refsdal

    Science.gov (United States)

    Kelly, Patrick

    2017-01-01

    In 1964, Sjur Refsdal hypothesized that a supernova (SN) whose light takes multiple paths to reach us around a strong gravitational lens could be used as a highly powerful probe. For such a system, the time delays between the images of the SN should depend sensitively on the cosmic expansion rate and the distribution of matter within the lens. I will present observations of the first strongly lensed SN resolved into multiple images, which was found in near-infrared imaging taken in early November 2014 with the Hubble Space Telescope (HST). SN `Refsdal' appeared in an Einstein cross configuration around an early-type galaxy in the MACS J1149.6+2223 cluster (z=0.54), and its light curve and spectrum are broadly similar to those of the peculiar and well-studied SN 1987A. Models of the cluster potential predicted that the SN would reappear within two years in a different image of its spiral host galaxy (z=1.49) closer to the cluster's center. In early December 2015, we detected the new image of the SN with the HST, and we anticipate being able to measure its relative time delay with a 1-2% precision, providing a rare test of blind model predictions.

  11. Detection of supernova neutrinos at spallation neutron sources

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  12. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    John F. Beacom

    2002-01-01

    A long-standing problem in supernova physics is how to measure the total energy and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  13. THE HST/ACS COMA CLUSTER SURVEY. IV. INTERGALACTIC GLOBULAR CLUSTERS AND THE MASSIVE GLOBULAR CLUSTER SYSTEM AT THE CORE OF THE COMA GALAXY CLUSTER

    International Nuclear Information System (INIS)

    Peng, Eric W.; Ferguson, Henry C.; Goudfrooij, Paul; Hammer, Derek; Lucey, John R.; Marzke, Ronald O.; Puzia, Thomas H.; Carter, David; Balcells, Marc; Bridges, Terry; Chiboucas, Kristin; Del Burgo, Carlos; Graham, Alister W.; Guzman, Rafael; Hudson, Michael J.; Matkovic, Ana

    2011-01-01

    Intracluster stellar populations are a natural result of tidal interactions in galaxy clusters. Measuring these populations is difficult, but important for understanding the assembly of the most massive galaxies. The Coma cluster of galaxies is one of the nearest truly massive galaxy clusters and is host to a correspondingly large system of globular clusters (GCs). We use imaging from the HST/ACS Coma Cluster Survey to present the first definitive detection of a large population of intracluster GCs (IGCs) that fills the Coma cluster core and is not associated with individual galaxies. The GC surface density profile around the central massive elliptical galaxy, NGC 4874, is dominated at large radii by a population of IGCs that extend to the limit of our data (R +4000 -5000 (systematic) IGCs out to this radius, and that they make up ∼70% of the central GC system, making this the largest GC system in the nearby universe. Even including the GC systems of other cluster galaxies, the IGCs still make up ∼30%-45% of the GCs in the cluster core. Observational limits from previous studies of the intracluster light (ICL) suggest that the IGC population has a high specific frequency. If the IGC population has a specific frequency similar to high-S N dwarf galaxies, then the ICL has a mean surface brightness of μ V ∼ 27 mag arcsec -2 and a total stellar mass of roughly 10 12 M sun within the cluster core. The ICL makes up approximately half of the stellar luminosity and one-third of the stellar mass of the central (NGC 4874+ICL) system. The color distribution of the IGC population is bimodal, with blue, metal-poor GCs outnumbering red, metal-rich GCs by a ratio of 4:1. The inner GCs associated with NGC 4874 also have a bimodal distribution in color, but with a redder metal-poor population. The fraction of red IGCs (20%), and the red color of those GCs, implies that IGCs can originate from the halos of relatively massive, L* galaxies, and not solely from the disruption of

  14. MOCCA-SURVEY Database I: Is NGC 6535 a dark star cluster harbouring an IMBH?

    Science.gov (United States)

    Askar, Abbas; Bianchini, Paolo; de Vita, Ruggero; Giersz, Mirek; Hypki, Arkadiusz; Kamann, Sebastian

    2017-01-01

    We describe the dynamical evolution of a unique type of dark star cluster model in which the majority of the cluster mass at Hubble time is dominated by an intermediate-mass black hole (IMBH). We analysed results from about 2000 star cluster models (Survey Database I) simulated using the Monte Carlo code MOnte Carlo Cluster simulAtor and identified these dark star cluster models. Taking one of these models, we apply the method of simulating realistic `mock observations' by utilizing the Cluster simulatiOn Comparison with ObservAtions (COCOA) and Simulating Stellar Cluster Observation (SISCO) codes to obtain the photometric and kinematic observational properties of the dark star cluster model at 12 Gyr. We find that the perplexing Galactic globular cluster NGC 6535 closely matches the observational photometric and kinematic properties of the dark star cluster model presented in this paper. Based on our analysis and currently observed properties of NGC 6535, we suggest that this globular cluster could potentially harbour an IMBH. If it exists, the presence of this IMBH can be detected robustly with proposed kinematic observations of NGC 6535.

  15. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae

    Science.gov (United States)

    Suzuki, Akihiro; Maeda, Keiichi

    2017-04-01

    The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.

  16. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0

    Science.gov (United States)

    Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Shields, J. V.; Will, D.; Britt, C.; Perzanowski, D.; Pojmański, G.

    2017-10-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is working toward imaging the entire visible sky every night to a depth of V˜ 17 mag. The present data covers the sky and spans ˜2-5 years with ˜100-400 epochs of observation. The data should contain some ˜1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. The V band photometry is obtained using a two-pixel (16.″0) radius aperture and is calibrated against the APASS catalog. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.

  17. THE CHEMISTRY OF POPULATION III SUPERNOVA EJECTA. II. THE NUCLEATION OF MOLECULAR CLUSTERS AS A DIAGNOSTIC FOR DUST IN THE EARLY UNIVERSE

    International Nuclear Information System (INIS)

    Cherchneff, Isabelle; Dwek, Eli

    2010-01-01

    We study the formation of molecular precursors to dust in the ejecta of Population III supernovae (Pop. III SNe) using a chemical kinetic approach to follow the evolution of small dust cluster abundances from day 100 to day 1000 after explosion. Our work focuses on zero-metallicity 20 M sun and 170 M sun progenitors, and we consider fully macroscopically mixed and unmixed ejecta. The dust precursors comprise molecular chains, rings, and small clusters of chemical composition relevant to the initial elemental composition of the ejecta under study. The nucleation stage for small silica, metal oxides and sulfides, pure metal, and carbon clusters is described with a new chemical reaction network highly relevant to the kinetic description of dust formation in hot circumstellar environments. We consider the effect of the pressure dependence of critical nucleation rates and test the impact of microscopically mixed He + on carbon dust formation. Two cases of metal depletion on silica clusters (full and no depletion) are considered to derive upper limits to the amounts of dust produced in SN ejecta at 1000 days, while the chemical composition of clusters gives a prescription for the type of dust formed in Pop. III SNe. We show that the cluster mass produced in the fully mixed ejecta of a 170 M sun progenitor is ∼ 25 M sun whereas its 20 M sun counterpart forms ∼ 0.16 M sun of clusters. The unmixed ejecta of a 170 M sun progenitor SN synthesize ∼5.6 M sun of small clusters, while its 20 M sun counterpart produces ∼0.103 M sun . Our results point to smaller amounts of dust formed in the ejecta of Pop. III SNe by a factor of ∼ 5 compared to values derived by previous studies, and to different dust chemical compositions. Such deviations result from some erroneous assumptions made, the inappropriate use of classical nucleation theory to model dust formation, and the omission of the synthesis of molecules in SN ejecta. We also find that the unmixed ejecta of massive Pop

  18. A Detailed Study of the Mass Distribution of the Galaxy Cluster RXC J2248.7-4431

    International Nuclear Information System (INIS)

    Caminha, G B; Rosati, P; Grillo, C

    2016-01-01

    In this work we use strong gravitational lensing techniques to constrain the total mass distribution of the galaxy cluster RXC J2248.7-4432 (RXC J2248, z lens = 0.348), also known as Abell S1063, observed within the Cluster Lensing And Supernova survey with Hubble (CLASH). Thanks to its strong lensing efficiency and exceptional data quality from the VIsible Multi-Object Spectrograph (VIMOS) and Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope, we can build a parametric model for the total mass distribution. Using the positions of the multiple images generated by 7 multiply-lensed background sources with measured spectroscopic redshifs, we find that the best-fit parametrisation for the cluster total mass distribution is composed of an elliptical pseudo-isothermal mass distribution with a significant core for the overall cluster halo, and of truncated pseudo-isothermal mass profiles for the cluster galaxies. This model is capable to predict the positions of the multiple images with an unprecedented precision of ≈ 0”.3. We also show that varying freely the cosmological parameters of the ΛCDM model, our strong lensing model can constrain the underlying geometry of the universe via the angular diameter distances between the lens and the sources and the observer and the sources. (paper)

  19. Density and energy of supernova remnants

    Energy Technology Data Exchange (ETDEWEB)

    Canto, J [Manchester Univ. (UK). Dept. of Astronomy

    1977-12-01

    The effects of an interstellar magnetic field on the gas flow behind a strong shock front are considered. The ambient density and energy of supernova remnants are estimated from the intensity ratio of sulphur lines I(6717)/I(6731). It is found that, on average, the ambient density around galactic supernova remnants is 4 cm/sup -3/. The total energy appears to be the same for all supernova remnants (to within a factor = approximately 5). A mean value of 4 10/sup 51/ erg is found.

  20. Chiral transport of neutrinos in supernovae

    Directory of Open Access Journals (Sweden)

    Yamamoto Naoki

    2017-01-01

    Full Text Available The conventional neutrino transport theory for core-collapse supernovae misses one key property of neutrinos: the left-handedness. The chirality of neutrinos modifies the hydrodynamic behavior at the macroscopic scale and leads to topological transport phenomena. We argue that such transport phenomena should play important roles in the evolution of core-collapse supernovae, and, in particular, lead to a tendency toward the inverse energy cascade from small to larger scales, which may be relevant to the origin of the supernova explosion.

  1. ON THE CLUSTER PHYSICS OF SUNYAEV-ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St George, Toronto, ON M5S 3H4 (Canada); Bond, J. R.; Pfrommer, C.; Sievers, J. L. [Canadian Institute for Theoretical Astrophysics, 60 St George, Toronto, ON M5S 3H8 (Canada)

    2012-10-20

    Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at l {approx} 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R {sub 500} is {approx}20% at l = 3000, thus clusters interiors (r < R {sub 500}) dominate the power spectrum amplitude at these angular scales.

  2. Neutron Stars in Supernova Remnants and Beyond

    Science.gov (United States)

    Gvaramadze, V. V.

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  3. Neutron Stars in Supernova Remnants and Beyond

    OpenAIRE

    Gvaramadze, V. V.

    2002-01-01

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  4. Modelling the interaction of thermonuclear supernova remnants with circumstellar structures: the case of Tycho's supernova remnant

    NARCIS (Netherlands)

    Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.; Kaastra, J.S.

    2013-01-01

    The well-established Type Ia remnant of Tycho's supernova (SN 1572) reveals discrepant ambient medium-density estimates based on either the measured dynamics or the X-ray emission properties. This discrepancy can potentially be solved by assuming that the supernova remnant (SNR) shock initially

  5. Supernova brightening from chameleon-photon mixing

    International Nuclear Information System (INIS)

    Burrage, C.

    2008-01-01

    Measurements of standard candles and measurements of standard rulers give an inconsistent picture of the history of the universe. This discrepancy can be explained if photon number is not conserved as computations of the luminosity distance must be modified. I show that photon number is not conserved when photons mix with chameleons in the presence of a magnetic field. The strong magnetic fields in a supernova mean that the probability of a photon converting into a chameleon in the interior of the supernova is high, this results in a large flux of chameleons at the surface of the supernova. Chameleons and photons also mix as a result of the intergalactic magnetic field. These two effects combined cause the image of the supernova to be brightened resulting in a model which fits both observations of standard candles and observations of standard rulers

  6. FERMI LARGE AREA TELESCOPE DETECTION OF THE YOUNG SUPERNOVA REMNANT TYCHO

    International Nuclear Information System (INIS)

    Giordano, F.; Naumann-Godo, M.; Ballet, J.; Bechtol, K.; Funk, S.; Lande, J.; Tanaka, T.; Uchiyama, Y.; Mazziotta, M. N.; Rainò, S.; Tibolla, O.

    2012-01-01

    After almost three years of data taking in sky-survey mode, the Fermi Large Area Telescope has detected γ-ray emission toward Tycho's supernova remnant (SNR). The Tycho SNR is among the youngest remnants in the Galaxy, originating from a Type Ia Supernova in AD 1572. The γ-ray integral flux from 400 MeV up to 100 GeV has been measured to be (3.5 ± 1.1 stat ± 0.7 syst )× 10 –9 cm –2 s –1 with a photon index of 2.3 ± 0.2 stat ± 0.1 syst . A simple model consistent with TeV, X-ray, and radio data is sufficient to explain the observed emission as originating from π 0 decays as a result of cosmic-ray acceleration and interaction with the ambient medium.

  7. The Hubble Space Telescope Medium Deep Survey Cluster Sample: Methodology and Data

    Science.gov (United States)

    Ostrander, E. J.; Nichol, R. C.; Ratnatunga, K. U.; Griffiths, R. E.

    1998-12-01

    We present a new, objectively selected, sample of galaxy overdensities detected in the Hubble Space Telescope Medium Deep Survey (MDS). These clusters/groups were found using an automated procedure that involved searching for statistically significant galaxy overdensities. The contrast of the clusters against the field galaxy population is increased when morphological data are used to search around bulge-dominated galaxies. In total, we present 92 overdensities above a probability threshold of 99.5%. We show, via extensive Monte Carlo simulations, that at least 60% of these overdensities are likely to be real clusters and groups and not random line-of-sight superpositions of galaxies. For each overdensity in the MDS cluster sample, we provide a richness and the average of the bulge-to-total ratio of galaxies within each system. This MDS cluster sample potentially contains some of the most distant clusters/groups ever detected, with about 25% of the overdensities having estimated redshifts z > ~0.9. We have made this sample publicly available to facilitate spectroscopic confirmation of these clusters and help more detailed studies of cluster and galaxy evolution. We also report the serendipitous discovery of a new cluster close on the sky to the rich optical cluster Cl l0016+16 at z = 0.546. This new overdensity, HST 001831+16208, may be coincident with both an X-ray source and a radio source. HST 001831+16208 is the third cluster/group discovered near to Cl 0016+16 and appears to strengthen the claims of Connolly et al. of superclustering at high redshift.

  8. Detecting supernova neutrinos in Daya Bay Neutrino Laboratory

    International Nuclear Information System (INIS)

    Huang Mingyang; Guo Xinheng; Yang Binglin

    2011-01-01

    While detecting supernova neutrinos in the Daya Bay neutrino laboratory, several supernova neutrino effects need to be considered, including the supernova shock effects, the neutrino collective effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, and the Earth matter effects. The phenomena of neutrino oscillation is affected by the above effects. Using some ratios of the event numbers of different supernova neutrinos, we propose some possible methods to identify the mass hierarchy and acquire information about the neutrino mixing angle θ13 and neutrino masses. (authors)

  9. A faint galaxy redshift survey behind massive clusters

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Brenda Louise [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  10. Observation of the Coma cluster of galaxies with ROSAT during the all-sky survey

    Science.gov (United States)

    Briel, U. G.; Henry, J. P.; Boehringer, H.

