WorldWideScience

Sample records for cluster fuel elements

  1. Nuclear fuel element

    Science.gov (United States)

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  2. Fuel Element Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Burley, H.H. [ed.

    1956-08-01

    It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.

  3. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  4. SNTP program fuel element design

    Science.gov (United States)

    Walton, Lewis A.; Ales, Matthew W.

    1993-06-01

    The SNTP program is evaluating the feasibility of utilizing a particle bed reactor to develop a high-performance nuclear thermal rocket engine. The optimum fuel element arrangement depends on the power level desired and the intended application. The key components of the fuel element have been developed and are being tested.

  5. Vented nuclear fuel element

    Science.gov (United States)

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  6. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  7. Protected Nuclear Fuel Element

    Science.gov (United States)

    Kittel, J. H.; Schumar, J. F.

    1962-12-01

    A stainless steel-clad actinide metal fuel rod for use in fast reactors is reported. In order to prevert cladding failures due to alloy formation between the actinide metal and the stainless steel, a mesh-like sleeve of expanded metal is interposed between them, the sleeve metal being of niobium, tantalum, molybdenum, tungsten, zirconium, or vanadium. Liquid alkali metal is added as a heat transfer agent. (AEC)

  8. Compact Fuel Element Environment Test

    Science.gov (United States)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.

    2012-01-01

    Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.

  9. Low cost, lightweight fuel cell elements

    Science.gov (United States)

    Kindler, Andrew (Inventor)

    2001-01-01

    New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.

  10. Thermionic fuel element technology status

    Science.gov (United States)

    Holland, J. W.; Horner, M. W.; Yang, L.

    1985-01-01

    The results of research, conducted between the mid-1960s and 1973, on the multiconverter thermionic fuel elements (TFEs) that comprise the reactor core of an SP-100 thermionic reactor system are presented. Fueled-emitter technology, insulator technology and cell and TFE assembly technology of the prototypical TFEs which were tested in-pile and out-of-pile during these years are described. The proto-TFEs have demonstrated reproducible performance within 5 percent and no premature failures within the 1.5 yr of operation (with projected 3-yr lifetimes). The two primary life-limiting factors had been identified as thermionic emitter dimensional increase due to interactions with the fuel and electrical insulator structural damage from fast neutrons. Multiple options for extending TFE lifetimes to 7 yr or longer are available and will be investigated in the 1984-1985 SP-100 program for resolution of critical technology issues. Design diagrams and test graphs are included.

  11. A high temperature fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Sekido, A.; Nakai, M.; Ninomiya, Y.

    1982-12-21

    A solid electrolyte which conducts electricity with heating by oxygen ions and operates at a temperature of 1,000C is used in the element. The cathode, besides the ionic conductivity in oxygen, has an electron conductivity. The anode has electron conductivity. Substances such as Bi203, into which oxides of alkaline earth metals are added, are used for making the cathode. The electrolyte consists of ZrO2 and Y2O3, to which CaO is added. WC, to which an H2 type fuel is fed, serves as the anode. The element has a long service life.

  12. HTGR spent fuel composition and fuel element block flow

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.J.; Holder, N.D.; Pierce, V.H.; Robertson, M.W.

    1976-07-01

    The High-Temperature Gas-Cooled Reactor (HTGR) utilizes the thorium-uranium fuel cycle. Fully enriched uranium fissile material and thorium fertile material are used in the initial reactor core and for makeup fuel in the recycle core loadings. Bred /sup 233/U and unburned /sup 235/U fissile materials are recovered from spent fuel elements, refabricated into recycle fuel elements, and used as part of the recycle core loading along with the makeup fuel elements. A typical HTGR employs a 4-yr fuel cycle with approximately one-fourth of the core discharged and reloaded annually. The fuel element composition, including heavy metals, impurity nuclides, fission products, and activation products, has been calculated for discharged spent fuel elements and for reload fresh fuel and recycle fuel elements for each cycle over the life of a typical HTGR. Fuel element compositions are presented for the conditions of equilibrium recycle. Data describing compositions for individual reloads throughout the reactor life are available in a detailed volume upon request. Fuel element block flow data have been compiled based on a forecast HTGR market. Annual block flows are presented for each type of fuel element discharged from the reactors for reprocessing and for refabrication.

  13. Fuel elements of thermionic converters

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.L. [ed.] [Sandia National Labs., Albuquerque, NM (United States). Environmental Systems Assessment Dept.; Gontar, A.S.; Nelidov, M.V.; Nikolaev, Yu.V.; Schulepov, L.N. [RI SIA Lutch, Podolsk (Russian Federation)

    1997-01-01

    Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.

  14. Fuel elements of thermionic converters

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.L. [ed.] [Sandia National Labs., Albuquerque, NM (United States). Environmental Systems Assessment Dept.; Gontar, A.S.; Nelidov, M.V.; Nikolaev, Yu.V.; Schulepov, L.N. [RI SIA Lutch, Podolsk (Russian Federation)

    1997-01-01

    Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.

  15. Nuclear reactor fuel element. Kernreaktorbrennelement

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, H.J.

    1985-03-28

    The fuel element box for a BWR is situated with a corner bolt on the inside in one corner of its top on the top side of the top plate. This corner bolt is screwed down with a bolt with a corner part which is provided with leaf springs outside on two sides, where the bolt has a smaller diameter and an expansion shank. The bolt is held captive to the bolt head on the top and the holder on the bottom of the corner part. The holder is a locknut. If the expansion forces are too great, the bolt can only break at the expansion shank.

  16. Visual examinations of K east fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L., Fluor Daniel Hanford

    1997-02-03

    Selected fuel elements stored in both ``good fuel`` and ``bad fuel`` canisters in K East Basin were extracted and visually examined full length for damage. Lower end damage in the ``bad fuel`` canisters was found to be more severe than expected based on top end appearances. Lower end damage for the ``good fuel`` canisters, however, was less than expected based on top end observations. Since about half of the fuel in K East Basin is contained in ``good fuel`` canisters based on top end assessments, the fraction of fuel projected to be intact with respect to IPS processing considerations remains at 50% based on these examination results.

  17. MRT fuel element inspection at Dounreay

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.

    1997-08-01

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd`s Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay.

  18. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  19. Dual-radial cell thermionic fuel element

    Science.gov (United States)

    Terrell, Charles W.

    A dual-radial cell thermionic fuel element (TFE) has been proposed and partially evaluated. The cell has the capacity to produce considerably more power per gram of fuel than does a single-cell TFE, with a total electrical power in a fast reactor system of several hundred kWs, conservatively operated.

  20. Visual examinations of K west fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L., Fluor Daniel Hanford

    1997-02-03

    Over 250 fuel assemblies stored in sealed canisters in the K West Basin were extracted and visually examined for damage. Substantial damage was expected based on high cesium levels previously measured in water samples taken from these canisters. About 11% of the inner elements and 45% of the outer elements were found to be failed in these examinations. Canisters that had cesium levels of I curie or more generally had multiple instances of major fuel damage.

  1. Molecular clusters of the main group elements

    CERN Document Server

    Driess, Matthias

    2008-01-01

    ""To summarize, Molecular Clusters of the Main Group Elements is certainly not a popular science book, nor is it a textbook; it is a very good, up-to-date collection of articles for the specialist. Als Fazit bleibt: Molecular Clusters of the Main Group Elements ist sicher kein populissenschaftliches Werk, auch kein Lehrbuch, aber eine gelungene, hoch aktuelle Zusammenstellung fen interessierten Fachmann."" -Michael Ruck, TU Dresden, Angewandte Chemie, 2004 - 116/36 + International Edition 2004 - 43/36

  2. Nuclear fuel elements having a composite cladding

    Science.gov (United States)

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  3. Structural analysis of reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design.

  4. HTGR fuel element structural design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development.

  5. Research Development of MOX Fuel Element Technology

    Institute of Scientific and Technical Information of China (English)

    YANG; Qi-fa; YANG; Ting-gui; SHANG; Gai-bin; YIN; Bang-yue; ZHOU; Guo-liang; LI; Qiang; JIANG; Bao-jun

    2015-01-01

    The project of"MOX Fuel Element Research"led by China Institute of Atomic Energy,404Company Ltd.and CNPE Zhengzhou Branch are members of the project research team.The research task of 2015had been accomplished successfully,and the research productions of this year build up a basis for the future research,also

  6. Automatic inspection for remotely manufactured fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J.; Vitela, J.E. [Argonne National Lab., IL (United States); Gibbs, K.S.; Benedict, R.W. [Argonne National Lab., Idaho Falls, ID (United States)

    1995-06-01

    Two classification techniques, standard control charts and artificial neural networks, are studied as a means for automating the visual inspection of the welding of end plugs onto the top of remotely manufactured reprocessed nuclear fuel element jackets. Classificatory data are obtained through measurements performed on pre- and post-weld images captured with a remote camera and processed by an off-the-shelf vision system. The two classification methods are applied in the classification of 167 dummy stainless steel (HT9) fuel jackets yielding comparable results.

  7. Liquid fuel injection elements for rocket engines

    Science.gov (United States)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  8. Study of fuel element characteristic of SM and SMP (SM-PRIMA) fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Klinov, A.V.; Kuprienko, V.A.; Lebedev, V.A.; Makhin, V.M.; Tuchnin, L.M.; Tsykanov, V.A. [Research Institute of Atomic Reactors, Dimitrovgrad (Russian Federation)

    1999-07-01

    The paper discusses the techniques and results of reactor tests and post-reactor investigations of the SM reactor fuel elements and fuel elements developed in the process of designing the specialized PRIMA test reactor with the SM reactor fuel elements used as a prototype and which are referred to as the SMP fuel elements. The behavior of fuel elements under normal operating conditions and under deviation from normal operating conditions was studied to verify the calculation techniques, to check the calculation results during preparation of the SM reactor safety substantiation report and to estimate the possibility of using such fuel elements in other projects. During tests of fuel rods under deviation from normal operating conditions their advantages were shown over fuel elements, the components of which were produced using the Al-based alloys. (author)

  9. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  10. Fuel cell elements with improved water handling capacity

    Science.gov (United States)

    Kindler, Andrew (Inventor); Lee, Albany (Inventor)

    2001-01-01

    New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.

  11. Thermal analysis of IRT-T reactor fuel elements

    OpenAIRE

    Naymushin, Artem Georgievich; Chertkov, Yuri Borisovich; Lebedev, Ivan Igorevich; Anikin, Mikhail Nikolaevich

    2015-01-01

    The article describes the method and results of thermo-physical calculations of IRT-T reactor core. Heat fluxes, temperatures of cladding, fuel meat and coolant were calculated for height of core, azimuth directions of FA and each fuel elements in FA. Average calculated values of uniformity factor of energy release distribution for height of fuel assemblies were shown in this research. Onset nucleate boiling temperature and ONB-ratio were calculated. Shows that temperature regimes of fuel ele...

  12. CHF Enhancement of Advanced 37-Element Fuel Bundles

    Directory of Open Access Journals (Sweden)

    Joo Hwan Park

    2015-01-01

    Full Text Available A standard 37-element fuel bundle (37S fuel bundle has been used in commercial CANDU reactors for over 40 years as a reference fuel bundle. Most CHF of a 37S fuel bundle have occurred at the elements arranged in the inner pitch circle for high flows and at the elements arranged in the outer pitch circle for low flows. It should be noted that a 37S fuel bundle has a relatively small flow area and high flow resistance at the peripheral subchannels of its center element compared to the other subchannels. The configuration of a fuel bundle is one of the important factors affecting the local CHF occurrence. Considering the CHF characteristics of a 37S fuel bundle in terms of CHF enhancement, there can be two approaches to enlarge the flow areas of the peripheral subchannels of a center element in order to enhance CHF of a 37S fuel bundle. To increase the center subchannel areas, one approach is the reduction of the diameter of a center element, and the other is an increase of the inner pitch circle. The former can increase the total flow area of a fuel bundle and redistributes the power density of all fuel elements as well as the CHF. On the other hand, the latter can reduce the gap between the elements located in the middle and inner pitch circles owing to the increasing inner pitch circle. This can also affect the enthalpy redistribution of the fuel bundle and finally enhance CHF or dry-out power. In this study, the above two approaches, which are proposed to enlarge the flow areas of the center subchannels, were considered to investigate the impact of the flow area changes of the center subchannels on the CHF enhancement as well as the thermal characteristics by applying a subchannel analysis method.

  13. IN-CELL visual examinations of K east fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.; Pyecha, T.D., Fluor Daniel Hanford

    1997-03-06

    Nine outer fuel elements were recovered from the K East Basin and transferred to a hot cell for examination. Extensive testing planned for these elements will support the process design for the Integrated Process Strategy (IPS), with emphasis on drying and conditioning behavior. Visual examinations of the fuel elements confirmed that they are appropriate to meet testing objectives to provide design guidance for IPS processing parameters.

  14. Peculiarities of {\\alpha}-element abundances in Galactic open clusters

    CERN Document Server

    Marsakov, V A; Koval', V V; Shpigel', L V

    2016-01-01

    A catalog compiling the parameters of 346 open clusters, including their metallicities, positions, ages, and velocities has been composed. The elements of the Galactic orbits for 272 of the clusters have been calculated. Spectroscopic determinations of the relative abundances, [el/Fe], for 14 elements synthesized in various nuclear processes averaged over data from 109 publications are presented for 90 clusters. Since no systematic effects distorting the relative abundances of the studied elements in these clusters have been found, these difference suggest real differences between clusters with high, elongated orbits and field stars. In particular, this supports the earlier conclusion, based on an analysis of the elements of the Galactic orbits, that some clusters formed as a result of interactions between high-velocity, metal-poor clouds and the interstellar medium of the Galactic thin disk. On average, clusterswith high, elongated orbits and metallicities ${\\rm [Fe/H]} - 0.1$ formed as a result of interact...

  15. Elemental abundances of intermediate age open cluster NGC 3680

    CERN Document Server

    Mitschang, A W; Zucker, D B

    2012-01-01

    We present a new abundance analysis of the intermediate age Galactic open cluster NGC 3680, based on high resolution, high signal-to-noise VLT/UVES spectroscopic data. Several element abundances are presented for this cluster for the first time, but most notably we derive abundances for the light and heavy s-process elements Y, Ba, La, and Nd. The serendipitous measurement of the rare-earth r-process element Gd is also reported. This cluster exhibits a significant enhancement of Na in giants as compared to dwarfs, which may be a proxy for an O to Na anti-correlation as observed in Galactic globular clusters but not open clusters. We also observe a step-like enhancement of heavy s-process elements towards higher atomic number, contrary to expectations from AGB nucleosynthesis models, suggesting that the r-process played a significant role in the generation of both La and Nd in this cluster

  16. Repurposing an irradiated instrumented TRIGA fuel element for regular use

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Paulo F.; Souza, Luiz C.A., E-mail: pfo@cdtn.br, E-mail: lcas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    TRIGA IPR-R1 is a research reactor also used for training and radioisotope production, located at the Centro de Desenvolvimento da Tecnologia Nuclear da Comissao Nacional de Energia Nuclear (Nuclear Technology Development Centre, Brazilian National Nuclear Energy Commission - CDTN/CNEN). Its first criticality occurred in November 1960. All original fuel elements were aluminum-clad. In 1971 nine new fuel elements, stainless steel-clad were acquired. One of them was an instrumented fuel element (IFE), equipped with 3 thermocouples. The IFE was introduced into the core only on August 2004, and remained there until July 2007. It was removed from the core after the severing of contacts between the thermocouples and their extension cables. After an unsuccessful attempt to recover electrical access to the thermocouples the IFE was transferred from the reactor pool to an auxiliary spent fuel storage well, with water, in the reactor room. In December 2011 the IFE was transferred to an identical well, dry, where it remains so far. This work is a proposal for recovery of this instrumented fuel element, by removing the cable guide rod and adaptation of a superior terminal plug similar to conventional fuel elements. This will enable its handling through the same tool used for regular fuel elements and its return to the reactor core. This is a delicate intervention in terms of radiological protection, and will require special care to minimize the exposure of operators. (author)

  17. Inspection of state of spent fuel elements stored in RA reactor spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Aden, V.G.; Bulkin, S.Yu.; Sokolov, A.V. [Research and Development Institute of Power Engineering, Moscow (Russian Federation); Matausek, M.V.; Vukadin, Z. [VINCA Institute of Nuclear Science, Belgrade (Yugoslavia)

    1999-07-01

    About five thousand spent fuel elements from RA reactor have been stored for over 30 years in sealed aluminum barrels in the spent fuel storage pool. This way of storage does not provide complete information about the state of spent fuel elements or the medium inside the barrels, like pressure or radioactivity. The technology has recently been developed and the equipment has been manufactured to inspect the state of the spent fuel and to reduce eventual internal pressure inside the aluminum barrels. Based on the results of this inspection, a procedure will be proposed for transferring spent fuel to a more reliable storage facility. (author)

  18. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  19. Some Basic Elements in Clustering and Classification

    Science.gov (United States)

    Grégoire, G.

    2016-05-01

    This chapter deals with basic tools useful in clustering and classification and present some commonly used approaches for these two problems. Since several chapters in these proceedings are devoted to approaches to deal with classification, we give more attention in this chapter to clustering issues. We are first concerned with notions of distances or dissimilarities between objects we are to group in clusters. Then based on these inter-objects distances we define distances between sets of objects, such as single linkage, complete linkage or Ward distance. Three clustering algorithms are presented with some details and compared: Kmeans, Ascendant Hierarchical and DBSCAN algorithms. The comparison between partitions and the issue of choosing the correct number of clusters are investigated and the proposed procedures are tested on two data sets. We emphasize the fact that the results provided by the numerous indices available in the literature for selecting the number of clusters is largely depending upon the shape and the dispersion we are assuming for these clusters. Finally the last section is devoted to classification. Some basic notions such as training sets, test sets and cross-validation are discussed. Two particular approaches are detailed, the K-nearest neighbors method and the logistic regression, and comparisons with LDA (Linear Discriminant Analysis) and QDA (Quadratic Discriminant Analysis) are analyzed.

  20. Research on Measuring Technology for In-pile Fuel Element Testing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The tested fuel assembly for In-pile test for PWR fuel element with instrumentation consisted of 4instrumented fuel elements and total 12 sets of transducers. Double claddings are adopted to raise fueltemperature. Two fuel elements each have 2 thermocouples for measuring separately the fuel centerlinetemperature and the cladding surface temperature. The other two elements have membrane type oressure

  1. Technology Status of Thermionic Fuel Elements for Space Nuclear Power

    Science.gov (United States)

    Holland, J. W.; Yang, L.

    1984-01-01

    Thermionic reactor power systems are discussed with respect to their suitability for space missions. The technology status of thermionic emitters and sheath insulator assemblies is described along with testing of the thermionic fuel elements.

  2. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Science.gov (United States)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  3. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul [Universiti Tenaga Nasional. Jalan Ikram-UNITEN, 43000 Kajang, Selangor (Malaysia); Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  4. Failed MTR Fuel Element Detect in a Sipping Tests

    Energy Technology Data Exchange (ETDEWEB)

    Zeituni, C.A.; Terremoto, L.A.A.; da Silva, J.E.R.

    2004-10-06

    This work describes sipping tests performed on Material Testing Reactor (MTR) fuel elements of the IEA-R1 research reactor, in order to find out which one failed in the core during a routine operation. Radioactive iodine isotopes {sup 131}I and {sup 133}I, employed as failure monitors, were detected in samples corresponding to the failed fuel element. The specific activity of each sample, as well as the average leaking rate, were measured for {sup 137}Cs. The nuclear fuels U{sub 3}O{sub 8} - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of {sup 137}Cs.

  5. Weld Joint Design for SFR Metallic Fuel Element Closures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Kim, Ki Hwan; Yoon, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The sodium-cooled fast reactor (SFR) system is among the six systems selected for Gen-IV promising systems and expected to become available for commercial introduction around 2030. In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the joint designs for endplug welding were investigated. For the irradiation test of SFR metallic fuel element, the TIG welding technique was adopted and the welding joint design was developed based on the welding conditions and parameters established. In order to make SFR metallic fuel elements, the weld joint design was developed based on the TIG welding technique.

  6. A method for limitation of probability of accumulation of fuel elements claddings damage in WWER

    OpenAIRE

    Sergey N. Pelykh; Mark V. Nikolsky; S. D. Ryabchikov

    2014-01-01

    The aim is to reduce the probability of accumulation of fuel elements claddings damage by developing a method to control the properties of the fuel elements on stages of design and operation of WWER. An averaged over the fuel assembly WWER-1000 fuel element is considered. The probability of depressurization of fuel elements claddings is found. The ability to predict the reliability of claddings by controlling the factors that determine the properties of the fuel elements is proved. The expedi...

  7. Use of silicide fuel in the Ford Nuclear Reactor - to lengthen fuel element lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M.M.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Burn, R.R.; Lee, J.C. [Univ. of Michigan, Ann Arbor, MI (United States). Phoenix Memorial Lab.

    1995-12-31

    Based on economic considerations, it has been proposed to increase the lifetime of LEU fuel elements in the Ford Nuclear Reactor by raising the {sup 235}U plate loading from 9.3 grams in aluminide (UAl{sub x}) fuel to 12.5 grams in silicide (U{sub 3}Si{sub 2}) fuel. For a representative core configuration, preliminary neutronic depletion and steady state thermal hydraulic calculations have been performed to investigate core characteristics during the transition from an all-aluminide to an all-silicide core. This paper discusses motivations for this fuel element upgrade, results from the calculations, and conclusions.

  8. Uranium density reduction on fuel element side plates assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka A. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  9. Highest average burnups achieved by MTR fuel elements of the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Damy, Margaret A.; Terremoto, Luis A.A.; Silva, Jose E.R.; Silva, Antonio Teixeira e; Castanheira, Myrthes; Teodoro, Celso A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear (CEN)]. E-mail: madamy@ipen.br

    2007-07-01

    Different nuclear fuels were employed in the manufacture of plate type at IPEN , usually designated as Material Testing Reactor (MTR) fuel elements. These fuel elements were used at the IEA-R1 research reactor. This work describes the main characteristics of these nuclear fuels, emphasizing the highest average burn up achieved by these fuel elements. (author)

  10. Attempt to produce silicide fuel elements in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soentono, S. (Nuclear Fuel Element Centre, BATAN Kawasan PUSPIPTEK, Serpong (Indonesia)); Suripto, A. (Nuclear Fuel Element Centre, BATAN Kawasan PUSPIPTEK, Serpong (Indonesia))

    1991-01-01

    After the successful experiment to produce U[sub 3]Si[sub 2] powder and U[sub 3]Si[sub 2]-Al fuel plates using depleted U and Si of semiconductor quality, silicide fuel was synthesized using <20% enriched U metal and silicon chips employing production train of UAl[sub x]-Al available at the Fuel Element Production Installation (FEPI) at Serpong, Indonesia. Two full-size U[sub 3]Si[sub 2]-Al fuel elements, having similar specifications to the ones of U[sub 3]O[sub 8]-Al for the RSG-GAS (formerly known as MPR-30), have been produced at the FEPI. All quality controls required have been imposed to the feeds, intermediate, as well as final products throughout the production processes of the two fuel elements. The current results show that these fuel elements are qualified from fabrication point of view, therefore it is expected that they will be permitted to be tested in the RSG-GAS, sometime by the end of 1989, for normal ([proportional to]50%) and above normal burn-up. (orig.)

  11. Core analysis during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An 1200-day time-dependent fuel-management for the transition from 37-element fuel to CANFLEX-NU fuel in a CANDU 6 reactor has been simulated to show the compatibility of the CANFLEX-NU fuel with the reactor operation. The simulation calculations were carried out with the RFSP code, provided by cell averaged fuel properties obtained from the POWDERPUFS-V code. The refueling scheme for both fuels was an eight bundle shift at a time. The simulation results show that the maximum channel and bundle powers were maintained below the license limit of the CANDU 6. This indicates that the CANFLEX-NU fuel bundle is compatible with the CANDU 6 reactor operation during the transition period. 3 refs., 2 figs., 1 tab. (Author)

  12. The manufacture of LEU fuel elements at Dounreay

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.

    1997-08-01

    Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.

  13. Research Progress About Gas-Exhaust-Device for Fuel Element

    Institute of Scientific and Technical Information of China (English)

    ZHONG; Wu-ye

    2012-01-01

    <正>UO2-x stack applied in the fuel element has a form of a cylinder with a central hole, where temperature field characterized by high temperature and high gradient is formed due to irradiation. Then nearly all of the gaseous fission products (GFPs) can release into central cavity. However, uranium oxide will evaporate form the fuel stack’s inner surface because of its high temperature (about 1 800-2 000 ℃),

  14. Analysis of the ATR fuel element swaging process

    Energy Technology Data Exchange (ETDEWEB)

    Richins, W.D.; Miller, G.K.

    1995-12-01

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B&W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF.

  15. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  16. The OSU Hydro-Mechanical Fuel Test Facility: Standard Fuel Element Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wade R. Marcum; Brian G. Woods; Ann Marie Phillips; Richard G. Ambrosek; James D. Wiest; Daniel M. Wachs

    2001-10-01

    Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or standard fuel element (SFE), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates due to hydraulic forces. This test program supports ongoing work conducted for/by the fuel development program and will take place at OSU in the Hydro-Mechanical Fuel Test Facility (HMFTF). Discussion of a preliminary test matrix, SFE design, measurement and instrumentation techniques, and facility description are detailed in this paper.

  17. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  18. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry

    Science.gov (United States)

    Kolářová, Lenka; Prokeš, Lubomír; Kučera, Lukáš; Hampl, Aleš; Peňa-Méndez, Eladia; Vaňhara, Petr; Havel, Josef

    2016-12-01

    Precise calibration in TOF MS requires suitable and reliable standards, which are not always available for high masses. We evaluated inorganic clusters of the monoisotopic elements gold and phosphorus (Au n +/Au n - and P n +/P n -) as an alternative to peptides or proteins for the external and internal calibration of mass spectra in various experimental and instrumental scenarios. Monoisotopic gold or phosphorus clusters can be easily generated in situ from suitable precursors by laser desorption/ionization (LDI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Their use offers numerous advantages, including simplicity of preparation, biological inertness, and exact mass determination even at lower mass resolution. We used citrate-stabilized gold nanoparticles to generate gold calibration clusters, and red phosphorus powder to generate phosphorus clusters. Both elements can be added to samples to perform internal calibration up to mass-to-charge (m/z) 10-15,000 without significantly interfering with the analyte. We demonstrated the use of the gold and phosphorous clusters in the MS analysis of complex biological samples, including microbial standards and total extracts of mouse embryonic fibroblasts. We believe that clusters of monoisotopic elements could be used as generally applicable calibrants for complex biological samples.

  19. Modeling and Simulation of a Nuclear Fuel Element Test Section

    Science.gov (United States)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  20. Fuel burnup calculation of a research reactor plate element

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Nadia Rodrigues dos; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: nadiasam@gmail.com, E-mail: zrlima@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work consists in simulating the burnup of two different plate type fuel elements, where one is the benchmark MTR of the IAEA, which is made of an alloy of uranium and aluminum, while the other belonging to a typical multipurpose reactor is composed of an alloy of uranium and silicon. The simulation is performed using the WIMSD-5B computer code, which makes use of deterministic methods for solving neutron transport. In developing this task, fuel element equivalent cells were calculated representing each of the reactors to obtain the initial concentrations of each isotope constituent element of the fuel cell and the thicknesses corresponding to each region of the cell, since this information is part of the input data. The compared values of the k∞ showed a similar behavior for the case of the MTR calculated with the WIMSD-5B and EPRI-CELL codes. Relating the graphs of the concentrations in the burnup of both reactors, there are aspects very similar to each isotope selected. The application WIMSD-5B code to calculate isotopic concentrations and burnup of the fuel element, proved to be satisfactory for the fulfillment of the objective of this work. (author)

  1. Some parametric flow analyses of a particle bed fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Dobranich, D.

    1993-05-01

    Parametric calculations are performed, using the SAFSIM computer program, to investigate the fluid mechanics and heat transfer performance of a particle bed fuel element. Both steady-state and transient calculations are included, addressing such issues as flow stability, reduced thrust operation, transpiration drag, coolant conductivity enhancement, flow maldistributions, decay heat removal, flow perturbations, and pulse cooling. The calculations demonstrate the dependence of the predicted results on the modeling assumptions and thus provide guidance as to where further experimental and computational investigations are needed. The calculations also demonstrate that both flow instability and flow maldistribution in the fuel element are important phenomena. Furthermore, results are encouraging that geometric design changes to the element can significantly reduce problems related to these phenomena, allowing improved performance over a wide range of element power densities and flow rates. Such design changes will help to maximize the operational efficiency of space propulsion reactors employing particle bed fuel element technology. Finally, the results demonstrate that SAFSIM is a valuable engineering tool for performing quick and inexpensive parametric simulations addressing complex flow problems.

  2. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  3. Nuclear reactor fuel element with vanadium getter on cladding

    Science.gov (United States)

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  4. Heavy elements and chemical enrichment in globular clusters

    CERN Document Server

    James, G; Bonifacio, P; Carretta, E; Gratton, R G; Spite, F

    2004-01-01

    High resolution (R > 40 000) and high S/N spectra have been acquired with UVES on the VLT-Kueyen (Paranal Observatory, ESO Chile) for several main sequence turnoff stars (V ~ 17 mag) and subgiants at the base of the Red Giant Branch (V ~ 16 mag) in three globular clusters (NGC 6397, NGC 6752 and 47 Tuc/NGC 104) at different metallicities (respectively [Fe/H] = -2.0; -1.5; -0.7$). Spectra for a sample of 25 field halo subdwarves have also been taken with equal resolution, but higher S/N. These data have been used to determine the abundances of several neutron-capture elements in these three clusters: strontium, yttrium, barium and europium. This is the first abundance determination of these heavy elements for such unevolved stars in these three globular clusters. These values, together with the [Ba/Eu] and [Sr/Ba] abundance ratios, have been used to test the self-enrichment scenario. A comparison is done with field halo stars and other well known Galactic globular clusters in which heavy elements have already ...

  5. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  6. Licos, a fuel performance code for innovative fuel elements or experimental devices design

    Energy Technology Data Exchange (ETDEWEB)

    Helfer, Thomas, E-mail: thomas.helfer@cea.fr; Bejaoui, Syriac, E-mail: syriac.bejaoui@cea.fr; Michel, Bruno, E-mail: bruno.michel@cea.fr

    2015-12-01

    Highlights: • The Licos fuel performance code is introduced. • Advanced features, such as dependency algorithm and kriging are described. • First results on three dimensional modelling of the SFR fuel pin are given. • Application to the DIAMINO design computations is discussed. - Abstract: This paper provides an overview of the Licos fuel performance code which has been developed for several years within the platform pleiades, co-developed by the French Alternative Energies and Atomic Energy Commission (CEA) and its industrial partners Électricité de France (EDF) and AREVA. CEA engineers have been using Licos to back multidimensional thermo-mechanical studies on innovative fuel elements design and experimental device pre-and post-irradiation computations. Studies made with Licos thus encompass a wide range of situations, including most nuclear systems used or studied in France in recent years (PWR, SFR or GFR), normal and off-normal operating conditions, and a large selection of materials (either for fuel, absorber, coolant and cladding). The aim of this paper is to give some insights about some innovative features in the design of Licos (dependency management, kriging, mfront, etc.). We also present two studies that demonstrate the flexibility of this code. The first one shows how Licos can be combined with the Germinal monodimensional fuel performance code to demonstrate the interest of a three dimensional modelling of the fuel relocation phenomenon in the Sodium Fast Reactor fuel pin. The second one describes how Licos was used to model the DIAMINO experiment.

  7. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  8. Method for measuring recovery of catalytic elements from fuel cells

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley, NJ

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  9. METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE

    Science.gov (United States)

    Smith, R.R.; Echo, M.W.; Doe, C.B.

    1963-12-31

    A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)

  10. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S; Lee, D.S. [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C.Y [Seoul National University, Seoul (Korea, Republic of)] [and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  11. Improvements in the fabrication of HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Braehler, Georg, E-mail: georg.braehler@nukemtechnologies.de [NUKEM Technologies GmbH, Industriestrasse 13, 63755 Alzenau (Germany); Hartung, Markus [NUKEM Technologies GmbH, Industriestrasse 13, 63755 Alzenau (Germany); Fachinger, Johannes; Grosse, Karl-Heinz [FNAG Furnaces Nuclear Applications Grenoble S.A.S., Wilhelm-Rohn Strasse 35, 63450 Hanau (Germany); Seemann, Richard [ALD Vacuum Technologies GmbH, Wilhelm-Rohn Strasse 35, 63450 Hanau (Germany)

    2012-10-15

    The application of High Temperature Reactor (HTR) Technology in the course of the continuously increasing world wide demand on energy is taken more and more under serious consideration in the power supply strategy of various countries. Especially for the emerging nations the HTR Technology has become of special interest because of its inherent safety feature and due to the alternative possibilities of applications, e.g. in the production of liquid hydrocarbons or the alternative application in H{sub 2} generation. The HTR fuel in its various forms (spheres or prismatic fuel blocks) is based on small fuel kernels of about 500 {mu}m in diameter. Each of these uranium oxide or carbide kernels are coated with several layers of pyrocarbon (PyC) as well as an additional silicon carbide (SiC) layer. While the inner pyrocarbon layer is porous and capable to absorb gaseous fission products, the dense outer PyC layer forms the barrier against fission product release. The SiC layer improves the mechanical strengths of this barrier and considerably increases the retention capacity for solid fission products that tent to diffuse at these temperatures. Especially the high quality German LEU TRISO spherical fuel based on the NUKEM design, has demonstrated the best fission product release rate, particular at high temperatures. The {approx}10% enriched uranium triple-coated particles are embedded in a moulded graphite sphere. A fuel sphere consists of approximately 9 g of uranium (some 15,000 particles) and has a diameter of 60 mm. As the unique safety features, especially the inherent safety of the HTR is based on the fuel design, this paper shall reflect the complexity but also developments and economical aspects of the fabrication processes for HTR fuel elements.

  12. A novel microbial fuel cell sensor with biocathode sensing element.

    Science.gov (United States)

    Jiang, Yong; Liang, Peng; Liu, Panpan; Wang, Donglin; Miao, Bo; Huang, Xia

    2017-03-02

    The traditional microbial fuel cell (MFC) sensor with bioanode as sensing element delivers limited sensitivity to toxicity monitoring, restricted application to only anaerobic and organic rich water body, and increased potential fault warning to the combined shock of organic matter/toxicity. In this study, the biocathode for oxygen reduction reaction was employed for the first time as the sensing element in MFC sensor for toxicity monitoring. The results shown that the sensitivity of MFC sensor with biocathode sensing element (7.4±2.0 to 67.5±4.0mA%(-1)cm(-2)) was much greater than that showed by bioanode sensing element (3.4±1.5 to 5.5±0.7mA%(-1)cm(-2)). The biocathode sensing element achieved the lowest detection limit reported to date using MFC sensor for formaldehyde detection (0.0005%), while the bioanode was more applicable for higher concentration (>0.0025%). There was a quicker response of biocathode sensing element with the increase of conductivity and dissolved oxygen (DO). The biocathode sensing element made the MFC sensor directly applied to clean water body monitoring, e.g., drinking water and reclaimed water, without the amending of background organic matter, and it also decreased the warning failure when challenged by a combined shock of organic matter/toxicity.

  13. Gamma-ray spectroscopy on irradiated MTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, L.A.A. E-mail: laaterre@net.ipen.br; Zeituni, C.A.; Perrotta, J.A.; Silva, J.E.R. da

    2000-08-11

    The availability of burnup data is an important requirement in any systematic approach to the enhancement of safety, economics and performance of a nuclear research reactor. This work presents the theory and experimental techniques applied to determine, by means of nondestructive gamma-ray spectroscopy, the burnup of Material Testing Reactor (MTR) fuel elements irradiated in the IEA-R1 research reactor. Burnup measurements, based on analysis of spectra that result from collimation and detection of gamma-rays emitted in the decay of radioactive fission products, were performed at the reactor pool area. The measuring system consists of a high-purity germanium (HPGe) detector together with suitable fast electronics and an on-line microcomputer data acquisition module. In order to achieve absolute burnup values, the detection set (collimator tube+HPGe detector) was previously calibrated in efficiency. The obtained burnup values are compared with ones provided by reactor physics calculations, for three kinds of MTR fuel elements with different cooling times, initial enrichment grades and total number of fuel plates. Both values show good agreement within the experimental error limits.

  14. Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Trammell, Michael P [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Qualls, A L [ORNL; Harrison, Thomas J [ORNL

    2013-01-01

    ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.

  15. Design and analysis of 19 pin annular fuel rod cluster for pressure tube type boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Deokule, A.P., E-mail: abhijit.deokule1986@gmail.com [Homi Bhabha National Institute, Trombay 400 085, Mumbai (India); Vishnoi, A.K.; Dasgupta, A.; Umasankari, K.; Chandraker, D.K.; Vijayan, P.K. [Bhabha Atomic Research Centre, Trombay 400 085, Mumbai (India)

    2014-09-15

    Highlights: • Development of 19 pin annular fuel rod cluster. • Reactor physics study of designed annular fuel rod cluster. • Thermal hydraulic study of annular fuel rod cluster. - Abstract: An assessment of 33 pin annular fuel rod cluster has been carried out previously for possible use in a pressure tube type boiling water reactor. Despite the benefits such as negative coolant void reactivity and larger heat transfer area, the 33 pin annular fuel rod cluster is having lower discharge burn up as compared to solid fuel rod cluster when all other parameters are kept the same. The power rating of this design cannot be increased beyond 20% of the corresponding solid fuel rod cluster. The limitation on the power is not due to physics parameters rather it comes from the thermal hydraulics side. In order to increase power rating of the annular fuel cluster, keeping same pressure tube diameter, the pin diameter was increased, achieving larger inside flow area. However, this reduces the number of annular fuel rods. In spite of this, the power of the annular fuel cluster can be increased by 30% compared to the solid fuel rod cluster. This makes the nineteen pin annular fuel rod cluster a suitable option to extract more power without any major changes in the existing design of the fuel. In the present study reactor physics and thermal hydraulic analysis carried out with different annular fuel rod cluster geometry is reported in detail.

  16. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    Science.gov (United States)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  17. Corrosion studies in fuel element reprocessing environments containing nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Beavers, J A; White, R R; Berry, W E; Griess, J C

    1982-04-01

    Nitric acid is universally used in aqueous fuel element reprocessing plants; however, in the processing scheme being developed by the Consolidated Fuel Reprocessing Program, some of the equipment will be exposed to nitric acid under conditions not previously encountered in fuel element reprocessing plants. A previous report presented corrosion data obtained in hyperazeotropic nitric acid and in concentrated magnesium nitrate solutions used in its preparation. The results presented in this report are concerned with the following: (1) corrosion of titanium in nitric acid; (2) corrosion of nickel-base alloys in a nitric acid-hydrofluoric acid solution; (3) the formation of Cr(VI), which enhances corrosion, in nitric acid solutions; and (4) corrosion of mechanical pipe connectors in nitric acid. The results show that the corrosion rate of titanium increased with the refreshment rate of boiling nitric acid, but the effect diminished rapidly as the temperature decreased. The addition of iodic acid inhibited attack. Also, up to 200 ppM of fluoride in 70% HNO/sub 3/ had no major effect on the corrosion of either titanium or tantalum. In boiling 8 M HNO/sub 3/-0.05 M HF, Inconel 671 was more resistant than Inconel 690, but both alloys experienced end-grain attack. In the case of Inconel 671, heat treatment was very important; annealed and quenched material was much more resistant than furnace-cooled material.The rate of oxidation of Cr(III) to Cr(VI) increased significantly as the nitric acid concentration increased, and certain forms of ruthenium in the solution seemed to accelerate the rate of formation. Mechanical connectors of T-304L stainless steel experienced end-grain attack on the exposed pipe ends, and seal rings of both stainless steel and a titanium alloy (6% Al-4% V) underwent heavy attack in boiling 8 M HNO/sub 3/.

  18. Heavy elements in Globular Clusters: the role of AGB stars

    CERN Document Server

    Straniero, Oscar; Piersanti, Luciano

    2014-01-01

    Recent observations of heavy elements in Globular Clusters reveal intriguing deviations from the standard paradigm of the early galactic nucleosynthesis. If the r-process contamination is a common feature of halo stars, s-process enhancements are found in a few Globular Clusters only. We show that the combined pollution of AGB stars with mass ranging between 3 to 6 M$_\\odot$ may account for most of the features of the s-process overabundance in M4 and M22. In these stars, the s process is a mixture of two different neutron-capture nucleosynthesis episodes. The first is due to the 13C(a,n)16O reaction and takes place during the interpulse periods. The second is due to the 22Ne(a,n)25Mg reaction and takes place in the convective zones generated by thermal pulses. The production of the heaviest s elements (from Ba to Pb) requires the first neutron burst, while the second produces large overabundances of light s (Sr, Y, Zr). The first mainly operates in the less-massive AGB stars, while the second dominates in th...

  19. Design and in-core fuel management of reload fuel elements for reactors made by other manufacturers. Auslegung und Einsatzplanung von Nachlade-Brennelementen fuer Reaktoren anderer Hersteller

    Energy Technology Data Exchange (ETDEWEB)

    Neufert, A.; Urban, P.

    1990-12-01

    By the end of 1990 Siemens had performed fuel element designs and in-core fuel management for 94 operating cycles in 27 pressurized and boiling water reactors of other manufacturers. Together with the client different fuel element designs are developed and proof is furnished of the reactor physics compatibility of different fuel elements from various producers, and of plant safety. (DG).

  20. Post irradiation examination of HANARO nucler mini-element fuel (metallographic and density test)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Ok; Hong, K. P.; Park, D. G.; Choo, Y. S.; Baik, S. J.; Kim, K. H.; Kim, H. C.; Jung, Y. H

    2001-05-01

    The post irradiation examination of a HANARO mini-element nuclear fuel, KH96C-004, was done in June 6, 2000. The purpose of this project is to evaluate the in-core performance and reliability of mini-element nuclear fuel for HANARO developed by the project ''The Nuclear Fuel Material Development of Research Reactor''. And, in order to examine the performance of mini-element nuclear fuel in normal output condition, the post irradiation examination of a nuclear fuel bundle composed by 6 mini nuclear fuel rods and 12 dummy fuel rods was performed. Based on these examination results, the safety and reliability of HANARO fuel and the basic data on the design of HANARO nuclear fuel can be ensured and obtained,.

  1. Nuclear Cryogenic Propulsion Stage (NCPS) Fuel Element Testing in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    Science.gov (United States)

    Emrich, William J., Jr.

    2017-01-01

    To satisfy the Nuclear Cryogenic Propulsion Stage (NCPS) testing milestone, a graphite composite fuel element using a uranium simulant was received from the Oakridge National Lab and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) at various operating conditions. The nominal operating conditions required to satisfy the milestone consisted of running the fuel element for a few minutes at a temperature of at least 2000 K with flowing hydrogen. This milestone test was successfully accomplished without incident.

  2. Safety assessment for the CANFLEX-NU fuel bundles with respect to the 37-element fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Suk, H. C.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    The KAERI and AECL have jointly developed an advanced CANDU fuel, called CANFLEX-NU fuel bundle. CANFLEX 43-element bundle has some improved features of increased operating margin and enhanced safety compared to the existing 37-element bundle. Since CANFLEX fuel bundle is designed to be compatible with the CANDU-6 reactor design, the behaviour in the thermalhydraulic system will be nearly identical with 37-element bundle. But due to different element design and linear element power distribution between the two bundles, it is expected that CANFLEX fuel behaviour would be different from the behaviour of the 37-element fuel. Therefore, safety assessments on the design basis accidents which result if fuel failures are performed. For all accidents selected, it is observed that the loading of CANFLEX bundle in an existing CANDU-6 reactor would not worsen the reactor safety. It is also predicted that fission product release for CANFLEX fuel bundle generally is lower than that for 37-element bundle. 3 refs., 2 figs., 2 tabs. (Author)

  3. Thermionic Fuel Element performance: TFE Verification Program. Final test report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The program objective is to demonstrate the technology readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full power life of 7 years. A TFE was designed that met the reliability and lifetime requirements for a 2 MW(e) conceptual reactor design. Analysis showed that this TFE could be used over the range of 0.5 to 5 megawatts. This was used as the basis for designing components for test and evaluation. The demonstration of a 7-year component lifetime capability was through the combined use of analytical models and accelerated, confirmatory tests in a fast test reactor. Iterative testing was performed in which the results of one test series led to evolutionary improvements in the next test specimens. The TFE components underwent screening and initial development testing in ex-reactor tests. Several design and materials options were considered for each component. As screening tests permitted, down selection occurred to very specific designs and materials. In parallel with ex-reactor testing, and fast reactor component testing, components were integrated into a TFE and tested in the TRIGA test reactor at GA. Realtime testing of partial length TFEs was used to test support, alignment and interconnective TFE components, and to verify TFE performance in-reactor with integral cesium reservoirs. Realtime testing was also used to verify the relation between TFE performance and fueled emitter swelling, to test the durability of intercell insulation, to check temperature distributions, and to verify the adequacy over time of the fission gas venting channels. Predictions of TFE lifetime rested primarily on the accelerated component testing results, as correlated and extended to realtime by the use of analytical models.

  4. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition as part of a fuel meat thickness optimization effort for reactor performance other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  5. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  6. Cluster Analysis of Indonesian Province Based on Household Primary Cooking Fuel Using K-Means

    Science.gov (United States)

    Huda, S. N.

    2017-03-01

    Each household definitely provides installations for cooking. Kerosene, which is refined from petroleum products once dominated types of primary fuel for cooking in Indonesia, whereas kerosene has an expensive cost and small efficiency. Other household use LPG as their primary cooking fuel. However, LPG supply is also limited. In addition, with a very diverse environments and cultures in Indonesia led to diversity of the installation type of cooking, such as wood-burning stove brazier. The government is also promoting alternative fuels, such as charcoal briquettes, and fuel from biomass. The use of other fuels is part of the diversification of energy that is expected to reduce community dependence on petroleum-based fuels. The use of various fuels in cooking that vary from one region to another reflects the distribution of fuel basic use by household. By knowing the characteristics of each province, the government can take appropriate policies to each province according each character. Therefore, it would be very good if there exist a cluster analysis of all provinces in Indonesia based on the type of primary cooking fuel in household. Cluster analysis is done using K-Means method with K ranging from 2-5. Cluster results are validated using Silhouette Coefficient (SC). The results show that the highest SC achieved from K = 2 with SC value 0.39135818388151. Two clusters reflect provinces in Indonesia, one is a cluster of more traditional provinces and the other is a cluster of more modern provinces. The cluster results are then shown in a map using Google Map API.

  7. ZrC COATING ON FUEL ELEMENT CLADDING ZIRCALOY-2

    Directory of Open Access Journals (Sweden)

    Etty Mutiara

    2017-02-01

    Full Text Available ZrC COATING ON FUEL ELEMENT ZIRCALOY-2 CLADDING. The intensive researchs on high discharge burn-up of Light Water Reactor (LWR fuel element were performed due to the extension of fuel element’s utility life. One of these researches was allowing for alteration of the existing zirconium-based clad system through coating. This technique is supposed to improve the corrosion resistance of cladding without changing the dimension of fuel cladding. In current research, the ZrC film was coated on the zircaloy-2 cladding surface by dipping process of zircaloy-2 specimens in colloidal graphite at room temperature. The dip-coated specimens then undergone heating process at 700oC, 900oC and 1100oC respectively in Argon gas atmosphere for 1 hour. The microstructure and crystal structure of the coated cladding were characterized by optical microscope and XRD respectively. The optical microscope showed the growth of the grains with increasing temperature. XRD examination on the specimens revealed that the ZrC crystal structure on the cladding surface occurred only at 1100oC, but it did not appear at 700oC and 900oC. It can be concluded that dipping process of specimen in colloidal graphite with subsequent heating at 1100oC provided ZrC film coated on zircaloy-2 cladding. The heating process at this temperature allowed carbon atoms to diffuse into zircaloy surface to form ZrC film. PELAPISAN ZrC PADA KELONGSONG ELEMEN BAKAR NUKLIR ZIRKALOI-2. Riset yang intensif pada elemen bakar reaktor berpendingin air dengan fraksi bakar tinggi terus dilakukan dalam rangka memperpanjang umur operasi elemen bakar. Salah satu riset tersebut berupa proses untuk mengubah kelongsong berbasis zirkonium yang ada saat ini dengan cara pelapisan. Cara ini diharapkan akan memperbaiki ketahanan korosi kelongsong tanpa mengubah dimensi kelongsong tersebut. Pada riset ini, lapisan tipis ZrC dilapiskan pada permukaan kelongsong zirkaloi-2 melalui proses pencelupan (dipping spesimen

  8. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  9. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  10. Welding procedures used in the fabrication of fuel elements for the DON Reactor exponential experiment; La soldadura en la fabricacion de elementos combustibles destinados a una experiencia exponencial

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Beltran, A.; Jaraiz Franco, E.; Rivas Diaz, M. de las

    1965-07-01

    This exponential experiment required 74 units (37 loaded with UO{sub 2} and 37 with UC) to simulate the Reactor fuel channels. Each unit was enclosed in a tube similar to the calandria ones. It contained the pressure tube, the shroud and the 19 rods cluster. Within the pressure tube, in touch with the elements, was the organic liquid. (Author)

  11. Post-irradiation data on fuel elements from KER Loop 4

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, E.C.

    1963-01-10

    Fourteen NAE1 fuel elements were discharged from KER Loop-4, after irradiation to an average exposure of 1250 MWD, at prototype N-Reactor coolant temperature and pressure. The elements were disassembled and measured in the KE fuel examination facility. This report includes all measurements, except the profilometer data.

  12. Advancements in the behavioral modeling of fuel elements and related structures

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C.; Montgomery, R.O.; Rashid, Y.R.; Head, J.L. (Argonne National Lab., IL (USA); ANATECH Research Corp., San Diego, CA (USA); Royal Naval Coll., Greenwich (UK))

    1989-01-01

    An important aspect of the design and analysis of nuclear reactors is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system. By understanding the thermomechanical behavior of the different materials which constitute a nuclear fuel element, analysis and predictions can be made regarding the integrity and reliability of fuel element designs. The SMiRT conference series, through the division on fuel elements and the post-conference seminars on fuel element modeling, provided technical forums for the international participation in the exchange of knowledge concerning the thermomechanical modeling of fuel elements. This paper discusses the technical advances in the behavioral modeling of fuel elements presented at the SMiRT conference series since its inception in 1971. Progress in the areas of material properties and constitutive relationships, modeling methodologies, and integral modeling approaches was reviewed and is summarized in light of their impact on the thermomechanical modeling of nuclear fuel elements. 34 refs., 5 tabs.

  13. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    Science.gov (United States)

    Allen, G. C.; Beck, D. F.; Harmon, C. D.; Shipers, L. R.

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program.

  14. Fatigue analysis of CANFLEX-NU fuel elements subjected to power-cyclic loads

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Ki Seob; Suk, Ho Chun

    1997-08-01

    This report describes the fatigue analysis of the CANDU advanced fuel, so-called CANFLEX-NU, subjected to power-cyclic loads more than 1,000. The CANFLEX-NU bundle is composed of 43 elements with natural uranium fuel. As a result, the CANFLEX-NU fuel elements will maintain good integrity under the condition of 1,500 power-cycles. (author). 4 refs., 19 figs.

  15. Preliminary Studies of New Water Removal Element in Purification Applications of Diesel Fuels

    Directory of Open Access Journals (Sweden)

    Ruijun Chen

    2014-01-01

    Full Text Available To effectively and efficiently remove water contamination dispersed in petrodiesel fuels, a new water removal element with both coalescence and separation features is studied in this paper. The unique droplet coalescence and separation mechanism occurring in the new water removal element is proposed. The conceptual design of this filter element is presented and the basic features of FCP filtration systems are briefly introduced. A laboratory test stand and fuel analysis procedure are described. The results from preliminary water removal tests with number 2 petrodiesel fuel demonstrate the filtration performance of the new water removal element. For example, within one single fuel flow pass through FCP filtration system equipped with the new water removal element and running at 2 GPM flow rate, the water content in 80°F, number 2 petrodiesel fuel stream can be reduced from up to 40,000 ppm upstream to 64.8 ppm or less downstream.

