WorldWideScience

Sample records for cluster expansion

  1. Chemical graph-theoretic cluster expansions

    International Nuclear Information System (INIS)

    Klein, D.J.

    1986-01-01

    A general computationally amenable chemico-graph-theoretic cluster expansion method is suggested as a paradigm for incorporation of chemical structure concepts in a systematic manner. The cluster expansion approach is presented in a formalism general enough to cover a variety of empirical, semiempirical, and even ab initio applications. Formally such approaches for the utilization of chemical structure-related concepts may be viewed as discrete analogues of Taylor series expansions. The efficacy of the chemical structure concepts then is simply bound up in the rate of convergence of the cluster expansions. In many empirical applications, e.g., boiling points, chromatographic separation coefficients, and biological activities, this rate of convergence has been observed to be quite rapid. More note will be made here of quantum chemical applications. Relations to questions concerning size extensivity of energies and size consistency of wave functions are addressed

  2. Stochastic coupled cluster theory: Efficient sampling of the coupled cluster expansion

    Science.gov (United States)

    Scott, Charles J. C.; Thom, Alex J. W.

    2017-09-01

    We consider the sampling of the coupled cluster expansion within stochastic coupled cluster theory. Observing the limitations of previous approaches due to the inherently non-linear behavior of a coupled cluster wavefunction representation, we propose new approaches based on an intuitive, well-defined condition for sampling weights and on sampling the expansion in cluster operators of different excitation levels. We term these modifications even and truncated selections, respectively. Utilising both approaches demonstrates dramatically improved calculation stability as well as reduced computational and memory costs. These modifications are particularly effective at higher truncation levels owing to the large number of terms within the cluster expansion that can be neglected, as demonstrated by the reduction of the number of terms to be sampled when truncating at triple excitations by 77% and hextuple excitations by 98%.

  3. Cluster expansion for vacuum confining fields

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1987-01-01

    Colored particle Green functions in vacuum background random fields are written as path integrals. Averaging over random fields is done using the cluster (cumulant) expansion. The existence of a finite correlation length for vacuum background fields is shown to produce the linear confinement, in agreement with the results, obtained with the help of averaged Hamiltonians. A modified form of cluster expansion for nonabelian fields is introduced using the path-ordered cumulants

  4. Cluster expansion of the wavefunction. Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory

    International Nuclear Information System (INIS)

    Nakatsuji, H.; Hirao, K.

    1978-01-01

    The symmetry-adapted-cluster (SAC) expansion of an exact wavefunction is given. It is constructed from the generators of the symmetry-adapted excited configurations having the symmetry under consideration, and includes their higher-order effect and self-consistency effect. It is different from the conventional cluster expansions in several important points, and is suitable for applications to open-shell systems as well as closed-shell systems. The variational equation for the SAC wavefunction has a form similar to the generalized Brillouin theorem in accordance with the inclusion of the higher-order effect and the self-consistency effect. We have expressed some existing open-shell orbital theories equivalently in the conventional cluster expansion formulas, and on this basis, we have given the pseudo-orbital theory which is an extension of open-shell orbital theory in the SAC expansion formula

  5. Topological charges and convergence of the cluster expansion

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1989-01-01

    Cluster expansion of Wilson loops is shown to diverge for the QCD vacuum populated by topological objects (instantons, magnetic monopoles). Using simple models the total sum of the cluster expansion for the string tension is calculated and found to be zero for instantons and nonzero for magnetic monopoles. 14 refs

  6. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  7. Alloy design as an inverse problem of cluster expansion models

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Kalidindi, Arvind R.; Schmidt, Søren

    2017-01-01

    Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding the configurat......Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding...... the inverse problem in terms of energetically distinct configurations, using a constraint satisfaction model to identify constructible configurations, and show that a convex hull can be used to identify ground states. To demonstrate the approach, we solve for all ground states for a binary alloy in a 2D...

  8. A cluster expansion model for predicting activation barrier of atomic processes

    International Nuclear Information System (INIS)

    Rehman, Tafizur; Jaipal, M.; Chatterjee, Abhijit

    2013-01-01

    We introduce a procedure based on cluster expansion models for predicting the activation barrier of atomic processes encountered while studying the dynamics of a material system using the kinetic Monte Carlo (KMC) method. Starting with an interatomic potential description, a mathematical derivation is presented to show that the local environment dependence of the activation barrier can be captured using cluster interaction models. Next, we develop a systematic procedure for training the cluster interaction model on-the-fly, which involves: (i) obtaining activation barriers for handful local environments using nudged elastic band (NEB) calculations, (ii) identifying the local environment by analyzing the NEB results, and (iii) estimating the cluster interaction model parameters from the activation barrier data. Once a cluster expansion model has been trained, it is used to predict activation barriers without requiring any additional NEB calculations. Numerical studies are performed to validate the cluster expansion model by studying hop processes in Ag/Ag(100). We show that the use of cluster expansion model with KMC enables efficient generation of an accurate process rate catalog

  9. A cluster expansion for bound three-alpha particles as a three-body problem

    International Nuclear Information System (INIS)

    Osman, A.

    1981-08-01

    A three-body model is proposed to study the nuclear bound states. The nucleus is described as a bound state of three clusters. A cluster expansion is introduced for the three cluster bound state problem. The present integral equations are treated by simple approximate solutions, which lead to effective potentials by using the present cluster expansion. The 12 C nucleus is described as a three-alpha particle bound state. The binding energy of 12 C is calculated numerically using the present cluster expansion as bound three-alpha clusters. The present three-body cluster expansion calculations are very near to the exact three-body calculations using separable potentials. The present theoretical calculations are in good agreement with the experimental measurements. (author)

  10. Scaling behavior of ground-state energy cluster expansion for linear polyenes

    Science.gov (United States)

    Griffin, L. L.; Wu, Jian; Klein, D. J.; Schmalz, T. G.; Bytautas, L.

    Ground-state energies for linear-chain polyenes are additively expanded in a sequence of terms for chemically relevant conjugated substructures of increasing size. The asymptotic behavior of the large-substructure limit (i.e., high-polymer limit) is investigated as a means of characterizing the rapidity of convergence and consequent utility of this energy cluster expansion. Consideration is directed to computations via: simple Hückel theory, a refined Hückel scheme with geometry optimization, restricted Hartree-Fock self-consistent field (RHF-SCF) solutions of fixed bond-length Parisier-Parr-Pople (PPP)/Hubbard models, and ab initio SCF approaches with and without geometry optimization. The cluster expansion in what might be described as the more "refined" approaches appears to lead to qualitatively more rapid convergence: exponentially fast as opposed to an inverse power at the simple Hückel or SCF-Hubbard levels. The substructural energy cluster expansion then seems to merit special attention. Its possible utility in making accurate extrapolations from finite systems to extended polymers is noted.

  11. Time expansion chamber and single ionization cluster measurement

    International Nuclear Information System (INIS)

    Walenta, A.H.

    1978-10-01

    The time expansion chamber (TEC), a new type of drift chamber, allows the measurement of microscopic details of ionization. The mean drift time interval from subsequent sngle ionization clusters of a relativistic particle in the TEC can be made large enough compared to the width of a anode signal to allow the recording of the clusters separately. Since single primary electrons can be detected, the cluster counting would allow an improved particle separation using the relativistic rise of primary ionization. In another application, very high position accuracy for track detectors or improved energy resolution may be obtained. Basic ionization phenomena and drift properties can be measured at the single electron level

  12. Bosonization of fermion operators as linked-cluster expansions

    International Nuclear Information System (INIS)

    Kishimoto, T.; Tamura, T.

    1983-01-01

    In order for a boson-expansion theory to be useful for practical purposes, it must satisfy at least two requirements: It must be in the form of a linked-cluster expansion, and the pure (ideal) boson states must be usable as basis states. Previously, we constructed such a boson theory and used it successfully for many realistic calculations. This construction, however, lacked mathematical rigor. In the present paper, we develop an entirely new approach, which results in the same boson expansions obtained earlier, but now in a mathematically rigorous fashion. The achievement of the new formalism goes beyond this. Its framework is much more general and flexible than was that of the earlier formalism, and it allows us to extend the calculations beyond what had been done in the past

  13. Linked cluster expansions for open quantum systems on a lattice

    Science.gov (United States)

    Biella, Alberto; Jin, Jiasen; Viyuela, Oscar; Ciuti, Cristiano; Fazio, Rosario; Rossini, Davide

    2018-01-01

    We propose a generalization of the linked-cluster expansions to study driven-dissipative quantum lattice models, directly accessing the thermodynamic limit of the system. Our method leads to the evaluation of the desired extensive property onto small connected clusters of a given size and topology. We first test this approach on the isotropic spin-1/2 Hamiltonian in two dimensions, where each spin is coupled to an independent environment that induces incoherent spin flips. Then we apply it to the study of an anisotropic model displaying a dissipative phase transition from a magnetically ordered to a disordered phase. By means of a Padé analysis on the series expansions for the average magnetization, we provide a viable route to locate the phase transition and to extrapolate the critical exponent for the magnetic susceptibility.

  14. A cluster expansion approach to exponential random graph models

    International Nuclear Information System (INIS)

    Yin, Mei

    2012-01-01

    The exponential family of random graphs are among the most widely studied network models. We show that any exponential random graph model may alternatively be viewed as a lattice gas model with a finite Banach space norm. The system may then be treated using cluster expansion methods from statistical mechanics. In particular, we derive a convergent power series expansion for the limiting free energy in the case of small parameters. Since the free energy is the generating function for the expectations of other random variables, this characterizes the structure and behavior of the limiting network in this parameter region

  15. Cluster-Expansion Model for Complex Quinary Alloys: Application to Alnico Permanent Magnets

    Science.gov (United States)

    Nguyen, Manh Cuong; Zhou, Lin; Tang, Wei; Kramer, Matthew J.; Anderson, Iver E.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-11-01

    An accurate and transferable cluster-expansion model for complex quinary alloys is developed. Lattice Monte Carlo simulation enabled by this cluster-expansion model is used to investigate temperature-dependent atomic structure of alnico alloys, which are considered as promising high-performance non-rare-earth permanent-magnet materials for high-temperature applications. The results of the Monte Carlo simulations are consistent with available experimental data and provide useful insights into phase decomposition, selection, and chemical ordering in alnico. The simulations also reveal a previously unrecognized D 03 alloy phase. This phase is very rich in Ni and exhibits very weak magnetization. Manipulating the size and location of this phase provides a possible route to improve the magnetic properties of alnico, especially coercivity.

  16. Ternary alloy material prediction using genetic algorithm and cluster expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chong [Iowa State Univ., Ames, IA (United States)

    2015-12-01

    This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable compounds. We started from the current ten known experimental phases, and calculated formation energies of those compounds using density functional theory (DFT) package, namely, VASP. The convex hull was generated based on the DFT calculations of the experimental known phases. Then we did random search on some metal rich (Fe and V) compositions and found that the lowest energy structures were body centered cube (bcc) underlying lattice, under which we did our computational systematic searches using genetic algorithm and cluster expansion. Among hundreds of the searched compositions, thirteen were selected and DFT formation energies were obtained by VASP. The stability checking of those thirteen compounds was done in reference to the experimental convex hull. We found that the composition, 24-8-16, i.e., Fe3VSi2 is a new stable phase and it can be very inspiring to the future experiments.

  17. Interaction of intense electromagnetic fields with SF6 molecules and clusters in supersonic expansion

    International Nuclear Information System (INIS)

    Airoldi, V.J.T.

    1987-01-01

    A method of measuring SF 6 cluster formation and inhibition in pulsed supersonic expansion in the presence of intense electromagnetic radiation is presented. The characterization of the expansion of SF 6 molecules was done and, the extension of the collision region was determined. An improved unidimensional theory of supersonic expansion showed good agreement with the experimental results. The spectra of multiphoton absorption of SF 6 molecules in supersonic jet and the average energy absorved by each molecule were determined. The absorption spectra of molecule in the collision region present absorption maxima different from those obtained in the collisionless region. The results, if compared with the literature data, show good agreement, with a small difference in the spetra corresponding to the collisionless region. This difference was observed, for the first time in the multiphoton absorption and is attribuited to cluster formation in the jet. A new technique for measuring cluster formation in the supersonic jet, based on determination of the spatial distribution of the energy of molecules in the jet after passing through a skimmer located in the collision region is shown. The inhibition of cluster formation, due to the incidence of intense electromagnetic radiation from a CO 2 -TEA pulsed laser in the initial collision region of the jet, causes a second expansion in the skimmer. The results obtained show that this method can lead to a new isotope separation process. All the parts of the experimental set up, for example, high vacuum system, pulsed valve and pyroelectric detector, were developed and constructed specially for the experiment. (Author) [pt

  18. Core expansion in young star clusters in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Elson, R.A.W.; Freeman, K.C.; Lauer, T.R.

    1989-01-01

    The core radii of 18 rich star clusters in the LMC with ages from 10 Myr to 1 Gyr. Data for an additional 17 clusters with ages from 1 Myr to 10 Gyr are available in the literature. The combined sample shows that the core radii increase from about 0 to about 5 pc between about 1 Myr and 1 Gyr, and then begin to decrease again. The expansion of the cores is probably driven by mass loss from evolving stars. Models of cluster evolution show that the rate of increase in core radius is sensitive to the slope of the initial mass function. The observed core radius-age relation for the LMC clusters favors an intial mass function with slope slightly flatter than the Salpeter value. 20 refs

  19. Thermodynamics of non-ideal QGP using Mayers cluster expansion method

    International Nuclear Information System (INIS)

    Prasanth, J.P; Simji, P.; Bannur, Vishnu M.

    2013-01-01

    The Quark gluon plasma (QGP) is the state in which the individual hadrons dissolve into a system of free (or almost free) quarks and gluons in strongly compressed system at high temperature. The present paper aims to calculate the critical temperature at which a non-ideal three quark plasma condenses into droplet of three quarks (i.e., into a liquid of baryons) using Mayers cluster expansion method

  20. Cluster expansion for abstract polymer models New bounds from an old approach

    CERN Document Server

    Fernández, R

    2006-01-01

    We revisit the classical approach to cluster expansions, based on tree graphs, and establish a new convergence condition that improves those by Koteck\\'y-Preiss and Dobrushin, as we show in some examples. The strategy is to better exploit a well known tree-graph expression, due to Penrose.

  1. Quantum-statistical mechanics of an atom-dimer mixture: Lee-Yang cluster expansion approach

    International Nuclear Information System (INIS)

    Ohkuma, Takahiro; Ueda, Masahito

    2006-01-01

    We use the Lee-Yang cluster expansion method to study quantum-statistical properties of a mixture of interconvertible atoms and dimers, where the dimers form in a two-body bound state of the atoms. We point out an infinite series of cluster diagrams whose summation leads to the Bose-Einstein condensation of the dimers below a critical temperature. Our theory captures some important features of a cold atom-dimer mixture such as interconversion of atoms and dimers and properties of the mixture at the unitarity limit

  2. Temperature evaluation of UF6 and cluster detection in nozzle expansion using low-resolution infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Sbampato, M.E.; Antunes, L.M.D.; Miranda, S.F.; Sena, S.C.; Santos, A.M.

    1998-01-01

    The continuous supersonic expansion of pure gaseous UF 6 and mixtures of UF 6 with argon and nitrogen through a bidimensional nozzle was studied using low-resolution infrared spectroscopy in the ν 3 absorption band region. The experiments were carried out in order to calculate the molecular temperature of the beam and also to verify cluster formation in the expansion. The molecular beam temperature evaluation was based on the measurements of the low-resolution bandwidth, which were compared to simulated spectra results. The temperatures were also evaluated using the measured pressure at the end of the nozzle by a Pitot tube. In the conditions where no cluster formation was observed the calculated theoretical temperatures using an equilibrium expansion model are in good agreement with the data obtained through the analysis of the experimental spectra and through the Pitot tube pressure measurement. Cluster formation was observed for temperatures below about 120 K. In these conditions the infrared spectra showed shoulders in the region above 630 cm -1 and a shoulder or band between 616 and 600 cm -1 . (orig.)

  3. Derivation of the density functional theory from the cluster expansion.

    Science.gov (United States)

    Hsu, J Y

    2003-09-26

    The density functional theory is derived from a cluster expansion by truncating the higher-order correlations in one and only one term in the kinetic energy. The formulation allows self-consistent calculation of the exchange correlation effect without imposing additional assumptions to generalize the local density approximation. The pair correlation is described as a two-body collision of bound-state electrons, and modifies the electron- electron interaction energy as well as the kinetic energy. The theory admits excited states, and has no self-interaction energy.

  4. Virial Expansion Bounds

    Science.gov (United States)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  5. Cluster expansion of the solvation free energy difference: Systematic improvements in the solvation of single ions

    Science.gov (United States)

    Pliego, Josefredo R.

    2017-07-01

    The cluster expansion method has been used in the imperfect gas theory for several decades. This paper proposes a cluster expansion of the solvation free energy difference. This difference, which results from a change in the solute-solvent potential energy, can be written as the logarithm of a finite series. Similar to the Mayer function, the terms in the series are related to configurational integrals, which makes the integrand relevant only for configurations of the solvent molecules close to the solute. In addition, the terms involve interaction of solute with one, two, and so on solvent molecules. The approach could be used for hybrid quantum mechanical and molecular mechanics methods or mixed cluster-continuum approximation. A simple form of the theory was applied for prediction of pKa in methanol; the results indicated that three explicit methanol molecules and the dielectric continuum lead to a root of mean squared error (RMSE) of only 1.3 pKa units, whereas the pure continuum solvation model based on density method leads to a RMSE of 6.6 pKa units.

  6. Hadron formation in a non-ideal quark gluon plasma using Mayer's method of cluster expansion

    International Nuclear Information System (INIS)

    Prasanth, J.P.; Bannur, Vishnu M.

    2015-01-01

    This work investigates the applicability of using the Mayer's cluster expansion method to derive the equation of state (EoS) of the quark-antiquark plasma. Dissociation of heavier hadrons in QGP is studied. The possibility of the existence of quarkonium after deconfinement at higher temperature than the critical temperature T > T c is investigated. The EoS has been studied by calculating second and third cluster integrals. The results are compared and discussed with available works. (author)

  7. Observation of propane cluster size distributions during nucleation and growth in a Laval expansion

    Energy Technology Data Exchange (ETDEWEB)

    Ferreiro, Jorge J.; Chakrabarty, Satrajit; Schläppi, Bernhard; Signorell, Ruth [Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich (Switzerland)

    2016-12-07

    We report on molecular-level studies of the condensation of propane gas and propane/ethane gas mixtures in the uniform (constant pressure and temperature) postnozzle flow of Laval expansions using soft single-photon ionization by vacuum ultraviolet light and mass spectrometric detection. The whole process, from the nucleation to the growth to molecular aggregates of sizes of several nanometers (∼5 nm), can be monitored at the molecular level with high time-resolution (∼3 μs) for a broad range of pressures and temperatures. For each time, pressure, and temperature, a whole mass spectrum is recorded, which allows one to determine the critical cluster size range for nucleation as well as the kinetics and mechanisms of cluster-size specific growth. The detailed information about the size, composition, and population of individual molecular clusters upon condensation provides unique experimental data for comparison with future molecular-level simulations.

  8. Linked cluster expansion in the SU(2) lattice Higgs model at strong gauge coupling

    International Nuclear Information System (INIS)

    Wagner, C.E.M.

    1989-01-01

    A linked cluster expansion is developed for the β=0 limit of the SU(2) Higgs model. This method, when combined with strong gauge coupling expansions, is used to obtain the phase transition surface and the behaviour of scalar and vector masses in the lattice regularized theory. The method, in spite of the low order of truncation of the series applied, gives a reasonable agreement with Monte Carlo data for the phase transition surface and a qualitatively good picture of the behaviour of Higgs, glueball and gauge vector boson masses, in the strong coupling limit. Some limitations of the method are discussed, and an intuitive picture of the different behaviour for small and large bare self-coupling λ is given. (orig.)

  9. Investigation of the alpha cluster model and the density matrix expansion in ion-ion collision

    International Nuclear Information System (INIS)

    Rashdan, M.B.M.

    1986-01-01

    This thesis deals with the investigation of the alpha cluster model (ACM) of brink and studies of the accuracy of the density matrix expansion (DME) approximation in deriving the real part of the ion-ion optical potential. the ACM is applied to calculate the inelastic 0 1 + →2 1 + charge form factor for electron scattering by 12 C to investigate the validity of this model for 12 C nucleus. it is found that the experimental curve can be fitted over the entire range of the momentum transfer by a generator - coordinate state for the 2 1 + state that consist of a superposition of two triangular ACM states with two different cluster separations and the same oscillator parameter

  10. Flexible Transmission Network Expansion Planning Considering Uncertain Renewable Generation and Load Demand Based on Hybrid Clustering Analysis

    Directory of Open Access Journals (Sweden)

    Yun-Hao Li

    2015-12-01

    Full Text Available This paper presents a flexible transmission network expansion planning (TNEP approach considering uncertainty. A novel hybrid clustering technique, which integrates the graph partitioning method and rough fuzzy clustering, is proposed to cope with uncertain renewable generation and load demand. The proposed clustering method is capable of recognizing the actual cluster distribution of complex datasets and providing high-quality clustering results. By clustering the hourly data for renewable generation and load demand, a multi-scenario model is proposed to consider the corresponding uncertainties in TNEP. Furthermore, due to the peak distribution characteristics of renewable generation and heavy investment in transmission, the traditional TNEP, which caters to rated renewable power output, is usually uneconomic. To improve the economic efficiency, the multi-objective optimization is incorporated into the multi-scenario TNEP model, while the curtailment of renewable generation is considered as one of the optimization objectives. The solution framework applies a modified NSGA-II algorithm to obtain a set of Pareto optimal planning schemes with different levels of investment costs and renewable generation curtailments. Numerical results on the IEEE RTS-24 system demonstrated the robustness and effectiveness of the proposed approach.

  11. A first principles investigation of the oxygen adsorption on Zr(0001) surface using cluster expansions

    Science.gov (United States)

    Samin, Adib J.; Taylor, Christopher D.

    2017-11-01

    The design of corrosion resistant zircalloys is important for a variety of technological applications ranging from medicine to the nuclear industry. Since corrosion resistance is mainly attributed to the formation of a surface oxide layer, developing a detailed understanding of this process may assist in future corrosion resistance design. In this work, we conduct a systematic multi-scale investigation of the early stages of oxide formation. This was accomplished by first using a database of fully relaxed DFT calculations to build a cluster-expansion description of the potential function. The developed potential was reasonably good at predicting DFT energies as evidenced by the cross-validation score of 4.4 meV/site. The effective cluster expansion parameters were indicative of repulsive adsorbate interactions in the adlayer in agreement with the literature. The potential then allowed for a systematic investigation of the oxygen configurations on the Zr(0001) surface via Monte Carlo simulations. The adsorption energy was recorded as a function of coverage and an increasing trend was observed in agreement with DFT predictions and the repulsive nature of interactions in the adlayer. The convex hull diagram was recorded indicating the most stable configuration to occur around a coverage of 0.6 ML. The adsorption isotherm was also recorded and contrasted for two temperatures relevant for different applications.

  12. Nuclear clusters as a probe for expansion flow in heavy ion reactions at (10 endash 15)A GeV

    International Nuclear Information System (INIS)

    Mattiello, R.; Mattiello, R.; Sorge, H.; Stoecker, H.; Greiner, W.

    1997-01-01

    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d, t, and He are predicted for central Au(11.6A GeV)Au and Si(14.6A GeV)Si reactions in the framework of the relativistic quantum molecular dynamics transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear open-quotes bounce-off close-quote close-quote event shape is seen: The averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields, particularly at low p t at midrapidities, and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows one to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters, and other hadrons. copyright 1997 The American Physical Society

  13. Investigation of Cu(In,Ga)Se{sub 2} using Monte Carlo and the cluster expansion technique

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Christian D.R.; Gruhn, Thomas; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University, Mainz (Germany); Windeln, Johannes [IBM Germany, Mgr. Technology Center ISC EMEA, Mainz (Germany)

    2010-07-01

    CIGS based solar cells are among the most promising thin-film techniques for cheap, yet efficient modules. They have been investigated for many years, but the full potential of CIGS cells has not yet been exhausted and many effects are not understood. For instance, the band gap of the absorber material Cu(In,Ga)Se{sub 2} varies with Ga content. The question why solar cells with high Ga content have low efficiencies, despite the fact that the band gap should have the optimum value, is still unanswered. We are using Monte Carlo simulations in combination with a cluster expansion to investigate the homogeneity of the In-Ga distribution as a possible cause of the low efficiency of cells with high Ga content. The cluster expansion is created by a fit to ab initio electronic structure energies. The results we found are crucial for the processing of solar cells, shed light on structural properties and give hints on how to significantly improve solar cell performance. Above the transition temperature from the separated to the mixed phase, we observe different sizes of the In and Ga domains for a given temperature. The In domains in the Ga-rich compound are smaller and less abundant than the Ga domains in the In-rich compound. This translates into the Ga-rich material being less homogeneous.

  14. Correlation expansion: a powerful alternative multiple scattering calculation method

    International Nuclear Information System (INIS)

    Zhao Haifeng; Wu Ziyu; Sebilleau, Didier

    2008-01-01

    We introduce a powerful alternative expansion method to perform multiple scattering calculations. In contrast to standard MS series expansion, where the scattering contributions are grouped in terms of scattering order and may diverge in the low energy region, this expansion, called correlation expansion, partitions the scattering process into contributions from different small atom groups and converges at all energies. It converges faster than MS series expansion when the latter is convergent. Furthermore, it takes less memory than the full MS method so it can be used in the near edge region without any divergence problem, even for large clusters. The correlation expansion framework we derive here is very general and can serve to calculate all the elements of the scattering path operator matrix. Photoelectron diffraction calculations in a cluster containing 23 atoms are presented to test the method and compare it to full MS and standard MS series expansion

  15. Performance criteria for graph clustering and Markov cluster experiments

    NARCIS (Netherlands)

    S. van Dongen

    2000-01-01

    textabstractIn~[1] a cluster algorithm for graphs was introduced called the Markov cluster algorithm or MCL~algorithm. The algorithm is based on simulation of (stochastic) flow in graphs by means of alternation of two operators, expansion and inflation. The results in~[2] establish an intrinsic

  16. Distribution and evolution of electrons in a cluster plasma created by a laser pulse

    International Nuclear Information System (INIS)

    Smirnov, M.B.

    2003-01-01

    We analyze the properties and the character of the evolution of an electron subsystem of a large cluster (with a number of atoms n ∼ 10 4 -10 6 ) interacting with a short laser pulse of high intensity (10 17 -10 19 W/cm 2 ). As a result of ionization in a strong laser field, cluster atoms are converted into multicharged ions, part of the electrons being formed leaves the cluster, and the other electrons move in a self-consistent field of the charged cluster and the laser wave. It is shown that electron-electron collisions are inessential both during the cluster irradiation by the laser pulse and in the course of cluster expansion; the electron distribution in the cluster therefore does not transform into the Maxwell distribution even during cluster expansion. During cluster expansion, the Coulomb field of a cluster charge acts on cluster ions more strongly than the pressure resulting from electron-ion collisions. In addition, bound electrons remain inside the cluster in the course of its expansion, and cluster expansion therefore does not lead to additional cluster ionization

  17. Biorthogonal moment expansions in coupled-cluster theory: Review of key concepts and merging the renormalized and active-space coupled-cluster methods

    International Nuclear Information System (INIS)

    Shen Jun; Piecuch, Piotr

    2012-01-01

    Graphical abstract: The key ideas behind biorthogonal moment expansions in coupled-cluster theory are discussed. Methods that enable merging active-space and renormalized coupled-cluster approaches are proposed and tested. Abstract: After reviewing recent progress in the area of the development of coupled-cluster (CC) methods for quasi-degenerate electronic states that are characterized by stronger non-dynamical correlation effects, including new generations of single- and multi-reference approaches that can handle bond breaking and excited states dominated by many-electron transitions, and after discussing the key elements of the left-eigenstate completely renormalized (CR) CC and equation-of-motion (EOM) CC methods, and the underlying biorthogonal method of moments of CC (MMCC) equations [P. Piecuch, M. Włoch, J. Chem. Phys. 123 (2005) 224105; P. Piecuch, M. Włoch, J.R. Gour, A. Kinal, Chem. Phys. Lett. 418 (2006) 467; M. Włoch, M.D. Lodriguito, P. Piecuch, J.R. Gour, Mol. Phys. 104 (2006) 2149], it is argued that it is beneficial to merge the CR-CC/EOMCC and active-space CC/EOMCC [P. Piecuch, Mol. Phys. 108 (2010) 2987, and references therein] theories into a single formalism. In order to accomplish this goal, the biorthogonal MMCC theory, which provides compact many-body expansions for the differences between the full configuration interaction and CC or, in the case of excited states, EOMCC energies, obtained using conventional truncation schemes in the cluster operator T and excitation operator R μ , is generalized, so that one can correct the CC/EOMCC energies obtained with arbitrary truncations in T and R μ for the selected many-electron correlation effects of interest. The resulting moment expansions, defining the new, Flexible MMCC (Flex-MMCC) formalism, and the ensuing CC(P; Q) hierarchy, proposed in the present work, enable one to correct energies obtained in the active-space CC and EOMCC calculations, in which one selects higher many

  18. CO2 laser photolysis of clustered ions, (1)

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Soga, Takeshi; Suzuki, Kazuya; Ohno, Shin-ichi.

    1990-09-01

    Vibrational excitation and the following decomposition of cluster ions by CO 2 laser photons are studied. Characteristics of the cluster ion and the CO 2 laser photon are summarized in their relation to the photolysis of cluster ions. An apparatus was installed, which is composed of (1) corona discharge-jet expansion section (formation of cluster ions), (2) CO 2 laser section (photolysis of cluster ions), and (3) mass spectrometer section. Experimental results of ammonia cluster ions were described. Effects of repeller voltage, shape of repellers, and adiabatic cooling are examined on the formation of ammonia cluster ions by corona discharge-jet expansion method. Collisional dissociation of cluster ions was observed at high repeller voltages. Size distribution of the ammonia cluster ion is discussed in connection with the temperature of cluster ions. Intensity of CO 2 laser was related to decomposition yield of cluster ions. (author)

  19. MicroRNA Cluster miR-17-92 Regulates Neural Stem Cell Expansion and Transition to Intermediate Progenitors in the Developing Mouse Neocortex

    Directory of Open Access Journals (Sweden)

    Shan Bian

    2013-05-01

    Full Text Available During development of the embryonic neocortex, tightly regulated expansion of neural stem cells (NSCs and their transition to intermediate progenitors (IPs are critical for normal cortical formation and function. Molecular mechanisms that regulate NSC expansion and transition remain unclear. Here, we demonstrate that the microRNA (miRNA miR-17-92 cluster is required for maintaining proper populations of cortical radial glial cells (RGCs and IPs through repression of Pten and Tbr2 protein. Knockout of miR-17-92 and its paralogs specifically in the developing neocortex restricts NSC proliferation, suppresses RGC expansion, and promotes transition of RGCs to IPs. Moreover, Pten and Tbr2 protectors specifically block silencing activities of endogenous miR-17-92 and control proper numbers of RGCs and IPs in vivo. Our results demonstrate a critical role for miRNAs in promoting NSC proliferation and modulating the cell-fate decision of generating distinct neural progenitors in the developing neocortex.

  20. Coma cluster of galaxies

    Science.gov (United States)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  1. Perturbation Expansion in Dynamical Nuclear Field Theory and Its Relation with Boson Expansion Theory : Nuclear Physics

    OpenAIRE

    Teruo, KISHIMOTO; Tetsuo, KAMMURI; Institute of Physics, University of Tsukuba; Department of Physics, Osaka University

    1990-01-01

    With the Dynamical Nuclear Field Theory (DNFT) in the Tamm-Dancoff representation we examine higher order corrections in the vibrational mode of a spherical nuclear system. Due to the effects of bubble diagrams, the perturbation expansion in terms of the unrenormalized coupling strength and boson energy fails at full self-consistency. On the other hand, it becomes applicable in the form of linked-cluster expansion when we use thses constants renormalized by the effect of bubble diagrams, in t...

  2. Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. I. Triples expansions.

    Science.gov (United States)

    Eriksen, Janus J; Matthews, Devin A; Jørgensen, Poul; Gauss, Jürgen

    2016-05-21

    The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T-n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test set of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T-n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T-n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.

  3. Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. I. Triples expansions

    Energy Technology Data Exchange (ETDEWEB)

    Eriksen, Janus J., E-mail: janusje@chem.au.dk; Jørgensen, Poul [qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Matthews, Devin A. [The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Gauss, Jürgen [Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany)

    2016-05-21

    The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T–n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test set of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T–n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T–n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.

  4. The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on gamma-Al2O3.

    Science.gov (United States)

    Sanchez, Sergio I; Menard, Laurent D; Bram, Ariella; Kang, Joo H; Small, Matthew W; Nuzzo, Ralph G; Frenkel, Anatoly I

    2009-05-27

    The structural dynamics-cluster size and adsorbate-dependent thermal behaviors of the metal-metal (M-M) bond distances and interatomic order-of Pt nanoclusters supported on a gamma-Al(2)O(3) are described. Data from scanning transmission electron microscopy (STEM) and X-ray absorption spectroscopy (XAS) studies reveal that these materials possess a dramatically nonbulklike nature. Under an inert atmosphere small, subnanometer Pt/gamma-Al(2)O(3) clusters exhibit marked relaxations of the M-M bond distances, negative thermal expansion (NTE) with an average linear thermal expansion coefficient alpha = (-2.4 +/- 0.4) x 10(-5) K(-1), large static disorder and dynamical bond (interatomic) disorder that is poorly modeled within the constraints of classical theory. The data further demonstrate a significant temperature-dependence to the electronic structure of the Pt clusters, thereby suggesting the necessity of an active model to describe the cluster/support interactions mediating the cluster's dynamical structure. The quantitative dependences of these nonbulklike behaviors on cluster size (0.9 to 2.9 nm), ambient atmosphere (He, 4% H(2) in He or 20% O(2) in He) and support identity (gamma-Al(2)O(3) or carbon black) are systematically investigated. We show that the nonbulk structural, electronic and dynamical perturbations are most dramatically evidenced for the smallest clusters. The adsorption of hydrogen on the clusters leads to an increase of the Pt-Pt bondlengths (due to a lifting of the surface relaxation) and significant attenuation of the disorder present in the system. Oxidation of these same clusters has the opposite effect, leading to an increase in Pt-Pt bond strain and subsequent enhancement in nonbulklike thermal properties. The structural and electronic properties of Pt nanoclusters supported on carbon black contrast markedly with those of the Pt/gamma-Al(2)O(3) samples in that neither NTE nor comparable levels of atomic disorder are observed. The Pt

  5. Voltage-dependent cluster expansion for electrified solid-liquid interfaces: Application to the electrochemical deposition of transition metals

    Science.gov (United States)

    Weitzner, Stephen E.; Dabo, Ismaila

    2017-11-01

    The detailed atomistic modeling of electrochemically deposited metal monolayers is challenging due to the complex structure of the metal-solution interface and the critical effects of surface electrification during electrode polarization. Accurate models of interfacial electrochemical equilibria are further challenged by the need to include entropic effects to obtain accurate surface chemical potentials. We present an embedded quantum-continuum model of the interfacial environment that addresses each of these challenges and study the underpotential deposition of silver on the gold (100) surface. We leverage these results to parametrize a cluster expansion of the electrified interface and show through grand canonical Monte Carlo calculations the crucial need to account for variations in the interfacial dipole when modeling electrodeposited metals under finite-temperature electrochemical conditions.

  6. Progressive Exponential Clustering-Based Steganography

    Directory of Open Access Journals (Sweden)

    Li Yue

    2010-01-01

    Full Text Available Cluster indexing-based steganography is an important branch of data-hiding techniques. Such schemes normally achieve good balance between high embedding capacity and low embedding distortion. However, most cluster indexing-based steganographic schemes utilise less efficient clustering algorithms for embedding data, which causes redundancy and leaves room for increasing the embedding capacity further. In this paper, a new clustering algorithm, called progressive exponential clustering (PEC, is applied to increase the embedding capacity by avoiding redundancy. Meanwhile, a cluster expansion algorithm is also developed in order to further increase the capacity without sacrificing imperceptibility.

  7. Notes on Mayer expansions and matrix models

    International Nuclear Information System (INIS)

    Bourgine, Jean-Emile

    2014-01-01

    Mayer cluster expansion is an important tool in statistical physics to evaluate grand canonical partition functions. It has recently been applied to the Nekrasov instanton partition function of N=2 4d gauge theories. The associated canonical model involves coupled integrations that take the form of a generalized matrix model. It can be studied with the standard techniques of matrix models, in particular collective field theory and loop equations. In the first part of these notes, we explain how the results of collective field theory can be derived from the cluster expansion. The equalities between free energies at first orders is explained by the discrete Laplace transform relating canonical and grand canonical models. In a second part, we study the canonical loop equations and associate them with similar relations on the grand canonical side. It leads to relate the multi-point densities, fundamental objects of the matrix model, to the generating functions of multi-rooted clusters. Finally, a method is proposed to derive loop equations directly on the grand canonical model

  8. Diagrammatic analysis of correlations in polymer fluids: Cluster diagrams via Edwards' field theory

    International Nuclear Information System (INIS)

    Morse, David C.

    2006-01-01

    Edwards' functional integral approach to the statistical mechanics of polymer liquids is amenable to a diagrammatic analysis in which free energies and correlation functions are expanded as infinite sums of Feynman diagrams. This analysis is shown to lead naturally to a perturbative cluster expansion that is closely related to the Mayer cluster expansion developed for molecular liquids by Chandler and co-workers. Expansion of the functional integral representation of the grand-canonical partition function yields a perturbation theory in which all quantities of interest are expressed as functionals of a monomer-monomer pair potential, as functionals of intramolecular correlation functions of non-interacting molecules, and as functions of molecular activities. In different variants of the theory, the pair potential may be either a bare or a screened potential. A series of topological reductions yields a renormalized diagrammatic expansion in which collective correlation functions are instead expressed diagrammatically as functionals of the true single-molecule correlation functions in the interacting fluid, and as functions of molecular number density. Similar renormalized expansions are also obtained for a collective Ornstein-Zernicke direct correlation function, and for intramolecular correlation functions. A concise discussion is given of the corresponding Mayer cluster expansion, and of the relationship between the Mayer and perturbative cluster expansions for liquids of flexible molecules. The application of the perturbative cluster expansion to coarse-grained models of dense multi-component polymer liquids is discussed, and a justification is given for the use of a loop expansion. As an example, the formalism is used to derive a new expression for the wave-number dependent direct correlation function and recover known expressions for the intramolecular two-point correlation function to first-order in a renormalized loop expansion for coarse-grained models of

  9. Local expansion flows of galaxies: quantifying acceleration effect of dark energy

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.

    2013-08-01

    The nearest expansion flow of galaxies observed around the Local group is studied as an archetypical example of the newly discovered local expansion flows around groups and clusters of galaxies in the nearby Universe. The flow is accelerating due to the antigravity produced by the universal dark energy background. We introduce a new acceleration measure of the flow which is the dimensionless ``acceleration parameter" Q (x) = x - x-2 depending on the normalized distance x only. The parameter is zero at the zero-gravity distance x = 1, and Q(x) ∝ x, when x ≫ 1. At the distance x = 3, the parameter Q = 2.9. Since the expansion flows have a self-similar structure in normalized variables, we expect that the result is valid as well for all the other expansion flows around groups and clusters of galaxies on the spatial scales from ˜ 1 to ˜ 10 Mpc everywhere in the Universe.

  10. Observation of the inhomogeneous spatial distribution of MeV ions accelerated by the hydrodynamic ambipolar expansion of clusters

    International Nuclear Information System (INIS)

    Kanasaki, Masato; Jinno, Satoshi; Sakaki, Hironao; Faenov, Anatoly Ya.; Pikuz, Tatiana A.; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Kando, Masaki; Sugiyama, Akira; Kondo, Kiminori; Matsui, Ryutaro; Kishimoto, Yasuaki; Morishima, Kunihiro; Watanabe, Yukinobu; Scullion, Clare; Smyth, Ashley G.; Alejo, Aaron; Doria, Domenico; Kar, Satyabrata; Borghesi, Marco

    2015-01-01

    An inhomogeneous spatial distribution of laser accelerated carbon/oxygen ions produced via the hydrodynamic ambipolar expansion of CO_2 clusters has been measured by using CR-39 detectors. An inhomogeneous etch pits spatial distribution has appeared on the etched CR-39 detector installed on the laser propagation direction, while homogeneous ones are appeared on those installed at 45° and 90° from the laser propagation direction. From the range of ions in CR-39 obtained by using the multi-step etching technique, the averaged energies of carbon/oxygen ions for all directions are determined as 0.78 ± 0.09 MeV/n. The number of ions in the laser propagation direction is about 1.5 times larger than those in other directions. The inhomogeneous etch pits spatial distribution in the laser propagation direction could originate from an ion beam collimation and modulation by the effect of electromagnetic structures created in the laser plasma. - Highlights: • A spatial distribution of ions due to hydrodynamic ambipolar expansion is measured. • The homogeneous ion energy distribution of 0.78 ± 0.09 MeV/n is measured by CR-39. • The number of ions in the laser axis is about 1.5 times larger than other directions.

  11. Cumulants in perturbation expansions for non-equilibrium field theory

    International Nuclear Information System (INIS)

    Fauser, R.

    1995-11-01

    The formulation of perturbation expansions for a quantum field theory of strongly interacting systems in a general non-equilibrium state is discussed. Non-vanishing initial correlations are included in the formulation of the perturbation expansion in terms of cumulants. The cumulants are shown to be the suitable candidate for summing up the perturbation expansion. Also a linked-cluster theorem for the perturbation series with cumulants is presented. Finally a generating functional of the perturbation series with initial correlations is studied. We apply the methods to a simple model of a fermion-boson system. (orig.)

  12. The far from equilibrium structure of argon clusters doped with krypton or xenon.

    Science.gov (United States)

    Lindblad, A; Bergersen, H; Rander, T; Lundwall, M; Ohrwall, G; Tchaplyguine, M; Svensson, S; Björneholm, O

    2006-04-28

    Heterogeneous clusters created by doping Ar host clusters with Kr or Xe are shown to have radically different structures from the mixed clusters of the same type created by co-expansion of Ar-Kr or Ar-Xe gas mixtures. In contrast to the co-expansion case, the doped mixed clusters can be produced with Kr or Xe on the surface and Ar in the bulk. With the doping technique it is thus possible to control the surface composition of a specific cluster. A study of the cluster properties as a function of the doping pressure is also reported for the case of Ar clusters doped with Xe. The clusters have been studied by means of synchrotron radiation based X-ray photoelectron spectroscopy.

  13. Fine‐Grained Mobile Application Clustering Model Using Retrofitted Document Embedding

    Directory of Open Access Journals (Sweden)

    Yeo‐Chan Yoon

    2017-08-01

    Full Text Available In this paper, we propose a fine‐grained mobile application clustering model using retrofitted document embedding. To automatically determine the clusters and their numbers with no predefined categories, the proposed model initializes the clusters based on title keywords and then merges similar clusters. For improved clustering performance, the proposed model distinguishes between an accurate clustering step with titles and an expansive clustering step with descriptions. During the accurate clustering step, an automatically tagged set is constructed as a result. This set is utilized to learn a high‐performance document vector. During the expansive clustering step, more applications are then classified using this document vector. Experimental results showed that the purity of the proposed model increased by 0.19, and the entropy decreased by 1.18, compared with the K‐means algorithm. In addition, the mean average precision improved by more than 0.09 in a comparison with a support vector machine classifier.

  14. Explosions of water clusters in intense laser fields

    International Nuclear Information System (INIS)

    Kumarappan, V.; Krishnamurthy, M.; Mathur, D.

    2003-01-01

    Energetic, highly charged oxygen ions O q+ (q≤6), are copiously produced upon laser field-induced disassembly of highly charged water clusters, (H 2 O) n and (D 2 O) n , n∼60, that are formed by seeding high-pressure helium or argon with water vapor. Ar n clusters (n∼40 000) formed under similar experimental conditions are found to undergo disassembly in the Coulomb explosion regime, with the energies of Ar q+ ions showing a q 2 dependence. Water clusters, which are argued to be considerably smaller in size, should also disassemble in the same regime, but the energies of fragment O q+ ions are found to depend linearly on q which, according to prevailing wisdom, ought to be a signature of hydrodynamic expansion that is expected of much larger clusters. The implication of these observations on our understanding of the two cluster explosion regimes, Coulomb explosion and hydrodynamic expansion, is discussed. Our results indicate that charge state dependences of ion energy do not constitute an unambiguous experimental signature of cluster explosion regime

  15. Core level photoelectron spectroscopy probed heterogeneous xenon/neon clusters

    International Nuclear Information System (INIS)

    Pokapanich, Wandared; Björneholm, Olle; Öhrwall, Gunnar; Tchaplyguine, Maxim

    2017-01-01

    Binary rare gas clusters; xenon and neon which have a significant contrariety between sizes, produced by a co-expansion set up and have been studied using synchrotron radiation based x-ray photoelectron spectroscopy. Concentration ratios of the heterogeneous clusters; 1%, 3%, 5% and 10% were controlled. The core level spectra were used to determine structure of the mixed cluster and analyzed by considering screening mechanisms. Furthermore, electron binding energy shift calculations demonstrated cluster aggregation models which may occur in such process. The results showed that in the case of low mixing ratios of 3% and 5% of xenon in neon, the geometric structures exhibit xenon in the center and xenon/neon interfaced in the outer shells. However, neon cluster vanished when the concentration of xenon was increased to 10%. - Highlights: • Co-expansion setup is suitable for producing binary Xe/Ne clusters. • Appropriate temperature, pressure, and mixing ratios should be strictly controlled. • Low mixing ratio, Xe formed in the core and Xe/Ne interfacing in the outer shell. • High mixing ratio, only pure Xe clusters were detected.

  16. Ionized-cluster source based on high-pressure corona discharge

    International Nuclear Information System (INIS)

    Lokuliyanage, K.; Huber, D.; Zappa, F.; Scheier, P.

    2006-01-01

    Full text: It has been demonstrated that energetic beams of large clusters, with thousands of atoms, can be a powerful tool for surface modification. Normally ionized cluster beams are obtained by electron impact on neutral beams produced in a supersonic expansion. At the University of Innsbruck we are pursuing the realization of a high current cluster ion source based on the corona discharge.The idea in the present case is that the ionization should occur prior to the supersonic expansion, thus supersede the need of subsequent electron impact. In this contribution we present the project of our source in its initial stage. The intensity distribution of cluster sizes as a function of the source parameters, such as input pressure, temperature and gap voltage, are investigated with the aid of a custom-built time of flight mass spectrometer. (author)

  17. Ancient expansion of the hox cluster in lepidoptera generated four homeobox genes implicated in extra-embryonic tissue formation.