    1992-01-01

    The Coma cluster of galaxies was observed with the position sensitive proportional counter (PSPC) during the ROSAT all sky survey. We find evidence for substructure in this cluster. Diffuse X-ray emission is detected from the regions of the NGC 4839 and 4911 subgroups at 6 percent and 1 percent of the total cluster emission respectively. There may be emission associated with the NGC 4874 and 4889 subgroups as well. The NGC 4839 group appears to be in the process of merging with the cluster. These X-ray data show that at least some of the groups previously found in projection are in fact physical objects possessing potential wells deep enough to trap their own X-ray gas. Because of the unlimited field of view of the all sky survey and the low background of the PSPC, we were able to measure the azimuthally averaged surface brightness of Coma out to approximately 100 arcmin, twice as far as was previously possible. Given the validity of our mass models, these new X-ray data imply that within 5/h(50) Mpc the binding mass of the Coma cluster is 1.8 +/- 0.6 x 10 exp 15/h(50) solar mass, and the fraction of cluster mass contained in hot gas is 0.30 +/- 0.14h(50) exp -3/2. Furthermore, the binding mass is more centrally concentrated than is the X-ray gas.

  11. The Gaia-ESO Survey: open clusters in Gaia-DR1 . A way forward to stellar age calibration

    Science.gov (United States)

    Randich, S.; Tognelli, E.; Jackson, R.; Jeffries, R. D.; Degl'Innocenti, S.; Pancino, E.; Re Fiorentin, P.; Spagna, A.; Sacco, G.; Bragaglia, A.; Magrini, L.; Prada Moroni, P. G.; Alfaro, E.; Franciosini, E.; Morbidelli, L.; Roccatagliata, V.; Bouy, H.; Bravi, L.; Jiménez-Esteban, F. M.; Jordi, C.; Zari, E.; Tautvaišiene, G.; Drazdauskas, A.; Mikolaitis, S.; Gilmore, G.; Feltzing, S.; Vallenari, A.; Bensby, T.; Koposov, S.; Korn, A.; Lanzafame, A.; Smiljanic, R.; Bayo, A.; Carraro, G.; Costado, M. T.; Heiter, U.; Hourihane, A.; Jofré, P.; Lewis, J.; Monaco, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2018-05-01

    Context. Determination and calibration of the ages of stars, which heavily rely on stellar evolutionary models, are very challenging, while representing a crucial aspect in many astrophysical areas. Aims: We describe the methodologies that, taking advantage of Gaia-DR1 and the Gaia-ESO Survey data, enable the comparison of observed open star cluster sequences with stellar evolutionary models. The final, long-term goal is the exploitation of open clusters as age calibrators. Methods: We perform a homogeneous analysis of eight open clusters using the Gaia-DR1 TGAS catalogue for bright members and information from the Gaia-ESO Survey for fainter stars. Cluster membership probabilities for the Gaia-ESO Survey targets are derived based on several spectroscopic tracers. The Gaia-ESO Survey also provides the cluster chemical composition. We obtain cluster parallaxes using two methods. The first one relies on the astrometric selection of a sample of bona fide members, while the other one fits the parallax distribution of a larger sample of TGAS sources. Ages and reddening values are recovered through a Bayesian analysis using the 2MASS magnitudes and three sets of standard models. Lithium depletion boundary (LDB) ages are also determined using literature observations and the same models employed for the Bayesian analysis. Results: For all but one cluster, parallaxes derived by us agree with those presented in Gaia Collaboration (2017, A&A, 601, A19), while a discrepancy is found for NGC 2516; we provide evidence supporting our own determination. Inferred cluster ages are robust against models and are generally consistent with literature values. Conclusions: The systematic parallax errors inherent in the Gaia DR1 data presently limit the precision of our results. Nevertheless, we have been able to place these eight clusters onto the same age scale for the first time, with good agreement between isochronal and LDB ages where there is overlap. Our approach appears promising

  12. Supernova cooling in a dark matter smog

    International Nuclear Information System (INIS)

    Zhang, Yue

    2014-01-01

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter “smog” inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail

  13. Supernova cooling in a dark matter smog

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-11-27

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter “smog” inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail.

  14. Sejong Open Cluster Survey (SOS). 0. Target Selection and Data Analysis

    Science.gov (United States)

    Sung, Hwankyung; Lim, Beomdu; Bessell, Michael S.; Kim, Jinyoung S.; Hur, Hyeonoh; Chun, Moo-Young; Park, Byeong-Gon

    2013-06-01

    Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We initiate the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBVI system. To achieve our main goal, we pay much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - M_V relations, Sp - T_{eff} relations, Sp - color relations, and T_{eff} - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.

  15. KEGS Discovery of 28 Supernova Candidates in the K2 Campaign 17 Field with DECam

    Science.gov (United States)

    Narayan, G.; Rest, A.; Strampelli, G. M.; Zenteno, A.; James, D. J.; Smith, R. C.; Tucker, B. E.; Garnavich, P.; Margheim, S.; Kasen, D.; Olling, R.; Shaya, E.; Buron, F. Forster; Villar, V. A.

    2018-05-01

    The Kepler Extra-Galactic Survey (KEGS, see http://www.mso.anu.edu.au/kegs/ ) reports the discovery of 28 supernova candidates with the Dark Energy Camera (DECam, NOAO 2017B-0285) on the 4m Blanco Telescope at Cerro Tololo Inter-American Observatory (CTIO).

  16. Pulsar Wind Bubble Blowout from a Supernova

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, John M. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Chevalier, Roger A., E-mail: blondin@ncsu.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2017-08-20

    For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh–Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell is subject to a robust Rayleigh–Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 10{sup 51} erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.

  17. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Ott, C.D. [TAPIR, California Institute of Technology, Pasadena, California (United States); Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); O' Connor, E.P. [Canadian Institute for Theoretical Astrophysics, Toronto, Ontario (Canada); Gossan, S.; Abdikamalov, E.; Gamma, U.C.T. [TAPIR, California Institute of Technology, Pasadena, California (United States); Drasco, S. [Grinnell College, Grinnell, Iowa (United States); TAPIR, California Institute of Technology, Pasadena, California (United States)

    2013-02-15

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova.

  18. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    International Nuclear Information System (INIS)

    Ott, C.D.; O'Connor, E.P.; Gossan, S.; Abdikamalov, E.; Gamma, U.C.T.; Drasco, S.

    2013-01-01

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova

  19. THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bingxiao; Zheng, Wei [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Postman, Marc; Bradley, Larry [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Meneghetti, Massimo; Koekemoer, Anton [INAF, Osservatorio Astronomico di Bologna, and INFN, Sezione di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Seitz, Stella [Universitaets-Sternwarte, Fakultaet fuer Physik, Ludwig-Maximilians Universitaet Muenchen, Scheinerstr. 1, D-81679 Muenchen (Germany); Zitrin, Adi [California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Merten, Julian [University of Oxford, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Maoz, Dani [School of Physics and Astronomy, Tel Aviv University, Tel-Aviv 69978 (Israel); Frye, Brenda [Steward Observatory/Department of Astronomy, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Umetsu, Keiichi [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Vega, Jesus, E-mail: bxu6@jhu.edu [Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid (Spain)

    2016-02-01

    We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm's arc elongation accuracy, completeness, and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4 ± 1 arcs (with length ≥6″ and length-to-width ratio ≥7) per cluster for the X-ray-selected CLASH sample, 4 ± 1 arcs per cluster for the MOKA-simulated sample, and 3 ± 1 arcs per cluster for the MUSIC-simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshift z{sub s} = 1.9 with 33% of the detected arcs having z{sub s} > 3. We find that the arc abundance does not depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos (e.g., the c–M relation). Our results show that consistency between the observed and simulated distributions of lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to the selection criteria used in the observations.

  20. Physical processes in collapse driven supernova

    International Nuclear Information System (INIS)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs

  1. Physical processes in collapse driven supernova

    Energy Technology Data Exchange (ETDEWEB)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs.

  2. Supernova will continue to glow

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    On the night of 23/24 February 1987 a new supernova called SN 1987A, was discovered. Within a few hours of the announcement of the discovery, the South African Astronomical Observatory (SAAO) began a series of observations. In this article, the importance of supernovae-exploding stars, and what the SAAO has discovered so far from SN 1987A are discussed

  3. Neutrinos in supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs

  4. HUBBLE SPIES MOST DISTANT SUPERNOVA EVER SEEN

    Science.gov (United States)

    2002-01-01

    Using NASA's Hubble Space Telescope, astronomers pinpointed a blaze of light from the farthest supernova ever seen, a dying star that exploded 10 billion years ago. The detection and analysis of this supernova, called 1997ff, is greatly bolstering the case for the existence of a mysterious form of dark energy pervading the cosmos, making galaxies hurl ever faster away from each other. The supernova also offers the first glimpse of the universe slowing down soon after the Big Bang, before it began speeding up. This panel of images, taken with the Wide Field and Planetary Camera 2, shows the supernova's cosmic neighborhood; its home galaxy; and the dying star itself. Astronomers found this supernova in 1997 during a second look at the northern Hubble Deep Field [top panel], a tiny region of sky first explored by the Hubble telescope in 1995. The image shows the myriad of galaxies Hubble spied when it peered across more than 10 billion years of time and space. The white box marks the area where the supernova dwells. The photo at bottom left is a close-up view of that region. The white arrow points to the exploding star's home galaxy, a faint elliptical. Its redness is due to the billions of old stars residing there. The picture at bottom right shows the supernova itself, distinguished by the white dot in the center. Although this stellar explosion is among the brightest beacons in the universe, it could not be seen directly in the Hubble images. The stellar blast is so distant from Earth that its light is buried in the glow of its host galaxy. To find the supernova, astronomers compared two pictures of the 'deep field' taken two years apart. One image was of the original Hubble Deep Field; the other, the follow-up deep-field picture taken in 1997. Using special computer software, astronomers then measured the light from the galaxies in both images. Noting any changes in light output between the two pictures, the computer identified a blob of light in the 1997 picture

  5. Supernova remnants, pulsar wind nebulae and their interaction

    NARCIS (Netherlands)

    Swaluw, E. van der

    2001-01-01

    A supernova explosion marks the end of the evolution of a massive star. What remains of the exploded star is a high density neutron star or a black hole. The material which has been ejected by the supernova explosion will manifest itself as a supernova remnant: a hot bubble of gas expanding in the

  6. Supernova neutrinos

    International Nuclear Information System (INIS)

    John Beacom

    2003-01-01

    We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  7. Supernova cooling in a dark matter smog

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue, E-mail: yuezhang@theory.caltech.edu [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-11-01

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter ''smog'' inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail.

  8. The CHilean Automatic Supernova sEarch

    DEFF Research Database (Denmark)

    Hamuy, M.; Pignata, G.; Maza, J.

    2012-01-01

    The CHilean Automatic Supernova sEarch (CHASE) project began in 2007 with the goal to discover young, nearby southern supernovae in order to (1) better understand the physics of exploding stars and their progenitors, and (2) refine the methods to derive extragalactic distances. During the first...

  9. Nucleosynthesis in Core-Collapse Supernovae

    Science.gov (United States)

    Stevenson, Taylor Shannon; Viktoria Ohstrom, Eva; Harris, James Austin; Hix, William R.

    2018-01-01

    The nucleosynthesis which occurs in core-collapse supernovae (CCSN) is one of the most important sources of elements in the universe. Elements from Oxygen through Iron come predominantly from supernovae, and contributions of heavier elements are also possible through processes like the weak r-process, the gamma process and the light element primary process. The composition of the ejecta depends on the mechanism of the explosion, thus simulations of high physical fidelity are needed to explore what elements and isotopes CCSN can contribute to Galactic Chemical Evolution. We will analyze the nucleosynthesis results from self-consistent CCSN simulations performed with CHIMERA, a multi-dimensional neutrino radiation-hydrodynamics code. Much of our understanding of CCSN nucleosynthesis comes from parameterized models, but unlike CHIMERA these fail to address essential physics, including turbulent flow/instability and neutrino-matter interaction. We will present nucleosynthesis predictions for the explosion of a 9.6 solar mass first generation star, relying both on results of the 160 species nuclear reaction network used in CHIMERA within this model and on post-processing with a more extensive network. The lowest mass iron core-collapse supernovae, like this model, are distinct from their more massive brethren, with their explosion mechanism and nucleosynthesis being more like electron capture supernovae resulting from Oxygen-Neon white dwarves. We will highlight the differences between the nucleosynthesis in this model and more massive supernovae. The inline 160 species network is a feature unique to CHIMERA, making this the most sophisticated model to date for a star of this type. We will discuss the need and mechanism to extrapolate the post-processing to times post-simulation and analyze the uncertainties this introduces for supernova nucleosynthesis. We will also compare the results from the inline 160 species network to the post-processing results to study further

  10. Neutrino astronomy with supernova neutrinos

    Science.gov (United States)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  11. Theoretical models for supernovae

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1981-01-01

    The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the γ-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of 4 He and 14 N prior to their collapse on the pair instability

  12. The CHilean Automatic Supernova sEarch (CHASE)

    Science.gov (United States)

    Pignata, G.; Maza, J.; Hamuy, M.; Antezana, R.; Gonzales, L.

    2009-05-01

    One of the most important challenges in modern cosmology will be to figure out the origin of the dark energy, to measure its equation of state and the time rate with which it changes (described by parameters w and w'). The measurement of these parameters will require high levels of accuracy in the Supernova (SN) Type Ia distances and various sources of systematic error such as reddening corrections and possible evolution in the SNcharacteristics which could couple with redshift and mimic the cosmological signal of interest. Fortunately, these concerns can be fully addressed through the comprehensive study of SNe in the local (z < 0.05) universe. Although Type II plateau SNe are not as luminous as SNe Ia, they afford two important, independent routes to cosmological distances using the Expanding Photosphere Method and the Standardized Candle Method. To assess the performance of these techniques a nearby sample of Type II SNe is necessary. With the purpose of addressing these issues the Millennium Center for Supernova Studies (MCSS) is teaming up with the Carnegie Supernova Project (CSP) to carry out an optical and near infrared (photometry, spectroscopy and polarimetry) follow up of nearby SNe. Unfortunately, the majority of the SNe observed by the MCSS and the CSP are discovered by searches carried out from the northern hemisphere. This entails a number of observational difficulties, in particular, it reduces the number of SNe for which the follow-up starts at very early epochs. The aim of the CHASE project is to remove this search bias by discovering young Southern SNe that will be extensively observed by the MCSS and the CSP. In the first nine-months of operation, CHASE has discovered two SNe: SN007oc (CBET 1114) and SN007pl (CBET 1130), thus demonstrating the feasibility of the survey.

  13. COSMOLOGICAL CONSTRAINTS FROM THE SLOAN DIGITAL SKY SURVEY MaxBCG CLUSTER CATALOG

    International Nuclear Information System (INIS)

    Rozo, Eduardo; Weinberg, David H.; Wechsler, Risa H.; Rykoff, Eli S.; Annis, James T.; Frieman, Joshua A.; Becker, Matthew R.; Evrard, August E.; Hao Jiangang; McKay, Timothy A.; Hansen, Sarah M.; Johnston, David E.; Koester, Benjamin P.; Sheldon, Erin S.