  16. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  17. Nonuniform Oxidation on the Surface of Fuel Element in HTR

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-01-01

    Full Text Available The graphite oxidation of fuel element has obtained high attention in air ingress accident analysis of high temperature gas-cooled reactor (HTR. The shape function, defined as the relationship between the maximum and the average of the oxidation, is an important factor to estimate the consequence of the accident. There are no detailed studies on the shape function currently except two experiments several decades ago. With the development of computer technology, CFD method is used in the numerical experiment about graphite oxidation in pebble bed of HTR in this paper. Structured packed beds are used in the calculation instead of random packed beds. The result shows the nonuniform distribution of oxidation on the sphere surface and the shape function in the condition of air ingress accident. Furthermore, the sensitive factors of shape function, such as temperature and Re number, are discussed in detail and the relationship between the shape function and sensitive factors is explained. According to the results in this paper, the shape function ranges from 1.05 to 4.7 under the condition of temperature varying from 600°C to 1200°C and Re varying from 16 to 1600.

  18. Single-element coaxial injector for rocket fuel

    Science.gov (United States)

    Larson, L. L.

    1969-01-01

    Improved injector for oxygen difluoride and diborane has better mixing characteristics and is able to project fuel onto the wall of the combustion chamber for better cooling. It produces an essentially conical, diverging, continuous sheet of propellant mixture formed by similarly shaped and continuously impinging sheets of fuel and oxidant.

  19. 77 FR 16868 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Science.gov (United States)

    2012-03-22

    ... COMMISSION Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors,'' is temporarily identified... verifying the quality of plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs...

  20. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Science.gov (United States)

    2013-06-03

    ... COMMISSION Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test... Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). ADDRESSES: Please...

  1. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Fuel Element Fabrication Plant... Appendix O to Part 110—Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority Note: Nuclear fuel elements are manufactured from source or...

  2. A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements

    Science.gov (United States)

    Makmal, T.; Aviv, O.; Gilad, E.

    2016-10-01

    A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections.

  3. Accelerator-driven transmutation of spent fuel elements

    Science.gov (United States)

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  4. Pumped lithium loop test to evaluate advanced refractory metal alloys and simulated nuclear fuel elements

    Science.gov (United States)

    Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.

    1974-01-01

    The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.

  5. Douglas United Nuclear, Inc. report to the Working Committee of the Fuel Element Development Committee

    Energy Technology Data Exchange (ETDEWEB)

    Stringer, J.T.

    1966-05-04

    This document provides the report to the working committee of the fuel element development committee for small and K reactor production fuels. Topics discussed are: Uranium core production data; uranium specification; future planning -- five year R&D program; thoria development; heat treating; UO{sub 2} irradiation; and alternate process development.

  6. Experimental investigation of fuel evaporation in the vaporizing elements of combustion chambers

    Science.gov (United States)

    Vezhba, I.

    1979-01-01

    A description is given of the experimental apparatus and the methods used in the investigation of the degree of fuel (kerosene) evaporation in two types of vaporizing elements in combustion chambers. The results are presented as dependences of the degree of fuel evaporation on the factors which characterize the functioning of the vaporizing elements: the air surplus coefficient, the velocity of flow and temperature of the air at the entrance to the vaporizing element and the temperature of the wall of the vaporizing element.

  7. Non-destructive control of cladding thickness of fuel elements for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, Y.; Zhukov, Y.; Chashchin, S

    1997-07-01

    The control method of fuel elements for research reactors by means of measuring beta particles back scattering made it possible to perform complete automatic non-destructive control of internal and external claddings at our plant. This control gives high guarantees of the fuel element correspondence to the requirements. The method can be used to control the three-layer items of different geometry, including plates. (author)

  8. Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element

    Science.gov (United States)

    Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.

    2013-01-01

    In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis

  9. Distribution of fission products in Peach Bottom HTGR fuel element E11-07

    Energy Technology Data Exchange (ETDEWEB)

    Wichner, R.P.; Dyer, F.F.; Martin, W.J.; Bate, L.C.

    1977-04-01

    This is the second in a projected series of six post-irradiation examinations of Peach Bottom High-Temperature Gas-Cooled Reactor driver fuel elements. Element E11-07, the subject of this report, received an equivalent of 701 full-power days of irradiation prior to scheduled withdrawal. The examination procedures emphasized the determination of fission product distributions in the graphite portions of the fuel element. Continuous axial scans indicated a /sup 137/Cs inventory of 17 Ci in the graphite sleeve and 8.3 Ci in the spine at the time of element withdrawal from the core. In addition, the nuclides /sup 134/Cs, /sup 110m/Ag, /sup 60/Co, and /sup 154/Eu were found in the graphite portions of the fuel element in significant amounts. Radial distributions of these nuclides plus the distribution of the beta emitters /sup 3/H, /sup 14/C, and /sup 90/Sr were obtained at six axial locations, four within the fueled region and one each above and below. The radial dissection was accomplished by use of a manipulator-operated lathe in a hot cell. These profiles reveal an increased degree of penetration of /sup 134/Cs, relative to /sup 137/Cs, evidently due to a longer time spent as xenon precursor. In addition to fission product distribution, the appearance of the element components was recorded photographically, fuel compact and graphite dimensions were recorded at numerous locations, and metallographic examinations of the fuel were performed.

  10. Manufacturing of 37-element fuel bundles for PHWR 540 - new approach

    Energy Technology Data Exchange (ETDEWEB)

    Arora, U.K.; Sastry, V.S.; Banerjee, P.K.; Rao, G.V.S.H.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. Atomic Energy, Government of India, Hyderabad (India)

    2003-07-01

    Nuclear Fuel Complex (NFC), established in early seventies, is a major industrial unit of Department of Atomic Energy. NFC is responsible for the supply of fuel bundles to all the 220 MWe PHWRs presently in operation. For supplying fuel bundles for the forthcoming 540 MWe PHWRs, NEC is dovetailing 37-element fuel bundle manufacturing facilities in the existing plants. In tune with the philosophy of self-reliance, emphasis is given to technology upgradation, higher customer satisfaction and application of modern quality control techniques. With the experience gained over the years in manufacturing 19-element fuel bundles, NEC has introduced resistance welding of appendages on fuel tubes prior to loading of UO{sub 2} pellets, use of bio-degradable cleaning agents, simple diagnostic tools for checking the equipment condition, on line monitoring of variables, built-in process control methods and total productive maintenance concepts in the new manufacturing facility. Simple material handling systems have been contemplated for handling of the fuel bundles. This paper highlights the flow-sheet adopted for the process, design features of critical equipment and the methodology for fabricating the 37-element fuel bundles, 'RIGHT FIRST TIME'. (author)

  11. Thermalhydraulics of advanced 37-element fuel bundle in crept pressure tubes

    Directory of Open Access Journals (Sweden)

    Park Joo Hwan

    2016-01-01

    Full Text Available A CANDU-6 reactor, which has 380 fuel channels of a pressure tube type, is suffering from aging or creep of the pressure tubes. Most of the aging effects for the CANDU primary heat transport system were originated from the horizontal crept pressure tubes. As the operating years of a CANDU reactor proceed, a pressure tube experiences high neutron irradiation damage under high temperature and pressure. The crept pressure tube can deteriorate the Critical Heat Flux (CHF of a fuel channel and finally worsen the reactor operating performance and thermal margin. Recently, the modification of the central subchannel area with increasing inner pitch length of a standard 37-element fuel bundle was proposed and studied in terms of the dryout power enhancement for the uncrept pressure tube since a standard 37-element fuel bundle has a relatively small flow area and high flow resistance at the central region. This study introduced a subchannel analysis for the crept pressure tubes loaded with the inner pitch length modification of a standard 37-element fuel bundle. In addition, the subchannel characteristics were investigated according to the flow area change of the center subchannels for the crept pressure tubes. Also, it was discussed how much the crept pressure tubes affected the thermalhydraulic characteristics of the fuel channel as well as the dryout power for the modification of a standard 37-element fuel bundle.

  12. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pope, M. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, M. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morrell, S. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jamison, R. K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nef, E. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nigg, D. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  13. BEAM 1.7: development for modelling fuel element and bundle buckling strength

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, G.; Xu, S.; Xu, Z.; Paul, U.K. [Atomic Energy of Canada, Mississauga, Ontario (Canada)

    2010-07-01

    This paper describes BEAM, an AECL developed computer program, used to assess mechanical integrity of CANDU fuel bundles. The BEAM code has been developed to satisfy the need for buckling strength analysis of fuel bundles. Buckling refers to the phenomenon where a compressive axial load is large enough that a small lateral load can cause large lateral deflections. The buckling strength refers to the critical compressive axial load at which lateral instability is reached. The buckling strength analysis has practical significance for the design of fuel bundles, where the buckling strength of a fuel element/bundle is assessed so that the conditions leading to bundle jamming in the pressure tube are excluded. This paper presents the development and qualification of the BEAM code, with emphasis on the theoretical background and code implementation of the newly developed fuel element/bundle buckling strength model. (author)

  14. Advanced Automotive Fuels Research, Development, and Commercialization Cluster (OH)

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, Clovis; Hripko, Michael; Abraham, Martin; Balendiran, Ganesaratnam; Hunter, Allen; Lovelace-Cameron, Sherri; Mette, Howard; Price, Douglas; Walker, Gary; Wang, Ruigang

    2013-08-31

    Technical aspects of producing alternative fuels that may eventually supplement or replace conventional the petroleum-derived fuels that are presently used in vehicular transportation have been investigated. The work was centered around three projects: 1) deriving butanol as a fuel additive from bacterial action on sugars produced from decomposition of aqueous suspensions of wood cellulose under elevated temperature and pressure; 2) using highly ordered, openly structured molecules known as metal-organic framework (MOF) compounds as adsorbents for gas separations in fuel processing operations; and 3) developing a photocatalytic membrane for solar-driven water decomposition to generate pure hydrogen fuel. Several departments within the STEM College at YSU contributed to the effort: Chemistry, Biology, and Chemical Engineering. In the butanol project, sawdust was blended with water at variable pH and temperature (150 – 250{degrees}C), and heated inside a pressure vessel for specified periods of time. Analysis of the extracts showed a wide variety of compounds, including simple sugars that bacteria are known to thrive upon. Samples of the cellulose hydrolysate were fed to colonies of Clostridium beijerinckii, which are known to convert sugars to a mixture of compounds, principally butanol. While the bacteria were active toward additions of pure sugar solutions, the cellulose extract appeared to inhibit butanol production, and furthermore encouraged the Clostridium to become dormant. Proteomic analysis showed that the bacteria had changed their genetic code to where it was becoming sporulated, i.e., the bacteria were trying to go dormant. This finding may be an opportunity, as it may be possible to genetically engineer bacteria that resist the butanol-driven triggering mechanism to stop further fuel production. Another way of handling the cellulosic hydrolysates was to simply add the enzymes responsible for butanol synthesis to the hydrolytic extract ex-vivo. These

  15. Non-destructive-Testing of Nuclear Fuel Element by Means of Neutron Imaging Technique

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Nuclear fuel element is the key component of nuclear reactor. People have to make strictly testing of the element to make sure the reactor operating safely. Neutron imaging is one of Non-destructive-Testing (NDT) techniques, which are very important techniques for

  16. Burn-up and Operation Time of Fuel Elements Produced in IPEN

    Science.gov (United States)

    Tondin, Julio Benedito Marin; Filho, Tufic Madi

    2011-08-01

    The aim of this paper is to present the developed work along the operational and reliability tests of fuel elements produced in the Institute of Energetic and Nuclear Research, IPEN-CNEN/SP, from the 1980's. The study analyzed the U-235 burn evolution and the element remain in the research reactor IEA-R1. The fuel elements are of the type MTR (Material Testing Reactor), the standard with 18 plates and a 12-plate control, with a nominal mean enrichment of 20%.

  17. Sipping test update device for fuel elements cladding inspections in IPR-r1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R.R.; Mesquita, A.Z.; Andrade, E.P.D.; Gual, Maritza R., E-mail: rrr@cdtn.br, E-mail: amir@cdtn.br, E-mail: edson@cdtn.br, E-mail: maritzargual@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    It is in progress at the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN (Nuclear Technology Development Center), a research project that aims to investigate possible leaks in the fuel elements of the TRIGA reactor, located in this research center. This paper presents the final form of sipping test device for TRIGA reactor, and results of the first experiments setup. Mechanical support strength tests were made by knotting device on the crane, charged with water from the conventional water supply, and tests outside the reactor pool with the use of new non-irradiated fuel elements encapsulated in stainless steel, and available safe stored in this unit. It is expected that tests with graphite elements from reactor pool are done soon after and also the test experiment with the first fuel elements in service positioned in the B ring (central ring) of the reactor core in the coming months. (author)

  18. Peculiarities of the abundances of neutron-capture elements in Galactic open clusters

    CERN Document Server

    Marsakov, V A; Koval', V V; Shpigel', L V

    2016-01-01

    The properties of the relative abundances of rapid and slow neutron-capture elements are studied using a catalog containing spectroscopic abundance determinations for 14~elements produced in various nuclear-synthesis processes for 90~open clusters. The catalog also contains the positions, ages, velocities, and elements of the Galactic orbits of the clusters. The relative abundances of both $r$-elements (Eu) and $s$-elements (Y, Ba, La, and Ce) in clusters with high, elongated orbits and in field stars of the Galactic thin disk display different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits, supporting the view that these objects have different natures. In young clusters, not only barium, but also the three other studied $s$-elements display significantly higher relative abundances than field stars of the same metallicity. The relative abundances of Eu are lower in high-metallicity clusters (${\\rm [Fe/H]} > -0.1$) with high, elongated orbits than in field gia...

  19. Analytical Solution of Fick's Law of the TRISO-Coated Fuel Particles and Fuel Elements in Pebble-Bed High Temperature Gas-Cooled Reactors

    Institute of Scientific and Technical Information of China (English)

    CAO Jian-Zhu; FANG Chao; SUN Li-Feng

    2011-01-01

    T wo kinds of approaches are built to solve the fission products diffusion models (Fick's equation) based on sphere fuel particles and sphere fuel elements exactly. Two models for homogenous TRISO-coated fuel particles and fuel elements used in pebble-bed high temperature gas-cooled reactors are presented, respectively. The analytica,solution of Fick's equation for fission products diffusion in fuel particles is derived by variables separation.In the fuel element system, a modification of the diffusion coefficient from D to D/r is made to characterize the difference of diffusion rates in distinct areas and it is shown that the Laplace and Hankel transformations are effective as the diffusion coefficient in Fick's equation is dependant on the radius of the fuel element. Both the solutions are useful for the prediction of the fission product behaviors and could be programmed in the corresponding engineering calculations.%@@ Two kinds of approaches are built to solve the fission products diffusion models(Fick's equation) based on sphere fuel particles and sphere fuel elements exactly.Two models for homogenous TRISO-coated fuel particles and fuel elements used in pebble-bed high temperature gas-cooled reactors are presented,respectively.The analytical solution of Fick's equation for fission products diffusion in fuel particles is derived by variables separation.In the fuel element system,a modification of the diffusion coefficient from D to D/r is made to characterize the difference of diffusion rates in distinct areas and it is shown that the Laplace and Hankel transformations are effective as the diffusion coefficient in Fick's equation is dependant on the radius of the fuel element.Both the solutions are useful for the prediction of the fission product behaviors and could be programmed in the corresponding engineering calculations.

  20. Chemical Gradients in Crud on Boiling Water Reactor Fuel Elements

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Porter; D. E. Janney

    2007-04-01

    Crud (radioactive corrosion products formed inside nuclear reactors is a major problem in commercial power-producing nuclear reactors. Although there are numerous studies of simulated (non-radioactive) crud, characteristics of crud from actual reactors are rarely studied. This study reports scanning electron microscope (SEM) studies of fragments of crud from a commercially operating boiling water reactor. Chemical analyses in the SEM indicated that the crud closest to the outer surfaces of the fuel pins in some areas had Fe:Zn ratios close to 2:1, which decreased away from the fuel pin in some of the fragments. In combination with transmission electron microsope analyses (published elsewhere), these results suggest that the innermost layer of crud in some areas may consist of franklinite (ZnFe2O4, also called zinc spinel), while outer layers in these areas may be predominantly iron oxides.

  1. Chordate Hox and ParaHox gene clusters differ dramatically in their repetitive element content.

    Science.gov (United States)

    Osborne, Peter W; Ferrier, David E K

    2010-02-01

    The ParaHox and Hox gene clusters control aspects of animal anterior-posterior development and are related as paralogous evolutionary sisters. Despite this relationship, it is not clear if the clusters operate in similar ways, with similar constraints. To compare clusters, we examined the transposable-element (TE) content of amphioxus and mammalian ParaHox and Hox clusters. Chordate Hox clusters are known to be largely devoid of TEs, possibly due to gene regulation and constraints on clustering in these animals. Here, we describe several novel amphioxus TEs and show that the amphioxus ParaHox cluster is a hotspot for TE insertion. TE contents of mammalian ParaHox loci are at background levels, in stark contrast to chordate Hox clusters. This marks a significant difference between Hox and ParaHox clusters. The presence of so many potentially disruptive elements implies selection constrains these ParaHox clusters as they have not dispersed despite 500 My of evolution for each lineage.

  2. Wind-Aided Firespread Across Arrays of Discrete Fuel Elements

    Science.gov (United States)

    1990-10-01

    Ph.D. thesis, Department of Chemical Engineering. Fredericton , Canada: University of New Brunswick. Fang, J. B., and Steward, F. R. 1969 Flame spread... Fredericton , Canada: University of New Brunswick. Steward, F. R., and Tennankore, K. N. 1981 The measurement of the burning rate of an individual dowel in a...1973 Flame spread through uniform fuel matrices. Report, Fire Science Center. Fredericton , Canada: University of New Brunswick. Steward, F. R

  3. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE

    2012-06-26

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  4. Standard laboratory hydraulic pressure drop characteristics of various solid and I&E fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Waters, E.D.; Horn, G.R.

    1958-01-20

    The purpose of this report is to present a set of standard pressure-drop curves for various fuel elements in process tubes of Hanford reactors. The flow and pressures within a process tube assembly under normal conditions are dependent to a large extent on the magnitude of the pressure drop across the fuel elements. The knowledge of this pressure drop is important in determination of existing thermal conditions within the process tubes and in predicting conditions for new fuel element designs or changes in operating conditions. The pressure-flow relations for the different Hanford fuel element-process tube assemblies have all been determined at one time or another in the 189-D Hydraulics Laboratory but the data had never been collected into a single report. Such a report is presented now in the interest of establishing a set of ``standard curves`` as determined by laboratory investigations. It must be recognized that the pressure drops of fuel elements in actual process tubes in the reactors may be slightly different than those reported here. The data presented here were obtained in new process tubes while reactor process tubes are usually either corroded or filmed, depending on their past history.

  5. Calculation of Dipole Transition Matrix Elements and Expectation Values by Vibrational Coupled Cluster Method.

    Science.gov (United States)

    Banik, Subrata; Pal, Sourav; Prasad, M Durga

    2010-10-12

    An effective operator approach based on the coupled cluster method is described and applied to calculate vibrational expectation values and absolute transition matrix elements. Coupled cluster linear response theory (CCLRT) is used to calculate excited states. The convergence pattern of these properties with the rank of the excitation operator is studied. The method is applied to a water molecule. Arponen-type double similarity transformation in extended coupled cluster (ECCM) framework is also used to generate an effective operator, and the convergence pattern of these properties is compared to the normal coupled cluster (NCCM) approach. It is found that the coupled cluster method provides an accurate description of these quantities for low lying vibrational excited states. The ECCM provides a significant improvement for the calculation of the transition matrix elements.

  6. Open Cluster Neutron Capture Element Abundances and Milky Way Disk Evolution

    Science.gov (United States)

    Jacobson, Heather R.; Friel, E. D.

    2012-01-01

    Open clusters, whose ages and distances can be precisely determined, are useful probes of the chemical evolution of the Milky Way disk. The sample sizes of clusters subject to homogeneous analysis of high resolution spectra have grown in recent years, and increased attention has turned to measuring the abundances of neutron capture elements. The relative abundances of r-process elements (e.g., europium) to s-process elements (e.g., barium, lanthanum and zirconium) in cluster stars reveal the relative contributions of Type II supernovae and low-mass AGB stars to the chemical evolution of the galactic disk. A recent study of cluster s-process element abundances has revealed a surprising trend of increasing s-process element abundance ([s/Fe]) with decreasing cluster age, at odds with current s-process yield predictions (D'Orazi et al. 2009, Maiorca et al. 2011). We have undertaken an analysis of Zr, Ba, La, and Eu abundances in 17 open clusters based on high resolution optical spectra. The sample spans 700 Myr to 10 Gyr in age and Rgc 7-22 kpc in galactocentric distance, allowing for the exploration of neutron capture [x/Fe] ratios as a function of age and location in the disk. Preliminary results confirm the trend of enhanced [s/Fe] with decreasing cluster age found by other studies, though with a weaker correlation. Here we present the latest results of this analysis, including newly-determined abundances for the r-process element Eu for an expanded cluster sample that includes outer disk objects. This research is supported by a National Science Foundation Astronomy and Astrophysics Postdoctoral Fellowship to HRJ under award AST-0901919.

  7. GEH-4-63, 64: Proposal for irradiation of production brazed Zircaloy-2 clad fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Tverberg, J.C.

    1961-05-18

    A brazed end closure is currently being used on prototypical NPR fuel elements. The production closure will use a braze alloy composed of 5% Be + 95% Zry-2 to braze the Zircaloy-2 cap to the jacket and to the metallic uranium core. A similar MTR test, a GEH-4-57, 58, used a braze alloy of the composition 4% Be + 12% Fe + 84% Zry-2 which melts at a lower temperature. In this previous test, element GEH-4-57 failed through a cladding defect located at the base of the braze heat affected zone. Because of this failure it would be desirable to subject a fuel element, which had been subjected to more severe brazing conditions, to the same conditions as GEH-4-57, 58. For this reason the thermal conditions of this test essentially match those of GEH-4-57, 58. This irradiation test consists of two identical fuel elements. The fuel material is normal metallic uranium, Zircaloy-2 clad of the tubular geometry, NPR inner size. The fuel was coextruded at Hanford by General Electric`s Fuels Preparation Department. Each element is 10.8 inches in length with flat Zircaloy-2 end caps brazed to the jacket and uranium core with the 5 Be + 95 Zry-2 brazing alloy, then TIG welded to further insure closure integrity. The elements ar 1.254 inches OD and 0.439 inches ID. For hydraulic purposes a 0.343 inch diamater flow restrictor has been fitted into the central flow channel of both elements.

  8. The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC\\,6705

    CERN Document Server

    Cantat-Gaudin, T; Zaggia, S; Bragaglia, A; Sordo, R; Drew, J E; Eisloeffel, J; Farnhill, H J; Gonzalez-Solares, E; Greimel, R; Irwin, M J; Kupcu-Yoldas, A; Jordi, C; Blomme, R; Sampedro, L; Costado, M T; Alfaro, E; Smiljanic, R; Magrini, L; Donati, P; Friel, E D; Jacobson, H; Abbas, U; Hatzidimitriou, D; Spagna, A; Vecchiato, A; Balaguer-Nunez, L; Lardo, C; Tosi, M; Pancino, E; Klutsch, A; Tautvaisiene, G; Drazdauskas, A; Puzeras, E; Jimenez-Esteban, F; Maiorca, E; Geisler, D; San, I; Villanova, S; Gilmore, G; Randich, S; Bensby, T; Flaccomio, E; Lanzafame, A; Recio-Blanco, A; Damiani, F; Hourihane, A; Jofre, P; deLaverny, P; Masseron, T; Morbidelli, L; Prisinzano, L; Sacco, G G; Sbordone, L; Worley, C C

    2014-01-01

    Chemically inhomogeneous populations are observed in most globular clusters, but not in open clusters. Cluster mass seems to play a key role in the existence of multiple populations. Studying the chemical homogeneity of the most massive open clusters is necessary to better understand the mechanism of their formation and determine the mass limit under which clusters cannot host multiple populations. Here we studied NGC6705, that is a young and massive open cluster located towards the inner region of the Milky Way. This cluster is located inside the solar circle. This makes it an important tracer of the inner disk abundance gradient. This study makes use of BVI and ri photometry and comparisons with theoretical isochrones to derive the age of NGC6705. We study the density profile of the cluster and the mass function to infer the cluster mass. Based on abundances of the chemical elements distributed in the first internal data release of the Gaia-ESO Survey, we study elemental ratios and the chemical homogeneity ...

  9. Oxide fuel element and blanket element development programs. Quarterly progress report, January-February-March, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fuel pin profilometry of some 9% burnup F20-F5 pins showed small diameter increases at the fuel-insulator interface at the top of the core. Neither these secondary peaks nor the larger diameter increases near the core midplane exhibited any relationship to the local presence of once-molten fuel in any F20 fuel pin. Augmented safety analysis computations for experiment AB-1 (additional transients suggested by HEDL) showed that cumulative damage fractions from the additional transients were in every case less than 10/sup -4/. Mechanical tests have been performed that confirm previous computations for the removal end plugs to be used in a characterizer subassembly for AB-1. The resulting pin removal forces are well within the design envelope.

  10. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    Science.gov (United States)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  11. Metal-Element Compounds of Titanium, Zirconium, and Hafnium as Pyrotechnic Fuels

    Science.gov (United States)

    2015-05-04

    1-11 1 METAL-ELEMENT COMPOUNDS OF TITANIUM, ZIRCONIUM , AND HAFNIUM AS PYROTECHNIC FUELS Anthony P. Shaw,* Rajendra K. Sadangi, Jay C...have started to explore the pyrotechnic properties of other inorganic compounds, particularly those of titanium, zirconium , and hafnium. The...The group 4 metals—titanium, zirconium , and hafnium—are potent pyrotechnic fuels. However, the metals themselves are often pyrophoric as fine

  12. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  13. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  14. Review: Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Jappe Frandsen, Flemming;

    2015-01-01

    Cement production is an energy-intensive process, which traditionally has been dependent on fossil fuels. However, the use of alternative fuels, i.e., selected waste, biomass, and byproducts with recoverable calorific value, is constantly increasing. Combustion of these fuels is more challenging......, compared to fossil fuels, because of a lack of experience and different chemical and physical properties. When complete oxidation Of fuels in the calciner and main burner is not achieved, they burn in direct contact with the bed material of the rotary kiln, causing local reducing conditions and increasing...... the internal circulation of S, Cl, Na, and K. Compounds containing these elements, such as alkali salts, evaporate when exposed to high temperatures and subsequently condense in colder parts of the plant. The transformation of the volatile inorganic species at different locations in the cement plant...

  15. Self-Assembly of Hexanuclear Clusters of 4f and 5f Elements with Cation Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Diwu, J.; Good, Justin J.; DiStefano, Victoria H.; Albrecht-Schmitt, Thomas E.

    2011-02-10

    Six hexanuclear clusters of 4f and 5f elements were synthesized by room-temperature slow concentration experiments. Cerium(IV), thorium(IV), and plutonium(IV) each form two different hexanuclear clusters, among which the cerium and plutonium clusters are isotypic, whereas the thorium clusters show more diversity. The change in ionic radii of approximately 0.08 Å between these different metal ions tunes the cavity size so that NH{sub 4}{sup +} (1.48 Å) has the right dimensions to assemble the cerium and plutonium clusters, whereas Cs{sup +} (1.69 Å) is necessary to assemble the thorium clusters. If these cations are not used in the reactions, only amorphous material is obtained.

  16. Multivariate cluster analysis of some major and trace elements ...

    African Journals Online (AJOL)

    UFUOMA

    physical properties of texture and colour. Key words: ... Ca and trace elements Mn, Zn, Cu, Zr, Sr, Y, Pb, V, Cr,. Ga, Ni and Rb ... 5.0 g of each of the homogenized soil samples and adding 25.0ml of de-ionized .... 425 cm depth and decreases to 16.00 mg/kg at 500 cm. .... However, pH affects the dissolution, precipitation and.

  17. Characterizing high-temperature deformation of internally heated nuclear fuel element simulators

    Energy Technology Data Exchange (ETDEWEB)

    Belov, A.I.; Fong, R.W.L.; Leitch, B.W.; Nitheanandan, T.; Williams, A., E-mail: alexander.belov@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The sag behaviour of a simulated nuclear fuel element during high-temperature transients has been investigated in an experiment utilizing an internal indirect heating method. The major motivation of the experiment was to improve understanding of the dominant mechanisms underlying the element thermo-mechanical response under loss-of-coolant accident conditions and to obtain accurate experimental data to support development of 3-D computational fuel element models. The experiment was conducted using an electrically heated CANDU fuel element simulator. Three consecutive thermal cycles with peak temperatures up to ≈1000 {sup o}C were applied to the element. The element sag deflections and sheath temperatures were measured. On heating up to 600 {sup o}C, only minor lateral deflections of the element were observed. Further heating to above 700 {sup o}C resulted in an element multi-rate creep and significant permanent bow. Post-test visual and X-ray examinations revealed a pronounced necking of the sheath at the pellet-to-pellet interface locations. A wall thickness reduction was detected in the necked region that is interpreted as a sheath longitudinal strain localization effect. The sheath cross-sectioning showed signs of a 'hard' pellet-cladding interaction due to the applied cycles. A 3-D model of the experiment was generated using the ANSYS finite element code. As a fully coupled thermal mechanical simulation is computationally expensive, it was deemed sufficient to use the measured sheath temperatures as a boundary condition, and thus an uncoupled mechanical simulation only was conducted. The ANSYS simulation results match the experiment sag observations well up to the point at which the fuel element started cooling down. (author)

  18. Comparison of Material Behavior of Matrix Graphite for HTGR Fuel Elements upon Irradiation: A literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The fuel elements for the HTGRs (i.e., spherical fuel element in pebble-bed type core design and fuel compact in prismatic core design) consists of coated fuel particles dispersed and bonded in a closely packed array within a carbonaceous matrix. This matrix is generally made by mixing fully graphitized natural and needle- or pitchcoke originated powders admixed with a binder material (pitch or phenolic resin), The resulting resinated graphite powder mixture, when compacted, may influence a number of material properties as well as its behavior under neutron irradiation during reactor operation. In the fabrication routes of these two different fuel element forms, different consolidation methods are employed; a quasi-isostatic pressing method is generally adopted to make pebbles while fuel compacts are fabricated by uni-axial pressing mode. The result showed that the hardness values obtained from the two directions showed an anisotropic behavior: The values obtained from the perpendicular section showed much higher micro hardness (176.6±10.5MPa in average) than from the parallel section ((125.6±MPa in average). This anisotropic behavior was concluded to be related to the microstructure of the matrix graphite. This may imply that the uni-axial pressing method to make compacts influence the microstructure of the matrix and hence the material properties of the matrix graphite.

  19. Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles, A.E.

    1990-10-12

    The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results are related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.

  20. Vibration behavior of fuel-element vibration suppressors for the advanced power reactor

    Science.gov (United States)

    Adams, D. W.; Fiero, I. B.

    1973-01-01

    Preliminary shock and vibration tests were performed on vibration suppressors for the advanced power reactor for space application. These suppressors position the fuel pellets in a pin type fuel element. The test determined the effect of varying axial clearance on the behavior of the suppressors when subjected to shock and vibratory loading. The full-size suppressor was tested in a mockup model of fuel and clad which required scaling of test conditions. The test data were correlated with theoretical predictions for suppressor failure. Good agreement was obtained. The maximum difference with damping neglected was about 30 percent. Neglecting damping would result in a conservative design.

  1. Ab initio random structure search for 13-atom clusters of fcc elements.

    Science.gov (United States)

    Chou, J P; Hsing, C R; Wei, C M; Cheng, C; Chang, C M

    2013-03-27

    The 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd13 and Au13, we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au13, which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons.

  2. Clad thickness variation N-Reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.A.

    1966-05-12

    The current specifications for the cladding on {open_quotes}N{close_quotes} fuels were established early in the course of process development and were predicted on several basic considerations. Among these were: (a) a desire to provide an adequate safety factor in cladding thickness to insure against corrosion penetration and rupture from uranium swelling stresses; (b) an apprehension that the striations in the zircaloy cladding of the U/zircaloy interface and on the exterior surface might serve as stress-raisers, leading to untimely failures of the jacket; and (c) then existing process capability - the need to maintain a specified ratio between zircaloy and uranium in the billet assembly to effect satisfactory coextrusion. It now appears appropriate to review these specifications in an effort to determine whether some of them may be revised, with attendant gains in economy and/or operating smoothness.

  3. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  4. Nerva Fuel Element Development Program Summary Report - July 1966 through June 1972 Extrusion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Napier, J. M.

    1973-09-21

    This part of the completion report pertaining to the NERVA graphite fuel element program covers data collected during the extrusion studies. The physical properties of the fuel element reached the following values: coefficient of thermal expansion (CTE) - 7.0 x 10-6/o C (25 - l,OOOo C); modulus of elasticity - 1.5 x lo6 psi; flexural strength - - 8,000 psi; ultimate strain to failure - 5,500 pidin; good thermal stress resistance. Matrices were produced which could be vapor coated with crack-free films of zirconium carbide. The CTE of the matrix was almost equal to the CTE of the zirconium carbide coating.

  5. Molecular Gas in the Halo Fuels the Growth of a Massive Cluster Galaxy at High Redshift

    CERN Document Server

    Emonts, B H C; Villar-Martin, M; Norris, R P; Ekers, R D; van Moorsel, G A; Dannerbauer, H; Pentericci, L; Miley, G K; Allison, J R; Sadler, E M; Guillard, P; Carilli, C L; Mao, M Y; Rottgering, H J A; De Breuck, C; Seymour, N; Gullberg, B; Ceverino, D; Jagannathan, P; Vernet, J; Indermuehle, B T

    2016-01-01

    The largest galaxies in the Universe reside in galaxy clusters. Using sensitive observations of carbon-monoxide, we show that the Spiderweb Galaxy -a massive galaxy in a distant protocluster- is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched inter-galactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb Galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift.

  6. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements

    Science.gov (United States)

    Melendez, Matthew; O'Connell, Julia; Frinchaboy, Peter M.; Donor, John; Cunha, Katia M. L.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Stassun, Keivan G.; APOGEE Team

    2017-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are very limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.This work is supported by an NSF AAG grant AST-1311835.

  7. Molybdenum-99-producing 37-element fuel bundle neutronically and thermal-hydraulically equivalent to a standard CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: Eleodor.Nichita@uoit.ca; Haroon, J., E-mail: Jawad.Haroon@uoit.ca

    2016-10-15

    Highlights: • A 37-element fuel bundle modified for {sup 99}Mo production in CANDU reactors is presented. • The modified bundle is neutronically and thermal-hydraulically equivalent to the standard bundle. • The modified bundle satisfies all safety criteria satisfied by the standard bundle. - Abstract: {sup 99m}Tc, the most commonly used radioisotope in diagnostic nuclear medicine, results from the radioactive decay of {sup 99}Mo which is currently being produced at various research reactors around the globe. In this study, the potential use of CANDU power reactors for the production of {sup 99}Mo is investigated. A modified 37-element fuel bundle, suitable for the production of {sup 99}Mo in existing CANDU-type reactors is proposed. The new bundle is specifically designed to be neutronically and thermal-hydraulically equivalent to the standard 37-element CANDU fuel bundle in normal, steady-state operation and, at the same time, be able to produce significant quantities of {sup 99}Mo when irradiated in a CANDU reactor. The proposed bundle design uses fuel pins consisting of a depleted-uranium centre surrounded by a thin layer of low-enriched uranium. The new molybdenum-producing bundle is analyzed using the lattice transport code DRAGON and the diffusion code DONJON. The proposed design is shown to produce 4081 six-day Curies of {sup 99}Mo activity per bundle when irradiated in the peak-power channel of a CANDU core, while maintaining the necessary reactivity and power rating limits. The calculated {sup 99}Mo yield corresponds to approximately one third of the world weekly demand. A production rate of ∼3 bundles per week can meet the global demand of {sup 99}Mo.

  8. The Detailed Chemical Properties of M31 Star Clusters I. Fe, Alpha and Light Elements

    CERN Document Server

    Colucci, J E; Cohen, J

    2014-01-01

    We present ages, [Fe/H] and abundances of the alpha elements Ca I, Si I, Ti I, Ti II, and light elements Mg I, Na I, and Al I for 31 globular clusters in M31, which were obtained from high resolution, high signal-to-noise ratio (SNR$>60$) echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high resolution integrated light abundance analysis of globular clusters. This sample provides a never before seen picture of the chemical history of M31. The globular clusters are dispersed throughout the inner and outer halo, from 2.5 kpc $<$ R$_{\\rm M31}$ $<$ 117 kpc. We find a range of [Fe/H] within 20 kpc of the center of M31, and a constant [Fe/H]$\\sim-1.6$ for the outer halo clusters. We find evidence for at least one massive globular cluster in M31 with an age between 1 and 5 Gyr. The alpha-element ratios are generally similar to Milky Way globular cluster and field star ratios. We also find chemical evidence for a late-time accretion origin for at l...

  9. Study on the high-precision laser welding technology of nuclear fuel elements processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung; Yang, M. S.; Kim, W. K.; Lee, D. Y

    2001-01-01

    The proper welding method for appendage of bearing pads and spacers of PHWR nuclear fuel elements is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of welding defects of the appendage parts is mostly apt to occur and it is connected directly with the safty and life prediction of the nuclear reactor in operation. Recently there has been studied all over the world to develope welding technology by laser in nuclear fuel processing, and the appendage of bearing pads and spacers of PHWR nuclear fuel elements. Therefore, the purpose of this study is to investigate the characteristics of the laser welded specimens and make some samples for the appendage of bearing pads of PHWR nuclear fuel elements. This study will be also provide the basic data for the fabrications of the appendage of bearing pads and spacers. Especially the laser welding is supposed to be used in the practical application such as precise materials manufacturing fields. In this respect this technology is not only a basic advanced technology with wide applications but also likely to be used for the development of directly applicable technologies for industries, with high potential benefits derived in the view point of economy and industry.

  10. An Expert System to Analyze Homogeneity in Fuel Element Plates for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tolosa, S.C.; Marajofsky, A.

    2004-10-06

    In the manufacturing control of Fuel Element Plates for Research Reactors, one of the problems to be addressed is how to determine the U-density homogeneity in a fuel plate and how to obtain qualitative and quantitative information in order to establish acceptance or rejection criteria for such, as well as carrying out the quality follow-up. This paper is aimed at developing computing software which implements an Unsupervised Competitive Learning Neural Network for the acknowledgment of regions belonging to a digitalized gray scale image. This program is applied to x-ray images. These images are generated when the x-ray beams go through a fuel plate of approximately 60 cm x 8 cm x 0.1 cm thick. A Nuclear Fuel Element for Research Reactors usually consists of 18 to 22 of these plates, positioned in parallel, in an arrangement of 8 x 7 cm. Carrying out the inspection of the digitalized x-ray image, the neural network detects regions with different luminous densities corresponding to U-densities in the fuel plate. This is used in quality control to detect failures and verify acceptance criteria depending on the homogeneity of the plate. This modality of inspection is important as it allows the performance of non-destructive measurements and the automatic generation of the map of U-relative densities of the fuel plate.

  11. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    Energy Technology Data Exchange (ETDEWEB)

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  12. Transposable elements and small RNAs: Genomic fuel for species diversity.

    Science.gov (United States)

    Hoffmann, Federico G; McGuire, Liam P; Counterman, Brian A; Ray, David A

    2015-01-01

    While transposable elements (TE) have long been suspected of involvement in species diversification, identifying specific roles has been difficult. We recently found evidence of TE-derived regulatory RNAs in a species-rich family of bats. The TE-derived small RNAs are temporally associated with the burst of species diversification, suggesting that they may have been involved in the processes that led to the diversification. In this commentary, we expand on the ideas that were briefly touched upon in that manuscript. Specifically, we suggest avenues of research that may help to identify the roles that TEs may play in perturbing regulatory pathways. Such research endeavors may serve to inform evolutionary biologists of the ways that TEs have influenced the genomic and taxonomic diversity around us.

  13. Volatile Elements Retention During Injection Casting of Metallic Fuel Slug for a Recycling Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Hwan; Song, Hoon; Kim, Hyung-Tae; Oh, Seok-Jin; Kuk, Seoung-Woo; Keum, Chang-Woon; Lee, Jung-Won; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The as-cast fuels prepared by injection casting were sound and the internal integrities were found to be satisfactory through gamma-ray radiography. U and Zr were uniform throughout the matrix of the slug, and the impurities, i.e., oxygen, carbon, and nitrogen, satisfied the specification of the total impurities of less than 2000 ppm. The losses of the volatile Mn were effectively controlled using argon over pressures, and dynamic pumping for a period of time before injection showed no detrimental effect on the Mn loss by vaporization. This result suggests that volatile minor actinide-bearing fuels for SFRs can be prepared by improved injection methods. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, several injection casting methods were applied in order to prepare metallic fuel for an fast reactor that control the transport of volatile elements during fuel melting and casting. Mn was selected as a surrogate alloy since it possesses a total vapor pressure equivalent to that of a volatile minor actinide-bearing fuel. U.10Zr and U.10Zr.5Mn (wt%) metallic fuels were injection cast under various casting conditions and their soundness was characterized.

  14. Fuel-element failures in Hanford single-pass reactors 1944--1971

    Energy Technology Data Exchange (ETDEWEB)

    Gydesen, S.P.

    1993-07-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in single-pass reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of single-pass reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford single-pass reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford single-pass reactor operations are provided in this report.

  15. Aerothermal modeling program, Phase 2, Element C: Fuel injector-air swirl characterization

    Science.gov (United States)

    Mostafa, A. A.; Mongia, H. C.; Mcdonnel, V. G.; Samuelsen, G. S.

    1987-01-01

    The main objectives of the NASA sponsored Aerothermal Modeling Program, Phase 2, Element C, are to collect benchmark quality data to quantify the fuel spray interaction with the turbulent swirling flows and to validate current and advanced two phase flow models. The technical tasks involved in this effort are discussed.

  16. Review of Rover fuel element protective coating development at Los Alamos

    Science.gov (United States)

    Wallace, Terry C.

    1991-01-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.

  17. Discrete element method study of fuel relocation and dispersal during loss-of-coolant accidents

    Science.gov (United States)

    Govers, K.; Verwerft, M.

    2016-09-01

    The fuel fragmentation, relocation and dispersal (FFRD) during LOCA transients today retain the attention of the nuclear safety community. The fine fragmentation observed at high burnup may, indeed, affect the Emergency Core Cooling System performance: accumulation of fuel debris in the cladding ballooned zone leads to a redistribution of the temperature profile, while dispersal of debris might lead to coolant blockage or to debris circulation through the primary circuit. This work presents a contribution, by discrete element method, towards a mechanistic description of the various stages of FFRD. The fuel fragments are described as a set of interacting particles, behaving as a granular medium. The model shows qualitative and quantitative agreement with experimental observations, such as the packing efficiency in the balloon, which is shown to stabilize at about 55%. The model is then applied to study fuel dispersal, for which experimental parametric studies are both difficult and expensive.

  18. Burnup determination of a fuel element concerning different cooling times; Seguimiento del quemado de un elemento combustible, para diferentes tiempos de enfriamento

    Energy Technology Data Exchange (ETDEWEB)

    Henriquez, C.; Navarro, G.; Pereda, C.; Mutis, O. [Comision Chilena de Energia Nuclear, Santiago (Chile). Dept. de Aplicaciones Nucleares. Unidad de Reactores; Terremoto, Luis A.A.; Zeituni, Carlos A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear

    2002-07-01

    In this work we report a complete set of measurements and some relevant results regarding the burnup process of a fuel element containing low enriched nuclear fuel. This fuel element was fabricated at the Plant of Fuel Elements of the Chilean Nuclear Energy Commission (CCHEN). Measurements were carried out using gamma-ray spectroscopy and the absolute burnup of the fuel element was determined. (author)

  19. Combined cluster and discriminant analysis: An efficient chemometric approach in diesel fuel characterization.

    Science.gov (United States)

    Novák, Márton; Palya, Dóra; Bodai, Zsolt; Nyiri, Zoltán; Magyar, Norbert; Kovács, József; Eke, Zsuzsanna

    2017-01-01

    Combined cluster and discriminant analysis (CCDA) as a chemometric tool in compound specific isotope analysis of diesel fuels was studied. The stable carbon isotope ratios (δ(13)C) of n-alkanes in diesel fuel can be used to characterize or differentiate diesels originating from different sources. We investigated 25 diesel fuel samples representing 20 different brands. The samples were collected from 25 different service stations in 11 European countries over a 2 year period. The n-alkane fraction of diesel fuels was separated using solid-state urea clathrate formation combined with silica gel fractionation. The stable carbon isotope ratios of C10-C24 n-alkanes were measured with gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using perdeuterated n-alkanes as internal standards. Beside the 25 samples one additional diesel fuel was prepared and measured three times to get totally homogenous samples in order to test the performance of our analytical and statistical routine. Stable isotope ratio data were evaluated with hierarchical cluster analysis (HCA), principal component analysis (PCA) and CCDA. CCDA combines two multivariate data analysis methods hierarchical cluster analysis with linear discriminant analysis (LDA). The main idea behind CCDA is to compare the goodness of preconceived (based on the sample origins) and random groupings. In CCDA all the samples were compared pairwise. The results for the parallel sample preparations showed that the analytical procedure does not have any significant effect on the δ(13)C values of n-alkanes. The three parallels proved to be totally homogenous with CCDA. HCA and PCA can be useful tools when the examining of the relationship among several samples is in question. However, these two techniques cannot be always decisive on the origin of similar samples. The initial hypothesis that all diesel fuel samples are considered chemically unique was verified by CCDA. The main advantage of CCDA is that it gives an

  20. Development of TUF-ELOCA - a software tool for integrated single-channel thermal-hydraulic and fuel element analyses

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, A.I.; Wu, E.; Yousef, W.W.; Pascoe, J. [Nuclear Safety Solutions Ltd., Toronto, Ontario (Canada); Parlatan, Y. [Ontario Power Generation, Toronto, Ontario (Canada); Kwee, M. [Bruce Power, Tiverton, Ontario (Canada)

    2006-07-01

    The TUF-ELOCA tool couples the TUF and ELOCA codes to enable an integrated thermal-hydraulic and fuel element analysis for a single channel during transient conditions. The coupled architecture is based on TUF as the parent process controlling multiple ELOCA executions that simulate the fuel elements behaviour and is scalable to different fuel channel designs. The coupling ensures a proper feedback between the coolant conditions and fuel elements response, eliminates model duplications, and constitutes an improvement from the prediction accuracy point of view. The communication interfaces are based on PVM and allow parallelization of the fuel element simulations. Developmental testing results are presented showing realistic predictions for the fuel channel behaviour during a transient. (author)

  1. SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introductions: Modeling Framework, Regional Markets, and Station Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Bush, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Daniel, W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-09-01

    This report describes the development and analysis of detailed temporal and spatial scenarios for early market hydrogen fueling infrastructure clustering and fuel cell electric vehicle rollout using the Scenario Evaluation, Regionalization and Analysis (SERA) model. The report provides an overview of the SERA scenario development framework and discusses the approach used to develop the nationwidescenario.

  2. Exploring Anticorrelations and Light Element Variations in Northern Globular Clusters Observed by the APOGEE Survey

    CERN Document Server

    Meszaros, Szabolcs; Shetrone, Matthew; Lucatello, Sara; Troup, Nicholas W; Bovy, Jo; Cunha, Katia; Garcia-Hernandez, Domingo A; Overbeek, Jamie C; Prieto, Carlos Allende; Beers, Timothy C; Frinchaboy, Peter M; Perez, Ana E Garcia; Hearty, Fred R; Holtzman, Jon; Majewski, Steven R; Nidever, David L; Schiavon, Ricardo P; Schneider, Donald P; Sobeck, Jennifer S; Smith, Verne V; Zamora, Olga; Zasowski, Gail

    2015-01-01

    We investigate the light-element behavior of red giant stars in Northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment (APOGEE). We derive abundances of nine elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 globular clusters. The intrinsic abundance range relative to measurement errors is examined, and the well-known C-N and Mg-Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two most metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, ...

  3. Hitomi results on the Perseus cluster thermodynamics, elemental abundances, and emission processes

    Science.gov (United States)

    Markevitch, Maxim L.; Hitomi Collaboration

    2017-01-01

    Hitomi SXS spectrum of the Perseus cluster above E=2 keV is a treasure trove of emission lines, most of them seen for the first time from a diffuse source such as the plasma atmosphere of a galaxy cluster. Several trace elements are detected for the first time in the intracluster medium, lines from several key elements, such as S/Ar and Fe/Ni, are disentangled, and sensitivity to faint lines is dramatically higher compared to previous, lower-resolution cluster studies. This allows us to determine accurate relative abundances of heavy elements, a sensitive test for sources of enrichment of the intergalactic medium. For many elements, lines from multiple ions are observed, as well as multiple transitions from the same ion, providing plasma temperature diagnostics previously unavailable for clusters. The brightest line -- the resonant component of the Fe He-alpha triplet -- is found to be affected by resonant scattering. For the most prominent ions, very high-level transitions are observed, placing constraints on such emission mechanisms as charge exchange with cold gas. Finally, we do not observe a previously reported 3.5 keV emission line from the Perseus core and place an upper limit on it.

  4. Test design description Volume 2, Part 1. IFR-1 metal fuel irradiation test (AK-181) element as-built data

    Energy Technology Data Exchange (ETDEWEB)

    Dodds, N. E.

    1986-06-01

    The IFR-1 Test, designated as the AK-181 Test Assembly, will be the first irradiation test of wire wrapped, sodium-bonded metallic fuel elements in the Fast Flux Test Facility (FFTF). The test is part of the Integral Fast Reactor (IFR) fuels program conducted by Argonne National Laboratory (ANL) in support of the Innovative Reactor Concepts Program sponsored by the US Department of Energy (DOE). One subassembly, containing 169 fuel elements, will be irradiated for 600 full power days to achieve 10 at.% burnup. Three metal fuel alloys (U-10Zr, U-8Pu-10Zr) will be irradiated in D9 cladding tubes. The metal fuel elements have a fuel-smeared density of 75% and each contains five slugs. The enriched zone contains three slugs and is 36-in. long. One 6.5-in. long depleted uranium axial blanket slug (DU-10Zr) was loaded at each end of the enriched zone. the fuel elements were fabricated at ANL-W and delivered to Westinghouse-Hanford for wirewrapping and assembly into the test article. This Test Design Description contains relevant data on compositions, densities, dimensions and weights for the cast fuel slugs and completed fuel elements. The elements conform to the requirements in MG-22, "Users` Guide for the Irradiation of Experiments in the FTR."