    Directory of Open Access Journals (Sweden)

    Laura Ferguson

    2014-10-01

    Full Text Available Gene duplications within the conserved Hox cluster are rare in animal evolution, but in Lepidoptera an array of divergent Hox-related genes (Shx genes has been reported between pb and zen. Here, we use genome sequencing of five lepidopteran species (Polygonia c-album, Pararge aegeria, Callimorpha dominula, Cameraria ohridella, Hepialus sylvina plus a caddisfly outgroup (Glyphotaelius pellucidus to trace the evolution of the lepidopteran Shx genes. We demonstrate that Shx genes originated by tandem duplication of zen early in the evolution of large clade Ditrysia; Shx are not found in a caddisfly and a member of the basally diverging Hepialidae (swift moths. Four distinct Shx genes were generated early in ditrysian evolution, and were stably retained in all descendent Lepidoptera except the silkmoth which has additional duplications. Despite extensive sequence divergence, molecular modelling indicates that all four Shx genes have the potential to encode stable homeodomains. The four Shx genes have distinct spatiotemporal expression patterns in early development of the Speckled Wood butterfly (Pararge aegeria, with ShxC demarcating the future sites of extraembryonic tissue formation via strikingly localised maternal RNA in the oocyte. All four genes are also expressed in presumptive serosal cells, prior to the onset of zen expression. Lepidopteran Shx genes represent an unusual example of Hox cluster expansion and integration of novel genes into ancient developmental regulatory networks.

  18. Mayer expansion of the Nekrasov prepotential: The subleading ε2-order

    Science.gov (United States)

    Bourgine, Jean-Emile; Fioravanti, Davide

    2016-05-01

    The Mayer cluster expansion technique is applied to the Nekrasov instanton partition function of N = 2 SU (Nc) super Yang-Mills. The subleading small ε2-correction to the Nekrasov-Shatashvili limiting value of the prepotential is determined by a detailed analysis of all the one-loop diagrams. Indeed, several types of contributions can be distinguished according to their origin: long range interaction or potential expansion, clusters self-energy, internal structure, one-loop cyclic diagrams, etc. The field theory result derived more efficiently in [1], under some minor technical assumptions, receives here definite confirmation thanks to several remarkable cancellations: in this way, we may infer the validity of these assumptions for further computations in the field theoretical approach.

  19. Volume shift and charge instability of simple-metal clusters

    OpenAIRE

    Brajczewska, Marta; Vieira, Armando; Fiolhais, Carlos

    1996-01-01

    Experiment indicates that small clusters show changes (mostly contractions) of the bond lengths with respect to bulk values. We use the stabilized jellium model to study the self-expansion and self-compression of spherical clusters (neutral or ionized) of simple metals. Results from Kohn — Sham density functional theory are presented for small clusters of Al and Na, including negatively-charged ones. We also examine the stability of clusters with respect to charging

  20. Volume shift and charge instability of simple-metal clusters

    Science.gov (United States)

    Brajczewska, M.; Vieira, A.; Fiolhais, C.; Perdew, J. P.

    1996-12-01

    Experiment indicates that small clusters show changes (mostly contractions) of the bond lengths with respect to bulk values. We use the stabilized jellium model to study the self-expansion and self-compression of spherical clusters (neutral or ionized) of simple metals. Results from Kohn - Sham density functional theory are presented for small clusters of Al and Na, including negatively-charged ones. We also examine the stability of clusters with respect to charging.

  1. CREATION AND EXPANSION OF A CLUSTER: THE CASE OF THE CERES CLUSTER, GO ABSTRACT PROCESO DE FORMACIÓN Y EXPANSIÓN DE CLUSTER: EL CASO DEL AGLOMERADO DE CERES, GO PROCESSO DE FORMAÇÃO E EXPANSÃO DE CLUSTER: O CASO DO AGLOMERADO DE CERES, GO

    Directory of Open Access Journals (Sweden)

    Flávio Manoel Coelho Borges Cardoso

    2013-01-01

    Full Text Available This article discusses the factors that favored creation and expansion of the health organization cluster in the city of Ceres, Goiás. Despite the small population of some 19,000 inhabitants, Ceres is recognized as a center for health services. This article investigates the creation and expansion of the health cluster in Ceres from two perspectives. The  first considers the existence of so-called economic factors such as demand, infrastructure, presence of specialized skills, government policies, invitation to specialized professionals by businessmen and location on an important access route. The second takes into account sociological factors, highlighting social networks, professional and family ties, trust, values, rules and traditions as responsible for the multiplication of companies in the same sector in this location. Through an exploratory study based on interviews with 20 of the 65 physicians in the city, it is concluded that in the case of Ceres, great demand for health services, government actions to populate Brazil’s Mid-West and the activities of pioneers incentivating the entrepreneurial spirit of physicians were determining factors in the creation and expansion of this health cluster.Este trabajo discute los factores que favorecieron la formación y la expansión de la aglomeración de organizaciones de salud en el  municipio de Ceres, en el estado brasileño de Goiás. A pesar  de su pequeña población, cerca de 19.000 habitantes, Ceres es reconocida como una ciudad modelo en lo que se refiere a la  prestación de servicios de salud. En este trabajo, analizamos la formación y expansión del  cluster de salud de Ceres bajo dos perspectivas. La primera considera la existencia de los llamados factores económicos, como la demanda, la infraestructura, la presencia de mano de obra especializada, las políticas gubernamentales, la invitación de empresarios a profesionales especializados y la dependencia de la

  2. Brome isotope selective control of CF3Br molecule clustering by IR laser radiation in gas-dynamic expansion of CF3Br - Ar mixture

    Science.gov (United States)

    Apatin, V. M.; Lokhman, V. N.; Makarov, G. N.; Ogurok, N.-D. D.; Ryabov, E. A.

    2018-02-01

    We report the results of research on the experimental control of CF3Br molecule clustering under gas-dynamic expansion of the CF3Br - Ar mixture at a nozzle exit by using IR laser radiation. A cw CO2 laser is used for exciting molecules and clusters in the beam and a time-of-flight mass-spectrometer with laser UV ionisation of particles for their detection. The parameters of the gas above the nozzle are determined (compositions and pressure) at which intensive molecule clustering occurs. It is found that in the case of the CF3Br gas without carrier when the pressure P0 above the nozzle does not exceed 4 atm, molecular clusters actually are not generated in the beam. If the gas mixture of CF3Br with argon is used at a pressure ratio 1 : N, where N >= 3, and the total pressure above the nozzle is P0 >= 2 atm, then there occurs molecule clustering. We study the dependences of the efficiency of suppressing the molecule clustering on parameters of the exciting pulse, gas parameters above the nozzle, and on a distance of the molecule irradiation zone from the nozzle exit section. It is shown that in the case of resonant vibrational excitation of gas-dynamically cooled CF3Br molecules at the nozzle exit one can realise isotope-selective suppression of molecule clustering with respect to bromine isotopes. With the CF3Br - Ar mixtures having the pressure ratio 1 : 3 and 1 : 15, the enrichment factors obtained with respect to bromine isotopes are kenr ≈ 1.05 ± 0.005 and kenr ≈ 1.06 ± 0.007, respectively, under jet irradiation by laser emission in the 9R(30) line (1084.635 cm-1). The results obtained let us assume that this method can be used to control clustering of molecules comprising heavy element isotopes, which have a small isotopic shift in IR absorption spectra.

  3. Mayer expansion of the Nekrasov prepotential: The subleading ε2-order

    Directory of Open Access Journals (Sweden)

    Jean-Emile Bourgine

    2016-05-01

    Full Text Available The Mayer cluster expansion technique is applied to the Nekrasov instanton partition function of N=2 SU(Nc super Yang–Mills. The subleading small ε2-correction to the Nekrasov–Shatashvili limiting value of the prepotential is determined by a detailed analysis of all the one-loop diagrams. Indeed, several types of contributions can be distinguished according to their origin: long range interaction or potential expansion, clusters self-energy, internal structure, one-loop cyclic diagrams, etc. The field theory result derived more efficiently in [1], under some minor technical assumptions, receives here definite confirmation thanks to several remarkable cancellations: in this way, we may infer the validity of these assumptions for further computations in the field theoretical approach.

  4. Combining DFT, Cluster Expansions, and KMC to Model Point Defects in Alloys

    Science.gov (United States)

    Modine, N. A.; Wright, A. F.; Lee, S. R.; Foiles, S. M.; Battaile, C. C.; Thomas, J. C.; van der Ven, A.

    In an alloy, defect energies are sensitive to the occupations of nearby atomic sites, which leads to a distribution of defect properties. When radiation-induced defects diffuse from their initially non-equilibrium locations, this distribution becomes time-dependent. The defects can become trapped in energetically favorable regions of the alloy leading to a diffusion rate that slows dramatically with time. Density Functional Theory (DFT) allows the accurate determination of ground state and transition state energies for a defect in a particular alloy environment but requires thousands of processing hours for each such calculation. Kinetic Monte-Carlo (KMC) can be used to model defect diffusion and the changing distribution of defect properties but requires energy evaluations for millions of local environments. We have used the Cluster Expansion (CE) formalism to ``glue'' together these seemingly incompatible methods. The occupation of each alloy site is represented by an Ising-like variable, and products of these variables are used to expand quantities of interest. Once a CE is fit to a training set of DFT energies, it allows very rapid evaluation of the energy for an arbitrary configuration, while maintaining the accuracy of the underlying DFT calculations. These energy evaluations are then used to drive our KMC simulations. We will demonstrate the application of our DFT/MC/KMC approach to model thermal and carrier-induced diffusion of intrinsic point defects in III-V alloys. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE.

  5. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.

    Science.gov (United States)

    Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin

    2017-08-31

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.

  6. Computationally inexpensive interpretation of magnetic data for finite spin clusters

    DEFF Research Database (Denmark)

    Thuesen, Christian Aagaard; Weihe, Høgni; Bendix, Jesper

    2010-01-01

    We show that high-temperature expansion of the partition function is a computationally convenient tool to interpretation of magnetic properties of spin clusters wherein the spin centers are interacting via an isotropic Heisenberg exchange operator. High-temperature expansions up to order 12 are u...

  7. PARALLEL SPATIOTEMPORAL SPECTRAL CLUSTERING WITH MASSIVE TRAJECTORY DATA

    Directory of Open Access Journals (Sweden)

    Y. Z. Gu

    2017-09-01

    Full Text Available Massive trajectory data contains wealth useful information and knowledge. Spectral clustering, which has been shown to be effective in finding clusters, becomes an important clustering approaches in the trajectory data mining. However, the traditional spectral clustering lacks the temporal expansion on the algorithm and limited in its applicability to large-scale problems due to its high computational complexity. This paper presents a parallel spatiotemporal spectral clustering based on multiple acceleration solutions to make the algorithm more effective and efficient, the performance is proved due to the experiment carried out on the massive taxi trajectory dataset in Wuhan city, China.

  8. Star clusters containing massive, central black holes: evolution calculations

    International Nuclear Information System (INIS)

    Marchant, A.B.

    1980-01-01

    This dissertation presents a detailed, two-dimensional simulations of star cluster evolution. A Monte-Carlo method is adapted to simulate the development with time of isolated star clusters. Clusters which evolve on relaxation timescales with and without central black holes are treated. The method is flexible and rugged, rather than highly accurate. It treats the boundary conditions of stellar evaporation and tidal disruption by a central black hole in a precise, stochastic fashion. Dynamical cloning and renormalization and the use of a time-step adjustment algorithm enhance the feasibility of the method which simulates systems with wide ranges of intrinsic length and time scales. First, the method is applied to follow the development and core collapse of an initial Plummer-model cluster without a central black hole. Agreement of these results for early times with the results of previous authors serves as a verification of this method. Three calculations of cluster re-expansion, each beginning with the insertion of a black hole at the center of a highly collapsed cluster core is presented. Each case is characterized by a different value of initial black hole mass or black hole accretion efficiency for the consumption of debris from disrupted stars. It is found that for the special cases examined here substantial, but not catastrophic, growth of the central black hole may accompany core re-expansion. Also, the observability of the evolutionary phases associated with core collapse and re-expansion, constraints on x-ray sources which could be associated with growing black holes, and the observable signature of the cusp of stars surrounding a central black hole are discussed

  9. Properties of an ionised-cluster beam from a vaporised-cluster ion source

    International Nuclear Information System (INIS)

    Takagi, T.; Yamada, I.; Sasaki, A.

    1978-01-01

    A new type of ion source vaporised-metal cluster ion source, has been developed for deposition and epitaxy. A cluster consisting of 10 2 to 10 3 atoms coupled loosely together is formed by adiabatic expansion ejecting the vapour of materials into a high-vacuum region through the nozzle of a heated crucible. The clusters are ionised by electron bombardment and accelerated with neutral clusters toward a substrate. In this paper, mechanisms of cluster formation experimental results of the cluster size (atoms/cluster) and its distribution, and characteristics of the cluster ion beams are reported. The size is calculated from the kinetic equation E = (1/2)mNVsub(ej) 2 , where E is the cluster beam energy, Vsub(ej) is the ejection velocity, m is the mass of atom and N is the cluster size. The energy and the velocity of the cluster are measured by an electrostatic 127 0 energy analyser and a rotating disc system, respectively. The cluster size obtained for Ag is about 5 x 10 2 to 2 x 10 3 atoms. The retarding potential method is used to confirm the results for Ag. The same dependence on cluster size for metals such as Ag, Cu and Pb has been obtained in previous experiments. In the cluster state the cluster ion beam is easily produced by electron bombardment. About 50% of ionised clusters are obtained under typical operation conditions, because of the large ionisation cross sections of the clusters. To obtain a uniform spatial distribution, the ionising electrode system is also discussed. The new techniques are termed ionised-cluster beam deposition (ICBD) and epitaxy (ICBE). (author)

  10. Thin foil expansion into a vacuum

    International Nuclear Information System (INIS)

    Mora, P.

    2005-01-01

    Plasma expansion into a vacuum is an old problem which has been renewed recently in various contexts: expansion of ultra-cold plasmas, cluster expansion, of dust grains, expansion of thin foils. In this presentation I will first discuss the physics of the expansion of a thin foil irradiated by an ultra-short ultra-intense laser pulse. The expansion results in the formation of high energy ions. For an infinitely steep plasma-vacuum interface the fastest ions are located in the outer part of the expansion and their velocity is given by ν m ax∼ 2 C s (In ω p it) where c s (Zk B T e /m i )''1/2 is the ion-acoustic velocity ω p i=(n e 0Ze''2/m i e 0 )''1/2 is the ion plasma frequency, n e 0 is the electron density in the unperturbed plasma, Z is the ion charge number. In the above expression, t is either the pulse duration or the effective acceleration time (in particular t∼L/2c s , where L is the width of the foil, when the electron cooling is taken into account). A salient characteristic of the expansion is the occurrence of a double layer structure and a peak of the accelerating electric field at the ion front. I will explain the origin of the peak and predict its temporal behavior. This peak has been diagnosed in recent experiments. I will also discuss the effect of a 2-temperatures electron distribution function on the expansion, showing the dominant role of the hot electron component. Finally I will discuss the occurrence of ion spikes in the expansion when the initial density profile is smooth. The ion spike is due to a wave breaking which cannot be handled in a satisfactory way by a fluid code and requires a kinetic description. A. simple collisionless particle code has been used to treat the evolution of the spike after the wave breaking and the results will be shown. (Author)

  11. The intrinsic thermal expansion of point defects in Al

    International Nuclear Information System (INIS)

    Asty, Michel.

    1975-11-01

    The differential length measurement between two specimens, on pure and the other containing point defects, leads to the intrinsic thermal coefficient of expansion β(d) of the defect. A differential dilatometer by Laser interferometry is described operating between 77 and 300 K, with a sensitivity of about 100A on the length difference between an alloy sample and a pure dummy. Concerning substitutional impurities in aluminium between -190 deg C and -90 deg C, the intrinsic thermal coefficient of expansion of the defect β(d) is shown to have an absolute value much larger than the thermal expansion coefficient β 0 of the aluminium matrix: β(d)/β 0 =+3 to +6 for the magnesium impurity, β(d)/β 0 =-3 to -4 for the calcium impurity, and to be independent of the temperature. The existing theoretical models give evaluations for away from modeles theoriques existant sont tres loin d'expliquer les resultats experimentaux. high temperature, the results show that vacancies and divacancies, before collapsing in dislocation loops, form multivacancy clusters with large formation volumes: such a property makes these clusters comparable to cavities where the formation volume per vacancy is equal to the atomic volume of the matrix [fr

  12. Expanding Comparative Literature into Comparative Sciences Clusters with Neutrosophy and Quad-stage Method

    Directory of Open Access Journals (Sweden)

    Fu Yuhua

    2016-08-01

    Full Text Available By using Neutrosophy and Quad-stage Method, the expansions of comparative literature include: comparative social sciences clusters, comparative natural sciences clusters, comparative interdisciplinary sciences clusters, and so on. Among them, comparative social sciences clusters include: comparative literature, comparative history, comparative philosophy, and so on; comparative natural sciences clusters include: comparative mathematics, comparative physics, comparative chemistry, comparative medicine, comparative biology, and so on.

  13. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  14. Hydrodynamic clustering of droplets in turbulence

    Science.gov (United States)

    Kunnen, Rudie; Yavuz, Altug; van Heijst, Gertjan; Clercx, Herman

    2017-11-01

    Small, inertial particles are known to cluster in turbulent flows: particles are centrifuged out of eddies and gather in the strain-dominated regions. This so-called preferential concentration is reflected in the radial distribution function (RDF; a quantitative measure of clustering). We study clustering of water droplets in a loudspeaker-driven turbulence chamber. We track the motion of droplets in 3D and calculate the RDF. At moderate scales (a few Kolmogorov lengths) we find the typical power-law scaling of preferential concentration in the RDF. However, at even smaller scales (a few droplet diameters), we encounter a hitherto unobserved additional clustering. We postulate that the additional clustering is due to hydrodynamic interactions, an effect which is typically disregarded in modeling. Using a perturbative expansion of inertial effects in a Stokes-flow description of two interacting spheres, we obtain an expression for the RDF which indeed includes the additional clustering. The additional clustering enhances the collision probability of droplets, which enhances their growth rate due to coalescence. The additional clustering is thus an essential effect in precipitation modeling.

  15. Configurational energies and effective cluster interactions in substitutionally disordered binary alloys

    International Nuclear Information System (INIS)

    Gonis, A.; Zhang, X.h.; Freeman, A.J.; Turchi, P.; Stocks, G.M.; Nicholson, D.M.

    1987-01-01

    The determination of configurational energies in terms of effective cluster interactions in substitutionally disordered alloys from a knowledge of the alloy electronic structure is examined within the methods of concentration waves (CW) and the generalized perturbation method (GPM), and for the first time within the embedded-cluster method (ECM). It is shown that the ECM provides the exact summation to all orders of the effective cluster interaction expansions obtained in the partially renormalized GPM. The connection between the various methods (CW, GPM, and ECM) is discussed and illustrated by means of numerical calculations for model one-dimensional tight-binding (TB) systems and for TB Hamiltonians chosen to describe Pd-V alloys. These calculations, and the formal considerations presented in the body of the paper, show the complete equivalence of converged GPM summations within specific clusters and the ECM. In addition, it is shown that an exact expansion of the configurational energy can be obtained in terms of fully renormalized effective cluster interactions. In principle, these effective cluster interactions can be used in conjunction with statistical models to determine stable ordered structures at low temperatures and alloy phase diagrams

  16. Energy and charge transfer in ionized argon coated water clusters

    International Nuclear Information System (INIS)

    Kočišek, J.; Lengyel, J.; Fárník, M.; Slavíček, P.

    2013-01-01

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H 2 O) n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar + and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar + * and water opens leading to new products Ar n H + and (H 2 O) n H + . On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H 2 O) n H 2 2+ and (H 2 O) n 2+ ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent

  17. Population Genetics of Three Dimensional Range Expansions

    Science.gov (United States)

    Lavrentovich, Maxim; Nelson, David

    2014-03-01

    We develop a simple model of genetic diversity in growing spherical cell clusters, where the growth is confined to the cluster surface. This kind of growth occurs in cells growing in soft agar, and can also serve as a simple model of avascular tumors. Mutation-selection balance in these radial expansions is strongly influenced by scaling near a neutral, voter model critical point and by the inflating frontier. We develop a scaling theory to describe how the dynamics of mutation-selection balance is cut off by inflation. Genetic drift, i.e., local fluctuations in the genetic diversity, also plays an important role, and can lead to the extinction even of selectively advantageous strains. We calculate this extinction probability, taking into account the effect of rough population frontiers.

  18. Laval nozzles for cluster-jet targets

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, Silke; Bonaventura, Daniel; Hergemoeller, Ann-Katrin; Hetz, Benjamin; Koehler, Esperanza; Lessmann, Lukas; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, 48149 Muenster (Germany)

    2016-07-01

    Cluster-jet targets are highly suited for storage ring experiments due to the fact that they provide high and constant beam densities. Therefore, a cluster-jet target is planned to be the first internal target for the PANDA experiment at FAIR. A cluster source generates a continuous flow of cryogenic solid clusters by the expansion of pre-cooled gases within fine Laval nozzles. For the production of clusters the geometry of the nozzle is crucial. The production of such nozzles with their complex inner geometry represents a major technical challenge. The possibility to produce new fine Laval nozzles ensures the operation of cluster-jet targets, e.g. for the PANDA experiment, and opens the way for future investigations on the cluster production process to match the required targets performance. Optimizations on the recently developed production process and the fabrication of new glass nozzles were done. Initial measurements of these nozzles at the PANDA cluster-jet target prototype and the investigation of the cluster beam origin within the nozzle will be presented and discussed. For the future more Laval nozzles with different geometries will be produced and additional measurements with these new nozzles at the PANDA cluster-jet target prototype towards higher performance will be realized.

  19. Geographic Expansion of Lyme Disease in the Southeastern United States, 2000-2014.

    Science.gov (United States)

    Lantos, Paul M; Nigrovic, Lise E; Auwaerter, Paul G; Fowler, Vance G; Ruffin, Felicia; Brinkerhoff, R Jory; Reber, Jodi; Williams, Carl; Broyhill, James; Pan, William K; Gaines, David N

    2015-12-01

    Background.  The majority of Lyme disease cases in the United States are acquired on the east coast between northern Virginia and New England. In recent years the geographic extent of Lyme disease has been expanding, raising the prospect of Lyme disease becoming endemic in the southeast. Methods.  We collected confirmed and probable cases of Lyme disease from 2000 through 2014 from the Virginia Department of Health and North Carolina Department of Public Health and entered them in a geographic information system. We performed spatial and spatiotemporal cluster analyses to characterize Lyme disease expansion. Results.  There was a marked increase in Lyme disease cases in Virginia, particularly from 2007 onwards. Northern Virginia experienced intensification and geographic expansion of Lyme disease cases. The most notable area of expansion was to the southwest along the Appalachian Mountains with development of a new disease cluster in the southern Virginia mountain region. Conclusions.  The geographic distribution of Lyme disease cases significantly expanded in Virginia between 2000 and 2014, particularly southward in the Virginia mountain ranges. If these trends continue, North Carolina can expect autochthonous Lyme disease transmission in its mountain region in the coming years.

  20. Picosecond multiphoton ionization of atomic and molecular clusters

    International Nuclear Information System (INIS)

    Miller, J.C.; Smith, D.B.

    1990-01-01

    High peak-power picosecond laser pulses have been used for the first time to effect nonresonant or resonant multiphoton ionization (MPI) of clusters generated in a supersonic nozzle expansion. The resulting ions are subsequently detected and characterized by time-of-flight mass spectroscopy. Specifically, we present results involving MPI of clusters of xenon and nitric oxide. Previous MPI studies of many molecular clusters using nanosecond lasers have not been successful in observing the parent ion, presumably due to fast dissociation channels. It is proposed that the present technique is a new and rather general ionization source for cluster studies which is complementary to electron impact but may, in addition, provide unique spectroscopic or dynamical information. 23 refs., 5 figs

  1. Not all stars form in clusters - measuring the kinematics of OB associations with Gaia

    Science.gov (United States)

    Ward, Jacob L.; Kruijssen, J. M. Diederik

    2018-04-01

    It is often stated that star clusters are the fundamental units of star formation and that most (if not all) stars form in dense stellar clusters. In this monolithic formation scenario, low-density OB associations are formed from the expansion of gravitationally bound clusters following gas expulsion due to stellar feedback. N-body simulations of this process show that OB associations formed this way retain signs of expansion and elevated radial anisotropy over tens of Myr. However, recent theoretical and observational studies suggest that star formation is a hierarchical process, following the fractal nature of natal molecular clouds and allowing the formation of large-scale associations in situ. We distinguish between these two scenarios by characterizing the kinematics of OB associations using the Tycho-Gaia Astrometric Solution catalogue. To this end, we quantify four key kinematic diagnostics: the number ratio of stars with positive radial velocities to those with negative radial velocities, the median radial velocity, the median radial velocity normalized by the tangential velocity, and the radial anisotropy parameter. Each quantity presents a useful diagnostic of whether the association was more compact in the past. We compare these diagnostics to models representing random motion and the expanding products of monolithic cluster formation. None of these diagnostics show evidence of expansion, either from a single cluster or multiple clusters, and the observed kinematics are better represented by a random velocity distribution. This result favours the hierarchical star formation model in which a minority of stars forms in bound clusters and large-scale, hierarchically structured associations are formed in situ.

  2. Percolation approach for atomic and molecular cluster formation

    International Nuclear Information System (INIS)

    Knospe, O.; Seifert, G.

    1987-12-01

    We apply a percolation approach for the theoretical analysis of mass spectra of molecular microclusters obtained by adiabatic expansion technique. The evolution of the shape of the experimental size distributions as function of stagnation pressure and stagnation temperature are theoretically reproduced by varying the percolation parameter. Remaining discrepancies between theory and experiment are discussed. In addition, the even-odd alternation as well as the 'magic' shell structure within metallic, secondary ion mass spectra are investigated by introducing statistical weights for the cluster formation probabilities. Shell correction energies of atomic clusters as function of cluster-size are deduced from the experimental data. (orig.)

  3. Electron attenuation in free, neutral ethane clusters.

    Science.gov (United States)

    Winkler, M; Myrseth, V; Harnes, J; Børve, K J

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  4. Understanding the many-body expansion for large systems. I. Precision considerations

    International Nuclear Information System (INIS)

    Richard, Ryan M.; Lao, Ka Un; Herbert, John M.

    2014-01-01

    Electronic structure methods based on low-order “n-body” expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H 2 O) 47 . Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program, we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ⩾ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems

  5. Biorthogonal moment expansions in coupled-cluster theory: Review of key concepts and merging the renormalized and active-space coupled-cluster methods

    Science.gov (United States)

    Shen, Jun; Piecuch, Piotr

    2012-06-01

    After reviewing recent progress in the area of the development of coupled-cluster (CC) methods for quasi-degenerate electronic states that are characterized by stronger non-dynamical correlation effects, including new generations of single- and multi-reference approaches that can handle bond breaking and excited states dominated by many-electron transitions, and after discussing the key elements of the left-eigenstate completely renormalized (CR) CC and equation-of-motion (EOM) CC methods, and the underlying biorthogonal method of moments of CC (MMCC) equations [P. Piecuch, M. Włoch, J. Chem. Phys. 123 (2005) 224105; P. Piecuch, M. Włoch, J.R. Gour, A. Kinal, Chem. Phys. Lett. 418 (2006) 467; M. Włoch, M.D. Lodriguito, P. Piecuch, J.R. Gour, Mol. Phys. 104 (2006) 2149], it is argued that it is beneficial to merge the CR-CC/EOMCC and active-space CC/EOMCC [P. Piecuch, Mol. Phys. 108 (2010) 2987, and references therein] theories into a single formalism. In order to accomplish this goal, the biorthogonal MMCC theory, which provides compact many-body expansions for the differences between the full configuration interaction and CC or, in the case of excited states, EOMCC energies, obtained using conventional truncation schemes in the cluster operator T and excitation operator Rμ, is generalized, so that one can correct the CC/EOMCC energies obtained with arbitrary truncations in T and Rμ for the selected many-electron correlation effects of interest. The resulting moment expansions, defining the new, Flexible MMCC (Flex-MMCC) formalism, and the ensuing CC(P; Q) hierarchy, proposed in the present work, enable one to correct energies obtained in the active-space CC and EOMCC calculations, in which one selects higher many-body components of T and Rμ via active orbitals and which recover much of the relevant non-dynamical and some dynamical electron correlation effects in applications involving potential energy surfaces (PESs) along bond breaking coordinates, for the

  6. Mutation types and aging differently affect revertant fiber expansion in dystrophic mdx and mdx52 mice.

    Directory of Open Access Journals (Sweden)

    Yusuke Echigoya

    Full Text Available Duchenne muscular dystrophy (DMD, one of the most common and lethal genetic disorders, and the mdx mouse myopathies are caused by a lack of dystrophin protein. These dystrophic muscles contain sporadic clusters of dystrophin-expressing revertant fibers (RFs, as detected by immunohistochemistry. RFs are known to arise from muscle precursor cells with spontaneous exon skipping (alternative splicing and clonally expand in size with increasing age through the process of muscle degeneration/regeneration. The expansion of revertant clusters is thought to represent the cumulative history of muscle regeneration and proliferation of such precursor cells. However, the precise mechanisms by which RFs arise and expand are poorly understood. Here, to test the effects of mutation types and aging on RF expansion and muscle regeneration, we examined the number of RFs in mdx mice (containing a nonsense mutation in exon 23 and mdx52 mice (containing deletion mutation of exon 52 with the same C57BL/6 background at 2, 6, 12, and 18months of age. Mdx mice displayed a significantly higher number of RFs compared to mdx52 mice in all age groups, suggesting that revertant fiber expansion largely depends on the type of mutation and/or location in the gene. A significant increase in the expression and clustering levels of RFs was found beginning at 6months of age in mdx mice compared with mdx52 mice. In contrast to the significant expansion of RFs with increasing age, the number of centrally nucleated fibers and embryonic myosin heavy chain-positive fibers (indicative of cumulative and current muscle regeneration, respectively decreased with age in both mouse strains. These results suggest that mutation types and aging differently affect revertant fiber expansion in mdx and mdx52 mice.

  7. Discovery of path nearby clusters in spatial networks

    KAUST Repository

    Shang, Shuo

    2015-06-01

    The discovery of regions of interest in large cities is an important challenge. We propose and investigate a novel query called the path nearby cluster (PNC) query that finds regions of potential interest (e.g., sightseeing places and commercial districts) with respect to a user-specified travel route. Given a set of spatial objects O (e.g., POIs, geo-tagged photos, or geo-tagged tweets) and a query route q , if a cluster c has high spatial-object density and is spatially close to q , it is returned by the query (a cluster is a circular region defined by a center and a radius). This query aims to bring important benefits to users in popular applications such as trip planning and location recommendation. Efficient computation of the PNC query faces two challenges: how to prune the search space during query processing, and how to identify clusters with high density effectively. To address these challenges, a novel collective search algorithm is developed. Conceptually, the search process is conducted in the spatial and density domains concurrently. In the spatial domain, network expansion is adopted, and a set of vertices are selected from the query route as expansion centers. In the density domain, clusters are sorted according to their density distributions and they are scanned from the maximum to the minimum. A pair of upper and lower bounds are defined to prune the search space in the two domains globally. The performance of the PNC query is studied in extensive experiments based on real and synthetic spatial data. © 2014 IEEE.

  8. Momentum-space cluster dual-fermion method

    Science.gov (United States)

    Iskakov, Sergei; Terletska, Hanna; Gull, Emanuel

    2018-03-01

    Recent years have seen the development of two types of nonlocal extensions to the single-site dynamical mean field theory. On one hand, cluster approximations, such as the dynamical cluster approximation, recover short-range momentum-dependent correlations nonperturbatively. On the other hand, diagrammatic extensions, such as the dual-fermion theory, recover long-ranged corrections perturbatively. The correct treatment of both strong short-ranged and weak long-ranged correlations within the same framework is therefore expected to lead to a quick convergence of results, and offers the potential of obtaining smooth self-energies in nonperturbative regimes of phase space. In this paper, we present an exact cluster dual-fermion method based on an expansion around the dynamical cluster approximation. Unlike previous formulations, our method does not employ a coarse-graining approximation to the interaction, which we show to be the leading source of error at high temperature, and converges to the exact result independently of the size of the underlying cluster. We illustrate the power of the method with results for the second-order cluster dual-fermion approximation to the single-particle self-energies and double occupancies.

  9. Efficient generation of series expansions for ±J Ising spin glasses in a classical or a quantum field

    Science.gov (United States)

    Singh, R. R. P.; Young, A. P.

    2017-12-01

    We discuss generation of series expansions for Ising spin glasses with a symmetric ±J (i.e., bimodal) distribution on d -dimensional hypercubic lattices using linked-cluster methods. Simplifications for the bimodal distribution allow us to go to higher order than for a general distribution. We discuss two types of problems, one classical and one quantum. The classical problem is that of the Ising spin glass in a longitudinal magnetic field h , for which we obtain high temperature series expansions in variables tanh(J /T ) and tanh(h /T ) . The quantum problem is a T =0 study of the Ising spin glass in a transverse magnetic field hT for which we obtain a perturbation theory in powers of J /hT . These methods require (i) enumeration and counting of all connected clusters that can be embedded in the lattice up to some order n , and (ii) an evaluation of the contribution of each cluster for the quantity being calculated, known as the weight. We discuss a general method that takes the much smaller list (and count) of all no free-end (NFE) clusters on a lattice up to some order n and automatically generates all other clusters and their counts up to the same order. The weights for finite clusters in both cases have a simple graphical interpretation that allows us to proceed efficiently for a general configuration of the ±J bonds and at the end perform suitable disorder averaging. The order of our computations is limited by the weight calculations for the high-temperature expansions of the classical model, while they are limited by graph counting for the T =0 quantum system. Details of the calculational methods are presented.

  10. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    Science.gov (United States)

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-06

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. Copyright © 2015, American Association for the Advancement of Science.

  11. Simultaneous falsification of ΛCDM and quintessence with massive, distant clusters

    International Nuclear Information System (INIS)

    Mortonson, Michael J.; Hu, Wayne; Huterer, Dragan

    2011-01-01

    Observation of even a single massive cluster, especially at high redshift, can falsify the standard cosmological framework consisting of a cosmological constant and cold dark matter (ΛCDM) with Gaussian initial conditions by exposing an inconsistency between the well-measured expansion history and the growth of structure it predicts. Through a likelihood analysis of current cosmological data that constrain the expansion history, we show that the ΛCDM upper limits on the expected number of massive, distant clusters are nearly identical to limits predicted by all quintessence models where dark energy is a minimally coupled scalar field with a canonical kinetic term. We provide convenient fitting formulas for the confidence level at which the observation of a cluster of mass M at redshift z can falsify ΛCDM and quintessence given cosmological parameter uncertainties and sample variance, as well as for the expected number of such clusters in the light cone and the Eddington bias factor that must be applied to observed masses. By our conservative confidence criteria, which equivalently require masses 3 times larger than typically expected in surveys of a few hundred square degrees, none of the presently known clusters falsify these models. Various systematic errors, including uncertainties in the form of the mass function and differences between supernova light curve fitters, typically shift the exclusion curves by less than 10% in mass, making current statistical and systematic uncertainties in cluster mass determination the most critical factor in assessing falsification of ΛCDM and quintessence.

  12. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    International Nuclear Information System (INIS)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-01-01

    In this work we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations

  13. Finite-Reynolds-number effects in turbulence using logarithmic expansions

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.; Bershadskii, A.

    2006-12-01

    Experimental or numerical data in turbulence are invariably obtained at finite Reynolds numbers whereas theories of turbulence correspond to infinitely large Reynolds numbers. A proper merger of the two approaches is possible only if corrections for finite Reynolds numbers can be quantified. This paper heuristically considers examples in two classes of finite-Reynolds-number effects. Expansions in terms of logarithms of appropriate variables are shown to yield results in agreement with experimental and numerical data in the following instances: the third-order structure function in isotropic turbulence, the mixed-order structure function for the passive scalar and the Reynolds shear stress around its maximum point. Results suggestive of expansions in terms of the inverse logarithm of the Reynolds number, also motivated by experimental data, concern the tendency for turbulent structures to cluster along a line of observation and (more speculatively) for the longitudinal velocity derivative to become singular at some finite Reynolds number. We suggest an elementary hydrodynamical process that may provide a physical basis for the expansions considered here, but note that the formal justification remains tantalizingly unclear. (author)

  14. A joint Cluster and ground-based instruments study of two magnetospheric substorm events on 1 September 2002

    Directory of Open Access Journals (Sweden)

    N. C. Draper

    2004-12-01

    Full Text Available We present a coordinated ground- and space-based multi-instrument study of two magnetospheric substorm events that occurred on 1 September 2002, during the interval from 18:00 UT to 24:00 UT. Data from the Cluster and Polar spacecraft are considered in combination with ground-based magnetometer and HF radar data. During the first substorm event the Cluster spacecraft, which were in the Northern Hemisphere lobe, are to the west of the main region affected by the expansion phase. Nevertheless, substorm signatures are seen by Cluster at 18:25 UT (just after the expansion phase onset as seen on the ground at 18:23 UT, despite the ~5 RE} distance of the spacecraft from the plasma sheet. The Cluster spacecraft then encounter an earthward-moving diamagnetic cavity at 19:10 UT, having just entered the plasma sheet boundary layer. The second substorm expansion phase is preceded by pseudobreakups at 22:40 and 22:56 UT, at which time thinning of the near-Earth, L=6.6, plasma sheet occurs. The expansion phase onset at 23:05 UT is seen simultaneously in the ground magnetic field, in the magnetotail and at Polar's near-Earth position. The response in the ionospheric flows occurs one minute later. The second substorm better fits the near-Earth neutral line model for substorm onset than the cross-field current instability model. Key words. Magnetospheric physics (Magnetosphereionosphere interactions; Magnetic reconnection; Auroral phenomenon

  15. Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. II. Quadruples expansions.

    Science.gov (United States)

    Eriksen, Janus J; Matthews, Devin A; Jørgensen, Poul; Gauss, Jürgen

    2016-05-21

    We extend our assessment of the potential of perturbative coupled cluster (CC) expansions for a test set of open-shell atoms and organic radicals to the description of quadruple excitations. Namely, the second- through sixth-order models of the recently proposed CCSDT(Q-n) quadruples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the prominent CCSDT(Q) and ΛCCSDT(Q) models. From a comparison of the models in terms of their recovery of total CC singles, doubles, triples, and quadruples (CCSDTQ) energies, we find that the performance of the CCSDT(Q-n) models is independent of the reference used (unrestricted or restricted (open-shell) Hartree-Fock), in contrast to the CCSDT(Q) and ΛCCSDT(Q) models, for which the accuracy is strongly dependent on the spin of the molecular ground state. By further comparing the ability of the models to recover relative CCSDTQ total atomization energies, the discrepancy between them is found to be even more pronounced, stressing how a balanced description of both closed- and open-shell species-as found in the CCSDT(Q-n) models-is indeed of paramount importance if any perturbative CC model is to be of chemical relevance for high-accuracy applications. In particular, the third-order CCSDT(Q-3) model is found to offer an encouraging alternative to the existing choices of quadruples models used in modern computational thermochemistry, since the model is still only of moderate cost, albeit markedly more costly than, e.g., the CCSDT(Q) and ΛCCSDT(Q) models.

  16. Morphology control and negative thermal expansion in cubic ZrWMoO8 powders

    International Nuclear Information System (INIS)

    Liu, Qinqin; Yang, Juan; Sun, Xiujuan; Cheng, Xiaonong

    2008-01-01

    Cubic ZrWMoO 8 powders with rod-like aggregate and thin fasciculus-like and flower-like rod cluster morphologies have been successfully fabricated with different amounts of (NH 4 ) 2 HPO 4 as surfactant using a hydrothermal method. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry were utilized to investigate the influence of the addition of (NH 4 ) 2 HPO 4 on the crystallization process and crystal morphology of the resulting products. The results show that the purity and the thermal expansion property of the resulting products are not influenced by the addition of (NH 4 ) 2 HPO 4 . The cubic ZrWMoO 8 powders with both rod-like aggregate and flower-like rod cluster morphologies show a positive thermal expansion property in the temperature range from room temperature to 120 C, while they show a negative thermal expansion property in the temperature range from 120 C to 700 C. The abnormal thermal expansion property of cubic ZrWMoO 8 below 120 C is caused by the presence of water molecules. Investigations also show that the essence of the different morphologies of the ZrWMoO 8 particles obtained is the result of the different aggregation modes of the nanorods, which act as nuclei, and the corresponding aggregation process is dominated by the addition of (NH 4 ) 2 HPO 4 and its amount. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. A new apparatus for the study of electron impact fragmentation of molecular clusters

    International Nuclear Information System (INIS)

    Barrett, G; Burgt, P J M van der

    2008-01-01

    This paper reports on the development of a new experiment for the study of electron-impact induced dissociation and fragmentation of molecular clusters and biomolecules and other species solvated in water clusters. The purpose is to look at clusters that are of interest to biophysics, atmospheric physics, and other fields. The experiment consists of a differentially pumped vacuum system, with an expansion chamber to generate a pulsed supersonic beam of clusters, and a collision chamber where the cluster beam intersects with an electron beam. Water clusters can be seeded with biomolecules emerging from a resistively heated oven. Investigation will be possible into both ion yields and long-lived neutral metastable yields produced by electron-impact fragmentation of relevant clusters and biomolecules

  18. Energy band dispersion in photoemission spectra of argon clusters

    International Nuclear Information System (INIS)

    Foerstel, Marko; Mucke, Melanie; Arion, Tiberiu; Lischke, Toralf; Barth, Silko; Ulrich, Volker; Ohrwall, Gunnar; Bjoerneholm, Olle; Hergenhahn, Uwe; Bradshaw, Alex M.

    2011-01-01

    Using photoemission we have investigated free argon clusters from a supersonic nozzle expansion in the photon energy range from threshold up to 28 eV. Measurements were performed both at high resolution with a hemispherical electrostatic energy analyser and at lower resolution with a magnetic bottle device. The latter experiments were performed for various mean cluster sizes. In addition to the ∼1.5 eV broad 3p-derived valence band seen in previous work, there is a sharper feature at ∼15 eV binding energy. Surprisingly for non-oriented clusters, this peak shifts smoothly in binding energy over the narrow photon energy range 15.5-17.7 eV, indicating energy band dispersion. The onset of this bulk band-like behaviour could be determined from the cluster size dependence.

  19. Relativistic rise measurement by cluster counting method in time expansion chamber

    International Nuclear Information System (INIS)

    Rehak, P.; Walenta, A.H.

    1979-10-01

    A new approach to the measurement of the ionization energy loss for the charged particle identification in the region of the relativistic rise was tested experimentally. The method consists of determining in a special drift chamber (TEC) the number of clusters of the primary ionization. The method gives almost the full relativistic rise and narrower landau distribution. The consequences for a practical detector are discussed

  20. Clusters - Tourism Activity Increase Competitiveness Support

    Directory of Open Access Journals (Sweden)

    Carmen IORDACHE

    2010-05-01

    Full Text Available Tourism represents one of those areas with the greatest potential of global expansion. Tourism development strategy in terms of maximizing its positive effects on regional economic increase and implicitly on the national one starts from the premise that in global economy value is created in regions which are defined as particular geographical entities, separated by geographical reasons and not as political-administrative structures, and economic increase is centrally cumulated and valued according to the economic policy and the national legal system.Regional economic system approach based on “cluster” concept is explained by the fact that the regional activities portfolio is based on an inter and intra-industry networking grouped by cluster, in which is created the value that increases as the activity results are leading to the final consumers.This type of communication aims to highlight the tourism role as a factor in regional development, the clustering process significance in obtaining some competitiveness advantages, clusters development in tourism beginnings, and also the identification methodology used to select one touristic area to create the cluster.

  1. Performance of the cluster-jet target for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Hergemoeller, Ann-Katrin; Bonaventura, Daniel; Grieser, Silke; Hetz, Benjamin; Koehler, Esperanza; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, 48149 Muenster (Germany)

    2016-07-01

    The success of storage ring experiments strongly depends on the choice of the target. For this purpose, a very appropriate internal target for such an experiment is a cluster-jet target, which will be the first operated target at the PANDA experiment at FAIR. In this kind of target the cluster beam itself is formed due to the expansion of pre-cooled gases within a Laval nozzle and is prepared afterwards via two orifices, the skimmer and the collimator. The target prototype, operating successfully for years at the University of Muenster, provides routinely target thicknesses of more than 2 x 10{sup 15} (atoms)/(cm{sup 2}) in a distance of 2.1 m behind the nozzle. Based on the results of the performance of the cluster target prototype the final cluster-jet target source was designed and set into operation in Muenster as well. Besides the monitoring of the cluster beam itself and the thickness with two different monitoring systems at this target, investigations on the cluster mass via Mie scattering will be performed. In this presentation an overview of the cluster target design, its performance and the Mie scattering method are presented and discussed.

  2. Expansion patterns and parallaxes for planetary nebulae

    Science.gov (United States)

    Schönberner, D.; Balick, B.; Jacob, R.

    2018-02-01

    Aims: We aim to determine individual distances to a small number of rather round, quite regularly shaped planetary nebulae by combining their angular expansion in the plane of the sky with a spectroscopically measured expansion along the line of sight. Methods: We combined up to three epochs of Hubble Space Telescope imaging data and determined the angular proper motions of rim and shell edges and of other features. These results are combined with measured expansion speeds to determine individual distances by assuming that line of sight and sky-plane expansions are equal. We employed 1D radiation-hydrodynamics simulations of nebular evolution to correct for the difference between the spectroscopically measured expansion velocities of rim and shell and of their respective shock fronts. Results: Rim and shell are two independently expanding entities, driven by different physical mechanisms, although their model-based expansion timescales are quite similar. We derive good individual distances for 15 objects, and the main results are as follows: (i) distances derived from rim and shell agree well; (ii) comparison with the statistical distances in the literature gives reasonable agreement; (iii) our distances disagree with those derived by spectroscopic methods; (iv) central-star "plateau" luminosities range from about 2000 L⊙ to well below 10 000 L⊙, with a mean value at about 5000 L⊙, in excellent agreement with other samples of known distance (Galactic bulge, Magellanic Clouds, and K648 in the globular cluster M 15); (v) the central-star mass range is rather restricted: from about 0.53 to about 0.56 M⊙, with a mean value of 0.55 M⊙. Conclusions: The expansion measurements of nebular rim and shell edges confirm the predictions of radiation-hydrodynamics simulations and offer a reliable method for the evaluation of distances to suited objects. Results of this paper are based on observations made with the NASA/ESA Hubble Space Telescope in Cycle 16 (GO11122

  3. Construction and application of Red5 cluster based on OpenStack

    Science.gov (United States)

    Wang, Jiaqing; Song, Jianxin

    2017-08-01

    With the application and development of cloud computing technology in various fields, the resource utilization rate of the data center has been improved obviously, and the system based on cloud computing platform has also improved the expansibility and stability. In the traditional way, Red5 cluster resource utilization is low and the system stability is poor. This paper uses cloud computing to efficiently calculate the resource allocation ability, and builds a Red5 server cluster based on OpenStack. Multimedia applications can be published to the Red5 cloud server cluster. The system achieves the flexible construction of computing resources, but also greatly improves the stability of the cluster and service efficiency.