    2010-01-01

    We use the abundance and weak-lensing mass measurements of the Sloan Digital Sky Survey maxBCG cluster catalog to simultaneously constrain cosmology and the richness-mass relation of the clusters. Assuming a flat ΛCDM cosmology, we find σ 8 (Ω m /0.25) 0.41 = 0.832 ± 0.033 after marginalization over all systematics. In common with previous studies, our error budget is dominated by systematic uncertainties, the primary two being the absolute mass scale of the weak-lensing masses of the maxBCG clusters, and uncertainty in the scatter of the richness-mass relation. Our constraints are fully consistent with the WMAP five-year data, and in a joint analysis we find σ 8 = 0.807 ± 0.020 and Ω m = 0.265 ± 0.016, an improvement of nearly a factor of 2 relative to WMAP5 alone. Our results are also in excellent agreement with and comparable in precision to the latest cosmological constraints from X-ray cluster abundances. The remarkable consistency among these results demonstrates that cluster abundance constraints are not only tight but also robust, and highlight the power of optically selected cluster samples to produce precision constraints on cosmological parameters.

  14. Colorful Investigations of Supernovae for WFIRST-AFTA

    Science.gov (United States)

    Foley, Ryan

    Type Ia supernovae (SNe Ia) are extremely good probes of dark energy, and WFIRST-AFTA is particularly well suited to make the best SN distance measurements possible. For conservative assumptions, the WFIRST SN survey is projected to have twice the impact as its other probes. Considering that Euclid will only have a minimal SN survey, but strong programs for other dark energy probes, the WFIRST SN survey is especially unique and important. With an initial simulation of the WFIRST-AFTA survey, we have determined that the largest statistical and systematic uncertainties are related to SN color. SN distances strongly depend on the precise measurement of SN colors since we must make a dust extinction correction that depends on the observed color. The details of how the correction is applied and the possibility that the correction evolves with redshift combine with potential calibration systematics to limit the current effectiveness of the SN component of WFIRST-AFTA. Here, we propose to support two graduate students to (1) investigate how intrinsic color variations will impact WFIRST-AFTA systematic uncertainties, (2) determine improved methods for reducing the systematic uncertainties related to SN color, and (3) simulate survey strategies incorporating our results to obtain the highest dark energy figure of merit (DE-FoM).

  15. Evaluating Tests of Virialization and Substructure Using Galaxy Clusters in the ORELSE Survey

    Science.gov (United States)

    Rumbaugh, N.; Lemaux, B. C.; Tomczak, A. R.; Shen, L.; Pelliccia, D.; Lubin, L. M.; Kocevski, D. D.; Wu, P.-F.; Gal, R. R.; Mei, S.; Fassnacht, C. D.; Squires, G. K.

    2018-05-01

    We evaluated the effectiveness of different indicators of cluster virialization using 12 large-scale structures in the ORELSE survey spanning from 0.7 distributions of galaxy populations, and centroiding differences. For comparison to a wide range of studies, we used two sets of tests: ones that did and did not use spectral energy distribution fitting to obtain rest-frame colours, stellar masses, and photometric redshifts of galaxies. Our results indicated that the difference between the stellar mass or light mean-weighted center and the X-ray center, as well as the projected offset of the most-massive/brightest cluster galaxy from other cluster centroids had the strongest correlations with scaling relation offsets, implying they are the most robust indicators of cluster virialization and can be used for this purpose when X-ray data is insufficiently deep for reliable LX and TX measurements.

  16. Cluster Headache Clinical Phenotypes: Tobacco Nonexposed (Never Smoker and No Parental Secondary Smoke Exposure as a Child) versus Tobacco-Exposed: Results from the United States Cluster Headache Survey.

    Science.gov (United States)

    Rozen, Todd D

    2018-05-01

    To present results from the United States Cluster Headache Survey comparing the clinical presentation of tobacco nonexposed and tobacco-exposed cluster headache patients. Cluster headache is uniquely tied to a personal history of tobacco usage/cigarette smoking and, if the individual cluster headache sufferer did not smoke, it has been shown that their parent(s) typically did and that individual had significant secondary smoke exposure as a child. The true nontobacco exposed (no personal or secondary exposure) cluster headache sufferer has never been fully studied. The United States Cluster Headache Survey consisted of 187 multiple choice questions related to cluster headache including: patient demographics, clinical headache characteristics, family history, triggers, smoking history (personal and secondary), and headache-related disability. The survey was placed on a website from October through December 2008. One thousand one hundred thirty-four individuals completed the survey. One hundred thirty-three subjects or 12% of the surveyed population had no personal smoking/tobacco use history and no secondary smoke exposure as an infant/child, thus a nontobacco exposed population. In the nonexposed population, there were 87 males and 46 females with a gender ratio of 1.9:1. Episodic cluster headache occurred in 80% of nonexposed subjects. One thousand and one survey responders or 88% were tobacco-exposed (729 males and 272 females) with a gender ratio of 2.7:1. Eighty-three percent had a personal smoking history, while only 17% just had parents who smoked with secondary smoke exposure. Eighty-five percent of smokers had double exposure with a personal smoking history and secondary exposure as a child. Nonexposed cluster headache subjects are significantly more likely to develop cluster headache at ages 40 years and younger, while the exposed sufferers are significantly more likely to develop cluster headache at 40 years of age and older. Nonexposed patients have a

  17. Supernovae, dark energy and the accelerating universe

    CERN Multimedia

    Perlmutter, Saul

    1999-01-01

    Based on an analysis of 42 high-redshift supernovae discovered by the supernovae cosmology project, we have found evidence for a positive cosmological constant, Lambda, and hence an accelerating universe. In particular, the data are strongly inconsistent with a Lambda=0 flat cosmology, the simplest inflationary universe model. The size of our supernova sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We will discuss results of these and other studies and the ongoing hunt for further loopholes to evade the apparent consequences of the measurements. We will present further work that begins to constrain the alternative physics theories of "dark energy" that have been proposed to explain these results. Finally, we propose a new concept for a definitive supernova measurement of the cosmological parameters.

  18. A Comparative Analysis of the Supernova Legacy Survey Sample With ΛCDM and the Rh=ct Universe

    Science.gov (United States)

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio; Maier, Robert S.

    2015-03-01

    The use of Type Ia supernovae (SNe Ia) has thus far produced the most reliable measurement of the expansion history of the universe, suggesting that ΛCDM offers the best explanation for the redshift-luminosity distribution observed in these events. However, analysis of other kinds of sources, such as cosmic chronometers, gamma-ray bursts, and high-z quasars, conflicts with this conclusion, indicating instead that the constant expansion rate implied by the Rh = ct universe is a better fit to the data. The central difficulty with the use of SNe Ia as standard candles is that one must optimize three or four nuisance parameters characterizing supernova (SN) luminosities simultaneously with the parameters of an expansion model. Hence, in comparing competing models, one must reduce the data independently for each. We carry out such a comparison of ΛCDM and the Rh = ct universe using the SN Legacy Survey sample of 252 SN events, and show that each model fits its individually reduced data very well. However, since Rh = ct has only one free parameter (the Hubble constant), it follows from a standard model selection technique that it is to be preferred over ΛCDM, the minimalist version of which has three (the Hubble constant, the scaled matter density, and either the spatial curvature constant or the dark energy equation-of-state parameter). We estimate using the Bayes Information Criterion that in a pairwise comparison, the likelihood of Rh = ct is ˜90%, compared with only ˜10% for a minimalist form of ΛCDM, in which dark energy is simply a cosmological constant. Compared to Rh = ct, versions of the standard model with more elaborate parametrizations of dark energy are judged to be even less likely. This work is dedicated to the memory of Prof. Tan Lu, who sadly passed away 2014 December 3. Among his many achievements, he is considered to be one of the founders of high-energy astrophysics, and a pioneer in modern cosmology, in China.

  19. An expanded HST/WFC3 survey of M83: Project overview and targeted supernova remnant search

    Energy Technology Data Exchange (ETDEWEB)

    Blair, William P.; Kuntz, K. D. [The Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Chandar, Rupali [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Dopita, Michael A. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Ghavamian, Parviz [Department of Physics, Astronomy, and Geosciences, Towson University, Towson, MD 21252 (United States); Hammer, Derek; Long, Knox S.; Whitmore, Bradley C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Soria, Roberto [Curtin Institute of Radio Astronomy, Curtin University, 1 Turner Avenue, Bentley WA 6102 (Australia); Frank Winkler, P., E-mail: wpb@pha.jhu.edu, E-mail: kuntz@pha.jhu.edu, E-mail: Rupali.Chandar@utoledo.edu, E-mail: Michael.Dopita@anu.edu.au, E-mail: pghavamian@towson.edu, E-mail: long@stsci.edu, E-mail: hammer@stsci.edu, E-mail: whitmore@stsci.edu, E-mail: roberto.soria@icrar.org, E-mail: winkler@middlebury.edu [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

    2014-06-10

    We present an optical/NIR imaging survey of the face-on spiral galaxy M83, using data from the Hubble Space Telescope Wide Field Camera 3 (WFC3). Seven fields are used to cover a large fraction of the inner disk, with observations in nine broadband and narrowband filters. In conjunction with a deep Chandra survey and other new radio and optical ground-based work, these data enable a broad range of science projects to be pursued. We provide an overview of the WFC3 data and processing and then delve into one topic, the population of young supernova remnants (SNRs). We used a search method targeted toward soft X-ray sources to identify 26 new SNRs. Many compact emission nebulae detected in [Fe II] 1.644 μm align with known remnants and this diagnostic has also been used to identify many new remnants, some of which are hard to find with optical images. We include 37 previously identified SNRs that the data reveal to be <0.''5 in angular size and thus are difficult to characterize from ground-based data. The emission line ratios seen in most of these objects are consistent with shocks in dense interstellar material rather than showing evidence of ejecta. We suggest that the overall high elemental abundances in combination with high interstellar medium pressures in M83 are responsible for this result. Future papers will expand on different aspects of the these data including a more comprehensive analysis of the overall SNR population.

  20. The Morphologies and Alignments of Gas, Mass, and the Central Galaxies of CLASH Clusters of Galaxies

    Science.gov (United States)

    Donahue, Megan; Ettori, Stefano; Rasia, Elena; Sayers, Jack; Zitrin, Adi; Meneghetti, Massimo; Voit, G. Mark; Golwala, Sunil; Czakon, Nicole; Yepes, Gustavo; Baldi, Alessandro; Koekemoer, Anton; Postman, Marc

    2016-03-01

    Morphology is often used to infer the state of relaxation of galaxy clusters. The regularity, symmetry, and degree to which a cluster is centrally concentrated inform quantitative measures of cluster morphology. The Cluster Lensing and Supernova survey with Hubble Space Telescope (CLASH) used weak and strong lensing to measure the distribution of matter within a sample of 25 clusters, 20 of which were deemed to be “relaxed” based on their X-ray morphology and alignment of the X-ray emission with the Brightest Cluster Galaxy. Toward a quantitative characterization of this important sample of clusters, we present uniformly estimated X-ray morphological statistics for all 25 CLASH clusters. We compare X-ray morphologies of CLASH clusters with those identically measured for a large sample of simulated clusters from the MUSIC-2 simulations, selected by mass. We confirm a threshold in X-ray surface brightness concentration of C ≳ 0.4 for cool-core clusters, where C is the ratio of X-ray emission inside 100 h70-1 kpc compared to inside 500 {h}70-1 kpc. We report and compare morphologies of these clusters inferred from Sunyaev-Zeldovich Effect (SZE) maps of the hot gas and in from projected mass maps based on strong and weak lensing. We find a strong agreement in alignments of the orientation of major axes for the lensing, X-ray, and SZE maps of nearly all of the CLASH clusters at radii of 500 kpc (approximately 1/2 R500 for these clusters). We also find a striking alignment of clusters shapes at the 500 kpc scale, as measured with X-ray, SZE, and lensing, with that of the near-infrared stellar light at 10 kpc scales for the 20 “relaxed” clusters. This strong alignment indicates a powerful coupling between the cluster- and galaxy-scale galaxy formation processes.

  1. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; California, University, Livermore, CA); Weaver, T.A.

    1981-01-01

    Recent progress in understanding the observed properties of type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the Ni-56 produced therein is reviewed. The expected nucleosynthesis and gamma-line spectra for this model of type I explosions and a model for type II explosions are presented. Finally, a qualitatively new approach to the problem of massive star death and type II supernovae based upon a combination of rotation and thermonuclear burning is discussed. While the theoretical results of existing models are predicated upon the assumption of a successful core bounce calculation and the neglect of such two-dimensional effects as rotation and magnetic fields the new model suggests an entirely different scenario in which a considerable portion of the energy carried by an equatorially ejected blob is deposited in the red giant envelope overlying the mantle of the star

  2. Asymmetry of the envelope of supernova 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Papaliolios, C.; Karovska, M.; Koechlin, L.; Nisenson, P.; Standley, C.; Heathcote, S.

    1989-04-13

    The supernova SN1987A in the Large Magellanic Cloud has been observed by high-angular-resolution speckle interferometry since 25 March (30 days after the explosion) with the 4-m telescope at the Cerro Tololo Interamerican Observatory. Data obtained on 25 March and 2 April 1987 revealed a second bright 'companion' source separated from the supernova by 60 milliarcseconds and less than three magnitudes fainter than the supernova. Measurements of the average diameter of the supernova envelope have been made from data recorded from March 1987 to April 1988. Here we present a more detailed analysis of these data, which shows that the expanding envelope is asymmetric. (author).

  3. Asymmetry of the envelope of supernova 1987A

    International Nuclear Information System (INIS)

    Papaliolios, C.; Karovska, M.; Koechlin, L.; Nisenson, P.; Standley, C.; Heathcote, S.

    1989-01-01

    The supernova SN1987A in the Large Magellanic Cloud has been observed by high-angular-resolution speckle interferometry since 25 March (30 days after the explosion) with the 4-m telescope at the Cerro Tololo Interamerican Observatory. Data obtained on 25 March and 2 April 1987 revealed a second bright 'companion' source separated from the supernova by 60 milliarcseconds and less than three magnitudes fainter than the supernova. Measurements of the average diameter of the supernova envelope have been made from data recorded from March 1987 to April 1988. Here we present a more detailed analysis of these data, which shows that the expanding envelope is asymmetric. (author)

  4. Nonstandard neutrino interactions in supernovae

    Science.gov (United States)

    Stapleford, Charles J.; Väänänen, Daavid J.; Kneller, James P.; McLaughlin, Gail C.; Shapiro, Brandon T.

    2016-11-01

    Nonstandard interactions (NSI) of neutrinos with matter can significantly alter neutrino flavor evolution in supernovae with the potential to impact explosion dynamics, nucleosynthesis, and the neutrinos signal. In this paper, we explore, both numerically and analytically, the landscape of neutrino flavor transformation effects in supernovae due to NSI and find a new, heretofore unseen transformation processes can occur. These new transformations can take place with NSI strengths well below current experimental limits. Within a broad swath of NSI parameter space, we observe symmetric and standard matter-neutrino resonances for supernovae neutrinos, a transformation effect previously only seen in compact object merger scenarios; in another region of the parameter space we find the NSI can induce neutrino collective effects in scenarios where none would appear with only the standard case of neutrino oscillation physics; and in a third region the NSI can lead to the disappearance of the high density Mikheyev-Smirnov-Wolfenstein resonance. Using a variety of analytical tools, we are able to describe quantitatively the numerical results allowing us to partition the NSI parameter according to the transformation processes observed. Our results indicate nonstandard interactions of supernova neutrinos provide a sensitive probe of beyond the Standard Model physics complementary to present and future terrestrial experiments.