  5. Fuel composition optimization in a 78-element fuel bundle for use in a pressure tube type supercritical water-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, D.W.; Novog, D.R. [McMaster Univ., Hamilton, Ontario (Canada)

    2012-07-01

    A 78-element fuel bundle containing a plutonium-thorium fuel mixture has been proposed for a Generation IV pressure tube type supercritical water-cooled reactor. In this work, using a lattice cell model created with the code DRAGON,the lattice pitch, fuel composition (fraction of PuO{sub 2} in ThO{sub 2}) and radial enrichment profile of the 78-element bundle is optimized using a merit function and a metaheuristic search algorithm.The merit function is designed such that the optimal fuel maximizes fuel utilization while minimizing peak element ratings and coolant void reactivity. A radial enrichment profile of 10 wt%, 11 wt% and 20 wt% PuO{sub 2} (inner to outer ring) with a lattice pitch of 25.0 cm was found to provide the optimal merit score based on the aforementioned criteria. (author)

  6. Prediction of the thermal behavior of a particle spherical fuel element using GITT

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, C.V. [Brazilian Army, Rio de Janeiro, RJ (Brazil). Dept. of Science and Technology. Technological Center of the Army]. E-mail: pessoapen@gmail.com; Oliveira, Claudio L. de [Engineering Military Institute, Rio de Janeiro, RJ (Brazil). Dept. of Science and Technology]. E-mail: d7luiz@ime.eb.br; Jian, Su [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mail: sujian@con.ufrj.br

    2008-07-01

    In this work, the transient and steady state heat conduction in a spherical fuel element of a pebble-bed high temperature were studied. This pebble element is composed by a particulate region with spherical inclusions, the fuel UO{sub 2} particles, dispersed in a graphite matrix. A convective heat transfer by helium occurs on the outer surface of the fuel element. The two-energy equation model for the case of pure conduction was applied to this particulate spherical element, generating two macroscopic temperatures, respectively, of the inclusions and of the matrix. The transient analysis was carried out by using the Generalized Integral Transform Technique (GITT) that requires low computational efforts and allows a fast evaluation of the two macroscopic transient temperatures of the particulate region. The solution by GITT leads to a system of ordinary differential equations with the unknown transformed potentials. The mechanical properties (thermal conductivity and specific heat) of the materials were supposed not to depend on the temperature and to be uniform in each region. (author)

  7. EXPLORING ANTICORRELATIONS AND LIGHT ELEMENT VARIATIONS IN NORTHERN GLOBULAR CLUSTERS OBSERVED BY THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Mészáros, Szabolcs [ELTE Gothard Astrophysical Observatory, H-9704 Szombathely, Szent Imre Herceg st. 112 (Hungary); Martell, Sarah L. [Department of Astrophysics, School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Shetrone, Matthew [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States); Lucatello, Sara [INAF-Osservatorio Astronomico di Padova, vicolo dell Osservatorio 5, I-35122 Padova (Italy); Troup, Nicholas W.; Pérez, Ana E. García; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Cunha, Katia [University of Arizona, Tucson, AZ 85719 (United States); García-Hernández, Domingo A.; Prieto, Carlos Allende [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Overbeek, Jamie C. [Department of Astronomy, Indiana University, Bloomington, IN 47405 (United States); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Frinchaboy, Peter M. [Texas Christian University, Fort Worth, TX 76129 (United States); Hearty, Fred R.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Holtzman, Jon [New Mexico State University, Las Cruces, NM 88003 (United States); Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Schiavon, Ricardo P. [Astrophysics Research Institute, IC2, Liverpool Science Park, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); and others

    2015-05-15

    We investigate the light-element behavior of red giant stars in northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment. We derive abundances of 9 elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 GCs. The intrinsic abundance range relative to measurement errors is examined, and the well-known C–N and Mg–Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two most metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal-poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that {sup 28}Si leakage has occurred in this cluster. We also present C, N, and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent of stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of α-element (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.

  8. Fabrication of simulated plate fuel elements: Defining role of out-of-plane residual shear stress

    Science.gov (United States)

    Rakesh, R.; Kohli, D.; Sinha, V. P.; Prasad, G. J.; Samajdar, I.

    2014-02-01

    Bond strength and microstructural developments were investigated during fabrication of simulated plate fuel elements. The study involved roll bonding of aluminum-aluminum (case A) and aluminum-aluminum + yttria (Y2O3) dispersion (case B). Case B approximated aluminum-uranium silicide (U3Si2) 'fuel-meat' in an actual plate fuel. Samples after different stages of fabrication, hot and cold rolling, were investigated through peel and pull tests, micro-hardness, residual stresses, electron and micro-focus X-ray diffraction. Measurements revealed a clear drop in bond strength during cold rolling: an observation unique to case B. This was related to significant increase in 'out-of-plane' residual shear stresses near the clad/dispersion interface, and not from visible signatures of microstructural heterogeneities.

  9. Innovative regions and industrial clusters in hydrogen and fuel cell technology

    DEFF Research Database (Denmark)

    Madsen, Anne Nygaard; Andersen, Per Dannemand

    2010-01-01

    Regional governments in Europe seem to be playing an increasing role in hydrogen and fuel cell (H2FC) development. A number of regions are supporting demonstration projects and building networks among regional stakeholders to strengthen their engagement in H2FC technology. In this article, we...... will analyse regions that are highly engaged in H2FC activity, based on three indicators: existing hydrogen infrastructure and production sites, general innovativeness and the presence of industrial clusters with relevance for H2FC. Our finding is that regions with high activity in H2FC development are also...... innovative regions in general. Moreover, the article highlights some industrial clusters that create favourable conditions for regions to take part in H2FC development. Existing hydrogen infrastructure, however, seems to play only a minor role in a region’s engagement. The article concludes that, while...

  10. Demonstration tests for HTGR fuel elements and core components with test sections in HENDEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Hino, Ryutaro; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1995-03-01

    In the fuel stack test section (T{sub 1}) of the Helium Engineering Demonstration Loop (HENDEL), thermal and hydraulic performances of helium gas flows through a fuel rod channel and a fuel stack have been investigated for the High-Temperature Engineering Test Reactor (HTTR) core thermal design. The test data showed that the turbulent characteristics appearing in the Reynolds number above 2000: no typical behavior in the transition zone, and friction factors and heat transfer coefficients in the fuel channel were found to be higher than those in a smooth annular channel. Heat transfer behavior of gas flow in a fuel element channel with blockage and cross-flow through a gap between upper and lower fuel elements stacked was revealed using the mock-up models. On the other hand, demonstration tests have been performed to verify thermal and hydraulic characteristics and structural integrity related to the core bottom structure using a full-scale test facility named as the in-core structure test section (T{sub 2}). The sealing performance test revealed that the leakage of low-temperature helium gas through gaps between the permanent reflector blocks to the core was very low level compared with the HTTR design value and no change of the leakage flow rate were observed after a long term operation. The heat transfer tests including thermal transient at shutdown of gas circulators verified good insulating performance of core insulation structures in the core bottom structure and the hot gas duct; the temperature of the metal portion of these structure was below the design value. Examination of the thermal mixing characteristics indicated that the mixing of the hot helium gas started at a hot plenum and finished completely at downstream of the outlet hot gas duct. The present results obtained from these demonstration tests have been practically applied to the detailed design works and licensing procedures of the HTTR. (J.P.N.) 92 refs.

  11. Fusion option to dispose of spent nuclear fuel and transuranic elements

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.

    2000-02-10

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k{sub eff} of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's.

  12. Investigation of energy thresholds of atomic and cluster sputtering of some elements under ion bombardment

    CERN Document Server

    Atabaev, B G; Lifanova, L F

    2002-01-01

    Threshold energies of sputtering of negative cluster ions from the Si(111) surface were measured at bombardment by Cs sup + , Rb sup + , and Na sup + ions with energy of 0.1-3.0 keV. These results are compared with the calculations of the similar thresholds by Bohdansky etc. formulas (3) for clusters Si sub n sup - and Cu sub n sup - with n=(1-5) and also for B, C, Al, Si, Fe, Cu atoms. Threshold energies of sputtering for the above elements were also estimated using the data from (5). Satisfactory agreement between the experimental and theoretical results was obtained. (author)

  13. Fabrication of simulated plate fuel elements: Defining role of stress relief annealing

    Science.gov (United States)

    Kohli, D.; Rakesh, R.; Sinha, V. P.; Prasad, G. J.; Samajdar, I.

    2014-04-01

    This study involved fabrication of simulated plate fuel elements. Uranium silicide of actual fuel elements was replaced with yttria. The fabrication stages were otherwise identical. The final cold rolled and/or straightened plates, without stress relief, showed an inverse relationship between bond strength and out of plane residual shear stress (τ13). Stress relief of τ13 was conducted over a range of temperatures/times (200-500 °C and 15-240 min) and led to corresponding improvements in bond strength. Fastest τ13 relief was obtained through 300 °C annealing. Elimination of microscopic shear bands, through recovery and partial recrystallization, was clearly the most effective mechanism of relieving τ13.

  14. Analytical assessment for stress corrosion fatigue of CANDU fuel elements under load following conditions

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, Grigore; Ionescu, Drags; Pauna, Eduard [Institute for Nuclear Research, Pitesti (Romania). Nuclear Fuel Engineering Lab.

    2012-03-15

    When nuclear power reactors are operated in a load following (LF) mode, the nuclear fuel may be subjected to step changes in power on weekly, daily, or even hourly basis, depending on the grid's needs. Two load following tests performed in TRIGA Research Reactor of Institute for Nuclear Research (INR) Pitesti were simulated with finite elements computer codes in order to evaluate Stress Corrosion Fatigue (SCF) of the sheath arising from expansion and contraction of the pellets in the corrosive environment. The 3D finite element analyses show that the cyclic strains give highly multiaxial stresses in the sheath at ridge region. This paper summarizes the results of the analytical assessment for SCF and their relation to CANDU fuel performance in LF tests conditions. (orig.)

  15. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong

    2010-04-01

    The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.

  16. Atrium and HTP fuel elements for the U. S. market. Atrium- und HTP-Brennelemente fuer den US-Markt

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, J.N. (Siemens Power Corp. Nuclear Div., Engineering and Manufacturing Facility, Richland, WA (United States)); Krebs, W.D. (Technik Brennelemente und Reaktorkern, Siemens AG Bereich Energieerzeugung (KWU), Erlangen (Germany))

    1994-07-01

    The international acitivities of Siemens in the nuclear fuel sector are the responsibility of the Nuclear Fuel Cycle Unit of the Power Generation Division (KWU) in Germany, the Nuclear Dividion of Siemens Power Corporation (SPC) in the Unites States, and the German Siemens subsidiaries, ANF GmbH (fuel element fabrication) in Lingen and NRG - Nuklearrohr Gesellschaft mbH (cladding tube production) in Duisburg. The requirements of the U.S. market for light water reactor fuel elements are met by products from the European market. (orig.)

  17. Space shuttle orbit maneuvering engine, reusable thrust chamber program. Task 6: Data dump hot fuel element investigation

    Science.gov (United States)

    Nurick, W. H.

    1974-01-01

    An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.

  18. Reduced Toxicity Fuel Satellite Propulsion System Including Catalytic Decomposing Element with Hydrogen Peroxide

    Science.gov (United States)

    Schneider, Steven J. (Inventor)

    2002-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  19. Plan and safety analysis on the high power irradiation test program of full length fuel element for Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.S.; Kim, C.K.; Park, H.D.; Kim, K.H.; Park, J.M.; Lee, D.B.; Kim, J.D.; Ko, Y.M.; Jang, S.J.; Ahn, H.S.; Woo, Y.M.; Kim, E.S.; Kim, H.R.; Chae, H.T.; Lee, C.S

    1999-06-01

    The advanced research reactor fuel development project has been carried out for a localization of HANARO nuclear fuels. The design and fabrication technologies of the localized fuel are almost developed, and the quality assurance procedure and assessment criteria were established. The characteristics of the fuel fabricated in KAERI were investigated through out-pile test. In order to verify the localized fuel performance, irradiation test plan of the developed fuel has been worked out. It consists of 3 stages. The 1st stage is normal power irradiation test and the final burn-up of the test fuel was supposed to be 85 at%. The fuel has been successfully irradiated until now and will be unloaded in June. The 2nd irradiation test will be done to confirm the fuel performance and to get the in-pile data under the high neutron flux level. This test fuel is identical with the 36-element fuel assembly. After the 1st and 2nd irradiation tests are completed with acceptable results, the 3rd irradiation test of final stage will be carried out as a demonstration. In this report, the results of the 1st irradiation test is introduced. Then the objectives, schedule and test condition, the design documents of fuel elements and bundle, the methods of fabrication, out-pile test results, post-irradiation examination scheme, calculation of linear power distribution, and safety analysis results for the 2nd irradiation test bundle are described. (author). 2 refs., 14 tabs., 12 figs.

  20. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  1. Cluster analysis on the bulk elemental compositions of Antarctic stony meteorites

    Science.gov (United States)

    Miyamoto, Hideaki; Niihara, Takafumi; Kuritani, Takeshi; Hong, Peng K.; Dohm, James M.; Sugita, Seiji

    2016-05-01

    Remote sensing observations by recent successful missions to small bodies have revealed the difficulty in classifying the materials which cover their surfaces into a conventional classification of meteorites. Although reflectance spectroscopy is a powerful tool for this purpose, it is influenced by many factors, such as space weathering, lighting conditions, and surface physical conditions (e.g., particle size and style of mixing). Thus, complementary information, such as elemental compositions, which can be obtained by X-ray fluorescence (XRF) and gamma-ray spectrometers (GRS), have been considered very important. However, classifying planetary materials solely based on elemental compositions has not been investigated extensively. In this study, we perform principal component and cluster analyses on 12 major and minor elements of the bulk compositions of 500 meteorites reported in the National Institute of Polar Research (NIPR), Japan database. Our unique approach, which includes using hierarchical cluster analysis, indicates that meteorites can be classified into about 10 groups purely by their bulk elemental compositions. We suggest that Si, Fe, Mg, Ca, and Na are the optimal set of elements, as this set has been used successfully to classify meteorites of the NIPR database with more than 94% accuracy. Principal components analysis indicates that elemental compositions of meteorites form eight clusters in the three-dimensional space of the components. The three major principal components (PC1, PC2, and PC3) are interpreted as (1) degree of differentiations of the source body (i.e., primitive versus differentiated), (2) degree of thermal effects, and (3) degree of chemical fractionation, respectively.

  2. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    Science.gov (United States)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin

    2016-09-01

    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  3. Automatic Clustering of Rolling Element Bearings Defects with Artificial Neural Network

    Science.gov (United States)

    Antonini, M.; Faglia, R.; Pedersoli, M.; Tiboni, M.

    2006-06-01

    The paper presents the optimization of a methodology for automatic clustering based on Artificial Neural Networks to detect the presence of defects in rolling bearings. The research activity was developed in co-operation with an Italian company which is expert in the production of water pumps for automotive use (Industrie Saleri Italo). The final goal of the work is to develop a system for the automatic control of the pumps, at the end of the production line. In this viewpoint, we are gradually considering the main elements of the water pump, which can cause malfunctioning. The first elements we have considered are the rolling bearing, a very critic component for the system. The experimental activity is based on the vibration measuring of rolling bearings opportunely damaged; vibration signals are in the second phase elaborated; the third and last phase is an automatic clustering. Different signal elaboration techniques are compared to optimize the methodology.

  4. The Detailed Chemical Properties of M31 Star Clusters. I. Fe, Alpha and Light Elements

    Science.gov (United States)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cohen, Judith G.

    2014-12-01

    We present ages, [Fe/H] and abundances of the α elements Ca I, Si I, Ti I, Ti II, and light elements Mg I, Na I, and Al I for 31 globular clusters (GCs) in M31, which were obtained from high-resolution, high signal-to-noise ratio >60 echelle spectra of their integrated light (IL). All abundances and ages are obtained using our original technique for high-resolution IL abundance analysis of GCs. This sample provides a never before seen picture of the chemical history of M31. The GCs are dispersed throughout the inner and outer halo, from 2.5 kpc 117 kpc. We find a range of [Fe/H] within 20 kpc of the center of M31, and a constant [Fe/H] ~ - 1.6 for the outer halo clusters. We find evidence for at least one massive GC in M31 with an age between 1 and 5 Gyr. The α-element ratios are generally similar to the Milky Way GC and field star ratios. We also find chemical evidence for a late-time accretion origin for at least one cluster, which has a different abundance pattern than other clusters at similar metallicity. We find evidence for star-to-star abundance variations in Mg, Na, and Al in the GCs in our sample, and find correlations of Ca, Mg, Na, and possibly Al abundance ratios with cluster luminosity and velocity dispersion, which can potentially be used to constrain GC self-enrichment scenarios. Data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Development of the manufacture and process for DUPIC fuel elements; development of the quality evaluation techniques for end cap welds of DUPIC fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Tae; Choi, Myong Seon; Yang, Hyun Tae; Kim, Dong Gyun; Park, Jin Seok; Kim, Jin Ho [Yeungnam University, Kyongsan (Korea)

    2002-04-01

    The objective of this research is to set up the quality evaluation techniques for end cap welds of DUPIC fuel element. High temperature corrosion test and the SCC test for Zircaloy-4 were performed, and also the possibility of the ultrasonic test technique was verified for the quality evaluation and control of the laser welds in the DUPIC fuel rod end cap. From the evaluation of corrosion properties with measuring the weight gain and observing oxide film of the specimen that had been in the circumstance of steam(400 .deg. C, 1,500 psi) by max. 70 days later, the weight gain of the welded specimens was larger than original tube and the weight increasing rate increased with the exposed days. For the Development of techniques for ultrasonic test, semi-auto ultrasonic test system has been made based on immersion pulse-echo technique using spherically concentrated ultrasonic beam. Subsequently, developed ultrasonic test technique is quite sensible to shape of welds in the inside and outside of tube as well as crack, undercut and expulsion, and also this ultrasonic test, together with metallurgical fracture test, has good reliance as enough to be used for control method of welding process. 43 refs., 47 figs., 8 tabs. (Author)

  6. Elemental abundances of low-mass stars in the young clusters 25 Ori and lambda Ori

    CERN Document Server

    Biazzo, K; Palla, F; Briceno, C

    2011-01-01

    Aims. We aim to derive the chemical pattern of the young clusters 25 Orionis and lambda Orionis through homogeneous and accurate measurements of elemental abundances. Methods. We present FLAMES/UVES observations of a sample of 14 K-type targets in the 25 Ori and lambda Ori clusters; we measure their radial velocities, in order to confirm cluster membership. We derive stellar parameters and abundances of Fe, Na, Al, Si, Ca, Ti, and Ni using the code MOOG. Results. All the 25 Ori stars are confirmed cluster members without evidence of binarity; in lambda Ori we identify one non-member and one candidate single-lined binary star. We find an average metallicity [Fe/H]=-0.05+/-0.05 for 25 Ori, where the error is the 1sigma standard deviation from the average. lambda Ori members have a mean iron abundance value of 0.01+/-0.01. The other elements show close-to-solar ratios and no star-to-star dispersion. Conclusions. Our results, along with previous metallicity determinations in the Orion complex, evidence a small bu...

  7. AMiBA: Cluster Sunyaev-Zel'dovich Effect Observations with the Expanded 13-Element Array

    CERN Document Server

    Lin, Kai-Yang; Wang, Fu-Cheng; Huang, Chih-Wei Locutus; Liao, Yu-Wei; Wu, Jiun-Huei Proty; Koch, Patrick M; Umetsu, Keiichi; Chen, Ming-Tang; Chan, Shun-Hsiang; Chang, Shu-Hao; Chang, Wen-Hsuan Lucky; Cheng, Tai-An; Duy, Hoang Ngoc; Fu, Szu-Yuan; Han, Chih-Chiang; Ho, Solomon; Ho, Ming-Feng; Ho, Paul T P; Huang, Yau-De; Jiang, Homin; Kubo, Derek Y; Li, Chao-Te; Lin, Yu-Chiung; Liu, Guo-Chin; Martin-Cocher, Pierre; Molnar, Sandor M; Nunez, Emmanuel; Oshiro, Peter; Pai, Shang-Ping; Raffin, Philippe; Ridenour, Anthony; Shih, Chia-You; Stoebner, Sara; Teo, Giap-Siong; Yeh, Jia-Long Johnny; Williams, Joshua; Birkinshaw, Mark

    2016-01-01

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is a co-planar interferometer array operating at a wavelength of 3mm to measure the Sunyaev-Zeldovich effect (SZE) of galaxy clusters. In the first phase of operation -- with a compact 7-element array with 0.6m antennas (AMiBA-7) -- we observed six clusters at angular scales from 5\\arcmin to 23\\arcmin. Here, we describe the expansion of AMiBA to a 13-element array with 1.2m antennas (AMiBA-13), its subsequent commissioning, and our cluster SZE observing program. The most important changes compared to AMiBA-7 are (1) array re-configuration with baselines ranging from 1.4m to 4.8m covering angular scales from 2\\arcmin to 11.5\\arcmin, (2) thirteen new lightweight carbon-fiber-reinforced plastic (CFRP) 1.2m reflectors, and (3) additional correlators and six new receivers. From the AMiBA-13 SZE observing program, we present here maps of a subset of twelve clusters. In highlights, we combine AMiBA-7 and AMiBA-13 observations of Abell 1689 and perfo...

  8. Information on the evolution of severe LWR fuel element damage obtained in the CORA program

    Science.gov (United States)

    Schanz, G.; Hagen, S.; Hofmann, P.; Schumacher, G.; Sepold, L.

    1992-06-01

    In the CORA program a series of out-of-pile experiments on LWR severe accidental situations is being performed, in which test bundles of LWR typical components and arrangements (PWR, BWR) are exposed to temperature transients up to about 2400°C under flowing steam. The individual features of the facility, the test conduct, and the evaluation will be presented. In the frame of the international cooperation in severe fuel damage (SFD) programs the CORA tests are contributing confirmatory and complementary informations to the results from the limited number of in-pile tests. The identification of basic phenomena of the fuel element destruction, observed as a function of temperature, is supported by separate-effects test results. Most important mechanisms are the steam oxidation of the Zircaloy cladding, which determines the temperature escalation, the chemical interaction between UO 2 fuel and cladding, which dominates fuel liquefaction, relocation and resulting blockage formation, as well as chemical interactions with Inconel spacer grids and absorber units ((Ag, In, Cd) alloy or B 4C), which are leading to extensive low-temperature melt formation around 1200°C. Interrelations between those basic phenomena, resulting for example in cladding deformation ("flowering") and the dramatic hydrogen formation in response to the fast cooling of a hot bundle by cold water ("quenching") are determining the evolution paths of fuel element destruction, which are to be identified. A further important task is the abstraction from mechanistic and microstructural details in order to get a rough classification of damage regimes (temperature and extent), a practicable analytical treatment of the materials behaviour, and a basis for decisions in accident mitigation and management procedures.

  9. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    Science.gov (United States)

    Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  10. Studies on disintegrating spherical fuel elements of high temperature gas-cooled reactor by a electrochemical method

    Science.gov (United States)

    Tian, Lifang; Wen, Mingfen; Chen, Jing

    2013-01-01

    Spherical fuel elements of a high temperature gas-cooled reactor were disintegrated through a electrochemical method with NaNO3 as electrolyte. The X-ray diffraction spectra and total carbon contents of the graphite fragments were determined, and the results agreed with those from simulated fuel elements. After conducting the characterization analysis and the leaching experiment of coated fuel particles, the uranium concentrations of leaching solutions and spent electrolyte were found to be at background levels. The results demonstrate the effectiveness of the improved electrochemical method with NaNO3 as electrolyte in disintegrating the unirradiated fuel elements without any damage to the coated fuel particles. Moreover, the method avoided unexpected radioactivity contamination to the graphite matrix and spent electrolyte.

  11. Electrolyser and fuel cells, key elements for energy and life support

    Science.gov (United States)

    Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim

    Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated

  12. ACR fuel storage analysis: finite element heat transfer analysis of dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Khair, K.; Baset, S.; Millard, J. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2006-07-01

    Over the past decade Atomic Energy of Canada Limited (AECL) has designed and licensed air-cooled concrete structures used as above ground dry storage containers (MACSTOR) to store irradiated nuclear fuel from CANDU plants. A typical MACSTOR 200 module is designed to store 12,000 bundles in 20 storage cylinders. MACSTOR 200 modules are in operation at Gentilly-2 in Canada and at Cernavoda in Romania. The MACSTOR module is cooled passively by natural convection and by conduction through the concrete walls and roof. Currently AECL is designing the Advanced Candu Reactor (ACR) with CANFLEX slightly enriched uranium fuel to be used. AECL has initiated a study to explore the possibility of storing the irradiated nuclear fuel from ACR in MACSTOR modules. This included work to consider ways of minimizing footprint both in the spent fuel storage bay and in the dry storage area. The commercial finite element code ANSYS has been used in this study. The FE model is used to complete simulations with the higher heat source using the same concrete structural dimensions to assess the feasibility of using the MACSTOR design for storing the ACR irradiated fuel. This paper presents the results of the analysis. The results are used to confirm the possibility of using, with minimal changes to the design of the storage baskets and the structure, the proven design of the MACSTOR 200 containment to store the ACR fuel bundles with higher enrichment and burnup. This has thus allowed us to confirm conceptual feasibility and move on to investigation of optimization. (author)

  13. Light and Heavy Element Abundance Variations in the Outer Halo Globular Cluster NGC 6229

    Science.gov (United States)

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Walker, Matthew G.

    2017-10-01

    NGC 6229 is a relatively massive outer halo globular cluster that is primarily known for exhibiting a peculiar bimodal horizontal branch morphology. Given the paucity of spectroscopic data on this cluster, we present a detailed chemical composition analysis of 11 red giant branch members based on high resolution (R ≈ 38,000), high S/N (>100) spectra obtained with the MMT-Hectochelle instrument. We find the cluster to have a mean heliocentric radial velocity of -{138.1}-1.0+1.0 {km} {{{s}}}-1, a small dispersion of {3.8}-0.7+1.0 {km} {{{s}}}-1, and a relatively low {(M/{L}{{V}})}ȯ ={0.82}-0.28+0.49. The cluster is moderately metal-poor with =-1.13 dex and a modest dispersion of 0.06 dex. However, 18% (2/11) of the stars in our sample have strongly enhanced [La, Nd/Fe] ratios that are correlated with a small (∼0.05 dex) increase in [Fe/H]. NGC 6229 shares several chemical signatures with M75, NGC 1851, and the intermediate metallicity populations of ω Cen, which lead us to conclude that NGC 6229 is a lower mass iron-complex cluster. The light elements exhibit the classical (anti-)correlations that extend up to Si, but the cluster possesses a large gap in the O–Na plane that separates first and second generation stars. NGC 6229 also has unusually low [Na, Al/Fe] abundances that are consistent with an accretion origin. A comparison with M54 and other Sagittarius clusters suggests that NGC 6229 could also be the remnant core of a former dwarf spheroidal galaxy.

  14. Calibration of the Failed-Fuel-Element Detection Systems in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O.

    1966-06-15

    Results from a calibration of the systems for detection of fuel element ruptures in the Aagesta reactor are presented. The calibration was carried out by means of foils of zirconium-uranium alloy which were placed in a special fuel assembly. The release of fission products from these foils is due mainly to recoil and can be accurately calculated. Before the foils were used in the reactor their corrosion behaviour in high temperature water was investigated. The results obtained with the precipitator systems for bulk detection and localization are in good agreement with the expected performance. The sensitivity of these systems was found to be high enough for detection and localization of small defects of pin-hole type ({nu} = 10{sup -8}/s ). The general performance of the systems was satisfactory during the calibration tests, although a few adjustments are desirable. A bulk detecting system for monitoring of activities in the moderator, in which the {gamma}-radiation from coolant samples is measured directly after an ion exchanger, showed lower sensitivity than expected from calculations. It seems that the sensitivity of the latter system has to be improved to admit the detection of small defects. In the ion exchanger system, and to some extent in the precipitator systems, the background from A{sup 41} in the coolant limits the sensitivity. The calibration technique utilized seems to be of great advantage when investigating the performance of failed-fuel-element detection systems.

  15. Studies on production planning of IPEN fuel-element plant in order to meet RMB demand

    Energy Technology Data Exchange (ETDEWEB)

    Negro, Miguel L.M.; Saliba-Silva, Adonis M.; Durazzo, Michelangelo, E-mail: mlnegro@ipen.br, E-mail: saliba@ipen.br, E-mail: mdurazzo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The plant of the Nuclear Fuel Center (CCN) will have to change its current laboratorial production level to an industrial level in order to meet the fuel demand of RMB and of IEA-R1. CCN's production process is based on the hydrolysis of UF6, which is not a frequent production route for nuclear fuel. The optimization of the production capacity of such a production route is a new field of studies. Two different approaches from the area of Operations Research (OR) were used in this paper. The first one was the PERT/CPM technique and the second one was the creation of a mathematical linear model for minimization of the production time. PERT/CPM's results reflect the current situation and disclose which production activities may not be critical. The results of the second approach show a new average time of 3.57 days to produce one Fuel Element and set the need of inventory. The mathematical model is dynamic, so that it issues better results if performed monthly. CCN's management team will therefore have a clearer view of the process times and production and inventory levels. That may help to shape the decisions that need to be taken for the enlargement of the plant's production capacity. (author)

  16. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can

  17. Experimental evaluation of thermal ratcheting behavior in UO2 fuel elements

    Science.gov (United States)

    Phillips, W. M.

    1973-01-01

    The effects of thermal cycling of UO2 at high temperatures has been experimentally evaluated to determine the rates of distortion of UO2/clad fuel elements. Two capsules were rested in the 1500 C range, one with a 50 C thermal cycle, the other with a 100 C thermal cycle. It was observed that eight hours at the lower cycle temperature produced sufficient UO2 redistribution to cause clad distortion. The amount of distortion produced by the 100 C cycle was less than double that produced by the 50 C, indicating smaller thermal cycles would result in clad distortion. An incubation period was observed to occur before the onset of distortion with cycling similar to fuel swelling observed in-pile at these temperatures.

  18. Fuel element failure detection experiments, evaluation of the experiments at KNK II/1 (Intermediate Report)

    CERN Document Server

    Bruetsch, D

    1983-01-01

    In the frame of the fuel element failure detection experiments at KNK II with its first core the measurement devices of INTERATOM were taken into operation in August 1981 and were in operation almost continuously. Since the start-up until the end of the first KNK II core operation plugs with different fuel test areas were inserted in order to test the efficiency of the different measuring devices. The experimental results determined during this test phase and the gained experiences are described in this report and valuated. All three measuring techniques (Xenon adsorption line XAS, gas-chromatograph GC and precipitator PIT) could fulfil the expectations concerning their susceptibility. For XAS and GC the nuclide specific sensitivities as determined during the preliminary tests could be confirmed. For PIT the influences of different parameters on the signal yield could be determined. The sensitivity of the device could not be measured due to a missing reference measuring point.

  19. Fusion solution to dispose of spent nuclear fuel, transuranic elements, and highly enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry E-mail: gohar@anl.gov

    2001-11-01

    The disposal of the nuclear spent fuel, the transuranic elements, and the highly enriched uranium represents a major problem under investigation by the international scientific community to identify the most promising solutions. The investigation of this paper focused on achieving the top rated solution for the problem, the elimination goal, which requires complete elimination for the transuranic elements or the highly enriched uranium, and the long-lived fission products. To achieve this goal, fusion blankets with liquid carrier, molten salts or liquid metal eutectics, for the transuranic elements and the uranium isotopes are utilized. The generated energy from the fusion blankets is used to provide revenue for the system. The long-lived fission products are fabricated into fission product targets for transmutation utilizing the neutron leakage from the fusion blankets. This paper investigated the fusion blanket designs for small fusion devices and the system requirements for such application. The results show that 334 MW of fusion power from D-T plasma for 30 years with an availability factor of 0.75 can dispose of the 70,000 tons of the U.S. inventory of spent nuclear fuel generated up to the year 2015. In addition, this fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future.

  20. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  1. Effects of chemisorption of electron acceptor elements on the stability of platinum clusters

    Science.gov (United States)

    Halachev, T. D.; Ruckenstein, E.

    1981-07-01

    The extended Hückel method (EHM) is used here to investigate how the bond strengths of Pt(100) and Pt(111) clusters, containing 9 and 10 atoms, respectively, are affected by the chemisorbed H, O, Cl, or S atoms. Three adsorption sites are considered on each cluster. For most adsorption sites Cl and S weaken all the PtPt bonds, while H and O strengthen the bonds between some Pt atoms and weaken the bonds between some other Pt atoms. The enhanced mobility of the Pt atoms, that occurs upon adsorption of the above elements, is proposed as the mechanism behind the first step in corrosive chemisorption and in the redispersion of supported Pt catalysts. The strong destabilizing effect of S and Cl is attributed to the empty d orbitais of these elements. An attempt is made to explain the poisoning by Sulfur on the basis of long range structural and electronic changes that occur in the Pt clusters upon chemisorption of S.

  2. PARALLEL FINITE ELEMENT ANALYSIS OF HIGH FREQUENCY VIBRATIONS OF QUARTZ CRYSTAL RESONATORS ON LINUX CLUSTER

    Institute of Scientific and Technical Information of China (English)

    Ji Wang; Yu Wang; Wenke Hu; Wenhua Zhao; Jianke Du; Dejin Huang

    2008-01-01

    Quartz crystal resonators are typical piezoelectric acoustic wave devices for frequency control applications with mechanical vibration frequency at the radio-frequency (RF) range. Precise analyses of the vibration and deformation are generally required in the resonator design and improvement process. The considerations include the presence of electrodes, mountings, bias fields such as temperature, initial stresses, and acceleration. Naturally, the finite element method is the only effective tool for such a coupled problem with multi-physics nature. The main challenge is the extremely large size of resulted linear equations. For this reason, we have been employing the Mindlin plate equations to reduce the computational difficulty. In addition, we have to utilize the parallel computing techniques on Linux clusters, which are widely available for academic and industrial applications nowadays, to improve the computing efficiency. The general principle of our research is to use open source software components and public domain technology to reduce cost for developers and users on a Linux cluster. We start with a mesh generator specifically for quartz crystal resonators of rectangular and circular types, and the Mindlin plate equations are implemented for the finite element analysis. Computing techniques like parallel processing, sparse matrix handling, and the latest eigenvalue extraction package are integrated into the program. It is clear from our computation that the combination of these algorithms and methods on a cluster can meet the memory requirement and reduce computing time significantly.

  3. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  4. Sipping test on a failed MTR fuel element; Teste de sipping em um elemento combustivel tipo placa falhado

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, Luis Antonio Albiac; Zeituni, Carlos Alberto; Silva, Antonio Teixeira e; Perrotta, Jose Augusto; Silva, Jose Eduardo Rosa da [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear

    2002-07-01

    This work describes sipping tests performed on MTR fuel elements of the IEA-R1 research reactor, in order to determinate which one failed in the core during a routine operation of the reactor. radioactive iodine isotopes {sup 131} I and {sup 133} I, employed as failure indicators, were detected in samples corresponding to the fuel element IEA-156. The specific activity of each sample, as well as the average leaking rate, were measured for {sup 137} Cs. The nuclear fuels U{sub 3} O{sub 8} - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of {sup 137} Cs. (author)

  5. Characterization of spent fuel elements stored at IEA-R1 research reactor based on visual inspections and sipping tests

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose Eduardo Rosa da; Terremoto, Luis Antonio Albiac; Teodoro, Celso Antonio; Castanheira, Myrthes; Lucki, Georgi; Damy, Margaret de Almeida; Silva, Antonio Teixeira e [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: jersilva@ipen.br

    2005-07-01

    Aluminum spent nuclear fuels are susceptible to corrosion attack, or mechanical damage from improper handling, while in pool reactor storage. Storage practices have been modified to reduce the potential for damage, based on recommendations presented at second WS on Spent Fuel Characterization, promoted by IAEA. In this work, we present the inspection program proposed to the IEA-R1 stored spent fuel elements, in order to provide information on the physical condition during the interim storage time under wet condition at the reactor pool. The inspection program is based on non-destructive tests results (visual inspection and sipping tests) already periodically performed to exam the IEA-R1 stored spent fuel and fuel elements from the core reactor. To record the available information and examination results it was elaborated a document in the format of a catalogue containing the proposed inspection program for the IEA-R1 stored spent fuel, the description of the visual inspection and sipping tests systems, a compilation of information and images result from the tests performed for all stored standard spent fuel element and, in annexes, copies of the reference documents. That document constitutes an important step of the effective implementation of the referred IEA-R1 spent fuel inspection program and can be used to address regulatory and operational needs for the demonstration, for example, of safe storage throughout the pool storage period. (author)

  6. Clustering diagnosis of rolling element bearing fault based on integrated Autoregressive/Autoregressive Conditional Heteroscedasticity model

    Science.gov (United States)

    Wang, Guofeng; Liu, Chang; Cui, Yinhu

    2012-09-01

    Feature extraction plays an important role in the clustering analysis. In this paper an integrated Autoregressive (AR)/Autoregressive Conditional Heteroscedasticity (ARCH) model is proposed to characterize the vibration signal and the model coefficients are adopted as feature vectors to realize clustering diagnosis of rolling element bearings. The main characteristic is that the AR item and ARCH item are interrelated with each other so that it can depict the excess kurtosis and volatility clustering information in the vibration signal more accurately in comparison with two-stage AR/ARCH model. To testify the correctness, four kinds of bearing signals are adopted for parametric modeling by using the integrated and two-stage AR/ARCH model. The variance analysis of the model coefficients shows that the integrated AR/ARCH model can get more concentrated distribution. Taking these coefficients as feature vectors, K means based clustering is utilized to realize the automatic classification of bearing fault status. The results show that the proposed method can get more accurate results in comparison with two-stage model and discrete wavelet decomposition.

  7. Segmentation of elemental EDS maps by means of multiple clustering combined with phase identification.

    Science.gov (United States)

    Münch, B; Martin, L H J; Leemann, A

    2015-12-01

    An imaging concept is proposed for the phase identification and segmentation of elemental map images from energy dispersive spectroscopy. The procedure starts with presegmentation using common clustering algorithms, continues with automated identification of the chemical compositions, followed by their screening by professional expertise. The ultimate phases are finally clustered by applying a minimum Euclidean distance classifier. The potential, performance and limitations of the approach are presented on energy dispersive spectroscopy maps acquired by a scanning electron microscope and conducted on samples produced from cement clinker, natural rock and hydrated cement mortar. Nevertheless, the technique is suitable for arbitrary types of materials and general devices for energy dispersive spectroscopy acquisition. It is an approach for extending common energy dispersive spectroscopy analysis by means of visual examination and ratio plots towards quantitative rating.

  8. submitter Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions

    CERN Document Server

    Praplan, A P; Bianchi, F; Rissanen, M P; Ehn, M; Jokinen, T; Junninen, H; Adamov, A; Amorim, A; Dommen, J; Duplissy, J; Hakala, J; Hansel, A; Heinritzi, M; Kangasluoma, J; Kirkby, J; Krapf, M; Kürten, A; Lehtipalo, K; Riccobono, F; Rondo, L; Sarnela, N; Simon, M; Tomé, A; Tröstl, J; Winkler, P M; Williamson, C; Ye, P; Curtius, J; Baltensperger, U; Donahue, N M; Kulmala, M; Worsnop, D R

    2015-01-01

    This study presents the difference between oxidised organic compounds formed by α-pinene oxidation under various conditions in the CLOUD environmental chamber: (1) pure ozonolysis (in the presence of hydrogen as hydroxyl radical (OH) scavenger) and (2) OH oxidation (initiated by nitrous acid (HONO) photolysis by ultraviolet light) in the absence of ozone. We discuss results from three Atmospheric Pressure interface Time-of-Flight (APi-TOF) mass spectrometers measuring simultaneously the composition of naturally charged as well as neutral species (via chemical ionisation with nitrate). Natural chemical ionisation takes place in the CLOUD chamber and organic oxidised compounds form clusters with nitrate, bisulfate, bisulfate/sulfuric acid clusters, ammonium, and dimethylaminium, or get protonated. The results from this study show that this process is selective for various oxidised organic compounds with low molar mass and ions, so that in order to obtain a comprehensive picture of the elemental composition o...

  9. Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels

    Science.gov (United States)

    Turn, S. Q.; Jenkins, B. M.; Chow, J. C.; Pritchett, L. C.; Campbell, D.; Cahill, T.; Whalen, S. A.

    1997-02-01

    Particulate matter emitted from wind tunnel simulations of biomass burning for five herbaceous crop residues (rice, wheat and barley straws, corn stover, and sugar cane trash) and four wood fuels (walnut and almond prunings and ponderosa pine and Douglas fir slash) was collected and analyzed for major elements and water soluble species. Primary constituents of the particulate matter were C, K, Cl, and S. Carbon accounted for roughly 50% of the herbaceous fuel PM and about 70% for the wood fuels. For the herbaceous fuels, particulate matter from rice straw in the size range below 10 μm aerodynamic diameter (PM10) had the highest concentrations of both K (24%) and Cl, (17%) and barley straw PM10 contained the highest sulfur content (4%). K, Cl, and S were present in the PM of the wood fuels at reduced levels with maximum concentrations of 6.5% (almond prunings), 3% (walnut prunings), and 2% (almond prunings), respectively. Analysis of water soluble species indicated that ionic forms of K, Cl, and S made up the majority of these elements from all fuels. Element balances showed K, Cl, S, and N to have the highest recovery factors (fraction of fuel element found in the particulate matter) in the PM of the elements analyzed. In general, chlorine was the most efficiently recovered element for the herbaceous fuels (10 to 35%), whereas sulfur recovery was greatest for the wood fuels (25 to 45%). Unique potassium to elemental carbon ratios of 0.20 and 0.95 were computed for particulate matter (PM10 K/C(e)) from herbaceous and wood fuels, respectively. Similarly, in the size class below 2.5 μm, high-temperature elemental carbon to bromine (PM2.5 C(eht)/Br) ratios of ˜7.5, 43, and 150 were found for the herbaceous fuels, orchard prunings, and forest slash, respectively. The molar ratios of particulate phase bromine to gas phase CO2 (PM10 Br/CO2) are of the same order of magnitude as gas phase CH3Br/CO2 reported by others.

  10. STAT, GAPS, STRAIN, DRWDIM: a system of computer codes for analyzing HTGR fuel test element metrology data. User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, J.J.

    1977-08-01

    A system of computer codes has been developed to statistically reduce Peach Bottom fuel test element metrology data and to compare the material strains and fuel rod-fuel hole gaps computed from these data with HTGR design code predictions. The codes included in this system are STAT, STRAIN, GAPS, and DRWDIM. STAT statistically evaluates test element metrology data yielding fuel rod, fuel body, and sleeve irradiation-induced strains; fuel rod anisotropy; and additional data characterizing each analyzed fuel element. STRAIN compares test element fuel rod and fuel body irradiation-induced strains computed from metrology data with the corresponding design code predictions. GAPS compares test element fuel rod, fuel hole heat transfer gaps computed from metrology data with the corresponding design code predictions. DRWDIM plots the measured and predicted gaps and strains. Although specifically developed to expedite the analysis of Peach Bottom fuel test elements, this system can be applied, without extensive modification, to the analysis of Fort St. Vrain or other HTGR-type fuel test elements.

  11. Understanding the Vancouver hydrogen and fuel cells cluster : a case study of public laboratories and private research

    Energy Technology Data Exchange (ETDEWEB)

    Holbrook, A. [Simon Fraser Univ., Burnaby, BC (Canada). Centre for Policy Research on Science and Technology; Arthurs, D. [Hickling Arthurs Low Corp., Ottawa, ON (Canada); Cassidy, E. [National Research Council of Canada, Ottawa, ON (Canada)

    2007-07-01

    A technology cluster is a geographically proximate group of interconnected companies and associated institutions that compete but also cooperate. Studies have shown that firms who cluster achieve greater competitive advantages over those who do not. This paper discussed the development of a hydrogen and fuel cells cluster in the city of Vancouver. A structured approach was used to evaluate the cluster against indicators of current conditions in the city. The results of a survey conducted with industry representatives and business leaders suggested that the cluster will contain 2 major components: (1) a hydrogen-based industry; and (2) a fuel cell-based industry. Developments in both technologies were discussed in relation to stationary and mobile applications in the future. Markets for the new technologies were also outlined. The role of the National Research Council (NRC) in the cluster's evolution was discussed. Details of the cluster's business characteristics and plans for the future were also provided. 16 refs., 7 tabs., 7 figs.

  12. Innovative regions and industrial clusters in hydrogen and fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Anne Nygaard; Andersen, Per Dannemand [Department of Management Engineering, Technical University of Denmark, Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby (Denmark)

    2010-10-15

    Regional governments in Europe seem to be playing an increasing role in hydrogen and fuel cell (H2FC) development. A number of regions are supporting demonstration projects and building networks among regional stakeholders to strengthen their engagement in H2FC technology. In this article, we will analyse regions that are highly engaged in H2FC activity, based on three indicators: existing hydrogen infrastructure and production sites, general innovativeness and the presence of industrial clusters with relevance for H2FC. Our finding is that regions with high activity in H2FC development are also innovative regions in general. Moreover, the article highlights some industrial clusters that create favourable conditions for regions to take part in H2FC development. Existing hydrogen infrastructure, however, seems to play only a minor role in a region's engagement. The article concludes that, while further research is needed before qualified policy implications can be drawn, an overall well-functioning regional innovation system is important in the formative phase of an H2FC innovation system. (author)

  13. PETER loop. Multifunctional test facility for thermal hydraulic investigations of PWR fuel elements; PETER Loop. Multifunktionsversuchstand zur thermohydraulischen Untersuchung von DWR Brennelementen

    Energy Technology Data Exchange (ETDEWEB)

    Ganzmann, I.; Hille, D.; Staude, U. [AREVA NP GmbH (Germany). Materials, Fluid-Structure Interaction, Plant Life Management NTCM-G

    2009-07-01

    The reliable fuel element behavior during the complete fuel cycle is one of the fundamental prerequisites of a safe and efficient nuclear power plant operation. The fuel element behavior with respect to pressure drop and vibration impact cannot be simulated by means of fluid-structure interaction codes. Therefore it is necessary to perform tests using fuel element mock-ups (1:1). AREVA NP has constructed the test facility PETER (PWR fuel element tests in Erlangen) loop. The modular construction allows maximum flexibility for any type of fuel elements. Modern measuring instrumentation for flow, pressure and vibration characterization allows the analysis of cause and consequences of thermal hydraulic phenomena. PETER loop is the standard test facility for the qualification of dynamic fuel element behavior in flowing fluid and is used for failure mode analysis.

  14. A cruise in the archipelagos of superheavy elements, heavy-cluster emitters and nuclear molecules

    CERN Document Server

    Greiner, W

    2002-01-01

    I review some of the most important achievements in the theoretical investigations that we carried out in the last three decades at Frankfurt on the extension of the periodic system and heavy-ion emission. After discussing the problem of cold fusion and formation of Superheavy Elements (SHE) I will consider the reverse process, i.e. the spontaneous cold fragmentation of heavy nuclei into different channels like cluster radioactivity and cold fission. I will speculate on the properties of the putative quasi-molecules arising in the recent discovery of the triple fission of sup 2 sup 5 sup 2 Cf. (author)

  15. Spatially resolved modelling of the fission product behaviour in a HTR-core with spherical or prismatic fuel elements; Raeumlich hoch aufgeloeste Modellierung des Spaltproduktverhaltens in einem HTR-Core mit kugelfoermigen oder prismatischen Brennelementen

    Energy Technology Data Exchange (ETDEWEB)

    Xhonneux, Andre

    2014-07-01

    HTTR). In this case, for each fuel element the depletion and release behavior of a representative compact is being determined. Furthermore, a new pebble flow model Software for Handling Universal Fuel Elements (SHUFLE) has been developed, which allows for modeling the pebble flow more in detail within the framework of a multi-physics code package. The model describes the movement of smaller fuel element clusters as a sequence of seepage processes. With the help of experimental data, it is demonstrated that the model can depict the pebble fuel in detail.

  16. Study on the effect of the CANFLEX-NU fuel element bowing on the critical heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Ho Chun; Cho, Moon Sung; Jeon, Ji Su

    2001-01-01

    The effect of the CANFLEX-NU fuel element bowing on the critical heat flux is reviewed and analyzed, which is requested by KINS as the Government design licensing condition for the use of the fuel bundles in CANDU power reactors. The effect of the gap between two adjacent fuel elements on the critical heat flux and onset-of-dryout power is studied. The reduction of the width of a single inter-rod gap from its nominal size to the minimum manufacture allowance of 1 mm has a negligible effects on the thermal-hydraulic performance of the bundle for the given set of boundary conditions applied to the CANFLEX-43 element bundle in an uncrept channel. As expected, the in-reactor irradiation test results show that there are no evidence of the element bow problems on the bundle performance.

  17. The reliability of untempered end plug welds on HT9-clad IFR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D C; Porter, D L

    1987-02-01

    Welding generally leaves residual stresses in transformed weld zones, which can initiate cracks from flaws already present in the weld zones. When HT9 cools from welding temperatures, a martensite phase forms in the weld fusion zone and heat-affected zone. Because this martensite phase is hard and brittle, it is particularly susceptible to cracking aggravated by residual stresses. This causes concern over the use of untempered welds on HT9-clad fuel elements. To determine if residual stresses present in end-plug weld zones would affect fuel pin performance, HT9 capsules with prototypic TIG- and CD-welded end plugs (in the tempered and as-welded conditions) were pressurized to failure at room temperature, 550{sup 0}C, and 600{sup 0}C. None of the capsules failed in a weld zone. To determine the effects of reactor operating temperatures on untempered welds, prototypic TIG welds were tempered at reactor bulk sodium temperature and an expected sodium outlet temperature for various lengths of time. Subsequent tensile and burst tests of these specimens proved that any embrittling effects that may have been induced in these welds were of no consequence. Hardness tests on longitudinal sections of welds indicated the amount of tempering a weld will receive inreactor after relatively short lengths of time. The pressure burst tests proved that untemperted welds on HT9-clad fuel elements are as reliable as tempered welds; any residual stresses in untempered weld zones were of no consequence. The tempering test showed that welds used in the as-welded condition will sufficiently temper in 7 days at 550{sup 0}C, but will not, sufficiently temper in 7 days at bulk sodium temperature. A comparison of the structure of laser welds to those of CD and TIG welds indicated that untempered laser welds will perform and temper in a manner similar to the TIG welds tested in this effort.

  18. Design of Production Test IP-262-A-11-FP -- Evaluation of projection fuel elements for use in ribbed process tubes -- Demonstration loading

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, W.H.; Hall, R.E.

    1959-06-29

    For several years, a major category of fuel element failures has been the side corrosion type, characterized by localized accelerated fuel element jacket corrosion. Since it has been demonstrated {sup 1} that misalignment of fuel elements in a process tube will produce flow patterns and accelerated corrosion, termed ``hot spots``, failure to align the fuel elements in process tubes is considered a contributing factor in the production of side corrosion failures. Preliminary testing of both self-supporting and ``bumper`` fuel elements is underway. Data on the self-supporting fuel elements have demonstrated that the bridge-rail projections have sufficient support strength, do not of themselves create a corrosion problem and in actuality probably eliminate any hot-spot areas. Although one tube of bumper fuel elements in KW Reactor {sup 3} has been discharged, data are not as yet available. Potentially, the most sever corrosion conditions exist during the summer months when reactor inlet temperatures are high. It is desirable then, provided bumper fuel elements limit hot- spot corrosion, to evaluate the bumper concept for large scale use possibly by the summer of 1960. To accomplish this, a demonstration loading of the bumper type fuel elements must be underway by about July, 1959. The purpose of this report is to present the design of a test to evaluate the fabrication process and irradiation performance of fuel elements having projections, which may prevent misalignment in ribbed process tubes and meet the aforementioned goals.

  19. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  20. Matrix elements in the coupled-cluster approach - With application to low-lying states in Li

    Science.gov (United States)

    Martensson-Pendrill, Ann-Marie; Ynnerman, Anders

    1990-01-01

    A procedure is suggested for evaluating matrix elements of an operator between wavefunctions in the coupled-cluster form. The use of the exponential ansatz leads to compact exponential expressions also for matrix elements. Algorithms are developed for summing all effects of one-particle clusters and certain chains of two-particle clusters (containing the well-known random-phase approximation as a subset). The treatment of one-particle perturbations in single valence states is investigated in detail. As examples the oscillator strength for the 2s-2p transition in Li as well as the hyperfine structure for the two states are studied and compared to earlier work.