  4. Effective action and cluster properties of the abelian Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Balaban, T; Imbrie, J Z; Jaffe, A

    1988-02-01

    We continue our program to establish the Higgs mechanism and mass gap for the abelian Higgs model in two and three dimensions. We develop a multiscale cluster expansion for the high frequency modes of the theory, within a framework of iterated renormalization group transformations. The expansions yield decoupling properties needed for a proof of exponential decay of correlations. The result of this analysis is a gauge invariant unit lattice theory with a deep Higgs potential of the shape required to exhibit the Higgs mechanism.

  5. Variable surface composition and radial interface formation in self-assembled free, mixed Ar/Xe clusters

    International Nuclear Information System (INIS)

    Tchaplyguine, M.; Maartensson, N.; Lundwall, M.; Oehrwall, G.; Feifel, R.; Svensson, S.; Bjoerneholm, O.; Gisselbrecht, M.; Sorensen, S.

    2004-01-01

    Using photoelectron spectroscopy, we demonstrate how the self-assembling process of cluster formation in an adiabatic expansion leads to radial segregation and layering as well as to variable surface composition for binary Ar/Xe clusters. The radial structuring can be qualitatively understood from the different interatomic bonding strengths of the two components

  6. A Significant Enhancement of Cluster Formation of Krypton and Xenon Gases

    Institute of Scientific and Technical Information of China (English)

    LIU Bingchen

    2001-01-01

    @@ Clusters of rare gases have currently become a kind of widely used targets in the study of high-intensity laser interaction with matter[1,2]. However, a good understanding of the cluster media is vital if results from laser-cluster interaction experiments are to be interpreted correctly. During the course of investigation of the time history of a cluster jet generated in supersonic expansion of rare gases into vaccum through a supersonic conical nozzle (26 mm long, opening angle 5°) by time resolving Rayleigh scattering measurements in which a 532 nm 0.3 mJ laser beam was used, we find that the general trend of argon clusters is similar to that reported by R.A. Smith et al.[3]. However, the picture for Krypton and Xenon gases is completely different. A two-peak structure of the scattered light intensity, instead of a single-peak one, has been revealed. It is interesting to note that the second peak is much more stronger than the first one. As an example, Fig.1 shows the time history of Xen clusters produced at a gas backing pressure P0=3 atm. In the Figure, the peak intensity of the second peak is surprisingly 62 times higher than the first one, indicating that the average cluster size c in the latter case is increased about 62 times under the assumption that during the expansion process all the atoms in the gas condensate into clusters. The result, which is believed to be related to a double gas ejection via the pulsed valve′s two adjacent openings, is of significant importance since this effect would be promising for applications in which very large size clusters are required while a relatively modest vacuum maintains. Meanwhile, this finding may provide us with the opportunity of a further understanding into the nucleation mechanism of expanding gases in a nozzle.

  7. Program package for calculating matrix elements of two-cluster structures in nuclei

    International Nuclear Information System (INIS)

    Krivec, R.; Mihailovic, M.V.; Kernforschungszentrum Karlsruhe G.m.b.H.

    1982-01-01

    Matrix elements of operators between Slater determinants of two-cluster structures must be expanded into partial waves for the purpose of angular momentum projection. The expansion coefficients contain integrals over the spherical angles theta and phi. (orig.)

  8. Lattice cluster theory of associating polymers. I. Solutions of linear telechelic polymer chains.

    Science.gov (United States)

    Dudowicz, Jacek; Freed, Karl F

    2012-02-14

    The lattice cluster theory (LCT) for the thermodynamics of a wide array of polymer systems has been developed by using an analogy to Mayer's virial expansions for non-ideal gases. However, the high-temperature expansion inherent to the LCT has heretofore precluded its application to systems exhibiting strong, specific "sticky" interactions. The present paper describes a reformulation of the LCT necessary to treat systems with both weak and strong, "sticky" interactions. This initial study concerns solutions of linear telechelic chains (with stickers at the chain ends) as the self-assembling system. The main idea behind this extension of the LCT lies in the extraction of terms associated with the strong interactions from the cluster expansion. The generalized LCT for sticky systems reduces to the quasi-chemical theory of hydrogen bonding of Panyioutou and Sanchez when correlation corrections are neglected in the LCT. A diagrammatic representation is employed to facilitate the evaluation of the corrections to the zeroth-order approximation from short range correlations. © 2012 American Institute of Physics

  9. Spatial Pattern and the Process of Settlement Expansion in Jiangsu Province from 1980 to 2010, Eastern China

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2014-11-01

    Full Text Available Human settlement expansion has very important effects on regional population migration, economic balance and ecosystem services. Understanding the evolution of settlement expansion and regional differences is significant for regional sustainability. The results showed that in the past 30 years, the urbanization rate in Jiangsu province was lower. From 1980 to 2010, the expansion area of urban settlement was larger than that of rural settlement. Urban settlement expanded slowly from 1980 to 2005 and strongly from 2005 to 2010. Rural settlement expanded greatly from 1980 to 1995, and 37.14% of settlement was mostly on cropland. The type of urban settlement expansion from 1980 to 1995 and from 2000 to 2005 was compact expansion. Settlement expansion in the south of Jiangsu province was greater than that in the north of Jiangsu province. The spatial pattern of settlement in most cities was a cluster. In the past 30 years, urban and rural settlement expansion had significantly different impacts on the soil and water environment. Urban settlement expansion was great in the south of Jiangsu province and widened the economic and social gap between the south and north of Jiangsu province.

  10. Molecular Evolution and Expansion Analysis of the NAC Transcription Factor in Zea mays

    Science.gov (United States)

    Fan, Kai; Wang, Ming; Miao, Ying; Ni, Mi; Bibi, Noreen; Yuan, Shuna; Li, Feng; Wang, Xuede

    2014-01-01

    NAC (NAM, ATAF1, 2 and CUC2) family is a plant-specific transcription factor and it controls various plant developmental processes. In the current study, 124 NAC members were identified in Zea mays and were phylogenetically clustered into 13 distinct subfamilies. The whole genome duplication (WGD), especially an additional WGD event, may lead to expanding ZmNAC members. Different subfamily has different expansion rate, and NAC subfamily preference was found during the expansion in maize. Moreover, the duplication events might occur after the divergence of the lineages of Z. mays and S. italica, and segmental duplication seemed to be the dominant pattern for the gene duplication in maize. Furthermore, the expansion of ZmNAC members may be also related to gain and loss of introns. Besides, the restriction of functional divergence was discovered after most of the gene duplication events. These results could provide novel insights into molecular evolution and expansion analysis of NAC family in maize, and advance the NAC researches in other plants, especially polyploid plants. PMID:25369196

  11. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    Science.gov (United States)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  12. Two- and four-component relativistic generalized-active-space coupled cluster method: implementation and application to BiH.

    Science.gov (United States)

    Sørensen, Lasse K; Olsen, Jeppe; Fleig, Timo

    2011-06-07

    A string-based coupled-cluster method of general excitation rank and with optimal scaling which accounts for special relativity within the four-component framework is presented. The method opens the way for the treatment of multi-reference problems through an active-space inspired single-reference based state-selective expansion of the model space. The evaluation of the coupled-cluster vector function is implemented by considering contractions of elementary second-quantized operators without setting up the amplitude equations explicitly. The capabilities of the new method are demonstrated in application to the electronic ground state of the bismuth monohydride molecule. In these calculations simulated multi-reference expansions with both doubles and triples excitations into the external space as well as the regular coupled-cluster hierarchy up to full quadruples excitations are compared. The importance of atomic outer core-correlation for obtaining accurate results is shown. Comparison to the non-relativistic framework is performed throughout to illustrate the additional work of the transition to the four-component relativistic framework both in implementation and application. Furthermore, an evaluation of the highest order scaling for general-order expansions is presented. © 2011 American Institute of Physics

  13. Anharmonic effects in the quantum cluster equilibrium method

    Science.gov (United States)

    von Domaros, Michael; Perlt, Eva

    2017-03-01

    The well-established quantum cluster equilibrium (QCE) model provides a statistical thermodynamic framework to apply high-level ab initio calculations of finite cluster structures to macroscopic liquid phases using the partition function. So far, the harmonic approximation has been applied throughout the calculations. In this article, we apply an important correction in the evaluation of the one-particle partition function and account for anharmonicity. Therefore, we implemented an analytical approximation to the Morse partition function and the derivatives of its logarithm with respect to temperature, which are required for the evaluation of thermodynamic quantities. This anharmonic QCE approach has been applied to liquid hydrogen chloride and cluster distributions, and the molar volume, the volumetric thermal expansion coefficient, and the isobaric heat capacity have been calculated. An improved description for all properties is observed if anharmonic effects are considered.

  14. Hydrodynamic time scales for intense laser-heated clusters

    International Nuclear Information System (INIS)

    Parra, Enrique; Alexeev, Ilya; Fan, Jingyun; Kim, Kiong Y.; McNaught, Stuart J.; Milchberg, Howard M.

    2003-01-01

    Measurements are presented of x-ray (>1.5 keV) and extreme ultraviolet (EUV, λ equal to 2-44 nm) emission from argon clusters irradiated with constant-energy (50 mJ), variable-width laser pulses ranging from 100 fs to 10 ns. The results for clusters can be understood in terms of two time scales: a short time scale for optimal resonant absorption at the critical-density layer in the expanding plasma, and a longer time scale for the plasma to drop below critical density. We present a one-dimensional hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical-density plasma layer. These simulations explain the dependence of generation efficiency on laser pulse width

  15. Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime: methodology, information, and forecasts

    OpenAIRE

    Wibking, Benjamin D.; Salcedo, Andrés N.; Weinberg, David H.; Garrison, Lehman H.; Ferrer, Douglas; Tinker, Jeremy; Eisenstein, Daniel; Metchnik, Marc; Pinto, Philip

    2017-01-01

    The combination of galaxy-galaxy lensing (GGL) with galaxy clustering is one of the most promising routes to determining the amplitude of matter clustering at low redshifts. We show that extending clustering+GGL analyses from the linear regime down to $\\sim 0.5 \\, h^{-1}$ Mpc scales increases their constraining power considerably, even after marginalizing over a flexible model of non-linear galaxy bias. Using a grid of cosmological N-body simulations, we construct a Taylor-expansion emulator ...

  16. Cluster-based query expansion using external collections in medical information retrieval.

    Science.gov (United States)

    Oh, Heung-Seon; Jung, Yuchul

    2015-12-01

    Utilizing external collections to improve retrieval performance is challenging research because various test collections are created for different purposes. Improving medical information retrieval has also gained much attention as various types of medical documents have become available to researchers ever since they started storing them in machine processable formats. In this paper, we propose an effective method of utilizing external collections based on the pseudo relevance feedback approach. Our method incorporates the structure of external collections in estimating individual components in the final feedback model. Extensive experiments on three medical collections (TREC CDS, CLEF eHealth, and OHSUMED) were performed, and the results were compared with a representative expansion approach utilizing the external collections to show the superiority of our method. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. [Electronic and structural properties of individual nanometer-size supported metallic clusters

    International Nuclear Information System (INIS)

    Reifenberger, R.

    1993-01-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained

  18. Resonant heating of a cluster plasma by intense laser light

    International Nuclear Information System (INIS)

    Antonsen, Thomas M. Jr.; Taguchi, Toshihiro; Gupta, Ayush; Palastro, John; Milchberg, Howard M.

    2005-01-01

    Gases of atomic clusters are interaction media for laser pulse propagation with properties useful for applications such as extreme ultraviolet (EUV) and x-ray microscopy, harmonic generation, EUV lithography, and laser plasma acceleration. To understand cluster heating and expansion, a series of two- and three-dimensional electrostatic particle in cell simulations of the explosion of argon clusters of diameter in the range 20 nm-53 nm have been preformed. The studies show that heating is dominated by a nonlinear, resonant absorption process that gives rise to a size-dependent intensity threshold for strong absorption and that controls the dielectric properties of the cluster. Electrons are first accelerated out from the cluster and then driven back into it by the combined effects of the laser field and the electrostatic field produced by the laser-driven charge separation. Above the intensity threshold for strong heating there is a dramatic increase in the production of energetic particles and harmonic radiation. The dielectric properties of a gas of clusters are determined by the ensemble average cluster polarizability. Individual electrons contribute to the polarizability differently depending on whether they are in the core of the cluster or in the outer edge. Consequently, there can be large fluctuations in polarizability during the heating of a cluster

  19. EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2008-02-01

    Full Text Available The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between Tromsø (66.6° cgmLat and Longyearbyen (75.2° cgmLat on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB made zig-zag-type motion with amplitude of 2.5° cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL. The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992. The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm.

    During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4 RE mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H+ and O+ ions took place within the plasma sheet boundary layer (PSBL as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency fluctuations.

    The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2° during

  20. Finite size effects in the evaporation rate of 3He clusters

    International Nuclear Information System (INIS)

    Guirao, A.; Pi, M.; Barranco, M.

    1991-01-01

    We have computed the density of states and the evaporation rate of 3 He clusters, paying special attention to finite size effects which modify the 3 He level density parameter and chemical potential from their bulk values. Ready-to-use liquid-drop expansions of these quantities are given. (orig.)

  1. High temperature expansions for the free energy of vortices respectively the string tension in lattice gauge theories

    International Nuclear Information System (INIS)

    Muenster, G.

    1980-05-01

    We derive high temperature cluster expansions for the free energy of vortices in SU(2) and Z 2 lattice gauge theories in 3 and 4 dimensions. The expected behaviour of the vortex free energy is verified. It obeys an area law behaviour. The coefficient of the area is shown to be equal to the string tension between static quarks. We calculate its expansion up to 12th order. For SU(2) in 4 dimensions the result is compared with Monte Carlo calculations of Creutz and is in good agreement at strong and intermediate coupling. (orig.)

  2. Young star clusters in nearby molecular clouds

    Science.gov (United States)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  3. Intensities and cross-sections of Ar clusters in a molecular beam, ch. 3

    International Nuclear Information System (INIS)

    Deursen, A.P.J. van; Lumig, A. van; Reuss, J.

    1976-01-01

    Ar-cluster beams were produced by supersonic expansion under various source conditions. The experimental intensities have been scaled such that universal curves are obtained, up to moderate source pressures. The ratio of dimer/monomer cross-sections has been determined. (Auth.)

  4. Interaction of rare gas clusters in intense laser field

    International Nuclear Information System (INIS)

    Dobosz, Sandrine

    1998-01-01

    Rare gas cluster jet targets have only been scarcely studied in strong laser fields. This is surprising since their properties are particularly appealing. Although considered as a gas phase target, the local density within clusters is comparable to that of the bulk. Intense irradiation of clusters produces a plasma thereby giving rise to strong collisional heating. This explains, in particular, the observation of very high fragment charge states and the generation of X-rays in the keV energy range. The complete set of our experimental results shows that the intra-cluster atoms are first ionised by tunnel ionisation followed by massive electron impact ionisation. Thus, for Xenon clusters, we have observed up to 30-fold charged. The most energetic electrons leave the cluster which contributes to a positive charge build-up on the cluster surface. The plasma expands under the combined action of the Coulomb and kinetic pressures. The contribution of each pressure depends on the cluster size and we show that the Coulomb pressure is prevailing for the smallest sizes. This scenario explains the ejection of fragments with energies of up to lMeV. We have also performed a high resolution X-ray study to explore in situ the properties of the plasma. These studies underline the importance of electron-ion collisions and allow to deterrnine the mean charge states of the emitting ions. Finally, we have developed a model, describing the cluster expansion, which confirms our experimental observations. (author) [fr

  5. Energetics of charged metal clusters containing vacancies

    Science.gov (United States)

    Pogosov, Valentin V.; Reva, Vitalii I.

    2018-01-01

    We study theoretically large metal clusters containing vacancies. We propose an approach, which combines the Kohn-Sham results for monovacancy in a bulk of metal and analytical expansions in small parameters cv (relative concentration of vacancies) and RN,v -1, RN ,v being cluster radii. We obtain expressions of the ionization potential and electron affinity in the form of corrections to electron work function, which require only the characteristics of 3D defect-free metal. The Kohn-Sham method is used to calculate the electron profiles, ionization potential, electron affinity, electrical capacitance; dissociation, cohesion, and monovacancy-formation energies of the small perfect clusters NaN, MgN, AlN (N ≤ 270) and the clusters containing a monovacancy (N ≥ 12) in the stabilized-jellium model. The quantum-sized dependences for monovacancy-formation energies are calculated for the Schottky scenario and the "bubble blowing" scenario, and their asymptotic behavior is also determined. It is shown that the asymptotical behaviors of size dependences for these two mechanisms differ from each other and weakly depend on the number of atoms in the cluster. The contribution of monovacancy to energetics of charged clusters and the size dependences of their characteristics and asymptotics are discussed. It is shown that the difference between the characteristics for the neutral and charged clusters is entirely determined by size dependences of ionization potential and electron affinity. Obtained analytical dependences may be useful for the analysis of the results of photoionization experiments and for the estimation of the size dependences of the vacancy concentration including the vicinity of the melting point.

  6. Fuel element cluster for nuclear reactors

    International Nuclear Information System (INIS)

    Anthony, A.J.; Hutchinson, J.J.

    1976-01-01

    The claim refers to the constructional design of a fuel element cluster the elements of which are held by upper and lower end plates connected to each other in upright position, the bearing being formed by a screw connection between at least one guide tube for control rods and the two end plates. The claims are directed, especially, to the connection of the parts as well as to the materials selection which are determined to a high degree by the thermal expansion coefficients. (UA) [de

  7. Clustering of near clusters versus cluster compactness

    International Nuclear Information System (INIS)

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  8. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  9. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  10. Low-temperature thermal expansion

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed

  11. Characterization of micron-size hydrogen clusters using Mie scattering.

    Science.gov (United States)

    Jinno, S; Tanaka, H; Matsui, R; Kanasaki, M; Sakaki, H; Kando, M; Kondo, K; Sugiyama, A; Uesaka, M; Kishimoto, Y; Fukuda, Y

    2017-08-07

    Hydrogen clusters with diameters of a few micrometer range, composed of 10 8-10 hydrogen molecules, have been produced for the first time in an expansion of supercooled, high-pressure hydrogen gas into a vacuum through a conical nozzle connected to a cryogenic pulsed solenoid valve. The size distribution of the clusters has been evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed based on the Mie scattering theory combined with the Tikhonov regularization method including the instrumental functions, the validity of which was assessed by performing a calibration study using a reference target consisting of standard micro-particles with two different sizes. The size distribution of the clusters was found discrete peaked at 0.33 ± 0.03, 0.65 ± 0.05, 0.81 ± 0.06, 1.40 ± 0.06 and 2.00 ± 0.13 µm in diameter. The highly reproducible and impurity-free nature of the micron-size hydrogen clusters can be a promising target for laser-driven multi-MeV proton sources with the currently available high power lasers.

  12. Formation of atomic clusters through the laser ablation of refractory materials in a supersonic molecular beam source

    International Nuclear Information System (INIS)

    Haufler, R.E.; Puretzky, A.A.; Compton, R.N.

    1993-01-01

    Concepts which guide the design of atomic cluster supersonic beam sources have been developed. These ideas are founded on the knowledge of laser ablation dynamics and are structured in order to take advantage of certain features of the ablation event. Some of the drawbacks of previous cluster source designs become apparent when the sequence of events following laser ablation are clarified. Key features of the new cluster source design include control of the cluster size distribution, uniform performance with a variety of solid materials and elements, high beam intensity, and significant removal of internal energy during the supersonic expansion

  13. Galaxy Clusters, Near and Far, Have a Lot in Common

    Science.gov (United States)

    2005-04-01

    Using two orbiting X-ray telescopes, a team of international astronomers has examined distant galaxy clusters in order to compare them with their counterparts that are relatively close by. Speaking today at the RAS National Astronomy Meeting in Birmingham, Dr. Ben Maughan (Harvard-Smithsonian Center for Astrophysics), presented the results of this new analysis. The observations indicate that, despite the great expansion that the Universe has undergone since the Big Bang, galaxy clusters both local and distant have a great deal in common. This discovery could eventually lead to a better understanding of how to "weigh" these enormous structures, and, in so doing, answer important questions about the nature and structure of the Universe. Clusters of galaxies, the largest known gravitationally-bound objects, are the knots in the cosmic web of structure that permeates the Universe. Theoretical models make predictions about the number, distribution and properties of these clusters. Scientists can test and improve models of the Universe by comparing these predictions with observations. The most powerful way of doing this is to measure the masses of galaxy clusters, particularly those in the distant Universe. However, weighing galaxy clusters is extremely difficult. One relatively easy way to weigh a galaxy cluster is to use simple laws ("scaling relations") to estimate its weight from properties that are easy to observe, like its luminosity (brightness) or temperature. This is like estimating someone's weight from their height if you didn't have any scales. Over the last 3 years, a team of researchers, led by Ben Maughan, has observed 11 distant galaxy clusters with ESA's XMM-Newton and NASA's Chandra X-ray Observatory. The clusters have redshifts of z = 0.6-1.0, which corresponds to distances of 6 to 8 billion light years. This means that we see them as they were when the Universe was half its present age. The survey included two unusual systems, one in which two massive

  14. On the structure and stability of Arn and Arn+ clusters at finite temperature

    International Nuclear Information System (INIS)

    Schulte, J.

    1991-01-01

    For Ar 2-29 and Ar 2-29 + clusters at 20 K in the polarization model presented here the electrodynamical dipole-dipole many-body problem is solved selfconsistently with the Monte-Carlo method (MC) at 20 K, i.e. the instantaneous dipole-dipole interaction is solved to infinite perturbation order and in cluster expansion to the order of the cluster size. The long range many-body dipole-dipole interaction is coupled to exchange interaction by a modified effective dipole polarizability. This model will be compared to the dimer model and classical MC simulation of Ar n . The resulting different magic numbers in the binding energies are discussed in this connection with different experimental techniques of cluster ionization. By the mean square cluster diameter a shape parameter is introduced and it is found that with this parameter structural form transition in cluster growth can be resolved, and surprinsingly do not correlate with the magic numbers. (orig.)

  15. Reactivity of Monolayer Protected Silver Clusters Towards Excess Ligand: A Calorimetric Study

    KAUST Repository

    Baksi, Ananya

    2017-10-31

    Reactivity of monolayer protected atomically precise clusters of noble metals is of significant research interest. Till date very few experimental data are available on the reaction thermodynamics of such clusters. Here we report a calorimetric study of the reaction of glutathione (GSH) protected silver clusters in presence of excess ligand, GSH using isothermal titration calorimetry (ITC). We have studied Ag11(SG)7 and Ag32(SG)19 clusters and compared their reactivity with GSH protected silver nanoparticles (AgNPs) and silver ions. Clusters show intermediate reactivity towards excess ligand com-pared to nanoparticles and silver ions. Several control experiments were performed to understand the degradation mech-anism of these silver clusters and nanoparticles. Effect of dissolved oxygen in the degradation process was studied in de-tail and found that it did not have a significant role, although alternate pathways of degradation with the involvement of oxygen cannot be ruled out. Direct confirmation of the fact that functionalized metal clusters fall in-between NPs and atomic systems in their stability is obtained experimentally for the first time. Several other thermophysical parameters of these clusters were also determined including, density, speed of sound, isentropic compressibility and coefficient of thermal expansion.

  16. Isentropic expansion and related thermodynamic properties of non-ionic amphiphile-water mixtures.

    Science.gov (United States)

    Reis, João Carlos R; Douhéret, Gérard; Davis, Michael I; Fjellanger, Inger Johanne; Høiland, Harald

    2008-01-28

    A concise thermodynamic formalism is developed for the molar isentropic thermal expansion, ES,m = ( partial differential Vm/ partial differential T)(Sm,x), and the ideal and excess quantities for the molar, apparent molar and partial molar isentropic expansions of binary liquid mixtures. Ultrasound speeds were determined by means of the pulse-echo-overlap method in aqueous mixtures of 2-methylpropan-2-ol at 298.15 K over the entire composition range. These data complement selected extensive literature data on density, isobaric heat capacity and ultrasound speed for 9 amphiphile (methanol, ethanol, propan-1-ol, propan-2-ol, 2-methylpropan-2-ol, ethane-1,2-diol, 2-methoxyethanol, 2-ethoxyethanol or 2-butoxyethanol)-water binary systems, which form the basis of tables listing molar and excess molar isobaric expansions and heat capacities, and molar and excess molar isentropic compressions and expansions at 298.15 K and at 65 fixed mole fractions spanning the entire composition range and fine-grained in the water-rich region. The dependence on composition of these 9 systems is graphically depicted for the excess molar isobaric and isentropic expansions and for the excess partial molar isobaric and isentropic expansions of the amphiphile. The analysis shows that isentropic thermal expansion properties give a much stronger response to amphiphile-water molecular interactions than do their isobaric counterparts. Depending on the pair property-system, the maximum excess molar isentropic value is generally twenty- to a hundred-fold greater than the corresponding maximum isobaric value, and occurs at a lower mole fraction of the amphiphile. Values at infinite dilution of the 9 amphiphiles in water are given for the excess partial molar isobaric heat capacity, isentropic compression, isobaric expansion and isentropic expansion. These values are interpreted in terms of the changes occurring when amphiphile molecules cluster into an oligomeric form. Present results are discussed

  17. Reprint of: Negative carbon cluster ion beams: New evidence for the special nature of C60

    Science.gov (United States)

    Liu, Y.; O'brien, S. C.; Zhang, Q.; Heath, J. R.; Tittel, F. K.; Curl, R. F.; Kroto, H. W.; Smalley, R. E.

    2013-12-01

    Cold carbon cluster negative ions are formed by supersonic expansion of a plasma created at the nozzle of a supersonic cluster beam source by an excimer laser pulse. The observed distribution of mass peaks for the Cn- ions for n > 40 demonstrates that the evidence previously given for the special stability of neutral C60 and the existence of spheroidal carbon shells cannot be an artifact of the ionization conditions.

  18. Understanding Hematopoietic Stem Cell Development through Functional Correlation of Their Proliferative Status with the Intra-aortic Cluster Architecture

    Directory of Open Access Journals (Sweden)

    Antoniana Batsivari

    2017-06-01

    Full Text Available During development, hematopoietic stem cells (HSCs emerge in the aorta-gonad-mesonephros (AGM region through a process of multi-step maturation and expansion. While proliferation of adult HSCs is implicated in the balance between self-renewal and differentiation, very little is known about the proliferation status of nascent HSCs in the AGM region. Using Fucci reporter mice that enable in vivo visualization of cell-cycle status, we detect increased proliferation during pre-HSC expansion followed by a slowing down of cycling once cells start to acquire a definitive HSC state, similar to fetal liver HSCs. We observe time-specific changes in intra-aortic hematopoietic clusters corresponding to HSC maturation stages. The proliferative architecture of the clusters is maintained in an orderly anatomical manner with slowly cycling cells at the base and more actively proliferating cells at the more apical part of the cluster, which correlates with c-KIT expression levels, thus providing an anatomical basis for the role of SCF in HSC maturation.

  19. Negative thermal expansion materials: technological key for control of thermal expansion

    OpenAIRE

    Koshi Takenaka

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining pra...

  20. Microscopic analysis of nuclear collective motions in terms of the boson expansion theory. Pt. 1

    International Nuclear Information System (INIS)

    Sakamoto, Hideo; Kishimoto, Teruo

    1988-01-01

    A normal-ordered linked-cluster boson expansion theory, previously worked out by one of the authors (T.K.) and Tamura, has been developed further by reformulating it in a 'physical' quasiparticle subspace which contains no spurious particle-number excitation modes. The expansion coefficients of the collective hamiltonian for low-lying quadrupole motions are determined starting from a microscopic fermion hamiltonian including self-consistent higher-order (many-body) interactions derived in our previous work. The contributions from the non-collective states with all possible non-collective one-boson excitations having I π = 0 + -4 + , which can directly couple to the collective states with one or two phonons, are taken into account in a systematic and compact way. (orig.)

  1. Following Surgically Assisted Rapid Palatal Expansion, Do Tooth-Borne or Bone-Borne Appliances Provide More Skeletal Expansion and Dental Expansion?

    Science.gov (United States)

    Hamedi-Sangsari, Adrien; Chinipardaz, Zahra; Carrasco, Lee

    2017-10-01

    The aim of this study was to compare outcome measurements of skeletal and dental expansion with bone-borne (BB) versus tooth-borne (TB) appliances after surgically assisted rapid palatal expansion (SARPE). This study was performed to provide quantitative measurements that will help the oral surgeon and orthodontist in selecting the appliance with, on average, the greatest amount of skeletal expansion and the least amount of dental expansion. A computerized database search was performed using PubMed, EBSCO, Cochrane, Scopus, Web of Science, and Google Scholar on publications in reputable oral surgery and orthodontic journals. A systematic review and meta-analysis was completed with the predictor variable of expansion appliance (TB vs BB) and outcome measurement of expansion (in millimeters). Of 487 articles retrieved from the 6 databases, 5 articles were included, 4 with cone-beam computed tomographic (CBCT) data and 1 with non-CBCT 3-dimensional cast data. There was a significant difference in skeletal expansion (standardized mean difference [SMD], 0.92; 95% confidence interval [CI], 0.54-1.30; P appliances. However, there was no significant difference in dental expansion (SMD, 0.05; 95% CI, -0.24 to 0.34; P = .03). According to the literature, to achieve more effective skeletal expansion and minimize dental expansion after SARPE, a BB appliance should be favored. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Improving the Eco-Efficiency of High Performance Computing Clusters Using EECluster

    Directory of Open Access Journals (Sweden)

    Alberto Cocaña-Fernández

    2016-03-01

    Full Text Available As data and supercomputing centres increase their performance to improve service quality and target more ambitious challenges every day, their carbon footprint also continues to grow, and has already reached the magnitude of the aviation industry. Also, high power consumptions are building up to a remarkable bottleneck for the expansion of these infrastructures in economic terms due to the unavailability of sufficient energy sources. A substantial part of the problem is caused by current energy consumptions of High Performance Computing (HPC clusters. To alleviate this situation, we present in this work EECluster, a tool that integrates with multiple open-source Resource Management Systems to significantly reduce the carbon footprint of clusters by improving their energy efficiency. EECluster implements a dynamic power management mechanism based on Computational Intelligence techniques by learning a set of rules through multi-criteria evolutionary algorithms. This approach enables cluster operators to find the optimal balance between a reduction in the cluster energy consumptions, service quality, and number of reconfigurations. Experimental studies using both synthetic and actual workloads from a real world cluster support the adoption of this tool to reduce the carbon footprint of HPC clusters.

  3. Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo; Nucamendi, Ulises, E-mail: avelino@ifm.umich.mx, E-mail: ulises@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040, Morelia, Michoacán (Mexico)

    2010-08-01

    We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by a pressureless fluid with bulk viscosity of the form ζ = ζ{sub 0}+ζ{sub 1}H where ζ{sub 0} and ζ{sub 1} are constants and H is the Hubble parameter. The pressureless fluid characterizes both the baryon and dark matter components. We study the behavior of the Universe according to this model analyzing the scale factor as well as some curvature scalars and the matter density. On the other hand, we compute the best estimated values of ζ{sub 0} and ζ{sub 1} using the type Ia Supernovae (SNe Ia) probe. We find that from all the possible scenarios for the Universe, the preferred one by the best estimated values of (ζ{sub 0},ζ{sub 1}) is that of an expanding Universe beginning with a Big-Bang, followed by a decelerated expansion at early times, and with a smooth transition in recent times to an accelerated expansion epoch that is going to continue forever. The predicted age of the Universe is a little smaller than the mean value of the observational constraint coming from the oldest globular clusters but it is still inside of the confidence interval of this constraint. A drawback of the model is the violation of the local second law of thermodynamics in redshifts z∼>1. However, when we assume ζ{sub 1} = 0, the simple model ζ = ζ{sub 0} evaluated at the best estimated value for ζ{sub 0} satisfies the local second law of thermodynamics, the age of the Universe is in perfect agreement with the constraint of globular clusters, and it also has a Big-Bang, followed by a decelerated expansion with the smooth transition to an accelerated expansion epoch in late times, that is going to continue forever.

  4. THE LIFETIME AND POWERS OF FR IIs IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Antognini, Joe; Bird, Jonathan; Martini, Paul

    2012-01-01

    We have identified and studied a sample of 151 FR IIs found in brightest cluster galaxies (BCGs) in the MaxBCG cluster catalog with data from FIRST and NVSS. We have compared the radio luminosities and projected lengths of these FR IIs to the projected length distribution of a range of mock catalogs generated by an FR II model and estimate the FR II lifetime to be 1.9 × 10 8 yr. The uncertainty in the lifetime calculation is a factor of two, primarily due to uncertainties in the intracluster medium (ICM) density and the FR II axial ratio. We furthermore measure the jet power distribution of FR IIs in BCGs and find that it is well described by a log-normal distribution with a median power of 1.1 × 10 37 W and a coefficient of variation of 2.2. These jet powers are nearly linearly related to the observed luminosities, and this relation is steeper than many other estimates, although it is dependent on the jet model. We investigate correlations between FR II and cluster properties and find that galaxy luminosity is correlated with jet power. This implies that jet power is also correlated with black hole mass, as the stellar luminosity of a BCG should be a good proxy for its spheroid mass and therefore the black hole mass. Jet power, however, is not correlated with cluster richness, nor is FR II lifetime strongly correlated with any cluster properties. We calculate the enthalpy of the lobes to examine the impact of the FR IIs on the ICM and find that heating due to adiabatic expansion is too small to offset radiative cooling by a factor of at least six. In contrast, the jet power is approximately an order of magnitude larger than required to counteract cooling. We conclude that if feedback from FR IIs offsets cooling of the ICM, then heating must be primarily due to another mechanism associated with FR II expansion.

  5. THE LIFETIME AND POWERS OF FR IIs IN GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Antognini, Joe; Bird, Jonathan; Martini, Paul, E-mail: antognini@astronomy.ohio-state.edu, E-mail: bird@astronomy.ohio-state.edu, E-mail: martini@astronomy.ohio-state.edu [Department of Astronomy, Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States)

    2012-09-10

    We have identified and studied a sample of 151 FR IIs found in brightest cluster galaxies (BCGs) in the MaxBCG cluster catalog with data from FIRST and NVSS. We have compared the radio luminosities and projected lengths of these FR IIs to the projected length distribution of a range of mock catalogs generated by an FR II model and estimate the FR II lifetime to be 1.9 Multiplication-Sign 10{sup 8} yr. The uncertainty in the lifetime calculation is a factor of two, primarily due to uncertainties in the intracluster medium (ICM) density and the FR II axial ratio. We furthermore measure the jet power distribution of FR IIs in BCGs and find that it is well described by a log-normal distribution with a median power of 1.1 Multiplication-Sign 10{sup 37} W and a coefficient of variation of 2.2. These jet powers are nearly linearly related to the observed luminosities, and this relation is steeper than many other estimates, although it is dependent on the jet model. We investigate correlations between FR II and cluster properties and find that galaxy luminosity is correlated with jet power. This implies that jet power is also correlated with black hole mass, as the stellar luminosity of a BCG should be a good proxy for its spheroid mass and therefore the black hole mass. Jet power, however, is not correlated with cluster richness, nor is FR II lifetime strongly correlated with any cluster properties. We calculate the enthalpy of the lobes to examine the impact of the FR IIs on the ICM and find that heating due to adiabatic expansion is too small to offset radiative cooling by a factor of at least six. In contrast, the jet power is approximately an order of magnitude larger than required to counteract cooling. We conclude that if feedback from FR IIs offsets cooling of the ICM, then heating must be primarily due to another mechanism associated with FR II expansion.

  6. Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Dan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dyson, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    In this report, we introduce a methodology to achieve multiple levels of spatial resolution reduction of solar resource data, with minimal impact on data variability, for use in energy systems modeling. The selection of an appropriate clustering algorithm, parameter selection including cluster size, methods of temporal data segmentation, and methods of cluster evaluation are explored in the context of a repeatable process. In describing this process, we illustrate the steps in creating a reduced resolution, but still viable, dataset to support energy systems modeling, e.g. capacity expansion or production cost modeling. This process is demonstrated through the use of a solar resource dataset; however, the methods are applicable to other resource data represented through spatiotemporal grids, including wind data. In addition to energy modeling, the techniques demonstrated in this paper can be used in a novel top-down approach to assess renewable resources within many other contexts that leverage variability in resource data but require reduction in spatial resolution to accommodate modeling or computing constraints.

  7. Tuberculosis outbreaks predicted by characteristics of first patients in a DNA fingerprint cluster.

    Science.gov (United States)

    Kik, Sandra V; Verver, Suzanne; van Soolingen, Dick; de Haas, Petra E W; Cobelens, Frank G; Kremer, Kristin; van Deutekom, Henk; Borgdorff, Martien W

    2008-07-01

    Some clusters of patients who have Mycobacterium tuberculosis isolates with identical DNA fingerprint patterns grow faster than others. It is unclear what predictors determine cluster growth. To assess whether the development of a tuberculosis (TB) outbreak can be predicted by the characteristics of its first two patients. Demographic and clinical data of all culture-confirmed patients with TB in the Netherlands from 1993 through 2004 were combined with DNA fingerprint data. Clusters were restricted to cluster episodes of 2 years to only detect newly arising clusters. Characteristics of the first two patients were compared between small (2-4 cases) and large (5 or more cases) cluster episodes. Of 5,454 clustered cases, 1,756 (32%) were part of a cluster episode of 2 years. Of 622 cluster episodes, 54 (9%) were large and 568 (91%) were small episodes. Independent predictors for large cluster episodes were as follows: less than 3 months' time between the diagnosis of the first two patients, one or both patients were young (<35 yr), both patients lived in an urban area, and both patients came from sub-Saharan Africa. In the Netherlands, patients in new cluster episodes should be screened for these risk factors. When the risk pattern applies, targeted interventions (e.g., intensified contact investigation) should be considered to prevent further cluster expansion.

  8. [Electronic and structural properties of individual nanometer-size supported metallic clusters]. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    Reifenberger, R.

    1993-09-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained.

  9. Electron-induced chemistry in microhydrated sulfuric acid clusters

    Science.gov (United States)

    Lengyel, Jozef; Pysanenko, Andriy; Fárník, Michal

    2017-11-01

    We investigate the mixed sulfuric acid-water clusters in a molecular beam experiment with electron attachment and negative ion mass spectrometry and complement the experiment by density functional theory (DFT) calculations. The microhydration of (H2SO4)m(H2O)n clusters is controlled by the expansion conditions, and the electron attachment yields the main cluster ion series (H2SO4)m(H2O)nHSO4- and (H2O)nH2SO4-. The mass spectra provide an experimental evidence for the onset of the ionic dissociation of sulfuric acid and ion-pair (HSO4- ṡ ṡ ṡ H3O+) formation in the neutral H2SO4(H2O)n clusters with n ≥ 5 water molecules, in excellent agreement with the theoretical predictions. In the clusters with two sulfuric acid molecules (H2SO4)2(H2O)n this process starts as early as n ≥ 2 water molecules. The (H2SO4)m(H2O)nHSO4- clusters are formed after the dissociative electron attachment to the clusters containing the (HSO4- ṡ ṡ ṡ H3O+) ion-pair structure, which leads to the electron recombination with the H3O+ moiety generating H2O molecule and the H-atom dissociation from the cluster. The (H2O)nH2SO4- cluster ions point to an efficient caging of the H atom by the surrounding water molecules. The electron-energy dependencies exhibit an efficient electron attachment at low electron energies below 3 eV, and no resonances above this energy, for all the measured mass peaks. This shows that in the atmospheric chemistry only the low-energy electrons can be efficiently captured by the sulfuric acid-water clusters and converted into the negative ions. Possible atmospheric consequences of the acidic dissociation in the clusters and the electron attachment to the sulfuric acid-water aerosols are discussed.

  10. Magnetism of iron, cobalt and nickel clusters studied in molecular beams

    International Nuclear Information System (INIS)

    Billas, I.

    1995-01-01

    The magnetic properties of iron, cobalt and nickel clusters in a molecular beam have been studied in a magnetic Stern-Gerlach deflection experiment. The molecular beam apparatus consists of a laser vaporization cluster source with high intensity and stability and a high-resolution time-of-flight mass spectrometer for the deflection measurements. Several novel experimental features have been developed in this work, like a nozzle which can be heated up to 1000 K and a chopper to measure the dwell times of the clusters in the source and their corresponding velocities. These new developments have allowed the measurement and the control of the temperature of the free clusters. The Stern-Gerlach deflection experiments have been performed on Fe, Co and Ni clusters in the mass range from 20 to 700 atoms. All clusters show single-sided deflection toward increasing field. This observation indicates that a spin relaxation process occurs within the isolated clusters. The participation of both the cluster rotational and vibrational degrees of freedom to the spin relaxation has been experimentally demonstrated. The cluster magnetization has been determined as a function of applied magnetic field B and as a function of dwell times of the clusters in the source before the supersonic expansion into vacuum. Superparamagnetic behavior has been observed when the cluster rotational speed is much larger than the Larmor frequency of the cluster magnetic moment μ in the field B. In particular, for μB<< kT, the cluster magnetization depends on B/T. For lower rotational speeds, reduced values of the magnetization have been observed. The magnetic moments of the superparamagnetic Fe, Co and Ni clusters have been measured as a) a function of cluster size N at low temperature and b) as a function of cluster temperature T for various size ranges. (author) figs., tabs., refs

  11. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  12. An increase in immature β-cells lacking Glut2 precedes the expansion of β-cell mass in the pregnant mouse.

    Directory of Open Access Journals (Sweden)

    Christine A Beamish

    Full Text Available A compensatory increase in β-cell mass occurs during pregnancy to counter the associated insulin resistance, and a failure in adaptation is thought to contribute to gestational diabetes. Insulin-expressing but glucose-transporter-2-low (Ins+Glut2LO progenitor cells are present in mouse and human pancreas, being predominantly located in extra-islet β-cell clusters, and contribute to the regeneration of the endocrine pancreas following induced ablation. We therefore sought to investigate the contribution of Ins+Glut2LO cells to β-cell mass expansion during pregnancy. Female C57Bl/6 mice were time mated and pancreata were collected at gestational days (GD 6, 9, 12, 15, and 18, and postpartum D7 (n = 4/time-point and compared to control (non-pregnant animals. Beta cell mass, location, proliferation (Ki67+, and proportion of Ins+Glut2LO cells were measured using immunohistochemistry and bright field or confocal microscopy. Beta cell mass tripled by GD18 and β-cell proliferation peaked at GD12 in islets (≥6 β-cells and small β-cell clusters (1-5 β-cells. The proportion and fraction of Ins+Glut2LO cells undergoing proliferation increased significantly at GD9 in both islets and clusters, preceding the increase in β-cell mass and proliferation, and their proliferation within clusters persisted until GD15. The overall number of clusters increased significantly at GD9. Quantitative PCR showed a significant increase in Pdx1 presence at GD9 vs. GD18 or control pancreas, and Pdx1 was visualized by immunohistochemistry within both Ins+Glut2LO and Ins+Glut2HI cells within clusters. These results indicate that Ins+Glut2LO cells are likely to contribute to β-cell mass expansion during pregnancy.

  13. Negative thermal expansion materials: technological key for control of thermal expansion.

    Science.gov (United States)

    Takenaka, Koshi

    2012-02-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over -30 ppm K -1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  14. Negative thermal expansion materials: technological key for control of thermal expansion

    Directory of Open Access Journals (Sweden)

    Koshi Takenaka

    2012-01-01

    Full Text Available Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  15. Negative thermal expansion materials: technological key for control of thermal expansion

    International Nuclear Information System (INIS)

    Takenaka, Koshi

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K −1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade. (topical review)

  16. Thermodynamic consideration and ground-state search of icosahedral boron subselenide B12(B1-xSex) 2 from a first-principles cluster expansion

    Science.gov (United States)

    Ektarawong, A.

    2018-05-01

    The phase stability of icosahedral boron subselenide B12(B1-xSex) 2 , where 0.5 ≤x ≤1 , is explored using a first-principles cluster expansion. The results shows that, instead of a continuous solid solution, B12(B1-xSex) 2 is thermodynamically stable as an individual line compound at the composition of B9.5Se . The ground-state configuration of B9.5Se is represented by a mixture of B12(Se-Se), B12(B-Se), and B12(Se-B) with a ratio of 1:1:1, where they form a periodic A B C A B C ⋯ stacking sequence of B12(Se-Se), B12(B-Se), and B12(Se-B) layers along the c axis of the hexagonal conventional unit cell. The structural and electronic properties of the ground-state B9.5Se are also derived and discussed. By comparing the derived ground-state properties of B9.5Se to the existing experimental data of boron subselenide B˜13Se , I proposed that the as-synthesized boron subselenide B˜13Se , as reported in the literature, has the actual composition of B9.5Se .

  17. An Experimental Observation of Axial Variation of Average Size of Methane Clusters in a Gas Jet

    International Nuclear Information System (INIS)

    Ji-Feng, Han; Chao-Wen, Yang; Jing-Wei, Miao; Jian-Feng, Lu; Meng, Liu; Xiao-Bing, Luo; Mian-Gong, Shi

    2010-01-01

    Axial variation of average size of methane clusters in a gas jet produced by supersonic expansion of methane through a cylindrical nozzle of 0.8 mm in diameter is observed using a Rayleigh scattering method. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 16 to 50 bar, and the power is strongly Z dependent varying from 8.4 (Z = 3 mm) to 5.4 (Z = 11 mm), which is much larger than that of the argon cluster. The scattered light intensity versus axial position shows that the position of 5 mm has the maximum signal intensity. The estimation of the average cluster size on axial position Z indicates that the cluster growth process goes forward until the maximum average cluster size is reached at Z = 9 mm, and the average cluster size will decrease gradually for Z > 9 mm

  18. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  19. An algorithm for high order strong coupling expansions: The mass gap in 3d pure Z2 lattice gauge theory

    International Nuclear Information System (INIS)

    Decker, K.; Hamburg Univ.

    1985-12-01

    An efficient description of all clusters contributing to the strong coupling expansion of the mass gap in three-dimensional pure Z 2 lattice gauge theory is presented. This description is correct to all orders in the strong coupling expansion and is chosen in such a way that it remains valid in four dimensions for gauge group Z 2 . Relying on this description an algorithm has been constructed which generates and processes all the contributing graphs to the exact strong coupling expansion of the mass gap in the three-dimensional model in a fully automatic fashion. A major component of this algorithm can also be used to generate exact strong coupling expansions for the free energy logZ. The algorithm is correct to any order; thus the order of these expansions is only limited by the available computing power. The presentation of the algorithm is such that it can serve as a guide-line for the construction of a generalized one which would also generate exact strong coupling expansions for the masses of low-lying excited states of four-dimensional pure Yang-Mills theories. (orig.)

  20. Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10

    Science.gov (United States)

    Balla, R. Jeffrey; Everhart, Joel L.

    2012-01-01

    In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.