  5. Neutrino radiation-hydrodynamics. General relativistic versus multidimensional supernova simulations

    International Nuclear Information System (INIS)

    Liebendoerfer, Matthias; Fischer, Tobias; Hempel, Matthias

    2010-01-01

    Recently, simulations of the collapse of massive stars showed that selected models of the QCD phase transitions to deconfined quarks during the early postbounce phase can trigger the supernova explosion that has been searched for over many years in spherically symmetric supernova models. Using sophisticated general relativistic Boltzmann neutrino transport, it was found that a characteristic neutrino signature is emitted that permits to falsify or identify this scenario in the next Galactic supernova event. On the other hand, more refined observations of past supernovae and progressing theoretical research in different supernova groups demonstrated that the effects of multidimensional fluid instabilities cannot be neglected in global models of the explosions of massive stars. We point to different efforts where neutrino transport and general relativistic effects are combined with multidimensional fluid instabilities in supernovae. With those, it will be possible to explore the gravitational wave emission as a potential second characteristic observable of the presence of quark matter in new-born neutron stars. (author)

  6. Neutrino flavor instabilities in a time-dependent supernova model

    Energy Technology Data Exchange (ETDEWEB)

    Abbar, Sajad; Duan, Huaiyu, E-mail: duan@unm.edu

    2015-12-17

    A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.

  7. The Carnegie Supernova Project I. Photometry data release of low-redshift stripped-envelope supernovae

    Science.gov (United States)

    Stritzinger, M. D.; Anderson, J. P.; Contreras, C.; Heinrich-Josties, E.; Morrell, N.; Phillips, M. M.; Anais, J.; Boldt, L.; Busta, L.; Burns, C. R.; Campillay, A.; Corco, C.; Castellon, S.; Folatelli, G.; González, C.; Holmbo, S.; Hsiao, E. Y.; Krzeminski, W.; Salgado, F.; Serón, J.; Torres-Robledo, S.; Freedman, W. L.; Hamuy, M.; Krisciunas, K.; Madore, B. F.; Persson, S. E.; Roth, M.; Suntzeff, N. B.; Taddia, F.; Li, W.; Filippenko, A. V.

    2018-02-01

    The first phase of the Carnegie Supernova Project (CSP-I) was a dedicated supernova follow-up program based at the Las Campanas Observatory that collected science data of young, low-redshift supernovae between 2004 and 2009. Presented in this paper is the CSP-I photometric data release of low-redshift stripped-envelope core-collapse supernovae. The data consist of optical (uBgVri) photometry of 34 objects, with a subset of 26 having near-infrared (YJH) photometry. Twenty objects have optical pre-maximum coverage with a subset of 12 beginning at least five days prior to the epoch of B-band maximum brightness. In the near-infrared, 17 objects have pre-maximum observations with a subset of 14 beginning at least five days prior to the epoch of J-band maximum brightness. Analysis of this photometric data release is presented in companion papers focusing on techniques to estimate host-galaxy extinction and the light-curve and progenitor star properties of the sample. The analysis of an accompanying visual-wavelength spectroscopy sample of 150 spectra will be the subject of a future paper. Based on observations collected at Las Campanas Observatory.Tables 2-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A134

  8. Spectroscopic classification of AT 2017byx as a Type Ia Supernova

    Science.gov (United States)

    Vinko, J.; Wheeler, J. C.; Sarneczky, K.; Szakats, R.; Szalai, T.; Szekely, P.; HETDEX Collaboration

    2017-05-01

    During the commissioning phase of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) survey we observed AT 2017byx (ATLAS17bla, PS17bve) at R.A.=14:17:48.36 Dec.=+52:41:54.6 with the Visible Integral-field Replicable Unit Spectrograph (VIRUS) at McDonald Observatory on 2017-04-28.2 UT. The spectrum (range between 3500 and 5500 Angstroms) indicates that AT 2017byx is a Type Ia supernova.

  9. Supernovae-generated high-velocity compact clouds

    Science.gov (United States)

    Yalinewich, A.; Beniamini, P.

    2018-05-01

    Context. A previous study claimed the discovery of an intermediate-mass black hole (IMBH). This hypothetical black hole was invoked in order to explain the high-velocity dispersion in one of several dense molecular clouds near the Galactic center. The same study considered the possibility that this cloud was due to a supernova explosion, but disqualified this scenario because no X-rays were detected. Aims: We here check whether a supernova explosion could have produced that cloud, and whether this explanation is more likely than an IMBH. More specifically, we wish to determine whether a supernova inside a dense molecular cloud would emit in the X-rays. Methods: We have approached this problem from two different directions. First, we performed an analytic calculation to determine the cooling rate by thermal bremsstrahlung and compared this time to the lifetime of the cloud. Second, we estimated the creation rate of these dense clouds in the central molecular zone (CMZ) region near the Galactic center, where they were observed. Based on this rate, we can place lower bounds on the total mass of IMBHs and clouds and compare this to the masses of the components of the CMZ. Results: We find that the cooling time of the supernova remnant inside a molecular cloud is shorter than its dynamical time. This means that the temperature in such a remnant would be much lower than that of a typical supernova remnant. At such a low temperature, the remnant is not expected to emit in the X-rays. We also find that to explain the rate at which such dense clouds are created requires fine-tuning the number of IMBHs. Conclusions: We find the supernova model to be a more likely explanation for the formation of high-velocity compact clouds than an IMBH.

  10. Acquiring information about neutrino parameters by detecting supernova neutrinos

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  11. Neutrino signal from pair-instability supernovae

    Science.gov (United States)

    Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.

    2017-11-01

    A very massive star with a carbon-oxygen core in the range of 64M ⊙Earth from two, one-dimensional pair-instability supernova simulations which bracket the mass range of stars which explode by this mechanism taking into account the full time and energy dependence of the neutrino emission and the flavor evolution through the outer layers of the star. We calculate the neutrino signals in five different detectors chosen to represent present or near future designs. We find the more massive progenitors explode as pair-instability supernova which can easily be detected in multiple different neutrino detectors at the "standard" supernova distance of 10 kpc producing several events in DUNE, JUNO, and Super-Kamiokande, while the lightest progenitors produce only a handful of events (if any) in the same detectors. The proposed Hyper-Kamiokande detector would detect neutrinos from a large pair-instability supernova as far as ˜50 kpc allowing it to reach the Megallanic Clouds and the several very high mass stars known to exist there.

  12. Radiative transfer in type I supernovae atmospheres

    International Nuclear Information System (INIS)

    Isern, J.; Lopez, R.; Simonneau, E.

    1987-01-01

    Type I Supernovae are thought to be the result of the thermonuclear explosion of a carbon oxygen white dwarf in a close binary system. As the only direct information concerning the physics and the triggering mechanism of supernova explosions comes from the spectrophotometry of the emitted radiation, it is worthwhile to put considerable effort on the understanding of the radiation transfer in the supernovae envelopes in order to set constraints on the theoretical models of such explosions. In this paper we analyze the role played by the layers curvature on the radiative transfer. (Author)

  13. PRE-DISCOVERY AND FOLLOW-UP OBSERVATIONS OF THE NEARBY SN 2009nr: IMPLICATIONS FOR PROMPT TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Khan, Rubab; Stanek, K. Z.; Beacom, J. F.; Szczygiel, D. M.; Mogren, K.; Eastman, J. D.; Martini, P.; Stoll, R.; Prieto, J. L.; Pojmanski, G.; Pilecki, B.

    2011-01-01

    We present photometric and spectroscopic observations of the Type Ia supernova SN 2009nr in UGC 8255 (z = 0.0122). Following the discovery announcement at what turned out to be 10 days after peak, we detected it at V ≅15.7 mag in data collected by the All-Sky Automated Survey (ASAS) North telescope 2 weeks prior to the peak, and then followed it up with telescopes ranging in aperture from 10 cm to 6.5 m. Using early photometric data available only from ASAS, we find that the supernova is similar to the overluminous Type Ia SN 1991T, with a peak at M V ≅ -19.6 mag, and a slow decline rate of Δm 15 (B) ≅ 0.95 mag. The early post-maximum spectra closely resemble those of SN 1991T, while the late-time spectra are more similar to those of normal Type Ia supernovae (SNe Ia). Interestingly, SN 2009nr has a projected distance of 13.0 kpc (∼4.3 disk scale lengths) from the nucleus of the small star-forming host galaxy UGC 8255. This indicates that the progenitor of SN 2009nr is not associated with a young stellar population, calling into question the conventional association of luminous SNe Ia with the 'prompt' component directly correlated with current star formation. The pre-discovery observation of SN 2009nr using ASAS demonstrates the science utility of high-cadence all sky surveys conducted using small telescopes for the discovery of nearby (d ∼< 50 Mpc) supernovae.

  14. Exploring Cosmology with Supernovae

    DEFF Research Database (Denmark)

    Li, Xue

    distribution of strong gravitational lensing is developed. For Type Ia supernova (SNe Ia), the rate is lower than core-collapse supernovae (CC SNe). The rate of SNe Ia declines beyond z 1:5. Based on these reasons, we investigate a potential candidate to measure cosmological distance: GRB......-SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are obtained and their properties are studied. We ascertain that the properties of GRB-SNe make them another candidate for standardizable candles in measuring the cosmic distance. Cosmological parameters M and are constrained with the help of GRB-SNe. The first...

  15. Type I supernova models

    International Nuclear Information System (INIS)

    Canal, Ramon; Labay, Javier; Isern, Jordi

    1987-01-01

    We briefly describe the characteristics of Type I supernova outbursts and we present the theoretical models so far advanced to explain them. We especially insist on models based on the thermonuclear explosion of a white dwarf in a close binary system, even regarding the recent division of Type I supernovae into the Ia and Ib subtypes. Together with models assuming explosive thermonuclear burning in a fluid interior, we consider in some detail those based on partially solid interiors. We finally discuss models that incorporate nonthermonuclear energy contributions, suggested in order to explain Type Ib outbursts. (Author)

  16. The HST/ACS Coma Cluster Survey - VII. Structure and assembly of massive galaxies in the centre of the Coma cluster

    NARCIS (Netherlands)

    Weinzirl, Tim; Jogee, Shardha; Neistein, Eyal; Khochfar, Sadegh; Kormendy, John; Marinova, Irina; Hoyos, Carlos; Balcells, Marc; den Brok, Mark; Hammer, Derek; Peletier, Reynier F.; Kleijn, Gijs Verdoes; Carter, David; Goudfrooij, Paul; Lucey, John R.; Mobasher, Bahram; Trentham, Neil; Erwin, Peter; Puzia, Thomas

    2014-01-01

    We constrain the assembly history of galaxies in the projected central 0.5 Mpc of the Coma cluster by performing structural decomposition on 69 massive (M⋆ ≥ 109 M⊙) galaxies using high-resolution F814W images from the Hubble Space Telescope (HST) Treasury Survey of Coma. Each galaxy is modelled

  17. Strongest gravitational waves from neutrino oscillations at supernova core bounce

    International Nuclear Information System (INIS)

    Mosquera Cuesta, H.J.; Fiuza, K.

    2004-01-01

    Resonant active-to-active (ν a →ν a ), as well as active-to-sterile (ν a →ν s ) neutrino (ν) oscillations can take place during the core bounce of a supernova collapse. Besides, over this phase, weak magnetism increases the antineutrino (anti ν) mean free path, and thus its luminosity. Because the oscillation feeds mass-energy into the target ν species, the large mass-squared difference between the species (ν a →ν s ) implies a huge amount of energy to be given off as gravitational waves (L GW ∝10 49 erg s -1 ), due to anisotropic but coherent ν flow over the oscillation length. This asymmetric ν-flux is driven by both the spin-magnetic and the universal spin-rotation coupling. The novel contribution of this paper stems from (1) the new computation of the anisotropy parameter α∝0.1-0.01, and (2) the use of the tight constraints from neutrino experiments as SNO and KamLAND, and the cosmic probe WMAP, to compute the gravitational-wave emission during neutrino oscillations in supernovae core collapse and bounce. We show that the mass of the sterile neutrino ν s that can be resonantly produced during the flavor conversions makes it a good candidate for dark matter as suggested by Fuller et al., Phys. Rev. D 68, 103002 (2003). The new spacetime strain thus estimated is still several orders of magnitude larger than those from ν diffusion (convection and cooling) or quadrupole moments of neutron star matter. This new feature turns these bursts into the more promising supernova gravitational-wave signals that may be detected by observatories as LIGO, VIRGO, etc., for distances far out to the VIRGO cluster of galaxies. (orig.)

  18. Characterizing Dark Energy Through Supernovae

    Science.gov (United States)

    Davis, Tamara M.; Parkinson, David

    Type Ia supernovae are a powerful cosmological probe that gave the first strong evidence that the expansion of the universe is accelerating. Here we provide an overview of how supernovae can go further to reveal information about what is causing the acceleration, be it dark energy or some modification to our laws of gravity. We first review the methods of statistical inference that are commonly used, making a point of separating parameter estimation from model selection. We then summarize the many different approaches used to explain or test the acceleration, including parametric models (like the standard model, ΛCDM), nonparametric models, dark fluid models such as quintessence, and extensions to standard gravity. Finally, we also show how supernova data can be used beyond the Hubble diagram, to give information on gravitational lensing and peculiar velocities that can be used to distinguish between models that predict the same expansion history.

  19. Radioactive Iron Rain: Evidence of a Nearby Supernova Explosion

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    A very close supernova explosion could have caused a mass extinction of life in Earth. In 1996, Brian Fields, the late Dave Schramm and the speaker proposed looking for unstable isotopes such as Iron 60 that could have been deposited by a recent nearby supernova explosion. A group from the Technical University of Munich has discovered Iron 60 in deep-ocean sediments and ferromanganese crusts due to one or more supernovae that exploded O(100) parsecs away about 2.5 million years ago. These results have recently been confirmed by a group from the Australian National University, and the Munich group has also discovered supernova Iron 60 in lunar rock samples. This talk will discuss the interpretation of these results in terms of supernova models, and the possible implications for life on Earth.

  20. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    International Nuclear Information System (INIS)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F.; Stritzinger, Maximilian; Contreras, Carlos; Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco; Folatelli, Gaston; Suntzeff, Nicholas B.

    2014-01-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R V , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R V , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R V . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R V or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  1. Neutrino flavor instabilities in a time-dependent supernova model

    Directory of Open Access Journals (Sweden)

    Sajad Abbar

    2015-12-01

    Full Text Available A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial spherical symmetry about the center of the supernova and the (directional axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.

  2. Supernova neutrinos and explosive nucleosynthesis

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  3. Supernova neutrinos and explosive nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  4. Supernova neutrino detection in LZ

    Science.gov (United States)

    Khaitan, D.

    2018-02-01

    In the first 10 seconds of a core-collapse supernova, almost all of its progenitor's gravitational potential, O(1053 ergs), is carried away in the form of neutrinos. These neutrinos, with O(10 MeV) kinetic energy, can interact via coherent elastic neutrino-nucleus scattering (CEνNS) depositing O(1 keV) in detectors. In this work we describe the performances of low-background dark matter detectors, such as LUX-ZEPLIN (LZ), optimized for detecting low-energy depositions, in detecting these neutrino interactions. For instance, a 27 Msolar supernova at 10 kpc is expected to produce ~350 neutrino interactions in the 7-tonne liquid xenon active volume of LZ. Based on the LS220 EoS neutrino flux model for a SN, the Noble Element Simulation Technique (NEST), and predicted CEνNS cross-sections for xenon, to study energy deposition and detection of SN neutrinos in LZ. We simulate the response of the LZ data acquisition system (DAQ) and demonstrate its capability and limitations in handling this interaction rate. We present an overview of the LZ detector, focusing on the benefits of liquid xenon for supernova neutrino detection. We discuss energy deposition and detector response simulations and their results. We present an analysis technique to reconstruct the total number of neutrinos and the time of the supernova core bounce.