  1. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel

  2. Improved lumped models for transient combined convective and radiative cooling of a two-layer spherical fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alice Cunha da; Su, Jian, E-mail: alicecs@poli.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The High Temperature Gas cooled Reactor (HTGR) is a fourth generation thermal nuclear reactor, graphite-moderated and helium cooled. The HTGRs have important characteristics making essential the study of these reactors, as well as its fuel element. Examples of these are: high thermal efficiency,low operating costs and construction, passive safety attributes that allow implication of the respective plants. The Pebble Bed Modular Reactor (PBMR) is a HTGR with spherical fuel elements that named the reactor. This fuel element is composed by a particulate region with spherical inclusions, the fuel UO2 particles, dispersed in a graphite matrix and a convective heat transfer by Helium happens on the outer surface of the fuel element. In this work, the transient heat conduction in a spherical fuel element of a pebble-bed high temperature reactor was studied in a transient situation of combined convective and radiative cooling. Improved lumped parameter model was developed for the transient heat conduction in the two-layer composite sphere subjected to combined convective and radiative cooling. The improved lumped model was obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of the two-layer spherical fuel element was analyzed to illustrate the applicability of the proposed lumped model, with respect to die rent values of the Biot number, the radiation-conduction parameter, the dimensionless thermal contact resistance, the dimensionless inner diameter and coating thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the improved lumped model, with H2,1/H1,1/H0,0 approximation yielded significant improvement of average temperature prediction over the classical lumped model. (author)

  3. Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions

    Science.gov (United States)

    Praplan, A. P.; Schobesberger, S.; Bianchi, F.; Rissanen, M. P.; Ehn, M.; Jokinen, T.; Junninen, H.; Adamov, A.; Amorim, A.; Dommen, J.; Duplissy, J.; Hakala, J.; Hansel, A.; Heinritzi, M.; Kangasluoma, J.; Kirkby, J.; Krapf, M.; Kürten, A.; Lehtipalo, K.; Riccobono, F.; Rondo, L.; Sarnela, N.; Simon, M.; Tomé, A.; Tröstl, J.; Winkler, P. M.; Williamson, C.; Ye, P.; Curtius, J.; Baltensperger, U.; Donahue, N. M.; Kulmala, M.; Worsnop, D. R.

    2015-04-01

    This study presents the difference between oxidised organic compounds formed by α-pinene oxidation under various conditions in the CLOUD environmental chamber: (1) pure ozonolysis (in the presence of hydrogen as hydroxyl radical (OH) scavenger) and (2) OH oxidation (initiated by nitrous acid (HONO) photolysis by ultraviolet light) in the absence of ozone. We discuss results from three Atmospheric Pressure interface Time-of-Flight (APi-TOF) mass spectrometers measuring simultaneously the composition of naturally charged as well as neutral species (via chemical ionisation with nitrate). Natural chemical ionisation takes place in the CLOUD chamber and organic oxidised compounds form clusters with nitrate, bisulfate, bisulfate/sulfuric acid clusters, ammonium, and dimethylaminium, or get protonated. The results from this study show that this process is selective for various oxidised organic compounds with low molar mass and ions, so that in order to obtain a comprehensive picture of the elemental composition of oxidation products and their clustering behaviour, several instruments must be used. We compare oxidation products containing 10 and 20 carbon atoms and show that highly oxidised organic compounds are formed in the early stages of the oxidation.

  4. Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions

    Directory of Open Access Journals (Sweden)

    A. P. Praplan

    2015-04-01

    Full Text Available This study presents the difference between oxidised organic compounds formed by α-pinene oxidation under various conditions in the CLOUD environmental chamber: (1 pure ozonolysis (in the presence of hydrogen as hydroxyl radical (OH scavenger and (2 OH oxidation (initiated by nitrous acid (HONO photolysis by ultraviolet light in the absence of ozone. We discuss results from three Atmospheric Pressure interface Time-of-Flight (APi-TOF mass spectrometers measuring simultaneously the composition of naturally charged as well as neutral species (via chemical ionisation with nitrate. Natural chemical ionisation takes place in the CLOUD chamber and organic oxidised compounds form clusters with nitrate, bisulfate, bisulfate/sulfuric acid clusters, ammonium, and dimethylaminium, or get protonated. The results from this study show that this process is selective for various oxidised organic compounds with low molar mass and ions, so that in order to obtain a comprehensive picture of the elemental composition of oxidation products and their clustering behaviour, several instruments must be used. We compare oxidation products containing 10 and 20 carbon atoms and show that highly oxidised organic compounds are formed in the early stages of the oxidation.

  5. Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part 2: Influence of Fuel Composition

    DEFF Research Database (Denmark)

    van Lith, Simone Cornelia; Jensen, Peter Arendt; Frandsen, Flemming

    2008-01-01

    Combustion of wood for heat and power production may cause problems such as ash deposition, corrosion, and harmful emissions of gases and particulate matter. These problems are all directly related to the release of inorganic elements (in particular Cl, S, K, Na, Zn, and Pb) from the fuel...... to the gas phase. The aims of this study are to obtain quantitative data on the release of inorganic elements during wood combustion and to investigate the influence of fuel composition. Quantitative release data were obtained by pyrolyzing and subsequently combusting small samples of wood (~30 g) at various...... temperatures in the range of 500–1150 °C in a laboratory-scale tube reactor and by performing mass balance calculations based on the weight measurements and chemical analyses of the wood fuels and the residual ash samples. Four wood fuels with different ash contents and inorganic compositions were investigated...

  6. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively.

  7. Preparation for shipment of spent TRIGA fuel elements from the research reactor of the Medical University of Hannover

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Gabriele; Cordes, Harro [Medical University of Hannover, D-30625 Hannover (Germany); Ebbinghaus, Kurt; Haferkamp, Dirk [NOELL-KRC, D-97064 Wuerzburg (Germany)

    1998-07-01

    In the early seventies a research reactor of type TRIGA Mark I was installed in the Department of Nuclear Medicine at the Medical University of Hannover (MHH) for the production of isotopes with short decay times for medical use. Since new production methods have been developed, the reactor has become obsolete and the MHH decided to decommission it. Probably in the second quarter of 1999 all 76 spent TRIGA fuel elements will be shipped to Idaho National Engineering and Environmental Laboratory (INEEL), USA, in one cask of type GNS 16. Due to technical reasons within the MHH a special Mobile Transfer System, which is being developed by the company Noell-KRC, will be used for reloading the fuel elements and transferring them from the reactor to the cask GNS 16. A description of the main components of this system as well as the process for transferring the fuel elements follows. (author)

  8. Disposition of Unirradiated Sodium Bonded EBR-II Driver Fuel Elements and HEU Scrap: Work Performed for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Karen A Moore

    2007-04-01

    Specific surplus high enriched uranium (HEU) materials at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) will be transferred to a designated off-site receiving facility. The DOE High Enriched Uranium Disposition Program Office (HDPO) will determine which materials, if any, will be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for nuclear reactors. These surplus HEU materials include approximately 7200 kg unirradiated sodium-bonded EBR-II driver fuel elements, and nearly 800 kg of HEU casting scrap from the process which formed various sodium-bonded fuels (including the EBR-II driver elements). Before the driver fuel can be packaged for shipment, the fuel elements will require removal of the sodium bond. The HEU scrap will also require repackaging in preparation for off-site transport. Preliminary work on this task was authorized by BWXT Y-12 on Nov 6, 2006 and performed in three areas: • Facility Modifications • Safety Documentation • Project Management

  9. AMiBA: Cluster Sunyaev-Zel’dovich Effect Observations with the Expanded 13-element Array

    Science.gov (United States)

    Lin, Kai-Yang; Nishioka, Hiroaki; Wang, Fu-Cheng; Locutus Huang, Chih-Wei; Liao, Yu-Wei; Proty Wu, Jiun-Huei; Koch, Patrick M.; Umetsu, Keiichi; Chen, Ming-Tang; Chan, Shun-Hsiang; Chang, Shu-Hao; Lucky Chang, Wen-Hsuan; Cheng, Tai-An; Duy, Hoang Ngoc; Fu, Szu-Yuan; Han, Chih-Chiang; Ho, Solomon; Ho, Ming-Feng; Ho, Paul T. P.; Huang, Yau-De; Jiang, Homin; Kubo, Derek Y.; Li, Chao-Te; Lin, Yu-Chiung; Liu, Guo-Chin; Martin-Cocher, Pierre; Molnar, Sandor M.; Nunez, Emmanuel; Oshiro, Peter; Pai, Shang-Ping; Raffin, Philippe; Ridenour, Anthony; Shih, Chia-You; Stoebner, Sara; Teo, Giap-Siong; Yeh, Jia-Long Johnny; Williams, Joshua; Birkinshaw, Mark

    2016-10-01

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is a co-planar interferometer array operating at a wavelength of 3 mm to measure the Sunyaev-Zel’dovich effect (SZE) of galaxy clusters at arcminute scales. The first phase of operation—with a compact 7-element array with 0.6 m antennas (AMiBA-7)—observed six clusters at angular scales from 5\\prime to 23\\prime . Here, we describe the expansion of AMiBA to a 13-element array with 1.2 m antennas (AMiBA-13), its subsequent commissioning, and cluster SZE observing program. The most noticeable changes compared to AMiBA-7 are (1) array re-configuration with baselines ranging from 1.4 m to 4.8 m, allowing us to sample structures between 2\\prime and 10\\prime , (2) 13 new lightweight carbon-fiber-reinforced plastic (CFRP) 1.2 m reflectors, and (3) additional correlators and six new receivers. Since the reflectors are co-mounted on and distributed over the entire six-meter CFRP platform, a refined hexapod pointing error model and phase error correction scheme have been developed for AMiBA-13. These effects—entirely negligible for the earlier central close-packed AMiBA-7 configuration—can lead to additional geometrical delays during observations. Our correction scheme recovers at least 80 ± 5% of the point-source fluxes. We, therefore, apply an upward correcting factor of 1.25 to our visibilities to correct for phase decoherence, and a ±5% systematic uncertainty is added in quadrature with our statistical errors. We demonstrate the absence of further systematics with a noise level consistent with zero in stacked uv-visibilities. From the AMiBA-13 SZE observing program, we present here maps of a subset of 12 clusters with signal-to-noise ratios above five. We demonstrate combining AMiBA-7 with AMiBA-13 observations on Abell 1689, by jointly fitting their data to a generalized Navarro-Frenk-White model. Our cylindrically integrated Compton-y values for five radii are consistent with results from

  10. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    Science.gov (United States)

    Mao, Chien-Pei [Clive, IA; Short, John [Norwalk, IA; Klemm, Jim [Des Moines, IA; Abbott, Royce [Des Moines, IA; Overman, Nick [West Des Moines, IA; Pack, Spencer [Urbandale, IA; Winebrenner, Audra [Des Moines, IA

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  11. Star-Forming Brightest Cluster Galaxies at 0.25 < z < 1.25: A Transitioning Fuel Supply

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Stalder, B.; Bayliss, M.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.

    2016-02-01

    We present a multi-wavelength study of 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star formation rate (SFR) for the BCG in each cluster, based on the UV and IR continuum luminosity, as well as the [O II] emission line luminosity in cases where spectroscopy is available, finding 7 systems with SFR > 100 Msun/yr. We find that the BCG SFR exceeds 10 Msun/yr in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1-5% at z ~ 0 from the literature. At z > 1, this fraction increases to 92(+6)(-31)%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific star formation rate in BCGs is declining more slowly with time than for field or cluster galaxies, most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z > 0.6, the correlation between cluster central entropy and BCG star formation - which is well established at z ~ 0 - is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs using data from the Hubble Space Telescope, finding complex, highly asymmetric UV morphologies on scales as large as ~50-60 kpc. The high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy-galaxy interactions to ICM cooling.

  12. Internal flow measurements of the SSME fuel preburner injector element using real time neutron radiography

    Science.gov (United States)

    Lindsay, John T.; Elam, Sandy; Koblish, Ted; Lee, Phil; Mcauliffe, Dave

    1990-01-01

    Due to observations of unsteady flow in the Space Shuttle Main Engine fuel preburner injector element, several flow studies have been performed. Real time neutron radiography tests were recently completed. This technique provided real time images of MiL-c-7024 and Freon-22 flow through an aluminum liquid oxygen post model at three back pressures (0, 150, and 545 psig) and pressure drops up to 1000 psid. Separated flow appeared only while operating at back pressures of 0 and 150 psig. The behavior of separated flow was similar to that observed for water in a 3x acrylic model of the LOX post. On the average, separated flow appeared to reattach near the exit of the post when the ratio of pressure drop to supply pressure was about 0.75.

  13. Research on graphite powders used for HTR-PM fuel elements

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hongsheng; LIANG Tongxiang; ZHANG Jie; LI Ziqiang; TANG Chunhe

    2006-01-01

    Different batches of natural graphite powders and electrographite powders were characterized by impurity, degree of graphitization, particle size distribution, specific surface area, and shape characteristics. The graphite balls consist of proper mix-ratio of natural graphite, electrographite and phenolic resin were manufactured and characterized by thermal conductivity, anisotropy of thermal expansion, crush strength, and drop strength. Results show that some types of graphite powders possess very high purity, degree of graphitization, and sound size distribution and apparent density, which can serve for matrix graphite of HTR-PM. The graphite balls manufactured with reasonable mix-ratio of graphite powders and process method show very good properties. It is indicated that the properties of graphite balls can meet the design criterion of HTR-PM. We can provide a powerful candidate material for the future manufacture of HTR-PM fuel elements.

  14. Experimental Investigation of Vibratory Stresses in a Concentric-Ring Direct-Air-Cycle Nuclear Fuel Element

    Science.gov (United States)

    Chiarito, Patrick T.

    1957-01-01

    Preliminary tests made by the General Electric Company indicated that aerodynamic loads might cause large enough distortions in the thin sheet-metal rings of a nuclear fuel element to result in structural failure. The magnitude of the distortions in a test fuel element was determined from strains measured with airflow conditions simulating those expected during engine operation. The measured vibratory strains were low enough to indicate the improbability of failure by fatigue. A conservative estimate of the radial deflection that accompanied peak strains in the outer ring was +0.0006 inch.

  15. Formation of intermetallic compound at interface between rare earth elements and ferritic-martensitic steel by fuel cladding chemical interaction

    Institute of Scientific and Technical Information of China (English)

    Jun Hwan Kim; Byoung Oon Lee; Chan Bock Lee; Seung Hyun Jee; Young Soo Yoon

    2012-01-01

    The intermetallic compounds formation at interface between rare earth elements and clad material were investigated to demonstrate the effects of rare earth elements on fuel-cladding chemical interaction (FCCI) behavior.Mischmetal (70Ce-30La) and Nd were prepared as rare earth elements.Diffusion couple testing was performed on the rare earth elements and cladding (9Cr2W steel) near the operation temperature of(sodium-cooled fast reactor) SFR fuel.The performance of a diffusion barrier consisting of Zr and V metallic foil against the rare earth elements was also evaluated.Our results showed that Ce and Nd in the rare earth elements and Fe in the clad material interdiffused and reacted to form intermetallic species according to the parabolic rate law,describing the migration of the rare earth element.The diffusion of Fe limited the reaction progress such that the entire process was governed by the cubic rate law.Rare earth materials could be used as a surrogate for high burnup metallic fuels,and the performance of the barrier material was demonstrated to be effective.

  16. Experimental approach and modelling of the mechanical behaviour of graphite fuel elements subjected to compression pulses

    Science.gov (United States)

    Forquin, P.

    2010-06-01

    Among the activities led by the Generation IV International Forum (GIF) relative to the future nuclear systems, the improvement of recycling of fuel elements and their components is a major issue. One of the studied systems by the GIF is the graphite-moderated high-temperature gas cooled reactor (HTGR). The fuel elements are composed of fuel roads half-inch in diameter named compacts. The compacts contain spherical particles made of actinide kernels about 500 m in diameter coated with three layers of carbon and silicon carbide, each about 50 m thick, dispersed in a graphite matrix. Recycling of compacts requires first a separation of triso-particles from the graphite matrix and secondly, the separation of the triso-coating from the kernels. This aim may be achieved by using pulsed currents: the compacts are placed within a cell filled by water and exposed to high voltage between 200 - 500 kV and discharge currents from 10 to 20 kA during short laps of time (about 2 µs) [1-2]. This repeated treatment leads to a progressive fragmentation of the graphite matrix and a disassembly of the compacts. In order to improve understanding of the fragmentation properties of compacts a series of quasi-static and dynamic experiments have been conducted with similar cylindrical samples containing 10% (volume fraction) of SiC particles coated in a graphite matrix. First, quasi-static compression tests have been performed to identify the mechanical behaviour of the material at low strain-rates (Fig.1). The experiments reveal a complex elasto-visco-plastic behaviour before a brittle failure. The mechanical response is characterised by a low yield stress (about 1 MPa), a strong strain-hardening in the loading phase and marked hysteresis-loops during unloading-reloading stages. Brittle failure is observed for axial stress about 13 MPa. In parallel, a series of flexural tests have been performed with the aim to characterise the quasi-static tensile strength of the particulate

  17. Experimental approach and modelling of the mechanical behaviour of graphite fuel elements subjected to compression pulses

    Directory of Open Access Journals (Sweden)

    Forquin P.

    2010-06-01

    Full Text Available Among the activities led by the Generation IV International Forum (GIF relative to the future nuclear systems, the improvement of recycling of fuel elements and their components is a major issue. One of the studied systems by the GIF is the graphite-moderated high-temperature gas cooled reactor (HTGR. The fuel elements are composed of fuel roads half-inch in diameter named compacts. The compacts contain spherical particles made of actinide kernels about 500 m in diameter coated with three layers of carbon and silicon carbide, each about 50 m thick, dispersed in a graphite matrix. Recycling of compacts requires first a separation of triso-particles from the graphite matrix and secondly, the separation of the triso-coating from the kernels. This aim may be achieved by using pulsed currents: the compacts are placed within a cell filled by water and exposed to high voltage between 200 – 500 kV and discharge currents from 10 to 20 kA during short laps of time (about 2 µs [1-2]. This repeated treatment leads to a progressive fragmentation of the graphite matrix and a disassembly of the compacts. In order to improve understanding of the fragmentation properties of compacts a series of quasi-static and dynamic experiments have been conducted with similar cylindrical samples containing 10% (volume fraction of SiC particles coated in a graphite matrix. First, quasi-static compression tests have been performed to identify the mechanical behaviour of the material at low strain-rates (Fig.1. The experiments reveal a complex elasto-visco-plastic behaviour before a brittle failure. The mechanical response is characterised by a low yield stress (about 1 MPa, a strong strain-hardening in the loading phase and marked hysteresis-loops during unloading-reloading stages. Brittle failure is observed for axial stress about 13 MPa. In parallel, a series of flexural tests have been performed with the aim to characterise the quasi-static tensile strength of the

  18. The Assessment of Hydrogen Energy Systems for Fuel Cell Vehicles Using Principal Componenet Analysis and Cluster Analysis

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun

    2012-01-01

    Hydrogen energy which has been recognized as an alternative instead of fossil fuel has been developed rapidly in fuel cell vehicles. Different hydrogen energy systems have different performances on environmental, economic, and energy aspects. A methodology for the quantitative evaluation and anal......Hydrogen energy which has been recognized as an alternative instead of fossil fuel has been developed rapidly in fuel cell vehicles. Different hydrogen energy systems have different performances on environmental, economic, and energy aspects. A methodology for the quantitative evaluation...... to verify the correctness and accuracy of the principal components (PCs) determined by PCA in this paper. A case including 11 different hydrogen energy systems for fuel cell vehicles has been studied in this paper, and the system using steam reforming of natural gas for hydrogen production, pipeline...... for transportation of hydrogen, hydrogen gas tank for the storage of hydrogen at refueling stations, and gaseous hydrogen as power energy for fuel cell vehicles has been recognized as the best scenario. Also, the clustering results calculated by CA are consistent with those determined by PCA, denoting...

  19. Simultaneous Forecast for Three Speciations of Heavy Metal Elements Using Fuzzy Cluster-Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    ZHAO Tian-qi; MENG Fan-yu; WANG Hong-yan; GAO Yan

    2012-01-01

    Abstract The three speciations(water extract,adsorption and organic speciations) of Cu,Zn,Fe and Mn in geo-chemical samples were determined by fuzzy cluster-artificial neural network(FC-ANN) method coupled with atomic absorption spectrometry.A back-propagation artificial neural network with one input node and three export nodes was constructed,which could forecaste three speciations of heavy metals simultaneously.In the learning sample set,the three speciations of each element were allowed to change in a wide concentration range and the accuracy of the analysis was apparently increased via the learning sample set optimized with the help of the fuzzy cluster analysis.The average relative errors of the three speciations of Cu,Zn,Fe or Mn from 100 geo-chemical samples were less than 5%.The relative standard deviations of the three speciations of each of four heavy metals were 0.008%-4.43%.

  20. Fuel element development committee: Annual report from the General Electric Company, Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.; Minor, J.E.; Stringer, J.T.

    1964-08-14

    A summary of HAPO activities is given to include separate sections on the N-Reactor and other current production reactors. Specific programs and fuel performance for current production reactor fuels is discussed. Also, the production status, fuel performance, development program and process technology for N-Reactor fuels is presented.

  1. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    Science.gov (United States)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  2. A Theoretical Study of Clusters: Realizing Differences between the Second-Row and the Third-Row Elements

    Institute of Scientific and Technical Information of China (English)

    XU Ya-Ge; JI Dong; SHEN Xu-Yang; WANG Xiao-Lu; LI Jia-Ming

    2006-01-01

    @@ Based on the characteristics of valence bonds and the first-principle molecular dynamics simulation we present an optimum valence bond scheme to study properties of important critical clusters with limited computational effort. The differences between the second-row and the third-row elements belonging to the same families can be understood by examining electronic structures and geometric structures even for small size clusters.

  3. Mesocarbon microbead based graphite for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor

    Science.gov (United States)

    Zhong, Yajuan; Zhang, Junpeng; Lin, Jun; Xu, Liujun; Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong; Guo, Quangui

    2017-07-01

    Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10-6 K-1 (α∥) and 6.15 × 10-6 K-1 (α⊥) at the temperature range of 25-700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.

  4. Numerical investigation of Prandtl number effect on heat transfer and fluid flow characteristics of a nuclear fuel element

    Directory of Open Access Journals (Sweden)

    R.K. Abdul Razak

    2017-06-01

    Full Text Available This paper investigates the heat transfer and fluid flow characteristics of liquid metal coolants (such as Sodium, Sodium potassium, Bismuth, Lead, and Lead–bismuth flowing over a nuclear fuel element having non-uniform internal energy generation numerically using finite difference method. The Full Navier Stokes Equations governing the flow were converted into stream function-Vorticity form and solved simultaneously along with energy equation using central finite difference scheme. For the two dimensional steady state heat conduction and Stream-Function Equation, the discretization was done in the form suitable to solve using ‘Line-by-Line Gauss-Seidel’ solution technique whereas the discretization of Vorticity transport and energy equations were done using Alternating Direction Implicit (ADI scheme. After discretization the systems of equations were solved using ‘Thomas Algorithm’. The complete task was done by writing a computer code. The results were obtained in the form of variation of Maximum temperature in the fuel element (hot spots and its location, mean coolant temperature at the exit .The parameters considered for the study were  aspect ratio of fuel element, Ar, conduction-convection parameter Ncc, total energy generation parameter Qt, and flow Reynolds number ReH. The results obtained can be used to minimize the Maximum temperature in the fuel element (hot spots.

  5. Experimental study of water flow in nuclear fuel elements; Estudo experimental do escoamento de agua em elementos combustiveis nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Lorena Escriche, E-mail: ler@cdtn.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil); Rezende, Hugo Cesar; Mattos, Joao Roberto Loureiro de; Barros Filho, Jose Afonso; Santos, Andre Augusto Campagnole dos, E-mail: hcr@cdtn.br, E-mail: jrmattos@cdtn.br, E-mail: jabf@cdtn.br, E-mail: aacs@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    This work aims to develop an experimental methodology for investigating the water flow through rod bundles after spacer grids of nuclear fuel elements of PWR type reactors. Speed profiles, with the device LDV (Laser Doppler Velocimetry), and the pressure drop between two sockets located before and after the spacer grid, using pressure transducers were measured.

  6. Supplemental specifications of laboratory hot press process -- For CV size self-supported I&E fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.A.; Schweikhardt, G.M.

    1964-06-01

    Some refinements have been introduced into the hot press canning of internally and externally cooled fuel elements. This report outlines the specifications for the process including these refinements. Specifications cover components, dies, and punches, furnace condition, nickel plating, component cleaning, component assembly, sizing, hot pressing and inspection.

  7. Specifications: Laboratory hot press process for {open_quotes}C{close_quotes}size I & E fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Tverberg, J.C.

    1959-09-25

    Hot press canning of internally and externally cooled fuel elements has been developed to a point where the process is feasible. Complete specifications have been written for the process covering component, dies and punches, furnace construction, nickel plating, component cleaning, component assembly, sizing, hot pressing and inspection. Drawings covering each major item are included.

  8. Finite-element procedure for calculating the three-dimensional inelastic bowing of fuel rods (AWBA development program)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S E

    1982-05-01

    An incremental finite element procedure is developed for calculating the in-pile lateral bowing of nuclear fuel rods. The fuel rod is modeled as a viscoelastic beam whose material properties are derived as perturbations of the results of an axisymmetric stress analysis of the fuel rod. The effects which are taken into account in calculating the rod's lateral bowing include: (a) lateral, axial, and rotational motions and forces at the rod supports, (b) transverse gradients of temperature, fast-neutron flux, and fissioning rate, and (c) cladding circumferential wall thickness variation. The procedure developed in this report could be used to form the basis for a computer program to calculate the time-dependent bowing as a function of the fuel rod's operational and environmental history.

  9. Accumulation of Elements in Salix and Other Species Used in Vegetation Filters with Focus on Wood Fuel Quality

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Anneli

    2007-07-01

    Woody or herbaceous perennials used as vegetation filters for treatment of different types of wastes can be suitable for production of solid biofuels when their above ground harvestable biomass yield is sufficiently high and when biomass contains appropriate concentrations of minerals with regard to fuel combustion processes. The concentrations of nitrogen (N), potassium (K) and heavy metals (especially Zn and Cd) in fuel should be low and calcium (Ca) concentrations high to avoid technical problems and environmentally harmful emissions during combustion. Since soil supplementation with essential elements improves biomass yield, a conflict might arise between yield and quality aims. There are various possibilities to influence fuel quality during the growing phase of the life cycle of perennial biomass crops. This study assessed the suitability of two deciduous woody perennials (Salix and Populus) and two summer green herbaceous perennials (Phragmites and Urtica) for phytoremediation in terms of growth and nutrient allocation patterns. Salix and Populus proved suitable as vegetation filters when nutrients were available to plants in near-optimal proportions, but when unbalanced nutrient solutions (wastewater) were applied, stem biomass fraction was strongly reduced. Phragmites was more tolerant to wastewater treatment in terms of plant biomass production and nutrient allocation patterns, so if the N:P ratio of the wastewater is suboptimal, a vegetation filter using Phragmites could be considered. In further studies, a method was developed to determine the proportions of nutrient-rich bark in coppiced Salix, while heavy metal phytoextraction capacity was assessed in two Salix vegetation filters. The relevance of proportion of bark on wood fuel quality and element removal from vegetation filters was also investigated. The concentrations of the elements studied in harvestable Salix shoot biomass were higher, meaning lower wood fuel quality, in plantations where

  10. Star-Forming Brightest Cluster Galaxies at 0.25 < z < 1.25: A Transitioning Fuel Supply

    CERN Document Server

    McDonald, M; Bayliss, M; Allen, S W; Applegate, D E; Ashby, M L N; Bautz, M; Benson, B A; Bleem, L E; Brodwin, M; Carlstrom, J E; Chiu, I; Desai, S; Gonzalez, A H; Hlavacek-Larrondo, J; Holzapfel, W L; Marrone, D P; Miller, E D; Reichardt, C L; Saliwanchik, B R; Saro, A; Schrabback, T; Stanford, S A; Stark, A A; Vieira, J D; Zenteno, A

    2015-01-01

    We present a multi-wavelength study of 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star formation rate (SFR) for the BCG in each cluster, based on the UV and IR continuum luminosity, as well as the [O II] emission line luminosity in cases where spectroscopy is available, finding 7 systems with SFR > 100 Msun/yr. We find that the BCG SFR exceeds 10 Msun/yr in 31 of 90 (34%) cases at 0.25 1, this fraction increases to 92(+6)(-31)%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific star formation rate in BCGs is declining more slowly with time than for field or cluster galaxies, most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z > 0.6, the correlation between cluster central entropy and BCG star formation - which is well established at z ~ 0 - i...

  11. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells.

    Science.gov (United States)

    Zhang, N; Chen, F Y; Wu, X Q

    2015-07-07

    The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeable result, so the newfound pIh Ag32Cu6 core-shell cluster is further investigated for potential application for O2 dissociation in oxygen reduction reaction (ORR). The activation energy barrier for the O2 dissociation on pIh Ag32Cu6 core-shell cluster is 0.715 eV, where the d-band center is -3.395 eV and the density of states at the Fermi energy level is maximal for the favorable absorption site, indicating that the catalytic activity is attributed to a maximal charge transfer between an oxygen molecule and the pIh Ag32Cu6 core-shell cluster. This work revises the earlier idea that Ag32Cu6 core-shell nanoparticles are not suitable as ORR catalysts and confirms that Ag-Cu nanoalloy is a potential candidate to substitute noble Pt-based catalyst in alkaline fuel cells.

  12. The upgrade and conversion of the ET-RR-1 research reactor using plate type fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Ashoub, N. [Reactor Physics Dept., Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Saleh, H.G. [Faculty of Girls for Arts and Education, Ain-Shams Univ., Cairo (Egypt)

    2001-11-01

    The ET-RR-1 research reactor has been operated at 2 MW since 1961 using EK-10 fuel elements with 10% enriched uranium. The reactor has been used for nuclear applied research and isotope production. In order to upgrade the reactor power to a reasonable limit facing up-to-date uses, core conversion by a new type of fuel element available is necessary. Two fuel elements in plate type are suggested in this study to be used in the ET-RR-1 reactor core rather than the utilized ones. The first element has a dimension of 8 x 8 x 50 cm and consists of 19.7% enriched uranium, which is typical for that utilized in the ET-RR-2 reactor, but with a different length. The other element is proposed with a dimension of 7 x 7 x 50 cm and has the same uranium enrichment. To accomplish safety requirements for these fuel elements, thermal-hydraulic evaluation has been carried out using the PARET code. To reach a core conversion of the ET-RR-1 reactor with the above two types of fuel elements, neutronic calculations have been performed using WIMSD4, DIXY2 and EREBUS codes. Some important nuclear parameters needed in the physical design of the reactor were calculated and included in this study. (orig.) [German] Der ET-RR-1 Forschungsreaktor wird seit 1961 unter Verwendung von EK-10 Brennelementen mit einer Leistung von 2 MW betrieben. Der Reaktor wird in der angewandten Forschung und zur Isotopenherstellung eingesetzt. Um die Reaktorleistung im Hinblick auf eine zeitgemaesse Nutzung der Anlage in einem vernuenftigen Mass zu erhoehen, ist eine Umwandlung des Kerns durch Verwendung neuartiger Brennelemente noetig. In der vorliegenden Untersuchung wird vorgeschlagen, anstelle der z. Z. verwendeten Elemente zwei neue, plattenfoermige Brennelemente zu verwenden. Das erste Element hat eine Groesse von 8 x 8 x 50 cm und besteht aus 19,7% angereichertem Uran, was den im ET-RR-2 Reaktor verwendeten Elementen entspricht, allerdings mit einer anderen Groesse. Das zweite Element hat die gleiche

  13. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    Science.gov (United States)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  14. Critical experiments supporting close proximity water storage of power reactor fuel. Technical progress report, October 1, 1977-December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.N.; Hoovler, G.S.

    1978-03-01

    Experiments are being conducted on critical configurations of clusters of fuel rods, mocking up LWR-type fuel elements in close proximity water storage. Spacings between fuel clusters and the intervening material are being varied to provide a variety of benchmark loadings. (DLC)

  15. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    Science.gov (United States)

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  16. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    Science.gov (United States)

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  17. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Tuovinen, Tiina S., E-mail: tiina.tuovinen@uef.fi [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Kasurinen, Anne; Häikiö, Elina [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Tervahauta, Arja [Department of Biology, University of Eastern Finland, P.O. Box FI-70211, Kuopio (Finland); Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2016-01-01

    Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low. - Highlights: • We studied transfer of elements in boreal food chain using meso- and microcosms. • Elements related to nuclear fuel cycle and mining were examined. • Higher uptake at lower soil concentrations was observed for primary producers. • Snails took up elements mainly from food but for U also soil was an element source. • Non-linear transfer of essential elements was observed for herbivore and decomposer.

  18. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  19. Review: Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Jappe Frandsen, Flemming

    2015-01-01

    Cement production is an energy-intensive process, which traditionally has been dependent on fossil fuels. However, the use of alternative fuels, i.e., selected waste, biomass, and byproducts with recoverable calorific value, is constantly increasing. Combustion of these fuels is more challenging......, compared to fossil fuels, because of a lack of experience and different chemical and physical properties. When complete oxidation Of fuels in the calciner and main burner is not achieved, they burn in direct contact with the bed material of the rotary kiln, causing local reducing conditions and increasing...

  20. Elastic analysis of thermal gradient bowing in rod-type fuel elements subjected to axial thrust (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Newman, J.B.

    1968-01-01

    Thermal radient bowing of rod type fuel elements can be analyzed in terms of the deflections of a precurved beam. The fundamental aspects of an analysis of axially compressed multispan beams are given. Elasticity of supports in both axial and transverse directions is considered; the technique is applicable to problems in which the axial thrust depends on the transverse deflection as well as problems with prescribed axial thrust. The formulas presented constitute the theory for a computer program of broad applicability, not only in the analysis of fuel rod bowing, but also to almost any multispan beam, particularly when the effects of axial loads cannot be neglected. 17 references. (NSA 22: 22866)

  1. First principle study of the interaction of elemental Hg with small neutral, anionic and cationic Pd ( = 1-6) clusters

    Indian Academy of Sciences (India)

    Shamoon Ahmad Siddiqui; Nadir Bouarissa

    2013-11-01

    Density functional theory (DFT)-based calculations have been performed so as to study the interaction of elemental mercury (Hg) with small neutral, cationic and anionic palladium clusters (Pd, = 1-6). Results of these calculations clearly indicate that frontier molecular orbital (FMO) theory is a useful method to predict the selectivity of Hg adsorption. Binding energies of Hg on cationic Pd clusters are generally found to be greater than those on neutral and anionic clusters. Results of natural bond orbital (NBO) analysis show that the flow of electrons in the neutral and charged complexes is mainly due to s orbitals of Hg. NBO analysis also indicates that, in most of the cases, the binding energies of Hg with Pdn clusters are directly proportional to charge transfer, i.e., greater the charge transfer, higher is the binding energy.

  2. Light Element Chemistry and the Double Red Giant Branch in the Galactic Globular Cluster NGC 288

    CERN Document Server

    Hsyu, Tiffany; Lee, Young-Wook; Rich, R Michael

    2014-01-01

    The globular cluster NGC 288 was previously reported to exhibit two distinct red giant branches (RGBs) in the narrow-band Calcium (HK) and Str\\"omgren b and y band passes. In order to investigate this phenomenon further, we obtained moderate resolution (R$\\sim$18,000) spectra of 27 RGB stars in NGC 288 with the Hydra multifiber spectrograph on the Blanco 4m telescope at Cerro Tololo Inter-American Observatory. From these data we derive iron ($\\langle$[Fe/H]$\\rangle$=-1.19; $\\sigma$=0.12), oxygen ($\\langle$[O/Fe]$\\rangle$=$+$0.25; $\\sigma$=0.13), and sodium ($\\langle$[Na/Fe]$\\rangle$=$+$0.15; $\\sigma$=0.26) abundances using standard equivalent width and spectrum synthesis techniques. Combining these data with those available in the literature indicates that the two giant branches have distinctly different light element chemistry but do not exhibit a significant spread in [Fe/H]. A new transmission tracing for the CTIO Ca filter, obtained for this project, shows that CN contamination is the primary spectral fea...

  3. Clustering of transmutation elements tantalum, rhenium and osmium in tungsten in a fusion environment

    Science.gov (United States)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.

    2017-08-01

    The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.

  4. Hydraulic demand characteristics of self-supported C-IV-N and K-I-N I&E fuel elements in a zirconium C-Reactor tube

    Energy Technology Data Exchange (ETDEWEB)

    Waters, E.D.

    1960-01-13

    This report discusses the isothermal hydraulic demand characteristics were determined by laboratory experiment for full charges of self-supported I&E fuel elements in a zirconium process tube. Pressure drop, flow rate data, and the calculations of annulus-to-hole flow ratio are presented. For self-supported fuel elements, pressure drop does not vary with temperature as much as it dies for non-self-supported furl elements.

  5. ANALYSING THE POSIBILITY OF FUEL FILTER ELEMENTS OPERATING EFFECTIVINESS EVALUATION WITH X-RAY FLUORESCENSE METHOD

    Directory of Open Access Journals (Sweden)

    Mikhail Lvovich Nemchikov

    2017-01-01

    Full Text Available The author dwells upon the problems of the technical condition of refueling complexes equipment continuous monitoring, which is an important factor in ensuring the safety and regularity of flights. The article deals with the results of the research into the composition and concentration of mechanical impurities from different layers of the regular filter EFB-15/120-104 0615 production number of NGOs "Unit", which has been removed from the supply line TC-1 aviation fuel tank farm from the State Reserve in the refueling tank farm "Vnukovo" and the filter control of Velcon company brand the CDF 230F, which is removed from the tanker, in order to assess their performance and service life prediction using X-ray fluorescence method.Illustrative and graphic research results are given, which allow to assess the effectiveness of the used filters. The assessment measuring of the found elements concentrations in different areas of the test sample: 4sm2 area, 1 cm2 and 0.25 cm2, cut from a cardboard filter area is made. The author determined that the average total Fe concentration on the filter was 8.3 g / m providing the fact that due to the operator information the filter pumped 2,020 m3 or 1,582 tons of fuel. There is also made the estimation of the total amount of Fe, detained in filter, which is 1313 g. It should be noted, according to the appearance and the detected concentration of Fe, its capacity has not been fully exhausted. This allows to receive additional information on the real filter resource, and to use it for solving the problems of filter mod- ernization.The studies have shown the possibility to estimate the amount and composition of impurities, which allows to be sure that this work is promising and possible to be integrated into the practical events to ensure the safe operation of civil aircraft. The publication aims to draw the attention of operators and regulatory authorities to the possibility of using the proposed method to provide a

  6. The Development of Nanotechnological Clusters as the Elements of Nanoindustrial Infrastructure: European Experience

    Directory of Open Access Journals (Sweden)

    Beloglazova Svetlana Anatolyevna

    2015-05-01

    Full Text Available The international experience in managing innovative development of regions shows that at this level of global economic system there is an objective process of synthesis of scientific, industrial, economic and social policies in the form of peculiar entities, named clusters, which helps to create favorable environment for appearance and expansion of innovations. Development strategies of advanced countries embody the identification of key competencies of regions and creation of nanotechnological clusters in order to stimulate innovation. Such clusters are intended to develop the methods for nanotechnology application, create new types of business activities, and provide world-class quality. The importance of implementation of nanotechnological cluster policy being a factor of sustainable development of economic systems at micro-, meso- and macro- levels determines the necessity to consider the experience of successful nanotechnological clusters in Italy and France: the cluster of nanotechnologies in the Veneto region, which is the largest and most competitive cluster in Italy, generating up to 9.3 % of the Italy’s GDP, and the Minalogic cluster in the French region Grenoble, being included in the top 5 largest micro and nanotechnological clusters of the world while Grenoble is in the top 15 most innovative regions in the world. The author defines the largest cluster members, describes key areas and key measures of government and non-government support, analyzes economic performance of clusters and describes their impact on the economy of a region and a country as a whole.

  7. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9

    Science.gov (United States)

    Li, Jinhuan; Shou, Jia; Guo, Ya; Tang, Yuanxiao; Wu, Yonghu; Jia, Zhilian; Zhai, Yanan; Chen, Zhifeng; Xu, Quan; Wu, Qiang

    2015-01-01

    The human genome contains millions of DNA regulatory elements and a large number of gene clusters, most of which have not been tested experimentally. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) programed with a synthetic single-guide RNA (sgRNA) emerges as a method for genome editing in virtually any organisms. Here we report that targeted DNA fragment inversions and duplications could easily be achieved in human and mouse genomes by CRISPR with two sgRNAs. Specifically, we found that, in cultured human cells and mice, efficient precise inversions of DNA fragments ranging in size from a few tens of bp to hundreds of kb could be generated. In addition, DNA fragment duplications and deletions could also be generated by CRISPR through trans-allelic recombination between the Cas9-induced double-strand breaks (DSBs) on two homologous chromosomes (chromatids). Moreover, junctions of combinatorial inversions and duplications of the protocadherin (Pcdh) gene clusters induced by Cas9 with four sgRNAs could be detected. In mice, we obtained founders with alleles of precise inversions, duplications, and deletions of DNA fragments of variable sizes by CRISPR. Interestingly, we found that very efficient inversions were mediated by microhomology-mediated end joining (MMEJ) through short inverted repeats. We showed for the first time that DNA fragment inversions could be transmitted through germlines in mice. Finally, we applied this CRISPR method to a regulatory element of the Pcdhα cluster and found a new role in the regulation of members of the Pcdhγ cluster. This simple and efficient method should be useful in manipulating mammalian genomes to study millions of regulatory DNA elements as well as vast numbers of gene clusters. PMID:25757625

  8. Costs of head-end incineration with respect to Kr separation in the reprocessing of HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Barnert-Wiemer, H.; Boehnert, R.

    1976-07-15

    The C-incinerations and the Kr-separations during head-end incineration in the reprocessing of HTR fuel elements are described. The costs for constructing an operating a head-end incineration of reprocessing capacities with 5,000 to 50,000 MW(e)-HTR power have been determined. The cost estimates are divided into investment and operating costs, further after the fraction of the N/sub 2/-content in the incineration exhaust gas, which strongly affects costs. It appears that, in the case of Kr-separation from the incineration exhaust gas, the investment costs as well as the operating costs of the head-end for N/sub 2/-containing exhaust gas are considerably greater than those for gas without N/sub 2/. The C-incineration of the graphite of the HTR fuel elements should therefore only be performed with influx gas that is free of N/sub 2/.

  9. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    Science.gov (United States)

    Walton, James T.

    1992-01-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code.

  10. Portland clinker production with carbonatite waste and tire-derived fuel: crystallochemistry of minor and trace elements

    Directory of Open Access Journals (Sweden)

    F. R. D. Andrade

    2014-12-01

    Full Text Available This paper presents results on the composition of Portland clinkers produced with non-conventional raw-materials and fuels, focusing on the distribution of selected trace elements. Clinkers produced with three different fuel compositions were sampled in an industrial plant, where all other parameters were kept unchanged. The fuels have chemical fingerprints, which are sulfur for petroleum coke and zinc for TDF (tire-derived fuel. Presence of carbonatite in the raw materials is indicated by high amounts of strontium and phosphorous. Electron microprobe data was used to determine occupation of structural site of both C3S and C2S, and the distribution of trace elements among clinker phases. Phosphorous occurs in similar proportions in C3S and C2S; while considering its modal abundance, C3S is its main reservoir in the clinker. Sulfur is preferentially partitioned toward C2S compared to C3S. Strontium substitutes for Ca2+ mainly in C2S and in non-silicatic phases, compared to C3S.

  11. Development of novel extractants for the recycle system of transuranium elements from nuclear fuel-3

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1998-03-01

    Novel bi-functional extractants which have two organophosphorus moieties in the molecular structure were designed and synthesized for the recycle system of transuranium elements using liquid-liquid extraction. The separation efficiency and extraction ability of the newly synthesized extractants were investigated for rare earth metals. The new extractants have an high extractability to the rare earth metals compared with that of commercially available phosphorus extractants. The obtained results suggest that the extraction and separation abilities are highly sensitive to the molecular structure of the spacer connecting the two functional phosphorus groups. The results of thermodynamic analysis for extraction equilibrium indicate that the entropy effect on the extraction is one of the key factors to enhance the selectivity in the rare earth extractions. Furthermore, a computer analysis was carried out to evaluate the extraction properties for the extraction of rare earth metals by the bi-functional extractants. It is demonstrated that the new concept to connect some functional moieties with a spacer is very useful and is a promising method to develop new extractants for the treatment of nuclear fuel. We have proposed a novel molecular imprinting technique for the treatment of waste nuclear solutions. A surface-imprinting resin was prepared by an emulsion polymerization using a novel organophosphorus extractant as a host monomer for rare earth metals. The host monomer which has amphiphilic nature forms a complex with a rare earth metal ion at the interface, and the complex remains as it is. After the matrix is polymerized, the coordination structure is `imprinted` at the resin interface. The imprinted resins exhibited a high adsorption selectivity to the target Dy ion. We believe that the novel imprint techniques will be useful for the treatment of nuclear waste water. (J.P.N.)

  12. Tuning and Optimizing the Finite Element Analysis with Elements of Large Nodal DOF on a Linux Cluster

    CERN Document Server

    Wang, Ji; Sun, Qiang; Wu, Rongxing; Huang, Bin; Du, Jianke; Xiang, Wei

    2015-01-01

    The finite element analysis of high frequency vibrations of quartz crystal plates is a necessary process required in the design of quartz crystal resonators of precision types for applications in filters and sensors. The anisotropic materials and extremely high frequency in radiofrequency range of resonators determine that vibration frequency spectra are complicated with strong couplings of large number of different vibration modes representing deformations which do not appear in usual structural problems. For instance, the higher-order thickness-shear vibrations usually representing the sharp deformation of thin plates in the thickness direction, expecting the analysis is to be done with refined meshing schemes along the relatively small thickness and consequently the large plane area. To be able to represent the precise vibration mode shapes, a very large number of elements are needed in the finite element analysis with either the three-dimensional theory or the higher-order plate theory, although considera...

  13. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    Science.gov (United States)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  14. The effect of fuel form on trace element emissions in an industrial-scale coal fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Coal Utilization Lab.

    1998-12-31

    Eleven of the fourteen inorganic hazardous air pollutants identified in Title 3 of the Clean Air Act Amendments of 1990 are present in the flue gas of pulverized coal-fired boilers. The designated elements include: antimony (Sb), beryllium (Be), chlorine (Cl), cobalt (Co), manganese (Mn), nickel (Ni), selenium (Se), fluorine (F), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and phosphorus (P). Determining the risk of these elements in the environment is difficult at best. However, regulating their emission into the environment has some scientific basis and merit. Approximately 137.5 tons of mercury were emitted in the US by combustion sources in 1994--1995, with coal-fired utility boilers accounting for 37.4% (or 51.6 tons) of the total. Control of trace element emissions from coal-fired utility boilers requires an understanding of the manner in which they occur in coal, their behavior during and after combustion and their form in the stack gas. The multimedia behavior of trace elements during combustion can be traced to their volatility within the combustion and post-combustion environment. The temperature distribution within the combustion system, the mechanism of char and ash formation (e.g. duration of char burnout and char and cenosphere morphology) and the combustion efficiency determine the partitioning of trace elements during combustion. These factors can be affected by the form in which a fuel is fired, e.g., pulverized coal (PC) versus coal-water slurry fuel (CWSF). This paper presents preliminary results of emissions testing aimed at determining the effect of fuel form on the penetration and partitioning of trace elements in an industrial-scale boiler. The tests were conducted on a 2 MMBtu/hr research boiler, in which Middle Kittanning Seam coal (hvA bituminous) from Jefferson County, Pennsylvania was burned in pulverized form and as a CWSF. The tests were conducted in accordance with the procedure outlined in EPA Methods 5 and 29

  15. Super-Massive Stars as a Source of Abundance Anomalies of Proton-Capture Elements in Globular Clusters

    CERN Document Server

    Denissenkov, Pavel A

    2013-01-01

    We propose that the abundance anomalies of proton-capture elements in globular clusters, such as the C-N, Na-O, Mg-Al and Na-F anti-correlations, were produced by super-massive stars with M ~ 10,000 Msun. Such stars could form in the runaway collisions of massive stars that sank to the cluster center as a result of dynamical friction, or via the direct collapse of the low-metallicity gas cloud from which the cluster formed. To explain the observed abundance anomalies, we assume that the super-massive stars had lost significant fractions of their initial masses when only a small mass fraction of hydrogen, Delta X ~ 0.15, was transformed into helium. We speculate that the required mass loss might be caused by the super-Eddington radiation continuum-driven stellar wind or by the diffusive mode of the Jeans instability.

  16. Determining the elemental composition of fuels by bomb calorimetry and the inverse correlation of HHV with elemental composition

    DEFF Research Database (Denmark)

    Bech, Niels; Jensen, Peter Arendt; Dam-Johansen, Kim

    2009-01-01

    This article presents a method to obtain a simplified elemental analysis of an organic sample in which oxygen, nitrogen, and sulphur are lumped. The method uses a bomb calorimeter, water, and ash measurements combined with a numerical procedure based on a generalised equation for predicting highe...

  17. Chemical thermodynamics of complex systems: fission product behavior in LWR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, R.

    1981-03-01

    A detailed thermodynamic assessment has been made of the chemical reactions of fission products in LWR fuel rods. Using recent thermodynamic data and the in-reactor oxygen potential and temperature range of LWRs, equilibrium thermodynamic calculations were performed for the most plausible reactions of the fission products. The emphasis in this model is on the chemistry of cesium and rubidium and their reactions with the fuel, other fission products, and the zircaloy cladding. The model predictions are discussed for their implications in fuel-cladding interactions.

  18. Safe conditioning of waste for final disposal. Vitrification of spent used fuel elements; Sichere Konditionierung zur Endlagerung. Verglasung von abgebrannten Brennelementen

    Energy Technology Data Exchange (ETDEWEB)

    Niessen, Stefan; Blanc, Eric [Areva GmbH, Erlangen (Germany)

    2016-08-15

    The strategy for disposal of spent nuclear fuel in Germany requires an interim storage over a longer period. The used fuel assemblies are stored in dry storage casks. An alternative method for storage is the conditioning of the fuel elements. This technology is proven on an industrial scale and is carried out at the La Hague plant. The know-how is currently available for both, the operators as well as in industry and science in Germany.

  19. Capacity of the equipment family SICOM to inspect fuel elements; Capacidad de los equipos familia SICOM para inspeccionar elementos de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Siguero, A.; Sola, A.

    2013-07-01

    To check the status where the fuel assemblies are after has been operating in the core of nuclear plants, inspections have been conducted to carry out an improvement in the behavior of alloys used in pods of fuel, the control of corrosion of these pods because of heat, reducing the transfer of heat due to the oxide and with the support of visual inspections monitor the physical integrity of the fuel elements.

  20. Porous Carbon Materials for Elements in Low-Temperature Fuel Cells

    Directory of Open Access Journals (Sweden)

    Wlodarczyk R.

    2015-04-01

    Full Text Available The porosity, distribution of pores, shape of pores and specific surface area of carbon materials were investigated. The study of sintered graphite and commercial carbon materials used in low-temperature fuel cells (Graphite Grade FU, Toray Teflon Treated was compared. The study covered measurements of density, microstructural examinations and wettability (contact angle of carbon materials. The main criterion adopted for choosing a particular material for components of fuel cells is their corrosion resistance under operating conditions of hydrogen fuel cells. In order to determine resistance to corrosion in the environment of operation of fuel cells, potentiokinetic curves were registered for synthetic solution 0.1M H2SO4+ 2 ppmF-at 80°C.

  1. ANALYSING THE POSIBILITY OF FUEL FILTER ELEMENTS OPERATING EFFECTIVINESS EVALUATION WITH X-RAY FLUORESCENSE METHOD

    National Research Council Canada - National Science Library

    Mikhail Lvovich Nemchikov; Alexander Nicolaevich Kozlov; Konstantin Igorevich Gryadunov; Anton Mihailovich Meleshnikov

    2017-01-01

    ... of NGOs "Unit", which has been removed from the supply line TC-1 aviation fuel tank farm from the State Reserve in the refueling tank farm "Vnukovo" and the filter control of Velcon company brand...

  2. The Influence of Distance and Atmospheric Elements on the Concentration of Odour from Refuse Derived Fuel (RDF Operations

    Directory of Open Access Journals (Sweden)

    Zaini Sakawi

    2013-08-01

    Full Text Available Odour is an environmental element that occurs as varieties of aroma, either pleasant or otherwise to its immediate community. The various sources of odour pollution may come from either natural or of human activities. Odour concentration may change due to environmental factors such as atmosphere, topography, distance and mitigation efforts. This study describes a study on the influence of distance and athmospheric elements on concentration of odour generated by the Refuse Derived Fuel (RDF operations. The distribution of odour concentration was measured using Odour concentration meter XP-329 III series per its distance from the RDF operations. The results indicated that distance factors did influence the odour concentration. Results at test stations of distances farther from the RDF showed incrementally higher distribution of odour concentration compared to those nearer to the RDF. In addition, athmosperic elements like temperatures, humidity, wind speed and directions also evidenlty linked to the distribution of odour concentration.