  1. Understanding Hematopoietic Stem Cell Development through Functional Correlation of Their Proliferative Status with the Intra-aortic Cluster Architecture.

    Science.gov (United States)

    Batsivari, Antoniana; Rybtsov, Stanislav; Souilhol, Celine; Binagui-Casas, Anahi; Hills, David; Zhao, Suling; Travers, Paul; Medvinsky, Alexander

    2017-06-06

    During development, hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region through a process of multi-step maturation and expansion. While proliferation of adult HSCs is implicated in the balance between self-renewal and differentiation, very little is known about the proliferation status of nascent HSCs in the AGM region. Using Fucci reporter mice that enable in vivo visualization of cell-cycle status, we detect increased proliferation during pre-HSC expansion followed by a slowing down of cycling once cells start to acquire a definitive HSC state, similar to fetal liver HSCs. We observe time-specific changes in intra-aortic hematopoietic clusters corresponding to HSC maturation stages. The proliferative architecture of the clusters is maintained in an orderly anatomical manner with slowly cycling cells at the base and more actively proliferating cells at the more apical part of the cluster, which correlates with c-KIT expression levels, thus providing an anatomical basis for the role of SCF in HSC maturation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Using SVD on Clusters to Improve Precision of Interdocument Similarity Measure

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2016-01-01

    Full Text Available Recently, LSI (Latent Semantic Indexing based on SVD (Singular Value Decomposition is proposed to overcome the problems of polysemy and homonym in traditional lexical matching. However, it is usually criticized as with low discriminative power for representing documents although it has been validated as with good representative quality. In this paper, SVD on clusters is proposed to improve the discriminative power of LSI. The contribution of this paper is three manifolds. Firstly, we make a survey of existing linear algebra methods for LSI, including both SVD based methods and non-SVD based methods. Secondly, we propose SVD on clusters for LSI and theoretically explain that dimension expansion of document vectors and dimension projection using SVD are the two manipulations involved in SVD on clusters. Moreover, we develop updating processes to fold in new documents and terms in a decomposed matrix by SVD on clusters. Thirdly, two corpora, a Chinese corpus and an English corpus, are used to evaluate the performances of the proposed methods. Experiments demonstrate that, to some extent, SVD on clusters can improve the precision of interdocument similarity measure in comparison with other SVD based LSI methods.

  3. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    Science.gov (United States)

    Shen, Fei-Ran; Kuang, Hao; Hu, Feng-Xia; Wu, Hui; Huang, Qing-Zhen; Liang, Fei-Xiang; Qiao, Kai-Ming; Li, Jia; Wang, Jing; Liu, Yao; Zhang, Lei; He, Min; Zhang, Ying; Zuo, Wen-Liang; Sun, Ji-Rong; Shen, Bao-Gen

    2017-10-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn-Co-Ge-In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 × 10-6/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition.

  4. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    Directory of Open Access Journals (Sweden)

    Fei-Ran Shen

    2017-10-01

    Full Text Available Materials with zero thermal expansion (ZTE or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 × 10−6/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition.

  5. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    OpenAIRE

    Fei-Ran Shen; Hao Kuang; Feng-Xia Hu; Hui Wu; Qing-Zhen Huang; Fei-Xiang Liang; Kai-Ming Qiao; Jia Li; Jing Wang; Yao Liu; Lei Zhang; Min He; Ying Zhang; Wen-Liang Zuo; Ji-Rong Sun

    2017-01-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE o...

  6. Thermal expansion of granite rocks

    International Nuclear Information System (INIS)

    Stephansson, O.

    1978-04-01

    The thermal expansion of rocks is strongly controlled by the thermal expansion of the minerals. The theoretical thermal expansion of the Stripa Granite is gound to be 21 . 10 -6 [deg C] -1 at 25 deg C and 38 . 10 -6 [deg C] -1 at 400 deg C. The difference in expansion for the rock forming minerals causes micro cracking at heating. The expansion due to micro cracks is found to be of the same order as the mineral expansion. Most of the micro cracks will close at pressures of the order of 10 - 20 MPa. The thermal expansion of a rock mass including the effect of joints is determined in the pilot heater test in the Stripa Mine

  7. Symmetrized partial-wave method for density-functional cluster calculations

    International Nuclear Information System (INIS)

    Averill, F.W.; Painter, G.S.

    1994-01-01

    The computational advantage and accuracy of the Harris method is linked to the simplicity and adequacy of the reference-density model. In an earlier paper, we investigated one way the Harris functional could be extended to systems outside the limits of weakly interacting atoms by making the charge density of the interacting atoms self-consistent within the constraints of overlapping spherical atomic densities. In the present study, a method is presented for augmenting the interacting atom charge densities with symmetrized partial-wave expansions on each atomic site. The added variational freedom of the partial waves leads to a scheme capable of giving exact results within a given exchange-correlation approximation while maintaining many of the desirable convergence and stability properties of the original Harris method. Incorporation of the symmetry of the cluster in the partial-wave construction further reduces the level of computational effort. This partial-wave cluster method is illustrated by its application to the dimer C 2 , the hypothetical atomic cluster Fe 6 Al 8 , and the benzene molecule

  8. Electron impact ionization of size selected hydrogen clusters (H2)N: ion fragment and neutral size distributions.

    Science.gov (United States)

    Kornilov, Oleg; Toennies, J Peter

    2008-05-21

    Clusters consisting of normal H2 molecules, produced in a free jet expansion, are size selected by diffraction from a transmission nanograting prior to electron impact ionization. For each neutral cluster (H2)(N) (N=2-40), the relative intensities of the ion fragments Hn+ are measured with a mass spectrometer. H3+ is found to be the most abundant fragment up to N=17. With a further increase in N, the abundances of H3+, H5+, H7+, and H9+ first increase and, after passing through a maximum, approach each other. At N=40, they are about the same and more than a factor of 2 and 3 larger than for H11+ and H13+, respectively. For a given neutral cluster size, the intensities of the ion fragments follow a Poisson distribution. The fragmentation probabilities are used to determine the neutral cluster size distribution produced in the expansion at a source temperature of 30.1 K and a source pressure of 1.50 bar. The distribution shows no clear evidence of a magic number N=13 as predicted by theory and found in experiments with pure para-H2 clusters. The ion fragment distributions are also used to extract information on the internal energy distribution of the H3+ ions produced in the reaction H2+ + H2-->H3+ +H, which is initiated upon ionization of the cluster. The internal energy is assumed to be rapidly equilibrated and to determine the number of molecules subsequently evaporated. The internal energy distribution found in this way is in good agreement with data obtained in an earlier independent merged beam scattering experiment.

  9. Bonding properties of FCC-like Au 44 (SR) 28 clusters from X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui [Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.; Chevrier, Daniel M. [Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.; Zeng, Chenjie [Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.; Jin, Rongchao [Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.; Zhang, Peng [Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.

    2017-11-01

    Thiolate-protected gold clusters with precisely controlled atomic composition have recently emerged as promising candidates for a variety of applications because of their unique optical, electronic, and catalytic properties. The recent discovery of the Au44(SR)28 total structure is considered as an interesting finding in terms of the face-centered cubic (FCC)-like core structure in small gold-thiolate clusters. Herein, the unique bonding properties of Au44(SR)28 is analyzed using temperature-dependent X-ray absorption spectroscopy (XAS) measurements at the Au L3-edge and compared with other FCC-like clusters such as Au36(SR)24 and Au28(SR)20. A negative thermal expansion was detected for the Au–Au bonds of the metal core (the first Au–Au shell) and was interpreted based on the unique Au core structure consisting of the Au4 units. EXAFS fitting results from Au28(SR)20, Au36(SR)24, and Au44(SR)28 show a size-dependent negative thermal expansion behavior in the first Au–Au shell, further highlighting the importance of the Au4 units in determining the Au core bonding properties and shedding light on the growth mechanism of these FCC-like Au clusters.

  10. NATO Advanced Research Workshop on Physics and Chemistry of Finite Systems : from Clusters to Crystals

    CERN Document Server

    Khanna, S; Rao, B

    1992-01-01

    Recent innovations in experimental techniques such as molecular and cluster beam epitaxy, supersonic jet expansion, matrix isolation and chemical synthesis are increasingly enabling researchers to produce materials by design and with atomic dimension. These materials constrained by sire, shape, and symmetry range from clusters containing as few as two atoms to nanoscale materials consisting of thousands of atoms. They possess unique structuraI, electronic, magnetic and optical properties that depend strongly on their size and geometry. The availability of these materials raises many fundamental questions as weIl as technological possibilities. From the academic viewpoint, the most pertinent question concerns the evolution of the atomic and electronic structure of the system as it grows from micro clusters to crystals. At what stage, for example, does the cluster look as if it is a fragment of the corresponding crystal. How do electrons forming bonds in micro-clusters transform to bands in solids? How do the s...

  11. Electron-induced chemistry in microhydrated sulfuric acid clusters

    Directory of Open Access Journals (Sweden)

    J. Lengyel

    2017-11-01

    Full Text Available We investigate the mixed sulfuric acid–water clusters in a molecular beam experiment with electron attachment and negative ion mass spectrometry and complement the experiment by density functional theory (DFT calculations. The microhydration of (H2SO4m(H2On clusters is controlled by the expansion conditions, and the electron attachment yields the main cluster ion series (H2SO4m(H2OnHSO4− and (H2OnH2SO4−. The mass spectra provide an experimental evidence for the onset of the ionic dissociation of sulfuric acid and ion-pair (HSO4−  ⋅  ⋅  ⋅  H3O+ formation in the neutral H2SO4(H2On clusters with n ≥ 5 water molecules, in excellent agreement with the theoretical predictions. In the clusters with two sulfuric acid molecules (H2SO42(H2On this process starts as early as n ≥ 2 water molecules. The (H2SO4m(H2OnHSO4− clusters are formed after the dissociative electron attachment to the clusters containing the (HSO4−  ⋅  ⋅  ⋅  H3O+ ion-pair structure, which leads to the electron recombination with the H3O+ moiety generating H2O molecule and the H-atom dissociation from the cluster. The (H2OnH2SO4− cluster ions point to an efficient caging of the H atom by the surrounding water molecules. The electron-energy dependencies exhibit an efficient electron attachment at low electron energies below 3 eV, and no resonances above this energy, for all the measured mass peaks. This shows that in the atmospheric chemistry only the low-energy electrons can be efficiently captured by the sulfuric acid–water clusters and converted into the negative ions. Possible atmospheric consequences of the acidic dissociation in the clusters and the electron attachment to the sulfuric acid–water aerosols are discussed.

  12. On the clustering of particles in an expanding Universe

    International Nuclear Information System (INIS)

    Efstathiou, G.; Eastwood, J.W.

    1981-01-01

    The clustering of particles is investigated in Friedmann models of the Universe using 1000- and 20 000-body numerical simulations. The results of these computations are analysed in terms of the two- and three-point correlation functions, the mean relative peculiar velocity between particle pairs and the mean square peculiar velocity dispersion between pairs. In the case of Einstein-de Sitter models it is found that on scales corresponding to the transition region the results are in rough agreement with simple analytic treatments based on the homogeneous spherical cluster models for the collapse of protoclusters. The results are in conflict with the kinetic theory calculations of Davis and Peebles who studied the problem in the case of an Einstein-de Sitter Universe and found good agreement with observational data. These authors suggest that clusters develop substantial non-radial motions whilst they are still small density fluctuations, so that when a cluster fragments out of the general Hubble expansion, it is already virialized. This 'previrialization' effect does not appear to occur in the numerical models described here. The effects of particle discreteness and two-body relaxation, which are particularly important in the N-body models but neglected in the approach of Davis and Peebles are also examined. (author)

  13. Resonant state expansions

    International Nuclear Information System (INIS)

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  14. Spectroscopic characterization of post-cluster argon plasmas during the blast wave expansion

    International Nuclear Information System (INIS)

    Chung, H.-K.; Fournier, K.B.; Edwards, M.J.; Scott, H.A.; Lee, R.W.; Cattolica, R.; Ditmire, T.

    2002-01-01

    In this work we present temperature diagnostics of an expanding laser-produced argon plasma. A short-pulse (35fs) laser with an intensity of I = 1017 W/cm deposits ∼ 100 mJ of energy into argon clusters. This generates a hot plasma filament that develops into a cylindrically expanding shock. We develop spectral diagnostics for the temperatures of the argon plasma in the shock region and the preionized region ahead of the shock. A collisional-radiative model is applied to explore line intensity ratios derived from Ar II-Ar IV spectra that are sensitive to temperatures in a few eV range. The results of hydrodynamic simulations are employed to derive a time dependent radiative transport calculation that generates the theoretical emission spectra from the expanding plasma

  15. Spectroscopic Characterization of Post-Cluster Argon Plasmas During the Blast Wave Expansion

    International Nuclear Information System (INIS)

    Ching, H-K.; Fournier, K.B.; Edwards, M.J.; Scott, H.A.; Cattolica, R.; Ditmire, T.; Lee, R.W.

    2002-01-01

    In this work we present temperature diagnostics of an expanding laser-produced argon plasma. A short-pulse (35fs) laser with an intensity of I = 10 17 W/cm 2 deposits ∼ 100 mJ of energy into argon clusters. This generates a hot plasma filament that develops into a cylindrically expanding shock. We develop spectral diagnostics for the temperatures of the argon plasma in the shock region and the preionized region ahead of the shock. A collisional-radiative model is applied to explore line intensity ratios derived from Ar II - Ar IV spectra that are sensitive to temperatures in a few eV range. The results of hydrodynamic simulations are employed to derive a time dependent radiative transport calculation that generates the theoretical emission spectra from the expanding plasma

  16. A spectral scheme for Kohn-Sham density functional theory of clusters

    Science.gov (United States)

    Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.

    2015-04-01

    Starting from the observation that one of the most successful methods for solving the Kohn-Sham equations for periodic systems - the plane-wave method - is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn-Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn-Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.

  17. Polynomial Similarity Transformation Theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Degroote, M. [Rice Univ., Houston, TX (United States); Henderson, T. M. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)

    2018-01-03

    We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero. Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.

  18. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  19. Thermal motion of carbon clusters and production of carbon nanotubes by gravity-free arc discharge

    International Nuclear Information System (INIS)

    Mieno, T.; Takeguchi, M.

    2006-01-01

    Thermal and diffusion properties of hot gas around a dc arc discharge under a gravity-free condition are investigated using a jet plane in order to improve the arc production of carbon clusters. Spherically symmetric temperature distribution of He gas around the arc plasma and monotonic slow expansion of the high-temperature region are observed. By means of the passive-type Mie scattering method, random slow diffusion of carbon clusters around the arc plasma is clearly observed under the gravity-free condition. This indicates that carbon clusters including single-walled carbon nanotubes are synthesized around the arc plasma where the He temperature is higher than 1000 K. It is confirmed that large bundles of fatter single-walled carbon nanotubes are produced under the gravity-free condition

  20. Does query expansion limit our learning? A comparison of social-based expansion to content-based expansion for medical queries on the internet.

    Science.gov (United States)

    Pentoney, Christopher; Harwell, Jeff; Leroy, Gondy

    2014-01-01

    Searching for medical information online is a common activity. While it has been shown that forming good queries is difficult, Google's query suggestion tool, a type of query expansion, aims to facilitate query formation. However, it is unknown how this expansion, which is based on what others searched for, affects the information gathering of the online community. To measure the impact of social-based query expansion, this study compared it with content-based expansion, i.e., what is really in the text. We used 138,906 medical queries from the AOL User Session Collection and expanded them using Google's Autocomplete method (social-based) and the content of the Google Web Corpus (content-based). We evaluated the specificity and ambiguity of the expansion terms for trigram queries. We also looked at the impact on the actual results using domain diversity and expansion edit distance. Results showed that the social-based method provided more precise expansion terms as well as terms that were less ambiguous. Expanded queries do not differ significantly in diversity when expanded using the social-based method (6.72 different domains returned in the first ten results, on average) vs. content-based method (6.73 different domains, on average).

  1. Dynamical evolution of star clusters with a changing gravitational constant

    International Nuclear Information System (INIS)

    Angeletti, L.; Giannone, P.

    1978-01-01

    The dynamical evolution of massive star clusters was studied, taking into account variations with time of the gravitional constant. The rates of change of G were adopted according to theoretical and observational indications. Various conditions concerning the number of star groups, star masses, mass loss from stars, and initial star concentration were tested for the clusters. The comparison with analogous evolutionary sequences computed with a constant value of G showed that the effects of changes of G may be conspicuous. The analytical dependence of basic structural functions on the law of variation of G with time was determined from the numerical results. They allow an estimate of the consequences of G in a large range of cases. The effects of a decrease of G tended to prevent the formation of dense cores, which is a specific feature of the evolution of 'standard' models of star clusters. The expansion of the whole cluster structure was noteworthy. However, there was not a significant increase of escape of stars from cluster compared with the cases computed with constant G. Although detailed comparison with observations was beyond our present aims, it appears that a varaition of G according to the Brans-Dicke theory is not in conflict with observational data, as is the case for an exponential decrease of G consistent with Van Flandern's result. (orig.) [de

  2. Surface nanostructuring by ion-induced localized plasma expansion in zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A. S., E-mail: elsaid@kfupm.edu.sa, E-mail: a.s.el-said@hzdr.de [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden (Germany); Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); Djebli, M. [Theoretical Physics Laboratory, Faculty of Physics USTHB, B.P. 32 Bab Ezzour, 16079 Algiers (Algeria)

    2014-06-09

    Creation of hillock-like nanostructures on the surface of zinc oxide single crystals by irradiation with slow highly charged ions is reported. At constant kinetic energy, the nanostructures were only observed after irradiation with ions of potential energies above a threshold between 19.1 keV and 23.3 keV. The size of the nanostructures increases as a function of potential energy. A plasma expansion approach is used to explain the nanostructures creation. The calculations showed that the surface nanostructures became taller with the increase of ionic temperature. The influence of charged cluster formation and the relevance of their polarity are discussed.

  3. Surface nanostructuring by ion-induced localized plasma expansion in zinc oxide

    International Nuclear Information System (INIS)

    El-Said, A. S.; Moslem, W. M.; Djebli, M.

    2014-01-01

    Creation of hillock-like nanostructures on the surface of zinc oxide single crystals by irradiation with slow highly charged ions is reported. At constant kinetic energy, the nanostructures were only observed after irradiation with ions of potential energies above a threshold between 19.1 keV and 23.3 keV. The size of the nanostructures increases as a function of potential energy. A plasma expansion approach is used to explain the nanostructures creation. The calculations showed that the surface nanostructures became taller with the increase of ionic temperature. The influence of charged cluster formation and the relevance of their polarity are discussed.

  4. Genetic diversity and structure related to expansion history and habitat isolation: stone marten populating rural-urban habitats.

    Science.gov (United States)

    Wereszczuk, Anna; Leblois, Raphaël; Zalewski, Andrzej

    2017-12-22

    Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species' ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and

  5. AIDEN: A Density Conscious Artificial Immune System for Automatic Discovery of Arbitrary Shape Clusters in Spatial Patterns

    Directory of Open Access Journals (Sweden)

    Vishwambhar Pathak

    2012-11-01

    Full Text Available Recent efforts in modeling of dynamics of the natural immune cells leading to artificial immune systems (AIS have ignited contemporary research interest in finding out its analogies to real world problems. The AIS models have been vastly exploited to develop dependable robust
    solutions to clustering. Most of the traditional clustering methods bear limitations in their capability to detect clusters of arbitrary shapes in a fully unsupervised manner. In this paper the recognition and communication dynamics of T Cell Receptors, the recognizing elements in innate immune
    system, has been modeled with a kernel density estimation method. The model has been shown to successfully discover non spherical clusters in spatial patterns. Modeling the cohesion of the antibodies and pathogens with ‘local influence’ measure inducts comprehensive extension of the
    antibody representation ball (ARB, which in turn corresponds to controlled expansion of clusters and prevents overfitting.

  6. Fragmentation of neutral van der Waals clusters with visible laser light: A new variant of the Raman effect?

    International Nuclear Information System (INIS)

    Stamatovic, A.; Howorka, F.; Scheier, P.; Maerk, T.D.

    1989-01-01

    We have observed strong photodissociation (using visible laser light) of neutral van der Waals clusters (Ar, N 2 , O 2 , CO 2 , SO 2 , NH 3 ) produced by supersonic expansion and detected by electron ionization/mass spectrometer. Several tests were performed, all of them supporting this surprising discovery. We suggest that Raman induced photodissociation (RIP) is responsible for this phenomenon. This first observation of Raman induced photodissociation provides a new technique for the study of neutral van der Waals clusters. (orig.)

  7. Homogenous Population Genetic Structure of the Non-Native Raccoon Dog (Nyctereutes procyonoides) in Europe as a Result of Rapid Population Expansion

    Science.gov (United States)

    Drygala, Frank; Korablev, Nikolay; Ansorge, Hermann; Fickel, Joerns; Isomursu, Marja; Elmeros, Morten; Kowalczyk, Rafał; Baltrunaite, Laima; Balciauskas, Linas; Saarma, Urmas; Schulze, Christoph; Borkenhagen, Peter; Frantz, Alain C.

    2016-01-01

    The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species’ dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large ‘central’ population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations. PMID:27064784

  8. Helium clusters as cold, liquid matrix for the laser spectroscopy of silver atoms, silver clusters and C60 fullerenes

    International Nuclear Information System (INIS)

    Hoffmann, K.

    1999-01-01

    One of the main obstacles in the study of gas phase metal clusters is their high temperature. Even cooling in a seeded beam is only of limited used, since the condensation continuously releases energy into the system. As a consequence, spectroscopic studies of free metal clusters typically yield broad structures, which are interpreted as plasma resonances of a free electron gas. An experiment on ionic sodium clusters has shown that low temperatures lead to a narrowing of the absorption bands and the appearance of additional structure, that can not be explained within the free electron model. Thus the need for cold clusters is evident. In principle the deposition of metal clusters into inert matrices eliminates the temperature problem but it can also inflict strong changes on the electronic spectra. Droplets of liquid helium serve as a much more gentle matrix that avoids many of the above problems. In this thesis the new technique of helium droplet spectroscopy is presented as a tool for the study of extremely cold metal clusters. Clusters of silver up to a mass greater than 7000 amu have been produced by pickup of single atoms by a beam of helium droplets. The droplets are formed in a supersonic expansion. The cluster's binding energy is removed by evaporative cooling and the system remains at 0.4 K. The doped droplets are probed by laser spectroscopy with a depletion technique or resonant two photon ionization. We were able to measure the first UV absorption spectrum of metal atoms (silver) inside helium droplets. Another experiment shows that a small fraction of the captured silver atoms resides on the surface of the droplet like alkali atoms. In a two photon process previously unobserved s- and d-Rydberg states of the free silver atom (20 left angle n left angle 80) were excited. The silver atoms, initially embedded in the helium droplets, are found to move to the surface and desorb when excited to the broadened 5p level. This is the first result showing laser

  9. Arrival and expansion of the invasive foraminifera Trochammina hadai Uchio in Padilla Bay, Washington

    Science.gov (United States)

    McGann, Mary; Grossman, Eric E.; Takesue, Renee K.; Penttila, Dan; Walsh, John P.; Corbett, Reide

    2012-01-01

    Trochammina hadai Uchio, a benthic foraminifera native to Japanese estuaries, was first identified as an invasive in 1995 in San Francisco Bay and later in 16 other west coast estuaries. To investigate the timing of the arrival and expansion of this invasive species in Padilla Bay, Washington, we analyzed the distribution of foraminifera in two surface samples collected in 1971, in nine surface samples collected by Scott in 1972–1973, as well as in two cores (Padilla Flats 3 and Padilla V1/V2) obtained in 2004. Trochanimina hadai, originally identified as the native Trochammina pacifica Cushman in several early foraminiferal studies, dominates the assemblage of most of the surface samples. In the Padilla V1/V2 and Padilla Flats 3 cores, the species' abundance follows a pattern of absence, first appearance, rapid expansion commonly seen shortly after the arrival of a successful biological invasion, setback, and second expansion. Using Q-mode cluster analysis, pre-expansion and expansion assemblages were identified. Pb-210 dating of these cores proved unsuccessful. However, based on T. hadai's first appearance occurring stratigraphically well above sedimentological changes in the cores that reflect deposition of sediments in the bay due to previous diversions of the Skagit River, and its dominance in the early 1970s surface samples, we conclude that the species arrived in Padilla Bay somewhere between the late 1800s and 1971. Trochammina hadai may have been introduced into the bay in the 1930s when oyster culturing began there or, at a minimum, ten years prior to its appearance in San Francisco Bay.

  10. An evolutionary analysis of genome expansion and pathogenicity in Escherichia coli.

    Science.gov (United States)

    Bohlin, Jon; Brynildsrud, Ola B; Sekse, Camilla; Snipen, Lars

    2014-10-09

    There are several studies describing loss of genes through reductive evolution in microbes, but how selective forces are associated with genome expansion due to horizontal gene transfer (HGT) has not received similar attention. The aim of this study was therefore to examine how selective pressures influence genome expansion in 53 fully sequenced and assembled Escherichia coli strains. We also explored potential connections between genome expansion and the attainment of virulence factors. This was performed using estimations of several genomic parameters such as AT content, genomic drift (measured using relative entropy), genome size and estimated HGT size, which were subsequently compared to analogous parameters computed from the core genome consisting of 1729 genes common to the 53 E. coli strains. Moreover, we analyzed how selective pressures (quantified using relative entropy and dN/dS), acting on the E. coli core genome, influenced lineage and phylogroup formation. Hierarchical clustering of dS and dN estimations from the E. coli core genome resulted in phylogenetic trees with topologies in agreement with known E. coli taxonomy and phylogroups. High values of dS, compared to dN, indicate that the E. coli core genome has been subjected to substantial purifying selection over time; significantly more than the non-core part of the genome (pcoli genome size correlated with estimated HGT size (pcoli are largely attained through HGT. No associations were found between selective pressures operating on the E. coli core genome, as estimated using relative entropy, and genome size (p~0.98). On a larger time frame, genome expansion in E. coli, which is significantly associated with the acquisition of virulence factors, appears to be independent of selective forces operating on the core genome.

  11. Extensive regularization of the coupled cluster methods based on the generating functional formalism: Application to gas-phase benchmarks and to the SN2 reaction of CHCl3 and OH- in water

    International Nuclear Information System (INIS)

    Kowalski, Karol; Valiev, Marat

    2009-01-01

    The recently introduced energy expansion based on the use of generating functional (GF) [K. Kowalski and P. D. Fan, J. Chem. Phys. 130, 084112 (2009)] provides a way of constructing size-consistent noniterative coupled cluster (CC) corrections in terms of moments of the CC equations. To take advantage of this expansion in a strongly interacting regime, the regularization of the cluster amplitudes is required in order to counteract the effect of excessive growth of the norm of the CC wave function. Although proven to be efficient, the previously discussed form of the regularization does not lead to rigorously size-consistent corrections. In this paper we address the issue of size-consistent regularization of the GF expansion by redefining the equations for the cluster amplitudes. The performance and basic features of proposed methodology are illustrated on several gas-phase benchmark systems. Moreover, the regularized GF approaches are combined with quantum mechanical molecular mechanics module and applied to describe the S N 2 reaction of CHCl 3 and OH - in aqueous solution.

  12. Direct observation of interfacial C60 cluster formation in polystyrene-C60 nanocomposite films

    International Nuclear Information System (INIS)

    Han, Joong Tark; Lee, Geon-Woong; Kim, Sangcheol; Lee, Hae-Jeong; Douglas, Jack F; Karim, Alamgir

    2009-01-01

    Large interfacial C 60 clusters were directly imaged at the supporting film-substrate interface in physically detached polystyrene-C 60 nanocomposite films by atomic force microscopy, confirming the stabilizing mechanism previously hypothesized for thin polymer films. Additionally, we found that the C 60 additive influences basic thermodynamic film properties such as the interfacial energy and the film thermal expansion coefficient.

  13. Cluster formation in liverwort-associated methylobacteria and its implications

    Science.gov (United States)

    Kutschera, U.; Thomas, J.; Hornschuh, M.

    2007-08-01

    Pink-pigmented methylotropic bacteria of the genus Methylobacterium inhabit the surfaces of plant organs. In bryophytes, these methylobacteria enhance cell growth, but the nature of this plant-microbe interaction is largely unknown. In this study, methylobacteria were isolated from the upper surface of the free-living thalli of the liverwort Marchantia polymorpha L. Identification of one strain by 16S ribosomal RNA (rRNA) gene-targeted polymerase chain reaction (PCR) and other data show that these microbes represent an undescribed species of the genus Methylobacterium ( Methylobacterium sp.). The growth-promoting activity of these wild-type methylobacteria was tested and compared with that of the type strain Methylobacterium mesophilicum. Both types of methylobacteria stimulated surface expansion of isolated gemmae from Marchantia polymorpha by about 350%. When suspended in water, the liverwort-associated bacteria ( Methylobacterium sp.) formed dense clusters of up to 600 cells. In liquid cultures of Methylobacterium mesophilicum, single cells were observed, but no clustering occurred. We suggest that the liverwort-associated methylobacteria are co-evolved symbionts of the plants: Cluster formation may be a behavior that enhances the survival of the epiphytic microbes during periods of drought of these desiccation-tolerant lower plants.

  14. Sustaining Competitiveness: Moving Towards Upstream Manufacturing in Specialized-Market-Based Clusters in the Chinese Toy Industry

    Directory of Open Access Journals (Sweden)

    Huasheng Zhu

    2016-02-01

    Full Text Available Western industrial cluster literature pays little attention to specialized markets (SMs and the geographical agglomeration of distributors or sale agencies (SAs. This paper takes Linyin, Shandong, a famous commodity city in Northeastern China, as an example, to discuss the determinants that make SAs in SMs of the toy industry move towards upstream manufacturing. A structured questionnaire survey and subsequent interviews were carried out during 2011 and 2012 to collect data, and a Binary Logistic Regression Model was used to process the data. This paper looks from the perspective of global production networks theory, establishes an analytical framework that combines individual motivations of intra-firm coordination, local inter-firm relationships and dynamic cross-regional level relationships. The findings indicate that the expansion of SAs towards manufacturing allows them to sustain competitiveness under changing circumstances. The local inter-firm relationships within SM-based clusters not only makes it easy to obtain material and human resources with lower manufacturing costs, but also facilitates the access to production knowledge and technologies for an expansion of production scale. Cross-regional relationships with suppliers provide an informal channel for SAs to obtain skills, which is fundamental for an expansion into manufacturing. In addition, it is a preference for strengthening competitiveness rather than the simple pursuit of economic profit that encourages SAs to invest in manufacturing.

  15. A spectral scheme for Kohn–Sham density functional theory of clusters

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amartya S., E-mail: baner041@umn.edu; Elliott, Ryan S., E-mail: relliott@umn.edu; James, Richard D., E-mail: james@umn.edu

    2015-04-15

    Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.

  16. A spectral scheme for Kohn–Sham density functional theory of clusters

    International Nuclear Information System (INIS)

    Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.

    2015-01-01

    Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed

  17. Identifying the driving forces of urban expansion and its environmental impact in Jakarta-Bandung mega urban region

    Science.gov (United States)

    Pravitasari, A. E.; Rustiadi, E.; Mulya, S. P.; Setiawan, Y.; Fuadina, L. N.; Murtadho, A.

    2018-05-01

    The socio-economic development in Jakarta-Bandung Mega Urban Region (JBMUR) caused the increasing of urban expansion and led to a variety of environmental damage such as uncontrolled land use conversion and raising anthropogenic disaster. The objectives of this study are: (1) to identify the driving forces of urban expansion that occurs on JBMUR and (2) to analyze the environmental quality decline on JBMUR by producing time series spatial distribution map and spatial autocorrelation of floods and landslide as the proxy of anthropogenic disaster. The driving forces of urban expansion in this study were identified by employing Geographically Weighted Regression (GWR) model using 6 (six) independent variables, namely: population density, percentage of agricultural land, distance to the center of capital city/municipality, percentage of household who works in agricultural sector, distance to the provincial road, and distance to the local road. The GWR results showed that local demographic, social and economic factors including distance to the road spatially affect urban expansion in JBMUR. The time series spatial distribution map of floods and landslide event showed the spatial cluster of anthropogenic disaster in some areas. Through Local Moran Index, we found that environmental damage in one location has a significant impact on the condition of its surrounding area.

  18. Genetic variations in two seahorse species (Hippocampus mohnikei and Hippocampus trimaculatus): evidence for middle Pleistocene population expansion.

    Science.gov (United States)

    Zhang, Yanhong; Pham, Nancy Kim; Zhang, Huixian; Lin, Junda; Lin, Qiang

    2014-01-01

    Population genetic of seahorses is confidently influenced by their species-specific ecological requirements and life-history traits. In the present study, partial sequences of mitochondrial cytochrome b (cytb) and control region (CR) were obtained from 50 Hippocampus mohnikei and 92 H. trimaculatus from four zoogeographical zones. A total of 780 base pairs of cytb gene were sequenced to characterize mitochondrial DNA (mtDNA) diversity. The mtDNA marker revealed high haplotype diversity, low nucleotide diversity, and a lack of population structure across both populations of H. mohnikei and H. trimaculatus. A neighbour-joining (NJ) tree of cytb gene sequences showed that H. mohnikei haplotypes formed one cluster. A maximum likelihood (ML) tree of cytb gene sequences showed that H. trimaculatus belonged to one lineage. The star-like pattern median-joining network of cytb and CR markers indicated a previous demographic expansion of H. mohnikei and H. trimaculatus. The cytb and CR data sets exhibited a unimodal mismatch distribution, which may have resulted from population expansion. Mismatch analysis suggested that the expansion was initiated about 276,000 years ago for H. mohnikei and about 230,000 years ago for H. trimaculatus during the middle Pleistocene period. This study indicates a possible signature of genetic variation and population expansion in two seahorses under complex marine environments.

  19. Energy expansion planning by considering electrical and thermal expansion simultaneously

    International Nuclear Information System (INIS)

    Abbasi, Ali Reza; Seifi, Ali Reza

    2014-01-01

    Highlights: • This paper focused on the expansion planning optimization of energy systems. • Employing two form of energy: the expansion of electrical and thermal energies. • The main objective is to minimize the costs. • A new Modified Honey Bee Mating Optimization (MHBMO) algorithm is applied. - Abstract: This study focused on the expansion planning optimization of energy systems employing two forms of energy: the expansion of electrical and thermal energies simultaneously. The main objective of this investigation is confirming network adequacy by adding new equipment to the network, over a given planning horizon. The main objective of the energy expansion planning (EEP) is to minimize the real energy loss, voltage deviation and the total cost of installation equipments. Since the objectives are different and incommensurable, it is difficult to solve the problem by the conventional approaches that may optimize a single objective. So, the meta-heuristic algorithm is applied to this problem. Here, Honey Bee Mating Optimization algorithm (HBMO) as a new evolutionary optimization algorithm is utilized. In order to improve the total ability of HBMO for the global search and exploration, a new modification process is suggested such a way that the algorithm will search the total search space globally. Also, regarding the uncertainties of the new complicated energy systems, in this paper for the first time, the EEP problem is investigated in a stochastic environment by the use of probabilistic load flow technique based on Point Estimate Method (PEM). In order to evaluate the feasibility and effectiveness of the proposed algorithm, two modified test systems are used as case studies

  20. Expansion joints for LMFBR

    International Nuclear Information System (INIS)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1980-01-01

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of the development reviewed. Large Na (sodium)-heat transfer systems require a lot of valuable space if the component lay-out does not include compensation devices. So, in order to condense the spatial requirement as much as possible, expansion joints must be integrated into the pipe system. There are two basic types to suit the purpose: axial expansion joints and angular expansion joints. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows. Expansion joints must be designed and mounted in a manner to completely withstand seismic forces. The design must exclude any damage to the bellows during intermittent operations, that is, when sodium is drained the bellows' folds must be completely empty; otherwise residual solidified sodium could destroy the bellows when restarting. The expansion joints must be engineered on the basis of the following design data for the secondary system of the SNR project: working pressure: 16 bar; failure mode pressure: 5 events; failure mode: 5 sec., 28.5 bar, 520 deg. C; working temperature: 520 deg. C; temperature transients: 30 deg. C/sec.; service life: 200,000 h; number of load cycles: 10 4 ; material: 1.4948 or 1.4919; layer thickness of folds: 0.5 mm; angular deflection (DN 800): +3 deg. C or; axial expansion absorption (DN 600): ±80 mm; calculation: ASME class. The bellows' development work is not handled within this scope. The bellows are supplied by leading manufacturers, and warrant highest quality. Multiple bellows were selected on the basis of maximum elasticity - a property

  1. Expansion joints for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1979-10-15

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of development reviewed. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows.

  2. Expansion-limited aggregation of nanoclusters in a single-pulse laser-produced plume

    International Nuclear Information System (INIS)

    Gamaly, E. G.; Madsen, N. R.; Rode, A. V.; Golberg, D.

    2009-01-01

    Formation of carbon nanoclusters in a single-laser-pulse created ablation plume was studied both in vacuum and in a noble gas environment at various pressures. The developed theory provides cluster radius dependence on combination of laser parameters, properties of ablated material, and type and pressure of an ambient gas in agreement with experiments. The experiments were performed on carbon nanoclusters formed by laser ablation of graphite targets with 12 picosecond 532 nm laser pulses at MHz-range repetition rate in a broad range of ambient He, Ar, Kr, and Xe gas pressures from 2x10 -2 to 1500 Torr. The experimental results confirmed our theoretical prediction that the average size of the nanoparticles depends weakly on the type of the ambient gas used, and is determined exclusively by the single laser pulse parameters even at the repetition rate as high as 28 MHz with the time gap 36 ns between the pulses. The most important finding relates to the fact that in vacuum the cluster size is mainly determined by hydrodynamic expansion of the plume while in the ambient gas it is controlled by atomic diffusion in the gas. We demonstrate that the ultrashort pulses can be used for production of clusters with the size less than the critical value, which separates the particles with properties drastically different from those of a material in a bulk. The presented results of experiments on formation of carbon nanoclusters are in close agreement with the theoretical scaling. The developed theory is applicable for cluster formation from any monatomic material, such as silicon for example.

  3. Fast electrostatic force calculation on parallel computer clusters

    International Nuclear Information System (INIS)

    Kia, Amirali; Kim, Daejoong; Darve, Eric

    2008-01-01

    The fast multipole method (FMM) and smooth particle mesh Ewald (SPME) are well known fast algorithms to evaluate long range electrostatic interactions in molecular dynamics and other fields. FMM is a multi-scale method which reduces the computation cost by approximating the potential due to a group of particles at a large distance using few multipole functions. This algorithm scales like O(N) for N particles. SPME algorithm is an O(NlnN) method which is based on an interpolation of the Fourier space part of the Ewald sum and evaluating the resulting convolutions using fast Fourier transform (FFT). Those algorithms suffer from relatively poor efficiency on large parallel machines especially for mid-size problems around hundreds of thousands of atoms. A variation of the FMM, called PWA, based on plane wave expansions is presented in this paper. A new parallelization strategy for PWA, which takes advantage of the specific form of this expansion, is described. Its parallel efficiency is compared with SPME through detail time measurements on two different computer clusters

  4. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  5. On finding galaxy clusters with PLANCK and the spherical collapse model in different dark energy cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Waizmann, Jean-Claude

    2010-11-24

    One of the main objectives of the PLANCK mission is to perform a full-sky cluster survey based on the Sunyaev-Zel'dovich (SZ) effect, which leads to the question of how such a survey would be affected by cosmological models with a different history of structure formation than LCDM. To answer this question, I developed a fast semi-analytic approach for simulating full-sky maps of the Compton-y parameter, ready to be fed into a realistic simulation pipeline. I also implemented a filter and detection pipeline based on spherical multi-frequency matched filters, that was used to study the expected SZ cluster sample of PLANCK. It turned out that realistic samples will comprise 1000 clusters at low rate of contamination, significantly lower than originally anticipated. Driven by wrong estimates of the impact of early dark energy models on structure formation, we studied the spherical collapse model in dark energy model, finding that models with varying equation-of-state have a negligible impact on the structure formation. Yet, the different expansion history for the different models can be detected via volume effects, when counting objects in a known volume. Furthermore, it turned out that the different expansion history strongly affects the angular SZ power spectra for the various models, making them an interesting tool to distinguish and constrain alternative cosmologies. (orig.)

  6. On finding galaxy clusters with PLANCK and the spherical collapse model in different dark energy cosmologies

    International Nuclear Information System (INIS)

    Waizmann, Jean-Claude

    2010-01-01

    One of the main objectives of the PLANCK mission is to perform a full-sky cluster survey based on the Sunyaev-Zel'dovich (SZ) effect, which leads to the question of how such a survey would be affected by cosmological models with a different history of structure formation than LCDM. To answer this question, I developed a fast semi-analytic approach for simulating full-sky maps of the Compton-y parameter, ready to be fed into a realistic simulation pipeline. I also implemented a filter and detection pipeline based on spherical multi-frequency matched filters, that was used to study the expected SZ cluster sample of PLANCK. It turned out that realistic samples will comprise 1000 clusters at low rate of contamination, significantly lower than originally anticipated. Driven by wrong estimates of the impact of early dark energy models on structure formation, we studied the spherical collapse model in dark energy model, finding that models with varying equation-of-state have a negligible impact on the structure formation. Yet, the different expansion history for the different models can be detected via volume effects, when counting objects in a known volume. Furthermore, it turned out that the different expansion history strongly affects the angular SZ power spectra for the various models, making them an interesting tool to distinguish and constrain alternative cosmologies. (orig.)

  7. Weak carbonyl-methyl intermolecular interactions in acetone clusters explored by IR plus VUV spectroscopy

    International Nuclear Information System (INIS)

    Guan, Jiwen; Hu, Yongjun; Xie, Min; Bernstein, Elliot R.

    2012-01-01

    Highlights: ► The carbonyl overtone of acetone clusters is observed by IR-VUV spectroscopy. ► Acetone molecules in the dimer are stacked with an antiparallel way. ► The structure of the acetone trimer and the tetramer are the cyclic structures. ► The carbonyl groups would interact with the methyl groups in acetone clusters. ► These weak interactions are further confirmed by H/D substitution experiment. -- Abstract: Size-selected IR–VUV spectroscopy is employed to detect vibrational characteristics in the region 2850 ∼ 3550 cm −1 of neutral acetone and its clusters (CH 3 COCH 3 ) n (n = 1–4). Features around 3440 cm −1 in the spectra of acetone monomer and its clusters are assigned to the carbonyl stretch (CO) overtone. These features red-shift from 3455 to 3433 cm −1 as the size of the clusters increases from the monomer to the tetramer. Based on calculations, the experimental IR spectra in the C=O overtone region suggest that the dominant structures for the acetone trimer and tetramer should be cyclic in the supersonic expansion sample. This study also suggests that the carbonyl groups interact with the methyl groups in the acetone clusters. These weak interactions are further confirmed by the use of deuterium substitution.

  8. Mixed clusters from the coexpansion of C2F6 and n2 in a pulsed, supersonic expansion cluster ion source and beam deflection time-of-flight mass spectrometer: A first application

    Science.gov (United States)

    Thompson, Steven D.

    The following topics are discussed: (1) cluster ion genesis; (2) cluster ion detection; (3) Ion source; (4) pulse valve; (5) e-gun; (6) Ion optics; (7) a first order model; and (8) a modified Bakker's model.

  9. Experimental study of X-ray emission in laser-cluster interaction; Etude experimentale de l'emission X issue de l'interaction laser-agregats

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T

    2004-09-01

    Rare gas cluster jets are an intermediate medium between solid and gas targets. Laser-cluster jets interaction may generate a great number of energetic particles as X-rays, UV, high harmonics, ions, electrons and neutrons. To understand all the mechanisms involved in such an interaction we need to make a complete study of individual cluster response to an ultra-short laser pulse. We studied the laser interaction with our argon cluster gas jet, which is well characterized in cluster size and density, to enlarge the knowledge of this interaction. We measured absorption, heating and X-ray emission spectra versus laser parameters and clusters size ({approx} 15-30 nm). We show that there is a strong refraction effect on laser propagation due to the residual gas density. This effect was confirmed by laser propagation simulation with a cylindrical 2-dimensional particle code WAKE. The role played by refraction was to limit maximum laser intensity on the focal spot and to increase interaction volume. By this way, X-ray emission was observed with laser intensity not so far from the ionization threshold (few 10{sup 14} W.cm{sup -2}). We also studied plasma expansion both at cluster scale and focal volume scale and deduced the deposited energy distribution as a function of time. Thanks to a simple hydrodynamic model, we used these results to study cluster expansion. X-ray emission is then simulated by TRANSPEC code in order to reproduce X-ray spectra and duration. Those results revealed an extremely brief X-ray emission consistent with a preliminary measure by streak camera (on ps scale). (author)

  10. Linked-cluster perturbation theory for closed and open-shell systems: derivation of effective π-electron hamiltonians

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1977-01-01

    The Brueckner--Goldstone form of linked-cluster perturbation theory is derived, together with its open-shell analog, by an elementary time-independent approach. This serves to focus attention on the physical interpretation of the results. The open-shell expansion is used to provide a straightforward justification for the effective π-electron Hamiltonians of planar organic molecules

  11. A view on coupled cluster perturbation theory using a bivariational Lagrangian formulation.

    Science.gov (United States)

    Kristensen, Kasper; Eriksen, Janus J; Matthews, Devin A; Olsen, Jeppe; Jørgensen, Poul

    2016-02-14

    We consider two distinct coupled cluster (CC) perturbation series that both expand the difference between the energies of the CCSD (CC with single and double excitations) and CCSDT (CC with single, double, and triple excitations) models in orders of the Møller-Plesset fluctuation potential. We initially introduce the E-CCSD(T-n) series, in which the CCSD amplitude equations are satisfied at the expansion point, and compare it to the recently developed CCSD(T-n) series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)], in which not only the CCSD amplitude, but also the CCSD multiplier equations are satisfied at the expansion point. The computational scaling is similar for the two series, and both are term-wise size extensive with a formal convergence towards the CCSDT target energy. However, the two series are different, and the CCSD(T-n) series is found to exhibit a more rapid convergence up through the series, which we trace back to the fact that more information at the expansion point is utilized than for the E-CCSD(T-n) series. The present analysis can be generalized to any perturbation expansion representing the difference between a parent CC model and a higher-level target CC model. In general, we demonstrate that, whenever the parent parameters depend upon the perturbation operator, a perturbation expansion of the CC energy (where only parent amplitudes are used) differs from a perturbation expansion of the CC Lagrangian (where both parent amplitudes and parent multipliers are used). For the latter case, the bivariational Lagrangian formulation becomes more than a convenient mathematical tool, since it facilitates a different and faster convergent perturbation series than the simpler energy-based expansion.