  5. Wide-field surveys from the SNAP mission

    International Nuclear Information System (INIS)

    2002-01-01

    The Supernova/Acceleration Probe (SNAP) is a proposed space-borne observatory that will survey the sky with a wide-field optical/NIR imager. The images produced by SNAP will have an unprecedented combination of depth, solid-angle, angular resolution, and temporal sampling. Two 7.5 square-degree fields will be observed every four days over 16 months to a magnitude depth of AB = 27.7 in each of nine filters. Co-adding images over all epochs will give an AB = 30.3 per filter. A 300 square-degree field will be surveyed with no repeat visits to AB = 28 per filter. The nine filters span 3500-17000 (angstrom). Although the survey strategy is tailored for supernova and weak gravitational lensing observations, the resulting data supports a broad range of auxiliary science programs

  6. Weak Interaction processes in core-collapse supernova

    International Nuclear Information System (INIS)

    Martinez-Pinedo, Gabriel

    2008-01-01

    In this manuscript we review the role that weak interaction processes play in supernova. This includes electron captures and inelastic neutrino-nucleus scattering (INNS). Electron captures during the collapse occur mainly in heavy nuclei, however the proton contribution is responsible for the convergence of different models to a 'norm' stellar trajectory. Neutrino-nucleus cross sections at supernova neutrino energies can be determined from precise data on the magnetic dipole strength. The results agree well with large-scale shell-model calculations. When incorporated in core-collapse simulations INNS increases the neutrino opacities noticeably and strongly reduces the high-energy part of the supernova spectrum

  7. Recent Hubble Space Telescope Imaging of the Light Echoes of Supernova 2014J in M 82 and Supernova 2016adj in Centaurus A

    Science.gov (United States)

    Lawrence, Stephen S.; Hyder, Ali; Sugerman, Ben; Crotts, Arlin P. S.

    2017-06-01

    We report on our ongoing use of Hubble Space Telescope (HST) imaging to monitor the scattered light echoes of recent heavily-extincted supernovae in two nearby, albeit unusual, galaxies.Supernova 2014J was a highly-reddened Type Ia supernova that erupted in the nearby irregular star-forming galaxy M 82 in 2014 January. It was discovered to have light echo by Crotts (2016) in early epoch HST imaging and has been further described by Yang, et al. (2017) based on HST imaging through late 2014. Our ongoing monitoring in the WFC3 F438W, F555W, and F814W filters shows that, consistent with Crotts (2106) and Yang, et al. (2017), throughout 2015 and 2016 the main light echo arc expanded through a dust complex located approximately 230 pc in the foreground of the supernova. This main light echo has, however, faded dramatically in our most recent HST imaging from 2017 March. The supernova itself has also faded to undetectable levels by 2017 March.Supernova 2016adj is a highly-reddened core-collapse supernova that erupted inside the unusual dust lane of the nearby giant elliptical galaxy Centaurus A (NGC 5128) in 2016 February. It was discovered to have a light echo by Sugerman & Lawrence (2016) in early epoch HST imaging in 2016 April. Our ongoing monitoring in the WFC3 F438W, F547M, and F814W filters shows a slightly elliptical series of light echo arc segments hosted by a tilted dust complex ranging approximately 150--225 pc in the foreground of the supernova. The supernova itself has also faded to undetectable levels by 2017 April.References: Crotts, A. P. S., ApJL, 804, L37 (2016); Yang et al., ApJ, 834, 60 (2017); Sugerman, B. and Lawrence, S., ATel #8890 (2016).

  8. Revised Distances to 21 Supernova Remnants

    Science.gov (United States)

    Ranasinghe, S.; Leahy, D. A.

    2018-05-01

    We carry out a comprehensive study of H I 21 cm line observations and 13CO line observations of 21 supernova remnants (SNRs). The aim of the study is to search for H I absorption features to obtain kinematic distances in a consistent manner. The 21 SNRs are in the region of sky covered by the Very Large Array Galactic Plane Survey (H I 21 cm observations) and Galactic Ring Survey (13CO line observations). We obtain revised distances for 10 SNRs based on new evidence in the H I and 13CO observations. We revise distances for the other 11 SNRs based on an updated rotation curve and new error analysis. The mean change in distance for the 21 SNRs is ≃25%, i.e., a change of 1.5 kpc compared to a mean distance for the sample of 6.4 kpc. This has a significant impact on interpretation of the physical state of these SNRs. For example, using a Sedov model, age and explosion energy scale as the square of distance, and inferred ISM density scales as distance.

  9. Isotropy of low redshift type Ia supernovae: A Bayesian analysis

    Science.gov (United States)

    Andrade, U.; Bengaly, C. A. P.; Alcaniz, J. S.; Santos, B.

    2018-04-01

    The standard cosmology strongly relies upon the cosmological principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations from the standard cosmological paradigm. In this paper, we use the latest type Ia supernova compilations, namely JLA and Union2.1 to test the cosmological isotropy at low redshift ranges (z <0.1 ). This is performed through a Bayesian selection analysis, in which we compare the standard, isotropic model, with another one including a dipole correction due to peculiar velocities. The full covariance matrix of SN distance uncertainties are taken into account. We find that the JLA sample favors the standard model, whilst the Union2.1 results are inconclusive, yet the constraints from both compilations are in agreement with previous analyses. We conclude that there is no evidence for a dipole anisotropy from nearby supernova compilations, albeit this test should be greatly improved with the much-improved data sets from upcoming cosmological surveys.

  10. In search of empty space: the Cluster mission

    International Nuclear Information System (INIS)

    Johnstone, Alan

    1990-01-01

    Using four spacecraft, orbiting the earth, in the formation of a regular tetrahedron, European scientists will study the auroras around the planet caused by variations in the Sun's magnetic field. These cluster satellites will also study supernovae from their interplanetary position and the plasma of space surrounding us on the Earth. A growing understanding of the plasma dynamics is hoped to assist in the study of nuclear fusion. (UK)

  11. STRESS Counting Supernovae

    Science.gov (United States)

    Botticella, M. T.; Cappellaro, E.; Riello, M.; Greggio, L.; Benetti, S.; Patat, F.; Turatto, M.; Altavilla, G.; Pastorello, A.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.

    2008-12-01

    The rate of occurrence of supernovae (SNe) is linked to some of the basic ingredients of galaxy evolution, such as the star formation rate, the chemical enrichment and feedback processes. SN rates at intermediate redshift and their dependence on specific galaxy properties have been investigated in the Southern inTermediate Redshift ESO Supernova Search (STRESS). The rate of core collapse SNe (CC SNe) at a redshift of around 0.25 is found to be a factor two higher than the local value, whereas the SNe Ia rate remains almost constant. SN rates in red and blue galaxies were also measured and it was found that the SNe Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe.

  12. LOW-RESOLUTION SPECTROSCOPY FOR THE GLOBULAR CLUSTERS WITH SIGNS OF SUPERNOVA ENRICHMENT: M22, NGC 1851, AND NGC 288

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dongwook; Han, Sang-Il; Lee, Young-Wook; Roh, Dong-Goo [Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of); Sohn, Young-Jong [Department of Astronomy, Yonsei University, Seoul 120-749 (Korea, Republic of); Chun, Sang-Hyun [Yonsei University Observatory, Seoul 120-749 (Korea, Republic of); Lee, Jae-Woo [Department of Astronomy and Space Science, Sejong University, Seoul 143-747 (Korea, Republic of); Johnson, Christian I., E-mail: ywlee2@yonsei.ac.kr [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States)

    2015-01-01

    There is increasing evidence for the presence of multiple red giant branches (RGBs) in the color-magnitude diagrams of massive globular clusters (GCs). In order to investigate the origin of this split on the RGB, we have performed new narrow-band Ca photometry and low-resolution spectroscopy for M22, NGC 1851, and NGC 288. We find significant differences (more than 4σ) in calcium abundance from the spectroscopic HK' index for M22 and NGC 1851. We also find more than 8σ differences in CN-band strength between the Ca-strong and Ca-weak subpopulations for these GCs. For NGC 288, however, a large difference is detected only in the CN strength. The calcium abundances of RGB stars in this GC are identical to within the errors. This is consistent with the conclusion from our new Ca photometry where the RGB splits are confirmed in M22 and NGC 1851, but not in NGC 288. We also find interesting differences in the CN-CH correlations among these GCs. While CN and CH are anti-correlated in NGC 288, they show a positive correlation in M22. NGC 1851, however, shows no difference in CH between the two groups of stars with different CN strengths. We suggest that all of these systematic differences would be best explained by how strongly Type II supernovae enrichment has contributed to the chemical evolution of these GCs.

  13. THE HST/ACS COMA CLUSTER SURVEY. II. DATA DESCRIPTION AND SOURCE CATALOGS

    International Nuclear Information System (INIS)

    Hammer, Derek; Verdoes Kleijn, Gijs; Den Brok, Mark; Peletier, Reynier F.; Hoyos, Carlos; Balcells, Marc; Aguerri, Alfonso L.; Ferguson, Henry C.; Goudfrooij, Paul; Carter, David; Guzman, Rafael; Smith, Russell J.; Lucey, John R.; Graham, Alister W.; Trentham, Neil; Peng, Eric; Puzia, Thomas H.; Jogee, Shardha; Batcheldor, Dan; Bridges, Terry J.

    2010-01-01

    The Coma cluster, Abell 1656, was the target of an HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially completed survey still covers ∼50% of the core high-density region in Coma. Observations were performed for 25 fields that extend over a wide range of cluster-centric radii (∼1.75 Mpc or 1 0 ) with a total coverage area of 274 arcmin 2 . The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the southwest region of the cluster. In this paper, we present reprocessed images and SEXTRACTOR source catalogs for our survey fields, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for ∼73,000 unique objects; approximately one-half of our detections are brighter than the 10σ point-source detection limit at F814W = 25.8 mag (AB). The slight majority of objects (60%) are unresolved or only marginally resolved by ACS. We estimate that Coma members are 5%-10% of all source detections, which consist of a large population of unresolved compact sources (primarily globular clusters but also ultra-compact dwarf galaxies) and a wide variety of extended galaxies from a cD galaxy to dwarf low surface brightness galaxies. The red sequence of Coma member galaxies has a color-magnitude relation with a constant slope and dispersion over 9 mag (-21 F814W < -13). The initial data release for the HST-ACS Coma Treasury program was made available to the public in 2008 August. The images and catalogs described

  14. Geological isotope anomalies as signatures of nearby supernovae

    CERN Document Server

    Ellis, Jonathan Richard; Schramm, David N; Ellis, John; Fields, Brian D; Schramm, David N

    1996-01-01

    Nearby supernova explosions may cause geological isotope anomalies via the direct deposition of debris or by cosmic-ray spallation in the earth's atmosphere. We estimate the mass of material deposited terrestrially by these two mechanisms, showing the dependence on the supernova distance. A number of radioactive isotopes are identified as possible diagnostic tools, such as Be-10, Al-26, Cl-36, Mn-53, Fe-60, and Ni-59, as well as the longer-lived I-129, Sm-146, and Pu-244. We discuss whether the 35 and 60 kyr-old Be-10 anomalies observed in the Vostok antarctic ice cores could be due to supernova explosions. Combining our estimates for matter deposition with results of recent nucleosynthesis yields, we calculate the expected signal from nearby supernovae using ice cores back to \\sim 300 kyr ago, and we discuss using deep ocean sediments back to several hundred Myr. In particular, we examine the prospects for identifying isotope anomalies due to the Geminga supernova explosion, and signatures of the possibility...

  15. GRAVITATIONAL FIELD SHIELDING AND SUPERNOVA EXPLOSIONS

    International Nuclear Information System (INIS)

    Zhang, T. X.

    2010-01-01

    A new mechanism for supernova explosions called gravitational field shielding is proposed, in accord with a five-dimensional fully covariant Kaluza-Klein theory with a scalar field that unifies the four-dimensional Einsteinian general relativity and Maxwellian electromagnetic theory. It is shown that a dense compact collapsing core of a star will suddenly turn off or completely shield its gravitational field when the core collapses to a critical density, which is inversely proportional to the square of mass of the core. As the core suddenly turns off its gravity, the extremely large pressure immediately stops the core collapse and pushes the mantle material of supernova moving outward. The work done by the pressure in the expansion can be the order of energy released in a supernova explosion. The gravity will resume and stop the core from a further expansion when the core density becomes less than the critical density. Therefore, the gravitational field shielding leads a supernova to impulsively explode and form a compact object such as a neutron star as a remnant. It works such that a compressed spring will shoot the oscillator out when the compressed force is suddenly removed.

  16. Particle acceleration and nonthermal radiation in supernova remnants

    International Nuclear Information System (INIS)

    Zirakashvili, Vladimir

    2013-01-01

    Cosmic ray acceleration and magnetic amplification in shell-type supernova remnants is shortly reviewed. The results on the modeling of broadband electromagnetic emission from supernova remnants are presented and compared with observations.

  17. Discovery of a transient U-band dropout in a lyman break survey: A tidally disrupted star at z=3.3?

    International Nuclear Information System (INIS)

    Stern, Daniel; van Dokkum, P.G.; Nugent, Peter; Sand, D.J.; Ellis, R.S.; Sullivan, Mark; Bloom, J.S.; Frail, D.A.; Kneib, J.-P.; Koopmans, L.V.E.; Treu, Tommaso

    2004-01-01

    We report the discovery of a transient source in the central regions of galaxy cluster A267. The object, which we call ''PALS-1'', was found in a survey aimed at identifying highly magnified Lyman break galaxies in the fields of intervening rich clusters. At discovery, the source had Un>24:7 (2 ; AB), g 1/4 21:96 0:12, and very blue g r and ri colors; i.e., PALS-1 was a ''U-band dropout'', characteristic of star-forming galaxies and quasars at z 3. However, 3 months later the source had faded by more than 3 mag. Further observations showed a continued decline in luminosity, to R>26:4 at 7 months after discovery. Although the apparent brightness suggests a supernova at roughly the cluster redshift, we show that the photometry and light curve argue against any known type of supernova at any redshift. The spectral energy distribution and location near the center of a galaxy cluster are consistent with the hypothesis that PALS-1 is a gravitationally lensed transient at z 3:3. If this interpretation is correct, the source is magnified by a factor of 4 7, and two counter images are predicted. Our lens model predicts that there are time delays between the three images of 110 yr and that we have witnessed the final occurrence of the transient. The intense luminosity (MAB 23:5 after correcting for lensing) and blue UV continuum (implying T k50; 000 K) argue that the source may have been a flare resulting from the tidal disruption of a star by a 106108 M black hole. Regardless of its physical nature, PALS-1 highlights the importance of monitoring regions of high magnification in galaxy clusters for distant time-varying phenomena

  18. GALACTIC AND EXTRAGALACTIC SUPERNOVA REMNANTS AS SITES OF PARTICLE ACCELERATION

    Directory of Open Access Journals (Sweden)

    Manami Sasaki

    2013-12-01

    Full Text Available Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.