  3. Fuel element design for the enhanced destruction of plutonium in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Douglas C.; Porter, Douglas L.; Hayes, Steven L.; Hill, Robert N.

    1997-12-01

    A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr-Hf alloy or an alloy of Pu-Zr-Hf or a combination of both.

  4. Production Cycle for Large Scale Fission Mo-99 Separation by the Processing of Irradiated LEU Uranium Silicide Fuel Element Targets

    Directory of Open Access Journals (Sweden)

    Abdel-Hadi Ali Sameh

    2013-01-01

    Full Text Available Uranium silicide fuels proved over decades their exceptional qualification for the operation of higher flux material testing reactors with LEU elements. The application of such fuels as target materials, particularly for the large scale fission Mo-99 producers, offers an efficient and economical solution for the related facilities. The realization of such aim demands the introduction of a suitable dissolution process for the applied U3Si2 compound. Excellent results are achieved by the oxidizing dissolution of the fuel meat in hydrofluoric acid at room temperature. The resulting solution is directly behind added to an over stoichiometric amount of potassium hydroxide solution. Uranium and the bulk of fission products are precipitated together with the transuranium compounds. The filtrate contains the molybdenum and the soluble fission product species. It is further treated similar to the in-full scale proven process. The generated off gas stream is handled also as experienced before after passing through KOH washing solution. The generated alkaline fluoride containing waste solution is noncorrosive. Nevertheless fluoride can be selectively bonded as in soluble CaF2 by addition of a mixture of solid calcium hydroxide calcium carbonate to the sand cement mixture used for waste solidification. The generated elevated amounts of LEU remnants can be recycled and retargeted. The related technology permits the minimization of the generated fuel waste, saving environment, and improving processing economy.

  5. On the internal pollution mechanisms in the globular cluster NGC 6121 (M4): heavy-element abundances and AGB models

    CERN Document Server

    D'Orazi, Valentina; Lugaro, Maria; Lattanzio, John C; Pignatari, Marco; Carretta, Eugenio

    2013-01-01

    Globular clusters display significant variations in their light-element content, pointing to the existence of a second stellar generation formed from the ejecta of an earlier generation. The nature of these internal polluters is still a matter of debate: the two most popular scenarios indicate intermediate-mass AGB stars and fast rotating massive stars. Abundances determination for some key elements can help distinguish between these competitor candidates. We present in this paper Y abundances for a sample of 103 red giant branch stars in NGC 6121. Within measurement errors, we find that the [Y/Fe] is constant in this cluster contrary to a recent suggestion. For a subsample of six stars we also find [Rb/Fe] to be constant, consistent with previous studies showing no variation in other s-process elements. We also present a new set of stellar yields for intermediate-mass AGB stellar models of 5 and 6 solar masses, including heavy element s-process abundances. The uncertainties on the mass-loss rate, the mixing-...

  6. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms.

    Science.gov (United States)

    Tuovinen, Tiina S; Kasurinen, Anne; Häikiö, Elina; Tervahauta, Arja; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka

    2016-01-01

    Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low.

  7. Dimetallaheteroborane clusters containing group 16 elements: A combined experimental and theoretical study

    Indian Academy of Sciences (India)

    Kiran Kumarvarma Chakrahari; Rongala Ramalakshmi; Dudekula Sharmila; Sundargopal Ghosh

    2014-09-01

    Recently we described the synthesis and structural characterization of various dimetallaherteroborane clusters, namely nido-[(Cp∗Mo)2B4EClH6−], 1-3; (1: E = S, x = 0; 2: E = Se, x = 0; 3: E = Te, x = 1). A combined theoretical and experimental study was also performed, which demonstrated that the clusters 1-3 with their open face are excellent precursors for cluster growth reaction. In this investigation process on the reactivity of dimetallaheteroboranes with metal carbonyls, in addition to [(Cp∗Mo)2B4H6EFe(CO)3] (4: E = S, 6: E = Te) reported earlier, reaction of 2 with [Fe2(CO)9] yielded mixed-metallaselenaborane [(Cp∗Mo)2B4H6SeFe(CO)3], 5 in good yield. The quantum chemical calculation using DFT method has been carried out to probe the bonding, NMR chemical shifts and electronic properties of dimolybdaheteroborane clusters 4-6.

  8. MR-6 type fuel elements cooling in natural convection conditions after the reactor shut down

    Energy Technology Data Exchange (ETDEWEB)

    Pytel, K.; Bykowski, W.; Moldysz, A. [Institute of Atomic Energy, Otwock Swierk (Poland)

    2002-07-01

    Natural cooling conditions of the nuclear fuel in the channel type reactor after its shut down are commonly determined with relatively high uncertainty. This is not only to he lack of adequate measurements of thermal parameters i.e. the residual power generation, the coolant flow and temperatures, but also due to indeterminate model of convection mechanism. The numerical simulation of natural convection in multitube fuel assembly in the fuel channel leads to various convection modes including evidently chaotic behaviour. To determine the real cooling conditions in the MARIA research reactor a series of experiments has been performed with fuel assembly equipped with a set of thermocouples. After some forced cooling period (the shortest was half an hour after the reactor shut down) the reactor was left with the only natural convection. Two completely different cooling modes have been observed. The MARIA core consists of series of individual fuel channel and so called bypasses, maintaining the hydraulic properties of the fuel channel, connected in parallel. Initially, the convection cells were established trough few so-called bypasses providing a very effective mode of cooling. In this mode the flow charts were identical to those existing in forced cooling mode. After certain period the system switched on the second cooling mode with natural circulation within the individual fuel cells. Higher temperatures and temperature fluctuations were characteristic for this mode approaching 30 deg in amplitude. In almost all the cases the system was switching few times between modes, but eventually remained in the second mode. The switching times were not regular and the process has a chaotic behaviour. (author)

  9. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel

    Science.gov (United States)

    Nodelman; Pisupati; Miller; Scaroni

    2000-05-29

    Release pathways for inorganic hazardous air pollutants (IHAPs) from a pilot-scale, down-fired combustor (DFC) when firing pulverized coal (PC) and coal-water slurry fuel (CWSF) were identified and quantified to demonstrate the effect of fuel form on IHAP partitioning, enrichment and emissions. The baghouse capturing efficiency for each element was calculated to determine the effectiveness of IHAP emission control. Most of the IHAPs were enriched in the fly ash and depleted in the bottom ash. Mercury was found to be enriched in the flue gas, and preferentially emitted in the vapor phase. When firing CWSF, more IHAPs were partitioned in the bottom ash than when firing PC. Significant reduction of Hg emissions during CWSF combustion was also observed.

  10. Validation and Verification the Expanded Table for Transition Metal Carbonyl and Main Group Element Cluster Series which obey the 18-Electron and 8-Electron (octet Rules respectively

    Directory of Open Access Journals (Sweden)

    Enos Masheija Kiremire

    2014-12-01

    Full Text Available The transition metal carbonyl clusters and Main group element clusters belong to natural series based on the number theory. The number series of the cluster series have been generated using the empirical formula k = ½ (E-V where k represents the linkages or bonds that glue together the cluster elements which obey the eighteen electron rule or the octet rule and E is related to the sum of eighteen electrons or the eight electrons and V is the sum of the valence electrons. An expanded cluster table been constructed to accommodate the analysis of medium to relatively large clusters of high nuclearity. Using the knowledge of k-value and the cluster table it is possible for a given cluster formula to be categorized into its type of series and its geometry deduced. This is relatively easy for simple to medium clusters. It is hoped that this simple approach to be adapted to categorize and deduce structures of clusters with high nuclearity. This approach to clusters using number theory will complement the existing clusters theories such as Wade-Mingos rules1-7, Jemmismno rules8-9 and topology rules10.

  11. Comparison of Theoretical Models and Finite Element Simulation of ZrO{sub 2}-based Composites for Inert Matrix Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Vivek [Indian Institute of Technology-Kanpur, Kanpur (India); Mistarihi, Qusai M.; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The improvement of thermal properties of ZrO{sub 2} has been investigated in many ways to enhance the performance of inert matrix fuel (IMF). Inert matrix fuel is a useful concept to burn transuranic elements (TRU) without increasing extra plutonium. The addition of reinforcements with a high thermal conductivity has been proposed in the previous studies. Molybdenum and silicon carbide are good candidate materials for the reinforcement because of their high thermal conductivities and low neutron absorption cross sections. Recently, ZrO{sub 2}-based composites reinforced with Mo-wire mesh or carbon foam were fabricated by spark plasma sintering. When the effects of the structures of reinforcements were compared, interconnected structures provided more enhanced thermal conductivity than discrete structures. The effective thermal conductivity of composite materials with various reinforcement structures can be calculated by using the finite element analyses. The finite element analyses presented a good agreement with theoretical models in estimating the effects of the reinforcement on the thermal conductivities of discrete Mo reinforced ZrO{sub 2} nanocomposites. It is found that the effects of interconnected thermal reinforcements on the effective thermal conductivity can be estimated by using the percolation model.

  12. Sensitivity analysis of a PWR fuel element using zircaloy and silicon carbide claddings

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rochkhudson B. de; Cardoso, Fabiano; Salome, Jean A.D.; Pereira, Claubia; Fortini, Angela, E-mail: rochkhudson@ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear

    2015-07-01

    The alloy composed of zirconium has been used effectively for over 50 years in claddings of nuclear fuel, especially for PWR type reactors. However, to increase fuel enrichment with the aim of raising the burning and maintaining the safety of nuclear plants is of great relevance the study of new materials that can replace safely and efficiently zircaloy cladding. Among several proposed material, silicon carbide (SiC) has a potential to replace zircaloy as fuel cladding material due to its high-temperature tolerance, chemical stability and low neutron affinity. In this paper, the goal is to expand the study with silicon carbide cladding, checking its behavior when submitted to an environment with boron, burnable poison rods, and temperature variations. Sensitivity calculation and the impact in multiplication factor to both claddings, zircaloy and silicon carbide, were performed during the burnup. The neutronic analysis was made using the SCALE 6.0 (Standardized Computer Analysis for Licensing Evaluation) code. (author)

  13. Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity.

    Science.gov (United States)

    Chanu, T Inakhunbi; Muthukumar, Thangavelu; Manoharan, Periakaruppan T

    2014-11-21

    Nanocomposites of gold nanoparticles and semiconductor ZnO with wurtzite structure, made by solution combustion synthesis (SCS), as a function of the Zn/fuel ratio with polyethylene glycol (PEG) as fuel exhibit the presence of both nanoparticles and clusters. Atomic gold clusters present on the surface of ZnO nanorods which can be identified by XPS and SEM are easily monitored and characterized by positive ion MALDI experiments as mostly odd numbered clusters, Au3 to Au11 in decreasing amounts. Low concentrations of the fuel produce AuClO and nanoparticles (NPs), with no clusters. Au-ZnO nanocomposites at all [Au] exhibit single blue shifted plasmon absorption and corresponding photoluminescence (PL). Increasing particle size prefers surface plasmon resonance (SPR) scattering of metal that could lead to PL enhancement; however, available ZnO surface in the Au-ZnO composite becomes more important than the particle size of the composite with higher [Au]. The catalytic activity of these Au-ZnO nanocomposites tested on 4-nitrophenol clearly revealed the presence of an intermediate with both NPs and clusters playing different roles. An in vitro study of cytotoxicity on MCF-7 cell lines revealed that these gold nanostructures have turned out to be powerful nanoagents for destruction of cancer cells even with small amounts of gold particles/clusters. The nanorods of ZnO, known to be nontoxic to normal cells, play a lesser role in the anticancer activity of these Au-ZnO nanocomposites.

  14. Transmutation of present transuranics elements in the fuel nuclear radiated; Transmutacion de elementos transuranicos presentes en los combustible nucleares irradiados

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E.; Alvarez, F.; Blazquez, J.; Cano-Ott, D.; Fernandez Ordonez, M.; Guerrero, C.; Martin-Fuertes, F.; Martinez, T.; Vicente, C.; Villamarin, D.

    2008-07-01

    This technical report of ENRESA refers to the transmutation of some transuranic elements, mainly plutonium and minor actinides (Np, Am and Cm). The transmutation of minor actinides (MA) could be efficiently made by very energetic neutrons, using fast reactors of Generation IV or accelerator driven systems (ADS). This publication is dedicated to expose the state-of-the-art situation of the ADS, mainly the activities developed by CIEMAT within the R+D projects of the EU. This technical publication of ENRESA on Transmutation is the second volume, of a set of two, on Partitioning and Transmutation. The first volume, entitled Partitioning of transuranic elements and some fission products from spent nuclear fuels, was published in 2006. The present report has ten chapters; the first one is an introduction on the spent fuels management, mainly in Spain. In the second one a summary of the main characteristics of spent fuels is provided; in the third the transmutation concept including their nuclear reactions is described; and in the fourth one a description of the present management options of the spent fuels is given. In the fifth chapter several new advanced closed cycles with transmutation of Pu and MA are given and in the sixth one the main proposed transmutation systems are de scribed. Among these, a great emphasis is given to the ADS including its main parts, as they are: the proton accelerator, the spallation source for neutrons production and the subcritical core. Also a re view of different fuels and proposed cool ants for the ADS is made, as well as proposed reprocessing of the transmuted spent fuel from ADS. In this chapter a description of some R+D projects is given, most of them supported by the European Union, with participation of CIEMAT. Chapters seven and eight show the progress on the measurement of new nuclear data to complete the simulation of the transmutation basic processes and systems, together in chapter nine with new R+D activities on

  15. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure

    Science.gov (United States)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.

  16. Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure

    Science.gov (United States)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.

  17. CO J = 2-1 LINE EMISSION IN CLUSTER GALAXIES AT z {approx} 1: FUELING STAR FORMATION IN DENSE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wagg, Jeff [European Southern Observatory, Casilla 19001, Santiago (Chile); Pope, Alexandra; Alberts, Stacey [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Armus, Lee; Desai, Vandana [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Brodwin, Mark [Department of Physics, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Bussmann, Robert S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dey, Arjun; Jannuzi, Buell [National Optical Astronomy Observatory, Tucson, AZ 85726-6732 (United States); Le Floc' h, Emeric [AIM, CNRS, Universite Paris Diderot, Bat. 709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Melbourne, Jason [California Institute of Technology, Pasadena, CA 91125 (United States); Stern, Daniel, E-mail: jwagg@eso.org [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-06-20

    We present observations of CO J = 2-1 line emission in infrared-luminous cluster galaxies at z {approx} 1 using the IRAM Plateau de Bure Interferometer. Our two primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie within 2 Mpc of the centers of two massive (>10{sup 14} M{sub Sun }) galaxy clusters. CO line emission is not detected in either DOG. We calculate 3{sigma} upper limits to the CO J = 2-1 line luminosities, L'{sub CO} < 6.08 Multiplication-Sign 10{sup 9} and <6.63 Multiplication-Sign 10{sup 9} K km s{sup -1} pc{sup 2}. Assuming a CO-to-H{sub 2} conversion factor derived for ultraluminous infrared galaxies in the local universe, this translates to limits on the cold molecular gas mass of M{sub H{sub 2}}< 4.86 Multiplication-Sign 10{sup 9} M{sub Sun} and M{sub H{sub 2}}< 5.30 Multiplication-Sign 10{sup 9} M{sub Sun }. Both DOGs exhibit mid-infrared continuum emission that follows a power law, suggesting that an active galactic nucleus (AGN) contributes to the dust heating. As such, estimates of the star formation efficiencies in these DOGs are uncertain. A third cluster member with an infrared luminosity, L{sub IR} < 7.4 Multiplication-Sign 10{sup 11} L{sub Sun }, is serendipitously detected in CO J = 2-1 line emission in the field of one of the DOGs located roughly two virial radii away from the cluster center. The optical spectrum of this object suggests that it is likely an obscured AGN, and the measured CO line luminosity is L'{sub CO} = (1.94 {+-} 0.35) Multiplication-Sign 10{sup 10} K km s{sup -1} pc{sup 2}, which leads to an estimated cold molecular gas mass M{sub H{sub 2}}= (1.55{+-}0.28) Multiplication-Sign 10{sup 10} M{sub Sun }. A significant reservoir of molecular gas in a z {approx} 1 galaxy located away from the cluster center demonstrates that the fuel can exist to drive an increase in star formation and AGN activity at the outskirts of high-redshift clusters.

  18. Solid oxide fuel cell anode image segmentation based on a novel quantum-inspired fuzzy clustering

    Science.gov (United States)

    Fu, Xiaowei; Xiang, Yuhan; Chen, Li; Xu, Xin; Li, Xi

    2015-12-01

    High quality microstructure modeling can optimize the design of fuel cells. For three-phase accurate identification of Solid Oxide Fuel Cell (SOFC) microstructure, this paper proposes a novel image segmentation method on YSZ/Ni anode Optical Microscopic (OM) images. According to Quantum Signal Processing (QSP), the proposed approach exploits a quantum-inspired adaptive fuzziness factor to adaptively estimate the energy function in the fuzzy system based on Markov Random Filed (MRF). Before defuzzification, a quantum-inspired probability distribution based on distance and gray correction is proposed, which can adaptively adjust the inaccurate probability estimation of uncertain points caused by noises and edge points. In this study, the proposed method improves accuracy and effectiveness of three-phase identification on the micro-investigation. It provides firm foundation to investigate the microstructural evolution and its related properties.

  19. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    Science.gov (United States)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  20. Two dimensional structural analysis of reactor fuel element claddings due to local effects

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, R; Wolf, L

    1978-04-01

    Two dimensional thermoelastic and inelastic stresses and deformation of typical LWR (PWR) and LMFBR (CRBR) claddings are evaluated by utilizing the following codes, for (1) Thermoelastic analysis (a) STRESS Code (b) SEGPIPE Code (2) Thermoinelastic analysis (a) Modified version of the GOGO code (b) One dimensional GRO-II code. The primary objective of this study is to analyze the effect of various local perturbations in the clad temperature field, namely eccentrically mounted fuel pellet, clad ovality, power tilt across the fuel and clad-coolant heat transfer variation on the cladding stress and deformation. In view of the fact that the thermoelastic analysis is always the first logical choice entering the structural field, it was decided to start the analysis with the two dimensional codes such as STRESS and SEGPIPE. Later, in order to assess the validity and compare the thermoelastic results to those obtained for actual reactor conditions, a two dimensional code, namely a modified version of the GOGO code, was used to account for inelastic effects such as irradiation and thermal creep and swelling in the evaluation. The comparison of thermoelastic and inelastic results shows that the former can be used effectively to analyze LWR fuel pin over 350 hours of lifetime under the most adverse condition and 500 hours of lifetime for an LMFBR fuel pin. Beyond that the inelastic solution must be used. The impact of the individual thermal perturbation and combinations thereof upon the structural quantity is also shown. Finally, the effect of rod displacement on the two dimensional thermal and structural quantities of the LMFBR fuel pin cladding is analyzed.

  1. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades

    OpenAIRE

    Frohme Marcus; Schnölzer Martina; Engelmann Julia C; Beisser Daniela; Shkumatov Alexander; Liang Chuanguang; Förster Frank; Müller Tobias; Schill Ralph O; Dandekar Thomas

    2009-01-01

    Abstract Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade ...

  2. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades

    OpenAIRE

    Frohme Marcus; Schnölzer Martina; Engelmann Julia C; Beisser Daniela; Shkumatov Alexander; Liang Chuanguang; Förster Frank; Müller Tobias; Schill Ralph O; Dandekar Thomas

    2009-01-01

    Abstract Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade ...

  3. Post irradiation examination of thermal reactor fuels

    Science.gov (United States)

    Sah, D. N.; Viswanathan, U. K.; Ramadasan, E.; Unnikrishnan, K.; Anantharaman, S.

    2008-12-01

    The post irradiation examination (PIE) facility at the Bhabha Atomic Research Centre (BARC) has been in operation for more than three decades. Over these years this facility has been utilized for examination of experimental fuel pins and fuels from commercial power reactors operating in India. In a program to assess the performance of (U,Pu)O 2 MOX fuel prior to its introduction in commercial reactors, three experimental MOX fuel clusters irradiated in the pressurized water loop (PWL) of CIRUS up to burnup of 16 000 MWd/tU were examined. Fission gas release from these pins was measured by puncture test. Some of these fuel pins in the cluster contained controlled porosity pellets, low temperature sintered (LTS) pellets, large grain size pellets and annular pellets. PIE has also been carried out on natural UO 2 fuel bundles from Indian PHWRs, which included two high burnup (˜15 000 MWd/tU) bundles. Salient investigations carried out consisted of visual examination, leak testing, axial gamma scanning, fission gas analysis, microstructural examination of fuel and cladding, β, γ autoradiography of the fuel cross-section and fuel central temperature estimation from restructuring. A ThO 2 fuel bundle irradiated in Kakrapar Atomic Power Station (KAPS) up to a nominal fuel burnup of ˜11 000 MWd/tTh was also examined to evaluate its in-pile performance. The performance of the BWR fuel pins of Tarapur Atomic Power Stations (TAPS) was earlier assessed by carrying out PIE on 18 fuel elements selected from eight fuel assemblies irradiated in the two reactors. The burnup of these fuel elements varied from 5000 to 29 000 MWd/tU. This paper provides a brief review of some of the fuels examined and the results obtained on the performance of natural UO 2, enriched UO 2, MOX, and ThO 2 fuels.

  4. Research on the relationship between the elements and pharmacological activities in velvet antler using factor analysis and cluster analysis

    Science.gov (United States)

    Zhou, Libing

    2017-04-01

    Velvet antler has certain effect on improving the body's immune cells and the regulation of immune system function, nervous system, anti-stress, anti-aging and osteoporosis. It has medicinal applications to treat a wide range of diseases such as tissue wound healing, anti-tumor, cardiovascular disease, et al. Therefore, the research on the relationship between pharmacological activities and elements in velvet antler is of great significance. The objective of this study was to comprehensively evaluate 15 kinds of elements in different varieties of velvet antlers and study on the relationship between the elements and traditional Chinese medicine efficacy for the human. The factor analysis and the factor cluster analysis methods were used to analyze the data of elements in the sika velvet antler, cervus elaphus linnaeus, flower horse hybrid velvet antler, apiti (elk) velvet antler, male reindeer velvet antler and find out the relationship between 15 kinds of elements including Ca, P, Mg, Na, K, Fe, Cu, Mn, Al, Ba, Co, Sr, Cr, Zn and Ni. Combining with MATLAB2010 and SPSS software, the chemometrics methods were made on the relationship between the elements in velvet antler and the pharmacological activities. The first commonality factor F1 had greater load on the indexes of Ca, P, Mg, Co, Sr and Ni, and the second commonality factor F2 had greater load on the indexes of K, Mn, Zn and Cr, and the third commonality factor F3 had greater load on the indexes of Na, Cu and Ba, and the fourth commonality factor F4 had greater load on the indexes of Fe and Al. 15 kinds of elements in velvet antler in the order were elk velvet antler>flower horse hybrid velvet antler>cervus elaphus linnaeus>sika velvet antler>male reindeer velvet antler. Based on the factor analysis and the factor cluster analysis, a model for evaluating traditional Chinese medicine quality was constructed. These studies provide the scientific base and theoretical foundation for the future large-scale rational

  5. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades

    Directory of Open Access Journals (Sweden)

    Frohme Marcus

    2009-10-01

    Full Text Available Abstract Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.

  6. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades.

    Science.gov (United States)

    Förster, Frank; Liang, Chunguang; Shkumatov, Alexander; Beisser, Daniela; Engelmann, Julia C; Schnölzer, Martina; Frohme, Marcus; Müller, Tobias; Schill, Ralph O; Dandekar, Thomas

    2009-10-12

    Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.

  7. FINITE ELEMENT SIMULATION FOR STRUCTURAL RESPONSE OF U7MO DISPERSION FUEL PLATES VIA FLUID-THERMAL-STRUCTURAL INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Ozaltun; Herman Shen; Pavel Madvedev

    2010-11-01

    This article presents numerical simulation of dispersion fuel mini plates via fluid–thermal–structural interaction performed by commercial finite element solver COMSOL Multiphysics to identify initial mechanical response under actual operating conditions. Since fuel particles are dispersed in Aluminum matrix, and temperatures during the fabrication process reach to the melting temperature of the Aluminum matrix, stress/strain characteristics of the domain cannot be reproduced by using simplified models and assumptions. Therefore, fabrication induced stresses were considered and simulated via image based modeling techniques with the consideration of the high temperature material data. In order to identify the residuals over the U7Mo particles and the Aluminum matrix, a representative SEM image was employed to construct a microstructure based thermo-elasto-plastic FE model. Once residuals and plastic strains were identified in micro-scale, solution was used as initial condition for subsequent multiphysics simulations at the continuum level. Furthermore, since solid, thermal and fluid properties are temperature dependent and temperature field is a function of the velocity field of the coolant, coupled multiphysics simulations were considered. First, velocity and pressure fields of the coolant were computed via fluidstructural interaction. Computed solution for velocity fields were used to identify the temperature distribution on the coolant and on the fuel plate via fluid-thermal interaction. Finally, temperature fields and residual stresses were used to obtain the stress field of the plates via fluid-thermal-structural interaction.

  8. New Evidence of the Existence of Associative Elements of Water (Clusters

    Directory of Open Access Journals (Sweden)

    Ignat Ignatov

    2016-06-01

    Full Text Available In this review it is reported about new data on the structure of water cyclic associates (clusters with general formula (Н2Оn and their charged ionic clusters [(Н2Оn]+ and [(Н2Оn]- by means of computer modelling and spectroscopy methods as 1Н-NMR, IR-spectroscopy, DNES, EXAFS-spectroscopy, X-Ray and neurons diffraction. The computer calculation of polyhedral nanoclusters (Н2Оn, where n = 3–20 are carried out. Based on this data the main structural mathematical models describing water structure (quasicrystalline, continious, fractal, fractal-clathrate have been examined and some important physical characteristics were obtained.

  9. Where does the gas fueling star formation in brightest cluster galaxies originate?

    Science.gov (United States)

    Molendi, S.; Tozzi, P.; Gaspari, M.; De Grandi, S.; Gastaldello, F.; Ghizzardi, S.; Rossetti, M.

    2016-11-01

    Aims: We investigate the relationship between X-ray cooling and star formation in brightest cluster galaxies (BCGs). Methods: We present an X-ray spectral analysis of the inner regions, 10-40 kpc, of six nearby cool core clusters (z < 0.35) observed with Chandra ACIS. This sample is selected on the basis of the high star formation rate (SFR) observed in the BCGs. We restrict our search for cooling gas to regions that are roughly cospatial with the starburst. We fit single- and multi-temperature mkcflow models to constrain the amount of isobarically cooling intracluster medium. Results: We find that in all clusters, below a threshold temperature ranging between 0.9 and 3 keV, only upper limits can be obtained. In four out of six objects, the upper limits are significantly below the SFR and in two, namely A1835 and A1068, they are less than a tenth of the SFR. Conclusions: Our results suggests that a number of mechanisms conspire to hide the cooling signature in our spectra. In a few systems the lack of a cooling signature may be attributed to a relatively long delay time between the X-ray cooling and the star burst. However, for A1835 and A1068, where the X-ray cooling time is shorter than the timescale of the starburst, a possible explanation is that the region where gas cools out of the X-ray phase extends to very large radii, likely beyond the core of these systems.

  10. Functional identification of gene cluster for the aniline metabolic pathway mediated by transposable element

    Institute of Scientific and Technical Information of China (English)

    LIANG Quanfeng; Takeo Masahiro; LIN Min; CHEN Ming; XU Yuquan; ZHANG Wei; PING Shuzhen; LU Wei; SONG Xianlong; WANG Weiwei; GENG Lizhao

    2005-01-01

    A convenient and widely applicable method has been developed to clone aniline metabolic gene cluster in this study. Three positive recombinant plasmids pDA1, pDB2 and pDB11 were cloned from genomic library of aniline degradation strain AD9. The result of aniline dioxygenase (AD) activity and catechol 2,3-oxygenase (C23O) activity assay showed that pDA1 and pDB11 contain aniline dioxygenase genes and catechol 2,3-dioxygenase genes, respectively. The sequence analysis of the total 24.7-kb region revealed that this region contains 25 ORFs, of which 17 genes involve metabolism of aniline. In the gene cluster, the first five genes (tadQTA1A2B) and the subsequent gene (tadR1) were predicted to encode a multi-component aniline dioxygenase and a LysR-type regulator, respectively, while the others (tadD1C1D2C2EFGIJKL) were expected to encode meta- cleavage pathway enzymes for catechol degradation. The gene cluster was surrounded by two IS1071 sequences.

  11. Spatial clustering of toxic trace elements in adolescents around the Torreón, Mexico lead-zinc smelter.

    Science.gov (United States)

    Garcia-Vargas, Gonzalo G; Rothenberg, Stephen J; Silbergeld, Ellen K; Weaver, Virginia; Zamoiski, Rachel; Resnick, Carol; Rubio-Andrade, Marisela; Parsons, Patrick J; Steuerwald, Amy J; Navas-Acién, Ana; Guallar, Eliseo

    2014-11-01

    High blood lead (BPb) levels in children and elevated soil and dust arsenic, cadmium, and lead were previously found in Torreón, northern Mexico, host to the world's fourth largest lead-zinc metal smelter. The objectives of this study were to determine spatial distributions of adolescents with higher BPb and creatinine-corrected urine total arsenic, cadmium, molybdenum, thallium, and uranium around the smelter. Cross-sectional study of 512 male and female subjects 12-15 years of age was conducted. We measured BPb by graphite furnace atomic absorption spectrometry and urine trace elements by inductively coupled plasma-mass spectrometry, with dynamic reaction cell mode for arsenic. We constructed multiple regression models including sociodemographic variables and adjusted for subject residence spatial correlation with spatial lag or error terms. We applied local indicators of spatial association statistics to model residuals to identify hot spots of significant spatial clusters of subjects with higher trace elements. We found spatial clusters of subjects with elevated BPb (range 3.6-14.7 μg/dl) and urine cadmium (0.18-1.14 μg/g creatinine) adjacent to and downwind of the smelter and elevated urine thallium (0.28-0.93 μg/g creatinine) and uranium (0.07-0.13 μg/g creatinine) near ore transport routes, former waste, and industrial discharge sites. The conclusion derived from this study was that spatial clustering of adolescents with high BPb and urine cadmium adjacent to and downwind of the smelter and residual waste pile, areas identified over a decade ago with high lead and cadmium in soil and dust, suggests that past and/or present plant operations continue to present health risks to children in those neighborhoods.

  12. Spatial clustering of toxic trace elements in adolescents around the Torreón, Mexico lead–zinc smelter

    Science.gov (United States)

    Garcia-Vargas, Gonzalo G.; Rothenberg, Stephen J.; Silbergeld, Ellen K.; Weaver, Virginia; Zamoiski, Rachel; Resnick, Carol; Rubio-Andrade, Marisela; Parsons, Patrick J.; Steuerwald, Amy J.; Navas-Acién, Ana; Guallar, Eliseo

    2016-01-01

    High blood lead (BPb) levels in children and elevated soil and dust arsenic, cadmium, and lead were previously found in Torreón, northern Mexico, host to the world’s fourth largest lead–zinc metal smelter. The objectives of this study were to determine spatial distributions of adolescents with higher BPb and creatinine-corrected urine total arsenic, cadmium, molybdenum, thallium, and uranium around the smelter. Cross-sectional study of 512 male and female subjects 12–15 years of age was conducted. We measured BPb by graphite furnace atomic absorption spectrometry and urine trace elements by inductively coupled plasma-mass spectrometry, with dynamic reaction cell mode for arsenic. We constructed multiple regression models including sociodemographic variables and adjusted for subject residence spatial correlation with spatial lag or error terms. We applied local indicators of spatial association statistics to model residuals to identify hot spots of significant spatial clusters of subjects with higher trace elements. We found spatial clusters of subjects with elevated BPb (range 3.6–14.7 µg/dl) and urine cadmium (0.18–1.14 µg/g creatinine) adjacent to and downwind of the smelter and elevated urine thallium (0.28–0.93 µg/g creatinine) and uranium (0.07–0.13 µg/g creatinine) near ore transport routes, former waste, and industrial discharge sites. The conclusion derived from this study was that spatial clustering of adolescents with high BPb and urine cadmium adjacent to and downwind of the smelter and residual waste pile, areas identified over a decade ago with high lead and cadmium in soil and dust, suggests that past and/or present plant operations continue to present health risks to children in those neighborhoods. PMID:24549228

  13. Drag and distribution measurements of single-element fuel injectors for supersonic combustors

    Science.gov (United States)

    Povinelli, L. A.

    1974-01-01

    The drag caused by several vortex generating fuel injectors for scramjet combustors was measured in a Mach 2 to 3.5 airstream. Injector drag was found to be strongly dependent on injector thickness ratio. The distribution of helium injected into the stream was measured both in the near field and the far field of the injectors for a variety of pressure ratios. The far field results differed appreciably from measurements in the near field. Injection pressure ratio was found to profoundly influence the penetration. One of the aerowing configurations tested yielded low drag consistent with desirable penetration and spreading characteristics.

  14. A New Innovative Spherical Cermet Nuclear Fuel Element to Achieve an Ultra-Long Core Life for use in Grid-Appropriate LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Senor, David J.; Painter, Chad L.; Geelhood, Ken J.; Wootan, David W.; Meriwether, George H.; Cuta, Judith M.; Adkins, Harold E.; Matson, Dean W.; Abrego, Celestino P.

    2007-12-01

    Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling, core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.

  15. Release and Transformation of Inorganic Elements in Combustion of a High-Phosphorus Fuel

    DEFF Research Database (Denmark)

    Wu, Hao; Castro, Maria; Jensen, Peter Arendt

    2011-01-01

    The release and transformation of inorganic elements during grate-firing of bran was studied via experiments in a laboratory-scale reactor, analysis of fly ash from a grate-fired plant, and equilibrium modeling. It was found that K, P, S, and to a lesser extent Cl and Na were released to the gas...

  16. Finite Element Simulation for Equivalent Elastic Properties of Dispersion Fuel Elements%弥散型燃料等效弹性性质的有限元模拟

    Institute of Scientific and Technical Information of China (English)

    姜馨; 丁淑蓉; 霍永忠

    2011-01-01

    The safety and reliability of the dispersion fuel elements in the reactors are the focus of relative researches. They depend on the mechanical property of the fuel elements. In the present work, several representative volume elements are chosen from the fuel elements according to the arrangement styles of the fuel particles in the matrix and the finite element analysis is applied to study the effective elastic property of the fuel element. The effects of temperature and volume fraction of the fuel particles on the property are investigated in details. As the particles are distributed randomly, the numerical results are compared with several analytical equations, and the comparison indicates that the Moriu-Tanaka model provides the best agreement with the FEM data.%弥散型核燃料元件在反应堆中的安全和可靠性与元件芯体的等效力学性能密切相关.本研究采用细观力学的方法,假设芯体中的燃料颗粒在基体中周期性排列,从中取出代表性体积元,运用有限元方法计算弥散型燃料在不同温度和颗粒体积含量下的等效弹性模量.分析比较了颗粒的体积含量和分布形式对弥散型燃料等效弹性性质的影响,并在颗粒随机排列时,将有限元计算结果和解析模型的结果进行了比较.结果表明,计算值和Mori-Tanaka模型的预测值最为接近.

  17. A feasibility study on the use of the MOOSE computational framework to simulate three-dimensional deformation of CANDU reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle A., E-mail: Kyle.Gamble@inl.gov [Royal Military College of Canada, Chemistry and Chemical Engineering, 13 General Crerar Crescent, Kingston, Ontario, Canada K7K 7B4 (Canada); Williams, Anthony F., E-mail: Tony.Williams@cnl.ca [Canadian Nuclear Laboratories, Fuel and Fuel Channel Safety, 1 Plant Road, Chalk River, Ontario, Canada K0J 1J0 (Canada); Chan, Paul K., E-mail: Paul.Chan@rmc.ca [Royal Military College of Canada, Chemistry and Chemical Engineering, 13 General Crerar Crescent, Kingston, Ontario, Canada K7K 7B4 (Canada); Wowk, Diane, E-mail: Diane.Wowk@rmc.ca [Royal Military College of Canada, Mechanical and Aerospace Engineering, 13 General Crerar Crescent, Kingston, Ontario, Canada K7K 7B4 (Canada)

    2015-11-15

    Highlights: • This is the first demonstration of using the MOOSE framework for modeling CANDU fuel. • Glued and frictionless contact algorithms behave as expected for 2D and 3D cases. • MOOSE accepts and correctly interprets functions of arbitrary form. • 3D deformation calculations accurately compare against analytical solutions. • MOOSE is a viable simulation tool for modeling accident reactor conditions. - Abstract: Horizontally oriented fuel bundles, such as those in CANada Deuterium Uranium (CANDU) reactors present unique modeling challenges. After long irradiation times or during severe transients the fuel elements can laterally deform out of plane due to processes known as bow and sag. Bowing is a thermally driven process that causes the fuel elements to laterally deform when a temperature gradient develops across the diameter of the element. Sagging is a coupled mechanical and thermal process caused by deformation of the fuel pin due to creep mechanisms of the sheathing after long irradiation times and or high temperatures. These out-of-plane deformations can lead to reduced coolant flow and a reduction in coolability of the fuel bundle. In extreme cases element-to-element or element-to-pressure tube contact could occur leading to reduced coolant flow in the subchannels or pressure tube rupture leading to a loss of coolant accident. This paper evaluates the capability of the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework developed at the Idaho National Laboratory to model these deformation mechanisms. The material model capabilities of MOOSE and its ability to simulate contact are also investigated.

  18. Upon the opportunity to apply ART2 Neural Network for clusterization of biodiesel fuels

    Science.gov (United States)

    Petkov, T.; Mustafa, Z.; Sotirov, S.; Milina, R.; Moskovkina, M.

    2016-03-01

    A chemometric approach using artificial neural network for clusterization of biodiesels was developed. It is based on artificial ART2 neural network. Gas chromatography (GC) and Gas Chromatography - mass spectrometry (GC-MS) were used for quantitative and qualitative analysis of biodiesels, produced from different feedstocks, and FAME (fatty acid methyl esters) profiles were determined. Totally 96 analytical results for 7 different classes of biofuel plants: sunflower, rapeseed, corn, soybean, palm, peanut, "unknown" were used as objects. The analysis of biodiesels showed the content of five major FAME (C16:0, C18:0, C18:1, C18:2, C18:3) and those components were used like inputs in the model. After training with 6 samples, for which the origin was known, ANN was verified and tested with ninety "unknown" samples. The present research demonstrated the successful application of neural network for recognition of biodiesels according to their feedstock which give information upon their properties and handling.

  19. Upon the opportunity to apply ART2 Neural Network for clusterization of biodiesel fuels

    Directory of Open Access Journals (Sweden)

    Petkov T.

    2016-03-01

    Full Text Available A chemometric approach using artificial neural network for clusterization of biodiesels was developed. It is based on artificial ART2 neural network. Gas chromatography (GC and Gas Chromatography - mass spectrometry (GC-MS were used for quantitative and qualitative analysis of biodiesels, produced from different feedstocks, and FAME (fatty acid methyl esters profiles were determined. Totally 96 analytical results for 7 different classes of biofuel plants: sunflower, rapeseed, corn, soybean, palm, peanut, “unknown” were used as objects. The analysis of biodiesels showed the content of five major FAME (C16:0, C18:0, C18:1, C18:2, C18:3 and those components were used like inputs in the model. After training with 6 samples, for which the origin was known, ANN was verified and tested with ninety “unknown” samples. The present research demonstrated the successful application of neural network for recognition of biodiesels according to their feedstock which give information upon their properties and handling.

  20. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    Science.gov (United States)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  1. Development of numerical methodology for stress analysis in fuel element nozzles; Desenvolvimento de metodologia numerica para analise de tensoes nos bocais de elementos combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Carrilho, Leo A.; Dotto, Rosvita M. [Industrias Nucleares do Brasil SA, Resende, RJ (Brazil); Gouvea, Jayme P. de [Universidade Federal Fluminense, Volta Redonda, RJ (Brazil)

    2000-07-01

    Calculations of stresses and deformations of the bottom end piece of fuel elements of Angra-2 were performed with finite element method for the load case handling, zero load cold and full power operation, considering the same load of the actual and well established methodology, but applying shell elements instead of solid. The obtained results show that the application of this element is conservative and shall be used in future mechanical analysis of design alterations of this component when performed by the INB engineering group. (author)

  2. The association between content of the elements S, Cl, K, Fe, Cu, Zn and Br in normal and cirrhotic liver tissue from Danes and Greenlandic Inuit examined by dual hierarchical clustering analysis

    DEFF Research Database (Denmark)

    Laursen, Jens; Milman, Nils; Pind, N.;

    2014-01-01

    contents according to calculated similarities, one clustering elements according to correlation coefficients between the element contents, both using Euclidian distance and Ward Procedure. RESULTS: One dendrogram separated subjects in 7 clusters showing no differences in ethnicity, gender or age....... The analysis discriminated between elements in normal and cirrhotic livers. The other dendrogram clustered elements in four clusters: sulphur and chlorine; copper and bromine; potassium and zinc; iron. There were significant correlations between the elements in normal liver samples: S was associated with Cl, K...

  3. Thermomechanical evaluation of BWR fuel elements for procedures of preconditioned with FEMAXI-V; Evaluacion termomecanica de elementos combustible BWR para procedimientos de preacondicionado con FEMAXI-V

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H.; Lucatero, M.A.; Ortiz V, J. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: hhl@nuclear.inin.mx

    2006-07-01

    The limitations in the burnt of the nuclear fuel usually are fixed by the one limit in the efforts to that undergo them the components of a nuclear fuel assembly. The limits defined its provide the direction to the fuel designer to reduce to the minimum the fuel failure during the operation, and they also prevent against some thermomechanical phenomena that could happen during the evolution of transitory events. Particularly, a limit value of LHGR is fixed to consider those physical phenomena that could lead to the interaction of the pellet-shirt (Pellet Cladding Interaction, PCI). This limit value it is related directly with an PCI limit that can be fixed based on experimental tests of power ramps. This way, to avoid to violate the PCI limit, the conditioning procedures of the fuel are still required for fuel elements with and without barrier. Those simulation procedures of the power ramp are carried out for the reactor operator during the starting maneuvers or of power increase like preventive measure of possible consequences in the thermomechanical behavior of the fuel. In this work, the thermomechanical behavior of two different types of fuel rods of the boiling water reactor is analyzed during the pursuit of the procedures of fuel preconditioning. Five diverse preconditioning calculations were carried out, each one with three diverse linear ramps of power increments. The starting point of the ramps was taken of the data of the cycle 8 of the unit 1 of the Laguna Verde Nucleo electric Central. The superior limit superior of the ramps it was the threshold of the lineal power in which a fuel failure could be presented by PCI, in function of the fuel burnt. The analysis was carried out with the FEMAXI-V code. (Author)

  4. Globular Cluster Formation at High Density: A Model for Elemental Enrichment with Fast Recycling of Massive-star Debris

    Science.gov (United States)

    Elmegreen, Bruce G.

    2017-02-01

    The self-enrichment of massive star clusters by p-processed elements is shown to increase significantly with increasing gas density as a result of enhanced star formation rates and stellar scatterings compared to the lifetime of a massive star. Considering the type of cloud core where a globular cluster (GC) might have formed, we follow the evolution and enrichment of the gas and the time dependence of stellar mass. A key assumption is that interactions between massive stars are important at high density, including interactions between massive stars and massive-star binaries that can shred stellar envelopes. Massive-star interactions should also scatter low-mass stars out of the cluster. Reasonable agreement with the observations is obtained for a cloud-core mass of ∼4 × 106 M ⊙ and a density of ∼2 × 106 cm‑3. The results depend primarily on a few dimensionless parameters, including, most importantly, the ratio of the gas consumption time to the lifetime of a massive star, which has to be low, ∼10%, and the efficiency of scattering low-mass stars per unit dynamical time, which has to be relatively large, such as a few percent. Also for these conditions, the velocity dispersions of embedded GCs should be comparable to the high gas dispersions of galaxies at that time, so that stellar ejection by multistar interactions could cause low-mass stars to leave a dwarf galaxy host altogether. This could solve the problem of missing first-generation stars in the halos of Fornax and WLM.

  5. Dynamic Cluster Analysis: An Unbiased Method for Identifying A+2 Element Containing Compounds in Liquid Chromatographic High-Resolution TOF Mass Spectrometric Data

    DEFF Research Database (Denmark)

    Andersen, Aaron John Christian; Hansen, Per Juel; Jørgensen, Kevin

    2016-01-01

    Dynamic Cluster Analysis (DCA) is an automated, unbiased technique which can identify Cl, Br, S, and other A+2 element containing metabolites in liquid chromatographic high resolution mass spectrometric data. DCA is based on three features, primarily the previously unutilised A+1 to A+2 isotope...... cluster spacing which is a strong classifier in itself, but improved with the addition of the monoisotopic mass, and the well-known A:A+2 intensity ratio. Utilizing only the A+1 to A+2 isotope cluster spacing and the monoisotopic mass it was possible to filter a chromatogram for metabolites which contain...... Cl, Br, and S. Screening simulated isotope patterns of the Antibase Natural Products Database it was determined that the A+1 to A+2 isotope cluster spacing can be used to correctly classify 97.4% of molecular formulas containing these elements, only misclassifying a few metabolites which were either...

  6. Detailed Chemical Abundances in NGC 5824: Another Metal-Poor Globular Cluster with Internal Heavy Element Abundance Variations

    CERN Document Server

    Roederer, Ian U; Bailey, John I; Spencer, Meghin; Crane, Jeffrey D; Shectman, Stephen A

    2015-01-01

    We present radial velocities, stellar parameters, and detailed abundances of 39 elements derived from high-resolution spectroscopic observations of red giant stars in the luminous, metal-poor globular cluster NGC 5824. We observe 26 stars in NGC 5824 using the Michigan/Magellan Fiber System (M2FS) and two stars using the Magellan Inamori Kyocera Echelle (MIKE) spectrograph. We derive a mean metallicity of [Fe/H]=-1.94+/-0.02 (statistical) +/-0.10 (systematic). The metallicity dispersion of this sample of stars, 0.08 dex, is in agreement with previous work and does not exceed the expected observational errors. Previous work suggested an internal metallicity spread only when fainter samples of stars were considered, so we cannot exclude the possibility of an intrinsic metallicity dispersion in NGC 5824. The M2FS spectra reveal a large internal dispersion in [Mg/Fe], 0.28 dex, which is found in a few other luminous, metal-poor clusters. [Mg/Fe] is correlated with [O/Fe] and anti-correlated with [Na/Fe] and [Al/F...

  7. Surface chemistry effects in finite element modeling of heat transfer in (micron)-fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, M

    2000-12-07

    Equations for modeling surface chemical kinetics by the interaction of gaseous and surface species are presented. The formulation is embedded in a finite element heat transfer code and an ordinary differential equation package is used to solve the surface system of chemical kinetic equations for each iteration within the heat transfer solver. The method is applied to a flow which includes methane and methanol in a microreactor on a chip. A simpler more conventional method, a plug flow reactor model, is then applied to a similar problem. Initial results for steam reforming of methanol are given.

  8. Report of the CCQM-K123: trace elements in biodiesel fuel

    Science.gov (United States)

    Kuroiwa, T.; Zhu, Y.; Inagaki, K.; Long, S. E.; Christopher, S. J.; Puelles, M.; Borinsky, M.; Hatamleh, N.; Murby, J.; Merrick, J.; White, I.; Saxby, D.; Sena, R. C.; Almeida, M. D.; Vogl, J.; Phukphatthanachai, P.; Fung, W. H.; Yau, H. P.; Okumu, T. O.; Kang'iri, J. N.; Télle, J. A. S.; Campos, E. Z.; Gal&vacute; n, E. C.; Kaewkhomdee, N.; Taebunpakul, S.; Thiengmanee, U.; Yafa, C.; Tokman, N.; Tunç, M.; Can, S. Z.

    2017-01-01

    The CCQM-K123 key comparison was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of sodium, calcium, potassium, magnesium phosphorous and sulfur in biodiesel fuel (BDF). National Metrology Institute of Japan (NMIJ) and National Institute of Standards and Technology (NIST) acted as the coordinating laboratories. Results were submitted by 11 NMIs and DIs. Most of the participants used inductively coupled plasma-mass spectrometry (ICP-MS), isotope dilution technique with ICP-MS and inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave acid digestion. Accounting for relative expanded uncertainty, comparability of measurement results for each of Na, Ca, K, Mg and P was successfully demonstrated by the participants. Concerning S, the variation in results between participants, particularly those using IDMS methods was observed. According to the additional evaluation and investigation, the revised results were overlapping between IDMS measurements at the k = 2 level. However, this KC does not support S measurements. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Disposal of irradiated fuel elements from German research reactors. Status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Thamm, G. [Central Research Reactor and Nuclear Operations Division, Research Centre Juelich, Forschungszentrum Juelich GmbH, Juelich (Germany)

    1999-07-01

    There will be a quantity of highly radioactive spent nuclear fuel (snf) from German research reactors amounting to about 9.1 t by the end of the next decade, which has to be disposed of. About 4.1 t of this quantity are intended to be returned to the USA. The remaining approximately 5 t can be loaded into approximately 30 CASTOR-2 casks and will be stored in a central German dry interim store for about 30 to 50 years (first step of the domestic disposal concept). Of course, snf arising from the operation of research reactors beyond 2010 has to be disposed of in the same way (3 MTR-2 casks every two years for BER-II and FRM-II). It is expected that snf from the zero-power facilities probably will be recycled for reusing the uranium. Due to the amendment of the German Atomic Energy Act intended by the new Federal German Government, the interim dry storage of snf from power reactors in central storage facilities like Ahaus or Gorleben will be stopped and the power reactors have to store snf at their own sites. Although the amendment only concerns nuclear power reactors, it could not be excluded that snf from research reactors, too, cannot be stored at Ahaus or Gorleben at present. (author)

  10. Investigation of silver and iodine transport through silicon carbide layers prepared for nuclear fuel element cladding

    Science.gov (United States)

    Friedland, E.; van der Berg, N. G.; Malherbe, J. B.; Hancke, J. J.; Barry, J.; Wendler, E.; Wesch, W.

    2011-03-01

    Transport of silver and iodine through polycrystalline SiC layers produced by PBMR (Pty) Ltd. for cladding of TRISO fuel kernels was investigated using Rutherford backscattering analysis and electron microscopy. Fluences of 2 × 10 16 Ag + cm -2 and 1 × 10 16 I + cm -2 were implanted at room temperature, 350 °C and 600 °C with an energy of 360 keV, producing an atomic density of approximately 1.5% at the projected ranges of about 100 nm. The broadening of the implantation profiles and the loss of diffusors through the front surface during vacuum annealing at temperatures up to 1400 °C was determined. The results for room temperature implantations point to completely different transport mechanisms for silver and iodine in highly disordered silicon carbide. However, similar results are obtained for high temperature implantations, although iodine transport is much stronger influenced by lattice defects than is the case for silver. For both diffusors transport in well annealed samples can be described by Fickian grain boundary diffusion with no abnormal loss through the surface as would be expected from the presence of nano-pores and/or micro-cracks. At 1100 °C diffusion coefficients for silver and iodine are below our detection limit of 10 -21 m 2 s -1, while they increase into the 10 -20 m 2 s -1 range at 1300 °C.

  11. Stress Analysis of Coated Particle Fuel Using Finite Element Method%包覆燃料颗粒应力的有限元分析

    Institute of Scientific and Technical Information of China (English)

    曹彬; 刘兵; 唐春和

    2014-01-01

    高温气冷堆的燃料元件由包覆燃料颗粒弥散在石墨基体中组成。在反应堆运行过程中,辐照及各复杂的物理化学反应产生的应力会使包覆燃料颗粒发生破损,对包覆燃料颗粒进行应力分析是评价燃料元件和反应堆运行安全性能的主要内容之一。本文基于压力壳模式,主要考虑内压作用下的球形壳层应力及包覆燃料颗粒的非球形因素,用有限元法对应力进行了分析。%The fuel element of high temperature gas-cooled reactor is composed of coated particle fuel w hich is dispersed in graphite matrix .In normal operation ,the stress due to irradiation and a variety of complex physical and chemical reactions will cause failure of the coated particle fuel . Therefore , the stress analysis of coated particle fuel is important for the safety of fuel element and reactor .The stress was analyzed by the finite element method based on the inner pressure failure mechanism considering asphericity of the particles .