  12. Evaluation of load flow and grid expansion in a unit-commitment and expansion optimization model SciGRID International Conference on Power Grid Modelling

    Science.gov (United States)

    Senkpiel, Charlotte; Biener, Wolfgang; Shammugam, Shivenes; Längle, Sven

    2018-02-01

    Energy system models serve as a basis for long term system planning. Joint optimization of electricity generating technologies, storage systems and the electricity grid leads to lower total system cost compared to an approach in which the grid expansion follows a given technology portfolio and their distribution. Modelers often face the problem of finding a good tradeoff between computational time and the level of detail that can be modeled. This paper analyses the differences between a transport model and a DC load flow model to evaluate the validity of using a simple but faster transport model within the system optimization model in terms of system reliability. The main findings in this paper are that a higher regional resolution of a system leads to better results compared to an approach in which regions are clustered as more overloads can be detected. An aggregation of lines between two model regions compared to a line sharp representation has little influence on grid expansion within a system optimizer. In a DC load flow model overloads can be detected in a line sharp case, which is therefore preferred. Overall the regions that need to reinforce the grid are identified within the system optimizer. Finally the paper recommends the usage of a load-flow model to test the validity of the model results.

  13. Conformal expansions and renormalons

    Energy Technology Data Exchange (ETDEWEB)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.

  14. Bearing-Mounting Concept Accommodates Thermal Expansion

    Science.gov (United States)

    Nespodzany, Robert; Davis, Toren S.

    1995-01-01

    Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.

  15. Detection of binaries in the core of the globular cluster M15 using calcium emission lines

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B W [Rijksuniversiteit Utrecht (Netherlands). Inst. of Astronomy; Rutten, R G.M. [Astronomical Inst. ' Anton Pannekoek' , Amsterdam (Netherlands); Callanan, P J [Oxford Univ. (UK). Dept. of Astrophysics; Seitzer, Patrick [Space Telescope Science Inst., Baltimore, MD (USA); Charles, P A [Oxford Univ. (UK). Dept. of Astrophysics Observatorio del Roque do los Muchachos, Santa Cruz de La Palma, Tenerife, Canary Islands (Spain); Cohn, H N; Lugger, P M [Indiana Univ., Bloomington, IN (USA). Dept. of Astronomy

    1991-05-09

    M12 is the prototypical collapsed-core globular cluster. Having undergone collapse, its core is believed now to be expanding, with energy for the re-expansion provided by binary stars, which turn gravitational potential energy into kinetic energy. Because these binary stars are generally more massive than single stars, they will have settled to the centre of the cluster. We report here that several of the stars at the core of M15 show Ca II H- and K-line emission characteristic of young, rapidly rotating stars and close binaries. We argue that the emission from M15 comes from primordial binaries, in which a period of spin-up has led to magnetic field generation by enhanced dynamo action, which in turn causes heating of the stellar chromospheres. If this interpretation is correct, the Ca H and K emission may provide an important diagnostic tool of the binary population in cluster cores, and thus of the cluster dynamics. (author).

  16. Detection of binaries in the core of the globular cluster M15 using calcium emission lines

    International Nuclear Information System (INIS)

    Murphy, B.W.; Callanan, P.J.; Charles, P.A.; Cohn, H.N.; Lugger, P.M.

    1991-01-01

    M12 is the prototypical collapsed-core globular cluster. Having undergone collapse, its core is believed now to be expanding, with energy for the re-expansion provided by binary stars, which turn gravitational potential energy into kinetic energy. Because these binary stars are generally more massive than single stars, they will have settled to the centre of the cluster. We report here that several of the stars at the core of M15 show Ca II H- and K-line emission characteristic of young, rapidly rotating stars and close binaries. We argue that the emission from M15 comes from primordial binaries, in which a period of spin-up has led to magnetic field generation by enhanced dynamo action, which in turn causes heating of the stellar chromospheres. If this interpretation is correct, the Ca H and K emission may provide an important diagnostic tool of the binary population in cluster cores, and thus of the cluster dynamics. (author)

  17. High Intensity Femtosecond XUV Pulse Interactions with Atomic Clusters: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, Todd [Univ. of Texas, Austin, TX (United States). Center for High Energy Density Science

    2016-10-12

    We propose to expand our recent studies on the interactions of intense extreme ultraviolet (XUV) femtosecond pulses with atomic and molecular clusters. The work described follows directly from work performed under BES support for the past grant period. During this period we upgraded the THOR laser at UT Austin by replacing the regenerative amplifier with optical parametric amplification (OPA) using BBO crystals. This increased the contrast of the laser, the total laser energy to ~1.2 J , and decreased the pulse width to below 30 fs. We built a new all reflective XUV harmonic beam line into expanded lab space. This enabled an increase influence by a factor of 25 and an increase in the intensity by a factor of 50. The goal of the program proposed in this renewal is to extend this class of experiments to available higher XUV intensity and a greater range of wavelengths. In particular we plan to perform experiments to confirm our hypothesis about the origin of the high charge states in these exploding clusters, an effect which we ascribe to plasma continuum lowering (ionization potential depression) in a cluster nano-­plasma. To do this we will perform experiments in which XUV pulses of carefully chosen wavelength irradiate clusters composed of only low-Z atoms and clusters with a mixture of this low-­Z atom with higher Z atoms. The latter clusters will exhibit higher electron densities and will serve to lower the ionization potential further than in the clusters composed only of low Z atoms. This should have a significant effect on the charge states produced in the exploding cluster. We will also explore the transition of explosions in these XUV irradiated clusters from hydrodynamic expansion to Coulomb explosion. The work proposed here will explore clusters of a wider range of constituents, including clusters from solids. Experiments on clusters from solids will be enabled by development we performed during the past grant period in which we constructed and

  18. A Network-Based Algorithm for Clustering Multivariate Repeated Measures Data

    Science.gov (United States)

    Koslovsky, Matthew; Arellano, John; Schaefer, Caroline; Feiveson, Alan; Young, Millennia; Lee, Stuart

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Astronaut Corps is a unique occupational cohort for which vast amounts of measures data have been collected repeatedly in research or operational studies pre-, in-, and post-flight, as well as during multiple clinical care visits. In exploratory analyses aimed at generating hypotheses regarding physiological changes associated with spaceflight exposure, such as impaired vision, it is of interest to identify anomalies and trends across these expansive datasets. Multivariate clustering algorithms for repeated measures data may help parse the data to identify homogeneous groups of astronauts that have higher risks for a particular physiological change. However, available clustering methods may not be able to accommodate the complex data structures found in NASA data, since the methods often rely on strict model assumptions, require equally-spaced and balanced assessment times, cannot accommodate missing data or differing time scales across variables, and cannot process continuous and discrete data simultaneously. To fill this gap, we propose a network-based, multivariate clustering algorithm for repeated measures data that can be tailored to fit various research settings. Using simulated data, we demonstrate how our method can be used to identify patterns in complex data structures found in practice.

  19. Radio observations of the peripheral region of the Coma cluster near Coma A

    International Nuclear Information System (INIS)

    Giovannini, G.

    1986-01-01

    VLA and WSRT observations are reported for the extended radio source 1253+275 on the periphery of the Coma cluster and for two active Coma radio galaxies within 20 arcmin of 1253+275. The data are presented in contour maps and characterized in detail. Source 1253+275 is shown to be a relic radio galaxy with physical conditions similar to those seen in the external regions (30-50 kpc from the cores) of the two active sources (NGC 4789 and NGC 4827). It is suggested that these regions survived for long periods (400 Myr) after the last acceleration of the radiating electrons because transverse expansion was inhibited by the local intergalactic medium, which has a density comparable to that in other rich clusters of galaxies. 7 references

  20. Brightest Cluster Galaxies in REXCESS Clusters

    Science.gov (United States)

    Haarsma, Deborah B.; Leisman, L.; Bruch, S.; Donahue, M.

    2009-01-01

    Most galaxy clusters contain a Brightest Cluster Galaxy (BCG) which is larger than the other cluster ellipticals and has a more extended profile. In the hierarchical model, the BCG forms through many galaxy mergers in the crowded center of the cluster, and thus its properties give insight into the assembly of the cluster as a whole. In this project, we are working with the Representative XMM-Newton Cluster Structure Survey (REXCESS) team (Boehringer et al 2007) to study BCGs in 33 X-ray luminous galaxy clusters, 0.055 < z < 0.183. We are imaging the BCGs in R band at the Southern Observatory for Astrophysical Research (SOAR) in Chile. In this poster, we discuss our methods and give preliminary measurements of the BCG magnitudes, morphology, and stellar mass. We compare these BCG properties with the properties of their host clusters, particularly of the X-ray emitting gas.

  1. δ expansion applied to quantum electrodynamics

    International Nuclear Information System (INIS)

    Bender, C.M.; Boettcher, S.; Milton, K.A.

    1992-01-01

    A recently proposed technique known as the δ expansion provides a nonperturbative treatment of a quantum field theory. The δ-expansion approach can be applied to electrodynamics in such a way that local gauge invariance is preserved. In this paper it is shown that for electrodynamic processes involving only external photon lines and no external electron lines the δ expansion is equivalent to a fermion loop expansion. That is, the coefficient of δ n in the δ expansion is precisely the sum of all n-electron-loop Feynman diagrams in a conventional weak-coupling approximation. This equivalence does not extend to processes having external electron lines. When external electron lines are present, the δ expansion is truly nonperturbative and does not have a simple interpretation as a resummation of conventional Feynman diagrams. To illustrate the nonperturbative character of the δ expansion we perform a speculative calculation of the fermion condensate in the massive Schwinger model in the limit of large coupling constant

  2. Genetic variations in two seahorse species (Hippocampus mohnikei and Hippocampus trimaculatus: evidence for middle Pleistocene population expansion.

    Directory of Open Access Journals (Sweden)

    Yanhong Zhang

    Full Text Available Population genetic of seahorses is confidently influenced by their species-specific ecological requirements and life-history traits. In the present study, partial sequences of mitochondrial cytochrome b (cytb and control region (CR were obtained from 50 Hippocampus mohnikei and 92 H. trimaculatus from four zoogeographical zones. A total of 780 base pairs of cytb gene were sequenced to characterize mitochondrial DNA (mtDNA diversity. The mtDNA marker revealed high haplotype diversity, low nucleotide diversity, and a lack of population structure across both populations of H. mohnikei and H. trimaculatus. A neighbour-joining (NJ tree of cytb gene sequences showed that H. mohnikei haplotypes formed one cluster. A maximum likelihood (ML tree of cytb gene sequences showed that H. trimaculatus belonged to one lineage. The star-like pattern median-joining network of cytb and CR markers indicated a previous demographic expansion of H. mohnikei and H. trimaculatus. The cytb and CR data sets exhibited a unimodal mismatch distribution, which may have resulted from population expansion. Mismatch analysis suggested that the expansion was initiated about 276,000 years ago for H. mohnikei and about 230,000 years ago for H. trimaculatus during the middle Pleistocene period. This study indicates a possible signature of genetic variation and population expansion in two seahorses under complex marine environments.

  3. Conformal Haag-Kastler nets, pointlike localized fields and the existence of operator product expansions

    International Nuclear Information System (INIS)

    Fredenhagen, K.; Joerss, M.

    1994-10-01

    Starting from a chiral conformal Haag-Kastler net on 2 dimensional Minkowski space we construct associated pointlike localized fields. This amounts to a proof of the existence of operator product expansions. We derive the result in two ways. One is based on the geometrical identification of the modular structure, the other depends on a ''conformal cluster theorem'' of the conformal two-point-functions in algebraic quantum field theory. The existence of the fields then implies important structural properties of the theory, as PCT-invariance, the Bisognano-Wichmann identification of modular operators, Haag duality and additivity. (orig.)

  4. Accelerating the loop expansion

    International Nuclear Information System (INIS)

    Ingermanson, R.

    1986-01-01

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs

  5. Thermal expansion data

    International Nuclear Information System (INIS)

    Taylor, D.

    1984-01-01

    This paper gives regression data for a modified second order polynomial fitted to the expansion data of, and percentage expansions for dioxides with (a) the fluorite and antifluorite structure: AmO 2 , BkO 2 , CeO 2 , CmO 2 , HfO 2 , Li 2 O, NpO 2 , PrO 2 , PuO 2 , ThO 2 , UO 2 , ZrO 2 , and (b) the rutile structure: CrO 2 , GeO 2 , IrO 2 , MnO 2 , NbO 2 , PbO 2 , SiO 2 , SnO 2 , TeO 2 , TiO 2 and VO 2 . Reduced expansion curves for the dioxides showed only partial grouping into iso-electronic series for the fluorite structures and showed that the 'law of corresponding states' did not apply to the rutile structures. (author)

  6. Metal cluster compounds - chemistry and importance; clusters containing isolated main group element atoms, large metal cluster compounds, cluster fluxionality

    International Nuclear Information System (INIS)

    Walther, B.

    1988-01-01

    This part of the review on metal cluster compounds deals with clusters containing isolated main group element atoms, with high nuclearity clusters and metal cluster fluxionality. It will be obvious that main group element atoms strongly influence the geometry, stability and reactivity of the clusters. High nuclearity clusters are of interest in there own due to the diversity of the structures adopted, but their intermediate position between molecules and the metallic state makes them a fascinating research object too. These both sites of the metal cluster chemistry as well as the frequently observed ligand and core fluxionality are related to the cluster metal and surface analogy. (author)

  7. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  8. Plasma hydrodynamics of the intense laser-cluster interaction*

    Science.gov (United States)

    Milchberg, Howard

    2002-11-01

    We present a 1D hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that for clusters initially as small as 25Å in radius, for which the hydrodynamic model is appropriate, nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical density plasma layer. A significant result of this is that the ponderomotive force, which is enhanced at the critical density surface, can be large enough to strongly modify the plasma hydrodynamics, even at laser intensities as low as 10^15 W/cm^2 for 800 nm laser pulses. Recent experiments in EUV and x-ray generation as a function of laser pulsewidth [1], and femtosecond time-resolved measurements of cluster transient polarizability [2] provide strong support for the basic physics of this model. Recent results using a 2D hybrid fluid/PIC code show qualitative agreement with the 1D hydrocode [3]. *Work supported by the National Science Foundation and the EUV-LLC. 1. E. Parra, I. Alexeev, J. Fan, K. Kim, S.J. McNaught, and H. M. Milchberg, Phys. Rev. E 62, R5931 (2000). 2. K.Y. Kim, I. Alexeev, E. Parra, and H.M. Milchberg, submitted for publication. 3. T. Taguchi, T. Antonsen, and H.M Milchberg, this meeting.

  9. Convergence of mayer expansions

    International Nuclear Information System (INIS)

    Brydges, D.C.

    1986-01-01

    The tree graph bound of Battle and Federbush is extended and used to provide a simple criterion for the convergence of (iterated) Mayer expansions. As an application estimates on the radius of convergence of the Mayer expansion for the two-dimensional Yukawa gas (nonstable interaction) are obtained

  10. PREFACE: Nuclear Cluster Conference; Cluster'07

    Science.gov (United States)

    Freer, Martin

    2008-05-01

    The Cluster Conference is a long-running conference series dating back to the 1960's, the first being initiated by Wildermuth in Bochum, Germany, in 1969. The most recent meeting was held in Nara, Japan, in 2003, and in 2007 the 9th Cluster Conference was held in Stratford-upon-Avon, UK. As the name suggests the town of Stratford lies upon the River Avon, and shortly before the conference, due to unprecedented rainfall in the area (approximately 10 cm within half a day), lay in the River Avon! Stratford is the birthplace of the `Bard of Avon' William Shakespeare, and this formed an intriguing conference backdrop. The meeting was attended by some 90 delegates and the programme contained 65 70 oral presentations, and was opened by a historical perspective presented by Professor Brink (Oxford) and closed by Professor Horiuchi (RCNP) with an overview of the conference and future perspectives. In between, the conference covered aspects of clustering in exotic nuclei (both neutron and proton-rich), molecular structures in which valence neutrons are exchanged between cluster cores, condensates in nuclei, neutron-clusters, superheavy nuclei, clusters in nuclear astrophysical processes and exotic cluster decays such as 2p and ternary cluster decay. The field of nuclear clustering has become strongly influenced by the physics of radioactive beam facilities (reflected in the programme), and by the excitement that clustering may have an important impact on the structure of nuclei at the neutron drip-line. It was clear that since Nara the field had progressed substantially and that new themes had emerged and others had crystallized. Two particular topics resonated strongly condensates and nuclear molecules. These topics are thus likely to be central in the next cluster conference which will be held in 2011 in the Hungarian city of Debrechen. Martin Freer Participants and Cluster'07

  11. Segmentation of clustered cells in negative phase contrast images with integrated light intensity and cell shape information.

    Science.gov (United States)

    Wang, Y; Wang, C; Zhang, Z

    2018-05-01

    Automated cell segmentation plays a key role in characterisations of cell behaviours for both biology research and clinical practices. Currently, the segmentation of clustered cells still remains as a challenge and is the main reason for false segmentation. In this study, the emphasis was put on the segmentation of clustered cells in negative phase contrast images. A new method was proposed to combine both light intensity and cell shape information through the construction of grey-weighted distance transform (GWDT) within preliminarily segmented areas. With the constructed GWDT, the clustered cells can be detected and then separated with a modified region skeleton-based method. Moreover, a contour expansion operation was applied to get optimised detection of cell boundaries. In this paper, the working principle and detailed procedure of the proposed method are described, followed by the evaluation of the method on clustered cell segmentation. Results show that the proposed method achieves an improved performance in clustered cell segmentation compared with other methods, with 85.8% and 97.16% accuracy rate for clustered cells and all cells, respectively. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  12. Formation of stable products from cluster-cluster collisions

    International Nuclear Information System (INIS)

    Alamanova, Denitsa; Grigoryan, Valeri G; Springborg, Michael

    2007-01-01

    The formation of stable products from copper cluster-cluster collisions is investigated by using classical molecular-dynamics simulations in combination with an embedded-atom potential. The dependence of the product clusters on impact energy, relative orientation of the clusters, and size of the clusters is studied. The structures and total energies of the product clusters are analysed and compared with those of the colliding clusters before impact. These results, together with the internal temperature, are used in obtaining an increased understanding of cluster fusion processes

  13. Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients.

    Science.gov (United States)

    Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio

    2017-09-12

    Using the semiclassical neutral atom theory, we developed a modified fourth-order kinetic energy (KE) gradient expansion (GE4m) that keeps unchanged all the linear-response terms of the uniform electron gas and gives a significant improvement with respect to the known semilocal functionals for both large atoms and jellium surfaces. On the other hand, GE4m is not accurate for light atoms; thus, we modified the GE4m coefficients making them dependent on a novel ingredient, the reduced Hartree potential, recently introduced in the Journal of Chemical Physics 2016, 145, 084110, in the context of exchange functionals. The resulting KE gradient expansion functional, named uGE4m, belongs to the novel class of u-meta-generalized-gradient-approximations (uMGGA) whose members depend on the conventional ingredients (i.e., the reduced gradient and Laplacian of the density) as well as on the reduced Hartree potential. To test uGE4m, we defined an appropriate benchmark (including total KE and KE differences for atoms, molecules and jellium clusters) for gradient expansion functionals, that is, including only those systems which are mainly described by a slowly varying density regime. While most of the GGA and meta-GGA KE functionals (we tested 18 of them) are accurate for some properties and inaccurate for others, uGE4m shows a consistently good performance for all the properties considered. This represents a qualitative boost in the KE functional development and highlights the importance of the reduced Hartree potential for the construction of next-generation KE functionals.

  14. Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture

    Science.gov (United States)

    Sanfilippo, Antonio [Richland, WA; Calapristi, Augustin J [West Richland, WA; Crow, Vernon L [Richland, WA; Hetzler, Elizabeth G [Kennewick, WA; Turner, Alan E [Kennewick, WA

    2009-12-22

    Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture are described. In one aspect, a document clustering method includes providing a document set comprising a plurality of documents, providing a cluster comprising a subset of the documents of the document set, using a plurality of terms of the documents, providing a cluster label indicative of subject matter content of the documents of the cluster, wherein the cluster label comprises a plurality of word senses, and selecting one of the word senses of the cluster label.

  15. Photodissociation of Cr(CO) within methanol clusters: Observation of an isotope effect

    International Nuclear Information System (INIS)

    Peifer, W.R.; Garvey, J.F.

    1991-01-01

    Mixed van der Waals clusters containing Cr(CO) 6 and methanol are generated in the free-jet expansion of a pulsed beam of seeded helium and subjected to 248-nm multiphoton ionization (MPI), and the product ions are analyzed by time-of-flight mass spectrometry. The authors find that the multiphoton dissociation and ionization dynamics of solvated Cr(CO) 6 are strikingly different from those of the naked molecule. Two principle sequences of heterocluster ions are identified in the mass spectrum: a minor sequence with the empirical formula, S n Cr(CO) x + (x = 5,6), where S is a methanol molecule, and a major sequence with the empirical formula, S n Cr(CO) x + (x = 0,1,2). Implications are discussed regarding the general utility of MPI as a probe of the electronic structure and reactivity within van der Waals clusters

  16. Thermal expansion of amorphous Zr65Al7.5Cu17.5Ni10 in the vicinity of the glass transition

    International Nuclear Information System (INIS)

    Geier, N.; Weiss, M.; Moske, M.; Samwer, K.

    2000-01-01

    The thermal expansion of non-crystalline Zr 65 Al 7.5 Cu 17.5 Ni 10 has been studied in the range of the glass transition and in the undercooled liquid using a dilatometric device. The measuring technique used permits reliable experimental results up to 40 K above the glass transition temperature. The linear thermal expansion coefficient obtained is almost constant in the glassy state with a value of 8.0 x 10 -6 K -1 . It discontinuously increases at the glass transition temperature yielding a value of 20.0 x 10 -6 K -1 in the undercooled liquid. The results are compared with specific heat measurements of the amorphous material in this temperature range and are interpreted in the framework of a cluster model. (orig.)

  17. $\\delta$-Expansion at Finite Temperature

    OpenAIRE

    Ramos, Rudnei O.

    1996-01-01

    We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.

  18. Identification and comparative analysis of the protocadherin cluster in a reptile, the green anole lizard.

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Jiang

    Full Text Available BACKGROUND: The vertebrate protocadherins are a subfamily of cell adhesion molecules that are predominantly expressed in the nervous system and are believed to play an important role in establishing the complex neural network during animal development. Genes encoding these molecules are organized into a cluster in the genome. Comparative analysis of the protocadherin subcluster organization and gene arrangements in different vertebrates has provided interesting insights into the history of vertebrate genome evolution. Among tetrapods, protocadherin clusters have been fully characterized only in mammals. In this study, we report the identification and comparative analysis of the protocadherin cluster in a reptile, the green anole lizard (Anolis carolinensis. METHODOLOGY/PRINCIPAL FINDINGS: We show that the anole protocadherin cluster spans over a megabase and encodes a total of 71 genes. The number of genes in the anole protocadherin cluster is significantly higher than that in the coelacanth (49 genes and mammalian (54-59 genes clusters. The anole protocadherin genes are organized into four subclusters: the delta, alpha, beta and gamma. This subcluster organization is identical to that of the coelacanth protocadherin cluster, but differs from the mammalian clusters which lack the delta subcluster. The gene number expansion in the anole protocadherin cluster is largely due to the extensive gene duplication in the gammab subgroup. Similar to coelacanth and elephant shark protocadherin genes, the anole protocadherin genes have experienced a low frequency of gene conversion. CONCLUSIONS/SIGNIFICANCE: Our results suggest that similar to the protocadherin clusters in other vertebrates, the evolution of anole protocadherin cluster is driven mainly by lineage-specific gene duplications and degeneration. Our analysis also shows that loss of the protocadherin delta subcluster in the mammalian lineage occurred after the divergence of mammals and reptiles

  19. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  20. Disjoint sum expansion method in FTA

    International Nuclear Information System (INIS)

    Ruan Keqiang

    1987-01-01

    An expansion formula for transforming boolean algebraic expressions into disjoint form was proved. Based on this expansion formula, a method for transforming system failure function into disjoint form was devised. The fact that the expansion can be done for several elements simulatneously makes the method flexible and fast. Some examples from fault tree analysis (FTA) and network analysis were examined by the new method to show its algorithm and its merit. Besides, by means of the proved expansion formula some boolean algebraic relations can proved very easily

  1. Maxwell superalgebras and Abelian semigroup expansion

    Directory of Open Access Journals (Sweden)

    P.K. Concha

    2014-09-01

    Full Text Available The Abelian semigroup expansion is a powerful and simple method to derive new Lie algebras from a given one. Recently it was shown that the S-expansion of so(3,2 leads us to the Maxwell algebra M. In this paper we extend this result to superalgebras, by proving that different choices of abelian semigroups S lead to interesting D=4 Maxwell Superalgebras. In particular, the minimal Maxwell superalgebra sM and the N-extended Maxwell superalgebra sM(N recently found by the Maurer–Cartan expansion procedure, are derived alternatively as an S-expansion of osp(4|N. Moreover, we show that new minimal Maxwell superalgebras type sMm+2 and their N-extended generalization can be obtained using the S-expansion procedure.

  2. Maxwell superalgebras and Abelian semigroup expansion

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K.; Rodríguez, E.K. [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via Pietro Giuria, 1, 10125 Torino (Italy)

    2014-09-15

    The Abelian semigroup expansion is a powerful and simple method to derive new Lie algebras from a given one. Recently it was shown that the S-expansion of so(3,2) leads us to the Maxwell algebra M. In this paper we extend this result to superalgebras, by proving that different choices of abelian semigroups S lead to interesting D=4 Maxwell Superalgebras. In particular, the minimal Maxwell superalgebra sM and the N-extended Maxwell superalgebra sM{sup (N)} recently found by the Maurer–Cartan expansion procedure, are derived alternatively as an S-expansion of osp(4|N). Moreover, we show that new minimal Maxwell superalgebras type sM{sub m+2} and their N-extended generalization can be obtained using the S-expansion procedure.

  3. Nuclear clustering - a cluster core model study

    International Nuclear Information System (INIS)

    Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.

    2015-01-01

    Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei

  4. Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice

    Science.gov (United States)

    Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr

    2016-01-01

    In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic–to–paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models. PMID:27721435

  5. Si clusters/defective graphene composites as Li-ion batteries anode materials: A density functional study

    International Nuclear Information System (INIS)

    Li, Meng; Liu, Yue-Jie; Zhao, Jing-xiang; Wang, Xiao-guang

    2015-01-01

    Highlights: • We study the interaction between Si clusters with pristine and defective graphene. • We find that the binding strength of Si clusters on graphene can be enhanced to different degrees after introducing various defects. • It is found that both graphene and Si cluster in the Si/graphene composites can preserve their Li uptake ability. - Abstract: Recently, the Si/graphene hybrid composites have attracted considerable attention due to their potential application for Li-ion batteries. How to effectively anchor Si clusters to graphene substrates to ensure their stability is an important factor to determine their performance for Li-ion batteries. In the present work, we have performed comprehensive density functional theory (DFT) calculations to investigate the geometric structures, stability, and electronic properties of the deposited Si clusters on defective graphenes as well as their potential applications for Li-ion batteries. The results indicate that the interfacial bonding between these Si clusters with the pristine graphene is quietly weak with a small adsorption energy (<−0.21 eV). Due to the presence of vacancy site, the binding strength of Si clusters on defective graphene is much stronger than that of pristine one, accompanying with a certain amount of charge transfer from Si clusters to graphene substrates. Moreover, the ability of Si/graphene hybrids for Li uptake is studied by calculating the adsorption of Li atoms. We find that both graphenes and Si clusters in the Si/graphene composites preserve their Li uptake ability, indicating that graphenes not only server as buffer materials for accommodating the expansion of Si cluster, but also provide additional intercalation sites for Li

  6. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2006-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  7. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2008-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  8. Thermal expansion behaviour in the oxygen deficient perovskites Sr2BSbO5.5 (B=Ca, Sr, Ba). Competing effects of water and oxygen ordering

    International Nuclear Information System (INIS)

    Zhou Qingdi; Kennedy, Brendan J.; Avdeev, Maxim

    2011-01-01

    Neutron diffractions studies reveal the presence of oxygen disorder in the oxygen deficient perovskites Sr 2 BSbO 5.5 (B=Ca, Sr, Ba). Synchrotron X-ray studies demonstrate that these oxides have a double perovskite-type structure with the cell size increasing as the size of the B cation increases from 8.2114(2) A for B=Ca to 8.4408(1) A for B=Ba. It is postulated that a combination of local clustering of the anions and vacancies together with water-water and water-host hydrogen bonds plays a role in defining the volume of the encapsulated water clusters and that changes in the local structure upon heating result in anomalous thermal expansion observed in variable temperature diffraction measurements. - Graphical abstract: The oxides Sr 2 BSbO 5.5 (B=Ca, Sr, Ba) have unusual anion disorder. There is a lag in the contraction in the cell size of Sr 2 CaSbO 5.5 nH 2 O established from X-ray diffraction measurements following the loss of water suggesting changes on the local structure are important. Highlights: → The average structures of the defect perovskites Sr 2 MSbO 5.5 established. → Anion and cation disorder quantified by neutron and synchrotron X-ray diffraction. → Anomalous thermal expansion due to local clustering of anions and vacancies observed.

  9. Uniform gradient expansions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  10. Plasmon response in K, Na and Li clusters: systematics using the separable random-phase approximation with pseudo-Hamiltonians

    International Nuclear Information System (INIS)

    Kleinig, W.; Nesterenko, V.O.; Reinhard, P.-G.; Serra, Ll.

    1998-01-01

    The systematics of the plasmon response in spherical K, Na and Li clusters in a wide size region (8≤N≤440) is studied. We have considered two simplifying approximations whose validity has been established previously. First, a separable approach to the random-phase approximation is used. This involves an expansion of the residual interaction into a sum of separable terms until convergence is reached. Second, the electron-ion interaction is modelled by using the pseudo-Hamiltonian jellium model (MHJM) which includes nonlocal effects by means of realistic atomic pseudo-Hamiltonians. In cases where nonlocal effects are negligible the Structure Averaged Jellium Model (SAJM) has been used. Good agreement with available experimental data is achieved for K, Na (using the SAJM) and small Li clusters (invoking the PHJM). The trends for peak position and width are generally well reproduced, even up to details of the Landau fragmentation in several clusters. Less good agreement, however, is found for large Li clusters. This remains an open question

  11. Changes in urban-related precipitation in the summer over three city clusters in China

    Science.gov (United States)

    Zhao, Deming; Wu, Jian

    2017-09-01

    The impacts of urban surface expansion on the summer precipitations over three city clusters [Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD)] in eastern China under different monsoonal circulation backgrounds were explored using the nested fifth-generation Penn State/NCAR Mesoscale Model version 3.7 (MM5 V3.7), including the urban-related thermal and dynamical parameters. Ten-year integrations were performed using satellite image data from 2000 and 2010 to represent the urban surface distributions and expansions in China. Changes in the precipitation revealed obvious subregional characteristics, which could be explained by the influences of the vertical wind velocity and moisture flux. With urban-related warming, vertical wind motion generally intensified over urban surface-expanded areas. Meanwhile, the increase in impervious surface areas induced rapid rainwater runoff into drains, and the Bowen ratio increased over urban areas, which further contributed to changes in the local moisture fluxes in these regions. The intensities of the changes in precipitation were inconsistent over the three city clusters, although the changes in vertical motion and local evaporation were similar, which indicates that the changes in precipitation cannot be solely explained by the changes in the local evaporation-related moisture flux. The changes in precipitation were also influenced by the changes in the East Asian summer monsoon (EASM) circulation and the corresponding moisture flux, which are expressed in marked subregional characteristics. Therefore, the influence of urban-related precipitation over the three city clusters in China, for which changes in moisture flux from both the impacted local evaporation and EASM circulation should be considered, varied based on the precipitation changes of only a single city.

  12. A dynamic model for smectite clay swelling, expansion and colloid generation

    International Nuclear Information System (INIS)

    Liu, Longcheng; Neretnieks, Ivars; Moreno, Luis

    2010-01-01

    Document available in extended abstract form only. A force balance model that describes the dynamic expansion of colloidal bentonite gels/sols is presented. The colloidal particles are assumed to consist of one or several thin sheets with the other dimensions much larger than their thickness. The forces considered include van der Waals force, diffuse double layer force, thermal force giving rise to Brownian motion, gravity as well as friction force. The model results in an expression that resembles the un-stationary diffusion equation but with an immensely variable diffusivity. This diffusivity is strongly influenced by the concentration of counterions as well as by the particle concentration in the colloid gel/sol. At high particle densities, i.e. when the distance between the particles is less than their length or width, they will not be able to rotate freely and they must essentially be aligned parallel to each other, for purely geometrical reasons, to have the so called columnar phase. In addition, for an average distance between two particles, the energy minimum is found only when the particles are parallel, due to the fact that the diffuse double layer force decays nearly exponentially with distance. This suggests that our model is expected to be valid down to volume fractions of less than one percent, possibly down to a few tenths of a percent in low ionic strength waters, when the diffuse double layer force extends to very large distances. At lower volume fractions, particle diffusion (Brownian motion) will govern the movement and then the diffusivity will approach a constant defined by the Einstein's equation. The model is deemed to be valid also within the large clusters of a multitude of smectite particles, containing perhaps hundred or more sheets. These clusters can be oriented randomly but still allow very small voids to exist between the sheets, and therefore it would not permit the volume fraction of the particles to approach unity when the

  13. Comprehensive cluster analysis with Transitivity Clustering.

    Science.gov (United States)

    Wittkop, Tobias; Emig, Dorothea; Truss, Anke; Albrecht, Mario; Böcker, Sebastian; Baumbach, Jan

    2011-03-01

    Transitivity Clustering is a method for the partitioning of biological data into groups of similar objects, such as genes, for instance. It provides integrated access to various functions addressing each step of a typical cluster analysis. To facilitate this, Transitivity Clustering is accessible online and offers three user-friendly interfaces: a powerful stand-alone version, a web interface, and a collection of Cytoscape plug-ins. In this paper, we describe three major workflows: (i) protein (super)family detection with Cytoscape, (ii) protein homology detection with incomplete gold standards and (iii) clustering of gene expression data. This protocol guides the user through the most important features of Transitivity Clustering and takes ∼1 h to complete.

  14. The Thermal Expansion Of Feldspars

    Science.gov (United States)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  15. Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions

    Science.gov (United States)

    Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco

    2018-06-01

    The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.

  16. Cluster-cluster correlations and constraints on the correlation hierarchy

    Science.gov (United States)

    Hamilton, A. J. S.; Gott, J. R., III

    1988-01-01

    The hypothesis that galaxies cluster around clusters at least as strongly as they cluster around galaxies imposes constraints on the hierarchy of correlation amplitudes in hierachical clustering models. The distributions which saturate these constraints are the Rayleigh-Levy random walk fractals proposed by Mandelbrot; for these fractal distributions cluster-cluster correlations are all identically equal to galaxy-galaxy correlations. If correlation amplitudes exceed the constraints, as is observed, then cluster-cluster correlations must exceed galaxy-galaxy correlations, as is observed.

  17. CONSTRAINING CLUSTER PHYSICS WITH THE SHAPE OF X-RAY CLUSTERS: COMPARISON OF LOCAL X-RAY CLUSTERS VERSUS ΛCDM CLUSTERS

    International Nuclear Information System (INIS)

    Lau, Erwin T.; Nagai, Daisuke; Kravtsov, Andrey V.; Vikhlinin, Alexey; Zentner, Andrew R.

    2012-01-01

    Recent simulations of cluster formation have demonstrated that condensation of baryons into central galaxies during cluster formation can drive the shape of the gas distribution in galaxy clusters significantly rounder out to their virial radius. These simulations generally predict stellar fractions within cluster virial radii that are ∼2-3 times larger than the stellar masses deduced from observations. In this paper, we compare ellipticity profiles of simulated clusters performed with varying input physics (radiative cooling, star formation, and supernova feedback) to the cluster ellipticity profiles derived from Chandra and ROSAT observations, in an effort to constrain the fraction of gas that cools and condenses into the central galaxies within clusters. We find that local relaxed clusters have an average ellipticity of ε = 0.18 ± 0.05 in the radial range of 0.04 ≤ r/r 500 ≤ 1. At larger radii r > 0.1r 500 , the observed ellipticity profiles agree well with the predictions of non-radiative simulations. In contrast, the ellipticity profiles of simulated clusters that include dissipative gas physics deviate significantly from the observed ellipticity profiles at all radii. The dissipative simulations overpredict (underpredict) ellipticity in the inner (outer) regions of galaxy clusters. By comparing simulations with and without dissipative gas physics, we show that gas cooling causes the gas distribution to be more oblate in the central regions, but makes the outer gas distribution more spherical. We find that late-time gas cooling and star formation are responsible for the significantly oblate gas distributions in cluster cores, but the gas shapes outside of cluster cores are set primarily by baryon dissipation at high redshift (z ≥ 2). Our results indicate that the shapes of X-ray emitting gas in galaxy clusters, especially at large radii, can be used to place constraints on cluster gas physics, making it potential probes of the history of baryonic

  18. Thermal expansion of L-ascorbic acid

    Science.gov (United States)

    Nicolaï, B.; Barrio, M.; Tamarit, J.-Ll.; Céolin, R.; Rietveld, I. B.

    2017-04-01

    The specific volume of vitamin C has been investigated by X-ray powder diffraction as a function of temperature from 110 K up to complete degradation around 440 K. Its thermal expansion is relatively small in comparison with other organic compounds with an expansivity α v of 1.2(3) × 10-4 K-1. The structure consists of strongly bound molecules in the ac plane through a dense network of hydrogen bonds. The thermal expansion is anisotropic. Along the b axis, the expansion has most leeway and is about 10 times larger than in the other directions.

  19. Defining chemical expansion: the choice of units for the stoichiometric expansion coefficient

    DEFF Research Database (Denmark)

    Marrocchelli, Dario; Chatzichristodoulou, Christodoulos; Bishop, Sean R.

    2014-01-01

    Chemical expansion refers to the spatial dilation of a material that occurs upon changes in its composition. When this dilation is caused by a gradual, iso-structural increase in the lattice parameter with composition, it is related to the composition change by the stoichiometric expansion coeffi...... are provided for changes in oxygen content in fluorite, perovskite, and Ruddlesden-Popper (K2NiF4) phase materials used in solid oxide fuel cells....

  20. Edgeworth expansion for functionals of continuous diffusion processes

    DEFF Research Database (Denmark)

    Podolskij, Mark; Yoshida, Nakahiro

    This paper presents new results on the Edgeworth expansion for high frequency functionals of continuous diffusion processes. We derive asymptotic expansions for weighted functionals of the Brownian motion and apply them to provide the Edgeworth expansion for power variation of diffusion processes....... Our methodology relies on martingale embedding, Malliavin calculus and stable central limit theorems for semimartingales. Finally, we demonstrate the density expansion for studentized statistics of power variations.......This paper presents new results on the Edgeworth expansion for high frequency functionals of continuous diffusion processes. We derive asymptotic expansions for weighted functionals of the Brownian motion and apply them to provide the Edgeworth expansion for power variation of diffusion processes...

  1. Expansion lyre-shaped tube

    International Nuclear Information System (INIS)

    Andro, Jean.

    1973-01-01

    The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr

  2. Convex Clustering: An Attractive Alternative to Hierarchical Clustering

    Science.gov (United States)

    Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth

    2015-01-01

    The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340

  3. Deeply quasi-bound state in single- and double-K nuclear clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marri, S.; Kalantari, S.Z. [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Esmaili, J. [Shahrekord University, Department of Physics, Faculty of Basic Sciences, Shahrekord (Iran, Islamic Republic of)

    2016-12-15

    New calculations of the quasi-bound state positions in K{sup -}K{sup -}pp kaonic nuclear cluster are performed using non-relativistic four-body Faddeev-type equations in AGS form. The corresponding separable approximation for the integral kernels in the three- and four-body kaonic clusters is obtained by using the Hilbert-Schmidt expansion procedure. Different phenomenological models of anti KN-πΣ potentials with one- and two-pole structure of Λ(1405) resonance and separable potential models for anti K- anti K and nucleon-nucleon interactions, are used. The dependence of the resulting four-body binding energy on models of anti KN-πΣ interaction is investigated. We obtained the binding energy of the K{sup -}K{sup -}pp quasi-bound state ∝ 80-94 MeV with the phenomenological anti KN potentials. The width is about ∝ 5-8 MeV for the two-pole models of the interaction, while the one-pole potentials give ∝ 24-31 MeV width. (orig.)

  4. On the Equisummability of Hermite and Fourier Expansions

    Indian Academy of Sciences (India)

    We prove an equisummability result for the Fourier expansions and Hermite expansions as well as special Hermite expansions. We also prove the uniform boundedness of the Bochner-Riesz means associated to the Hermite expansions for polyradial functions.

  5. Analysis of earthquake clustering and source spectra in the Salton Sea Geothermal Field

    Science.gov (United States)

    Cheng, Y.; Chen, X.

    2015-12-01

    The Salton Sea Geothermal field is located within the tectonic step-over between San Andreas Fault and Imperial Fault. Since the 1980s, geothermal energy exploration has resulted with step-like increase of microearthquake activities, which mirror the expansion of geothermal field. Distinguishing naturally occurred and induced seismicity, and their corresponding characteristics (e.g., energy release) is important for hazard assessment. Between 2008 and 2014, seismic data recorded by a local borehole array were provided public access from CalEnergy through SCEC data center; and the high quality local recording of over 7000 microearthquakes provides unique opportunity to sort out characteristics of induced versus natural activities. We obtain high-resolution earthquake location using improved S-wave picks, waveform cross-correlation and a new 3D velocity model. We then develop method to identify spatial-temporally isolated earthquake clusters. These clusters are classified into aftershock-type, swarm-type, and mixed-type (aftershock-like, with low skew, low magnitude and shorter duration), based on the relative timing of largest earthquakes and moment-release. The mixed-type clusters are mostly located at 3 - 4 km depth near injection well; while aftershock-type clusters and swarm-type clusters also occur further from injection well. By counting number of aftershocks within 1day following mainshock in each cluster, we find that the mixed-type clusters have much higher aftershock productivity compared with other types and historic M4 earthquakes. We analyze detailed spatial variation of 'b-value'. We find that the mixed-type clusters are mostly located within high b-value patches, while large (M>3) earthquakes and other types of clusters are located within low b-value patches. We are currently processing P and S-wave spectra to analyze the spatial-temporal correlation of earthquake stress parameter and seismicity characteristics. Preliminary results suggest that the

  6. Cluster management.

    Science.gov (United States)

    Katz, R

    1992-11-01

    Cluster management is a management model that fosters decentralization of management, develops leadership potential of staff, and creates ownership of unit-based goals. Unlike shared governance models, there is no formal structure created by committees and it is less threatening for managers. There are two parts to the cluster management model. One is the formation of cluster groups, consisting of all staff and facilitated by a cluster leader. The cluster groups function for communication and problem-solving. The second part of the cluster management model is the creation of task forces. These task forces are designed to work on short-term goals, usually in response to solving one of the unit's goals. Sometimes the task forces are used for quality improvement or system problems. Clusters are groups of not more than five or six staff members, facilitated by a cluster leader. A cluster is made up of individuals who work the same shift. For example, people with job titles who work days would be in a cluster. There would be registered nurses, licensed practical nurses, nursing assistants, and unit clerks in the cluster. The cluster leader is chosen by the manager based on certain criteria and is trained for this specialized role. The concept of cluster management, criteria for choosing leaders, training for leaders, using cluster groups to solve quality improvement issues, and the learning process necessary for manager support are described.

  7. Plasma expansion: fundamentals and applications

    International Nuclear Information System (INIS)

    Engeln, R; Mazouffre, S; Vankan, P; Bakker, I; Schram, D C

    2002-01-01

    The study of plasma expansion is interesting from a fundamental point of view as well as from a more applied point of view. We here give a short overview of the way properties like density, velocity and temperature behave in an expanding thermal plasma. Experimental data show that the basic phenomena of plasma expansion are to some extent similar to those of the expansion of a hot neutral gas. From the application point of view, we present first results on the use of an expanding thermal plasma in the plasma-activated catalysis of ammonia, from N 2 -H 2 mixtures

  8. On genus expansion of superpolynomials

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, Andrei, E-mail: mironov@itep.ru [Lebedev Physics Institute, Moscow 119991 (Russian Federation); ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Morozov, Alexei, E-mail: morozov@itep.ru [ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sleptsov, Alexei, E-mail: sleptsov@itep.ru [ITEP, Moscow 117218 (Russian Federation); Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); KdVI, University of Amsterdam (Netherlands); Smirnov, Andrey, E-mail: asmirnov@math.columbia.edu [ITEP, Moscow 117218 (Russian Federation); Columbia University, Department of Mathematics, New York (United States)

    2014-12-15

    Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.

  9. Electrostatic resonances and optical responses of cylindrical clusters

    International Nuclear Information System (INIS)

    Choy, C W; Xiao, J J; Yu, K W

    2008-01-01

    We developed a Green function formalism (GFF) for computing the electrostatic resonance in clusters of cylindrical particles. In the GFF, we take advantage of a surface integral equation to avoid matching the complicated boundary conditions on the surfaces of the particles. Numerical solutions of the eigenvalue equation yield a pole spectrum in the spectral representation. The pole spectrum can in turn be used to compute the optical response of these particles. For two cylindrical particles, the results are in excellent agreement with the exact results from the multiple image method and the normal mode expansion method. The results of this work can be extended to investigate the enhanced nonlinear optical responses of metal-dielectric composites, as well as optical switching in plasmonic waveguides.

  10. Lifting to cluster-tilting objects in higher cluster categories

    OpenAIRE

    Liu, Pin

    2008-01-01

    In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.

  11. On summation of perturbation expansions

    International Nuclear Information System (INIS)

    Horzela, A.

    1985-04-01

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  12. OPEC future capacity expansions

    International Nuclear Information System (INIS)

    Sandrea, I.

    2005-01-01

    This conference presentation examined OPEC future capacity expansions including highlights from 2000-2004 from the supply perspective and actions by OPEC; OPEC spare capacity in 2005/2006; medium-term capacity expansion and investments; long-term scenarios, challenges and opportunities; and upstream policies in member countries. Highlights from the supply perspective included worst than expected non-OPEC supply response; non-OPEC supply affected by a number of accidents and strikes; geopolitical tensions; and higher than expected demand for OPEC crude. OPEC's actions included closer relationship with other producers and consumers; capacity expansions in 2004 and 2005/2006; and OPEC kept the market well supplied with crude in 2004. The presentation also provided data using graphical charts on OPEC net capacity additions until 2005/2006; OPEC production versus spare capacity from 2003 to 2005; OPEC production and capacity to 2010; and change in required OPEC production from 2005-2020. Medium term expansion to 2010 includes over 60 projects. Medium-term risks such as project execution, financing, costs, demand, reserves, depletion, integration of Iraq, and geopolitical tensions were also discussed. The presentation concluded that in the long term, large uncertainties remain; the peak of world supply is not imminent; and continued and enhanced cooperation is essential to market stability. tabs., figs

  13. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  14. On Learning Ring-Sum-Expansions

    DEFF Research Database (Denmark)

    Fischer, Paul; Simon, H. -U.