  19. Resonant Spin-Flavor Conversion of Supernova Neutrinos

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, K.

    2003-07-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. With a new diagram we propose, it is found that four conversions occur in supernovae, two are induced by the RSF effect and two by the pure Mikheyev-Smirnov-Wolfenstein (MSW) effect. The realistic numerical calculation of neutrino conversions indicates that the RSF-induced νe ↔ ντ tran¯ -12 9 -1 sition occurs efficiently, when µν > 10 µB (B0 /5 × 10 G) , where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of µν B0 at the super-Kamiokande detector using the calculated conversion probabilities, and find that the spectral deformation might have possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  20. Performance and Cost Analysis of the Supernova Factory on the Amazon AWS Cloud

    Directory of Open Access Journals (Sweden)

    Keith R. Jackson

    2011-01-01

    Full Text Available Today, our picture of the Universe radically differs from that of just over a decade ago. We now know that the Universe is not only expanding as Hubble discovered in 1929, but that the rate of expansion is accelerating, propelled by mysterious new physics dubbed “Dark Energy”. This revolutionary discovery was made by comparing the brightness of nearby Type Ia supernovae (which exploded in the past billion years to that of much more distant ones (from up to seven billion years ago. The reliability of this comparison hinges upon a very detailed understanding of the physics of the nearby events. To further this understanding, the Nearby Supernova Factory (SNfactory relies upon a complex pipeline of serial processes that execute various image processing algorithms in parallel on ~10 TBs of data. This pipeline traditionally runs on a local cluster. Cloud computing [Above the clouds: a Berkeley view of cloud computing, Technical Report UCB/EECS-2009-28, University of California, 2009] offers many features that make it an attractive alternative. The ability to completely control the software environment in a cloud is appealing when dealing with a community developed science pipeline with many unique library and platform requirements. In this context we study the feasibility of porting the SNfactory pipeline to the Amazon Web Services environment. Specifically we: describe the tool set we developed to manage a virtual cluster on Amazon EC2, explore the various design options available for application data placement, and offer detailed performance results and lessons learned from each of the above design options.

  1. The ASAS-SN Catalog of Variable Stars I: The Serendipitous Survey

    Science.gov (United States)

    Jayasinghe, T.; Kochanek, C. S.; Stanek, K. Z.; Shappee, B. J.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Pawlak, M.; Shields, J. V.; Pojmanski, G.; Otero, S.; Britt, C. A.; Will, D.

    2018-04-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to routinely monitor the whole sky with a cadence of ˜2 - 3 days down to V≲ 17 mag. ASAS-SN has monitored the whole sky since 2014, collecting ˜100 - 500 epochs of observations per field. The V-band light curves for candidate variables identified during the search for supernovae are classified using a random forest classifier and visually verified. We present a catalog of 66,533 bright, new variable stars discovered during our search for supernovae, including 27,753 periodic variables and 38,780 irregular variables. V-band light curves for the ASAS-SN variables are available through the ASAS-SN variable stars database (https://asas-sn.osu.edu/variables). The database will begin to include the light curves of known variable stars in the near future along with the results for a systematic, all-sky variability survey.

  2. Nucleosynthesis and hydrodynamic instabilities in core collapse supernovae

    International Nuclear Information System (INIS)

    Kifonidis, K.

    2001-01-01

    Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed. Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed

  3. Supernova 1987A: 18 Months later

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1989-01-01

    An overview of the significance for physics of the closest visual supernova in almost 400 years is presented. The supernova occurred in the Large Magellanic Cloud (LMC), /approximately/50 kpc away. The supernova star was a massive star of /approximately/15--20M. Observations now show that it was once a red-giant but lost its outer envelope. The lower than standard luminosity and higher observed velocities are a natural consequence of the pre-supernova star being a blue rather than a red [supergiant]. Of particular importance to physicists is the detection of neutrinos from the event by detectors in the United States and Japan. Not only did this establish extra-solar system neutrino astronomy, but it also constrained the properties of neutrino. It is shown that the well established Kamioka-IMB neutrino burst experimentally implies an event with about 2--4 /times/ 10/sup 53/ergs emitted in neutrinos and a temperature, T/sub /bar /nu/e//, of between 4 and 4.5 MeV. This event is in excellent agreement with what one would expect from the gravitational core collapse of a massive star. A neutrino detection, such as that reported earlier in Mt. Blanc, would require more than the rest mass energy of a neutron star to be converted to neutrinos, if it were to have its origin in the LMC. Thus it is probably unrelated to the supernova. The anticipated frequency of collapse events in our Galaxy, will also be discussed with a rate as high as 1/10 year shown to be not unreasonable. 61 refs

  4. Progenitor's Signatures in Type Ia Supernova Remnants

    NARCIS (Netherlands)

    Chiotellis, A.; Kosenko, D.; Schure, K.M.; Vink, J.

    2013-01-01

    The remnants of Type Ia supernovae (SNe Ia) can provide important clues about their progenitor histories. We discuss two well-observed supernova remnants (SNRs) that are believed to have resulted from SNe Ia, and use various tools to shed light on the possible progenitor histories. We find that

  5. Infrared emission from supernova condensates

    International Nuclear Information System (INIS)

    Dwek, E.; Werner, M.W.

    1981-01-01

    We examine the possibility of detecting grains formed in supernovae by observations of their emission in the infrared. The basic processes determining the temperature and infrared radiation of grains in supernovae environments are analyzed, and the results are used to estimate the infrared emission from the highly metal enriched ''fast moving knots'' in Cas A. The predicted fluxes lie within the reach of current ground-based facilities at 10 μm, and their emission should be detectable throughout the infrared band with cryogenic space telescopes

  6. THE ACS FORNAX CLUSTER SURVEY. X. COLOR GRADIENTS OF GLOBULAR CLUSTER SYSTEMS IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Liu Chengze; Peng, Eric W.; Jordan, Andres; Ferrarese, Laura; Blakeslee, John P.; Cote, Patrick; Mei, Simona

    2011-01-01

    We use the largest homogeneous sample of globular clusters (GCs), drawn from the ACS Virgo Cluster Survey (ACSVCS) and ACS Fornax Cluster Survey (ACSFCS), to investigate the color gradients of GC systems in 76 early-type galaxies. We find that most GC systems possess an obvious negative gradient in (g-z) color with radius (bluer outward), which is consistent with previous work. For GC systems displaying color bimodality, both metal-rich and metal-poor GC subpopulations present shallower but significant color gradients on average, and the mean color gradients of these two subpopulations are of roughly equal strength. The field of view of ACS mainly restricts us to measuring the inner gradients of the studied GC systems. These gradients, however, can introduce an aperture bias when measuring the mean colors of GC subpopulations from relatively narrow central pointings. Inferred corrections to previous work imply a reduced significance for the relation between the mean color of metal-poor GCs and their host galaxy luminosity. The GC color gradients also show a dependence with host galaxy mass where the gradients are weakest at the ends of the mass spectrum-in massive galaxies and dwarf galaxies-and strongest in galaxies of intermediate mass, around a stellar mass of M * ∼10 10 M sun . We also measure color gradients for field stars in the host galaxies. We find that GC color gradients are systematically steeper than field star color gradients, but the shape of the gradient-mass relation is the same for both. If gradients are caused by rapid dissipational collapse and weakened by merging, these color gradients support a picture where the inner GC systems of most intermediate-mass and massive galaxies formed early and rapidly with the most massive galaxies having experienced greater merging. The lack of strong gradients in the GC systems of dwarfs, which probably have not experienced many recent major mergers, suggests that low-mass halos were inefficient at retaining

  7. The ν process in the innermost supernova ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Sieverding, Andre [Institut für Kernphysik, Technische Universität Darmstadt, Germany; Martínez-Pinedo, Gabriel [Institut für Kernphysik, Technische Universität Darmstadt, Germany; Langanke, Karlheinz [Gesellschaft fur Schwerionenforschung (GSI), Germany; Harris, James Austin [ORNL; Hix, William Raphael [ORNL

    2017-12-01

    The neutrino-induced nucleosynthesis (ν process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  8. Energy conditions bounds and supernovae data

    International Nuclear Information System (INIS)

    Lima, M.P.; Vitenti, S.D.P.; Reboucas, M.J.

    2008-01-01

    The energy conditions play an important role in the description of some important properties of the Universe, including the current accelerating expansion phase and the possible recent phase of super-acceleration. In a recent work we have provided a detailed study of the energy conditions for the recent past by deriving bounds from energy conditions and by making the confrontation of the bounds with supernovae data. Here, we extend and update these results in two different ways. First, by carrying out a new statistical analysis for q(z) estimates needed for the confrontation between the bounds and supernovae data. Second, by providing a new picture of the energy conditions fulfillment and violation in the light of the recently compiled Union set of 307 type Ia supernovae and by using two different statistical approaches

  9. Probing Exotic Physics With Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Chris; Hooper, Dan

    2010-09-01

    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  10. The interaction of Type Ia supernovae with their circumstellar medium

    NARCIS (Netherlands)

    Chiotellis, A.

    2013-01-01

    This thesis is focused on the study of a specific class of supernovae, named Type Ia (or thermonuclear) supernovae. In particular, we attempt to gain information about their origin through the study of the interaction of these supernovae with circumstellar structures that have been shaped by their

  11. X- or γ-rays from supernovae in glacial ice

    International Nuclear Information System (INIS)

    Rood, R.T.; Sarazin, C.L.; Zeller, E.J.; Parker, B.C.

    1979-01-01

    It is reported that in an analysis of N0 3 - in an Antartic ice core, four spikes of high concentration have been found, three of which occur at depths which correspond roughly to the dates of known galactic supernovae. It is shown that the production of the observed N0 3 - peaks by the hard x-rays generated by a supernovae outburst (particularly Type 1) does not seem inconceivable at least from the point of view of energy requirements and current supernovae models. If this hypothesis is correct the bright supernovae of 1006 should be observed about 15 m beyond the end of the current core. (U.K.)

  12. Supernova rates, galaxy emission, and Hubble type

    International Nuclear Information System (INIS)

    Van Den Bergh, S.

    1991-01-01

    Supernova discovery frequency is found to correlate with emission-line (H-alpha + forbidden N II line) equivalent width, except for the most active galaxies in which some supernovae might be hidden by dust. SNII occur preferentially in active galaxies with emission-line EW not less than 20 A, whereas SNIa favor less active galaxies with EW less than 20 A. The intrinsic frequency of supernovae is found to be an order of magnitude higher in Sc galaxies than it is in early type spirals. The relatively high frequency of SNIa in late-type galaxies suggests that not all such objects have old progenitors. 13 refs

  13. METAMORPHOSIS OF SN 2014C: DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL

    International Nuclear Information System (INIS)

    Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D. J.; Raymond, J. C.; Challis, P.; Drout, M. R.; Grindlay, J. E.; Kirshner, R. P.; Lunnan, R.; Miller, G. F.; Parrent, J. T.; Sanders, N. E.; Eldridge, J. J.; Fong, W.; Bietenholz, M.; Chornock, R.; Fransson, C.; Fesen, R. A.; Mackey, J.

    2015-01-01

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star’s stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf–Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Hα absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30–300 Myr, and favor ages closer to 30 Myr in light of relatively strong Hα emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution

  14. METAMORPHOSIS OF SN 2014C: DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D. J.; Raymond, J. C.; Challis, P.; Drout, M. R.; Grindlay, J. E.; Kirshner, R. P.; Lunnan, R.; Miller, G. F.; Parrent, J. T.; Sanders, N. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138 (United States); Eldridge, J. J. [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Fong, W. [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Bietenholz, M. [Hartebeesthoek Radio Observatory, P.O. Box 443, Krugersdorp 1740 (South Africa); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Fransson, C. [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE106 91 Stockholm (Sweden); Fesen, R. A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States); Mackey, J., E-mail: dmilisav@cfa.harvard.edu [Argelander-Institut für Astronomie, Auf dem Hgel 71, D-53121 Bonn (Germany); and others

    2015-12-20

    We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star’s stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf–Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Hα absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30–300 Myr, and favor ages closer to 30 Myr in light of relatively strong Hα emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.

  15. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stritzinger, Maximilian; Contreras, Carlos [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco [Carnegie Institution of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Suntzeff, Nicholas B. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, College Station, TX 77843 (United States)

    2014-07-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  16. SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method

    Science.gov (United States)

    de Jaeger, T.; Galbany, L.; Filippenko, A. V.; González-Gaitán, S.; Yasuda, N.; Maeda, K.; Tanaka, M.; Morokuma, T.; Moriya, T. J.; Tominaga, N.; Nomoto, K.; Komiyama, Y.; Anderson, J. P.; Brink, T. G.; Carlberg, R. G.; Folatelli, G.; Hamuy, M.; Pignata, G.; Zheng, W.

    2017-12-01

    Although Type Ia supernova cosmology has now reached a mature state, it is important to develop as many independent methods as possible to understand the true nature of dark energy. Recent studies have shown that Type II supernovae (SNe II) offer such a path and could be used as alternative distance indicators. However, the majority of these studies were unable to extend the Hubble diagram above redshift z = 0.3 because of observational limitations. Here, we show that we are now ready to move beyond low redshifts and attempt high-redshift (z ≳ 0.3) SN II cosmology as a result of new-generation deep surveys such as the Subaru/Hyper Suprime-Cam survey. Applying the 'standard candle method' to SN 2016jhj (z = 0.3398 ± 0.0002; discovered by HSC) together with a low-redshift sample, we are able to construct the highest-redshift SN II Hubble diagram to date with an observed dispersion of 0.27 mag (i.e. 12-13 per cent in distance). This work demonstrates the bright future of SN II cosmology in the coming era of large, wide-field surveys like that of the Large Synoptic Survey Telescope.

  17. Supernova signatures of neutrino mass ordering

    Science.gov (United States)

    Scholberg, Kate

    2018-01-01

    A suite of detectors around the world is poised to measure the flavor-energy-time evolution of the ten-second burst of neutrinos from a core-collapse supernova occurring in the Milky Way or nearby. Next-generation detectors to be built in the next decade will have enhanced flavor sensitivity and statistics. Not only will the observation of this burst allow us to peer inside the dense matter of the extreme event and learn about the collapse processes and the birth of the remnant, but the neutrinos will bring information about neutrino properties themselves. This review surveys some of the physical signatures that the currently-unknown neutrino mass pattern will imprint on the observed neutrino events at Earth, emphasizing the most robust and least model-dependent signatures of mass ordering.

  18. Direct Measurement of the Supernova Rate in Starburst Galaxies

    Science.gov (United States)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  19. Spectroscopic classification of PTSS-18ecg (SN 2018bhb) as a type Ia supernova around maximum

    Science.gov (United States)

    Zhang, Jujia; Ding, Xu; Wang, Xiaofeng; Li, Wenxiong; Li, Bin; Xu, Zhijian; Tan, Hanjie; Zhao, Haibin; Wang, Lifan; Li, Zhitong

    2018-05-01

    We obtained an optical spectrum (range 350-890 nm) of PTSS-18ecg (SN 2018bhb), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT 2018 May 10.7 with the Li-Jiang 2.4 m telescope (LJT+YFOSC) at Li-Jiang Observatory of Yunnan Observatories.