  12. Numerical analysis of a nuclear fuel element for nuclear thermal propulsion

    Science.gov (United States)

    Wang, Ten-See; Schutzenhofer, Luke

    1991-01-01

    A computational fluid dynamics model with porosity and permeability formulations in the transport equations has been developed to study the concept of nuclear thermal propulsion through the analysis of a pulsed irradiation of a particle bed element (PIPE). The numerical model is a time-accurate pressure-based formulation. An adaptive upwind scheme is employed for spatial discretization. The upwind scheme is based on second- and fourth-order central differencing with adaptive artificial dissipation. Multiblocked porosity regions have been formulated to model the cold frit, particle bed, and hot frit. Multiblocked permeability regions have been formulated to describe the flow shaping effect from the thickness-varying cold frit. Computational results for several zero-power density PIPEs and an elevated-particle-temperature PIPE are presented. The implications of the computational results are discussed.

  13. VENUS: cold prototype installation of the head-end of the reprocessing of HTR fuel elements. Activity report, 1 July 1976--31 December 1976

    Energy Technology Data Exchange (ETDEWEB)

    Boehnert, R.; Walter, C.

    1977-02-15

    The purpose of the VENUS Project is advance planning for the construction of a cold prototype system to incinerate HTR fuel element graphite. The Venus Project is organized into four phases between advance planning and experimental operation, corresponding to the maturity of the work. It is in the advance planning phase. Status of individual studies is given. (LK)

  14. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.A.B.; Durazzo, M., E-mail: jasouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm{sup 3} by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm{sup 3} for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  15. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    Science.gov (United States)

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  17. Analysis of high fidelity of a BWR fuel element with COBRA-TF/PARCS codes and TRACE; Analisis de Alta Fidelidad de un Elemento Combustible BWR con los codigos COBRA-TF/PARCS y TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Abarca, A.; Miro, R.; Barrachina, T.; Verdu, G.; Solar, A.; Concejal, A.; Melara, J.; Albendea, M.

    2013-07-01

    It has been modeled a 10 x 10 BWR fuel element, containing 91 fuel rods (81 of 10 partial length and total length) and a great water bar of square section in the central part of it. Such fuel element has been modeled in detail: at the level of sub-channel code COBRA-TF and using parametric models for fuel elements BWR that owns the plant code TRACE. Has been an exercise in comparison of the results obtained by both codes in the simulation of a stationary and a small transient flow injection, highlighting the differences observed.

  18. Evaluation of plate type fuel elements by eddy current test method; Avaliacao de combustiveis nucleares tipo placa pelo metodo de correntes parasitas

    Energy Technology Data Exchange (ETDEWEB)

    Frade, Rangel Teixeira

    2015-07-01

    Plate type fuel elements are used in MTR research nuclear reactors. The fuel plates are manufactured by assembling a briquette containing the fissile material inserted in a frame, with metal plates in both sides of the set, to act as a cladding. This set is rolled under controlled conditions in order to obtain the fuel plate. In Brazil, this type of fuel is manufactured by IPEN and used in the IEA-R1 reactor. After fabrication of three batches of fuel plates, 24 plates, one of them is taken, in order to verify the thickness of the cladding. For this purpose, the plate is sectioned and the thickness measurements are carried out by using optical microscopy. This procedure implies in damage of the plate, with the consequent cost. Besides, the process of sample preparation for optical microscopy analysis is time consuming, it is necessary an infrastructure for handling radioactive materials and there is a generation of radioactive residues during the process. The objective of this study was verify the applicability of eddy current test method for nondestructive measurement of cladding thickness in plate type nuclear fuels, enabling the inspection of all manufactured fuel plates. For this purpose, reference standards, representative of the cladding of the fuel plates, were manufactured using thermomechanical processing conditions similar to those used for plates manufacturing. Due to no availability of fuel plates for performing the experiments, the presence of the plate’s core was simulated using materials with different electrical conductivities, fixed to the thickness reference standards. Probes of eddy current testing were designed and manufactured. They showed high sensitivity to thickness variations, being able to separate small thickness changes. The sensitivity was higher in tests performed on the reference standards and samples without the presence of the materials simulating the core. For examination of the cladding with influence of materials simulating the

  19. Light water reactor fuel element suitable for thorium employment in a discrete seed and blanket configuration with the aim to attain conversion ratios above the range of one

    Energy Technology Data Exchange (ETDEWEB)

    Hrovat, M.F.; Grosse, K.H.; Seemann, R. [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2008-07-01

    The thorium resources in the world are relatively large. According to the IAEA-NEA-publication ''Red Book'' they amount to 4.5 10E6 metric tons and are about 4 times greater than the resources of Uranium. The fuel element described in this paper could be used in light water reactor (LWR) preferably in pressurized water reactor (PWR). The seed (feed) rods contain uranium 235 as fissionable material and the blanket (breed) rods contain thorium and uranium. The thorium in the blanket rods is converted to fissionable U-233 by irradiation with thermal neutrons. The U-233 produced is a valuable fissionable material and is characterized by high revalues, where t is defined as the number of fission neutrons per absorption in fissile materials. By optimized configuration and loading of the seed- and blanket rods the thorium is converted to U-233 and the U-238 is converted to fissionable Plutonium isotopes. Consequently more fissionable material is generated than is used. The fuel cycle is also flexible. Thus U-235, Pu-239 or weapons-grade Plutonium can be used.Based on knowledge obtained in the development of fuel elements for material test reactors (MTR), high temperature reactors (HTR) and light water reactors (LWR), a new design of fuel element suitable for thorium employment in PWR is described.

  20. The orbital elements and physical properties of the eclipsing binary BD+36 3317, a probable member of $\\delta$ Lyr cluster

    CERN Document Server

    Kıran, E; Değirmenci, Ö L; Wolf, M; Nemravová, J; Šlechta, M; Koubský, P

    2016-01-01

    Context. The fact that eclipsing binaries belong to a stellar group is useful, because the former can be used to estimate distance and additional properties of the latter, and vice versa. Aims. Our goal is to analyse new spectroscopic observations of BD$+36^\\circ3317$ along with the photometric observations from the literature and, for the first time, to derive all basic physical properties of this binary. We aim to find out whether the binary is indeed a member of the $\\delta$ Lyr open cluster. Methods. The spectra were reduced using the IRAF program and the radial velocities were measured with the program SPEFO. The line spectra of both components were disentangled with the program KOREL and compared to a grid of synthetic spectra. The final combined radial-velocity and photometric solution was obtained with the program PHOEBE. Results. We obtained the following physical elements of BD$+36^\\circ3317$: $M_1 = 2.24\\pm0.07 M_{\\odot}$, $M_2 = 1.52\\pm0.03 M_{\\odot}$, $R_1 = 1.76\\pm0.01 R_{\\odot}$, $R_2 = 1.46\\pm...

  1. p-capture reaction cycles in rotating massive stars and their impact on elemental abundances in globular cluster stars: A case study of O, Na and Al

    Science.gov (United States)

    Mahanta, Upakul; Goswami, Aruna; Duorah, Hiralal; Duorah, Kalpana

    2017-08-01

    Elemental abundance patterns of globular cluster stars can provide important clues for understanding cluster formation and early chemical evolution. The origin of the abundance patterns, however, still remains poorly understood. We have studied the impact of p-capture reaction cycles on the abundances of oxygen, sodium and aluminium considering nuclear reaction cycles of carbon-nitrogen-oxygen-fluorine, neon-sodium and magnesium-aluminium in massive stars in stellar conditions of temperature range 2×107 to 10×107 K and typical density of 102 gm cc-1. We have estimated abundances of oxygen, sodium and aluminium with respect to Fe, which are then assumed to be ejected from those stars because of rotation reaching a critical limit. These ejected abundances of elements are then compared with their counterparts that have been observed in some metal-poor evolved stars, mainly giants and red giants, of globular clusters M3, M4, M13 and NGC 6752. We observe an excellent agreement with [O/Fe] between the estimated and observed abundance values for globular clusters M3 and M4 with a correlation coefficient above 0.9 and a strong linear correlation for the remaining two clusters with a correlation coefficient above 0.7. The estimated [Na/Fe] is found to have a correlation coefficient above 0.7, thus implying a strong correlation for all four globular clusters. As far as [Al/Fe] is concerned, it also shows a strong correlation between the estimated abundance and the observed abundance for globular clusters M13 and NGC 6752, since here also the correlation coefficient is above 0.7 whereas for globular cluster M4 there is a moderate correlation found with a correlation coefficient above 0.6. Possible sources of these discrepancies are discussed.

  2. LOAD-CHECK, program supported optimization of the fuel element disposal in cask CASTOR {sup registered} V casks; LOAD-CHECK, programmunterstuetzte Optimierung der Brennelemententsorgung in CASTOR {sup registered} V-Behaeltern

    Energy Technology Data Exchange (ETDEWEB)

    Amian, D.; Braun, A. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany); Graf, R.; Hoffmann, V. [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2010-05-15

    LOAD-CHECK is an interactive program module for the systematic and strategic spent fuel disposal planning. Using physical fuel element data the loading scenarios for the routine operation and the post-closure operation phase can be simulated for free selectable time periods. The basis for the loading license application are the available spent fuel casks according to the regulations of the interim storage facility. LOAD-CHECK allows the optimization of the loading campaigns with respect to the time schedule and the number of casks including the planning of optimized disposal of special spent fuel (MOX fuel elements or high-burnup fuel elements). Possibilities for a reduced post-closure operating phase of nuclear power plants might be the consequence.

  3. Electrostatic Dispersion and Evaporation of Dense and Dilute Clusters of Drops of High-Energy Fuel For Soot Control

    Science.gov (United States)

    Bellan, J.; Harstad, K.

    1997-01-01

    The high-energy-density (HED) fuels developed under U.S. Navy sponsorship as a replacement for conventional liquid fuels, in its missile propulsion systems have the drawback of high soot propensity: this makes misiles visible and thus strategically unacceptabel.

  4. Development of numerical methodology for determination of natural frequencies of fuel elements; Desenvolvimento de metodologia numerica para determinacao de frequencias naturais de elementos combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Carrilho, Leo A.; Dotto, Rosvita M. [Industrias Nucleares do Brasil SA, Resende, RJ (Brazil); Gouvea, Jayme P. de [Universidade Federal Fluminense, Volta Redonda, RJ (Brazil)

    2000-07-01

    The analysis of the effects of postulated accidents on the structure of the fuel assemblies is done by INB through a bidimensional model resolved by a finite element program and considering an average lateral stiffness obtained experimentally. In order to to develop an equivalent ANSYS model with the capability of guide-thimble stress analysis during normal operation vibrations, one modal analysis on a tridimensional model is performed as a first step, considering the average lateral stiffness as obtained numerically from the models with and without sliding of the fuel rods on the spacers. Natural frequencies are presented to the sixth mode together with the relative most external guide-thimble stresses at the first mode, which is the base for a future analysis of absolute stresses on fuel assembly during vibration. (author)

  5. The Manufacture of W-UO2 Fuel Elements for NTP Using the Hot Isostatic Pressing Consolidation Process

    Science.gov (United States)

    Broadway, Jeramie; Hickman, Robert; Mireles, Omar

    2012-01-01

    NTP is attractive for space exploration because: (1) Higher Isp than traditional chemical rockets (2)Shorter trip times (3) Reduced propellant mass (4) Increased payload. Lack of qualified fuel material is a key risk (cost, schedule, and performance). Development of stable fuel form is a critical path, long lead activity. Goals of this project are: Mature CERMET and Graphite based fuel materials and Develop and demonstrate critical technologies and capabilities.

  6. Thermal-hydraulic analysis of the outermost fuel plates of a MTR5 fuel element used in the IEA-R1 research reactor; Analise termo-hidraulica das placas externas de um elemento combustivel tipo placa utilizado no reator de pesquisas IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Umbehaun, Pedro Ernesto; Torres, Walmir Maximo; Andrade, Delvonei Alves de [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: umbehaun@ipen.br; wmtorres@ipen.br; delvonei@ipen.br

    2004-07-01

    This work presents the thermal-hydraulic analysis for the outermost fuel plates for 5 MW reactor operation power, considering internal flow distribution experimentally measured, and by using the flow through the channels between two fuel elements, external flow. Results showed the necessity of changing the fuel element design, which was taken into account through the reduction of uranium concentration for external plates in order to guarantee its suitable cooling.

  7. Comparative Analysis of Structural Changes In U-Mo Dispersed Fuel of Full-Size Fuel Elements And Mini-Rods Irradiated In The MIR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Izhutov, Aleksey L.; Iakovlev, Valeriy V.; Novoselov, Andrey E. and others

    2013-12-15

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60%{sup 235}U; the mini-rods were irradiated to an average burnup of ∼ 85%{sup 235}U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%.

  8. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    Science.gov (United States)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  9. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Shih, Kaimin

    2016-09-06

    The surface area of zinc sulfide (ZnS) was successfully enlarged using nanostructure particles synthesized by a liquid-phase precipitation method. The ZnS with the highest surface area (named Nano-ZnS) of 196.1 m(2)·g(-1) was then used to remove gas-phase elemental mercury (Hg(0)) from simulated coal combustion fuel gas at relatively high temperatures (140 to 260 °C). The Nano-ZnS exhibited far greater Hg(0) adsorption capacity than the conventional bulk ZnS sorbent due to the abundance of surface sulfur sites, which have a high binding affinity for Hg(0). Hg(0) was first physically adsorbed on the sorbent surface and then reacted with the adjacent surface sulfur to form the most stable mercury compound, HgS, which was confirmed by X-ray photoelectron spectroscopy analysis and a temperature-programmed desorption test. At the optimal temperature of 180 °C, the equilibrium Hg(0) adsorption capacity of the Nano-ZnS (inlet Hg(0) concentration of 65.0 μg·m(-3)) was greater than 497.84 μg·g(-1). Compared with several commercial activated carbons used exclusively for gas-phase mercury removal, the Nano-ZnS was superior in both Hg(0) adsorption capacity and adsorption rate. With this excellent Hg(0) removal performance, noncarbon Nano-ZnS may prove to be an advantageous alternative to activated carbon for Hg(0) removal in power plants equipped with particulate matter control devices, while also offering a means of reusing fly ash as a valuable resource, for example as a concrete additive.

  10. Behaviour of the elements introduced with the fuels in their distribution and immobilization between the coal-petroleum coke IGCC solid products

    Energy Technology Data Exchange (ETDEWEB)

    Ramon Alvarez-Rodriguez; Carmen Clemente-Jul; Juan A. Martin-Rubi [Technical University of Madrid (UPM), Madrid (Spain). Mining School

    2007-09-15

    In this research on the solid products of the Elcogas IGCC plant (Puertollano, Spain) the influence of the two fuels, coal and pet coke, on the composition of the fly ashes and slag is demonstrated and how the majority of the elements are provided by the coal and only some as V, Ni and Mo are provided by the pet coke. The different nature of slag and fly ashes is highlighted and how the different elements are distributed between them that in general follow the indications of the mathematical models. The passage of the elements into gaseous phase is calculated. The fly ashes are some products of very fine granulometry that present problems of solubilization of a series of elements and therefore of deposition. Their inertization has been investigated by calcination at 1000{sup o}C and with additives. Some good results have been obtained. 20 refs., 14 figs., 4 tabs.

  11. Research on Precaution and Detection Technology for Flow Blockage of Plate-type Fuel Element in Research Reactors

    Institute of Scientific and Technical Information of China (English)

    DING; Li; QIAO; Ya-xin; ZHANG; Nian-peng; LUO; Bei-bei; HUA; Xiao; JIA; Shu-jie; YAN; Hui-yang

    2013-01-01

    The main aim of this study is to offer the technical support for safety operation and management of research reactors using plate-type fuel assemblies in China,which is performed from analysis of precaution measures for flow blockage and detection methods of accidents.Study shows that most accidents were induced by in-core foreign objects and the swelling of fuel

  12. 喷气燃料中元素硫的定量测定%QUANTITATIVE DETERMINATION OF ELEMENTAL SULFUR IN JET FUEL

    Institute of Scientific and Technical Information of China (English)

    胡泽祥; 杨官汉; 王立光; 娄方

    2001-01-01

    采用将喷气燃料中的元素硫与汞反应转化生成汞的化合物后由冷原子吸收 法测汞的 方法,获得油样中元素硫含量。此法灵敏度高,元素硫最低检测浓度为1.6×10-3 μ g /ml; 元素硫浓度在0~0.05 μg/ml范围内与紫外光吸收值存在良好线性关系,方法精密度和准确 度好。%In order to measure the elemental sulfur in jet fuel,the method can be used,that is the elemental sulfur in jet fuel reacts quantitatively with mercury to produce mercury sulfide,and then the mercury content in mercury sulfide is measured by atomic absorption spectrophotometry.This measurement method possesses high sensitivity,good precision and accuracy,the minimum detectable concentration of elemental sulfur is 1.6×10-3μg/ml,and the linear range of elemental sulfur is 0 to 0.05 μg/ml.

  13. The life of some metallic uranium based fuel elements; Duree de vie de quelques combustibles a base d'uranium metal

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J.A.; Englander, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Description of some theoretical and experimental data concerning the design and most economic preparation of metallic uranium based fuel elements, which are intended to produce an energy of 3 kW days/g of uranium in a thermal reactor, at a sufficiently high mean temperature. Experimental results obtained by testing by analogy or by actually trying out fuel elements obtained by alloying uranium with other metals in proportions such that the resistance to deformation of the alloy produced is much higher than that of pure metallic uranium and that the thermal utilisation factor is only slightly different from that of the uranium. (author) [French] Description de quelques donnees theoriques et experimentales concernant la conception et la preparation la plus economique d'elements combustibles a base d'uranium metallique naturel, destines a degager dans un reacteur thermique une energie de l'ordre de 3 kWj/g d'uranium a une temperature moyenne suffisamment elevee. Resultats experimentaux acquis par tests analogiques ou reels sur combustibles obtenus par alliage de l'uranium avec des elements metalliques en proportions telles que la resistance a la deformation soit bien superieure a celle de l'uranium metal pur et que le facteur propre d'utilisation thermique n ne soit que peu affecte. (auteur)

  14. Cluster-cluster clustering

    Science.gov (United States)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C. S.

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales.

  15. Cluster-cluster clustering

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.

    1985-08-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references.

  16. COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR

    Directory of Open Access Journals (Sweden)

    ALEKSEY. L. IZHUTOV

    2013-12-01

    The full-size fuel rods were irradiated up to an average burnup of ∼ 60%235U; the mini-rods were irradiated to an average burnup of ∼ 85%235U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%.

  17. Thermal breeder fuel enrichment zoning

    Science.gov (United States)

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  18. Development of finite element analysis code SPOTBOW for prediction of local velocity and temperature fields around distorted fuel pin in LMFBR assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takeshi [Toshiba Corp., Kawasaki, Kanagawa (Japan). Nuclear Engineering Lab.

    1996-05-01

    A two-dimensional steady-state distributed parameter code SPOTBOW has been developed for predicting the fine structure of cladding temperature in an liquid metal fast breeder reactor (LMFBR) fuel assembly where the deformation of fuel pins is induced by irradiation swelling, creep and thermal distortion under high burn-up operating condition. When the deformed fuel pin approaches adjacent pins and wrapper tube and comes in contact with those, the peak temperature, known as the hot spot temperature, can appear somewhere on the outer surface of the cladding. The temperature rise across the film is an important consideration in the cladding temperature analysis. Fully developed turbulent momentum and heat transfer equations based on the empirical turbulent model are solved by using the Galerkin finite element method which is suitable for the problem of the complicated boundary shape, such as the wire-wrapped fuel pin bundle. A new iteration procedure has been developed for solving the above equations by using the rise in coolant temperature, which is obtained with subchannel analysis codes, as a boundary condition. Calculated results are presented for local temperature distribution in normal and bowing pin bundle geometry, as compared with experiments. (author).

  19. The origin of the selectivity and activity of ruthenium-cluster catalysts for fuel-cell feed-gas purification: a gas-phase approach.

    Science.gov (United States)

    Lang, Sandra M; Bernhardt, Thorsten M; Krstić, Marjan; Bonačić-Koutecký, Vlasta

    2014-05-19

    Gas-phase ruthenium clusters Ru(n)(+) (n=2-6) are employed as model systems to discover the origin of the outstanding performance of supported sub-nanometer ruthenium particles in the catalytic CO methanation reaction with relevance to the hydrogen feed-gas purification for advanced fuel-cell applications. Using ion-trap mass spectrometry in conjunction with first-principles density functional theory calculations three fundamental properties of these clusters are identified which determine the selectivity and catalytic activity: high reactivity toward CO in contrast to inertness in the reaction with CO2; promotion of cooperatively enhanced H2 coadsorption and dissociation on pre-formed ruthenium carbonyl clusters, that is, no CO poisoning occurs; and the presence of Ru-atom sites with a low number of metal-metal bonds, which are particularly active for H2 coadsorption and activation. Furthermore, comprehensive theoretical investigations provide mechanistic insight into the CO methanation reaction and discover a reaction route involving the formation of a formyl-type intermediate.

  20. IEA-R1 reactor spent fuel element surveillance; Acompanhamento da irradiacao dos elementos combustiveis do reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Damy, Margaret de Almeida; Terremoto, Luis Antonio Albiac; Silva, Jose Eduardo Rosa da; Silva, Antonio Teixeira e; Teodoro, Celso A.; Lucki, Georgi; Castanheira, Myrthes [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: madamy@ipen.br

    2005-07-01

    The irradiation surveillance is an important part of a qualification program of the U{sub 3}O{sub 8}-Al and U{sub 3}Si{sub 2}-Al dispersion nuclear fuels manufactured in IPEN/CNEN-SP. This work presents the surveillance results regarding the fuel and control elements irradiated in the IEA-R1 research reactor during the period from June/1999 until December/2003, which embraced register of visual inspections, irradiation conditions, burn-up calculations, thermal hydraulic parameters and failure occurrences. Also providing information that helps the safe operation of the IEA-R1 research reactor, the irradiation surveillance is a collaboration work involving researchers of the Centro de Engenharia Nuclear (CEN) and the operators' staff of the Centro do Reator de Pesquisas (CRPq), both from IPEN/CNEN-SP. (author)

  1. Winter School 2011 of the North Rhine Westphalia Research School "Fuel production based on renewable resources" associated with the Cluster of Excellence "Tailor-Made Fuels from Biomass"

    CERN Document Server

    Pischinger, Stefan; Schröder, Wolfgang

    2015-01-01

    The book reports on the results of the BrenaRo Winterschool 2011, held on November 21-22 in Aachen, Germany. The different chapters cover a number of aspects of the topic of energy generation, with a particular focus on energy generation from biomass. They presents new findings concerning engine development, process engineering, and biological and chemical conversion of biomass to fuels, and highlight the importance of an interdisciplinary approach, combining chemistry, biology and engineering research, to the use of renewable energy sources. All in all, this book provides readers with a snapshot of the state-of-the-art in renewable energy conversion, and gives an overview of the ongoing work in this field in Germany.

  2. Evaluation of Erosion of the Dummy “EE” Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Jeffrey O. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor; Glazoff, Michael V. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor; Eiden, Thomas J. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor; Rezvoi, Aleksey V. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor

    2016-08-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady state conditions. However, after the cycle was over, when the fuel elements were removed from the core and inspected, several thousand flow-assisted erosion pits and “horseshoeing” defects were readily observed on the surface of the several YA-type fuel elements (these are aluminum “dummy” plates that contain no fuel). In order to understand these erosion phenomena a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth “S” curve, was represented by a series temperature rise “humps,” which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed scalloping

  3. Stiffness evaluation of the welded connection between guide thimbles and the spacer grids 16 X 16 fuel assemblies types, using the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, Carlos Frederico Mattos; Sakamiti, Guilherme Pennachin; Gaspar Junior, Joao Carlos Aguiar, E-mail: carlosschettino@inb.gov.br, E-mail: guilhermesakamiti@inb.gov.br, E-mail: joaojunior@inb.gov.br [Industrias Nucleares do Brasil S.A. (INB), Resende, RJ (Brazil). Diretoria de Producao Nuclear

    2013-07-01

    The present work aims to evaluate, structurally, the increase in the number of spot welds to properly join the guide thimbles and the spacer grids in 16 x 16 fuel assemblies. This new and improved process can provide more stiffness to the whole structure, since the number of spots raised from four to eight. A 3-D geometric model of a guide thimble section was generated in the program SOLIDWORKS. After that, the geometric model was imported to ANSYS program, where the finite element model was built, considering the guide thimble geometry assembled with the spacer grid and the welded connections. Boundaries conditions were implemented in the model in order to simulate the correct physical behavior due to the operation of the fuel assembly inside the reactor. The analysis covered specific loads and displacements acting on the entire structure. The method used to develop this finite element analysis was a linear static simulation that performing a single connection between a spacer grid cell and a guide thimble section. Hence four models was evaluated, differing on the spot weld number in the spacer grid and guide thimble connection. The rotational stiffness results of each model were compared. The results acquired from four and eight spot weld were validated with physical test results.The behavior of the structure under the acting force/displacement and the related results of the analysis, mainly the stiffness, were satisfied. The results of this analysis were used to prove that the increasing of the spot welds number is an improvement in the dimensional stability when submitted to loads and displacements required on the fuel assembly design. This analysis aid to get more information of extreme importance such as, the pursuance to develop better manufacturing process and to improve the fuel assembly performance due to the increasing of the burn-up. (author)

  4. Utilization of plutonium in a high temperature gas-cooled reactor with spherical fuel elements; Nutzung von Plutonium im Kugelhaufen-Hochtemperaturreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Khorochev, M.

    1998-09-01

    This thesis deals with the use of reactor and weapon grade plutonium in High Temperature Gas Cooled Reactors (HTR) with spherical fuel elements. As an example, a 350 MW{sub th} MODUL type reactor is investigated in detail. The purpose of the study was to find the possibilities and limits of using plutonium effectively in a Pebble Bed HTR. Fuel cycles were optimized with respect to different goals under the condition that safety requirements must be strictly fulfilled. A compromise between opposite optimization criteria (e.g., higher destruction rate or smaller residual amount of plutonium in the spent fuel) was achieved. Calculational studies of plutonium cycles in a Pebble Red Reactor were performed using the VSOP Code. The results show that a Pebble Red Reactor potentially provides for extremely high burnup of plutonium. The high burnup was achieved by separate loading of the plutonium in feed and of uranium in breed type fuel elements. Both fuel element types undergo different numbers of passes through the reactor until the intended burnup is achieved. Two reference cases are derived from a parametric study, one for the use of reactor grade plutonium with uranium, and another one for weapon grade plutonium with thorium as the breed material. Both reference cycles prove that the HTR-350 Module reactor offers a good concept for the destruction of both plutonium grades. (orig.) [Deutsch] In der vorliegenden Arbeit wird der Einsatz von Waffen- und Reaktorplutonium in Hochtemperaturreaktoren mit kugelfoermigen Brennelementen behandelt. Als Anwendungsbeispiel wird eine modulare Anlage mit einer Leistung von 350 MW{sub th} im Detail untersucht. Das Ziel der Arbeit bestand darin, die Moeglichkeiten und Grenzen fuer einen effektiven Abbrand von Plutonium in Kugelhaufenreaktoren kennenzulernen. Unter Wahrung hoher Sicherheitsansprueche wurden Brennstoffkreislaeufe identifiziert, welche fuer unterschiedliche Zielvorgaben optimiert wurden. Schliesslich wurde ein Kompromiss

  5. Estimation of the activity and isotopic composition of the fuel elements of the reactor in decaying; Estimacion de la actividad y composicion isotopica de los elementos combustibles del reactor en decaimiento

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-03-15

    At the present time its are had 59 fuel elements, 3 control bars with follower and 2 instrumented irradiated fuels that its are decaying in the pool of the reactor. The burnt one that its have these fuels is not uniform, the quantity of U-235 that contain at the moment it varies between 33.5 g up to 35.2 and its have a decay of at least 12 years. The burnt of the fuels was obtained with the CREMAT code, this burnt was takes like base to estimate the current isotopic inventory and the activity of the same ones using the ORIGEN2 code. (Author)

  6. Fuel elements assembling for the DON project exponential experience; Montaje de los elementos combustibles para la experiencia exponencial del proyecto DON

    Energy Technology Data Exchange (ETDEWEB)

    Anca Abati, R. de

    1966-07-01

    It is described the fuel unit used in the DON exponential experience, the manufacturing installments and tools as well as the stages in the fabrication.These 74 elements contain each 19 cartridges loaded with synterized urania, uranium carbide and indium, gold, and manganese probes. They were arranged in calandria-like tubes and the process-tube. This last one containing a cooling liquid simulating the reactor organic. Besides being used in the DON reactor exponential experience they were used in critic essays by the substitution method in the French reactor AQUILON II. (Author) 6 refs.

  7. Globular Cluster Abundances from High-Resolution, Integrated-Light Spectroscopy. IV. The Large Magellanic Cloud: $\\alpha$, Fe-peak, Light, and Heavy Elements

    CERN Document Server

    Colucci, J E; Cameron, S A; McWilliam, A

    2011-01-01

    We present detailed chemical abundances in 8 clusters in the Large Magellanic Cloud (LMC). We measure abundances of 22 elements for clusters spanning a range in age of 0.05 to 12 Gyr, providing a comprehensive picture of the chemical enrichment and star formation history of the LMC. The abundances were obtained from individual absorption lines using a new method for analysis of high resolution ($R\\sim$25,000) integrated light spectra of star clusters. This method was developed and presented in Papers I, II, and III of this series. In this paper, we develop an additional integrated light $\\chi^2$-minimization spectral synthesis technique to facilitate measurement of weak ($\\sim$15 m\\AA) spectral lines and abundances in low signal-to-noise ratio data (S/N$\\sim$30). Additionally, we supplement the integrated light abundance measurements with detailed abundances that we measure for individual stars in the youngest clusters (Age$+0.5$) and increases with decreasing age, indicating a strong contribution of low-meta...

  8. A combined mathematica--fortran program package for analytical calculation of the matrix elements of the microscopic cluster model

    CERN Document Server

    Varga, K

    1997-01-01

    We present a computer code that analytically evaluates the matrix elements of the microscopic nuclear Hamiltonian and unity operator between Slater determinants of displaced gaussian single particle orbits. Such matrix elements appear in the generator coordinate model and the resonating group model versions of the microscopic multicluster calculations.

  9. Simulation of a hybrid fuel cell electric powered vehicle; intermediary elements of power storage; Simulation d'un vehicule electrique a source hybridee pile a combustible; elements intermediaires de stockage de la puissance

    Energy Technology Data Exchange (ETDEWEB)

    Candusso, D.; Rulliere, E.; Yonnet, J.P. [Ecole Nationale Superieure d' Ingenieurs Electriciens de Grenoble, 38 - Saint Martin d' Heres (France); Baurens, P. [CEA/Grenoble, Dept. d' Etudes des Materiaux, DEM, 38 (France)

    2000-07-01

    Studies carried out by the LEG ('Laboratoire Electrotechnique de Grenoble') on the modelling of the different elements of the traction chains of batteries electric powered vehicles (motors, electric converters..) and on the coupling batteries - super-capacitors by a converter allowing to manage the energy exchanges between these different storage elements are basic works for the future studies of fuel cells vehicles. In this article is shown that the electric size range of each components of the traction chain is strongly conditioned by those of its neighbours and that a global simulation of the chain is a precious tool of decision assistance. The interest to combine the energy source is presented too. (O.M.)

  10. COMPARISON OF PARTICLE SIZE DISTRIBUTIONS AND ELEMENTAL PARTITIONING FROM THE COMBUSTION OF PULVERIZED COAL AND RESIDUAL FUEL OIL

    Science.gov (United States)

    The paper gives results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particloe size distributions (PSDs) were determined using atmospheric and low-pressure impaction, electr...

  11. IMG-ABC: An Atlas of Biosynthetic Gene Clusters to Fuel the Discovery of Novel Secondary Metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Min; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Huang, Jinghua; Reddy, T. B.K.; Cimermancic, Peter; Fischbach, Michael; Ivanova, Natalia; Markowitz, Victor; Kyrpides, Nikos; Pati, Amrita

    2014-10-28

    In the discovery of secondary metabolites (SMs), large-scale analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of relevant computational resources. We present IMG-ABC (https://img.jgi.doe.gov/abc/) -- An Atlas of Biosynthetic gene Clusters within the Integrated Microbial Genomes (IMG) system1. IMG-ABC is a rich repository of both validated and predicted biosynthetic clusters (BCs) in cultured isolates, single-cells and metagenomes linked with the SM chemicals they produce and enhanced with focused analysis tools within IMG. The underlying scalable framework enables traversal of phylogenetic dark matter and chemical structure space -- serving as a doorway to a new era in the discovery of novel molecules.

  12. Thermohydraulic study of a MTR fuel element aimed at the construction of an irradiation facility; Estudo termohidraulico de um elemento combustivel tipo MTR visando a construcao de um dispositivo de irradiacao

    Energy Technology Data Exchange (ETDEWEB)

    Coragem, Helio Boemer de Oliveira

    1980-07-01

    A thermohydraulic study of MTR fuel element is presented as a basic requirement for the development of an irradiation facility for testing fuel elements. A computer code named 'Thermo' has been developed for this purpose, which can stimulate different working conditions, such as, cooling, power elements and neutron flux, performing all pertinent thermohydraulic calculations. Thermocouples were used to measure the temperature gradients of the cooling fluid throughout the IEAR-1 reactor core. All experimental data are in good agreement with the theoretical model applied in this work. Finally, a draft of the proposed facility and its safety system is presented. (author)

  13. A Comparison of Optimal Operation of a Residential Fuel Cell Co-Generation System Using Clustered Demand Patterns Based on Kullback-Leibler Divergence

    Directory of Open Access Journals (Sweden)

    Takumi Hasizume

    2013-01-01

    Full Text Available When evaluating residential energy systems like co-generation systems, hot water and electricity demand profiles are critical. In this paper, the authors aim to extract basic time-series demand patterns from two kinds of measured demand (electricity and domestic hot water, and also aim to reveal effective demand patterns for primary energy saving. Time-series demand data are categorized with a hierarchical clustering method using a statistical pseudo-distance, which is represented by the generalized Kullback-Leibler divergence of two Gaussian mixture distributions. The classified demand patterns are built using hierarchical clustering and then a comparison is made between the optimal operation of a polymer electrolyte membrane fuel cell co-generation system and the operation of a reference system (a conventional combination of a condensing gas boiler and electricity purchased from the grid using the appropriately built demand profiles. Our results show that basic demand patterns are extracted by the proposed method, and the heat-to-power ratio of demand, the amount of daily demand, and demand patterns affect the primary energy saving of the co-generation system.

  14. Evaluation of Corrosion of the Dummy “EE” Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Jeffrey Owen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Glazoff, Michael Vasily [Idaho National Lab. (INL), Idaho Falls, ID (United States); Eiden, Thomas John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rezvoi, Aleksey Victor [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady state conditions. However, after the cycle was over, several thousand of the flow-assisted corrosion pits and “horseshoeing” defects were readily observable on the surface of the several YA-type fuel elements (these are “dummy” plates that contain no fuel). In order understand these corrosion phenomena a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth “S” curve, was represented by a series temperature rise “humps,” which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed sscalloping and possibly pitting degradation on the YA-M fuel elements. In

  15. FINITE-ELEMENT ANALYSIS OF ROCK FALL ON UNCANISTERED FUEL WASTE PACKAGE DESIGNS (SCPB: N/A)

    Energy Technology Data Exchange (ETDEWEB)

    Z. Ceylan

    1996-10-18

    The objective of this analysis is to explore the Uncanistered Fuel (UCF) Tube Design waste package (WP) resistance to rock falls. This analysis will also be used to determine the size of rock that can strike the WP without causing failure in the containment barriers from a height based on the starter tunnel dimensions. The purpose of this analysis is to document the models and methods used in the calculations.

  16. 球形燃料元件中包覆燃料颗粒的化学分析%Chemical analysis of coated particles in spherical fuel element

    Institute of Scientific and Technical Information of China (English)

    郑文革; 倪晓军

    2001-01-01

    The free uranium content (the ratio of free uranium which is notentirely coated with SiC layer in coated fuel particles to total uranium in coated fuel particles) and the uranium content were studied and determined by laser-induced fluorimetric method and titration with a potentiometer. The sample was burned in air first, then immersed and refluxed in nitric acid to separate the free uranium with coated fuel particles to the nitric acid solution. The uranium content in sample solution can be directly measured by laser-induced fluorimetric method, other elements had no interference on the determination of uranium. The method is simpler, faster and more accurate than traditional method in uranium analysis. The method has low measurement error of below 10%, and satisfies the needs of the specifications in the manufacture of coated fuel particles.%报道了高温气冷堆球形燃料元件中包覆燃料颗粒的表面铀沾污、自由铀含量及包覆燃料颗粒的装铀量等性能指标的测试方法、范围及测量误差。利用激光荧光法测量并计算了包覆燃料颗粒中的自由铀含量及表面铀沾污,利用电位滴定法测量了包覆燃料颗粒的装铀量。结果表明,经4层连续包覆的包覆燃料颗粒的质量符合并满足高温气冷堆球形燃料元件对包覆燃料颗粒的设计要求。

  17. First determination of s-process element abundances in pre-main sequence clusters. Y, Zr, La, and Ce in IC 2391, the Argus association, and IC 2602

    Science.gov (United States)

    D'Orazi, V.; De Silva, G. M.; Melo, C. F. H.

    2017-02-01

    Context. Several high-resolution spectroscopic studies have provided compelling observational evidence that open clusters display a decreasing trend of their barium abundances as a function of the cluster's age. Young clusters (ages ≲ 200 Myr) exhibit significant enhancement in the [Ba/Fe] ratios, at variance with solar-age clusters where the Ba content has been found to be [Ba/Fe] 0 dex. Different viable solutions have been suggested in the literature; nevertheless, a conclusive interpretation of such a peculiar trend has not been found. Interestingly, it is debated whether the other species produced with Ba via s-process reactions follow the same trend with age. Aims: Pre-main sequence clusters (≈10-50 Myr) show the most extreme behaviour in this respect: their [Ba/Fe] ratios can reach 0.65 dex, which is higher than the solar value by a factor of four. Crucially, there are no investigations of the other s-process species for these young stellar populations. In this paper we present the first determination of Y, Zr, La, and Ce in clusters IC 2391, IC 2602, and the Argus association. The main objective of our work is to ascertain whether these elements reveal the same enhancement as Ba. Methods: We have exploited high-resolution, high signal-to-noise spectra in order to derive abundances for Y, Zr, La, and Ce via spectral synthesis calculations. Our sample includes only stars with very similar atmospheric parameters so that internal errors due to star-to-star inhomogeneity are negligible. The chemical analysis was carried out in a strictly differential way, as done in all our previous investigations, to minimise the impact of systematic uncertainties. Results: Our results indicate that, at variance with Ba, all the other s-process species exhibit a solar scaled pattern; these clusters confirm a similar trend discovered in the slightly older local associations (e.g. AB Doradus, Carina-Near), where only Ba exhibit enhanced value with all other s-process species

  18. CRITICAL CONFIGURATION FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH AND 7-TUBE CLUSTERS)

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2012-05-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950’s efforts were made to study “power plants for the production of electrical power in space vehicles”. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of 253 unmoderated stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.” The first two experiments in the series were evaluated in HEU-COMP-FAST-001 (SCCA-FUND-EXP-001) and HEU-COMP-FAST-002 (SCCA-FUND-EXP-002). The first experiment had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank (References 1 and 2). The second experiment in the series, performed in early 1963, had the 253 fuel tubes at a 1.506-cm triangular lattice in a 25.96 cm OD core tank and graphite reflectors on all sides. The third set of experiments in the series, performed in mid-1963, which is studied in this evaluation, used beryllium reflectors. The beryllium reflected system was the preferred reactor configuration for this application because of the small thickness of the reflector. The two core configurations had the 253 fuel tubes

  19. {alpha} grain refining and metallurgical study of alloyed uranium, Sicral F1, used for fuel elements; Affinage du grain {alpha} et etude metallurgique de l'alliage d'uranium sicral F1 pour elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Magnier, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    This study was made to know more about grain refining in low alloyed uranium of composition not very different from SICRAL F 1. Alpha grain refining of fuel elements made of these alloys was studied after casting and quenching by the methods used for mass production. The author describes the effect: - of the metallurgical history before quenching: - casting - purity - rate of solidification - of quenching parameters: - annealing temperature before quenching - annealing time - quenching rate - of the composition of the alloy. For the graphite gas fuel elements of various dimensions, he suggests some modifications to give a better adaptation of fabrication to size. He describes the grain refining made during quenching and the {beta} -> {alpha} and {gamma} -> {alpha} transformation types. He proposes the use of a U-Fe-Si especially useful from the point of view of grain refining. (author) [French] Le but de l'etude est de determiner les facteurs metallurgiques favorables a l'affinage du grain {alpha} des alliages d'uranium a tres faibles teneurs en elements d'addition voisins du SICRAL F 1 au cours du cycle de fabrication et de trempe industrielle des elements combustibles nucleaires prepares avec ces alliages. L'auteur met en evidence l'influence: - de l'histoire metallurgique avant trempe: - coulee - teneur en impuretes - vitesse de solidification - des parametres de la trempe: - temperature de trempe - temps et maintien a cette temperature - vitesse de trempe - des variations de composition de l'alliage. Il envisage les modifications a apporter au cycle de fabrication du SICRAL F 1 de facon a l'adapter aux differentes geometries des elements combustibles des reacteurs de la filiere graphite-gaz. L'auteur presente a cette occasion les mecanismes de l'affinage du grain {alpha} par trempe dans les alliages d'uranium et les modes de transformation {beta} -> {alpha} et {gamma} -> {alpha} au cours de la trempe

  20. Properties of unirradiated fuel element graphites H-451 and SO818. [Bulk density, tensile properties, thermal expansion, thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Engle, G.B.; Johnson, W.R.

    1976-10-08

    Nuclear graphites H-451, lot 440 (Great Lakes Carbon Corporation (GLCC)), and SO818 (Airco Speer Division, Air Reduction Corporation (AS)) are described, and physical, mechanical, and chemical property data are presented for the graphites in the unirradiated state. A summary of the mean values of the property data and of data on TS-1240 and H-451, lot 426, is tabulated. A direct comparison of H-451, lot 426, chosen for Fort St. Vrain (FSV) fuel reload production, TS-1240, and SO818 may be made from the table. (auth)

  1. Hierarchical clustering of Alzheimer and "normal" brains using elemental concentrations and glucose metabolism determined by PIXE, INAA and PET

    NARCIS (Netherlands)

    Cutts, DA; Spyrou, NM; Maguire, RP; Leenders, KL

    Brain tissue samples, obtained from the Alzheimer Disease Brain Bank, Institute of Psychiatry, London, were taken from both left and right hemispheres of three regions of the cerebrum, namely the frontal, parietal and occipital lobes for both Alzheimer and 'normal' subjects. Trace element

  2. Hierarchical clustering of Alzheimer and "normal" brains using elemental concentrations and glucose metabolism determined by PIXE, INAA and PET

    NARCIS (Netherlands)

    Cutts, DA; Spyrou, NM; Maguire, RP; Leenders, KL

    2001-01-01

    Brain tissue samples, obtained from the Alzheimer Disease Brain Bank, Institute of Psychiatry, London, were taken from both left and right hemispheres of three regions of the cerebrum, namely the frontal, parietal and occipital lobes for both Alzheimer and 'normal' subjects. Trace element concentrat

  3. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution.

    Science.gov (United States)

    Ali, Shawkat; Laurie, John D; Linning, Rob; Cervantes-Chávez, José Antonio; Gaudet, Denis; Bakkeren, Guus

    2014-07-01

    The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.

  4. Development and optimization of the procedure of gas- chromatographic elemental analysis of high-carbon solid fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Shvykin, A.Y.; Proskuryakov, V.A.; Podshibyakin, S.I.; Chilachava, K.B.; Khmarin, E.M.; Solov' ev, A.S. [Tolstoy Tula State Pedagogical University, Tula (Russian Federation)

    2002-07-01

    A procedure was developed for gas-chromatographic elemental analysis of coals. The conditions of exhaustive oxidation of weighed microportions of the coals were optimized. The procedure of calculating the results of analysis was modified with the aim to improve its reproducibility.

  5. Fission product release model for failed plate-type fuel element and storage under water; Modelo para liberacao de produtos de fissao por placa combustivel falhada e armazenada sob agua

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, L.A.A.; Zeituni, C.A.; Silva, J.E.R. da; Castanheira, M.; Lucki, G.; Silva, A.T. e; Teodoro, C.A.; Damy, M. de A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear]. E-mail: laaterre@ipen.br

    2005-07-01

    Plate-type fuel elements burned-up inside the core of nuclear research reactors are stored mainly under deionized water of storage pools. When cladding failure occurs in such elements, radioactive fission products are released into the storage pool water. This work proposes a model to describe the release mechanism considering the diffusion through a postulated small cylindrical failure. As a consequence, an analytical expression is obtained for the activity released into the water as a function of the total storage time of a failed fuel plate. The proposed model reproduces the linear increasing of {sup 137}Cs specific activity observed in sipping tests already performed on failed plate-type fuel elements. (author)

  6. Evaluation of osmium-ruthenium carbonyl cluster compounds as a cathode in a passive direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, R.H.; Borja-Arco, E.; Uribe-Godinez, J.; Ramirez-Rivera, J.C. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Escobedo (Mexico)

    2006-07-01

    Methanol crossover is a major technical barrier to the application of direct methanol fuel cell (DMFC) technology. Methanol crossover causes a mixed potential on the cathode and reduces overall cell voltage. This paper studied the effect of methanol concentration on the performance of a passive DMFC using a different catalyst on the cathode. The membrane electrode assembly (MEA) was sandwiched between a current collector made of 316 stainless steel and a current collector made of aluminum (Al). Single cells were operated at room temperature and ambient pressure under passive conditions with varying concentrations of methanol. The cells were then analyzed to determine the effects of concentrations of methanol on their performance. Results showed that when 1.0 M methanol was used, the DMFC showed the highest voltage value. However, when higher concentrations of methanol were used, the voltage value decreased. Results also showed that performance of the passive DMFC improved through the use of an osmium (Os{sub x}Ru{sub y}(CO){sub n}) cathode when intermediated concentrations of methanol were used. It was concluded that optimal methanol concentrations ranged from 4 to 5 methanol molar. 3 refs., 2 figs.

  7. Year-round Source Contributions of Fossil Fuel and Biomass Combustion to Elemental Carbon on the North Slope Alaska Utilizing Radiocarbon Analysis

    Science.gov (United States)

    Barrett, T. E.; Gustafsson, O.; Winiger, P.; Moffett, C.; Back, J.; Sheesley, R. J.

    2015-12-01

    It is well documented that the Arctic has undergone rapid warming at an alarming rate over the past century. Black carbon (BC) affects the radiative balance of the Arctic directly and indirectly through the absorption of incoming solar radiation and by providing a source of cloud and ice condensation nuclei. Among atmospheric aerosols, BC is the most efficient absorber of light in the visible spectrum. The solar absorbing efficiency of BC is amplified when it is internally mixed with sulfates. Furthermore, BC plumes that are fossil fuel dominated have been shown to be approximately 100% more efficient warming agents than biomass burning dominated plumes. The renewal of offshore oil and gas exploration in the Arctic, specifically in the Chukchi Sea, will introduce new BC sources to the region. This study focuses on the quantification of fossil fuel and biomass combustion sources to atmospheric elemental carbon (EC) during a year-long sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from July 2012 to June 2013 were analyzed for EC and sulfate concentrations combined with radiocarbon (14C) analysis of the EC fraction. Radiocarbon analysis distinguishes fossil fuel and biomass burning contributions based on large differences in end members between fossil and contemporary carbon. To perform isotope analysis on EC, it must be separated from the organic carbon fraction of the sample. Separation was achieved by trapping evolved CO2 produced during EC combustion in a cryo-trap utilizing liquid nitrogen. Radiocarbon results show an average fossil contribution of 85% to atmospheric EC, with individual samples ranging from 47% to 95%. Source apportionment results will be combined with back trajectory (BT) analysis to assess geographic source region impacts on the EC burden in the western Arctic.

  8. Cluster of genes that encode positive and negative elements influencing filament length in a heterocyst-forming cyanobacterium.

    Science.gov (United States)

    Merino-Puerto, Victoria; Herrero, Antonia; Flores, Enrique

    2013-09-01

    The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE←fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria.

  9. The orbital elements and physical properties of the eclipsing binary BD+36°3317, a probable member of δ Lyrae cluster

    Science.gov (United States)

    Kıran, E.; Harmanec, P.; Değirmenci, Ö. L.; Wolf, M.; Nemravová, J.; Šlechta, M.; Koubský, P.

    2016-03-01

    Context. The fact that eclipsing binaries belong to a stellar group is useful, because the former can be used to estimate distance and additional properties of the latter, and vice versa. Aims: Our goal is to analyse new spectroscopic observations of BD+ 36°3317 along with the photometric observations from the literature and, for the first time, to derive all basic physical properties of this binary. We aim to find out whether the binary is indeed a member of the δ Lyr open cluster. Methods: The spectra were reduced using the IRAF program and the radial velocities were measured with the program SPEFO. The line spectra of both components were disentangled with the program KOREL and compared to a grid of synthetic spectra. The final combined radial-velocity and photometric solution was obtained with the program PHOEBE. Results: We obtained the following physical elements of BD+36°3317: M1 = 2.24 ± 0.07 M⊙, M2 = 1.52 ± 0.03 M⊙, R1 = 1.76 ± 0.01 R⊙, R2 = 1.46 ± 0.01 R⊙, log L1 = 1.52 ± 0.08 L⊙, log L2 = 0.81 ± 0.07 L⊙. We derived the effective temperatures Teff,1 = 10 450 ± 420 K, Teff,2 = 7623 ± 328 K. Both components are located close to zero age main sequence in the Hertzsprung-Russell (HR) diagram and their masses and radii are consistent with the predictions of stellar evolutionary models. Our results imply the average distance to the system d̅ = 330 ± 29 pc. We re-investigated the membership of BD+ 36°3317 in the δ Lyr cluster and confirmed it. The distance to BD+ 36°3317, given above, therefore represents an accurate estimate of the true distance for δ Lyr cluster. Conclusions: The reality of the δ Lyr cluster and the cluster membership of BD+ 36°3317 have been reinforced.

  10. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  11. Gold–superheavy-element interaction in diatomics and cluster adducts: A combined four-component Dirac-Kohn-Sham/charge-displacement study

    Energy Technology Data Exchange (ETDEWEB)

    Rampino, Sergio, E-mail: srampino@thch.unipg.it; Belpassi, Leonardo, E-mail: leonardo.belpassi@cnr.it [Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia (Italy); Storchi, Loriano [Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio,” Via dei Vestini 31, 66100 Chieti (Italy)

    2015-07-14

    The chemistry of superheavy elements (Z ≥ 104) is actively investigated in atom-at-a-time experiments of volatility through adsorption on gold surfaces. In this context, common guidelines for interpretation based on group trends in the periodic table should be used cautiously, because relativistic effects play a central role and may cause predictions to fall short. In this paper, we present an all-electron four-component Dirac-Kohn-Sham comparative study of the interaction of gold with Cn (Z = 112), Fl (Z = 114), and Uuo (Z = 118) versus their lighter homologues of the 6th period, Hg, Pb, and Rn plus the noble gas Xe. Calculations were carried out for Au–E (E = Hg, Cn, Pb, Fl, Xe, Rn, Uuo), Au{sub 7}– and Au{sub 20}–E (E = Hg, Cn, Pb, Fl, Rn) complexes, where Au{sub 7} (planar) and Au{sub 20} (pyramidal) are experimentally determined clusters having structures of increasing complexity. Results are analysed both in terms of the energetics of the complexes and of the electron charge rearrangement accompanying their formation. In line with the available experimental data, Cn and more markedly Fl are found to be less reactive than their lighter homologues. On the contrary, Uuo is found to be more reactive than Rn and Xe. Cn forms the weakest bond with the gold atom, compared to Fl and Uuo. The reactivity of Fl decreases with increasing gold-fragment size more rapidly than that of Cn and, as a consequence, the order of the reactivity of these two elements is inverted upon reaching the Au{sub 20}-cluster adduct. Density difference maps between adducts and fragments reveal similarities in the behaviour of Cn and Xe, and in that of Uuo and the more reactive species Hg and Pb. These findings are given a quantitative ground via charge-displacement analysis.