    1992-01-01

    The problem of learning ring-sum-expansions from examples is studied. Ring-sum-expansions (RSE) are representations of Boolean functions over the base {#123;small infinum, (+), 1}#125;, which reflect arithmetic operations in GF(2). k-RSE is the class of ring-sum-expansions containing only monomials...... of length at most k:. term-RSE is the class of ring-sum-expansions having at most I: monomials. It is shown that k-RSE, k>or=1, is learnable while k-term-RSE, k>2, is not learnable if RPnot=NP. Without using a complexity-theoretical hypothesis, it is proven that k-RSE, k>or=1, and k-term-RSE, k>or=2 cannot...... be learned from positive (negative) examples alone. However, if the restriction that the hypothesis which is output by the learning algorithm is also a k-RSE is suspended, then k-RSE is learnable from positive (negative) examples only. Moreover, it is proved that 2-term-RSE is learnable by a conjunction...

  15. The bootstrap and edgeworth expansion

    CERN Document Server

    Hall, Peter

    1992-01-01

    This monograph addresses two quite different topics, in the belief that each can shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. Chapter 1 is about the bootstrap, witih almost no mention of Edgeworth expansion; Chapter 2 is about Edgeworth expansion, with scarcely a word about the bootstrap; and Chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properites of the bootstrap. The book is aimed a a graduate level audience who has some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter (entitled "Details of Mathematical Rogour"), and so a mathematically able reader without knowledge of the rigorous theory of probability will have no trouble understanding the first four-fifths of the book. The book simultaneously fills two gaps in the literature; it provides a very readable graduate level account of t...

  16. Reexamining organizational configurations: an update, validation, and expansion of the taxonomy of health networks and systems.

    Science.gov (United States)

    Dubbs, Nicole L; Bazzoli, Gloria J; Shortell, Stephen M; Kralovec, Peter D

    2004-02-01

    To (a) assess how the original cluster categories of hospital-led health networks and systems have changed over time; (b) identify any new patterns of cluster configurations; and (c) demonstrate how additional data can be used to refine and enhance the taxonomy measures. DATA SOURCES; 1994 and 1998 American Hospital Association (AHA) Annual Survey of Hospitals. As in the original taxonomy, separate cluster solutions are identified for health networks and health systems by applying three strategic/structural dimensions (differentiation, integration, and centralization) to three components of the health service/product continuum (hospital services, physician arrangements, and provider-based insurance activities). Factor, cluster, and discriminant analyses are used to analyze the 1998 data. Descriptive and comparative methods are used to analyze the updated 1998 taxonomy relative to the original 1994 version. The 1998 cluster categories are similar to the original taxonomy, however, they reveal some new organizational configurations. For the health networks, centralization of product/service lines is occurring more selectively than in the past. For the health systems, participation has grown in and dispersed across a more diverse set of decentralized organizational forms. For both networks and systems, the definition of centralization has changed over time. In its updated form, the taxonomy continues to provide policymakers and practitioners with a descriptive and contextual framework against which to assess organizational programs and policies. There is a need to continue to revisit the taxonomy from time to time because of the persistent evolution of the U.S. health care industry and the consequent shifting of organizational configurations in this arena. There is also value in continuing to move the taxonomy in the direction of refinement/expansion as new opportunities become available.

  17. Widespread acquisition of antimicrobial resistance among Campylobacter isolates from UK retail poultry and evidence for clonal expansion of resistant lineages.

    Science.gov (United States)

    Wimalarathna, Helen M L; Richardson, Judith F; Lawson, Andy J; Elson, Richard; Meldrum, Richard; Little, Christine L; Maiden, Martin C J; McCarthy, Noel D; Sheppard, Samuel K

    2013-07-15

    Antimicrobial resistance is increasing among clinical Campylobacter cases and is common among isolates from other sources, specifically retail poultry - a major source of human infection. In this study the antimicrobial susceptibility of isolates from a UK-wide survey of Campylobacter in retail poultry in 2001 and 2004-5 was investigated. The occurrence of phenotypes resistant to tetracycline, quinolones (ciprofloxacin and naladixic acid), erythromycin, chloramphenicol and aminoglycosides was quantified. This was compared with a phylogeny for these isolates based upon Multi Locus Sequence Typing (MLST) to investigate the pattern of antimicrobial resistance acquisition. Antimicrobial resistance was present in all lineage clusters, but statistical testing showed a non-random distribution. Erythromycin resistance was associated with Campylobacter coli. For all antimicrobials tested, resistant isolates were distributed among relatively distant lineages indicative of widespread acquisition. There was also evidence of clustering of resistance phenotypes within lineages; indicative of local expansion of resistant strains. These results are consistent with the widespread acquisition of antimicrobial resistance among chicken associated Campylobacter isolates, either through mutation or horizontal gene transfer, and the expansion of these lineages as a proportion of the population. As Campylobacter are not known to multiply outside of the host and long-term carriage in humans is extremely infrequent in industrialized countries, the most likely location for the proliferation of resistant lineages is in farmed chickens.

  18. Dense Fe cluster-assembled films by energetic cluster deposition

    International Nuclear Information System (INIS)

    Peng, D.L.; Yamada, H.; Hihara, T.; Uchida, T.; Sumiyama, K.

    2004-01-01

    High-density Fe cluster-assembled films were produced at room temperature by an energetic cluster deposition. Though cluster-assemblies are usually sooty and porous, the present Fe cluster-assembled films are lustrous and dense, revealing a soft magnetic behavior. Size-monodispersed Fe clusters with the mean cluster size d=9 nm were synthesized using a plasma-gas-condensation technique. Ionized clusters are accelerated electrically and deposited onto the substrate together with neutral clusters from the same cluster source. Packing fraction and saturation magnetic flux density increase rapidly and magnetic coercivity decreases remarkably with increasing acceleration voltage. The Fe cluster-assembled film obtained at the acceleration voltage of -20 kV has a packing fraction of 0.86±0.03, saturation magnetic flux density of 1.78±0.05 Wb/m 2 , and coercivity value smaller than 80 A/m. The resistivity at room temperature is ten times larger than that of bulk Fe metal

  19. Fuel Thermal Expansion (FTHEXP)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO 2 and PuO 2 in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO 2 , and the fraction of fuel which is molten

  20. Cluster Physics with Merging Galaxy Clusters

    Directory of Open Access Journals (Sweden)

    Sandor M. Molnar

    2016-02-01

    Full Text Available Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard LCDM model, where the total density is dominated by the cosmological constant ($Lambda$ and the matter density by cold dark matter (CDM, structure formation is hierarchical, and clusters grow mostly by merging.Mergers of two massive clusters are the most energetic events in the universe after the Big Bang,hence they provide a unique laboratory to study cluster physics.The two main mass components in clusters behave differently during collisions:the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulenceare developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thusour review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clustersis to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses.New high spatial and spectral resolution ground and space based telescopeswill come online in the near future. Motivated by these new opportunities,we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  1. Node-Expansion Operators for the UCT Algorithm

    Science.gov (United States)

    Yajima, Takayuki; Hashimoto, Tsuyoshi; Matsui, Toshiki; Hashimoto, Junichi; Spoerer, Kristian

    Recent works on the MCTS and UCT framework in the domain of Go focused on introducing knowledge to the playout and on pruning variations from the tree, but so far node expansion has not been investigated. In this paper we show that delaying expansion according to the number of the siblings delivers a gain of more than 92% when compared to normal expansion. We propose three improvements; one that uses domain knowledge and two that are domain-independent methods. Experimental results show that all advanced operators significantly improve the UCT performance when compared to the basic delaying expansion. From the results we may conclude that the new expansion operators are an appropriate means to improve the UCT algorithm.

  2. Thermal expansion in small metallic particles

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1985-01-01

    An anomalously low thermal expansion observable in small particles is attributed to extending effect of the shell. It is shown that the coefficient of thermal expansion of the oxide-film-coated aluminium particles calculated using elastic constants and coefficients of thermal expansion of massive materials agres well with those measured experimentally. The linear dilatation of the shell, its stress to rupture and the values of the structural tension are estimated vs the temperature

  3. Are clusters of dietary patterns and cluster membership stable over time? Results of a longitudinal cluster analysis study.

    Science.gov (United States)

    Walthouwer, Michel Jean Louis; Oenema, Anke; Soetens, Katja; Lechner, Lilian; de Vries, Hein

    2014-11-01

    Developing nutrition education interventions based on clusters of dietary patterns can only be done adequately when it is clear if distinctive clusters of dietary patterns can be derived and reproduced over time, if cluster membership is stable, and if it is predictable which type of people belong to a certain cluster. Hence, this study aimed to: (1) identify clusters of dietary patterns among Dutch adults, (2) test the reproducibility of these clusters and stability of cluster membership over time, and (3) identify sociodemographic predictors of cluster membership and cluster transition. This study had a longitudinal design with online measurements at baseline (N=483) and 6 months follow-up (N=379). Dietary intake was assessed with a validated food frequency questionnaire. A hierarchical cluster analysis was performed, followed by a K-means cluster analysis. Multinomial logistic regression analyses were conducted to identify the sociodemographic predictors of cluster membership and cluster transition. At baseline and follow-up, a comparable three-cluster solution was derived, distinguishing a healthy, moderately healthy, and unhealthy dietary pattern. Male and lower educated participants were significantly more likely to have a less healthy dietary pattern. Further, 251 (66.2%) participants remained in the same cluster, 45 (11.9%) participants changed to an unhealthier cluster, and 83 (21.9%) participants shifted to a healthier cluster. Men and people living alone were significantly more likely to shift toward a less healthy dietary pattern. Distinctive clusters of dietary patterns can be derived. Yet, cluster membership is unstable and only few sociodemographic factors were associated with cluster membership and cluster transition. These findings imply that clusters based on dietary intake may not be suitable as a basis for nutrition education interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. [Tissular expansion in giant congenital nevi treatment].

    Science.gov (United States)

    Nguyen Van Nuoi, V; Francois-Fiquet, C; Diner, P; Sergent, B; Zazurca, F; Franchi, G; Buis, J; Vazquez, M-P; Picard, A; Kadlub, N

    2014-08-01

    Surgical management of giant melanotic naevi remains a surgical challenge. Tissue expansion provides tissue of the same quality for the repair of defects. The aim of this study is to review tissular expansion for giant melanotic naevi. We conducted a retrospective study from 2000 to 2012. All children patients who underwent a tissular expansion for giant congenital naevi had been included. Epidemiological data, surgical procedure, complication rate and results had been analysed. Thirty-tree patients had been included; they underwent 61 procedures with 79 tissular-expansion prosthesis. Previous surgery, mostly simple excision had been performed before tissular expansion. Complete naevus excision had been performed in 63.3% of the cases. Complications occurred in 45% of the cases, however in 50% of them were minor. Iterative surgery increased the complication rate. Tissular expansion is a valuable option for giant congenital naevus. However, complication rate remained high, especially when iterative surgery is needed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union

    Science.gov (United States)

    Griffiths, Patrick; Müller, Daniel; Kuemmerle, Tobias; Hostert, Patrick

    2013-12-01

    Widespread changes of agricultural land use occurred in Eastern Europe since the collapse of socialism and the European Union’s eastward expansion, but the rates and patterns of recent land changes remain unclear. Here we assess agricultural land change for the entire Carpathian ecoregion in Eastern Europe at 30 m spatial resolution with Landsat data and for two change periods, between 1985-2000 and 2000-2010. The early period is characterized by post-socialist transition processes, the late period by an increasing influence of EU politics in the region. For mapping and change detection, we use a machine learning approach (random forests) on image composites and variance metrics which were derived from the full decadal archive of Landsat imagery. Our results suggest that cropland abandonment was the most prevalent change process, but we also detected considerable areas of grassland conversion and forest expansion on non-forest land. Cropland abandonment was most extensive during the transition period and predominantly occurred in marginal areas with low suitability for agriculture. Conversely, we observed substantial recultivation of formerly abandoned cropland in high-value agricultural areas since 2000. Hence, market forces increasingly adjust socialist legacies of land expansive production and agricultural land use clusters in favorable areas while marginal lands revert to forest.

  6. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    Science.gov (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-07

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  7. Clusters and how to make it work : Cluster Strategy Toolkit

    NARCIS (Netherlands)

    Manickam, Anu; van Berkel, Karel

    2014-01-01

    Clusters are the magic answer to regional economic development. Firms in clusters are more innovative; cluster policy dominates EU policy; ‘top-sectors’ and excellence are the choice of national policy makers; clusters are ‘in’. But, clusters are complex, clusters are ‘messy’; there is no clear

  8. Photoinduced electron transfer and solvation in iodide-doped acetonitrile clusters.

    Science.gov (United States)

    Ehrler, Oli T; Griffin, Graham B; Young, Ryan M; Neumark, Daniel M

    2009-04-02

    We have used ultrafast time-resolved photoelectron imaging to measure charge transfer dynamics in iodide-doped acetonitrile clusters I(-)(CH(3)CN)(n) with n = 5-10. Strong modulations of vertical detachment energies were observed following charge transfer from the halide, allowing interpretation of the ongoing dynamics. We observe a sharp drop in the vertical detachment energy (VDE) within 300-400 fs, followed by a biexponential increase that is complete by approximately 10 ps. Comparison to theory suggests that the iodide is internally solvated and that photodetachment results in formation of a diffuse electron cloud in a confined cavity. We interpret the initial drop in VDE as a combination of expansion of the cavity and localization of the excess electron on one or two solvent molecules. The subsequent increase in VDE is attributed to a combination of the I atom leaving the cavity and rearrangement of the acetonitrile molecules to solvate the electron. The n = 5-8 clusters then show a drop in VDE of around 50 meV on a much longer time scale. The long-time VDEs are consistent with those of (CH(3)CN)(n)(-) clusters with internally solvated electrons. Although the excited-state created by the pump pulse decays by emission of a slow electron, no such decay is seen by 200 ps.

  9. The electron beam diagnostic of the clustered supersonic nitrogen jets

    Science.gov (United States)

    Avtaeva, S. V.; Yakovleva, T. S.; Kalyada, V. V.; Zarvin, A. E.

    2017-11-01

    Axial and radial distributions of the rotational temperature and density of N2 molecules in supersonic nitrogen jets formed with conic nozzles (critical diameters dcr of 0.17 and 0.21 mm) were studied using the electron beam fluorescence technique at stagnation pressures P0 of 0.1-0.6 MPa. A rotational temperature Tr , equaling a gas temperature Tg owing to fast RT relaxation, was obtained using the rotational line relative intensity distribution in (0-1) vibrational band of the N2 first negative system. Gas density profiles in the jets were obtained using the integral intensity of the band. It is found, Tr at the nozzle outlet is of the order of a few tens of Kelvin and at further expansion Tr drops up to 15-20K at distance of (100-200) dcr . The gas temperature and density distributions in the studied supersonic nitrogen jets are not similar to the isentropic distributions. It is shown that the lower is the stagnation pressure the faster the gas density and temperature decrease with distance from the nozzle. Increase in P0 leads to elevating Tg in the jets. A reason for this effect may be cluster formation in the jets. Estimations of cluster mean sizes in the jets using Hagena’s parameter show presence of large clusters (M≥200) at P0 = 0.4-0.6 MPa.

  10. Cluster dynamics at different cluster size and incident laser wavelengths

    International Nuclear Information System (INIS)

    Desai, Tara; Bernardinello, Andrea

    2002-01-01

    X-ray emission spectra from aluminum clusters of diameter -0.4 μm and gold clusters of dia. ∼1.25 μm are experimentally studied by irradiating the cluster foil targets with 1.06 μm laser, 10 ns (FWHM) at an intensity ∼10 12 W/cm 2 . Aluminum clusters show a different spectra compared to bulk material whereas gold cluster evolve towards bulk gold. Experimental data are analyzed on the basis of cluster dimension, laser wavelength and pulse duration. PIC simulations are performed to study the behavior of clusters at higher intensity I≥10 17 W/cm 2 for different size of the clusters irradiated at different laser wavelengths. Results indicate the dependence of cluster dynamics on cluster size and incident laser wavelength

  11. Applications of the large mass expansion

    International Nuclear Information System (INIS)

    Fleischer, J.; Kotikov, A.V.; ); Veretin, O.L.

    1998-01-01

    The method of the large mass expansion (LME) is investigated for selfenergy and vertex functions in two-loop order. It has the technical advantage that in many cases the expansion coefficients can be expressed analytically. As long as only one non-zero external momentum squared, q 2 , is involved also the Taylor expansion (TE) w.r.t. small q 2 yields high precision results in a domain sufficient for most applications. In the case of only one non-zero mass M and only one external momentum squared, the expansion w.r.t. q 2 /M 2 is identical for the TE and the LME. In this case the combined techniques yield analytic expressions for many diagrams, which are quite easy to handle numerically. (author)

  12. Text Clustering Algorithm Based on Random Cluster Core

    Directory of Open Access Journals (Sweden)

    Huang Long-Jun

    2016-01-01

    Full Text Available Nowadays clustering has become a popular text mining algorithm, but the huge data can put forward higher requirements for the accuracy and performance of text mining. In view of the performance bottleneck of traditional text clustering algorithm, this paper proposes a text clustering algorithm with random features. This is a kind of clustering algorithm based on text density, at the same time using the neighboring heuristic rules, the concept of random cluster is introduced, which effectively reduces the complexity of the distance calculation.

  13. Hematoma Expansion Following Acute Intracerebral Hemorrhage

    Science.gov (United States)

    Brouwers, H. Bart; Greenberg, Steven M.

    2013-01-01

    Intracerebral hemorrhage, the most devastating form of stroke, has no specific therapy proven to improve outcome by randomized controlled trial. Location and baseline hematoma volume are strong predictors of mortality, but are non-modifiable by the time of diagnosis. Expansion of the initial hematoma is a further marker of poor prognosis that may be at least partly preventable. Several risk factors for hematoma expansion have been identified, including baseline ICH volume, early presentation after symptom onset, anticoagulation, and the CT angiography spot sign. Although the biological mechanisms of hematoma expansion remain unclear, accumulating evidence supports a model of ongoing secondary bleeding from ruptured adjacent vessels surrounding the initial bleeding site. Several large clinical trials testing therapies aimed at preventing hematoma expansion are in progress, including aggressive blood pressure reduction, treatment with recombinant factor VIIa guided by CT angiography findings, and surgical intervention for superficial hematomas without intraventricular extension. Hematoma expansion is so far the only marker of outcome that is amenable to treatment and thus a potentially important therapeutic target. PMID:23466430

  14. On clusters and clustering from atoms to fractals

    CERN Document Server

    Reynolds, PJ

    1993-01-01

    This book attempts to answer why there is so much interest in clusters. Clusters occur on all length scales, and as a result occur in a variety of fields. Clusters are interesting scientifically, but they also have important consequences technologically. The division of the book into three parts roughly separates the field into small, intermediate, and large-scale clusters. Small clusters are the regime of atomic and molecular physics and chemistry. The intermediate regime is the transitional regime, with its characteristics including the onset of bulk-like behavior, growth and aggregation, a

  15. Density-functional theory study of ionic inhomogeneity in metal clusters using SC-ISJM

    Science.gov (United States)

    Payami, Mahmoud; Mahmoodi, Tahereh

    2017-12-01

    In this work we have applied the recently formulated self-compressed inhomogeneous stabilized jellium model [51] to describe the equilibrium electronic and geometric properties of atomic-closed-shell simple metal clusters of AlN (N = 13, 19, 43, 55, 79, 87, 135, 141), NaN, and CsN (N = 9, 15, 27, 51, 59, 65, 89, 113). To validate the results, we have also performed first-principles pseudo-potential calculations and used them as our reference. In the model, we have considered two regions consisting of ;surface; and ;inner; ones, the border separating them being sharp. This generalization makes possible to decouple the relaxations of different parts of the system. The results show that the present model correctly predicts the size reductions seen in most of the clusters. It also predicts increase in size of some clusters, as observed from first-principles results. Moreover, the changes in inter-layer distances, being as contractions or expansions, are in good agreement with the atomic simulation results. For a more realistic description of the properties, it is possible to improve the method of choosing the surface thicknesses or generalize the model to include more regions than just two.

  16. Renormalization group and mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-01-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U (1) lattice gauge theory by Gopfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear σ-model, and elsewhere

  17. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan

    2014-01-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  18. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.

    2014-03-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  19. Crude oil pipeline expansion summary

    International Nuclear Information System (INIS)

    2005-02-01

    The Canadian Association of Petroleum Producers has been working with producers to address issues associated with the development of new pipeline capacity from western Canada. This document presents an assessment of the need for additional oil pipeline capacity given the changing mix of crude oil types and forecasted supply growth. It is of particular interest to crude oil producers and contributes to current available information for market participants. While detailed, the underlying analysis does not account for all the factors that may come into play when individual market participants make choices about which expansions they may support. The key focus is on the importance of timely expansion. It was emphasized that if pipeline expansions lags the crude supply growth, then the consequences would be both significant and unacceptable. Obstacles to timely expansion are also discussed. The report reviews the production and supply forecasts, the existing crude oil pipeline infrastructure, opportunities for new market development, requirements for new pipeline capacity and tolling options for pipeline development. tabs., figs., 1 appendix

  20. Expansion dynamics

    International Nuclear Information System (INIS)

    Knoll, J.

    1985-10-01

    A quantum dynamical model is suggested which describes the expansion and disassembly phase of highly excited compounds formed in energetic heavy-ion collisions. First applications in two space and one time dimensional model world are discussed and qualitatively compared to standard freeze-out concepts. (orig.)

  1. Spatial Linkage and Urban Expansion: AN Urban Agglomeration View

    Science.gov (United States)

    Jiao, L. M.; Tang, X.; Liu, X. P.

    2017-09-01

    Urban expansion displays different characteristics in each period. From the perspective of the urban agglomeration, studying the spatial and temporal characteristics of urban expansion plays an important role in understanding the complex relationship between urban expansion and network structure of urban agglomeration. We analyze urban expansion in the Yangtze River Delta Urban Agglomeration (YRD) through accessibility to and spatial interaction intensity from core cities as well as accessibility of road network. Results show that: (1) Correlation between urban expansion intensity and spatial indicators such as location and space syntax variables is remarkable and positive, while it decreases after rapid expansion. (2) Urban expansion velocity displays a positive correlation with spatial indicators mentioned above in the first (1980-1990) and second (1990-2000) period. However, it exhibits a negative relationship in the third period (2000-2010), i.e., cities located in the periphery of urban agglomeration developing more quickly. Consequently, the hypothesis of convergence of urban expansion in rapid expansion stage is put forward. (3) Results of Zipf's law and Gibrat's law show urban expansion in YRD displays a convergent trend in rapid expansion stage, small and medium-sized cities growing faster. This study shows that spatial linkage plays an important but evolving role in urban expansion within the urban agglomeration. In addition, it serves as a reference to the planning of Yangtze River Delta Urban Agglomeration and regulation of urban expansion of other urban agglomerations.

  2. GibbsCluster: unsupervised clustering and alignment of peptide sequences

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Alvarez, Bruno; Nielsen, Morten

    2017-01-01

    motif characterizing each cluster. Several parameters are available to customize cluster analysis, including adjustable penalties for small clusters and overlapping groups and a trash cluster to remove outliers. As an example application, we used the server to deconvolute multiple specificities in large......-scale peptidome data generated by mass spectrometry. The server is available at http://www.cbs.dtu.dk/services/GibbsCluster-2.0....

  3. Magnetized relativistic electron-ion plasma expansion

    Science.gov (United States)

    Benkhelifa, El-Amine; Djebli, Mourad

    2016-03-01

    The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.

  4. Diametrical clustering for identifying anti-correlated gene clusters.

    Science.gov (United States)

    Dhillon, Inderjit S; Marcotte, Edward M; Roshan, Usman

    2003-09-01

    Clustering genes based upon their expression patterns allows us to predict gene function. Most existing clustering algorithms cluster genes together when their expression patterns show high positive correlation. However, it has been observed that genes whose expression patterns are strongly anti-correlated can also be functionally similar. Biologically, this is not unintuitive-genes responding to the same stimuli, regardless of the nature of the response, are more likely to operate in the same pathways. We present a new diametrical clustering algorithm that explicitly identifies anti-correlated clusters of genes. Our algorithm proceeds by iteratively (i). re-partitioning the genes and (ii). computing the dominant singular vector of each gene cluster; each singular vector serving as the prototype of a 'diametric' cluster. We empirically show the effectiveness of the algorithm in identifying diametrical or anti-correlated clusters. Testing the algorithm on yeast cell cycle data, fibroblast gene expression data, and DNA microarray data from yeast mutants reveals that opposed cellular pathways can be discovered with this method. We present systems whose mRNA expression patterns, and likely their functions, oppose the yeast ribosome and proteosome, along with evidence for the inverse transcriptional regulation of a number of cellular systems.

  5. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  6. Renormalization group and Mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-02-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U(1) lattice gauge theory by Goepfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear sigma-model, and elsewhere. (orig.)

  7. Improving Recommendations in Tag-based Systems with Spectral Clustering of Tag Neighbors

    DEFF Research Database (Denmark)

    Pan, Rong; Xu, Guandong; Dolog, Peter

    2012-01-01

    Tag as a useful metadata reflects the collaborative and conceptual features of documents in social collaborative annotation systems. In this paper, we propose a collaborative approach for expanding tag neighbors and investigate the spectral clustering algorithm to filter out noisy tag neighbors...... in order to get appropriate recommendation for users. The preliminary experiments have been conducted on MovieLens dataset to compare our proposed approach with the traditional collaborative filtering recommendation approach and naive tag neighbors expansion approach in terms of precision, and the result...... demonstrates that our approach could considerably improve the performance of recommendations....

  8. expansion method

    Indian Academy of Sciences (India)

    of a system under investigation is to model the system in terms of some ... The organization of the paper is as follows: In §2, a brief account of the (G /G)- expansion ...... It is interesting to note that from the general results, one can easily recover.

  9. Expansion of Tubular with Elastomers in Multilateral Wells

    Directory of Open Access Journals (Sweden)

    Md Velden

    2013-06-01

    Full Text Available The use of solid expandable tubular technology during the last decade has focused on solving many challenges in well drilling and delivery including zonal isolation, deep drilling, conservation of hole sizes, etc. not only as pioneered solution but also providing cost effective and long lasting solutions. Concurrently, the technology was extended for construction of multilateral in typical wells. The process of horizontal tubular expansion is similar to the vertical expansion of expandable tubular in down-hole environment with the addition of uniformly distributed force due to its weight. The expansion is targeted to increase its diameter such that post expansion characteristics remain within allowable limits. In this study a typical expandable tubular of 57.15 mm outer diameter and 6.35 mm wall thickness was used with two different elastomer seals of 5 and 7 mm thickness placed at equal spacing of 200 mm. The developed stress contours during expansion process clearly showed the high stress areas in the vicinity of expansion region which lies around the mandrel. These high stresses may result in excessive wear of the mandrel. It was also found out that the drawing force increases as the mandrel angle, expansion ratio, and friction coefficient increases. A mandrel angle of 20o  requires minimum expansion force and can be considered as an optimum geometrical parameter to lower the power required for expansion.

  10. Adiabatic supernova expansion into the circumstellar medium

    International Nuclear Information System (INIS)

    Band, D.L.; Liang, E.P.

    1987-01-01

    We perform one dimensional numerical simulations with a Lagrangian hydrodynamics code of the adiabatic expansion of a supernova into the surrounding medium. The early expansion follows Chevalier's analytic self-similar solution until the reverse shock reaches the ejecta core. We follow the expansion as it evolves towards the adiabatic blast wave phase. Some memory of the earlier phases of expansion is retained in the interior even when the outer regions expand as a blast wave. We find the results are sensitive to the initial configuration of the ejecta and to the placement of gridpoints. 6 refs., 2 figs

  11. Rich Ground State Chemical Ordering in Nanoparticles: Exact Solution of a Model for Ag-Au Clusters

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2018-01-01

    We show that nanoparticles can have very rich ground state chemical order. This is illustrated by determining the chemical ordering of Ag-Au 309-atom Mackay icosahedral nanoparticles. The energy of the nanoparticles is described using a cluster expansion model, and a Mixed Integer Programming (MIP......) approach is used to find the exact ground state configurations for all stoichiometries. The chemical ordering varies widely between the different stoichiometries, and display a rich zoo of structures with non-trivial ordering....

  12. Multi-site reactivity: reduction of six equivalents of nitrite to give an Fe6(NO)6 cluster with a dramatically expanded octahedral core.

    Science.gov (United States)

    Harris, T David; Betley, Theodore A

    2011-09-07

    Reaction of NO(2)(-) with the octahedral cluster ((H)L)(2)Fe(6) in the presence of a proton source affords the hexanitrosyl cluster ((H)L)(2)Fe(6)(NO)(6). This species forms via a proton-induced reduction of six nitrite molecules per cluster, utilizing each site available on the polynuclear core. Formation of the hexanitrosyl cluster is accompanied by a near 2-fold expansion of the ((H)L)(2)Fe(6) core volume, where intracore Fe-Fe interactions are overcome by strong π-bonding between Fe centers and NO ligands. A core volume of this magnitude is rare in octahedral metal clusters not supported by interstitial atoms. Moreover, the structural flexibility afforded by the ((H)L)(2)Fe(6) platform highlights the potential for other reaction chemistry involving species with metal-ligand multiple bonds. Carrying out the reaction of the cluster [((H)L)(2)Fe(6)(NCMe)(6)](4+) with nitrite in the absence of a proton source serves to forestall the nitrite reduction and enables clean isolation of the intermediate hexanitro cluster [((H)L)(2)Fe(6)(NO(2))(6)](2-).

  13. Cluster Matters

    DEFF Research Database (Denmark)

    Gulati, Mukesh; Lund-Thomsen, Peter; Suresh, Sangeetha

    2018-01-01

    sell their products successfully in international markets, but there is also an increasingly large consumer base within India. Indeed, Indian industrial clusters have contributed to a substantial part of this growth process, and there are several hundred registered clusters within the country...... of this handbook, which focuses on the role of CSR in MSMEs. Hence we contribute to the literature on CSR in industrial clusters and specifically CSR in Indian industrial clusters by investigating the drivers of CSR in India’s industrial clusters....

  14. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  15. One feature of the activated southern Ordos block: the Ziwuling small earthquake cluster

    Directory of Open Access Journals (Sweden)

    Li Yuhang

    2014-08-01

    Full Text Available Small earthquakes (Ms > 2.0 have been recorded from 1970 to the present day and reveal a significant difference in seismicity between the stable Ordos block and its active surrounding area. The southern Ordos block is a conspicuous small earthquake belt clustered and isolated along the NNW direction and extends to the inner stable Ordos block; no active fault can match this small earthquake cluster. In this paper, we analyze the dynamic mechanism of this small earthquake cluster based on the GPS velocity field (from 1999 to 2007, which are mainly from Crustal Movement Observation Network of China (CMONOC with respect to the north and south China blocks. The principal direction of strain rate field, the expansion ratefield, the maximum shear strain rate, and the rotation rate were constrained using the GPS velocity field. The results show that the velocity field, which is bounded by the small earthquake cluster from Tongchuan to Weinan, differs from the strain rate field, and the crustal deformation is left-lateral shear. This left-lateral shear belt not only spatially coincides with the Neo-tectonic belt in the Weihe Basin but also with the NNW small earthquake cluster (the Ziwuling small earthquake cluster. Based on these studies, we speculate that the NNW small earthquake cluster is caused by left-lateral shear slip, which is prone to strain accumulation. When the strain releases along the weak zone of structure, small earthquakes diffuse within its upper crust. The maximum principal compression strees direction changed from NE-SW to NEE-SWW, and the former reverse faults in the southwestern margin of the Ordos block became a left-lateral strike slip due to readjustment of the tectonic strees field after the middle Pleistocene. The NNW Neo-tectonic belt in the Weihe Basin, the different movement character of the inner Weihe Basin (which was demonstrated through GPS measurements and the small earthquake cluster belt reflect the activated

  16. Formation of an Approach to the Clustered Management of Foreign Economic Activity of Enterprises in the Conditions of Global Competition

    Directory of Open Access Journals (Sweden)

    Sushchenko Olena A.

    2015-09-01

    Full Text Available The article is aimed at formation of an approach to the clustered management of foreign economic activity of enterprises in the conditions of global competition. Expedience of use of the cluster approach in the field of management of foreign economic activity of enterprises has been substantiated. A basic framework has been developed and a cluster model for management of foreign economic activity of enterprises providing a description of such management as a complex mechanism with the specified parameters has been created. The basic elements of the cluster model of management of foreign economic activity of enterprise have been allocated. Purposes for selecting elemental clusters in the process of management of foreign economic activity of enterprise have been defined. The partial functions of management that display the functional purpose of the cluster model of management of foreign economic activity of enterprises, as well as the composition of its elements, have been allocated. A generalized hierarchical view of the cluster model of management of foreign economic activity of enterprises has been proposed. A scheme of the operational administration of functioning of the cluster model of management of foreign economic activity of enterprises, based on the core principles and basics of situational simulation, has been presented. Effectiveness of the presented management model is determined by the increasing share of enterprises in the external markets in the context of the relevant clusters, an expansion of the types of foreign economic activity of enterprises, implementation of innovations

  17. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union

    International Nuclear Information System (INIS)

    Griffiths, Patrick; Müller, Daniel; Kuemmerle, Tobias; Hostert, Patrick

    2013-01-01

    Widespread changes of agricultural land use occurred in Eastern Europe since the collapse of socialism and the European Union’s eastward expansion, but the rates and patterns of recent land changes remain unclear. Here we assess agricultural land change for the entire Carpathian ecoregion in Eastern Europe at 30 m spatial resolution with Landsat data and for two change periods, between 1985–2000 and 2000–2010. The early period is characterized by post-socialist transition processes, the late period by an increasing influence of EU politics in the region. For mapping and change detection, we use a machine learning approach (random forests) on image composites and variance metrics which were derived from the full decadal archive of Landsat imagery. Our results suggest that cropland abandonment was the most prevalent change process, but we also detected considerable areas of grassland conversion and forest expansion on non-forest land. Cropland abandonment was most extensive during the transition period and predominantly occurred in marginal areas with low suitability for agriculture. Conversely, we observed substantial recultivation of formerly abandoned cropland in high-value agricultural areas since 2000. Hence, market forces increasingly adjust socialist legacies of land expansive production and agricultural land use clusters in favorable areas while marginal lands revert to forest. (letter)

  18. Support Policies in Clusters: Prioritization of Support Needs by Cluster Members According to Cluster Life Cycle

    Directory of Open Access Journals (Sweden)

    Gulcin Salıngan

    2012-07-01

    Full Text Available Economic development has always been a moving target. Both the national and local governments have been facing the challenge of implementing the effective and efficient economic policy and program in order to best utilize their limited resources. One of the recent approaches in this area is called cluster-based economic analysis and strategy development. This study reviews key literature and some of the cluster based economic policies adopted by different governments. Based on this review, it proposes “the cluster life cycle” as a determining factor to identify the support requirements of clusters. A survey, designed based on literature review of International Cluster support programs, was conducted with 30 participants from 3 clusters with different maturity stage. This paper discusses the results of this study conducted among the cluster members in Eskişehir- Bilecik-Kütahya Region in Turkey on the requirement of the support to foster the development of related clusters.

  19. Decennial plan of expansion 1994-2003

    International Nuclear Information System (INIS)

    1993-12-01

    The Decennial Plan of Expansion 1994-2003 of Electric sector reproduces the results of the studies occurred during the planning cycle of 1992/93 from the Coordinator Groups of the Electric System Planning. Based in the market forecasting, economic-financier and time for finishing the the works, the Decennial Plan of Expansion presents the schedule of the main generation and transmission works for the next ten years, the annual spend in generation, transmission and distribution, the costs of expansion and the evaluation of attending conditions in electric system in Brazil. (C.G.C.)

  20. In vitro evaluation of force-expansion characteristics in a newly designed orthodontic expansion screw compared to conventional screws

    Directory of Open Access Journals (Sweden)

    Oshagh Morteza

    2009-01-01

    Full Text Available Objective : Expansion screws like Hyrax, Haas and other types, produce heavy interrupted forces which are unfavorable for dental movement and could be harmful to the tooth and periodontium. The other disadvantage of these screws is the need for patient cooperation for their regular activation. The purpose of this study was to design a screw and compare its force- expansion curve with other types. Materials and Methods : A new screw was designed and fabricated in the same dimension, with conventional types, with the ability of 8 mm expansion (Free wire length: 12 mm, initial compression: 4.5 mm, spring wire diameter: 0.4 mm, spring diameter: 3 mm, number of the coils: n0 ine, material: s0 tainless steel. In this in vitro study, the new screw was placed in an acrylic orthodontic appliance, and after mounting on a stone cast, the force-expansion curve was evaluated by a compression test machine and compared to other screws. Results : Force-expansion curve of designed screw had a flatter inclination compared to other screws. Generally it produced a light continuous force (two to 3.5 pounds for every 4 mm of expansion. Conclusion : In comparison with heavy and interrupted forces of other screws, the newly designed screw created light and continuous forces.

  1. Community Clustering Algorithm in Complex Networks Based on Microcommunity Fusion

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2015-01-01

    Full Text Available With the further research on physical meaning and digital features of the community structure in complex networks in recent years, the improvement of effectiveness and efficiency of the community mining algorithms in complex networks has become an important subject in this area. This paper puts forward a concept of the microcommunity and gets final mining results of communities through fusing different microcommunities. This paper starts with the basic definition of the network community and applies Expansion to the microcommunity clustering which provides prerequisites for the microcommunity fusion. The proposed algorithm is more efficient and has higher solution quality compared with other similar algorithms through the analysis of test results based on network data set.

  2. Cluster chemical ionization for improved confidence level in sample identification by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Fialkov, Alexander B; Amirav, Aviv

    2003-01-01

    Upon the supersonic expansion of helium mixed with vapor from an organic solvent (e.g. methanol), various clusters of the solvent with the sample molecules can be formed. As a result of 70 eV electron ionization of these clusters, cluster chemical ionization (cluster CI) mass spectra are obtained. These spectra are characterized by the combination of EI mass spectra of vibrationally cold molecules in the supersonic molecular beam (cold EI) with CI-like appearance of abundant protonated molecules, together with satellite peaks corresponding to protonated or non-protonated clusters of sample compounds with 1-3 solvent molecules. Like CI, cluster CI preferably occurs for polar compounds with high proton affinity. However, in contrast to conventional CI, for non-polar compounds or those with reduced proton affinity the cluster CI mass spectrum converges to that of cold EI. The appearance of a protonated molecule and its solvent cluster peaks, plus the lack of protonation and cluster satellites for prominent EI fragments, enable the unambiguous identification of the molecular ion. In turn, the insertion of the proper molecular ion into the NIST library search of the cold EI mass spectra eliminates those candidates with incorrect molecular mass and thus significantly increases the confidence level in sample identification. Furthermore, molecular mass identification is of prime importance for the analysis of unknown compounds that are absent in the library. Examples are given with emphasis on the cluster CI analysis of carbamate pesticides, high explosives and unknown samples, to demonstrate the usefulness of Supersonic GC/MS (GC/MS with supersonic molecular beam) in the analysis of these thermally labile compounds. Cluster CI is shown to be a practical ionization method, due to its ease-of-use and fast instrumental conversion between EI and cluster CI, which involves the opening of only one valve located at the make-up gas path. The ease-of-use of cluster CI is analogous

  3. Financing electricity expansion

    International Nuclear Information System (INIS)

    Hyman, L.S.

    1994-01-01

    Expansion of electricity supply is associated with economic development. The installation and enlargement of power systems in developing countries entails a huge financial burden, however. Energy consumers in such countries must pay not only for supplies but for the cost of raising the capital for expansion on the international markets. Estimates are presented for the capital expenditure for electricity supply over the period 1990 to 2020 for the major world regions, using approximations for the cost of plant and capital and for the returns earned. These data lead to the conclusion that the five regions with the lowest per capita incomes are those which will need the major part of the capital expenditure and the highest percentage of external finance. (6 tables) (UK)

  4. Preparation of Shrinkage Compensating Concrete with HCSA Expansive Agent

    Science.gov (United States)

    Li, Changcheng; Jia, Fujia

    2017-10-01

    Shrinkage compensating concrete (SCC) has become one of the best effective methods of preventing and reducing concrete cracking. SCC is prepared by HCSA high performance expansive agent for concrete which restrained expansion rate is optimized by 0.057%. Slump, compressive strength, restrained expansion rate and cracking resistance test were carried out on SCC. The results show that the initial slump of fresh SCC was about 220mm-230mm, while slump after 2 hours was 180mm-200mm. The restrained expansion rate of SCC increased with the mixing amount of expansive agent. After cured in water for 14 days, the restrained expansion rate of C35 and C40 SCC were 0.020%-0.032%. With the dosage of expansive agent increasing, restrained expansion rate of SCC increased, maximum compressive stress and cracking stress improved, cracking temperature fell, thus cracking resistance got effectively improvement.

  5. Use of expansion joints in power stations

    International Nuclear Information System (INIS)

    Birker; Rommerswinkel.

    1976-01-01

    The paper discusses the mode of action of different systems of expansion joints. Special regard is given to the problems of expansion of pipelines of high rated diameter as employed in today's large power plant turbines. Due to the limited space available, the important role of the spring rate of the bellows for the reaction forces and moments acting on the connection points is pointed out. Apart from this details are given on the fabrication and materials selection of expansion joint bellows, and problems are discussed which arise in connection with the mechanical or hydraulic deformation of bellows with one or more walls. The non-destructive methods now in use for the testing of expansion pipe joints are mentioned along with experiments to test their behaviour under changing loads. The paper concludes on some remarks concerning proper transport, storage and installation of expansion pipe joints. (orig./AK) [de

  6. Comparative study of energy of particles ejected from coulomb explosion of rare gas and metallic clusters irradiated by intense femtosecond laser field

    Science.gov (United States)

    Boucerredj, N.; Beggas, K.

    2016-10-01

    We present our study of high intensity femtosecond laser field interaction with large cluster of Kr and Na (contained 2.103 to 2.107 atoms). When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non neutral ion cloud. The irradiation of these clusters by the intense laser field leads to highly excitation energy which can be the source of energetic electrons, electronic emission, highly charge, energetic ions and fragmentation process. During the Coulomb explosion of the resulting highly ionized, high temperature nanoplasma, ions acquire again their energy. It is shown that ultra fast ions are produced. The goal of our study is to investigate in detail a comparative study of the expansion and explosion then the ion energy of metallic and rare gas clusters irradiated by an intense femtosecond laser field. We have found that ions have a kinetic energy up to 105 eV and the Coulomb pressure is little than the hydrodynamic pressure. The Coulomb explosion of a cluster may provide a new high energy ion source.

  7. Clusters and how to make it work : toolkit for cluster strategy

    NARCIS (Netherlands)

    Manickam, Anu; van Berkel, Karel

    2013-01-01

    Clusters are the magic answer to regional economic development. Firms in clusters are more innovative; cluster policy dominates EU policy; ‘top-sectors’ and excellence are the choice of national policy makers; clusters are ‘in’. But, clusters are complex, clusters are ‘messy’; there is no clear

  8. Divergence of activity expansions: Is it actually a problem?

    Science.gov (United States)

    Ushcats, M. V.; Bulavin, L. A.; Sysoev, V. M.; Ushcats, S. Yu.

    2017-12-01

    For realistic interaction models, which include both molecular attraction and repulsion (e.g., Lennard-Jones, modified Lennard-Jones, Morse, and square-well potentials), the asymptotic behavior of the virial expansions for pressure and density in powers of activity has been studied taking power terms of high orders into account on the basis of the known finite-order irreducible integrals as well as the recent approximations of infinite irreducible series. Even in the divergence region (at subcritical temperatures), this behavior stays thermodynamically adequate (in contrast to the behavior of the virial equation of state with the same set of irreducible integrals) and corresponds to the beginning of the first-order phase transition: the divergence yields the jump (discontinuity) in density at constant pressure and chemical potential. In general, it provides a statistical explanation of the condensation phenomenon, but for liquid or solid states, the physically proper description (which can turn the infinite discontinuity into a finite jump of density) still needs further study of high-order cluster integrals and, especially, their real dependence on the system volume (density).

  9. Chromatic Derivatives, Chromatic Expansions and Associated Spaces

    OpenAIRE

    Ignjatovic, Aleksandar

    2009-01-01

    This paper presents the basic properties of chromatic derivatives and chromatic expansions and provides an appropriate motivation for introducing these notions. Chromatic derivatives are special, numerically robust linear differential operators which correspond to certain families of orthogonal polynomials. Chromatic expansions are series of the corresponding special functions, which possess the best features of both the Taylor and the Shannon expansions. This makes chromatic derivatives and ...

  10. Warp drive with zero expansion

    Energy Technology Data Exchange (ETDEWEB)

    Natario, Jose [Department of Mathematics, Instituto Superior Tecnico (Portugal)

    2002-03-21

    It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding the space behind it. We show that this contraction/expansion is but a marginal consequence of the choice made by Alcubierre and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp-drive spacetimes are also discussed.

  11. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Araghi, Houshang, E-mail: araghi@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zabihi, Zabiholah [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nayebi, Payman [Department of Physics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of); Ehsani, Mohammad Mahdi [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2016-10-15

    II–VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  12. Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode

    Science.gov (United States)

    Su, Junming; Zhang, Congcong; Chen, Xiang; Liu, Siyang; Huang, Tao; Yu, Aishui

    2018-03-01

    Although silicon is the most promising anode material for Li-ion batteries, large volume expansion during lithiation and delithiation is the main obstacle limiting the commercial application of silicon anodes. There are two ways to alleviate volume expansion and prevent further pulverization of a Si anode: fabrication of a rational nanostructure possessing void spaces and uniform distribution of the conducting sites, without a good balance effect in mitigating the limiting factors and enhancing battery performance. In this paper, we propose a novel nanostructure - a carbon-shell-constrained Si cluster (Si/C shell) with both adequate void space and good distribution of electrical contact sites to guarantee homogeneous lithiation in the initial cycle. Benefiting from the ability to maintain electrical conductivity of the outer carbon shell, even after cluster fragmentation, the Si/C shell synthesized from low-cost commercial Al-Si alloy spheres can deliver 0.03% capacity loss from 100th to 1000th cycles at a current density of 1 A g-1. The Si/C shell sample with the dual functional structure mentioned above can also maintain its own nanostructure during cycling and deliver excellent rate performance. It is a concise and scalable strategy which can simplify the preparation of other alloy anode materials for Li-ion batteries.

  13. Determination of atomic cluster structure with cluster fusion algorithm

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2005-01-01

    We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters.......We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters....

  14. Large-Scale Multi-Dimensional Document Clustering on GPU Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Mueller, Frank [North Carolina State University; Zhang, Yongpeng [ORNL; Potok, Thomas E [ORNL

    2010-01-01

    Document clustering plays an important role in data mining systems. Recently, a flocking-based document clustering algorithm has been proposed to solve the problem through simulation resembling the flocking behavior of birds in nature. This method is superior to other clustering algorithms, including k-means, in the sense that the outcome is not sensitive to the initial state. One limitation of this approach is that the algorithmic complexity is inherently quadratic in the number of documents. As a result, execution time becomes a bottleneck with large number of documents. In this paper, we assess the benefits of exploiting the computational power of Beowulf-like clusters equipped with contemporary Graphics Processing Units (GPUs) as a means to significantly reduce the runtime of flocking-based document clustering. Our framework scales up to over one million documents processed simultaneously in a sixteennode GPU cluster. Results are also compared to a four-node cluster with higher-end GPUs. On these clusters, we observe 30X-50X speedups, which demonstrates the potential of GPU clusters to efficiently solve massive data mining problems. Such speedups combined with the scalability potential and accelerator-based parallelization are unique in the domain of document-based data mining, to the best of our knowledge.