  20. Could there be a hole in type Ia supernovae?

    International Nuclear Information System (INIS)

    Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan

    2004-01-01

    In the favored progenitor scenario, Type Ia supernovae (SNe Ia) arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et al. (2001) show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity

  1. The VLT Measures the Shape of a Type Ia Supernova

    Science.gov (United States)

    2003-08-01

    . " Measuring them requires an instrument that is very sensitive and very stable . " The VLT observation of SN 2001el in NGC 1448 ESO PR Photo 24a/03 ESO PR Photo 24a/03 [Preview - JPEG: 620 x 400 pix - 156k [Normal - JPEG: 1240 x 800 pix - 396k] ESO PR Photo 24b/03 ESO PR Photo 24b/03 [Preview - JPEG: 400 x 524 pix - 104k [Normal - JPEG: 800 x 1047 pix - 240k] Captions : PR Photo 24a/03 shows the spiral galaxy NGC 1448, as seen in an archive image from the Digital Sky Survey (Courtesy of STScI) and as seen close to the brightness maximum of the supernova using EMMI on the NTT. SN 2001el is marked by the arrow. The field measures 4.5 x 4.5 arcmin 2 ; North is up and east is right. PR Photo 24b/03 illustrates the optical spectrum of SN 2001el in NGC 1448 (upper panel). The middle and lower panels show the corresponding fractional polarisations. They measure the different numbers of photons oscillating in perpendicular directions; they are directly related to the geometry of the supernova. The shaded area indicates the spectral signatures of high-velocity matter in the expanding envelope. The measurement in faint and distant light sources of differences at a level of less than one percent is a considerable observational challenge. "However, the ESO Very Large Telescope (VLT) offers the precision, the light collecting power, as well as the specialized instrumentation required for such a demanding polarimetric observation" , explains Dietrich Baade . "But this project would not have been possible without the VLT being operated in service mode. It is indeed impossible to predict when a supernova will explode and we need to be ready all the time. Only service mode allows observations at short notice. Some years ago, it was a farsighted and courageous decision by ESO's directorate to put so much emphasis on Service Mode. And it was the team of competent and devoted ESO astronomers on Paranal who made this concept a practical success" , he adds. The astronomers [1] used the VLT multi

  2. Supernovae and their light emission

    International Nuclear Information System (INIS)

    Lourens, P.E.

    1978-01-01

    In this paper a short review of the properties of supernovae is given. The basic radiation theory and hydrodynamics is described. The work of Imshennik and Nadezhin, Astrophysics and Space Science, 10 (1971) 28-51, and their collaborators in connection with the propagation of a shock wave and associated physical effects in a supernova is discussed. Their results are compared with observations reported in the literature. Criticism is given on the boundary conditions for the diffusion flux F at the outer boundary used in their model, and a new condition proposed [af

  3. The evolution of red supergiants to supernovae

    Science.gov (United States)

    Beasor, Emma R.; Davies, Ben

    2017-11-01

    With red supergiants (RSGs) predicted to end their lives as Type IIP core collapse supernova (CCSN), their behaviour before explosion needs to be fully understood. Mass loss rates govern RSG evolution towards SN and have strong implications on the appearance of the resulting explosion. To study how the mass-loss rates change with the evolution of the star, we have measured the amount of circumstellar material around 19 RSGs in a coeval cluster. Our study has shown that mass loss rates ramp up throughout the lifetime of an RSG, with more evolved stars having mass loss rates a factor of 40 higher than early stage RSGs. Interestingly, we have also found evidence for an increase in circumstellar extinction throughout the RSG lifetime, meaning the most evolved stars are most severely affected. We find that, were the most evolved RSGs in NGC2100 to go SN, this extra extinction would cause the progenitor's initial mass to be underestimated by up to 9M⊙.

  4. The ν process in the innermost supernova ejecta

    Directory of Open Access Journals (Sweden)

    Sieverding Andre

    2017-01-01

    Full Text Available The neutrino-induced nucleosynthesis (ν process in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  5. Characterization of Type Ia Supernova Light Curves Using Principal Component Analysis of Sparse Functional Data

    Science.gov (United States)

    He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.

    2018-04-01

    With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.

  6. Rayleigh-Taylor mixing in supernova experiments

    International Nuclear Information System (INIS)

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-01-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order

  7. Type Ia supernovae as speed sensors at intermediate redshifts

    International Nuclear Information System (INIS)

    Zhang Pengjie; Chen Xuelei

    2008-01-01

    Large scale peculiar velocity (LSPV) is a crucial probe of dark matter, dark energy, and gravity at cosmological scales. However, its application is severely limited by measurement obstacles. We show that fluctuations in type Ia supernovae fluxes induced by LSPV offer a promising approach to measure LSPV at intermediate redshifts. In the 3D Fourier space, gravitational lensing, the dominant systematical error, is well suppressed, localized, and can be further corrected effectively. Advances in supernova observations can further significantly reduce shot noise induced by supernova intrinsic fluctuations, which is the dominant statistical error. Robust mapping on the motion of the dark universe through type Ia supernovae is thus feasible to z∼0.5.

  8. The interaction of supernova ejecta with an ambient medium

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1983-01-01

    Plausible environments for supernovae are the interstellar medium with constant density or a circumstellar medium built up by mass loss with rho proportional to r -2 . Self-similar solutions for the interaction region between the expanding supernova gas and the ambient gas exist provided that the expanding gas has rho proportional to rsup(-n) with n > 5. The circumstellar medium case is likely to be important for the early evolution of Type II supernovae because their progenitor stars are probably red supergiants. The radio and X-ray emission observed from extragalactic supernovae may be from this interaction region. The early self-similar solutions can also be applied to the young galactic remnants. (Auth.)

  9. Supernovae and nuclear structure: Electron capture and the nuclear incompressibility

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1985-01-01

    The author considers the effects of electron capture and the high density equation of state on supernovae. Electron captures on nuclei with 60 s it is helpful for supernovae to have a soft equation of state. Present knowledge of the nuclear matter parameters is considered and implications for supernovae are drawn. (orig.)

  10. Radio emission from supernovae. I. One to twelve year old supernovae

    International Nuclear Information System (INIS)

    Weiler, K.W.; Panagia, N.; Sramek, R.A.; Van Der Hulst, J.M.; Roberts, M.S.

    1989-01-01

    All recorded optical supernovae brighter than 14.0 mag from SN 1970A to SN 1981A were observed in May 1982 using VLA at 6 cm. Apart from the known radio supernovae (SN 1970G, SN 1979C, and SN 1980K), radio emissions were not detected from any of the objects to a limit of about 0.5 mJy. Limits on mass-loss rates from the presupernova systems are established. It is found that Type Ia Sns originate in systems which contain very little circumstellar material at the time of explosion. These systems are very different from those which originate Type Ib Sns. With some exceptions, Type II SNs originate with the high presupernova mass-loss rates expected from red supergiant progenitors with original main-sequence masses greater than about 8 solar masses. 16 references

  11. Photometric properties of type II supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Barbon, R [Osservatorio Astrofisico, Asiago (Italy); Trieste Univ. (Italy). Instituto di Matematica); Ciatti, F; Rosino, L [Osservatorio Astrofisico, Asiago (Italy); Pavia Univ. (Italy))

    1979-02-01

    An analysis of the available photometric observations for type II supernovae is presented. The possibility of drawing average curves by the fitting method, as previously done for type I supernovae, is indicated. Two basic shapes have been put into evidence, the first one (2/3 of the objects) is characterized by the presence of a plateau at intermediate phase, the second one by an almost linear decline. Average curves have been also built for the intrinsic color indices. Peculiar cases are discussed, including the unusual objects of types III-IV. The mean absolute magnitude at maximum for type II supernovae has been determined about Msub(B) = -16.45 (sigma=0.78), as a calibration for their use as distance indicators. The distribution in different morphological types and luminosity classes of the parent galaxies is briefly discussed.

  12. Research in astrophysics: Stellar collapse and supernovae: Termination report, August 1, 1980-November 30, 1986

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Mazurek, T.J.; Yahil, A.

    1987-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. The chief emphasis of the program was on stellar collapse, Type II supernovae and neutron star formation. Central to these topics are the development of an equation of state of hot, dense matter and numerical simulations of gravitational collapse and neutron star birth. The LLPR compressible liquid drop model is the basis of the former. It has been refined to include curvature corrections to the surface energy and nuclear force parameters which are in better agreement with experimental quantities. Numerically optimized versions were used in supernova simulations. Such studies of the equation of state can also be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. A novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity was developed. We modeled not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling of the nascent neutron star. For the latter evolution we also used a hydrostatic code with detailed neutrino transport. Our studies of neutrinos in stellar collapse and neutron star formation concentrated on their detectability and signatures, as neutrinos are the only direct probe of collapse and early supernova dynamics. The neutrino signatures seen from SN1987a are in complete accord with the predictions our group has been making since 1982. Complementary studies included modeling nucleosynthesis and the accretion process in quasars, and investigating the influence of galaxy clustering on the large scale structure of the universe. The last study might impose constraints on high energy theories, such as those of inflation and GUT, which can now only be tested astrophysically. 38 refs

  13. No evidence for bulk velocity from type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Huterer, Dragan; Shafer, Daniel L. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109 (United States); Schmidt, Fabian, E-mail: huterer@umich.edu, E-mail: dlshafer@umich.edu, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)

    2015-12-01

    We revisit the effect of peculiar velocities on low-redshift type Ia supernovae. Velocities introduce an additional guaranteed source of correlations between supernova magnitudes that should be considered in all analyses of nearby supernova samples but has largely been neglected in the past. Applying a likelihood analysis to the latest compilation of nearby supernovae, we find no evidence for the presence of these correlations, although, given the significant noise, the data is also consistent with the correlations predicted for the standard ΛCDM model. We then consider the dipolar component of the velocity correlations—the frequently studied ''bulk velocity''—and explicitly demonstrate that including the velocity correlations in the data covariance matrix is crucial for drawing correct and unambiguous conclusions about the bulk flow. In particular, current supernova data is consistent with no excess bulk flow on top of what is expected in ΛCDM and effectively captured by the covariance. We further clarify the nature of the apparent bulk flow that is inferred when the velocity covariance is ignored. We show that a significant fraction of this quantity is expected to be noise bias due to uncertainties in supernova magnitudes and not any physical peculiar motion.

  14. No evidence for bulk velocity from type Ia supernovae

    International Nuclear Information System (INIS)

    Huterer, Dragan; Shafer, Daniel L.; Schmidt, Fabian

    2015-01-01

    We revisit the effect of peculiar velocities on low-redshift type Ia supernovae. Velocities introduce an additional guaranteed source of correlations between supernova magnitudes that should be considered in all analyses of nearby supernova samples but has largely been neglected in the past. Applying a likelihood analysis to the latest compilation of nearby supernovae, we find no evidence for the presence of these correlations, although, given the significant noise, the data is also consistent with the correlations predicted for the standard ΛCDM model. We then consider the dipolar component of the velocity correlations—the frequently studied ''bulk velocity''—and explicitly demonstrate that including the velocity correlations in the data covariance matrix is crucial for drawing correct and unambiguous conclusions about the bulk flow. In particular, current supernova data is consistent with no excess bulk flow on top of what is expected in ΛCDM and effectively captured by the covariance. We further clarify the nature of the apparent bulk flow that is inferred when the velocity covariance is ignored. We show that a significant fraction of this quantity is expected to be noise bias due to uncertainties in supernova magnitudes and not any physical peculiar motion

  15. Supernova light-curve fitters and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio (IAFE), CC 67, Suc. 28, 1428 Buenos Aires (Argentina)

    2011-01-24

    We show that when a procedure is made to remove the tension between a supernova Ia (SN Ia) data set and observations from BAO and CMB, there might be the case where the same SN Ia set built with two different light-curve fitters behaves as two separate and distinct supernova sets, and the tension found by some authors between supernova sets actually could be due to tension or inconsistency between fitters. We also show that the information of the fitter used in an SN Ia data set could be relevant to determine whether phantom type models are favored or not when such a set is combined with the BAO/CMB joint parameter.

  16. Supernova light-curve fitters and dark energy

    International Nuclear Information System (INIS)

    Bengochea, Gabriel R.

    2011-01-01

    We show that when a procedure is made to remove the tension between a supernova Ia (SN Ia) data set and observations from BAO and CMB, there might be the case where the same SN Ia set built with two different light-curve fitters behaves as two separate and distinct supernova sets, and the tension found by some authors between supernova sets actually could be due to tension or inconsistency between fitters. We also show that the information of the fitter used in an SN Ia data set could be relevant to determine whether phantom type models are favored or not when such a set is combined with the BAO/CMB joint parameter.

  17. Merging White Dwarfs and Thermonuclear Supernovae

    OpenAIRE

    van Kerkwijk, Marten H.

    2012-01-01

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure, and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and our suggestion that these supernovae instead resul...

  18. Coma cluster ultradiffuse galaxies are not standard radio galaxies

    Science.gov (United States)

    Struble, Mitchell F.

    2018-02-01

    Matching members in the Coma cluster catalogue of ultradiffuse galaxies (UDGs) from SUBARU imaging with a very deep radio continuum survey source catalogue of the cluster using the Karl G. Jansky Very Large Array (VLA) within a rectangular region of ∼1.19 deg2 centred on the cluster core reveals matches consistent with random. An overlapping set of 470 UDGs and 696 VLA radio sources in this rectangular area finds 33 matches within a separation of 25 arcsec; dividing the sample into bins with separations bounded by 5, 10, 20 and 25 arcsec finds 1, 4, 17 and 11 matches. An analytical model estimate, based on the Poisson probability distribution, of the number of randomly expected matches within these same separation bounds is 1.7, 4.9, 19.4 and 14.2, each, respectively, consistent with the 95 per cent Poisson confidence intervals of the observed values. Dividing the data into five clustercentric annuli of 0.1° and into the four separation bins, finds the same result. This random match of UDGs with VLA sources implies that UDGs are not radio galaxies by the standard definition. Those VLA sources having integrated flux >1 mJy at 1.4 GHz in Miller, Hornschemeier and Mobasher without SDSS galaxy matches are consistent with the known surface density of background radio sources. We briefly explore the possibility that some unresolved VLA sources near UDGs could be young, compact, bright, supernova remnants of Type Ia events, possibly in the intracluster volume.

  19. Polarisation Spectral Synthesis For Type Ia Supernova Explosion Models

    Science.gov (United States)

    Bulla, Mattia

    2017-02-01

    Despite their relevance across a broad range of astrophysical research topics, Type Ia supernova explosions are still poorly understood and answers to the questions of when, why and how these events are triggered remain unclear. In this respect, polarisation offers a unique opportunity to discriminate between the variety of possible scenarios. The observational evidence that Type Ia supernovae are associated with rather low polarisation signals (smaller than a few per cent) places strong constraints for models and calls for modest asphericities in the progenitor system and/or explosion mechanism.The goal of this thesis is to assess the validity of contemporary Type Ia supernova explosion models by testing whether their predicted polarisation signatures can account for the small signals usually observed. To this end, we have implemented and tested an innovative Monte Carlo scheme in the radiative transfer code artis. Compared to previous Monte Carlo approaches, this technique produces synthetic observables (light curves, flux and polarisation spectra) with a substantial reduction in the Monte Carlo noise and therefore in the required computing time. This improvement is particularly crucial for our study as we aim to extract very weak polarisation signals, comparable to those detected in Type Ia supernovae. We have also demonstrated the applicability of this method to other classes of supernovae via a preliminary study of the first spectropolarimetry observations of superluminous supernovae.Using this scheme, we have calculated synthetic spectropolarimetry for three multi-dimensional explosion models recently proposed as promising candidates to explain Type Ia supernovae. Our findings highlight the power of spectropolarimetry in testing and discriminating between different scenarios. While all the three models predict light curves and flux spectra that are similar to each others and reproduce those observed in Type Ia supernovae comparably well, polarisation does

  20. Constraining inverse curvature gravity with supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga; Santiago, Jose; /Fermilab; Weller, Jochen; /University Coll., London /Fermilab

    2005-10-01

    We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.