  12. Gold-superheavy-element interaction in diatomics and cluster adducts: A combined four-component Dirac-Kohn-Sham/charge-displacement study.

    Science.gov (United States)

    Rampino, Sergio; Storchi, Loriano; Belpassi, Leonardo

    2015-07-14

    The chemistry of superheavy elements (Z ≥ 104) is actively investigated in atom-at-a-time experiments of volatility through adsorption on gold surfaces. In this context, common guidelines for interpretation based on group trends in the periodic table should be used cautiously, because relativistic effects play a central role and may cause predictions to fall short. In this paper, we present an all-electron four-component Dirac-Kohn-Sham comparative study of the interaction of gold with Cn (Z = 112), Fl (Z = 114), and Uuo (Z = 118) versus their lighter homologues of the 6th period, Hg, Pb, and Rn plus the noble gas Xe. Calculations were carried out for Au-E (E = Hg, Cn, Pb, Fl, Xe, Rn, Uuo), Au7- and Au20-E (E = Hg, Cn, Pb, Fl, Rn) complexes, where Au7 (planar) and Au20 (pyramidal) are experimentally determined clusters having structures of increasing complexity. Results are analysed both in terms of the energetics of the complexes and of the electron charge rearrangement accompanying their formation. In line with the available experimental data, Cn and more markedly Fl are found to be less reactive than their lighter homologues. On the contrary, Uuo is found to be more reactive than Rn and Xe. Cn forms the weakest bond with the gold atom, compared to Fl and Uuo. The reactivity of Fl decreases with increasing gold-fragment size more rapidly than that of Cn and, as a consequence, the order of the reactivity of these two elements is inverted upon reaching the Au20-cluster adduct. Density difference maps between adducts and fragments reveal similarities in the behaviour of Cn and Xe, and in that of Uuo and the more reactive species Hg and Pb. These findings are given a quantitative ground via charge-displacement analysis.

  13. The Old, Super-Metal-Rich Open Cluster, NGC 6791 - Elemental Abundances in Turn-off Stars from Keck/HIRES Spectra

    CERN Document Server

    Boesgaard, Ann Merchant; Deliyannis, Constantine P

    2014-01-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 +/-0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 A and we do a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]n with a mean of $-$0.06 +/-0.02. This continues the trend of decreasing [O/Fe] with increasing [Fe/H] found in field stars that are also both old and metal-rich. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]...

  14. Comparison of Nickel XANES Spectra and Elemental Maps from a Ureilite, a LL3.8 Ordinary Chondrite, Two Carbonaceous Chondrites and Two Large Cluster IDPs

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2014-01-01

    Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.

  15. Alpha decay chains study for the recently observed superheavy element Z=117 within the Isospin Cluster Model

    CERN Document Server

    Kumar, Sushil

    2011-01-01

    The recently observed $\\alpha$-decay chains $^{293-294}117$ were produced by the fusion reactions with target $^{249}Bk$ and projectile $^{48}Ca$ at Dubna in Russia. The reported cross-sections for the mentioned reaction are $\\sigma=0.5(+1.1,-0.4)$pb and $\\sigma$=1.3(+1.5,-0.6)$pb$ at $E^{*}=35MeV$ and $E^{*}=39MeV$, respectively. The Q-values of $\\alpha$-decay and the half-lives $Log_{10}T^{\\alpha}_{1/2}$(s) are calculated for the $\\alpha$-decay chains of $^{293-294}117$ nuclei, within the framework of Isospin Cluster Model (ICM). In the ICM model the proximity energy is improved by using the isospin dependent radius of parent, daughter and alpha particle. The binding energy $B(A_{i}, Z_{i})$ (i=1,2) of any nucleus of mass number A and atomic number Z was obtained from a phenomenological and more genaralized BW formula given by \\cite{samanta02}. The calculated results in ICM are compared with the experimental results and other theoretical Macro-Microscopic(M-M), RMF(with NL3 and SFU Gold forces parameter) mo...

  16. Electrolytic reduction of a simulated oxide spent fuel and the fates of representative elements in a Li2O-LiCl molten salt

    Science.gov (United States)

    Park, Wooshin; Choi, Eun-Young; Kim, Sung-Wook; Jeon, Sang-Chae; Cho, Young-Hwan; Hur, Jin-Mok

    2016-08-01

    A series of electrolytic reduction experiments were carried out using a simulated oxide spent fuel to investigate the reduction behavior of elements in a mixed oxide condition and the fates of elements in the reduction process with 1.0 wt% Li2O-LiCl. It was found out that 155% of the theoretical charge was enough to reduce the simulated. Te and Eu were expected to possibly exist in the precipitate and on the anode surface, whereas Ba and Sr showed apparent dissolution behaviors. Rare earths showed relatively low metal fractions from 28.2 to 34.0% except for Y. And the solubility of rare earths was observed to be low due to the low concentration of Li2O. The reduction of U was successful as expected showing 99.8% of a metal fraction. Also it was shown that the reduction of ZrO2 would be effective when a relatively small amount was included in a metal oxide mixture.

  17. The health physics of installations for decladding irradiated fuels or for handling radio-elements at Marcoule; La radioprotection des installations de degainage des combustibles irradies et des radio-elements a Marcoule

    Energy Technology Data Exchange (ETDEWEB)

    Chassany, J.; Guillermin, P.; Mallet, P. [Commissariat a l' Energie Atomique, Centre de Production de Plutonium de Marcoule, 30 - Chusclan (France)

    1966-07-01

    Radiation protection practices for handling reactor fuel elements are described. Elements of considerable specific radioactivity are handled under water. A study was made of water filtration and of ventilation in the building. The installations are divided up into zones depending on the radioactive risks, and the radiation level atmospheric contamination are the object of a systematic control at various points. A description is given of all aspects of health physics which have been encountered during six years: storage, transfer of radioactive material; decladding, rolling, waste disposal, specialized operations, installations in operation and at rest, and transport. In spite of the gradual increase in the activity of these installations, the total doses received by the personnel have hardly altered and the number of cases of physical contamination has diminished. (authors) [French] Dans ces installations, se manipulent sous l'eau des elements a radioactivite specifique considerable. La filtration de l'eau, la ventilation ont ete particulierement etudiees. L'ensemble a ete divise en lieux classes en fonction des risques radioactifs et des appareils controlent en permanence l'irradiation et la contamination atmospherique en certains points. Tous les aspects de la radioprotection resultant de six annees d'experience relatifs: au stockage, au deconteneurage, au degainage, au laminage, a l'evacuation des residus, aux travaux particuliers, installations en marche et a l'arret, et aux transports sont successivement decrits. Malgre l'accroissement progressif de l'activite de cet ensemble, les doses integrees par le personnel n'ont pratiquement pas augmente et le nombre des cas de contamination corporelle a diminue. (auteurs)

  18. Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps.

    Science.gov (United States)

    Chu, Haiyan; Puchulu-Campanella, Estela; Galan, Jacob A; Tao, W Andy; Low, Philip S; Hoffman, Joseph F

    2012-07-31

    The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal-membrane complex. These pools of ATP are known to directly fuel both the Na(+)/K(+) and Ca(2+) pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na(+)/K(+) or Ca(2+) pump phosphoproteins (E(Na)-P and E(Ca)-P, respectively) from bulk [γ-(32)P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N(3)-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N(3)-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool's architecture can be photolabeled. With the aid of an antibody to N(3)-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH.

  19. Finite element analysis of the Space Shuttle Main Engine (SSME) high pressure fuel turbopump turbine blade (HPFTP)

    Science.gov (United States)

    Lee, H. M.; Faile, G. C.; Perkins, L. B.; Yaksh, M. C.

    1989-01-01

    Cracking of the turbine blades of the SSME HPFTP is studied using two- and three-dimensional finite element analysis. The development and composition of the two- and three-dimensional models are described. Analyses are conducted under the speed, pressure, and thermal load conditions that occur during the full power level of the engine. The effects of friction on the two-dimensional model are examined. The strain and life cycle data reveal that the LCF cracking in the first stage is not probable unless the effects of fit-up tolerance between the blade and rotor are present, and for the second stage it is predicted that hydrogen assisted LCF cracking will occur under the present thermal environment. Design modifications to alleviate this cracking are discussed.

  20. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    2014-07-01

    Full Text Available The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE, interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity

  1. An Immunity-Triggering Effector from the Barley Smut Fungus Ustilago hordei Resides in an Ustilaginaceae-Specific Cluster Bearing Signs of Transposable Element-Assisted Evolution

    KAUST Repository

    Ali, Shawkat

    2014-07-03

    The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.

  2. Nuclear reactor composite fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  3. Thermal Safety Analysis and Experimental Validation of New Fuel Element Transportation Container%新燃料元件运输容器热工安全分析及试验验证

    Institute of Scientific and Technical Information of China (English)

    郭春秋; 邹佳讯; 衣大勇; 张金山

    2016-01-01

    The new fuel element transportation container is a specific equipment de‐signed for transporting 493 reactor’s fuel elements .In order to insure the safety of fuel elements during transportation and fulfill the requirements of standard GB 11806—2004 ,thermal design calculation and validation experiments were carried out .The accu‐racy of the container’s thermal design was proven by comparing thermal design results with thermal experimental data .The safety of the new fuel elements can be insured and the requirements of GB 11806—2004 can be fulfilled by using the new fuel elements transportation container under both normal transport condition and accidental transport condition .%新燃料元件运输容器是为运输493反应堆燃料元件设计的专用设备。为保证燃料元件在运输过程中的安全性,使运输容器及燃料元件的各项性能指标符合标准GB 11806—2004的要求,对运输容器进行了热工设计计算和验证试验。通过计算与相应热工试验结果的比较,验证了运输容器热工设计的准确性。采用该运输容器运输新燃料元件,在正常运输工况和事故运输工况下可保证燃料元件的安全,完全满足GB 11806—2004的规定。

  4. Effects of temperature distribution on failure probability of coated particles in spherical fuel elements%球形燃料元件温度分布对包覆燃料颗粒失效概率的影响

    Institute of Scientific and Technical Information of China (English)

    张永栋; 林俊; 朱天宝; 张海青; 朱智勇

    2016-01-01

    Background:Particles coated by TRISO (Tristructural isotropic) embedded in spherical fuel elements are used in solid fuel molten salt reactor. Temperature distribution during operation can affect the failure probability of TRISO particles embedded in different parts of fuel elements. Purpose: This study aims to investigate the temperature distribution effects on failure probability of coated fuel particles. Methods: Micro-volume element analysis of temperature distribution effect on the failure probability of coated particles was carried out for the first time, and the impact of spherical fuel element size on the average failure probability of TRISO particles was also evaluated. Results: At a given power density, the failure probability of TRISO particles would be deviated by an order of magnitude when either core temperature or average temperature of the fuel element was used to calculate the average failure probability. With the same power density and the same burnups, the average failure probability of coated particles could be lowered by two orders of magnitude through reducing the diameter of fuel element by 1 cm. Conclusion:It is necessary to take the temperature distribution into account for calculating the failure probability of coated fuel particles. In addition, it is found that the average failure probability of coated fuel particles can be lowered by reducing the sizes of the fuel element. This may be a proper way to secure the fuel elements working at high power densities.%固态熔盐堆采用TRISO (Tristructural isotropic)包覆颗粒球形燃料元件。在运行工况下,燃料元件内部存在一定的温度分布,填充在燃料元件内部不同位置的TRISO颗粒的失效概率会因此受到影响。利用体积微元的方法分析了温度分布对包覆颗粒失效概率的影响,并进一步研究了球形燃料元件尺寸对TRISO颗粒平均失效概率的影响。结果表明,在一定的功率密度下,如果利用球心

  5. Design package for fuel retrieval system fuel handling tool modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1999-03-17

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  6. Design package for fuel retrieval system fuel handling tool modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1998-11-09

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  7. Cells for the examination of irradiated plutonium fuel elements - two years operation - may 1961/may 1963 (1963); Cellules pour examen d'elements combustibles au plutonium irradies - deux ans d'exploitation - mai 1961/mai 1963 (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1963-07-01

    Within the framework of the 'Rapsodie' fast reactor program, prototype plutonium fuel elements are irradiated and then examined in an {alpha} {beta} {gamma} laboratory at Saclay. This laboratory consists of five in line cells and a lead enclosure microscope. Each cell contains an {alpha} sealed removable box 4 ft 3 in. high, 4 ft 11 in. wide and 5 ft 1 in. deep, fitted with one or two magnetic transmission indirect manipulators. The boxes are contained in an {beta} {gamma} shielded enclosure whose front face is constructed of cast iron panels 21-2/3 in. thick. Nitrogen circulating in a closed loop forms the atmosphere of the boxes. This laboratory is essentially intended for metallurgical research. The functions of the various cells are as follows: transferring and packing, cutting, density measurement and cathodic etching, storage and metallography. Work on radioactive materials began in April 1961. Operational incidents have always been of a material nature only. (author) [French] Dans le cadre du projet de reacteur rapide Rapsodie, des elements combustibles prototypes au plutonium sont, apres irradiation, examines a Saclay dans un laboratoire {alpha} {beta} {gamma}. Celui-ci comprend cinq cellules en ligne et une enceinte en plomb contenant un microscope telecommande. Chaque cellule est constituee d'un caisson etanche (1, 3 m x 1, 5 m x 1, 56m) equipee d'un ou deux manipulateurs indirects a transmissions magnetiques. Les caissons sont places, dans une enceinte {beta} {gamma} dont la face avant est formee de blocs en fonte ayant 55 cm d'epaisseur. L'atmosphere des caissons est de l'azote, circulant en circuit ferme. Ce laboratoire est destine essentiellement a des recherches metallurgiques. Les fonctions des differentes cellules sont: conditionnement et transferts, tronconnage, mesure de densite et polissage ionique, stockage, metallographie. Le travail sur materiaux radioactifs a commence en avril 1961. Les incidents d

  8. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  9. Calculation and analysis of fuel concentration at the rear of spray injecting element%直射式喷孔后方燃油浓度场计算及其分析

    Institute of Scientific and Technical Information of China (English)

    王永卫; 朱永刚; 牛志刚; 王健

    2011-01-01

    Because of its simple structure,arrangement and convenient adjustment,spray injecting element is extensively applied to the combustion chamber of ramjet engine,and the rear concentration of spray injecting element has important influence on flame stability and combustion efficiency,thus the precognition of fuel concentration is very important to spray injecting element arrangement and the relative position between spray injecting element and flame holder is extremely important.According to test result,this paper deduced the formula of fuel concentration at the rear of spray injecting element,and developed the calculation procedure of fuel concentration,thus fuel concentration at the rear of spray injecting element is analyzed.%由于直射式喷油孔的结构简单、布置和调整方便,因此已被广泛地应用于冲压发动机的燃烧室中,而且喷孔后方的燃油浓度分布对火焰稳定及燃烧效率有很大影响,由此预知喷孔后方燃油浓度分布对喷孔布置、确定喷孔与稳定器的相对位置是十分重要的。根据试验结果,推导得到了直射式喷孔后方燃油浓度分布的计算公式,编制燃油浓度分布的计算程序,以分析直射式喷油孔后方的燃油浓度场分布。

  10. Crisp clustering of airborne geophysical data from the Alto Ligonha pegmatite field, northeastern Mozambique, to predict zones of increased rare earth element potential

    Science.gov (United States)

    Eberle, Detlef G.; Daudi, Elias X. F.; Muiuane, Elônio A.; Nyabeze, Peter; Pontavida, Alfredo M.

    2012-01-01

    The National Geology Directorate of Mozambique (DNG) and Maputo-based Eduardo-Mondlane University (UEM) entered a joint venture with the South African Council for Geoscience (CGS) to conduct a case study over the meso-Proterozoic Alto Ligonha pegmatite field in the Zambézia Province of northeastern Mozambique to support the local exploration and mining sectors. Rare-metal minerals, i.e. tantalum and niobium, as well as rare-earth minerals have been mined in the Alto Ligonha pegmatite field since decades, but due to the civil war (1977-1992) production nearly ceased. The Government now strives to promote mining in the region as contribution to poverty alleviation. This study was undertaken to facilitate the extraction of geological information from the high resolution airborne magnetic and radiometric data sets recently acquired through a World Bank funded survey and mapping project. The aim was to generate a value-added map from the airborne geophysical data that is easier to read and use by the exploration and mining industries than mere airborne geophysical grid data or maps. As a first step towards clustering, thorium (Th) and potassium (K) concentrations were determined from the airborne geophysical data as well as apparent magnetic susceptibility and first vertical magnetic gradient data. These four datasets were projected onto a 100 m spaced regular grid to assemble 850,000 four-element (multivariate) sample vectors over the study area. Classification of the sample vectors using crisp clustering based upon the Euclidian distance between sample and class centre provided a (pseudo-) geology map or value-added map, respectively, displaying the spatial distribution of six different classes in the study area. To learn the quality of sample allocation, the degree of membership of each sample vector was determined using a-posterior discriminant analysis. Geophysical ground truth control was essential to allocate geology/geophysical attributes to the six classes

  11. 多层套管燃料元件工程热点因子敏感性分析%Sensitivity Analysis of Engineering Hot Spot Factor for Multi-layer Tube Fuel Element

    Institute of Scientific and Technical Information of China (English)

    胡跃春; 邓才玉; 李海涛; 徐涛忠

    2014-01-01

    为保证反应堆的安全,并对燃料元件的制造加工提出合理可行的要求,从元件制造加工和反应堆运行测量两方面对多层套管燃料元件工程热点因子的敏感性进行了分析。结果表明:流道间隙偏差直接影响元件热源的导出,由此引起的工程热点因子造成的温升较大。%For ensuring reactor safety and putting forward reasonable requirements of fuel element manufacture , the sensitivity analysis of engineering hot spot factor for multi-layer tube fuel element was completed from both aspects of fuel manufacture and reactor operation measurement .The result shows that the flow channel deviation is of direct effect on fuel element heat transfer ,yielding a higher temperature rise caused by the relevant engineering hot spot factor .

  12. Fuel slugs considered for use in the high flux reactor EL3; Elements combustibles envisages pour la pile a haut flux EL 3

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J.A.; Caillat, R.; Gauthron, M.; Montagne, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    EL3 was designed essentially for the study, under irradiation conditions, of materials used in the construction of atomic reactors. The study schedule allocates considerable time and effort to new types of fuel slugs. The present report described the various types of slug being tested or scheduled for tests. After laboratory study, each slug is tested in an experimental cell in the pile. The best are retained and used to charge the reactor (the present charge is purely provisional to permit first criticality and power rise tests)ren. [French] La pile EL3 est essentiellement destinee a l'etude sous irradiation des materiaux utilises dans la construction des reacteurs atomiques. Dans ce programme, une tres large part est reservee a l'etude de nouveaux elements combustibles. Le present rapport decrit les differentes solutions de cartouches dont l'essai est envisage ou en cours. Apres etude en laboratoire, chacune de ces solutions est testee dans une cellule experimentale en pile. Les meilleures seront retenues pour constituer le chargement normal de la pile (le chargement actuel etant essentiellement une solution provisoire qui a permis la divergence de la pile et les premiers essais de montee en puissance). (auteur)

  13. Optimization of the distribution of bars with gadolinium oxide in reactor fuel elements PWR; Optimizacion de la distribucion de barras con oxido de gadolinio en elementos combustibles para reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Melgar Santa Cecilia, P. A.; Velazquez, J.; Ahnert Iglesias, C.

    2014-07-01

    In the schemes of low leakage, currently used in the majority of PWR reactors, it makes use of absorbent consumables for the effective control of the factors of peak, the critical concentration of initial boron and the moderator temperature coefficient. One of the most used absorbing is the oxide of gadolinium, which is integrated within the fuel pickup. Occurs a process of optimization of fuel elements with oxide of gadolinium, which allows for a smaller number of configurations with a low peak factor for bar. (Author)

  14. Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures.

    Science.gov (United States)

    Kuno, Sotaro; Yoshida, Takashi; Kaneko, Takakazu; Sako, Yoshihiko

    2012-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids.

  15. Association of clustered regularly interspaced short palindromic repeat (CRISPR) elements with specific serotypes and virulence potential of shiga toxin-producing Escherichia coli.

    Science.gov (United States)

    Toro, Magaly; Cao, Guojie; Ju, Wenting; Allard, Marc; Barrangou, Rodolphe; Zhao, Shaohua; Brown, Eric; Meng, Jianghong

    2014-02-01

    Shiga toxin-producing Escherichia coli (STEC) strains (n = 194) representing 43 serotypes and E. coli K-12 were examined for clustered regularly interspaced short palindromic repeat (CRISPR) arrays to study genetic relatedness among STEC serotypes. A subset of the strains (n = 81) was further analyzed for subtype I-E cas and virulence genes to determine a possible association of CRISPR elements with potential virulence. Four types of CRISPR arrays were identified. CRISPR1 and CRISPR2 were present in all strains tested; 1 strain also had both CRISPR3 and CRISPR4, whereas 193 strains displayed a short, combined array, CRISPR3-4. A total of 3,353 spacers were identified, representing 528 distinct spacers. The average length of a spacer was 32 bp. Approximately one-half of the spacers (54%) were unique and found mostly in strains of less common serotypes. Overall, CRISPR spacer contents correlated well with STEC serotypes, and identical arrays were shared between strains with the same H type (O26:H11, O103:H11, and O111:H11). There was no association identified between the presence of subtype I-E cas and virulence genes, but the total number of spacers had a negative correlation with potential pathogenicity (P CRISPR-cas system and potential virulence needs to be determined on a broader scale, and the biological link will need to be established.

  16. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses; Impacto da reducao na concentracao de uranio nas placas laterais dos elementos combustiveis do reator IEA-R1 nas analises neutronica e termo-hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka Antonia

    2013-09-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  17. Technology assessment of alternative fuels for the transportation sector. Fact sheets on technology elements and system calculations for technology tracks; Teknologivurdering af alternative drivmidler til transportsektoren. Fakta-ark for teknologi-elementer og systemberegninger for teknologi-spor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    The report documents an analysis, which aims at evaluating technologies in connection with alternative fuels for the transportation sector. During the analysis process a method has been developed for consistent evaluation of alternative transportation fuels with the largest technological and economic potential. This appendix presents key fact sheets which substantiate the analysis presented in the report 'Technology assessment of alternative fuels for the transportation sector'. (BA)

  18. 球床反应堆燃料元件脉冲气力提升动力特性分析%Dynamical Analysis of Impulse Pneumatic Transportation of Fuel Element in Pebble Bed Reactor

    Institute of Scientific and Technical Information of China (English)

    曾凯; 沈鹏; 都东; 王鑫; 张海泉

    2012-01-01

    球床反应堆采用球形燃料元件多次通过堆芯的循环运行方式,燃料元件从堆芯底部连续单列排出后依靠管路气动推力逐一被提升至堆芯顶部.本文建立了球形燃料元件“近等径”管路脉冲气力提升运动模型,并在此基础上分析了气源压力、控制阀有效截面积、球外径与管内径的直径比等参数对提升过程燃料元件运行速度的影响.利用测速装置测量了10 MW球床反应实验堆提升器出口燃料元件的运行速度,实验结果接近理论分析结果.近等径球流管路脉冲气力提升运动模型的建立及实验研究为球床反应堆燃料输送系统优化设计及运行调控提供了理论依据.%Pebble bed reactors use "multi-pass" circulation scheme of spherical fuel element. The fuel spheres are uploaded from the core one by one, and lifted up to return to the core through the pneumatic conveying pipeline. In this paper, the motion model of impulse pneumatic transportation of spherical fuel characterized by the "approximately equal diameter" was established. Some influences, such as air supply pressure, effective area of controlling valve, sphere-to-pipe diameter ratio, etc. , to the velocity of fuel elements were analyzed. The practical velocity of fuel element was measured by using speed measuring instrument fixed in 10 MW pebble bed reactor. The test results agree with the theoretical results. The establishment of the motion model of fuel element in impulse pneumatic transportation provides the foundation for the optimum design and regulation of fuel transporting system.

  19. Development of numerical and analytical methodology for stress analysis in guide tubes of fuel elements; Desenvolvimento analitico e numerico da metodologia para analise de tensoes nos tubos-guia de elementos combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Carrilho, Leo A.; Dotto, Rosvita M. [Industrias Nucleares do Brasil SA, Resende, RJ (Brazil); Gouvea, Jayme P. de [Universidade Federal Fluminense, Volta Redonda, RJ (Brazil)

    2000-07-01

    The stresses in the components of fuel elements in operation have been calculated by Industrias Nucleares do Brasil - INB, using programmes specifically developed for this are. However, worldwide useful software as Excel and ANSYS have resources that make them an alternative with advantages for those computing. In this context, the stress and displacements were calculated in the guide thimbles of a fuel element in normal operation in the reactor under static loads, through analytic and numeric models, which results are comparable to that obtained with the actual INB's methodology. The discussion of the results exposes the peculiarity of a pick of compression stress in a segment of the guide thimble which is accentuated during low power operations. Suggestions for the relief of these high stresses are proposed for future studies. (author)

  20. Trace elements and mineral composition of waste produced in the process of combustion of solid fuels in individual household furnaces in the Upper Silesian Industrial Region (Poland

    Directory of Open Access Journals (Sweden)

    Smołka-Danielowska Danuta

    2015-12-01

    Full Text Available This study presents preliminary research results, with regard to the concentration of chosen trace elements (Mn, Cr, Tl, Ni, Cu, Zn, As, Cd, Ba, Pb in waste, which was produced in the process of combustion of solid fuels (hard coal and flotation concentrate of bituminous coal in individual household furnaces in Poland (in the Upper Silesian Industrial Region. 27 samples of ash, 4 samples of hard coal and 2 samples of flotation concentrate of bituminous coal were prepared for the research. Methods such as: ICP-MS, X-ray diffraction by means of the powder method and scanning electron microscopy were used during the research. In the ash samples obtained from the combustion of hard coal, the highest average concentrations were: Mn (1477.7 ppm, Ba (1336.4 ppm and Zn (599.7 ppm. In the samples obtained from the combustion of flotation concentrate of bituminous coal, the highest average concentrations was stated for: Zn (762.4 ppm, Mn (668.5 ppm, Pb (552.1 ppm and Ba (211.7 ppm. Crystalline components were determined by used the X-ray diffraction method and the samples of ash obtained from the combustion of hard coal contained: anhydrite, gypsum, hematite, magnetite, quartz, calcite, mullite, periclase, kaolinite, dolomite, pyrite, sphalerite, galena and feldspars (albite-anorthite. The samples of ash obtained from the combustion of flotation concentrate of bituminous coal contain: pyrite, quartz, potassium feldspar, muscovite and kaolinite. The scanning electron microscope analysis enabled the identification of the chemical composition of single ash grains and determined their morphology (aluminosilicate forms, substance PbS and ZnS, oxides of Ni, Cu and Mn, monazite, xenotime.

  1. CFD Simulation of a fall accident of a fuel element in pool This project aims at calculating the speed ratio of impact-fall height for a PWR fuel element falling freely in the fuel pool; Simulacion CFD de un accidente de caida de un elemento combustible en piscina

    Energy Technology Data Exchange (ETDEWEB)

    Montoro Garcia, B.; Corpa Masa, R.; Jimenez-Reja, C.

    2014-07-01

    It is intended to provide a methodology of analysis more realistic this accident.que referred to in calculations of the license that requires fuel catastrophic break regardless of the height of the fall, with the consequent release of inventory analysers. Accidents that occurred in the past indicate that this hypothesis could be too conservative. (Author)

  2. 40 CFR 79.55 - Base fuel specifications.

    Science.gov (United States)

    2010-07-01

    ... Base Fuels. (1) The methanol base fuels shall contain no elements other than carbon, hydrogen, oxygen... ethanol base fuel, E85, shall contain no elements other than carbon, hydrogen, oxygen, nitrogen, sulfur... no elements other than carbon, hydrogen, oxygen, nitrogen, and sulfur. The fuel shall contain...

  3. Design of the fuel element 'snow-flake' in uranium oxide, canned with aluminium, for the experimental reactor EL 3 (1960); Etude d'un element combustible en oxyde d'uranium gaine d'aluminium, type ''cristal de neige'' pour la pile EL 3 (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Gauthron, M.; Guibert, B. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This report sums up the main studies have been carried out on the fuel element 'Snowflake' (uranium oxide, canned with aluminium), designed to replace the present element of the experimental reactor EL3 in order to increase the reactivity without modifying the neutron flux/thermal power ratio. (author) [French] Ce rapport resume les principales etudes qui ont ete faites sur l'element combustible 'Cristal de Neige' (a oxyde d'uranium, gaine d'aluminium) destine a remnlacer l'element actuel du reacteur experimental EL3, afin d'en augmenter la reactivite sans modifier le rapport flux neutronique-puissance thermique. (auteur)

  4. Study of transient flow in fuel element of tubular plates. Accident: Shaft locking of primary cooling pump without opening the emergency gate; Estudio del regimen transitorio en el elemento combustible de placas tubulares. Accidente: Agarrotamiento de la bomba. No se abre la compuerta

    Energy Technology Data Exchange (ETDEWEB)

    Aguilas, F.; Moneva, M. A.; Garcia Ramirez, L.; Lopez Jimenez, J.; Diaz Diaz, J.

    1971-07-01

    It is analysed the thermal distribution of a fuel element of tubular plates irradiated in the JEN-1 reactor in the case of shaft locking of the primary cooling pump without opening the emergency gate. The fuel element hottest channel is studied in the position of maximum neutronic flux for three reactor power levels: 3 Hw (maximum reactor power), 2 Mw and 1 Hw. (Author) 8 refs.

  5. Cluster analysis for applications

    CERN Document Server

    Anderberg, Michael R

    1973-01-01

    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  6. The Ca element effect on the enhancement performance of Sr2Fe1.5Mo0.5O6-δ perovskite as cathode for intermediate-temperature solid oxide fuel cells

    Science.gov (United States)

    Qiao, Jinshuo; Chen, Wenjun; Wang, Wenyi; Wang, Zhenhua; Sun, Wang; Zhang, Jing; Sun, Kening

    2016-11-01

    In this paper, the partial substitution of atomic elements from the A site of a perovskite is investigated in order to develop cathode materials for solid oxide fuel cell (SOFC) applications. Herein, Sr2-xCaxFe1.5Mo0.5O6-δ (SCFM), compounds were investigated by characterizing structural properties, chemical compatibility, electrical properties, electrochemical performance and stability. Thermal expansion coefficients were found to decrease when increasing the Ca content. X-ray photoelectron spectroscopy analysis suggests that Ca doping significantly affects the Fe2+/Fe3+ and Mo6+/Mo5+ ratios. For a doping level of x = 0.4, the sample showed the lowest interface polarization (Rp), the highest conductivity and a maximum power density of 1.26 W cm-2 at 800 °C. These results suggest that SCFM cathode materials are excellent candidates for intermediate temperature solid oxide fuel cells applications.

  7. Finite Element Analysis and Optimal Design on a Fuel Cell Bus Frame%燃料电池客车骨架结构的有限元分析与优化设计

    Institute of Scientific and Technical Information of China (English)

    洪耀华; 秦超; 亓新亮

    2013-01-01

    建立燃料电池客车骨架的有限元模型,计算弯曲、一轮悬空等典型工况下的静态强度、刚度及振动模态,对骨架结构进行优化设计,保证骨架结构的安全性及可靠性。%The authors build a finite element model of a fuel cell bus frame and analyze the static strength and stiff-ness under the typical conditions, such as bending condition, one wheel hanging condition. And the natural mode is also analyzed. The analysis results give some suggestions on the frame structure optimization design so as to keep the safety and the reliability of the fuel cell bus frame.

  8. Nuclear reactor composite fuel assembly. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, D.M.; Cappiello, M.W.; Marr, D.R.; Omberg, R.P.

    1980-11-25

    A core and composite fuel assembly are described for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  9. Sensitivity analysis for heat diffusion in a fin on a nuclear fuel element; Analise de sensitividade na difusao de calor em uma aleta de um elemento combustivel nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Tito, Max Werner de Carvalho

    2001-11-15

    The modern thermal systems generally present a growing complexity, as is in the case of nuclear power plants. It seems that is necessary the use of complex computation and mathematical tools in order to increase the efficiency of the operations, reduce costs and maximize profits while maintaining the integrity of its components. The use of sensitivity calculations plays an important role in this process providing relevant information regarding the resultant influence of variation or perturbation of its parameters as the system works. This technique is better known as sensitivity analysis and through its use makes possible the understanding of the effects of the parameters, which are fundamental for the project preparation, and for the development of preventive and corrective handling measurements of many pieces of equipment of modern engineering. The sensitivity calculation methodology is based generally on the response surface technique (graphic description of the functions of interest based in the results obtained from the system parameter variation). This method presents a lot of disadvantages and sometimes is even impracticable since many parameters can cause alterations or perturbations to the system and the model to analyse it can be very complex as well. The utilization of perturbative methods result appropriate as a practical solution to this problem especially in the presence of complex equations. Also it reduces the resultant computational calculus time considerably. The use of these methods becomes an essential tool to simplify the sensitivity analysis. In this dissertation, the differential perturbative method is applied in a heat conduction problem within a thermal system, made up of a one-dimensional circumferential fin on a nuclear fuel element. The fins are used to extend the thermal surfaces where convection occurs; thus increasing the heat transfer to many thermal pieces of equipment in order to obtain better results. The finned claddings are

  10. Thorium utilization program. Quarterly progress report for the period ending November 30, 1975. [Fuel element crushing, solids handling, fluidized bed combustion, aqueous separations, solvent extraction, systems design and drafting, alternative head-end reprocessing, and fuel recycle systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-31

    The development program for HTGR fuel reprocessing continues to emphasize the design and construction of a prototype head-end line. Design work on the multistage crushing system, the primary and secondary fluidized bed burners, the pneumatic transfer systems, and the ancillary fixtures for semiremote assembly and disassembly is essentially complete. Fabrication and receipt of all major components is under way, and auxiliary instrumentation and support systems are being installed. Studies of flow characteristics of granular solids in pneumatic transfer systems are continuing and data are being collected for use in design of systems for solids handling. Experimental work on the 20-cm primary fluidized bed burner verified the fines recycle operating mode in runs of greater than 24 hr. Twelve leaching runs were performed during the quarter using crushed, burned-back TRISO coated ThC/sub 2/ particles and burned-back BISO coated sol gel ThO/sub 2/ particles to examine the effect of varying the Thorex-to-thoria ratio to give product solutions ranging from 0.25M to 1M in thorium. Only minor effects were observed and reference values for facility operations were specified. Two-stage leaching runs with burned-back ThC/sub 2/ indicate there are no measurable differences in total dissolution time as compared to single-stage leaching. Bench-scale tests on oxidation of HTGR fuel boron carbide at 900/sup 0/C indicates that most if not all of the carbide will be converted to boron oxide in the fluidized bed burner. Eight solvent extraction runs were completed during the quarter. These runs represented the first cycle and second uranium cycle of the acid-Thorex flowsheet. A detailed calculation of spent fuel compositions by fuel block and particle type is being performed for better definition of process streams in a fuel reprocessing facility.

  11. KE Basin underwater visual fuel survey

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.

    1995-02-01

    Results of an underwater video fuel survey in KE Basin using a high resolution camera system are presented. Quantitative and qualitative information on fuel degradation are given, and estimates of the total fraction of ruptured fuel elements are provided. Representative photographic illustrations showing the range of fuel conditions observed in the survey are included.

  12. Behaviors of transmutation elements Re and Os and their effects on energetics and clustering of vacancy and self-interstitial atoms in W

    Science.gov (United States)

    Li, Yu-Hao; Zhou, Hong-Bo; Jin, Shuo; Zhang, Ying; Deng, Huiqiu; Lu, Guang-Hong

    2017-04-01

    We investigate the behaviors of rhenium (Re) and osmium (Os) and their interactions with point defects in tungsten (W) using a first-principles method. We show that Re atoms are energetically favorable to disperse separately in bulk W due to the Re–Re repulsive interaction. Despite the attractive interaction between Os atoms, there is still a large activation energy barrier of 1.10 eV at the critical number of 10 for the formation of Os clusters in bulk W based on the results of the total nucleation free energy change. Interestingly, the presence of vacancy can significantly reduce the total nucleation free energy change of Re/Os clusters, suggesting that vacancy can facilitate the nucleation of Re/Os in W. Re/Os in turn has an effect on the stability of the vacancy clusters (V n ) in W, especially for small vacancy clusters. A single Re/Os atom can raise the total binding energies of V2 and V3 obviously, thus enhancing their formation. Further, we demonstrate that there is a strong attractive interaction between Re/Os and self-interstitial atoms (SIAs). Re/Os could increase the diffusion barrier of SIAs and decrease their rotation barrier, while the interstitial-mediated path may be the optimal diffusion path of Re/Os in W. Consequently, the synergistic effect between Re/Os and point defects plays a key role in Re/Os precipitation and the evolution of defects in irradiated W.

  13. Classification of biodiesel and fuel blends using gas chromatography - differential mobility spectrometry with cluster analysis and isolation of C18:3 me by dual ion filtering.

    Science.gov (United States)

    Pasupuleti, Dedeepya; Eiceman, Gary A; Pierce, Karisa M

    2016-08-01

    Fatty acid alkyl esters (FAAEs) were determined at 10-100mg/L in biodiesel and blends with petrodiesel without sample pre-treatment using gas chromatography with a tandem differential mobility detector. Selectivity was provided through chromatographic separations and atmospheric pressure chemical ionization reactions in the detector with mobility characterization of gas ions. Limits of detection were ~0.5ng with an average of 2.98% RSD for peak area precision, ≤1.3% RSD for retention time precision, and ≤9.2% RSD for compensation voltage precision. Biodiesel blends were classified using principal component analysis (PCA) and hierarchical cluster analysis (HCA). Unsupervised cluster analysis captured 52.72% of variance in a single PC while supervised analysis captured 71.64% of variance using Fisher ratio feature selection. Test set predictions showed successful clustering according to source or feedstock when regressed onto the training set model. Detection of the regulated substance methyl linolenate (C18:3 me) was achieved in 6-10s with a 1m long capillary column using dual ion filtering in the tandem differential mobility detector. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. HTR-PM燃料元件生产穿衣工艺及设备研制%Overcoating Process and Equipments Development in Manufacture of Fuel Elements for HTR-PM

    Institute of Scientific and Technical Information of China (English)

    卢振明; 周湘文; 张杰; 刘兵

    2012-01-01

    The equipments used in the overcoating process was developed, which comprise overcoating system, rotating screen, sorting device, homogenize equipment, and recovery system for unqualified overcoated particles. The results of batch experiments using optimized parameters show that the yield is high and stable. The failure ratio of coated particles in fuel elements satisfies design parameter. The equipments are easy to operation and control, and can satisfy the large-scale production of overcoated particles of fuel elements for HTR-PM.%自主研制了穿衣工艺所用非标设备,包括穿衣系统、滚筒筛、振选台、均匀化设备、不合格颗粒回收系统等.工艺实验结果显示,穿衣颗粒成品率高且稳定,破损率满足设计要求.设备易于操作控制,完全能满足高温气冷堆示范电站燃料元件规模生产的需要.

  15. Project UNESA MAAP5-SFP. Criteria for Selecting Lots of Fuel Elements; Proyecto UNESA MAAP5-SFP. Criterios para la Seleccion de Lotes de elementos CombustibleS

    Energy Technology Data Exchange (ETDEWEB)

    Barreira Pereira, P.; Sanchez Fernandez, R.

    2013-07-01

    As a result of the events in the global nuclear sector arising from the Fukushima accident and due to the demand for analysis tools that can be used with confidence to the understanding of the phenomenology of accident resulting UNESA conceived a project with the main objective of analyze and evaluate the capabilities of the module behavior of spent fuel pool (SFP) recently incorporated into the simulation code MAAP5 severe accident, Modular accident Analysis Program.

  16. MPI BASED PC CLUSTER DISTRIBUTED FINITE ELEMENT ANALYSIS%基于MPI的并行有限元计算集群的构建

    Institute of Scientific and Technical Information of China (English)

    李海江

    2004-01-01

    With the emerging of huge challenging problems, single processor computer will not satisfy this requirement for the fundamental limitations of the silicon technology. Cluster based architecture, with its good cost/performance ratio, is becoming more and more popular in universities and research branches as an alternative to expensive parallel machines. Whilst MPI, one of the successful high performance message passing models, is considered the future standard. This paper describes a MPI based PC cluster distributed FEA system with emphasis on the building procedure and frame components. Such a system can make full use of kinds of advanced parallel and distributed computing tools nowadays and serve as a good base for the future grid computing.

  17. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-15

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor.

  18. Feasibility and Effectiveness of a Multi-Element Psychosocial Intervention for First-Episode Psychosis: Results From the Cluster-Randomized Controlled GET UP PIANO Trial in a Catchment Area of 10 Million Inhabitants.

    Science.gov (United States)

    Ruggeri, Mirella; Bonetto, Chiara; Lasalvia, Antonio; Fioritti, Angelo; de Girolamo, Giovanni; Santonastaso, Paolo; Pileggi, Francesca; Neri, Giovanni; Ghigi, Daniela; Giubilini, Franco; Miceli, Maurizio; Scarone, Silvio; Cocchi, Angelo; Torresani, Stefano; Faravelli, Carlo; Cremonese, Carla; Scocco, Paolo; Leuci, Emanuela; Mazzi, Fausto; Pratelli, Michela; Bellini, Francesca; Tosato, Sarah; De Santi, Katia; Bissoli, Sarah; Poli, Sara; Ira, Elisa; Zoppei, Silvia; Rucci, Paola; Bislenghi, Laura; Patelli, Giovanni; Cristofalo, Doriana; Meneghelli, Anna

    2015-09-01

    Integrated multi-element psychosocial interventions have been suggested to improve the outcomes of first-episode psychosis (FEP) patients, but they have been studied primarily in experimental settings and in nonepidemiologically representative samples. Thus, we performed a cluster-randomized controlled trial, comparing an integrated multi-element psychosocial intervention, comprising cognitive behavioral therapy, family intervention, and case management, with treatment as usual (TAU) for FEP patients in 117 community mental health centers (CMHCs) in a large area of northern Italy (10 million inhabitants). The randomized units (clusters) were the CMHCs, and the units of observation the patients (and, when available, their family members). The primary hypotheses were that add-on multicomponent intervention: (1) results in greater improvements in symptoms, as assessed with positive and negative syndrome scale and (2) reduces in-hospital stay, based on days of hospitalization over the 9-month follow-up. Four hundred and forty-four FEP patients received the intervention or TAU and were assessed at baseline and 9 months. Based on the retention rates of patients (and families) in the experimental arm, multi-element psychosocial interventions can be implemented in routine mental health services. Regarding primary outcomes, patients in the experimental arm showed greater reductions in overall symptom severity, while no difference could be found for days of hospitalization. Among the secondary outcomes, greater improvements were detected in the experimental arm for global functioning, emotional well-being, and subjective burden of delusions. No difference could be found for service disengagement and subjective burden of auditory hallucinations. These findings support feasibility and effectiveness of early interventions for psychosis in generalist mental health services.

  19. Horizontally Transferred Genetic Elements in the Tsetse Fly Genome: An Alignment-Free Clustering Approach Using Batch Learning Self-Organising Map (BLSOM)

    Science.gov (United States)

    Nakao, Ryo; Funayama, Shunsuke

    2016-01-01

    Tsetse flies (Glossina spp.) are the primary vectors of trypanosomes, which can cause human and animal African trypanosomiasis in Sub-Saharan African countries. The objective of this study was to explore the genome of Glossina morsitans morsitans for evidence of horizontal gene transfer (HGT) from microorganisms. We employed an alignment-free clustering method, that is, batch learning self-organising map (BLSOM), in which sequence fragments are clustered based on the similarity of oligonucleotide frequencies independently of sequence homology. After an initial scan of HGT events using BLSOM, we identified 3.8% of the tsetse fly genome as HGT candidates. The predicted donors of these HGT candidates included known symbionts, such as Wolbachia, as well as bacteria that have not previously been associated with the tsetse fly. We detected HGT candidates from diverse bacteria such as Bacillus and Flavobacteria, suggesting a past association between these taxa. Functional annotation revealed that the HGT candidates encoded loci in various functional pathways, such as metabolic and antibiotic biosynthesis pathways. These findings provide a basis for understanding the coevolutionary history of the tsetse fly and its microbes and establish the effectiveness of BLSOM for the detection of HGT events. PMID:28074180

  20. Superatoms and Metal-Semiconductor Motifs for Cluster Materials

    Energy Technology Data Exchange (ETDEWEB)

    Castleman, A. W.

    2013-10-11

    A molecular understanding of catalysis and catalytically active materials is of fundamental importance in designing new substances for applications in energy and fuels. We have performed reactivity studies and ultrafast ionization and coulomb explosion studies on a variety of catalytically-relevant materials, including transition metal oxides of Fe, Co, Ni, Cu, Ti, V, Nb, and Ta. We demonstrate that differences in charge state, geometry, and elemental composition of clusters of such materials determine chemical reactivity and ionization behavior, crucial steps in improving performance of catalysts.

  1. CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH AND 7-TUBE CLUSTERS)

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2014-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one Na

  2. Critical Configuration and Physics Measurements for Beryllium Reflected Assemblies of U(93.15)O₂ Fuel Rods (1.506-cm Pitch and 7-Tube Clusters)

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Murphy, Michael F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one Na

  3. Cluster headache

    Science.gov (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... A cluster headache begins as a severe, sudden headache. The headache commonly strikes 2 to 3 hours after you fall ...

  4. Cluster Forests

    CERN Document Server

    Yan, Donghui; Jordan, Michael I

    2011-01-01

    Inspired by Random Forests (RF) in the context of classification, we propose a new clustering ensemble method---Cluster Forests (CF). Geometrically, CF randomly probes a high-dimensional data cloud to obtain "good local clusterings" and then aggregates via spectral clustering to obtain cluster assignments for the whole dataset. The search for good local clusterings is guided by a cluster quality measure $\\kappa$. CF progressively improves each local clustering in a fashion that resembles the tree growth in RF. Empirical studies on several real-world datasets under two different performance metrics show that CF compares favorably to its competitors. Theoretical analysis shows that the $\\kappa$ criterion is shown to grow each local clustering in a desirable way---it is "noise-resistant." A closed-form expression is obtained for the mis-clustering rate of spectral clustering under a perturbation model, which yields new insights into some aspects of spectral clustering.

  5. Fully ceramic nuclear fuel and related methods

    Science.gov (United States)

    Venneri, Francesco; Katoh, Yutai; Snead, Lance Lewis

    2016-03-29

    Various embodiments of a nuclear fuel for use in various types of nuclear reactors and/or waste disposal systems are disclosed. One exemplary embodiment of a nuclear fuel may include a fuel element having a plurality of tristructural-isotropic fuel particles embedded in a silicon carbide matrix. An exemplary method of manufacturing a nuclear fuel is also disclosed. The method may include providing a plurality of tristructural-isotropic fuel particles, mixing the plurality of tristructural-isotropic fuel particles with silicon carbide powder to form a precursor mixture, and compacting the precursor mixture at a predetermined pressure and temperature.

  6. Star Clusters

    OpenAIRE

    Gieles, M.

    1993-01-01

    Star clusters are observed in almost every galaxy. In this thesis we address several fundamental problems concerning the formation, evolution and disruption of star clusters. From observations of (young) star clusters in the interacting galaxy M51, we found that clusters are formed in complexes of stars and star clusters. These complexes share similar properties with giant molecular clouds, from which they are formed. Many (70%) of the young clusters will not survive the fist 10 Myr, due to t...

  7. 基于模糊物元聚类法的课堂教学能力的研究%Study on Classroom Tcaching Ability Based Fuzzy Matter-Element Clustering Mehtod

    Institute of Scientific and Technical Information of China (English)

    张静

    2012-01-01

    The teaching ability of university teachers is the core aspects of realizing teaching quality.In this paper,fuzzy matter-element theory was used for studing individual things of college teachers.Evaluating index of classroom teaching ability as a characteristic,and assessment scores average as fuzzy values,a four dimensional fuzzy matter-element matrix of teachers'teaching ability was established.Using associated functions transform of fuzzy matter-element matrix,matter-element distance was obtained,clustering analysis was achieved,and evaluating purpose was also achived.It may provide a simple opoerated mehod for effective evaluating teachers'teaching ability and raising teaching ability.%高校教师的教学能力是实现教学质量的核心环节,本文利用模糊物元理论,以高校教师个体为研究事物,以课堂教学能力评价指标为特征、考核成绩平均值为模糊量值,建立高校教师课堂教学能力的4维复合待评模糊物元矩阵,通过模糊物元矩阵关联函数变换,求得待评物元距离,实现聚类,从而达到评价的目的.为有效实现高校教师课堂教学能力的评价,促进高校教师教学能力的提高,提供一些简单易行的操作方法.

  8. Application of Fuzzy Matter Element Clustering Method in Evaluation of Sports Classroom Teaching Ability%模糊物元聚类法在体育教学评价中的应用

    Institute of Scientific and Technical Information of China (English)

    何杰明

    2012-01-01

    P.E teachers' teaching ability is the core link to realize physical education teaching quality.This paper uses the fuzzy matter-element theory,in order to P.E teachers as the research object,the sports classroom teaching ability evaluation index for feature,examination results mean values for fuzzy value,establish of teaching ability in classroom 4 dimensional fuzzy matter element matrix composite to be evaluated,through the fuzzy matter element correlation function transform,achieve matter-element to be evaluated distance,clustering,so as to achieve the purpose of the evaluation.For the effective implementation of physical education teachers teaching ability evaluation,promoting sports to improve the quality of teaching,to provide a simple and easy operation method.%体育教师课堂教学能力是实现体育教育教学质量核心环节。文章利用模糊物元理论,以体育教师个体为研究对象,以体育课堂教学能力评价指标为特征、考核成绩平均值为模糊量值,建立体育教师课堂教学能力4维复合待评模糊物元矩阵,通过模糊物元关联函数变换,求得待评物元距离,实现聚类,从而达到评价的目的。为有效实现体育教师课堂教学能力评价,促进体育教学质量提高,提供一种简单易行的操作方法。

  9. COBRA-IV PC: A personal computer version of COBRA-IV-I for thermal-hydraulic analysis of rod bundle nuclear fuel elements and cores

    Energy Technology Data Exchange (ETDEWEB)

    Webb, B.J.

    1988-01-01

    COBRA-IV PC is a modified version of COBRA-IV-I, adapted for use with most IBM PC and PC-compatible desktop computers. Like COBRA-IV-I, COBRA-IV PC uses the subchannel analysis approach to determine the enthalpy and flow distribution in rod bundles for both steady-state and transient conditions. The steady-state and transient solution schemes used in COBRA-IIIC are still available in COBRA-IV PC as the implicit solution scheme option. An explicit solution scheme is also available, allowing the calculation of severe transients involving flow reversals, recirculations, expulsions, and reentry flows, with a pressure or flow boundary condition specified. In addition, several modifications have been incorporated into COBRA-IV PC to allow the code to run on the PC. These include a reduction in the array dimensions, the removal of the dump and restart options, and the inclusion of several code modifications by Oregon State University, most notably, a critical heat flux correlation for boiling water reactor fuel and a new solution scheme for cross-flow distribution calculations. 7 refs., 8 figs., 1 tab.