  15. Membership determination of open clusters based on a spectral clustering method

    Science.gov (United States)

    Gao, Xin-Hua

    2018-06-01

    We present a spectral clustering (SC) method aimed at segregating reliable members of open clusters in multi-dimensional space. The SC method is a non-parametric clustering technique that performs cluster division using eigenvectors of the similarity matrix; no prior knowledge of the clusters is required. This method is more flexible in dealing with multi-dimensional data compared to other methods of membership determination. We use this method to segregate the cluster members of five open clusters (Hyades, Coma Ber, Pleiades, Praesepe, and NGC 188) in five-dimensional space; fairly clean cluster members are obtained. We find that the SC method can capture a small number of cluster members (weak signal) from a large number of field stars (heavy noise). Based on these cluster members, we compute the mean proper motions and distances for the Hyades, Coma Ber, Pleiades, and Praesepe clusters, and our results are in general quite consistent with the results derived by other authors. The test results indicate that the SC method is highly suitable for segregating cluster members of open clusters based on high-precision multi-dimensional astrometric data such as Gaia data.

  16. Observations of concentrated generator regions in the nightside magnetosphere by Cluster/FAST conjunctions

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2006-03-01

    Full Text Available Here and in the companion paper, Marghitu et al. (2006, we investigate plausible auroral generator regions in the nightside auroral magnetosphere. In this article we use magnetically conjugate data from the Cluster and the FAST satellites during a 3.5-h long event from 19-20 September 2001. Cluster is in the Southern Hemisphere close to apogee, where it probes the plasma sheet and lobe at an altitude of about 18 RE. FAST is below the acceleration region at approximately 0.6 RE. Searching for clear signatures of negative power densities, E·J<0, in the Cluster data we can identify three concentrated generator regions (CGRs during our event. From the magnetically conjugate FAST data we see that the observed generator regions in the Cluster data correlate with auroral precipitation. The downward Poynting flux observed by Cluster, as well as the scale size of the CGRs, are consistent with the electron energy flux and the size of the inverted-V regions observed by FAST. To our knowledge, these are the first in-situ observations of the crossing of an auroral generator region. The main contribution to E·J<0 comes from the GSE EyJy. The electric field Ey is weakly negative during most of our entire event and we conclude that the CGRs occur when the duskward current Jy grows large and positive. We find that our observations are consistent with a local southward expansion of the plasma sheet and/or rather complicated, 3-D wavy structures propagating over the Cluster satellites. We find that the plasma is working against the magnetic field, and that kinetic energy is being converted into electromagnetic energy. Some of the energy is transported away as Poynting flux.

  17. The δ expansion for stochastic quantization

    International Nuclear Information System (INIS)

    Bender, C.M.; Cooper, F.; Milton, K.A.; Department of Physics, Brown University, Providence, Rhode Island 02912; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexic o 87545; Department of Physics, The Ohio State University, Columbus, Ohio 43210; Department of Physics and Astronomy, University of Oklahoma, Norman, Oklaho ma 73019)

    1989-01-01

    Using a recently proposed perturbation expansion called the δ expansion, we show how to solve the Langevin equation associated with a gphi 4 field theory. We illustrate the technique in zero- and one-dimensional space-time, and then generalize this approach to d dimensions

  18. A meta-analysis of global urban land expansion.

    Science.gov (United States)

    Seto, Karen C; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K

    2011-01-01

    The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km(2) from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km(2) and 12,568,000 km(2), with an estimate of 1,527,000 km(2) more likely.

  19. Cluster headache

    Science.gov (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  20. Considering FACTS in Optimal Transmission Expansion Planning

    Directory of Open Access Journals (Sweden)

    K. Soleimani

    2017-10-01

    Full Text Available The expansion of power transmission systems is an important part of the expansion of power systems that requires enormous investment costs. Since the construction of new transmission lines is very expensive, it is necessary to choose the most efficient expansion plan that ensures system security with a minimal number of new lines. In this paper, the role of Flexible AC Transmission System (FACTS devices in the effective operation and expansion planning of transmission systems is examined. Effort was taken to implement a method based on sensitivity analysis to select the optimal number and location of FACTS devices, lines and other elements of the transmission system. Using this method, the transmission expansion plan for a 9 and a 39 bus power system was performed with and without the presence of FACTS with the use of DPL environment in Digsilent software 15.1. Results show that the use of these devices reduces the need for new transmission lines and minimizes the investment cost.

  1. Simulation program for multiple expansion Stirling machines

    International Nuclear Information System (INIS)

    Walker, G.; Weiss, M.; Fauvel, R.; Reader, G.; Bingham, E.R.

    1992-01-01

    Multiple expansion Stirling machines have been a topic of interest at the University of Calgary for some years. Recently a second-order computer simulation program with integral graphics package for Stirling cryocoolers with up to four stages of expansion were developed and made available to the Stirling community. Adaptation of the program to multiple expansion Stirling power systems is anticipated. This paper briefly introduces the program and presents a specimen result

  2. SnO{sub 2} thin films morphological and optical properties in terms of the Boubaker Polynomials Expansion Scheme BPES-related Opto-Thermal Expansivity {psi}{sub AB}

    Energy Technology Data Exchange (ETDEWEB)

    Amlouk, A.; Boubaker, K. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Amlouk, M., E-mail: mmbb11112000@yahoo.f [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia)

    2010-02-04

    In this study, SnO{sub 2} thin films have been grown using spray pyrolysis technique on glass substrates under a substrate temperature (T{sub s} = 440 {sup o}C). The precursors were methanol CH{sub 4}O and anhydrous tin tetrachloride. XRD analyses yielded strong (1 1 0)-(1 0 1)-(2 0 0) X-ray diffraction peaks which are characteristics to tetragonal crystals. Atomic Force Microscopy (AFM) analyses showed the existence of clusters with particular pyramidal shapes. The main part of this study concerns the optical measurements of transmittance T({lambda}) and reflectance R({lambda}) spectra inside 250-1800 nm domain. Conjoint optical and thermal properties were deduced using the Amlouk-Boubaker Opto-Thermal Expansivity {psi}{sub AB}. The obtained value: {psi}{sub AB} {approx} 23.4 m{sup 3} s{sup -1} helped situating the performance of the as-grown SnO{sub 2} compound among most known PV-T oxides like ZnO and TiO{sub 2}.

  3. Identification of a large, fast-expanding HIV-1 subtype B transmission cluster among MSM in Valencia, Spain.

    Directory of Open Access Journals (Sweden)

    Juan Ángel Patiño-Galindo

    Full Text Available We describe and characterize an exceptionally large HIV-1 subtype B transmission cluster occurring in the Comunidad Valenciana (CV, Spain. A total of 1806 HIV-1 protease-reverse transcriptase (PR/RT sequences from different patients were obtained in the CV between 2004 and 2014. After subtyping and generating a phylogenetic tree with additional HIV-1 subtype B sequences, a very large transmission cluster which included almost exclusively sequences from the CV was detected (n = 143 patients. This cluster was then validated and characterized with further maximum-likelihood phylogenetic analyses and Bayesian coalescent reconstructions. With these analyses, the CV cluster was delimited to 113 patients, predominately men who have sex with men (MSM. Although it was significantly located in the city of Valencia (n = 105, phylogenetic analyses suggested this cluster derives from a larger HIV lineage affecting other Spanish localities (n = 194. Coalescent analyses estimated its expansion in Valencia to have started between 1998 and 2004. From 2004 to 2009, members of this cluster represented only 1.46% of the HIV-1 subtype B samples studied in Valencia (n = 5/143, whereas from 2010 onwards its prevalence raised to 12.64% (n = 100/791. In conclusion, we have detected a very large transmission cluster in the CV where it has experienced a very fast growth in the recent years in the city of Valencia, thus contributing significantly to the HIV epidemic in this locality. Its transmission efficiency evidences shortcomings in HIV control measures in Spain and particularly in Valencia.

  4. Identification of a large, fast-expanding HIV-1 subtype B transmission cluster among MSM in Valencia, Spain.

    Science.gov (United States)

    Patiño-Galindo, Juan Ángel; Torres-Puente, Manoli; Bracho, María Alma; Alastrué, Ignacio; Juan, Amparo; Navarro, David; Galindo, María José; Gimeno, Concepción; Ortega, Enrique; González-Candelas, Fernando

    2017-01-01

    We describe and characterize an exceptionally large HIV-1 subtype B transmission cluster occurring in the Comunidad Valenciana (CV, Spain). A total of 1806 HIV-1 protease-reverse transcriptase (PR/RT) sequences from different patients were obtained in the CV between 2004 and 2014. After subtyping and generating a phylogenetic tree with additional HIV-1 subtype B sequences, a very large transmission cluster which included almost exclusively sequences from the CV was detected (n = 143 patients). This cluster was then validated and characterized with further maximum-likelihood phylogenetic analyses and Bayesian coalescent reconstructions. With these analyses, the CV cluster was delimited to 113 patients, predominately men who have sex with men (MSM). Although it was significantly located in the city of Valencia (n = 105), phylogenetic analyses suggested this cluster derives from a larger HIV lineage affecting other Spanish localities (n = 194). Coalescent analyses estimated its expansion in Valencia to have started between 1998 and 2004. From 2004 to 2009, members of this cluster represented only 1.46% of the HIV-1 subtype B samples studied in Valencia (n = 5/143), whereas from 2010 onwards its prevalence raised to 12.64% (n = 100/791). In conclusion, we have detected a very large transmission cluster in the CV where it has experienced a very fast growth in the recent years in the city of Valencia, thus contributing significantly to the HIV epidemic in this locality. Its transmission efficiency evidences shortcomings in HIV control measures in Spain and particularly in Valencia.

  5. Controlling Thermal Expansion: A Metal-Organic Frameworks Route.

    Science.gov (United States)

    Balestra, Salvador R G; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A Rabdel; Calero, Sofia

    2016-11-22

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal-organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host-guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion.

  6. The Economic Impact of Medicaid Expansion on Pennsylvania.

    Science.gov (United States)

    Price, Carter C; Donohue, Julie M; Saltzman, Evan; Woods, Dulani; Eibner, Christine

    2013-01-01

    The Affordable Care Act is a substantial reform of the U.S. health care insurance system. Using the RAND COMPARE model, researchers assessed the act's potential economic effects on Pennsylvania, factoring in an optional expansion of Medicaid, and found the state would enjoy significant net benefits. With or without the expansion of Medicaid, the act will increase insurance coverage to hundreds of thousands of Pennsylvanians, but the COMPARE model estimates that the expansion of Medicaid eligibility would cover an additional 350,000 people and bring more than $2 billion in federal spending into the state annually than if the state did not expand. Should the state expand Medicaid, the additional spending will add more than $3 billion a year to the state's GDP and support 35,000 jobs. But Medicaid expansion is not without cost for the state; the estimated cumulative effect on Pennsylvania's Medicaid spending will be $180 million higher with the expansion than without between 2014 and 2020. Substantial reductions in uncompensated care costs for hospitals are possible even without expansion, but savings to hospitals for uncompensated care funding are even larger with the Medicaid expansion, amounting to $550 million or more each year.

  7. Controlling Thermal Expansion: A Metal–Organic Frameworks Route

    Science.gov (United States)

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal–organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host–guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion. PMID:28190918

  8. Platform Expansion Design as Strategic Choice

    DEFF Research Database (Denmark)

    Staykova, Kalina S.; Damsgaard, Jan

    2016-01-01

    In this paper, we address how the strategic choice of platform expansion design impacts the subse-quent platform strategy. We identify two distinct approaches to platform expansion – platform bun-dling and platform constellations, which currently co-exist. The purpose of this paper is to outline...

  9. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  10. Secret-key expansion from covert communication

    Science.gov (United States)

    Arrazola, Juan Miguel; Amiri, Ryan

    2018-02-01

    Covert communication allows the transmission of messages in such a way that it is not possible for adversaries to detect that the communication is occurring. This provides protection in situations where knowledge that two parties are talking to each other may be incriminating to them. In this work, we study how covert communication can be used for a different purpose: secret key expansion. First, we show that any message transmitted in a secure covert protocol is also secret and therefore unknown to an adversary. We then propose a covert communication protocol where the amount of key consumed in the protocol is smaller than the transmitted key, thus leading to secure secret key expansion. We derive precise conditions for secret key expansion to occur, showing that it is possible when there are sufficiently low levels of noise for a given security level. We conclude by examining how secret key expansion from covert communication can be performed in a computational security model.

  11. From greedy to lazy expansions and their driving dynamics

    NARCIS (Netherlands)

    Dajani, K.; Kraaikamp, C.

    2001-01-01

    In this paper we study the ergodic properties of non-greedy series expansions to non-integer bases β > 1. It is shown that the so-called 'lazy' expansion is isomorphic to the 'greedy' expansion. Furthermore, a class of expansions to base β > 1, β =2 Z, 'in between' the lazy and the greedy

  12. Single-cluster dynamics for the random-cluster model

    NARCIS (Netherlands)

    Deng, Y.; Qian, X.; Blöte, H.W.J.

    2009-01-01

    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

  13. RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility

    Directory of Open Access Journals (Sweden)

    Aisling Frizzell

    2014-03-01

    Full Text Available Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG repeat expansions and fragility, likely by unwinding problematic hairpins.

  14. Thermal expansion studies on Hafnium titanate (HfTiO4)

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Subramanian, G.G.S.; Antony, M.P.

    2006-01-01

    The lattice thermal expansion characteristics of hafnium titanate (HfTiO 4 ) have been studied by measuring the lattice parameter as a function of temperature by high temperature X-ray diffraction technique (HT-XRD) in the temperature range 298-1973K. Percentage linear thermal expansion and mean linear thermal expansion coefficients were computed from the lattice parameter data. The thermal expansion of HfTiO 4 is highly anisotropic. The expansivity along 'a' axis is large; as compared to the expansivity along 'b' axis which is negative below 1073 K. The percentage linear thermal expansion in the temperature range 298-1973 K along a, b and c axis are 2.74, 0.901 and 1.49 respectively. Thermal expansion values obtained in the present study are in reasonable agreement with the existing thermal expansion data. (author)

  15. From solid solution to cluster formation of Fe and Cr in α-Zr

    International Nuclear Information System (INIS)

    Burr, P.A.; Wenman, M.R.; Gault, B.; Moody, M.P.; Ivermark, M.; Rushton, M.J.D.; Preuss, M.; Edwards, L.; Grimes, R.W.

    2015-01-01

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  16. From solid solution to cluster formation of Fe and Cr in α-Zr

    Energy Technology Data Exchange (ETDEWEB)

    Burr, P.A., E-mail: burr.patrick@gmail.com [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Menai, New South Wales 2234 (Australia); Wenman, M.R. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Gault, B.; Moody, M.P. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Ivermark, M. [High Temperature Materials, Sandvik Materials Technology, 734 27 Hallstahammar (Sweden); University of Manchester, School of Materials, M13 9PL (United Kingdom); Rushton, M.J.D. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Preuss, M. [University of Manchester, School of Materials, M13 9PL (United Kingdom); Edwards, L. [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Menai, New South Wales 2234 (Australia); Grimes, R.W. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom)

    2015-12-15

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  17. Hypersonic expansion of the Fokker--Planck equation

    International Nuclear Information System (INIS)

    Fernandez-Feria, R.

    1989-01-01

    A systematic study of the hypersonic limit of a heavy species diluted in a much lighter gas is made via the Fokker--Planck equation governing its velocity distribution function. In particular, two different hypersonic expansions of the Fokker--Planck equation are considered, differing from each other in the momentum equation of the heavy gas used as the basis of the expansion: in the first of them, the pressure tensor is neglected in that equation while, in the second expansion, the pressure tensor term is retained. The expansions are valid when the light gas Mach number is O(1) or larger and the difference between the mean velocities of light and heavy components is small compared to the light gas thermal speed. They can be applied away from regions where the spatial gradient of the distribution function is very large, but it is not restricted with respect to the temporal derivative of the distribution function. The hydrodynamic equations corresponding to the lowest order of both expansions constitute two different hypersonic closures of the moment equations. For the subsequent orders in the expansions, closed sets of moment equations (hydrodynamic equations) are given. Special emphasis is made on the order of magnitude of the errors of the lowest-order hydrodynamic quantities. It is shown that if the heat flux vanishes initially, these errors are smaller than one might have expected from the ordinary scaling of the hypersonic closure. Also it is found that the normal solution of both expansions is a Gaussian distribution at the lowest order

  18. clusterMaker: a multi-algorithm clustering plugin for Cytoscape

    Directory of Open Access Journals (Sweden)

    Morris John H

    2011-11-01

    Full Text Available Abstract Background In the post-genomic era, the rapid increase in high-throughput data calls for computational tools capable of integrating data of diverse types and facilitating recognition of biologically meaningful patterns within them. For example, protein-protein interaction data sets have been clustered to identify stable complexes, but scientists lack easily accessible tools to facilitate combined analyses of multiple data sets from different types of experiments. Here we present clusterMaker, a Cytoscape plugin that implements several clustering algorithms and provides network, dendrogram, and heat map views of the results. The Cytoscape network is linked to all of the other views, so that a selection in one is immediately reflected in the others. clusterMaker is the first Cytoscape plugin to implement such a wide variety of clustering algorithms and visualizations, including the only implementations of hierarchical clustering, dendrogram plus heat map visualization (tree view, k-means, k-medoid, SCPS, AutoSOME, and native (Java MCL. Results Results are presented in the form of three scenarios of use: analysis of protein expression data using a recently published mouse interactome and a mouse microarray data set of nearly one hundred diverse cell/tissue types; the identification of protein complexes in the yeast Saccharomyces cerevisiae; and the cluster analysis of the vicinal oxygen chelate (VOC enzyme superfamily. For scenario one, we explore functionally enriched mouse interactomes specific to particular cellular phenotypes and apply fuzzy clustering. For scenario two, we explore the prefoldin complex in detail using both physical and genetic interaction clusters. For scenario three, we explore the possible annotation of a protein as a methylmalonyl-CoA epimerase within the VOC superfamily. Cytoscape session files for all three scenarios are provided in the Additional Files section. Conclusions The Cytoscape plugin cluster

  19. 14 CFR 23.969 - Fuel tank expansion space.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  20. Relevant Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  1. Research progress on expansive soil cracks under changing environment.

    Science.gov (United States)

    Shi, Bei-xiao; Zheng, Cheng-feng; Wu, Jin-kun

    2014-01-01

    Engineering problems shunned previously rise to the surface gradually with the activities of reforming the natural world in depth, the problem of expansive soil crack under the changing environment becoming a control factor of expansive soil slope stability. The problem of expansive soil crack has gradually become a research hotspot, elaborates the occurrence and development of cracks from the basic properties of expansive soil, and points out the role of controlling the crack of expansive soil strength. We summarize the existing research methods and results of expansive soil crack characteristics. Improving crack measurement and calculation method and researching the crack depth measurement, statistical analysis method, crack depth and surface feature relationship will be the future direction.

  2. Assessing Many-Body Effects of Water Self-Ions. I: OH-(H2O) n Clusters.

    Science.gov (United States)

    Egan, Colin K; Paesani, Francesco

    2018-04-10

    The importance of many-body effects in the hydration of the hydroxide ion (OH - ) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the CCSD(T) level of theory, extrapolated to the complete basis set limit, for the low-lying isomers of OH - (H 2 O) n clusters, with n = 1-5. This is accomplished by partitioning individual fragments extracted from the whole clusters into "groups" that are classified by both the number of OH - and water molecules and the hydrogen bonding connectivity within each fragment. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method, this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling OH - hydration. Furthermore, the rapid convergence of the many-body expansion of the interaction energy also suggests a rigorous path for the development of analytical potential energy functions capable of describing individual OH - -water many-body terms, with chemical accuracy. Finally, a comparison between the reference CCSD(T) many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that range-separated, dispersion-corrected, hybrid functionals exhibit the highest accuracy, while GGA functionals, with or without dispersion corrections, are inadequate to describe OH - -water interactions.

  3. Principles of Thermal Expansion in Feldspars

    Science.gov (United States)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and

  4. Horticultural cluster

    OpenAIRE

    SHERSTIUK S.V.; POSYLAYEVA K.I.

    2013-01-01

    In the article there are the theoretical and methodological approaches to the nature and existence of the cluster. The cluster differences from other kinds of cooperative and integration associations. Was develop by scientific-practical recommendations for forming a competitive horticultur cluster.

  5. GALAXY INFALL BY INTERACTING WITH ITS ENVIRONMENT: A COMPREHENSIVE STUDY OF 340 GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Liyi [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Wen, Zhonglue [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Gandhi, Poshak [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Inada, Naohisa [Department of Physics, Nara National College of Technology, Yamatokohriyama, Nara 639-1080 (Japan); Kawaharada, Madoka [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Kodama, Tadayuki [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Konami, Saori [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Nakazawa, Kazuhiro; Makishima, Kazuo [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Xu, Haiguang [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240 (China)

    2016-07-20

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra / XMM-Newton . For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 10{sup 4445} erg s{sup 1} per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.

  6. Zirconium titanate: stability and thermal expansion; Titanato de circonio: estabilidad termodinamica y expansion termica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Lopez, E.; Moreno, R.; Baudin, C.

    2011-07-01

    Zirconium titanate is a well known compound in the field of electro ceramics, although it has also been used in catalyst and sensors applications. The crystallographic thermal expansion anisotropy of this compound makes it a potential candidate as constituent of structural components. In general, to assure the structural integrity and microstructural homogeneity of a ceramic piece, relatively low cooling rates from the fabrication temperature are required. This requirement is essential for zirconium titanate because thermal expansion as well as phase distribution is affected by small variations in the composition and cooling rate. This work reviews the available data on the phase equilibrium relationships in the systems ZrO{sub 2}-TiO{sub 2} and ZrO{sub 2}-TiO{sub 2}-Y{sub 2}O{sub 3}. The main discrepancies as well as the possible origins of them are discussed. Additionally, the crystallographic thermal expansion data in the current literature are reviewed. (Author) 56 refs.

  7. Semiclassical expansions on and near caustics

    International Nuclear Information System (INIS)

    Meetz, K.

    1984-09-01

    We show that the standard WKB expansion can be generalized so that it reproduces the behavior of the wave function on and near a caustic in two-dimensional space time. The expansion is related to the unfolding polynomials of the elementary catastrophes occurring in two dimensions: the fold and the cusp catastrophe. The method determines control parameters and transport coefficients in a self-consistent way from differential equations and does not refer to the asymptotic expansion of Feynman path integrals. The lowest order equations are solved explicitly in terms of the multivalued classical action. The result is a generalized semiclassical approximation on and beyond a caustic. (orig.)

  8. Interbasis expansions for isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico)

    2012-03-12

    The exact solutions of the isotropic harmonic oscillator are reviewed in Cartesian, cylindrical polar and spherical coordinates. The problem of interbasis expansions of the eigenfunctions is solved completely. The explicit expansion coefficients of the basis for given coordinates in terms of other two coordinates are presented for lower excited states. Such a property is occurred only for those degenerated states for given principal quantum number n. -- Highlights: ► Exact solutions of harmonic oscillator are reviewed in three coordinates. ► Interbasis expansions of the eigenfunctions is solved completely. ► This is occurred only for those degenerated states for given quantum number n.

  9. Cosmic growth history and expansion history

    International Nuclear Information System (INIS)

    Linder, Eric V.

    2005-01-01

    The cosmic expansion history tests the dynamics of the global evolution of the universe and its energy density contents, while the cosmic growth history tests the evolution of the inhomogeneous part of the energy density. Precision comparison of the two histories can distinguish the nature of the physics responsible for the accelerating cosmic expansion: an additional smooth component--dark energy--or a modification of the gravitational field equations. With the aid of a new fitting formula for linear perturbation growth accurate to 0.05%-0.2%, we separate out the growth dependence on the expansion history and introduce a new growth index parameter γ that quantifies the gravitational modification

  10. TreeCluster: Massively scalable transmission clustering using phylogenetic trees

    OpenAIRE

    Moshiri, Alexander

    2018-01-01

    Background: The ability to infer transmission clusters from molecular data is critical to designing and evaluating viral control strategies. Viral sequencing datasets are growing rapidly, but standard methods of transmission cluster inference do not scale well beyond thousands of sequences. Results: I present TreeCluster, a cross-platform tool that performs transmission cluster inference on a given phylogenetic tree orders of magnitude faster than existing inference methods and supports multi...

  11. Treatment of divergent expansions in scattering theory

    International Nuclear Information System (INIS)

    Gersten, A.; Malin, S.

    1978-01-01

    One of the biggest obstacles in applying quantum field theory to realistic scattering problems are the divergencies of pertubation expansions for large coupling constants and the divergencies of partial wave expansions for massless particles exchanges. There exist, however, methods of summation of the divergent expansions which can lead to significant application in physics. In this paper we treat the problem of summing such expansions using three methods: (i) a generalization of the Pade approximation to the multivariable case. The suggested definition is unique and preserves unitarity. (ii) The summation of divergent partial waves for arbitrary spins. (iii) A successful application of a series inversion to the 3 P 1 nucleon-nucleon phase shift up to 200 MeV. (orig./WL) [de

  12. Voting-based consensus clustering for combining multiple clusterings of chemical structures

    Directory of Open Access Journals (Sweden)

    Saeed Faisal

    2012-12-01

    Full Text Available Abstract Background Although many consensus clustering methods have been successfully used for combining multiple classifiers in many areas such as machine learning, applied statistics, pattern recognition and bioinformatics, few consensus clustering methods have been applied for combining multiple clusterings of chemical structures. It is known that any individual clustering method will not always give the best results for all types of applications. So, in this paper, three voting and graph-based consensus clusterings were used for combining multiple clusterings of chemical structures to enhance the ability of separating biologically active molecules from inactive ones in each cluster. Results The cumulative voting-based aggregation algorithm (CVAA, cluster-based similarity partitioning algorithm (CSPA and hyper-graph partitioning algorithm (HGPA were examined. The F-measure and Quality Partition Index method (QPI were used to evaluate the clusterings and the results were compared to the Ward’s clustering method. The MDL Drug Data Report (MDDR dataset was used for experiments and was represented by two 2D fingerprints, ALOGP and ECFP_4. The performance of voting-based consensus clustering method outperformed the Ward’s method using F-measure and QPI method for both ALOGP and ECFP_4 fingerprints, while the graph-based consensus clustering methods outperformed the Ward’s method only for ALOGP using QPI. The Jaccard and Euclidean distance measures were the methods of choice to generate the ensembles, which give the highest values for both criteria. Conclusions The results of the experiments show that consensus clustering methods can improve the effectiveness of chemical structures clusterings. The cumulative voting-based aggregation algorithm (CVAA was the method of choice among consensus clustering methods.

  13. The loop expansion as a divergent-power-series expansion

    International Nuclear Information System (INIS)

    Murai, N.

    1981-01-01

    The loop expansion should be divergent, possibly an asymptotic one, in the Euclidean path integral formulation. This consideration is important in applications of the symmetric and mass-independent renormalization. The [1,1] Pade approximant is calculated in a PHI 4 model. Its classical vacua may be not truely stable for nonzero coupling constant. (author)

  14. The heavy quark expansion of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Falk, A.F. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy

    1997-06-01

    These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs.

  15. The heavy quark expansion of QCD

    International Nuclear Information System (INIS)

    Falk, A.F.

    1997-01-01

    These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs

  16. Thermal expansion of doped lanthanum gallates

    Indian Academy of Sciences (India)

    Administrator

    Since the components are in intimate mechanical contact, any stress generated due to their thermal expansion mis- match during thermal cycling could lead to catastrophic failure of the cell. The functional materials must have similar thermal expansions to avoid mechanical stresses. Hence it is useful to study the thermal ...

  17. Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.

    Science.gov (United States)

    Freed, Karl F

    2009-02-14

    A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.

  18. OBSERVED SCALING RELATIONS FOR STRONG LENSING CLUSTERS: CONSEQUENCES FOR COSMOLOGY AND CLUSTER ASSEMBLY

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Moustakas, Leonidas A.; Natarajan, Priyamvada

    2010-01-01

    Scaling relations of observed galaxy cluster properties are useful tools for constraining cosmological parameters as well as cluster formation histories. One of the key cosmological parameters, σ 8 , is constrained using observed clusters of galaxies, although current estimates of σ 8 from the scaling relations of dynamically relaxed galaxy clusters are limited by the large scatter in the observed cluster mass-temperature (M-T) relation. With a sample of eight strong lensing clusters at 0.3 8 , but combining the cluster concentration-mass relation with the M-T relation enables the inclusion of unrelaxed clusters as well. Thus, the resultant gains in the accuracy of σ 8 measurements from clusters are twofold: the errors on σ 8 are reduced and the cluster sample size is increased. Therefore, the statistics on σ 8 determination from clusters are greatly improved by the inclusion of unrelaxed clusters. Exploring cluster scaling relations further, we find that the correlation between brightest cluster galaxy (BCG) luminosity and cluster mass offers insight into the assembly histories of clusters. We find preliminary evidence for a steeper BCG luminosity-cluster mass relation for strong lensing clusters than the general cluster population, hinting that strong lensing clusters may have had more active merging histories.

  19. Thermal and hygroscopic expansion characteristics of bamboo

    OpenAIRE

    Huang, Puxi; Chang, Wen-shao; Ansell, Martin P.; Bowen, Chris R.; Chew, John Y. M.; Adamak, Vana i

    2017-01-01

    The expansion and contraction of bamboo caused by temperature and moisture variations must be evaluated\\ud if bamboo is to be utilised as a building material. However, detailed expansion data, especially data in the ascent and\\ud descent processes of temperature and moisture are unexplored. The aim of this study is to investigate the expansion\\ud characteristics of Phyllostachys edulis (Moso bamboo) in ascent and descent processes of temperature and moisture.\\ud The measurement of linear ther...

  20. Semiclassical expansions for confined N fermion systems

    International Nuclear Information System (INIS)

    Krivine, H.; Martorell, J.; Casas, M.

    1989-01-01

    A new derivation of the Wigner Kirkwood expansion for N-fermion systems is presented, showing explicitly the connection to the WKB approximation for a single level. This allows to study separately the two ansatz required to obtain the semiclassical expansions: the asymptotic expansions in powers of ℎ and the smoothing of quantal effects. We discuss the one dimensional and three dimensional, with spherical symmetry, cases. Applications for standard potentials used in nuclear physics are described in detail

  1. Breaking the Link between Environmental Degradation and Oil Palm Expansion: A Method for Enabling Sustainable Oil Palm Expansion

    Science.gov (United States)

    Smit, Hans Harmen; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita

    2013-01-01

    Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance. PMID:24039700

  2. CLUSTERING AND THE NATURE OF RELATIONSHIP AMONGST FIRMS IN THE LAGOS REGION, NIGERIA

    Directory of Open Access Journals (Sweden)

    FAGBOHUNKA Adejompo

    2015-06-01

    Full Text Available Regional cluster, a geographically bounded concentration of interdependent firms, is the best environment to fostering a strong relationship amongst firms which can lead to amazing technological and industrial expansion. This paper underscores clustering and the resultant nature of relationship amongst firms, using the Lagos region as a case study. One hundred and three questionnaire were administered in twelve industrial estates; one questionnaire in each of the firm. This connotes that all the firms in the industrial estates were successfully covered in the questionnaire administration, which was administered. A descriptive statistical analytical technique was adopted. The paper has reveals the types of working relationship amongst firms in the Lagos region which includes; raw materials purchase, subcontract, collaboration in research and development, sales promotion, transportation, power supply, water supply, security, waste treatment, telecommunication, ports and shipping as well as labour supply. The paper found out that raw materials purchase/supply was more striking amongst the working relationship types. Also, the paper has revealed services sharing amongst the firms and transport as the most dominant. The most important location advantage was the market facilities. The analysis of variance carried out in relation to variation in clustering amongst the firms at 0.05% level was significant. The paper concluded that industrial cluster if encouraged, will lead to increase working relationship, which in turn have the capability of boosting, promoting and encouraging economies of clustering. Cluster concepts spatially emphasize inter-firm relations that facilitate innovative activity, which is recognized as a driving force of sustained economic growth. It is therefore recommended that these clustering of firms should be made viable, encouraged and strengthened through government investment in the industrial sector, making the location

  3. Cluster Headache

    OpenAIRE

    Pearce, Iris

    1985-01-01

    Cluster headache is the most severe primary headache with recurrent pain attacks described as worse than giving birth. The aim of this paper was to make an overview of current knowledge on cluster headache with a focus on pathophysiology and treatment. This paper presents hypotheses of cluster headache pathophysiology, current treatment options and possible future therapy approaches. For years, the hypothalamus was regarded as the key structure in cluster headache, but is now thought to be pa...

  4. Mechanism of actuation in conducting polymers: Osmotic expansion

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben; West, Keld

    2001-01-01

    Conducting polymers expand or contract when their redox state is changed. This expansion/contraction effect can be separated in an intrinsic part because of changes of the polymer backbone on reduction/oxidation and a part depending on the surrounding electrolyte phase, because of osmotic expansion...... is compared with measurements on PPy(DBS) films. The experiments show that the expansion decreases as the electrolyte concentration is increased. This means that a considerable part of the total expansion is due to the osmotic effect. The osmotic effect should be taken into account when interpreting...

  5. Hydrodynamical expansion with frame independence symmetry in high energy multiparticle production

    International Nuclear Information System (INIS)

    Chiu, C.B.; Sudarshan, E.C.G.; Wang, K.

    1974-01-01

    The space--time development of the hadronic system formed immediately after the high energy hadron collision is described with the following picture. Initially the system is highly compressed along the longitudinal direction. The sudden relaxation of this compression leads to a violent acceleration along this direction and perhaps a weak acceleration along the transverse direction. When these accelerations cease, it is proposed that the system acquires a frame independence symmetry with its further expansion governed by the hydrodynamic equation of motion. Within the scheme, this symmetry provides a natural mechanism which eventually leads to a flat inclusive longitudinal rapidity distribution and it also admits a sharp cutoff in the inclusive transverse momentum distribution. The latter is to be contrasted with the prediction of Landau's model, where the average transverse momentum increases with c.m. energy W, [p/sub T/] -W/sup 1 / 6 ./. Finally effects of clustering can also be easily incorporated within the framework. (U.S.)

  6. Mapping Brazilian Cropland Expansion, 2000-2013

    Science.gov (United States)

    Zalles, V.; Hansen, M.; Potapov, P.

    2016-12-01

    Brazil is one of the world's leading producers and exporters of agricultural goods. Despite undergoing significant increases in its cropland area in the last decades, it remains one of the countries with the most potential for further agricultural expansion. Most notably, the expansion in production areas of commodity crops such as soybean, corn, and sugarcane has become the leading cause of land cover conversion in Brazil. Natural land covers, such as the Amazon and Cerrado forests, have been negatively affected by this agricultural expansion, causing carbon emissions, biodiversity loss, altered water cycles, and many other disturbances to ecosystem services. Monitoring of change in cropland area extent can provide relevant information to decision makers seeking to understand and manage land cover change drivers and their impacts. In this study, the freely-available Landsat archive was leveraged to produce a large-scale, methodologically consistent map of cropland cover at 30 m. resolution for the entire Brazilian territory in the year 2000. Additionally, we mapped cropland expansion from 2000 to 2013, and used statistical sampling techniques to accurately estimate cropland area per Brazilian state. Using the Global Forest Change product produced by Hansen et al. (2013), we can disaggregate forest cover loss due to cropland expansion by year, revealing spatiotemporal trends that could advance our understanding of the drivers of forest loss.

  7. Thermal expansion of fibre-reinforced composites

    International Nuclear Information System (INIS)

    Schneider, B.

    1991-07-01

    The integral thermal expansion and the coefficient of thermal expansion (CTE) of carbon and Kevlar fibre-reinforced composites were measured with high accuracy from 5 K to room temperature. For this, a laser dilatometer and a sophisticated measuring procedure were used. CTE dependence on the orientation angle ω of angle-ply laminates was determined for samples with 5 different fibre alignments (UD 0deg, +/-30deg, +/-45deg, +/-60deg and UD 90deg). A high variability of the CTE with the orientation angle was shown. At angles of approximately +/-30deg even negative CTEs were found. With suitable reinforcing fibres being selected, their absolute values rose up to 30-100% of the positive CTEs of metals. Hence, composites of this type would be suitable as compensating materials in metal constructions where little thermal expansion is desired. To check the lamination theory, theoretical computations of the CTE- ω -dependence were compared with the measured values. An excellent agreement was found. Using the lamination theory, predictions about the expansion behaviour of angle-ply laminates can be made now, if the thermal and mechanical properties of the unidirectional (UD) laminate are known. Furthermore, it is possible to carry out simulation computations aimed at investigating the influence of a single parameter of the UD-laminate (e.g. shear modulus) on the expansion of the angle-ply laminate. (orig.) [de

  8. On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids

    International Nuclear Information System (INIS)

    Sai Venkata Ramana, A.

    2014-01-01

    The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids

  9. Monitoring evolving urban cluster systems using DMSP/OLS nighttime light data: a case study of the Yangtze River Delta region, China

    Science.gov (United States)

    Wang, Zhao; Yang, Shan; Wang, Shuguang; Shen, Yan

    2017-10-01

    The assessment of the dynamic urban structure has been affected by lack of timely and accurate spatial information for a long period, which has hindered the measurements of structural continuity at the macroscale. Defense meteorological satellite program's operational linescan system (DMSP/OLS) nighttime light (NTL) data provide an ideal source for urban information detection with a long-time span, short-time interval, and wide coverage. In this study, we extracted the physical boundaries of urban clusters from corrected NTL images and quantitatively analyzed the structure of the urban cluster system based on rank-size distribution, spatial metrics, and Mann-Kendall trend test. Two levels of urban cluster systems in the Yangtze River Delta region (YRDR) were examined. We found that (1) in the entire YRDR, the urban cluster system showed a periodic process, with a significant trend of even distribution before 2007 but an unequal growth pattern after 2007, and (2) at the metropolitan level, vast disparities exist in four metropolitan areas for the fluctuations of Pareto's exponent, the speed of cluster expansion, and the dominance of core cluster. The results suggest that the extracted urban cluster information from NTL data effectively reflect the evolving nature of regional urbanization, which in turn can aid in the planning of cities and help achieve more sustainable regional development.

  10. Feasibility Study of Parallel Finite Element Analysis on Cluster-of-Clusters

    Science.gov (United States)

    Muraoka, Masae; Okuda, Hiroshi

    With the rapid growth of WAN infrastructure and development of Grid middleware, it's become a realistic and attractive methodology to connect cluster machines on wide-area network for the execution of computation-demanding applications. Many existing parallel finite element (FE) applications have been, however, designed and developed with a single computing resource in mind, since such applications require frequent synchronization and communication among processes. There have been few FE applications that can exploit the distributed environment so far. In this study, we explore the feasibility of FE applications on the cluster-of-clusters. First, we classify FE applications into two types, tightly coupled applications (TCA) and loosely coupled applications (LCA) based on their communication pattern. A prototype of each application is implemented on the cluster-of-clusters. We perform numerical experiments executing TCA and LCA on both the cluster-of-clusters and a single cluster. Thorough these experiments, by comparing the performances and communication cost in each case, we evaluate the feasibility of FEA on the cluster-of-clusters.

  11. Interplay between experiments and calculations for organometallic clusters and caged clusters

    International Nuclear Information System (INIS)

    Nakajima, Atsushi

    2015-01-01

    Clusters consisting of 10-1000 atoms exhibit size-dependent electronic and geometric properties. In particular, composite clusters consisting of several elements and/or components provide a promising way for a bottom-up approach for designing functional advanced materials, because the functionality of the composite clusters can be optimized not only by the cluster size but also by their compositions. In the formation of composite clusters, their geometric symmetry and dimensionality are emphasized to control the physical and chemical properties, because selective and anisotropic enhancements for optical, chemical, and magnetic properties can be expected. Organometallic clusters and caged clusters are demonstrated as a representative example of designing the functionality of the composite clusters. Organometallic vanadium-benzene forms a one dimensional sandwich structure showing ferromagnetic behaviors and anomalously large HOMO-LUMO gap differences of two spin orbitals, which can be regarded as spin-filter components for cluster-based spintronic devices. Caged clusters of aluminum (Al) are well stabilized both geometrically and electronically at Al 12 X, behaving as a “superatom”

  12. Categorias Cluster

    OpenAIRE

    Queiroz, Dayane Andrade

    2015-01-01

    Neste trabalho apresentamos as categorias cluster, que foram introduzidas por Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten e Gordana Todorov, com o objetivo de categoriíicar as algebras cluster criadas em 2002 por Sergey Fomin e Andrei Zelevinsky. Os autores acima, em [4], mostraram que existe uma estreita relação entre algebras cluster e categorias cluster para quivers cujo grafo subjacente é um diagrama de Dynkin. Para isto desenvolveram uma teoria tilting na estrutura triang...

  13. Estimates of expansion time scales

    International Nuclear Information System (INIS)

    Jones, E.M.

    1979-01-01

    Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure

  14. Strategic Complexity and Global Expansion

    DEFF Research Database (Denmark)

    Oladottir, Asta Dis; Hobdari, Bersant; Papanastassiou, Marina

    2012-01-01

    The purpose of this paper is to analyse the determinants of global expansion strategies of newcomer Multinational Corporations (MNCs) by focusing on Iceland, Israel and Ireland. We argue that newcomer MNCs from small open economies pursue complex global expansion strategies (CGES). We distinguish....... The empirical evidence suggests that newcomer MNCs move away from simplistic dualities in the formulation of their strategic choices towards more complex options as a means of maintaining and enhancing their global competitiveness....

  15. Range expansion of heterogeneous populations.

    Science.gov (United States)

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-11

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  16. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  17. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  18. Regulation of gas infrastructure expansion

    International Nuclear Information System (INIS)

    De Joode, J.

    2012-01-01

    The topic of this dissertation is the regulation of gas infrastructure expansion in the European Union (EU). While the gas market has been liberalised, the gas infrastructure has largely remained in the regulated domain. However, not necessarily all gas infrastructure facilities - such as gas storage facilities, LNG import terminals and certain gas transmission pipelines - need to be regulated, as there may be scope for competition. In practice, the choice of regulation of gas infrastructure expansion varies among different types of gas infrastructure facilities and across EU Member States. Based on a review of economic literature and on a series of in-depth case studies, this study explains these differences in choices of regulation from differences in policy objectives, differences in local circumstances and differences in the intrinsic characteristics of the infrastructure projects. An important conclusion is that there is potential for a larger role for competition in gas infrastructure expansion.

  19. BRIGHTEST CLUSTER GALAXIES AND CORE GAS DENSITY IN REXCESS CLUSTERS

    International Nuclear Information System (INIS)

    Haarsma, Deborah B.; Leisman, Luke; Donahue, Megan; Bruch, Seth; Voit, G. Mark; Boehringer, Hans; Pratt, Gabriel W.; Pierini, Daniele; Croston, Judith H.; Arnaud, Monique

    2010-01-01

    We investigate the relationship between brightest cluster galaxies (BCGs) and their host clusters using a sample of nearby galaxy clusters from the Representative XMM-Newton Cluster Structure Survey. The sample was imaged with the Southern Observatory for Astrophysical Research in R band to investigate the mass of the old stellar population. Using a metric radius of 12 h -1 kpc, we found that the BCG luminosity depends weakly on overall cluster mass as L BCG ∝ M 0.18±0.07 cl , consistent with previous work. We found that 90% of the BCGs are located within 0.035 r 500 of the peak of the X-ray emission, including all of the cool core (CC) clusters. We also found an unexpected correlation between the BCG metric luminosity and the core gas density for non-cool-core (non-CC) clusters, following a power law of n e ∝ L 2.7±0.4 BCG (where n e is measured at 0.008 r 500 ). The correlation is not easily explained by star formation (which is weak in non-CC clusters) or overall cluster mass (which is not correlated with core gas density). The trend persists even when the BCG is not located near the peak of the X-ray emission, so proximity is not necessary. We suggest that, for non-CC clusters, this correlation implies that the same process that sets the central entropy of the cluster gas also determines the central stellar density of the BCG, and that this underlying physical process is likely to be mergers.

  20. RTEL1 inhibits trinucleotide repeat expansions and fragility.

    Science.gov (United States)

    Frizzell, Aisling; Nguyen, Jennifer H G; Petalcorin, Mark I R; Turner, Katherine D; Boulton, Simon J; Freudenreich, Catherine H; Lahue, Robert S

    2014-03-13

    Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. The Cosmological Dependence of Galaxy Cluster Morphologies

    Science.gov (United States)

    Crone, Mary Margaret

    1995-01-01

    Measuring the density of the universe has been a fundamental problem in cosmology ever since the "Big Bang" model was developed over sixty years ago. In this simple and successful model, the age and eventual fate of the universe are determined by its density, its rate of expansion, and the value of a universal "cosmological constant". Analytic models suggest that many properties of galaxy clusters are sensitive to cosmological parameters. In this thesis, I use N-body simulations to examine cluster density profiles, abundances, and degree of subclustering to test the feasibility of using them as cosmological tests. The dependence on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k)~ k n. Einstein-deSitter ( Omegao=1), open ( Omegao=0.2 and 0.1) and flat, low density (Omegao=0.2, lambdao=0.8) models are studied, with initial spectral indices n=-2, -1 and 0. Of particular interest are the results for cluster profiles and substructure. The average density profiles are well fit by a power law p(r)~ r ^{-alpha} for radii where the local density contrast is between 100 and 3000. There is a clear trend toward steeper slopes with both increasing n and decreasing Omegao, with profile slopes in the open models consistently higher than Omega=1 values for the range of n examined. The amount of substructure in each model is quantified and explained in terms of cluster merger histories and the behavior of substructure statistics. The statistic which best distinguishes models is a very simple measure of deviations from symmetry in the projected mass distribution --the "Center-of-Mass Shift" as a function of overdensity. Some statistics which are quite sensitive to substructure perform relatively poorly as cosmological indicators. Density profiles and the Center-of-Mass test are both well-suited for comparison with weak lensing data and galaxy distributions. Such data are currently being collected and should

  2. Scientific Cluster Deployment and Recovery - Using puppet to simplify cluster management

    Science.gov (United States)

    Hendrix, Val; Benjamin, Doug; Yao, Yushu

    2012-12-01

    Deployment, maintenance and recovery of a scientific cluster, which has complex, specialized services, can be a time consuming task requiring the assistance of Linux system administrators, network engineers as well as domain experts. Universities and small institutions that have a part-time FTE with limited time for and knowledge of the administration of such clusters can be strained by such maintenance tasks. This current work is the result of an effort to maintain a data analysis cluster (DAC) with minimal effort by a local system administrator. The realized benefit is the scientist, who is the local system administrator, is able to focus on the data analysis instead of the intricacies of managing a cluster. Our work provides a cluster deployment and recovery process (CDRP) based on the puppet configuration engine allowing a part-time FTE to easily deploy and recover entire clusters with minimal effort. Puppet is a configuration management system (CMS) used widely in computing centers for the automatic management of resources. Domain experts use Puppet's declarative language to define reusable modules for service configuration and deployment. Our CDRP has three actors: domain experts, a cluster designer and a cluster manager. The domain experts first write the puppet modules for the cluster services. A cluster designer would then define a cluster. This includes the creation of cluster roles, mapping the services to those roles and determining the relationships between the services. Finally, a cluster manager would acquire the resources (machines, networking), enter the cluster input parameters (hostnames, IP addresses) and automatically generate deployment scripts used by puppet to configure it to act as a designated role. In the event of a machine failure, the originally generated deployment scripts along with puppet can be used to easily reconfigure a new machine. The cluster definition produced in our CDRP is an integral part of automating cluster deployment

  3. Longitudinal expansion of field line dipolarization

    Science.gov (United States)

    Saka, O.; Hayashi, K.