  1. Acquire information about neutrino parameters by detecting supernova neutrinos

    OpenAIRE

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-01-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle $\\theta_{13}$, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about $\\theta_{13}$ and neutrino masses ...

  2. The detectability of supernovae against elliptical galactic disks.

    Science.gov (United States)

    Pearce, E. C.

    A 75 cm telescope has been automated with a Prime 300 mini-computer to search approximately 250 galaxies per hour for young supernovae. The high-speed star-location and comparison algorithms used in the Digitized Astronomy Supernova Search (DASS) system is described.

  3. Progenitors of type Ia supernovae in elliptical galaxies

    International Nuclear Information System (INIS)

    Gilfanov, M.; Bogdan, A.

    2011-01-01

    Although there is a nearly universal agreement that type Ia supernovae are associated with the thermonuclear disruption of a CO white dwarf, the exact nature of their progenitors is still unknown. The single degenerate scenario envisages a white dwarf accreting matter from a non-degenerate companion in a binary system. Nuclear energy of the accreted matter is released in the form of electromagnetic radiation or gives rise to numerous classical nova explosions prior to the supernova event. We show that combined X-ray output of supernova progenitors and statistics of classical novae predicted in the single degenerate scenario are inconsistent with X-ray and optical observations of nearby early type galaxies and galaxy bulges. White dwarfs accreting from a donor star in a binary system and detonating at the Chandrasekhar mass limit can account for no more than ∼5% of type Ia supernovae observed in old stellar populations.

  4. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  5. An earlier explosion date for the Crab Nebula supernova

    Science.gov (United States)

    Abt, Helmut A.; Fountain, John W.

    2018-04-01

    The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Mexico are consistent with sightings both before and after conjunction with the Sun on 1054 May 27. We found a petroglyph showing the new star close to Venus and the Moon, which occurred on 1054 April 12 and April 13, respectively. Collins et al., using the four historical dates, derived a light curve that is like that of a Type Ia supernova. The only remaining problem with this identification is that this supernova was near maximum light for 85 d, which is unlike the behavior of any known supernova.

  6. Contribution of infrared observations to the study of supernovae remnants

    International Nuclear Information System (INIS)

    Douvion, Thomas

    2000-01-01

    This research thesis addresses the study of dust in young supernovae remnants observed in middle infrared, mainly by means of the ISOCAM instrument installed on the ISO satellite. The author first presents the supernovae physics and the studied young remnants, describes dusts and the main sites of formation and destruction, and outlines the difficulties and benefits of observations performed in the middle infrared. Then, the author reports acquired evidences related to the formation of dusts in supernovae, and the search for a millimetre emission by cold dust contained in regions which are not yet excited by the shock, in order to better assess the overall quantities created by supernovae. He reports the use of observations of dust and neon in Cassiopeia A to perform a diagnosis on the mixture of elements during the supernovae explosion [fr

  7. Interpreting results of cluster surveys in emergency settings: is the LQAS test the best option?

    Science.gov (United States)

    Bilukha, Oleg O; Blanton, Curtis

    2008-12-09

    Cluster surveys are commonly used in humanitarian emergencies to measure health and nutrition indicators. Deitchler et al. have proposed to use Lot Quality Assurance Sampling (LQAS) hypothesis testing in cluster surveys to classify the prevalence of global acute malnutrition as exceeding or not exceeding the pre-established thresholds. Field practitioners and decision-makers must clearly understand the meaning and implications of using this test in interpreting survey results to make programmatic decisions. We demonstrate that the LQAS test--as proposed by Deitchler et al.--is prone to producing false-positive results and thus is likely to suggest interventions in situations where interventions may not be needed. As an alternative, to provide more useful information for decision-making, we suggest reporting the probability of an indicator's exceeding the threshold as a direct measure of "risk". Such probability can be easily determined in field settings by using a simple spreadsheet calculator. The "risk" of exceeding the threshold can then be considered in the context of other aggravating and protective factors to make informed programmatic decisions.

  8. Interpreting results of cluster surveys in emergency settings: is the LQAS test the best option?

    Directory of Open Access Journals (Sweden)

    Blanton Curtis

    2008-12-01

    Full Text Available Abstract Cluster surveys are commonly used in humanitarian emergencies to measure health and nutrition indicators. Deitchler et al. have proposed to use Lot Quality Assurance Sampling (LQAS hypothesis testing in cluster surveys to classify the prevalence of global acute malnutrition as exceeding or not exceeding the pre-established thresholds. Field practitioners and decision-makers must clearly understand the meaning and implications of using this test in interpreting survey results to make programmatic decisions. We demonstrate that the LQAS test–as proposed by Deitchler et al. – is prone to producing false-positive results and thus is likely to suggest interventions in situations where interventions may not be needed. As an alternative, to provide more useful information for decision-making, we suggest reporting the probability of an indicator's exceeding the threshold as a direct measure of "risk". Such probability can be easily determined in field settings by using a simple spreadsheet calculator. The "risk" of exceeding the threshold can then be considered in the context of other aggravating and protective factors to make informed programmatic decisions.

  9. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schrabback, T.; et al.

    2016-11-11

    We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  10. Magnetorotational Explosions of Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Gennady S. Bisnovatyi-Kogan

    2014-12-01

    Full Text Available Core-collapse supernovae are accompanied by formation of neutron stars. The gravitation energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2-D MHD simulations, where the source of energy is rotation, and magnetic eld serves as a "transition belt" for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to dierential rotation. When the twisted toroidal component strongly exceeds the poloidal eld, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. Mildly collimated jet is produced for dipole-like type of the initial field. At very high initial magnetic field no MRI development was found.

  11. Generation of Cosmic rays in Historical Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.Y.

    2013-06-01

    Full Text Available We present the results of observations of two types of Galactic supernova remnants with the SHALON mirror Cherenkov telescope of Tien-Shan high-mountain Observatory: the shell-type supernova remnants Tycho, Cas A and IC 443; plerions Crab Nebula, 3c58(SN1181 and Geminga (probably plerion. The experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy (800 GeV - 100 TeV gamma-rays in Tycho's supernova remnant. The data obtainedsuggest that the very high energy gamma-ray emission in the objects being discussedis different in origin.

  12. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  13. TYPE IIb SUPERNOVAE WITH COMPACT AND EXTENDED PROGENITORS

    International Nuclear Information System (INIS)

    Chevalier, Roger A.; Soderberg, Alicia M.

    2010-01-01

    The classic example of a Type IIb supernova is SN 1993J, which had a cool extended progenitor surrounded by a dense wind. There is evidence for another category of Type IIb supernova that has a more compact progenitor with a lower density, probably fast, wind. Distinguishing features of the compact category are weak optical emission from the shock heated envelope at early times, nonexistent or very weak H emission in the late nebular phase, rapidly evolving radio emission, rapid expansion of the radio shell, and expected nonthermal as opposed to thermal X-ray emission. Type IIb supernovae that have one or more of these features include SNe 1996cb, 2001ig, 2003bg, 2008ax, and 2008bo. All of these with sufficient radio data (the last four) show evidence for presupernova wind variability. We estimate a progenitor envelope radius ∼1 x 10 11 cm for SN 2008ax, a value consistent with a compact Wolf-Rayet progenitor. Supernovae in the SN 1993J extended category include SN 2001gd and probably the Cas A supernova. We suggest that the compact Type IIb events be designated Type cIIb and the extended ones Type eIIb. The H envelope mass dividing these categories is ∼0.1 M sun .

  14. The Carnegie Supernova Project. I. Third Photometry Data Release of Low-redshift Type Ia Supernovae and Other White Dwarf Explosions

    DEFF Research Database (Denmark)

    Krisciunas, Kevin; Contreras, Carlos; Burns, Christopher R.

    2017-01-01

    We present final natural-system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004-2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type. Ia SNe, 5 Type...

  15. The past, present and future supernova threat to Earth's biosphere

    Science.gov (United States)

    Beech, Martin

    2011-12-01

    A brief review of the threat posed to Earth's biosphere via near-by supernova detonations is presented. The expected radiation dosage, cosmic ray flux and expanding blast wave collision effects are considered, and it is argued that a typical supernova must be closer than ˜10-pc before any appreciable and potentially harmful atmosphere/biosphere effects are likely to occur. In contrast, the critical distance for Gamma-ray bursts is of order 1-kpc. In spite of the high energy effects potentially involved, the geological record provides no clear-cut evidence for any historic supernova induced mass extinctions and/or strong climate change episodes. This, however, is mostly a reflection of their being numerous possible (terrestrial and astronomical) forcing mechanisms acting upon the biosphere and the difficulty of distinguishing between competing scenarios. Key to resolving this situation, it is suggested, is the development of supernova specific extinction and climate change linked ecological models. Moving to the future, we estimate that over the remaining lifetime of the biosphere (˜2 Gyr) the Earth might experience 1 GRB and 20 supernova detonations within their respective harmful threat ranges. There are currently at least 12 potential pre-supernova systems within 1-kpc of the Sun. Of these systems IK Pegasi is the closest Type Ia pre-supernova candidate and Betelgeuse is the closest potential Type II supernova candidate. We review in some detail the past, present and future behavior of these two systems. Developing a detailed evolutionary model we find that IK Pegasi will likely not detonate until some 1.9 billion years hence, and that it affords absolutely no threat to Earth's biosphere. Betelgeuse is the closest, reasonably well understood, pre-supernova candidate to the Sun at the present epoch, and may undergo detonation any time within the next several million years. The stand-off distance of Betelgeuse at the time of its detonation is estimated to fall

  16. Type II supernovae: How do they explode?

    International Nuclear Information System (INIS)

    Baron, E.

    1988-01-01

    I discuss what has been learned from the neutrino observations of Supernova 1987A. The neutrino detections confirmed our basic theoretical scenario that Type II supernovae involve the gravitational collapse of a massive star. The small number of events makes it difficult to infer details about the actual mechanism of collapse. I discuss the current theoretical situation on the mechanism of explosion

  17. OzDES multifibre spectroscopy for the Dark Energy Survey: first-year operation and results

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Fang; Lidman, C.; Davis, T. M.; Childress, M.; Abdalla, F. B.; Banerji, M.; Buckley-Geer, E.; Carnero Rosell, A.; Carollo, D.; Castander, F. J.; D' Andrea, C. B.; Diehl, H. T.; Cunha, C. E.; Foley, R. J.; Frieman, J.; Glazebrook, K.; Gschwend, J.; Hinton, S.; Jouvel, S.; Kessler, R.; Kim, A. G.; King, A. L.; Kuehn, K.; Kuhlmann, S.; Lewis, G. F.; Lin, H.; Martini, P.; McMahon, R. G.; Mould, J.; Nichol, R. C.; Norris, R. P.; O' Neill, C. R.; Ostrovski, F.; Papadopoulos, A.; Parkinson, D.; Reed, S.; Romer, A. K.; Rooney, P. J.; Rozo, E.; Rykoff, E. S.; Sako, M.; Scalzo, R.; Schmidt, B. P.; Scolnic, D.; Seymour, N.; Sharp, R.; Sobreira, F.; Sullivan, M.; Thomas, R. C.; Tucker, D.; Uddin, S. A.; Wechsler, R. H.; Wester, W.; Wilcox, H.; Zhang, B.; Abbott, T.; Allam, S.; Bauer, A. H.; Benoit-L?vy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carrasco Kind, M.; Covarrubias, R.; Crocce, M.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; Makler, M.; Marshall, J.; Miller, C. J.; Miquel, R.; Ogando, R.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.

    2015-07-29

    We present results for the first three years of OzDES, a six-year program to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multi-year baseline, and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17,000 objects, including the redshifts of 2,566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise, magnitude, and exposure time, finding that our redshift success rate increases significantly at a signal-to-noise of 2 to 3 per 1-A° ngstrom bin. We also find that the change in signal-to-noise with exposure time closely matches the Poisson limit for stacked exposures as long as 10 hours.We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as 4MOST, PFS, and MSE. This work marks the first OzDES data release, comprising 15,327 redshifts. OzDES is on target to obtain over 30,000 redshifts over the six-year duration of the survey, including a yield of approximately 5,700 supernova host-galaxy redshifts.

  18. Accurate weak lensing of standard candles. II. Measuring σ8 with supernovae

    Science.gov (United States)

    Quartin, Miguel; Marra, Valerio; Amendola, Luca

    2014-01-01

    Soon the number of type Ia supernova (SN) measurements should exceed 100 000. Understanding the effect of weak lensing by matter structures on the supernova brightness will then be more important than ever. Although SN lensing is usually seen as a source of systematic noise, we will show that it can be in fact turned into signal. More precisely, the non-Gaussianity introduced by lensing in the SN Hubble diagram dispersion depends rather sensitively on the amplitude σ8 of the matter power spectrum. By exploiting this relation, we are able to predict constraints on σ8 of 7% (3%) for a catalog of 100 000 (500 000) SNe of average magnitude error 0.12, without having to assume that such intrinsic dispersion and its redshift evolution are known a priori. The intrinsic dispersion has been assumed to be Gaussian; possible intrinsic non-Gaussianities in the data set (due to the SN themselves and/or to other transients) could be potentially dealt with by means of additional nuisance parameters describing higher moments of the intrinsic dispersion distribution function. This method is independent of and complementary to the standard methods based on cosmic microwave background, cosmic shear, or cluster abundance observables.

  19. Hypervelocity stars from young stellar clusters in the Galactic Centre

    Science.gov (United States)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  20. PROSPECTS FOR MEASURING THE RELATIVE VELOCITIES OF GALAXY CLUSTERS IN PHOTOMETRIC SURVEYS USING THE KINETIC SUNYAEV-ZEL'DOVICH EFFECT

    International Nuclear Information System (INIS)

    Keisler, Ryan; Schmidt, Fabian

    2013-01-01

    We consider the prospects for measuring the pairwise kinetic Sunyaev-Zel'dovich (kSZ) signal from galaxy clusters discovered in large photometric surveys such as the Dark Energy Survey (DES). We project that the DES cluster sample will, in conjunction with existing mm-wave data from the South Pole Telescope (SPT), yield a detection of the pairwise kSZ signal at the 8σ-13σ level, with sensitivity peaking for clusters separated by ∼100 Mpc distances. A next-generation version of SPT would allow for a 18σ-30σ detection and would be limited by variance from the kSZ signal itself and the residual thermal Sunyaev-Zel'dovich (tSZ) signal. Throughout our analysis, we assume photometric redshift errors that wash out the signal for clusters separated by ∼<50 Mpc; a spectroscopic survey of the DES sample would recover this signal and allow for a 26σ-43σ detection, and would again be limited by kSZ/tSZ variance. Assuming a standard model of structure formation, these high-precision measurements of the pairwise kSZ signal will yield detailed information on the gas content of the galaxy clusters. Alternatively, if the gas can be sufficiently characterized by other means (e.g., using tSZ, X-ray, or weak lensing), then the relative velocities of the galaxy clusters can be isolated, thereby providing a precision measurement of gravity on 100 Mpc scales. We briefly consider the utility of these measurements for constraining theories of modified gravity.