  10. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  11. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  12. Neutron Star Mergers as the Origin of r-Process Elements in the Galactic Halo Based on the Sub-halo Clustering Scenario

    CERN Document Server

    Ishimaru, Yuhri; Prantzos, Nikos

    2015-01-01

    Binary mergers (NSMs) of double neutron star (and black hole-neutron star) systems are suggested to be major sites of r-process elements in the Galaxy by recent hydrodynamical and nucleosynthesis studies. It has been pointed out, however, that the estimated long lifetimes of neutron star binaries are in conflict with the presence of r-process-enhanced halo stars at metallicities as low as [Fe/H] ~ -3. To resolve this problem, we examine the role of NSMs in the early Galactic chemical evolution on the assumption that the Galactic halo was formed from merging sub-halos. We present simple models for the chemical evolution of sub-halos with total final stellar masses between 10^4 M_solar and 2 x 10^8 M_solar. Typical lifetimes of compact binaries are assumed to be 100 Myr (for 95% of their population) and 1 Myr (for 5%), according to recent binary population synthesis studies. The resulting metallcities of sub-halos and their ensemble are consistent with the observed mass-metallicity relation of dwarf galaxies in...

  13. Separation of transuranic elements and some fission products in irradiated spent fuels. Program 2005; Separacion de elementos transuranicos y algunos productos de fision presentes en los combustibles nucleares irradiados Programa 2005

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, C.; Espartero, A. G.; Cordoba, G. de; Gascon, J. L.; Pina, G.; Martinez-Esparza, A.; Uriarte, A.

    2006-07-01

    This technical publication of ENRESA refers to Partitioning of some chemical elements containing longlived radionuclides (actinides and fission products), from spent nuclear fuels. The Partitioning includes the different processes developed or on R and D way, from the middle of the past century to the present. These processes are of two types, wet (hydro-metallurgical) and dry (pyro-metallurgical). Among the hydro-metallurgical processes the most important is the PUREX process, developed in the U.S.A. at the middle of the past century, used for the separation of uranium and plutonium from spent nuclear fuels, previous dissolution with nitric acid of the irradiated fuels. Later other hydrometallurgical processes have been developed for the separation of some TRUs and long-lived fission products from the high activity liquid (HLW) coming from PUREX reprocessing. Among the most important countries and institutions that are developing new hydrometallurgical processes are USA, Japan, China, Russia and the European Union, fundamentally France, the Czech Republic, United Kingdom, Italy, Belgium, Holland, Germany, Spain and the JRC-ITU. In the case of Spain it is possible to remark the works of synthesis of new extractants, developed by the group of the Prof. Javier de Mendoza of the Dept. of Organic Chemistry of the Universidad Autonoma de Madrid and by the group of Prof. Teixidor of the Instituto de Ciencias de Materiales de Barcelona (ICMAB) of the Consejo Superior de Investigaciones Cientificas (CSIC) and the activities carried out by the CIEMAT from 1999, based fundamentally on a collaboration agreement with ENRESA, that are related to the characterization and tests of the new extractants synthesized in Spain and also abroad, mainly by the CEA (France). All these activities are included in the Projects PARTNEW and EUROPART of the European Union. About Pyro-metallurgical Processes, they started in the ANL (Argonne National Laboratory, USA) by the 60' is of the

  14. The pH-dependent release of platinum group elements (PGEs) from gasoline and diesel fuel catalysts: Implication for weathering in soils.

    Science.gov (United States)

    Suchá, Veronika; Mihaljevič, Martin; Ettler, Vojtěch; Strnad, Ladislav

    2016-04-15

    Powdered samples of new and old gasoline catalysts (Pt, Pd, Rh) and new and old diesel (Pt) catalysts were subjected to a pH-static leaching procedure (pH 2-9) coupled with thermodynamic modeling using PHREEQC-3 to verify the release and mobility of PGEs (platinum group elements). PGEs were released under acidic conditions, mostly exhibiting L-shaped leaching patterns: diesel old: 5.47, 0.005, 0.02; diesel new: 68.5, 0.23, 0.11; gasoline old: 0.1, 11.8, 4.79; gasoline new 2.6, 25.2, 35.9 in mg kg(-1) for Pt, Pd and Rh, respectively. Only the new diesel catalyst had a strikingly different leaching pattern with elevated concentrations at pH 4, probably influenced by the dissolution of the catalyst carrier and washcoat. The pH-static experiment coupled with thermodynamic modeling was found to be an effective instrument for understanding the leaching behavior of PGEs under various environmental conditions, and indicated that charged Pt and Rh species may be adsorbed on the negatively charged surface of kaolinite or Mn oxides in the soil system, whereas uncharged Pd and Rh species may remain mobile in soil solutions.

  15. Safety relevant aspects of the long-term intermediate storage of spent fuel elements and vitrified high-level radioactive wastes; Sicherheitstechnische Aspekte der langfristigen Zwischenlagerung von bestrahlten Brennelementen und verglastem HAW

    Energy Technology Data Exchange (ETDEWEB)

    Ellinger, A.; Geupel, S.; Gewehr, K.; Gmal, B.; Hannstein, V.; Hummelsheim, K.; Kilger, R.; Wagner, M. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Schmidt, G.; Spieth-Achtnich, A. [Oeko-Institut e.V. - Institut fuer angewandte Oekolgie (Germany)

    2010-04-15

    The currently in Germany pursued concept for management of spent fuel from nuclear power plants provides intermediate dry cask storage at the NPP sites until direct disposal in a deep geologic repository. In addition the earlier commissioned centralized dry storage facilities are being used for storage of high level radioactive waste returned from foreign reprocessing of German spent fuel performed so far. The dry interim storage facilities are licensed for 40 years of operation time. According to the German regulations a full scope periodic safety review is not required so far, neither practical experience on dry storage for this period of time is available. With regard to this background the report at hand is dealing with long term effects, which may affect safety of the interim storage during the 40 years period or beyond if appropriate, and with the question, whether additional analyses or monitoring measures may be required. Therefore relevant publications have been evaluated, calculations have been performed as well as a systematic screening with regard to loads and possible ageing effects has been applied to structures and components important for safety of the storage, in order to identify relevant long term effects, which may not have been considered sufficiently so far and to provide proposals for an improved ageing management. The report firstly provides an overview on the current state of technology describing shortly the national and international practice and experience. In the following chapters safety aspects of interim storage with regard to time dependent effects and variations are being analyzed and discussed. Among this not only technical aspects like the long term behavior of fuel elements, canisters and storage systems are addressed, but also operational long term aspects regarding personnel planning, know how conservation, documentation and quality management are taken into account. A separate chapter is dedicated to developing and describing

  16. Operational limitations of light water reactors relating to fuel performance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H S

    1976-07-01

    General aspects of fuel performance for typical Boiling and Pressurized Water Reactors are presented. Emphasis is placed on fuel failures in order to make clear important operational limitations. A discussion of fuel element designs is first given to provide the background information for the subsequent discussion of several fuel failure modes that have been identified. Fuel failure experiences through December 31, 1974, are summarized. The operational limitations that are required to mitigate the effects of fuel failures are discussed.

  17. Operational limitations of light water reactors relating to fuel performance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H S

    1976-07-01

    General aspects of fuel performance for typical Boiling and Pressurized Water Reactors are presented. Emphasis is placed on fuel failures in order to make clear important operational limitations. A discussion of fuel element designs is first given to provide the background information for the subsequent discussion of several fuel failure modes that have been identified. Fuel failure experiences through December 31, 1974, are summarized. The operational limitations that are required to mitigate the effects of fuel failures are discussed.

  18. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  19. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  20. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  1. Impact of emission from oil shale fueled power plants on the growth and foliar elemental concentrations of Scots pine in Estonia.

    Science.gov (United States)

    Ots, Katri

    2003-07-01

    To study the impact of air pollution on the growth and elemental composition of conifers, 5 sample plots were established at different distances and directions from the Estonian Power Plant (Northeast Estonia) in 1999-2000. The selected stands were 75-80(85)-yr-old parts (0.05 ha) of (Oxalis)-Myrtillus site type forest of 0.7-0.8 density. The soils of all sample plots were Gleyic Podzols (Lkg) on sands. The several times higher Ca concentration in the humus horizon of the sample plot NE from the Estonian PP is caused by the prevailing westerly and southerly winds which carry more pollutants NE from the power plant than to SSW. To ascertain the effect of power plants on the growth of Scots pine (Pinus sylvestris L.), the length growth of the needles and shoots formed in 1997-2000, dry weight of 100 needles, and density of needles on the shoots were measured. As compared to the control, the strongest inhibition of growth was revealed in the sample plots situated 22 km north-east and 17 km south-west from the Estonian Power Plant. As compared to control, the needles of trees growing on sample plots closer to the power plant showed higher contents of Ca, S and Zn. The content of Mg in needles increased with distance from the pollution source. Current year needles had higher contents of Cu and Zn than older needles. Today the amounts of fly ash emitted from Narva power plants are fallen. Long-term fly ash emission has caused changes in the measurements of morphological parameters and chemical composition of needles.

  2. Fuel distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Blazek, C.F.

    1979-07-01

    Distribution of fuel is considered from a supply point to the secondary conversion sites and ultimate end users. All distribution is intracity with the maximum distance between the supply point and end-use site generally considered to be 15 mi. The fuels discussed are: coal or coal-like solids, methanol, No. 2 fuel oil, No. 6 fuel oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Although the fuel state, i.e., gas, liquid, etc., can have a major impact on the distribution system, the source of these fuels (e.g., naturally-occurring or coal-derived) does not. Single-source, single-termination point and single-source, multi-termination point systems for liquid, gaseous, and solid fuel distribution are considered. Transport modes and the fuels associated with each mode are: by truck - coal, methanol, No. 2 fuel oil, and No. 6 fuel oil; and by pipeline - coal, methane, No. 2 fuel oil, No. 6 oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Data provided for each distribution system include component makeup and initial costs.

  3. Combining the spin-separated exact two-component relativistic Hamiltonian with the equation-of-motion coupled-cluster method for the treatment of spin-orbit splittings of light and heavy elements.

    Science.gov (United States)

    Cao, Zhanli; Li, Zhendong; Wang, Fan; Liu, Wenjian

    2017-02-01

    The spin-separated exact two-component (X2C) relativistic Hamiltonian [sf-X2C+so-DKHn, J. Chem. Phys., 2012, 137, 154114] is combined with the equation-of-motion coupled-cluster method with singles and doubles (EOM-CCSD) for the treatment of spin-orbit splittings of open-shell molecular systems. Scalar relativistic effects are treated to infinite order from the outset via the spin-free part of the X2C Hamiltonian (sf-X2C), whereas the spin-orbit couplings (SOC) are handled at the CC level via the first-order Douglas-Kroll-Hess (DKH) type of spin-orbit operator (so-DKH1). Since the exponential of single excitations, i.e., exp(T1), introduces sufficient spin orbital relaxations, the inclusion of SOC at the CC level is essentially the same in accuracy as the inclusion of SOC from the outset in terms of the two-component spinors determined variationally by the sf-X2C+so-DKH1 Hamiltonian, but is computationally more efficient. Therefore, such an approach (denoted as sf-X2C-EOM-CCSD(SOC)) can achieve uniform accuracy for the spin-orbit splittings of both light and heavy elements. For light elements, the treatment of SOC can even be postponed until the EOM step (denoted as sf-X2C-EOM(SOC)-CCSD), so as to further reduce the computational cost. To reveal the efficacy of sf-X2C-EOM-CCSD(SOC) and sf-X2C-EOM(SOC)-CCSD, the spin-orbit splittings of the (2)Π states of monohydrides up to the sixth row of the periodic table are investigated. The results show that sf-X2C-EOM-CCSD(SOC) predicts very accurate results (within 5%) for elements up to the fifth row, whereas sf-X2C-EOM(SOC)-CCSD is useful only for light elements (up to the third row but with some exceptions). For comparison, the sf-X2C-S-TD-DFT-SOC approach [spin-adapted open-shell time-dependent density functional theory, Mol. Phys., 2013, 111, 3741] is applied to the same systems. The overall accuracy (1-10%) is satisfactory.

  4. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    Science.gov (United States)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  5. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  6. Similarity Based Clustering with Indexing for Semi-Structured Document

    Directory of Open Access Journals (Sweden)

    S. Palanisamy

    2012-01-01

    Full Text Available Problem statement: To improve the performance of data retrieval in a homogeneous large XML document. Approach: Clustering of XML elements based on the content with indexing. The element which is used for clustering has been identified from the document and/or XML schema. This element is used as a parameter for clustering. The suitable index is created after clustering. Results: The clustering combined with indexing strategy support the efficient retrieval of XML element from the document. Conclusion: The proposed method is used to improve the efficiency of XML data manipulation and comparatively give the better performance rather than clustering or indexing alone.

  7. Finite Element Analysis of the Auto-docking and Auto-separating Robot for the Rocket Fueling Loading%火箭加注自动对接与脱离机器人有限元分析

    Institute of Scientific and Technical Information of China (English)

    顿向明; 闻靖; 张育林; 陆晋荣; 邹利鹏; 徐北辰; 高泽普

    2011-01-01

    According to the current situation of artificial fuel loading in rocket launch, an auto-docking and auto - separating mechanism is designed. The Pro/E is used to establish 3 - D solid model of the robot, and then the simplified model was imported into the ANSYS software. Through the finite element model the structural strength is simulated to get the stress nephogram. The reliability and reasonableness of the designed robot are verified by analysis.%针对目前我国人工加注火箭燃料的现状,设计出一种火箭加注自动对接与脱离机器人本体结构.利用Pro/E建立机器人的三维实体模型,将模型简化后导入有限元软件ANSYS中进行强度分析,得到了其应力云图,通过分析验证了机构设计的可靠性和合理性.

  8. 球床反应堆燃料元件成组串列管路气力提升方法研究%Research on a method for grouped tandem pneumatic lifting a pebble-bed reactor's fuel element transportation in pipelines

    Institute of Scientific and Technical Information of China (English)

    沈鹏; 刘洪冰; 都东; 王鑫; 张海泉

    2013-01-01

    为了满足球床高温气冷堆利用气力输送方法实现球形燃料元件多次通过堆芯的循环运行方式的运行经济性和控制可靠性要求,提出了一种成组串列气力提升燃料元件的方法,并从动力学特性、提升效率及压降等方面研究了其具体实现方法.该方法可使燃料元件短暂时间间隔地顺次进入提升管路,并由气力提升至堆芯,在同一时刻,燃料元件组成队列共同占用提升管路.研究结果表明,在燃料元件成组串列气力提升过程中,组内各元件运行平稳,间距可控,可以避免因碰撞导致元件破损.与燃料元件逐一完成气力提升方法相比,采用成组串列气力提升方式有利于在必要时实现反应堆燃料快速循环,而且在维持正常循环时,可以降低提升气体流速和每个燃料元件的运行速度,进而减小元件对堆芯的冲击,并且可以减小系统压降,使球床反应堆更加经济可靠地运行.%To meet the requirements of operational economy and control reliability of a pebble-bed high-temperature gascooled reactor characterized by its fuel elements' repeated pneumatic moving through the reactor core,a scheme for grouped tandem pneumatic lifting (GTPL) of fuel elements in pipelines was proposed,and its corresponding implementation was researched in the aspects of dynamic characteristics,lifting efficiency and pressure drop.By this method,fuel elements are sequentially added to the lifting pipelines with short time interval,and then pneumatically lifted to the reactor core,so the lifting pipelines are occupied by a quene of fuel elements at the same time.The results of the simulation and the experiment show that the new method can make fuel elements move steadily with the controllable spacing between each two fuel elements in GTPL,so the breakage of the elements caused by elementselement collision can be avoided.Compared with the method of lifting the elements one by one,the GTPL scheme has

  9. Cluster Lenses

    CERN Document Server

    Kneib, Jean-Paul; 10.1007/s00159-011-0047-3

    2012-01-01

    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining...

  10. A novel cluster of mariner-like elements belonging to mellifera subfamily from spiders and insects: implications of recent horizontal transfer on the South-West Islands of Japan.

    Science.gov (United States)

    Yamada, Kaori; Kawanishi, Yuichi; Yamada, Akinori; Tokuda, Gaku; Gurung, Raj Deep; Sasaki, Takeshi; Nakajima, Yumiko; Maekawa, Hideaki

    2014-04-01

    Mariner-like elements (MLEs) have been isolated from various eukaryotic genomes and they are divided into 15 subfamilies, including main five subfamilies: mauritiana, cecropia, mellifera/capitata, irritans, and elegans/briggsae. In the present study, MLEs belonging to mellifera subfamily were isolated from various spiders and insects (Hymenoptera and Lepidoptera) inhabiting the South-West Islands of Japan and neighboring regions. MLEs isolated from 15 different species formed a distinct novel cluster in mellifera subfamily. MLEs obtained from three different species [i.e., the bee Amegilla senahai subflavescens (Amsmar1), the wasp Campsomeris sp. (Casmar1), and the swallowtail butterfly Pachliopta aristolochiae (Paamar1)] contained an intact open reading frame that encoded a putative transposase. These transposases exhibited high similarity of 97.9% among themselves. In case of Casmar1, the presence of an intact ORF was found in high frequencies (i.e., 11 out of 12 clones). In addition, these transposases also showed the presence of a terminal inverted repeat-binding motif, DD(34)D and two highly conserved amino acid motifs, (W/L)(I/L)PHQL and YSP(D/N)L(A/S)P. These two motifs differed from previously known motifs, WVPHEL and YSPDLAP. MLEs isolated from these three different species may have been inserted into their genomes by horizontal transfer. Furthermore, the presence of an intact ORF suggests that they are still active in habitats along these isolated islands.

  11. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  12. Use of alternative fuels in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    A future sustainable energy system will certainly be based on a variety of environmentally benign energy production technologies. Fuel cells can be a key element in this scenario. One of the fuel cells types the solid oxide fuel cell (SOFC) has a number of advantages that places them in a favorable position: high efficiency, parallel production of electricity and high value heat, prevention of NOx emission, flexibility regarding usable fuels, and certain tolerance towards impurities. It is thus a natural option, to combine such a highly efficient energy conversion tool with a sustainable fuel supply. In the present contribution, the use of alternative compared to conventional fuels in SOFCs was evaluated. Regarding carbon containing, biomass derived fuels, SOFCs showed excellent power output and stability behavior during long-term testing under technologically relevant conditions. Moreover, ammonia can be used directly as fuel. The chemical and structural properties of the SOFC anode makes it even possible, to combine a chemical conversion of the fuel, for example methane into synthesis gas via steam reforming and decomposition of ammonia into hydrogen and nitrogen, with the electrochemical production of electricity in one step. (au)

  13. The Welding Process of the Small In-pile Testing Fuel Assembly

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The small in-pile testing fuel assembly is designed for high performance fuel assembly study. It has two parts of which are four fuel element with double layer cladding and a detect system for measurement of testing pressure and temperature. The fuel element is composed of UO2 pellets, the stainless steel cladding and end caps. The detect system is direct contact with the fuel element by electron beam welding. In the fabrication of the assembly, some special welding technologies are

  14. Clustering via Kernel Decomposition

    DEFF Research Database (Denmark)

    Have, Anna Szynkowiak; Girolami, Mark A.; Larsen, Jan

    2006-01-01

    Methods for spectral clustering have been proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this work it is proposed that the affinity matrix is created based on the elements of a non-parametric density estimator. This matrix is then decomposed to obtain...... posterior probabilities of class membership using an appropriate form of nonnegative matrix factorization. The troublesome selection of hyperparameters such as kernel width and number of clusters can be obtained using standard cross-validation methods as is demonstrated on a number of diverse data sets....

  15. Modelling of 28-element UO{sub 2} flux-map critical experiments in ZED-2 using WIMS9A/PANTHER

    Energy Technology Data Exchange (ETDEWEB)

    Sissaoui, M.T.; Kozier, K.S.; Labrie, J.P. [Atomic Energy of Canada Limited (Canada)

    2011-07-01

    The accuracy of WIMS9A/PANTHER in modelling D{sub 2}O-moderated, and H{sub 2}O- or air-cooled, doubly heterogeneous lattices of fuel clusters has been demonstrated using 28-element UO{sub 2} flux-map critical experiments in the ZED-2 facility. Presented here are the predicted k{sub eff} values, coolant void reactivity biases, and the radial and axial flux shapes.

  16. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  17. A Comparison of Materials Issues for Cermet and Graphite-Based NTP Fuels

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2013-01-01

    This paper compares material issues for cermet and graphite fuel elements. In particular, two issues in NTP fuel element performance are considered here: ductile to brittle transition in relation to crack propagation, and orificing individual coolant channels in fuel elements. Their relevance to fuel element performance is supported by considering material properties, experimental data, and results from multidisciplinary fluid/thermal/structural simulations. Ductile to brittle transition results in a fuel element region prone to brittle fracture under stress, while outside this region, stresses lead to deformation and resilience under stress. Poor coolant distribution between fuel element channels can increase stresses in certain channels. NERVA fuel element experimental results are consistent with this interpretation. An understanding of these mechanisms will help interpret fuel element testing results.

  18. Water-moderated reactor fuel cladding reliability study

    OpenAIRE

    Бакутяк, Елена Викторовна; Пелых, Сергей Николаевич

    2014-01-01

    Considering the fuel element, averaged by fuel assembly (FA) of water-moderated reactor with the power of 1000 MW (VVER-1000), the number of fuel elements with the greatest cladding failure probability after 4 operation years at Khmelnitsky NPP-2 (KNPP-2) is found. This will allow to calculate the fuel cladding failure probability and determine the most likely cladding damages, which will enable to improve the performance and economic indexes of VVER.The novelty of the paper lies in calculati...

  19. Thorium utilization program. Quarterly progress report for the period ending May 31, 1976. [Fuel element crushing, solids handling, fluidized-bed combustion, aqueous separations, solvent extraction, off-gas studies, semiremote handling systems, alternative head-end processing, and fuel recycle design

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-30

    The work reported includes the development of unit processes and equipment for reprocessing of High-Temperature Gas-Cooled Reactor (HTGR) fuel and the design and development of an integrated line to demonstrate the head end of HTGR reprocessing using unirradiated fuel materials. Work is also described on trade-off studies concerning the required design of recycle facilities for the large-scale recycle of HTGR fuels in order to guide the development activities for HTGR fuel recycle.

  20. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  1. A multi-element psychosocial intervention for early psychosis (GET UP PIANO TRIAL) conducted in a catchment area of 10 million inhabitants: study protocol for a pragmatic cluster randomized controlled trial.

    Science.gov (United States)

    Ruggeri, Mirella; Bonetto, Chiara; Lasalvia, Antonio; De Girolamo, Giovanni; Fioritti, Angelo; Rucci, Paola; Santonastaso, Paolo; Neri, Giovanni; Pileggi, Francesca; Ghigi, Daniela; Miceli, Maurizio; Scarone, Silvio; Cocchi, Angelo; Torresani, Stefano; Faravelli, Carlo; Zimmermann, Christa; Meneghelli, Anna; Cremonese, Carla; Scocco, Paolo; Leuci, Emanuela; Mazzi, Fausto; Gennarelli, Massimo; Brambilla, Paolo; Bissoli, Sarah; Bertani, Maria Elena; Tosato, Sarah; De Santi, Katia; Poli, Sara; Cristofalo, Doriana; Tansella, Michele; Ruggeri, Mirella; Mirella, Maria Elena; Bissoli, Sarah; Bonetto, Chiara; Cristofalo, Doriana; De Santi, Katia; Lasalvia, Antonio; Lunardi, Silvia; Negretto, Valentina; Poli, Sara; Tosato, Sarah; Zamboni, Maria Grazia; Ballarin, Mario; De Girolamo, Giovanni; Fioritti, Angelo; Neri, Giovanni; Pileggi, Francesca; Rucci, Paola; Bocchio Chiavetto, Luisella; Scasselatti, Catia; Zanardini, Roberta; Brambilla, Paolo; Bellani, Marcella; Bertoldo, Alessandra; Marinelli, Veronica; Negretto, Valentina; Perlini, Cinzia; Rambaldelli, Gianluca; Lasalvia, Antonio; Bertani, Mariaelena; Bissoli, Sarah; Lazzarotto, Lorenza; Bardella, Sonia; Gardellin, Francesco; Lamonaca, Dario; Lasalvia, Antonio; Lunardon, Marco; Magnabosco, Renato; Martucci, Marilena; Nicolau, Stylianos; Nifosì, Francesco; Pavanati, Michele; Rossi, Massimo; Piazza, Carlo; Piccione, Gabriella; Sala, Alessandra; Sale, Annalisa; Stefan, Benedetta; Zotos, Spyridon; Balbo, Mirko; Boggian, Ileana; Ceccato, Enrico; Dall'Agnola, Rosa; Gardellin, Francesco; Girotto, Barbara; Goss, Claudia; Lamonaca, Dario; Lasalvia, Antonio; Leoni, Roberta; Mai, Alessia; Pasqualini, Annalisa; Pavanati, Michele; Piazza, Carlo; Piccione, Gabriella; Roccato, Stefano; Rossi, Alberto; Sale, Annalisa; Strizzolo, Stefania; Zotos, Spyridon; Urbani, Anna; Ald, Flavia; Bianchi, Barbara; Cappellari, Paola; Conti, Raffaello; De Battisti, Laura; Lazzarin, Ermanna; Merlin, Silvia; Migliorini, Giuseppe; Pozzan, Tecla; Sarto, Lucio; Visonà, Stefania; Brazzoli, Andrea; Campi, Antonella; Carmagnani, Roberta; Giambelli, Sabrina; Gianella, Annalisa; Lunardi, Lino; Madaghiele, Davide; Maestrelli, Paola; Paiola, Lidia; Posteri, Elisa; Viola, Loretta; Zamberlan, Valentina; Zenari, Marta; Tosato, Sarah; Zanoni, Martina; Bonadonna, Giovanni; Bonomo, Mariacristina; Santonastaso, Paolo; Cremonese, Carla; Scocco, Paolo; Veronese, Angela; Anderle, Patrizia; Angelozz, Andrea; Amalric, Isabelle; Baron, Gabriella; Candeago, Enrico Bruttomesso Fabio; Castelli, Franco; Chieco, Maria; Cremonese, Carla; Di Costanzo, Enrico; Derossi, Mario; Doriguzzi, Michele; Galvano, Osvaldo; Lattanz, Marcello; Lezzi, Roberto; Marcato, Marisa; Marcolin, Alessandro; Marini, Franco; Matranga, Manlio; Scalabrin, Donato; Zucchetto, Maria; Zadro, Flavio; Austoni, Giovanni; Bianco, Maria; Bordino, Francesca; Dario, Filippo; De Risio, Alessandro; Gatto, Aldo; Granà, Simona; Favero, Emanuele; Franceschin, Anna; Friederici, Silvia; Marangon, Vanna; Pascolo, Michela; Ramon, Luana; Scocco, Paolo; Veronese, Angela; Zambolin, Stefania; Riolo, Rossana; Buffon, Antonella; Cremonese, Carla; Di Bortolo, Elena; Friederici, Silvia; Fortin, Stefania; Marcato, Marisa; Matarrese, Francesco; Mogni, Simona; Codemo, Novella; Russi, Alessio; Silvestro, Alessandra; Turella, Elena; Viel, Paola; Dominoni, Anna; Andreose, Lorenzo; Boemio, Mario; Bressan, Loretta; Cabbia, Arianna; Canesso, Elisabetta; Cian, Romina; Dal Piccol, Claudia; Dalla Pasqua, Maria Manuela; Di Prisco, Anna; Mantellato, Lorena; Luison, Monica; Morgante, Sandra; Santi, Mirna; Sacillotto, Moreno; Scabbio, Mauro; Sponga, Patrizia; Sguotto, M Luisa; Stach, Flavia; Vettorato, M Grazia; Martinello, Giorgio; Dassiè, Francesca; Marino, Stefano; Cibiniel, Linda; Masetto, Ilenia; Marcato, Marisa; Cabianca, Oscar; Valente, Amalia; Caberlotto, Livio; Passoni, Alberto; Flumian, Patrizia; Daniel, Luigino; Gion, Massimo; Stanziale, Stanziale; Alborino, Flora; Bortolozzo, Vladimiro; Bacelle, Lucio; Bicciato, Leonarda; Basso, Daniela; Navaglia, Filippo; Manoni, Fabio; Ercolin, Mauro; Neri, Giovanni; Giubilini, Franco; Imbesi, Massimiliano; Leuci, Emanuela; Mazzi, Fausto; Semrov, Enrico; Giovanni, Castel S; Taro e Ceno, Valli; Ovest, Polo; Anelli, Silvio; Amore, Mario; Bigi, Laura; Britta, Welsch; Anna, Giovanna Barazzoni; Bonatti, Uobes; Borziani, Maria; Crosato, Isabella; Galluccio, Raffaele; Galeotti, Margherita; Gozzi, Mauro; Greco, Vanna; Guagnini, Emanuele; Pagani, Stefania; Maccherozzi, Malvasi; Marchi, Francesco; Melato, Ermanno; Mazzucchi, Elena; Marzullo, Franco; Pellegrini, Pietro; Petrolini, Nicoletta; Volta, Paolo; Anelli, Silvio; Bonara, Franca; Brusamonti, Elisabetta; Croci, Roberto; Flamia, Ivana; Fontana, Francesca; Losi, Romina; Mazzi, Fausto; Marchioro, Roberto; Pagani, Stefania; Raffaini, Luigi; Ruju, Luca; Saginario, Antonio; Tondelli, M Grazia; Marrama, Donatella; Bernardelli, Lucia; Bonacini, Federica; Florindo, Annaluisa; Merli, Marina; Nappo, Patrizia; Sola, Lorena; Tondelli, Ornella; Tonna, Matteo; Torre, M Teresa; Tosatti, Morena; Venturelli, Gloria; Zampolla, Daria; Bernardi, Antonia; Cavalli, Cinzia; Cigala, Lorena; Ciraudo, Cinzia; Di Bari, Antonia; Ferri, Lorena; Gombi, Fabiana; Leurini, Sonia; Mandatelli, Elena; Maccaferri, Stefano; Oroboncoide, Mara; Pisa, Barbara; Ricci, Cristina; Poggi, Enrica; Zurlini, Corrado; Malpeli, Monica; Colla, Rossana; Teodori, Elvira; Vecchia, Luigi; D'Andrea, Rocco; Trenti, Tommaso; Paolini, Paola; Mazzi, Fausto; Carpeggiani, Paolo; Pileggi, Francesca; Ghigi, Daniela; Gagliostro, Mariateresa; Pratelli, Michela; Rucci, Paola; Lazzaro, S; Antonelli, Antonio; Battistini, Luana; Bellini, Francesca; Bonini, Eva; Capelli, Caterina Bruschi Rossella; DiDomizio, Cinzia; Drei, Chiara; Fucci, Giuseppe; Gualandi, Alessandra; Grazia, Maria Rosaria; Losi, Anna M; Mazzoni, Federica Mazzanti Paola; Marangoni, Daniela; Monna, Giuseppe; Morselli, Marco; Oggioni, Alessandro; Oprandi, Silvio; Paganelli, Walter; Passerini, Morena; Piscitelli, Maria; Reggiani, Gregorio; Rossi, Gabriella; Salvatori, Federica; Trasforini, Simona; Uslenghi, Carlo; Veggetti, Simona; Bartolucci, Giovanna; Baruffa, Rosita; Bellini, Francesca; Bertelli, Raffaella; Borghi, Lidia; Ciavarella, Patrizia; DiDomizio, Cinzia; Monna, Giuseppe; Oggioni, Alessandro; Paltrinieri, Elisabetta; Rizzardi, Francesco; Serra, Piera; Suzzi, Damiano; Carlo, Uslenghi; Piscitelli, Maria; Arienti, Paolo; Aureli, Fabio; Avanzi, Rosita; Callegari, Vincenzo; Corsino, Alessandra; Host, Paolo; Michetti, Rossella; Pratelli, Michela; Rizzo, Francesco; Simoncelli, Paola; Soldati, Elena; Succi, Eraldo; Bertozzi, Massimo; Canetti, Elisa; Cavicchioli, Luca; Ceccarelli, Elisa; Cenni, Stefano; Marzola, Glenda; Gallina, Vanessa; Leoni, Carla; Olivieri, Andrea; Piccolo, Elena; Ravagli, Sabrina; Russo, Rosaria; Tedeschini, Daniele; Verenini, Marina; Abram, Walter; Granata, Veronica; Curcio, Alessandro; Guerra, Giovanni; Granini, Samuela; Natali, Lara; Montanari, Enrica; Pasi, Fulvia; Ventura, Umbertina; Valenti, Stefania; Francesca, Masi; Farneti, Rossano; Ravagli, Paolo; Floris, Romina; Maroncelli, Otello; Volpones, Gianbattista; Casali, Donatella; Miceli, Maurizio; Bencini, Andrea; Cellini, Massimo; De Biase, Luca; Barbara, Leonardo; Charles, Liedl; Pratesi, Cristina; Tanini, Andrea; Cellini, Massimo; Miceli, Maurizio; Loparrino, Riccardo; Pratesi, Cristina; Ulivelli, Cinzia; Cussoto, Cristina; Dei, Nico; Fumanti, Enrico; Pantani, Manuela; Zeloni, Gregorio; Bellini, Rossella; Cellesi, Roberta; Dorigo, Nadia; Gullì, Patrizia; Ialeggio, Luisa; Pisanu, Maria; Rinaldi, Graziella; Konze, Angela; Cocchi, Angelo; Meneghelli, Anna; Bianco, Mario; Modignani, Litta; Frova, Maria; Monzani, Emiliano; Zanobio, Alberto; Malagoli, Marina; Pagani, Roberto; Barbera, Simona; Morganti, Carla; Monzani, Emiliano; Amadè, Elisabetta Sarzi; Brambilla, Virginia; Montanari, Anita; Caterina, Giori; Lopez, Carmelo; Marocchi, Alessandro; Moletta, Andrea; Sberna, Maurizio; Cascio, M Teresa; Scarone, Silvio; Manzone, Maria Laura; Barbara, Barbera; Mari, Luisa; Manzone, Maria L; Razzini, Edoardo; Bianchi, Yvonne; Pellizzer, M Rosa; Verdecchia, Antonella; Sferrazza, M Gabriella; Manzone, M Laura; Pismataro, Rosa; D'Eril, Gian Vico Melzi; Barassi, Alessandra; Pacciolla, Rosana; Faraci, Gloria; Torresani, Stefano; Rosmini, Bolzano; Carpi, Fabio; Soelva, Margit; Anderlan, Monica; De Francesco, Michele; Duregger, Efi; Torresani, Stefano; Vettori, Carla; Doimo, Sabrina; Kompatscher, Erika; Soelva, Margit; Torresani, Stefano; Forer, Michael; Kerschbaumer, Helene; Gampe, Anna; Nicoletti, Maira; Acerbi, Chiara; Aquilino, Daniele; Azzali, Silvia; Bensi, Luca; Bissoli, Sarah; Cappellari, Davide; Casana, Elisa; Campagnola, Nadia; Dal Corso, Elisa; Di Micco, Elisabetta; Gobbi, Erika; Ferri, Laura; Gobbi, Erika; Mairaghi, Laura; Malak, Sara; Mesiano, Luca; Paterlini, Federica; Perini, Michela; Puliti, Elena Maria; Rispoli, Rosaria; Rizzo, Elisabetta; Sergenti, Chiara; Soave, Manuela; Alpi, Andrea; Bislenghi, Laura; Bolis, Tiziana; Colnaghi, Francesca; Fascendini, Simona; Grignani, Silvia; Meneghelli, Anna; Patelli, Giovanni; Faravelli, Carlo; Casale, Silvia; Zimmermann, Christa; Deledda, Giuseppe; Goss, Claudia; Mazzi, Mariangela; Rimondini, Michela; Gennarelli, Massimo; Scassellati, Catia; Bonvicini, Cristian; Longo, Sara; Bocchio Chiavetto, Luisella; Zanardini, Roberta; Ventriglia, Mariacarla; Squitti, Rosanna; Frisoni, Giovanni; Pievani, Michela; Balestrieri, Matteo; Brambilla, Paolo; Perlini, Cinzia; Marinelli, Veronica; Bellani, Marcella; Rambaldelli, Gianluca; Bertoldo, Alessandra; Atzori, Manfredo; Mazzi, Fausto; Carpeggiani, Paolo; Beltramello, Alberto; Alessandrini, Franco; Pizzini, Francesca; Zoccatelli, Giada; Sberna, Maurizio; Konze, Angela; Politi, Pierluigi; Emanuele, Enzo; Brondino, Natascia; Martino, Gianvito; Bergami, Alessandra; Zarbo, Roberto; Riva, Marco Andrea; Fumagalli, Fabio; Molteni, Raffaella; Calabrese, Francesca; Guidotti, Gianluigi; Luoni, Alessia; Macchi, Flavia; Artioli, Stefania; Baldetti, Marco; Bizzocchi, Milena; Bolzon, Donatella; Bonello, Elisa; Cacciari, Giorgia; Carraresi, Claudia; Cascio, M Teresa; Caselli, Gabriele; Furlato, Karin; Garlassi, Sara; Gavarini, Alessandro; Lunardi, Silvia; Macchetti, Fabio; Marteddu, Valentina; Plebiscita, Giorgia; Poli, Sara; Totaro, Stefano; Bebbington, Paul; Birchwood, Max; Dazzan, Paola; Kuipers, Elisabeth; Thornicroft, Graham; Pariante, Carmine; Lawrie, Steve; Pariante, Carmine; Soares, Jair C

    2012-05-30

    Multi-element interventions for first-episode psychosis (FEP) are promising, but have mostly been conducted in non-epidemiologically representative samples, thereby raising the risk of underestimating the complexities involved in treating FEP in 'real-world' services. The Psychosis early Intervention and Assessment of Needs and Outcome (PIANO) trial is part of a larger research program (Genetics, Endophenotypes and Treatment: Understanding early Psychosis - GET UP) which aims to compare, at 9 months, the effectiveness of a multi-component psychosocial intervention versus treatment as usual (TAU) in a large epidemiologically based cohort of patients with FEP and their family members recruited from all public community mental health centers (CMHCs) located in two entire regions of Italy (Veneto and Emilia Romagna), and in the cities of Florence, Milan and Bolzano. The GET UP PIANO trial has a pragmatic cluster randomized controlled design. The randomized units (clusters) are the CMHCs, and the units of observation are the centers' patients and their family members. Patients in the experimental group will receive TAU plus: 1) cognitive behavioral therapy sessions, 2) psycho-educational sessions for family members, and 3) case management. Patient enrollment will take place over a 1-year period. Several psychopathological, psychological, functioning, and service use variables will be assessed at baseline and follow-up. The primary outcomes are: 1) change from baseline to follow-up in positive and negative symptoms' severity and subjective appraisal; 2) relapse occurrences between baseline and follow-up, that is, episodes resulting in admission and/or any case-note records of re-emergence of positive psychotic symptoms. The expected number of recruited patients is about 400, and that of relatives about 300. Owing to the implementation of the intervention at the CMHC level, the blinding of patients, clinicians, and raters is not possible, but every effort will be made

  2. Rotation angles and angular velocities study of pebble-shaped fuel element based on a detection system%球形燃料元件累积旋转角度和角速度问题研究

    Institute of Scientific and Technical Information of China (English)

    赵颖; 朱兴望; 曲世祥; 陈堃

    2016-01-01

    Background: Pebble Bed Reactor (PBR), most often used in Generation IV high-temperature gas-cooled nuclear reactor, employs pebble-shaped fuel elements. As pebbles flow through the reactor, they will slide and rotate against each other and the wall, causing generation of graphite dust.Purpose:This study aims to investigate the rotation angles and angular velocities of pebble-shaped fuel elements (PSFE). Methods: The rotation angle and angular velocity were studied by using a simulated transparent cylinder to replace the reactor core. A pebble-shaped detection system is employed to test the angular velocities and accumulated rotation angles of PSFEs with wireless interface. The generation of graphite particles by rotational abrasion was also studied.Results:The experimental results show that the initial seeding position has influence on rotation angles and angular velocities. The distribution of rotation angles and angular velocities from the center to the wall can be described as an inverted V-type distribution. The calculation results show that wear mass by rotation accounts for 11%?27% of the total graphite dust.Conclusion: Sliding abrasion is stronger than rotation abrasion in general, graphite generation tends to be overestimated if we only take sliding abrasion into consideration and ignore rotation abrasion.%球床堆采用球形燃料元件,其在循环过程中存在滚动磨损以及滑动磨损并产生石墨粉尘.本文借助一种球形无线探测系统量化了角速度及累计旋转角度,并量化了滚动磨损对石墨粉尘产生的影响.实验结果表明,累计旋转角度和角速度与初始径向位置有关,随着初始径向位置由里向外,呈V字型分布,与仓筒边壁接触的球累计旋转角度和角速度远大于其他位置,边壁滚动效应显著.计算结果表明,滚动磨损对石墨粉尘产生量的贡献在11%?27%,且靠近仓筒边壁处该百分比高于其他位置,边壁效应明显.一般情况下,滚动磨

  3. Corrosion Minimization for Research Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; Gerard Hofman

    2005-06-01

    Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

  4. Participation in benchmark MATIS-H of NEA/OCDE: uses CFD codes applied to nuclear safety. Study of the spacer grids in the fuel elements; Participacion en el Benchmark Matis-H de la NEA/OCDE: usos de codigos CFD aplicados a seguridad nuclear. Estudio de las rejillas espaciadoras en los elementos combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Monferrer, C.; Chiva, S.; Munoz-cobo, J. L.; Vela, E.

    2012-07-01

    This paper develops participation in benchmark MATIS-H, promoted by the NEA / OECD-KAERI, involving the study of turbulent flow in a rod beam with spacers in an experimental installation. Its aim is the analysis of hydraulic behavior of turbulent flow in the subchannels of the fuel elements, essential for the improvement of safety margins in normal and transient operations and to maximize the use of nuclear energy through an optimal design of grids.

  5. PWR simplified fuel element simulation using calculation trailer ANSYS CFX and PARCS including pressure drop and turbulence in the spacer; Simulacion de un elemento combustible PWR simplicificado mediante el calculo acoplado ANSYS CFX y PARCS incluyendo caida de presion y turbulencia en el espaciador

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Monferrer, C.; Chiva, S.; Miro, R.; Barrachina, T.; Pellacani, F.; Macian-Juan, R.

    2012-07-01

    With the recent development of a new computational tool for calculations of nuclear reactors based on the coupling between the PARCS neutron transport code and computational fluid dynamics commercial code (CFD) ANSYS CFX opens new possibilities in the fuel element design that contributes to a better understanding and a better simulation of the processes of heat transfer and specific phenomena of fluid dynamics as the {sup c}rossflow{sup .}.

  6. Criticality safety aspects of spent fuel arrays from emerging nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, G. [University of Thrace, Department of Electrical and Computer Engineering, Laboratory of Nuclear Technology, Kimmerria Campus, 67100 Xanthi (Greece)

    2010-07-01

    Emerging nuclear fuel cycles: fuels with Pu or minor actinides (MA) for their self-generated recycling or transmutation in PWR or FR {yields} reduction of radiotoxicity of HLW. The aim of work is to assess criticality (k{sub {infinity}}) of arrays of spent nuclear fuels from these emerging fuel cycles. Procedures: Calculations of - k{sub {infinity}}, using MCNP5 based on fresh and spent fuel compositions (infinite arrays), - spent fuel compositions using ORIGEN. Fuels considered: - commercial PWR-UO{sub 2} (R1) and -MOX (R2), [45 GWd/t] and fast reactor [100 GWd/t] (R3), - PWR self-generated Pu recycling (S1) and MA recycling (S2), FR self-generated MA recycling (S3), FR with 2% {sup 237}Np for transmutation purposes (T). Results: k{sub {infinity}} based on fresh and spent fuel compositions is shown. Fuels are clustered in two distinct families: - fast reactor fuels, - thermal reactor fuels; k{sub {infinity}} decreases when calculated on the basis of actinide and fission product inventory. In conclusions: - Emerging fuels considered resemble their corresponding commercial fuels; - k{sub {infinity}} decreases in all cases when calculated on the basis of spent fuel compositions (reactivity worth {approx}-20%{Delta}k/k), hence improving the effectiveness of packaging. (author)

  7. Qualification of pebble fuel for HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    The German HTGR fuel development program for the HTR-Modul concept has resulted in a reference design based on LEU UO2 TRISO coated particle fuel in a spherical fuel element. The coated particles consist of minute uranium particle kernels coated with layers of carbon and silicon carbide. Analyses on quality of as-manufactured fuel, its behavior under HTR-Modul relevant operating and accident conditions have demonstrated excellent performance. Coated particles can withstand high internal gas pressure without releasing their fission products to the environment. International efforts are on-going for further improvement of coated particle fuel to meet the needs of future generation-IV HTR concepts.

  8. Clustered regression with unknown clusters

    CERN Document Server

    Barman, Kishor

    2011-01-01

    We consider a collection of prediction experiments, which are clustered in the sense that groups of experiments ex- hibit similar relationship between the predictor and response variables. The experiment clusters as well as the regres- sion relationships are unknown. The regression relation- ships define the experiment clusters, and in general, the predictor and response variables may not exhibit any clus- tering. We call this prediction problem clustered regres- sion with unknown clusters (CRUC) and in this paper we focus on linear regression. We study and compare several methods for CRUC, demonstrate their applicability to the Yahoo Learning-to-rank Challenge (YLRC) dataset, and in- vestigate an associated mathematical model. CRUC is at the crossroads of many prior works and we study several prediction algorithms with diverse origins: an adaptation of the expectation-maximization algorithm, an approach in- spired by K-means clustering, the singular value threshold- ing approach to matrix rank minimization u...

  9. Gel-sphere-pac reactor fuel fabrication and its application to a variety of fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Judkins, R.R. (comps.)

    1979-12-01

    The gel-sphere-pac fuel fabrication option was evaluated for its possible application to commercial scale fuel fabrication for 19 fuel element designs that use oxide fuel in metal clad rods. The dry gel spheres are prepared at the reprocessing plant and are then calcined, sintered, inspected, and loaded into fuel rods and packed by low-energy vibration. A fuel smear density of 83 to 88% theoretical can be obtained. All fuel fabrication process steps were defined and evaluated from fuel receiving to finished fuel element shipping. The evaluation also covers the feasibility of the process, the current status of technology, estimates of the required time and cost to develop the technology to commercial status, and the safety and licensability of commercial scale plants. The primary evaluation was for a Light-Water Reactor fuel element containing (U,Pu)O/sub 2/ fuel. The other 18 fuel element types - 3 for Light-Water Reactors, 1 for a Heavy-Water Reactor, 1 for a Gas-Cooled Fast Reactor, 7 for Liquid-Metal-Cooled Fast Breeder Reactors, and 3 pairs for Light-Water Prebreeder and Breeder Reactors - were compared with the Light-Water Reactor. The gel-sphere-pac option was found applicable to 17 of the 19 element types; the characteristics of a commercial scale plant were defined for these for making cost estimates for such plants. The evaluation clearly shows the gel-sphere-pac process to be a viable fuel fabrication option. Estimates indicate a significant potential fabrication cost advantage for the gel-sphere-pac process if a remotely operated and remotely maintained fuel fabrication plant is required.

  10. Subspace clustering through attribute clustering

    Institute of Scientific and Technical Information of China (English)

    Kun NIU; Shubo ZHANG; Junliang CHEN

    2008-01-01

    Many recently proposed subspace clustering methods suffer from two severe problems. First, the algorithms typically scale exponentially with the data dimensionality or the subspace dimensionality of clusters. Second, the clustering results are often sensitive to input parameters. In this paper, a fast algorithm of subspace clustering using attribute clustering is proposed to over-come these limitations. This algorithm first filters out redundant attributes by computing the Gini coefficient. To evaluate the correlation of every two non-redundant attributes, the relation matrix of non-redundant attributes is constructed based on the relation function of two dimensional united Gini coefficients. After applying an overlapping clustering algorithm on the relation matrix, the candidate of all interesting subspaces is achieved. Finally, all subspace clusters can be derived by clustering on interesting subspaces. Experiments on both synthesis and real datasets show that the new algorithm not only achieves a significant gain of runtime and quality to find subspace clusters, but also is insensitive to input parameters.

  11. Characterization plan for Fort St. Vrain and Peach Bottom graphite fuels

    Energy Technology Data Exchange (ETDEWEB)

    Maarschman, S.C.; Berting, F.M.; Clemmer, R.G.; Gilbert, E.R.; Guenther, R.J.; Morgan, W.C.; Sliva, P.

    1993-09-01

    Part of Fort St. Vrain (FSV) and most of the Peach Bottom (PB) reactor spent fuels are currently stored at INEL and may remain in storage for many years before disposal. Three disposal pathways have been proposed: intact disposal, fuels partially disassembled and the high-level waste fraction conditioned prior to disposal, and fuels completed disassembled and conditioned prior to disposal. Many options exist within each of these pathways. PNL evaluated the literature and other reference to develop a fuels characterization plan for these fuels. This plan provides guidance for the characteristics of the fuel which will be needed to pursue any of the storage or disposal pathways. It also provides a suggested fuels monitoring program for the current storage facilities. This report recommends a minimum of 7 fuel elements be characterized: PB Core 1 fuel: one Type II nonfailed element, one Type II failed element, and one Type III nonfailed element; PB Core 2 fuel: two Type II nonfailed fuel elements; and FSV fuel: at least two fuel blocks from regions of high temperature and fluence and long in-reactor performance (preferably at reactor end-of- life). Selection of PB fuel elements should focus on these between radial core position 8 and 14 and on compacts between compact numbers 10 and 20. Selection of FSV fuel elements should focus on these from Fuel Zones II and III, located in Core Layers 6, 7, and possibly 8.

  12. Finite-element-method-based assessment on the dropping accident of an high temperature gas cooled reactor fuel cask%基于有限元方法的高温气冷堆燃料贮存罐跌落事故评价

    Institute of Scientific and Technical Information of China (English)

    聂君锋; 张海泉; 李红克; 王鑫; 张征明

    2013-01-01

    通过将燃料元件等效为流体,本文采用耦合Eulerian-Lagrangian(CEL)方法研究了高温气冷堆燃料元件贮存罐的跌落事故.该方法能够描述燃料元件在跌落过程中的流动性和惯性效应,以及燃料元件对贮存罐所产生的侧向液动压力.与等效质量法进行了对比,结果表明:在跌落冲击过程中,等效质量法计算得到的冲击力更大、跌落接触时间更短,而CEL方法则能体现罐体的径向膨胀.因此,CEL方法能够模拟燃料元件的惯性效应以及流动效应,而等效质量法则能充分考虑冲击力的作用,结构设计中可以结合2种方法的计算结果,给出更为合理的设计方案.%Accidental dropping of an HTGR (high temperature gas cooled reactor) fuel cask was analyzed using the Euler-Lagrange (CEL) method with the fuel element modeled as the fluid.The method can describe the flow and inertial effects of the fuel elements during the fall and the lateral fluid dynamic pressure generated by the fuel element on the fuel cask.The results give a larger impact force than the equivalent mass method with a shorter drop time.The CEL method can also predict the radial expansion of the cask.Therefore,the CEL method is able to simulate the inertial effects and the liquidity effects of the fuel element,while the equivalent mass method analyzes only the impact.The results of the two methods can be combined in the structural design to give a more reasonable design.

  13. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  14. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H. (Argonne National Lab., IL (United States)); Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France)); Bagley, K.Q. (AEA Reactor Services, Risley (United Kingdom)); Crittenden, G.C. (AEA Reactor Services, Dounreay (United Kingdom)); Dievoet, J. van (Belgonucleaire, Brussels (Belgium))

    1993-09-01

    The first fast breeder eactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s. (orig.)

  15. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  16. Future Fuels

    Science.gov (United States)

    2006-04-01

    Storage Devices, Fuel Management, Gasification, Fischer-Tropsch, Syngas , Hubberts’s Peak UNCLAS UNCLAS UNCLAS UU 80 Dr. Sujata Millick (703) 696...prices ever higher, and perhaps lead to intermittent fuel shortages as production fluctuates. Clearly, this competition for resources also provides oil...producers multiple options for selling their products, and raises the possibility that the US could face shortages resulting from shifts in

  17. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    . The problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications......The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side...

  18. Weighted Clustering

    CERN Document Server

    Ackerman, Margareta; Branzei, Simina; Loker, David

    2011-01-01

    In this paper we investigate clustering in the weighted setting, in which every data point is assigned a real valued weight. We conduct a theoretical analysis on the influence of weighted data on standard clustering algorithms in each of the partitiona