    2017-11-01

    We examine the substorm expansions that started at 1155 UT 10 August 1994 in the midnight sector focusing on the longitudinal (eastward) expansion of field line dipolarization in the auroral zone. Eastward expansion of the dipolarization region was observed in all of the H, D, and Z components. The dipolarization that started at 1155 UT (0027 MLT) from 260° of geomagnetic longitude (CMO) expanded to 351°(PBQ) in about 48 min. The expansion velocity was 0.03-0.04°/s, or 1.9 km/s at 62°N of geomagnetic latitude. The dipolarization region expanding to the east was accompanied by a bipolar event at the leading edge of the expansion in latitudes equatorward of the westward electrojet (WEJ). In the midnight sector at the onset meridian, the Magnetospheric Plasma Analyzer (MAP) on board geosynchronous satellite L9 measured electrons and ions between 10 eV and 40 keV. We conclude from the satellite observations that this dipolarization was characterized by the evolution of temperature anisotropies, an increase of the electron and ion temperatures, and a rapid change in the symmetry axis of the temperature tensor. The field line dipolarization and its longitudinal expansion were interpreted in terms of the slow MHD mode triggered by the current disruption. We propose a new magnetosphere-ionosphere coupling (MI-coupling) mechanism based on the scenario that transmitted westward electric fields from the magnetosphere in association with expanding dipolarization produced electrostatic potential (negative) in the ionosphere through differences in the mobility of collisional ions and collisionless electrons. The field-aligned currents that emerged from the negative potential region are arranged in a concentric pattern around the negative potential region, upward toward the center and downward on the peripheral.

  4. Wilson expansion in the minimal subtraction scheme

    International Nuclear Information System (INIS)

    Smirnov, V.A.

    1989-01-01

    The small distance expansion of the product of composite fields is constructed for an arbitrary renormalization procedure of the type of minimal subtraction scheme. Coefficient functions of the expansion are expressed explicitly through the Green functions of composite fields. The expansion has the explicity finite form: the ultraviolet (UV) divergences of the coefficient functions and composite fields are removed by the initial renormalization procedure while the infrared (IR) divergences in massless diagrams with nonvanishing contribution into the coefficient functions are removed by the R-operation which is the IR part of the R-operation. The latter is the generalization of the dimensional renormalization in the case when both UV and IR divergences are present. To derive the expansion, a ''pre-subtracting operator'' is introduced and formulas of the counter-term technique are exploited

  5. Thermal Expansion Anomaly Regulated by Entropy

    Science.gov (United States)

    Liu, Zi-Kui; Wang, Yi; Shang, Shunli

    2014-11-01

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.

  6. Territorial expansion and primary state formation.

    Science.gov (United States)

    Spencer, Charles S

    2010-04-20

    A major research problem in anthropology is the origin of the state and its bureaucratic form of governance. Of particular importance for evaluating theories of state origins are cases of primary state formation, whereby a first-generation state evolves without contact with any preexisting states. A general model of this process, the territorial-expansion model, is presented and assessed with archaeological data from six areas where primary states emerged in antiquity: Mesoamerica, Peru, Egypt, Mesopotamia, the Indus Valley, and China. In each case, the evidence shows a close correspondence in time between the first appearance of state institutions and the earliest expansion of the state's political-economic control to regions lying more than a day's round-trip from the capital. Although additional research will add detail and clarity to the empirical record, the results to date are consistent with the territorial-expansion model, which argues that the success of such long-distance expansion not only demanded the bureaucratization of central authority but also helped provide the resources necessary to underwrite this administrative transformation.

  7. Cluster-cluster correlations in the two-dimensional stationary Ising-model

    International Nuclear Information System (INIS)

    Klassmann, A.

    1997-01-01

    In numerical integration of the Cahn-Hillard equation, which describes Oswald rising in a two-phase matrix, N. Masbaum showed that spatial correlations between clusters scale with respect to the mean cluster size (itself a function of time). T. B. Liverpool showed by Monte Carlo simulations for the Ising model that the analogous correlations have a similar form. Both demonstrated that immediately around each cluster there is some depletion area followed by something like a ring of clusters of the same size as the original one. More precisely, it has been shown that the distribution of clusters around a given cluster looks like a sinus-curve decaying exponentially with respect to the distance to a constant value

  8. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  9. Thermal expansion of quaternary nitride coatings

    Science.gov (United States)

    Tasnádi, Ferenc; Wang, Fei; Odén, Magnus; Abrikosov, Igor A.

    2018-04-01

    The thermal expansion coefficient of technologically relevant multicomponent cubic nitride alloys are predicted using the Debye model with ab initio elastic constants calculated at 0 K and an isotropic approximation for the Grüneisen parameter. Our method is benchmarked against measured thermal expansion of TiN and Ti(1-x)Al x N as well as against results of molecular dynamics simulations. We show that the thermal expansion coefficients of Ti(1-x-y)X y Al x N (X  =  Zr, Hf, Nb, V, Ta) solid solutions monotonously increase with the amount of alloying element X at all temperatures except for Zr and Hf, for which they instead decrease for y≳ 0.5 .

  10. Macroeconomic Dimensions in the Clusterization Processes: Lithuanian Biomass Cluster Case

    Directory of Open Access Journals (Sweden)

    Navickas Valentinas

    2017-03-01

    Full Text Available The Future production systems’ increasing significance will impose work, which maintains not a competitive, but a collaboration basis, with concentrated resources and expertise, which can help to reach the general purpose. One form of collaboration among medium-size business organizations is work in clusters. Clusterization as a phenomenon has been known from quite a long time, but it offers simple benefits to researches at micro and medium levels. The clusterization process evaluation in macroeconomic dimensions has been comparatively little investigated. Thereby, in this article, the clusterization processes is analysed by concentrating our attention on macroeconomic factor researches. The authors analyse clusterization’s influence on country’s macroeconomic growth; they apply a structure research methodology for clusterization’s macroeconomic influence evaluation and propose that clusterization processes benefit macroeconomic analysis. The theoretical model of clusterization processes was validated by referring to a biomass cluster case. Because biomass cluster case is a new phenomenon, currently there are no other scientific approaches to them. The authors’ accomplished researches show that clusterization allows the achievement of a large positive slip in macroeconomics, which proves to lead to a high value added to creation, a faster country economic growth, and social situation amelioration.

  11. Clustering Dycom

    KAUST Repository

    Minku, Leandro L.

    2017-10-06

    Background: Software Effort Estimation (SEE) can be formulated as an online learning problem, where new projects are completed over time and may become available for training. In this scenario, a Cross-Company (CC) SEE approach called Dycom can drastically reduce the number of Within-Company (WC) projects needed for training, saving the high cost of collecting such training projects. However, Dycom relies on splitting CC projects into different subsets in order to create its CC models. Such splitting can have a significant impact on Dycom\\'s predictive performance. Aims: This paper investigates whether clustering methods can be used to help finding good CC splits for Dycom. Method: Dycom is extended to use clustering methods for creating the CC subsets. Three different clustering methods are investigated, namely Hierarchical Clustering, K-Means, and Expectation-Maximisation. Clustering Dycom is compared against the original Dycom with CC subsets of different sizes, based on four SEE databases. A baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number of CC subsets to be pre-defined, and a poor choice can negatively affect predictive performance. EM enables Dycom to automatically set the number of CC subsets while still maintaining or improving predictive performance with respect to the baseline WC model. Clustering Dycom with Hierarchical Clustering did not offer significant advantage in terms of predictive performance. Conclusion: Clustering methods can be an effective way to automatically generate Dycom\\'s CC subsets.

  12. Thermal and Hygric Expansion of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    J. Toman

    2001-01-01

    Full Text Available The linear thermal expansion coefficient of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C, and the linear hygric expansion coefficient was determined in the moisture range from dry material to saturation water content. Comparative methods were applied for measurements of both coefficients. The experimental results show that both the effect of temperature on the values of linear thermal expansion coefficients and the effect of moisture on the values of linear hygric expansion coefficients are very significant and cannot be neglected in practical applications.

  13. Parabolic cyclinder functions : examples of error bounds for asymptotic expansions

    NARCIS (Netherlands)

    R. Vidunas; N.M. Temme (Nico)

    2002-01-01

    textabstractSeveral asymptotic expansions of parabolic cylinder functions are discussedand error bounds for remainders in the expansions are presented. Inparticular Poincaré-type expansions for large values of the argument$z$ and uniform expansions for large values of the parameter areconsidered.

  14. A unification of boson expansion theories. (III) Applications

    International Nuclear Information System (INIS)

    Dobaczewski, J.

    1981-10-01

    A general scheme of constructing boson expansions that was proposed in earlier work is applied to a number or examples. The Fukutome expansion is obtained by considering the spinor representation of the SO(2N+1) group. Its hermitian, Holstein-Primakofr-type version is also derived. The generalized Dyson expansions for even and odd fermion systems are given in terms of two spinor representations of the SO(2N) group. For fixed fermion number systems the relevant boson expansions are obtained by considering the fundamental representations of SU(N) while for fixed seniority those of Sp(N) are concerned. The collective boson expansions corresponding to the Ginocchio model, the interacting boson model of Arima and Iachello and the Elliot model are given for the symmetric representations of SO(8) and SU(1+1) and any representation of SU(3)

  15. LMC clusters: young

    International Nuclear Information System (INIS)

    Freeman, K.C.

    1980-01-01

    The young globular clusters of the LMC have ages of 10 7 -10 8 y. Their masses and structure are similar to those of the smaller galactic globular clusters. Their stellar mass functions (in the mass range 6 solar masses to 1.2 solar masses) vary greatly from cluster to cluster, although the clusters are similar in total mass, age, structure and chemical composition. It would be very interesting to know why these clusters are forming now in the LMC and not in the Galaxy. The author considers the 'young globular' or 'blue populous' clusters of the LMC. The ages of these objects are 10 7 to 10 8 y, and their masses are 10 4 to 10 5 solar masses, so they are populous enough to be really useful for studying the evolution of massive stars. The author concentrates on the structure and stellar content of these young clusters. (Auth.)

  16. Major cluster mergers and the location of the brightest cluster galaxy

    International Nuclear Information System (INIS)

    Martel, Hugo; Robichaud, Fidèle; Barai, Paramita

    2014-01-01

    Using a large N-body cosmological simulation combined with a subgrid treatment of galaxy formation, merging, and tidal destruction, we study the formation and evolution of the galaxy and cluster population in a comoving volume (100 Mpc) 3 in a ΛCDM universe. At z = 0, our computational volume contains 1788 clusters with mass M cl > 1.1 × 10 12 M ☉ , including 18 massive clusters with M cl > 10 14 M ☉ . It also contains 1, 088, 797 galaxies with mass M gal ≥ 2 × 10 9 M ☉ and luminosity L > 9.5 × 10 5 L ☉ . For each cluster, we identified the brightest cluster galaxy (BCG). We then computed two separate statistics: the fraction f BNC of clusters in which the BCG is not the closest galaxy to the center of the cluster in projection, and the ratio Δv/σ, where Δv is the difference in radial velocity between the BCG and the whole cluster and σ is the radial velocity dispersion of the cluster. We found that f BNC increases from 0.05 for low-mass clusters (M cl ∼ 10 12 M ☉ ) to 0.5 for high-mass clusters (M cl > 10 14 M ☉ ) with very little dependence on cluster redshift. Most of this result turns out to be a projection effect and when we consider three-dimensional distances instead of projected distances, f BNC increases only to 0.2 at high-cluster mass. The values of Δv/σ vary from 0 to 1.8, with median values in the range 0.03-0.15 when considering all clusters, and 0.12-0.31 when considering only massive clusters. These results are consistent with previous observational studies and indicate that the central galaxy paradigm, which states that the BCG should be at rest at the center of the cluster, is usually valid, but exceptions are too common to be ignored. We built merger trees for the 18 most massive clusters in the simulation. Analysis of these trees reveal that 16 of these clusters have experienced 1 or several major or semi-major mergers in the past. These mergers leave each cluster in a non-equilibrium state, but eventually the cluster

  17. Discrete expansions of continuum functions. General concepts

    International Nuclear Information System (INIS)

    Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

    1979-01-01

    Different discrete expansions of the continuum wave functions are considered: pole expansion (according to the Mittag-Lefler theorem), Weinberg states. The general property of these groups of states is their completeness in the finite region of space. They satisfy the Schroedinger type equations and are matched with free solutions of the Schroedinger equation at the boundary. Convergence of expansions for the S matrix, the Green functions and the continuous-spectrum wave functions is studied. A new group of states possessing the best convergence is introduced

  18. Edgeworth expansion for the pre-averaging estimator

    DEFF Research Database (Denmark)

    Podolskij, Mark; Veliyev, Bezirgen; Yoshida, Nakahiro

    In this paper, we study the Edgeworth expansion for a pre-averaging estimator of quadratic variation in the framework of continuous diffusion models observed with noise. More specifically, we obtain a second order expansion for the joint density of the estimators of quadratic variation and its...... asymptotic variance. Our approach is based on martingale embedding, Malliavin calculus and stable central limit theorems for continuous diffusions. Moreover, we derive the density expansion for the studentized statistic, which might be applied to construct asymptotic confidence regions....

  19. Oblique photon expansion of QED structure functions

    International Nuclear Information System (INIS)

    Chahine, C.

    1986-01-01

    In the oblique photon expansion, the collinear part of photon emission is summed up to all orders in perturbation theory. The number of oblique or non-collinear photons is the expansion order. Unlike in perturbation theory, every term of the expansion is both infrared finite and gauge invariant. The zero oblique photon contribution to the electromagnetic structure tensor in QED is computed in detail. The behaviors of the structure functions F1 and F2 are discussed in the soft and ultra-soft limits

  20. Changing cluster composition in cluster randomised controlled trials: design and analysis considerations

    Science.gov (United States)

    2014-01-01

    Background There are many methodological challenges in the conduct and analysis of cluster randomised controlled trials, but one that has received little attention is that of post-randomisation changes to cluster composition. To illustrate this, we focus on the issue of cluster merging, considering the impact on the design, analysis and interpretation of trial outcomes. Methods We explored the effects of merging clusters on study power using standard methods of power calculation. We assessed the potential impacts on study findings of both homogeneous cluster merges (involving clusters randomised to the same arm of a trial) and heterogeneous merges (involving clusters randomised to different arms of a trial) by simulation. To determine the impact on bias and precision of treatment effect estimates, we applied standard methods of analysis to different populations under analysis. Results Cluster merging produced a systematic reduction in study power. This effect depended on the number of merges and was most pronounced when variability in cluster size was at its greatest. Simulations demonstrate that the impact on analysis was minimal when cluster merges were homogeneous, with impact on study power being balanced by a change in observed intracluster correlation coefficient (ICC). We found a decrease in study power when cluster merges were heterogeneous, and the estimate of treatment effect was attenuated. Conclusions Examples of cluster merges found in previously published reports of cluster randomised trials were typically homogeneous rather than heterogeneous. Simulations demonstrated that trial findings in such cases would be unbiased. However, simulations also showed that any heterogeneous cluster merges would introduce bias that would be hard to quantify, as well as having negative impacts on the precision of estimates obtained. Further methodological development is warranted to better determine how to analyse such trials appropriately. Interim recommendations

  1. FIRST OBSERVATIONAL SIGNATURE OF ROTATIONAL DECELERATION IN A MASSIVE, INTERMEDIATE-AGE STAR CLUSTER IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaohan [School of Physics, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Li, Chengyuan; De Grijs, Richard [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Deng, Licai, E-mail: grijs@pku.edu.cn [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China)

    2016-07-20

    While the extended main-sequence turnoffs (eMSTOs) found in almost all 1–2 Gyr old star clusters in the Magellanic Clouds are often explained by postulating extended star formation histories (SFHs), the tight subgiant branches (SGBs) seen in some clusters challenge this popular scenario. Puzzlingly, the SGB of the eMSTO cluster NGC 419 is significantly broader at bluer than at redder colors. We carefully assess and confirm the reality of this observational trend. If we would assume that the widths of the features in color–magnitude space were entirely owing to a range in stellar ages, the SFHs of the eMSTO stars and the blue SGB region would be significantly more prolonged than that of the red part of the SGB. This cannot be explained by assuming an internal age spread. We show that rotational deceleration of a population of rapidly rotating stars, a currently hotly debated alternative scenario, naturally explains the observed trend along the SGB. Our analysis shows that a “converging” SGB could be produced if the cluster is mostly composed of rapidly rotating stars that slow down over time owing to the conservation of angular momentum during their evolutionary expansion from main-sequence turnoff stars to red giants.

  2. Cluster evolution

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  3. AUTO-EXPANSIVE FLOW

    Science.gov (United States)

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  4. Studies of Expansive Learning: Foundations, Findings and Future Challenges

    Directory of Open Access Journals (Sweden)

    Yrjö Engeström

    2013-07-01

    Full Text Available The paper examines studies based on the theory of expansive learning, formulated in 1987. In recent years the theory has been used in a wide variety of studies and interventions. The theory builds on foundational ideas put forward by Vygotsky, Leont’ev, Il’enkov, and Davydov, key figures in the Russian school of cultural-historical activity theory. Studies based on the theory are reviewed in six sections: expansive learning as transformation of the object, expansive learning as movement in the zone of proximal development, expansive learning as cycles of learning actions, expansive learning as boundary crossing and network building, expansive learning as distributed and discontinuous movement, and formative interventions.A separate section is devoted to critiques of expansive learning. It is concluded that the ultimate test of learning theories is how they help practitioners to generate learning that grasps pressing issues the humankind is facing. The theory of expansive learning currently expands its analyses both up and down, outward and inward. Moving up and outward, it tackles learning in fields or networks of interconnected activity systems with their partially shared and often contested objects. Moving down and inward, it tackles issues of subjectivity, experiencing, personal sense, emotion, embodiment, identity, and moral commitment.

  5. A Power Series Expansion and Its Applications

    Science.gov (United States)

    Chen, Hongwei

    2006-01-01

    Using the power series solution of a differential equation and the computation of a parametric integral, two elementary proofs are given for the power series expansion of (arcsin x)[squared], as well as some applications of this expansion.

  6. Nonparametric Collective Spectral Density Estimation and Clustering

    KAUST Repository

    Maadooliat, Mehdi; Sun, Ying; Chen, Tianbo

    2017-01-01

    In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at

  7. Nonparametric Collective Spectral Density Estimation and Clustering

    KAUST Repository

    Maadooliat, Mehdi

    2017-04-12

    In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at

  8. Expansion Under Climate Change: The Genetic Consequences.

    Science.gov (United States)

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  9. Improvement of Expansive Soils Using Chemical Stabilizers

    Science.gov (United States)

    Ikizler, S. B.; Senol, A.; Khosrowshahi, S. K.; Hatipoğlu, M.

    2014-12-01

    The aim of this study is to investigate the effect of two chemical stabilizers on the swelling potential of expansive soil. A high plasticity sodium bentonite was used as the expansive soil. The additive materials including fly ash (FA) and lime (L) were evaluated as potential stabilizers to decrease the swelling pressure of bentonite. Depending on the type of additive materials, they were blended with bentonite in different percentages to assess the optimum state and approch the maximum swell pressure reduction. According to the results of swell pressure test, both fly ash and lime reduce the swelling potential of bentonite but the maximum improvement occurs using bentonite-lime mixture while the swelling pressure reduction approaches to 49%. The results reveal a significant reduction of swelling potential of expansive soil using chemical stabilizers. Keywords: Expansive soil; swell pressure; chemical stabilization; fly ash; lime

  10. Cluster-cluster aggregation of Ising dipolar particles under thermal noise

    KAUST Repository

    Suzuki, Masaru

    2009-08-14

    The cluster-cluster aggregation processes of Ising dipolar particles under thermal noise are investigated in the dilute condition. As the temperature increases, changes in the typical structures of clusters are observed from chainlike (D1) to crystalline (D2) through fractal structures (D1.45), where D is the fractal dimension. By calculating the bending energy of the chainlike structure, it is found that the transition temperature is associated with the energy gap between the chainlike and crystalline configurations. The aggregation dynamics changes from being dominated by attraction to diffusion involving changes in the dynamic exponent z=0.2 to 0.5. In the region of temperature where the fractal clusters grow, different growth rates are observed between charged and neutral clusters. Using the Smoluchowski equation with a twofold kernel, this hetero-aggregation process is found to result from two types of dynamics: the diffusive motion of neutral clusters and the weak attractive motion between charged clusters. The fact that changes in structures and dynamics take place at the same time suggests that transitions in the structure of clusters involve marked changes in the dynamics of the aggregation processes. © 2009 The American Physical Society.

  11. Thermal expansion: Metallic elements and alloys. [Handbook

    Science.gov (United States)

    Touloukian, Y. S.; Kirby, R. K.; Taylor, R. E.; Desai, P. D.

    1975-01-01

    The introductory sections of the work are devoted to the theory of thermal expansion of solids and to methods for the measurement of the linear thermal expansion of solids (X-ray methods, high speed methods, interferometry, push-rod dilatometry, etc.). The bulk of the work is devoted to numerical data on the thermal linear expansion of all the metallic elements, a large number of intermetallics, and a large number of binary alloy systems and multiple alloy systems. A comprehensive bibliography is provided along with an index to the materials examined.

  12. Some Improved Nonperturbative Bounds for Fermionic Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Martin, E-mail: marlohmann@gmail.com [Universita di Roma Tre, Dipartimento di Matematica (Italy)

    2016-06-15

    We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.

  13. Macrosegregation Due to Convection in Al-19Cu Alloy Directionally Solidified Through an Abrupt Expansion in Cross-Section: A Comparison with Al-7Si

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-10-01

    Hypoeutectic Al-19 wt.% Cu alloys were directionally solidified at two different growth speeds in cylindrical molds that featured an abrupt increase in cross-section, from 3.2 to 9.5 mm in diameter. The effects of thermosolutal convection and shrinkage flow induced by the cross-section change on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation were seen, particularly in the larger cross-section after expansion. Negative longitudinal macrosegregation right after the cross-section increase was observed; the extent of macrosegregation, however, decreases with increasing growth speed. Both thermal and flow effects due to cross-section change were seen to influence the radial macrosegregation immediately before, and after the expansion. Radial macrosegregation pattern was found to be changing as the mushy zone enters the larger cross-section region above the cross-section change where the solidification is in its unsteady state. The effect of the solutal expansion coefficient on macrosegregation was studied by comparing the degree of thermosolutal convection in Al-19 wt.% Cu with a previous study in which we investigated Al-7 wt.% Si. A two-dimensional model accounting for both shrinkage and thermosolutal convection was used to simulate the resulting steepling, as well as the axial and radial macrosegregation. The experimentally observed macrosegregation associated with the expansion during directional solidification is well predicted by the numerical simulations.

  14. A non-uniform expansion mechanical safety model of the stent.

    Science.gov (United States)

    Yang, J; Huang, N; Du, Q

    2009-01-01

    Stents have a serial unstable structure that readily leads to non-uniform expansion. Non-uniform expansion in turn creates a stent safety problem. We explain how a stent may be simplified to a serial unstable structure, and present a method to calculate the non-uniform expansion of the stent on the basis of the serial unstable structure. We propose a safety criterion based on the expansion displacement instead of the strain, and explain that the parameter Rd, the ratio of the maximum displacement of the elements to normal displacement, is meaningful to assess the safety level of the stent. We also examine how laser cutting influences non-uniform expansion. The examples illustrate how to calculate the parameter Rd to assess non-uniform expansion of the stent, and demonstrate how the laser cutting offset and strengthening coefficient of the material influence the stent expansion behaviour. The methods are valuable for assessing stent safety due to non-uniform expansion.

  15. Continuous Security and Configuration Monitoring of HPC Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lomeli, H. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertsch, A. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fox, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-08

    Continuous security and configuration monitoring of information systems has been a time consuming and laborious task for system administrators at the High Performance Computing (HPC) center. Prior to this project, system administrators had to manually check the settings of thousands of nodes, which required a significant number of hours rendering the old process ineffective and inefficient. This paper explains the application of Splunk Enterprise, a software agent, and a reporting tool in the development of a user application interface to track and report on critical system updates and security compliance status of HPC Clusters. In conjunction with other configuration management systems, the reporting tool is to provide continuous situational awareness to system administrators of the compliance state of information systems. Our approach consisted of the development, testing, and deployment of an agent to collect any arbitrary information across a massively distributed computing center, and organize that information into a human-readable format. Using Splunk Enterprise, this raw data was then gathered into a central repository and indexed for search, analysis, and correlation. Following acquisition and accumulation, the reporting tool generated and presented actionable information by filtering the data according to command line parameters passed at run time. Preliminary data showed results for over six thousand nodes. Further research and expansion of this tool could lead to the development of a series of agents to gather and report critical system parameters. However, in order to make use of the flexibility and resourcefulness of the reporting tool the agent must conform to specifications set forth in this paper. This project has simplified the way system administrators gather, analyze, and report on the configuration and security state of HPC clusters, maintaining ongoing situational awareness. Rather than querying each cluster independently, compliance checking

  16. Diversity among galaxy clusters

    International Nuclear Information System (INIS)

    Struble, M.F.; Rood, H.J.

    1988-01-01

    The classification of galaxy clusters is discussed. Consideration is given to the classification scheme of Abell (1950's), Zwicky (1950's), Morgan, Matthews, and Schmidt (1964), and Morgan-Bautz (1970). Galaxies can be classified based on morphology, chemical composition, spatial distribution, and motion. The correlation between a galaxy's environment and morphology is examined. The classification scheme of Rood-Sastry (1971), which is based on clusters's morphology and galaxy population, is described. The six types of clusters they define include: (1) a cD-cluster dominated by a single large galaxy, (2) a cluster dominated by a binary, (3) a core-halo cluster, (4) a cluster dominated by several bright galaxies, (5) a cluster appearing flattened, and (6) an irregularly shaped cluster. Attention is also given to the evolution of cluster structures, which is related to initial density and cluster motion

  17. Synthesis, microstructure and thermal expansion studies

    Indian Academy of Sciences (India)

    Abstract. We report on the synthesis, microstructure and thermal expansion studies on Ca0.5+/2Sr0.5+/2Zr4P6−2Si2O24 ( = 0.00 to 1.00) system which belongs to NZP family of low thermal expansion ceramics. The ceramics synthesized by co-precipitation method at lower calcination and the sintering temperatures ...

  18. Operator expansion in quantum chromodynamics beyond perturbation theory

    International Nuclear Information System (INIS)

    Novikov, V.A.; Shifman, M.A.; Vainshtejn, A.I.; Zakharov, V.I.

    1980-01-01

    The status of operator expansion at short distances is descussed within the frameworks of nonperturbatue QCD. The question of instanton effects is investigated in various aspects. Two-point functions induced by the gluonic currents are considered. It is shown that certain gluonic correlations vanish in the field of definite duality. It is proved that there does exist a very special relation between the expansion coefficients required by consistancy between instanton calculations and the general operator expansion. At last a certain modification of the naive version of operator expansion is proposed, which allows one to go beyond the critical power and construct, if necessary, an infinite series

  19. Studying medium effects with the optimized δ expansion

    International Nuclear Information System (INIS)

    Krein, G.; Menezes, D.P.; Nielsen, M.; Pinto, M.B.

    1995-04-01

    The possibility of using the optimized δ expansion for studying medium effects on hadronic properties in quark or nuclear matter is investigated. The δ expansion is employed to study density effects with two commonly used models in hadron and nuclear physics, the Nambu-Jona-Lasinio model for the dynamical chiral symmetry breaking and the Walecka model for the equation of state of nuclear matter. The results obtained with the δ expansion are compared to those obtained with the traditional Hartree-Fock approximation. Perspectives for using the δ expansion in other field theoretic models in hadron and nuclear physics are discussed. (author). 17 refs, 9 figs

  20. Studying medium effects with the optimized {delta} expansion

    Energy Technology Data Exchange (ETDEWEB)

    Krein, G [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Menezes, D P [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Fisica; Nielsen, M [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Pinto, M B [Montpellier-2 Univ., 34 (France). Lab. de Physique Mathematique

    1995-04-01

    The possibility of using the optimized {delta} expansion for studying medium effects on hadronic properties in quark or nuclear matter is investigated. The {delta} expansion is employed to study density effects with two commonly used models in hadron and nuclear physics, the Nambu-Jona-Lasinio model for the dynamical chiral symmetry breaking and the Walecka model for the equation of state of nuclear matter. The results obtained with the {delta} expansion are compared to those obtained with the traditional Hartree-Fock approximation. Perspectives for using the {delta} expansion in other field theoretic models in hadron and nuclear physics are discussed. (author). 17 refs, 9 figs.

  1. Origami structures for tunable thermal expansion

    Science.gov (United States)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  2. Anisotropic thermal expansion in flexible materials

    Science.gov (United States)

    Romao, Carl P.

    2017-10-01

    A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αi i) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yi i). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αi i on Yi i suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.

  3. Cluster-cluster aggregation of Ising dipolar particles under thermal noise

    KAUST Repository

    Suzuki, Masaru; Kun, Ferenc; Ito, Nobuyasu

    2009-01-01

    The cluster-cluster aggregation processes of Ising dipolar particles under thermal noise are investigated in the dilute condition. As the temperature increases, changes in the typical structures of clusters are observed from chainlike (D1

  4. Re-estimating sample size in cluster randomized trials with active recruitment within clusters

    NARCIS (Netherlands)

    van Schie, Sander; Moerbeek, Mirjam

    2014-01-01

    Often only a limited number of clusters can be obtained in cluster randomised trials, although many potential participants can be recruited within each cluster. Thus, active recruitment is feasible within the clusters. To obtain an efficient sample size in a cluster randomised trial, the cluster

  5. Elastic-plastic analysis of tube expansion in tubesheets

    International Nuclear Information System (INIS)

    Kasraie, B.; O'Donnell, W.J.; Porowski, J.S.; Selz, A.

    1983-01-01

    Conditions for expansion of tubes in tubesheets are often determined by the test. The tightness of the joint and pull out force are used as criteria for evaluation of the results. For closely spaced tubes, it is also necessary to control development of the plastic regions in the ligaments surrounding the tube being expanded. High local strains may occur and excessive distortion may result if the expansion of the tube is continued beyond the admissible limits. Elastic-plastic finite element analyses are performed herein in order to establish conditions for rolling of the tubes in tubesheets of low ligament efficiency. Such penetration patterns are often required in the design of tubular reactors for catalytic processes. The model considered includes individual tube expansion in tubesheets with triangular penetration patterns. The effect of prior expansion of the neighboring tubes is also evaluated. Gap elements are used to model the initial clearance of the tube in the hole. Development of the plastic zones and distortion of the ligaments is monitored during radial expansion of the tube diameter. The residual stresses between the tube and the hole surface and the history of gap closing after removal of the expansion tool are determined. The effect of axial extension of the tube on the tube thinning is determined. Tube thinning is often used as a measure of tube expansion in manufacturing processes. For the analyzed ligament efficiency, reliable joints are obtained for a thinning range within 2% to 3%

  6. Instability of a planar expansion wave.

    Science.gov (United States)

    Velikovich, A L; Zalesak, S T; Metzler, N; Wouchuk, J G

    2005-10-01

    An expansion wave is produced when an incident shock wave interacts with a surface separating a fluid from a vacuum. Such an interaction starts the feedout process that transfers perturbations from the rippled inner (rear) to the outer (front) surface of a target in inertial confinement fusion. Being essentially a standing sonic wave superimposed on a centered expansion wave, a rippled expansion wave in an ideal gas, like a rippled shock wave, typically produces decaying oscillations of all fluid variables. Its behavior, however, is different at large and small values of the adiabatic exponent gamma. At gamma > 3, the mass modulation amplitude delta(m) in a rippled expansion wave exhibits a power-law growth with time alpha(t)beta, where beta = (gamma - 3)/(gamma - 1). This is the only example of a hydrodynamic instability whose law of growth, dependent on the equation of state, is expressed in a closed analytical form. The growth is shown to be driven by a physical mechanism similar to that of a classical Richtmyer-Meshkov instability. In the opposite extreme gamma - 1 gas with low . Exact analytical expressions for the growth rates are derived for both cases and favorably compared to hydrodynamic simulation results.

  7. Thermal expansion absorbing structure for pipeline

    International Nuclear Information System (INIS)

    Nagata, Takashi; Yamashita, Takuya.

    1995-01-01

    A thermal expansion absorbing structure for a pipeline is disposed to the end of pipelines to form a U-shaped cross section connecting a semi-circular torus shell and a short double-walled cylindrical tube. The U-shaped longitudinal cross-section is deformed in accordance with the shrinking deformation of the pipeline and absorbs thermal expansion. Namely, since the central lines of the outer and inner tubes of the double-walled cylindrical tube deform so as to incline, when the pipeline is deformed by thermal expansion, thermal expansion can be absorbed by a simple configuration thereby enabling to contribute to ensure the safety. Then, the entire length of the pipeline can greatly be shortened by applying it to the pipeline disposed in a high temperature state compared with a method of laying around a pipeline using only elbows, which has been conducted so far. Especially, when it is applied to a pipeline for an FBR-type reactor, the cost for the construction of a facility of a primary systems can greater be reduced. In addition, it can be applied to a pipeline for usual chemical plants and any other structures requiring absorption of deformation. (N.H.)

  8. The Low-mass Population in the Young Cluster Stock 8: Stellar Properties and Initial Mass Function

    Energy Technology Data Exchange (ETDEWEB)

    Jose, Jessy; Herczeg, Gregory J.; Fang, Qiliang [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, Beijing 100871 (China); Samal, Manash R. [Graduate Institute of Astronomy, National Central University 300, Jhongli City, Taoyuan County 32001, Taiwan (China); Panwar, Neelam, E-mail: jessyvjose1@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2017-02-10

    The evolution of H ii regions/supershells can trigger a new generation of stars/clusters at their peripheries, with environmental conditions that may affect the initial mass function, disk evolution, and star formation efficiency. In this paper we study the stellar content and star formation processes in the young cluster Stock 8, which itself is thought to be formed during the expansion of a supershell. We present deep optical photometry along with JHK and 3.6 and 4.5 μ m photometry from UKIDSS and Spitzer -IRAC. We use multicolor criteria to identify the candidate young stellar objects in the region. Using evolutionary models, we obtain a median log(age) of ∼6.5 (∼3.0 Myr) with an observed age spread of ∼0.25 dex for the cluster. Monte Carlo simulations of the population of Stock 8, based on estimates for the photometric uncertainty, differential reddening, binarity, and variability, indicate that these uncertainties introduce an age spread of ∼0.15 dex. The intrinsic age spread in the cluster is ∼0.2 dex. The fraction of young stellar objects surrounded by disks is ∼35%. The K -band luminosity function of Stock 8 is similar to that of the Trapezium cluster. The initial mass function (IMF) of Stock 8 has a Salpeter-like slope at >0.5 M {sub ⊙} and flattens and peaks at ∼0.4 M {sub ⊙}, below which it declines into the substellar regime. Although Stock 8 is surrounded by several massive stars, there seems to be no severe environmental effect in the form of the IMF due to the proximity of massive stars around the cluster.

  9. Multi-Optimisation Consensus Clustering

    Science.gov (United States)

    Li, Jian; Swift, Stephen; Liu, Xiaohui

    Ensemble Clustering has been developed to provide an alternative way of obtaining more stable and accurate clustering results. It aims to avoid the biases of individual clustering algorithms. However, it is still a challenge to develop an efficient and robust method for Ensemble Clustering. Based on an existing ensemble clustering method, Consensus Clustering (CC), this paper introduces an advanced Consensus Clustering algorithm called Multi-Optimisation Consensus Clustering (MOCC), which utilises an optimised Agreement Separation criterion and a Multi-Optimisation framework to improve the performance of CC. Fifteen different data sets are used for evaluating the performance of MOCC. The results reveal that MOCC can generate more accurate clustering results than the original CC algorithm.

  10. The {β}-expansion formalism in perturbative QCD and its extension

    Energy Technology Data Exchange (ETDEWEB)

    Kataev, A.L. [Institute for Nuclear Research of the Academy of Sciences of Russia,60th October Anniversary Prospect 7a, 117312, Moscow (Russian Federation); Moscow Institute of Physics and Technology,Institutskii per. 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Mikhailov, S.V. [Bogoliubov Laboratory of Theoretical Physics, JINR,Joliot-Curie 6, 141980 Dubna (Russian Federation)

    2016-11-11

    We discuss the {β}-expansion for renormalization group invariant quantities tracing this expansion to the different contractions of the corresponding incomplete BPHZ R-operation. All of the coupling renormalizations, which follow from these contractions, should be taken into account for the {β}-expansion. We illustrate this feature considering the nonsinglet Adler function D{sup NS} in the third order of perturbation. We propose a generalization of the {β}-expansion for the renormalization group covariant quantities — the {β,γ}-expansion.

  11. Electron: Cluster interactions

    International Nuclear Information System (INIS)

    Scheidemann, A.A.; Knight, W.D.

    1994-02-01

    Beam depletion spectroscopy has been used to measure absolute total inelastic electron-sodium cluster collision cross sections in the energy range from E ∼ 0.1 to E ∼ 6 eV. The investigation focused on the closed shell clusters Na 8 , Na 20 , Na 40 . The measured cross sections show an increase for the lowest collision energies where electron attachment is the primary scattering channel. The electron attachment cross section can be understood in terms of Langevin scattering, connecting this measurement with the polarizability of the cluster. For energies above the dissociation energy the measured electron-cluster cross section is energy independent, thus defining an electron-cluster interaction range. This interaction range increases with the cluster size

  12. Semantic based cluster content discovery in description first clustering algorithm

    International Nuclear Information System (INIS)

    Khan, M.W.; Asif, H.M.S.

    2017-01-01

    In the field of data analytics grouping of like documents in textual data is a serious problem. A lot of work has been done in this field and many algorithms have purposed. One of them is a category of algorithms which firstly group the documents on the basis of similarity and then assign the meaningful labels to those groups. Description first clustering algorithm belong to the category in which the meaningful description is deduced first and then relevant documents are assigned to that description. LINGO (Label Induction Grouping Algorithm) is the algorithm of description first clustering category which is used for the automatic grouping of documents obtained from search results. It uses LSI (Latent Semantic Indexing); an IR (Information Retrieval) technique for induction of meaningful labels for clusters and VSM (Vector Space Model) for cluster content discovery. In this paper we present the LINGO while it is using LSI during cluster label induction and cluster content discovery phase. Finally, we compare results obtained from the said algorithm while it uses VSM and Latent semantic analysis during cluster content discovery phase. (author)

  13. The clustered nucleus-cluster structures in stable and unstable nuclei

    International Nuclear Information System (INIS)

    Freer, Martin

    2007-01-01

    The subject of clustering has a lineage which runs throughout the history of nuclear physics. Its attraction is the simplification of the often uncorrelated behaviour of independent particles to organized and coherent quasi-crystalline structures. In this review the ideas behind the development of clustering in light nuclei are investigated, mostly from the stand-point of the harmonic oscillator framework. This allows a unifying description of alpha-conjugate and neutron-rich nuclei, alike. More sophisticated models of clusters are explored, such as antisymmetrized molecular dynamics. A number of contemporary topics in clustering are touched upon; the 3α-cluster state in 12 C, nuclear molecules and clustering at the drip-line. Finally, an understanding of the 12 C+ 12 C resonances in 24 Mg, within the framework of the theoretical ideas developed in the review, is presented

  14. Temperature expansions for magnetic systems

    International Nuclear Information System (INIS)

    Cangemi, D.; Dunne, G.

    1996-01-01

    We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on 2+1 and 3+1 dimensions. We concentrate on the high temperature limit, but we also discuss the T=0 limit with nonzero chemical potential. Copyright copyright 1996 Academic Press, Inc

  15. Regional Innovation Clusters

    Data.gov (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  16. Choosing the Number of Clusters in K-Means Clustering

    Science.gov (United States)

    Steinley, Douglas; Brusco, Michael J.

    2011-01-01

    Steinley (2007) provided a lower bound for the sum-of-squares error criterion function used in K-means clustering. In this article, on the basis of the lower bound, the authors propose a method to distinguish between 1 cluster (i.e., a single distribution) versus more than 1 cluster. Additionally, conditional on indicating there are multiple…

  17. Personalized PageRank Clustering: A graph clustering algorithm based on random walks

    Science.gov (United States)

    A. Tabrizi, Shayan; Shakery, Azadeh; Asadpour, Masoud; Abbasi, Maziar; Tavallaie, Mohammad Ali

    2013-11-01

    Graph clustering has been an essential part in many methods and thus its accuracy has a significant effect on many applications. In addition, exponential growth of real-world graphs such as social networks, biological networks and electrical circuits demands clustering algorithms with nearly-linear time and space complexity. In this paper we propose Personalized PageRank Clustering (PPC) that employs the inherent cluster exploratory property of random walks to reveal the clusters of a given graph. We combine random walks and modularity to precisely and efficiently reveal the clusters of a graph. PPC is a top-down algorithm so it can reveal inherent clusters of a graph more accurately than other nearly-linear approaches that are mainly bottom-up. It also gives a hierarchy of clusters that is useful in many applications. PPC has a linear time and space complexity and has been superior to most of the available clustering algorithms on many datasets. Furthermore, its top-down approach makes it a flexible solution for clustering problems with different requirements.

  18. Clusters in nuclei

    CERN Document Server

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  19. Spatial cluster modelling

    CERN Document Server

    Lawson, Andrew B

    2002-01-01

    Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...

  20. Herd Clustering: A synergistic data clustering approach using collective intelligence

    KAUST Repository

    Wong, Kachun; Peng, Chengbin; Li, Yue; Chan, Takming

    2014-01-01

    , this principle is used to develop a new clustering algorithm. Inspired by herd behavior, the clustering method is a synergistic approach using collective intelligence called Herd Clustering (HC). The novel part is laid in its first stage where data instances

  1. Thermal expansion data of (Th,U)O2 fuels

    International Nuclear Information System (INIS)

    Sengupta, A.K.; Banerjee, J.; Bhagat, R.K.; Ramachandran, R.; Majumdar, S.; Purushotham, D.S.C.

    2000-04-01

    Thermal expansion data for sintered ThO 2 and ThO 2 containing 2, 4, 6, 10 and 20% UO 2 pellets were measured using a high temperature dilatometer in the temperature range from ambient to 1773 K. The dilatometer was first calibrated using a standard graphite sample as reference material. The reproducibility of the dilatometer was tested by measuring the coefficient of expansion of tungsten (NBS SRM 737) and comparing the data with that recommended by National Bureau of Standard. It was observed that there is close agreement between the experimental and reported data. The coefficient of expansion data of (Th,U)O 2 fuel indicate that out of all the six compositions, ThO 2 +2%UO 2 showed the maximum expansion of around 1.75% at 1773 K. However, the expansion data for all the compositions were very close to each other. Empirical equation correlating thermal expansion and temperature for all six compositions have been generated and reported. (author)

  2. THE SWIFT AGN AND CLUSTER SURVEY. II. CLUSTER CONFIRMATION WITH SDSS DATA

    International Nuclear Information System (INIS)

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.

    2016-01-01

    We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three-dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster candidates. We find 104 Swift clusters with a >3σ galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, brightest cluster galaxy (BCG) magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ∼85% of the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≲ 0.3 and is still 80% complete up to z ≃ 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further study of cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23, and 1 matches in optical, X-ray, and Sunyaev–Zel’dovich catalogs, respectively, and so the majority of these clusters are new detections

  3. Ring-Expansion/Contraction Radical Crossover Reactions of Cyclic Alkoxyamines: A Mechanism for Ring Expansion-Controlled Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Atsushi Narumi

    2018-06-01

    Full Text Available Macrocyclic polymers present an important class of macromolecules, displaying the reduced radius of gyration or impossibility to entangle. A rare approach for their synthesis is the ring expansion-controlled radical “vinyl” polymerization, starting from a cyclic alkoxyamine. We here describe ring-expansion radical crossover reactions of cyclic alkoxyamines which run in parallel to chain-propagation reactions in the polymerization system. The radical crossover reactions extensively occurred at 105–125 °C, eventually producing high molecular weight polymers with multiple inherent dynamic covalent bonds (NOC bonds. A subsequent ring-contraction radical crossover reaction and the second ring-expansion radical crossover reaction are also described. The major products for the respective three stages were shown to possess cyclic morphologies by the molecular weight profiles and the residual ratios for the NOC bonds (φ in %. In particular, the high φ values ranging from ca. 80% to 98% were achieved for this cyclic alkoxyamine system. This result verifies the high availability of this system as a tool demonstrating the ring-expansion “vinyl” polymerization that allows them to produce macrocyclic polymers via a one-step vinyl polymerization.

  4. Scientific Cluster Deployment and Recovery – Using puppet to simplify cluster management

    International Nuclear Information System (INIS)

    Hendrix, Val; Yao Yushu; Benjamin, Doug

    2012-01-01

    Deployment, maintenance and recovery of a scientific cluster, which has complex, specialized services, can be a time consuming task requiring the assistance of Linux system administrators, network engineers as well as domain experts. Universities and small institutions that have a part-time FTE with limited time for and knowledge of the administration of such clusters can be strained by such maintenance tasks. This current work is the result of an effort to maintain a data analysis cluster (DAC) with minimal effort by a local system administrator. The realized benefit is the scientist, who is the local system administrator, is able to focus on the data analysis instead of the intricacies of managing a cluster. Our work provides a cluster deployment and recovery process (CDRP) based on the puppet configuration engine allowing a part-time FTE to easily deploy and recover entire clusters with minimal effort. Puppet is a configuration management system (CMS) used widely in computing centers for the automatic management of resources. Domain experts use Puppet's declarative language to define reusable modules for service configuration and deployment. Our CDRP has three actors: domain experts, a cluster designer and a cluster manager. The domain experts first write the puppet modules for the cluster services. A cluster designer would then define a cluster. This includes the creation of cluster roles, mapping the services to those roles and determining the relationships between the services. Finally, a cluster manager would acquire the resources (machines, networking), enter the cluster input parameters (hostnames, IP addresses) and automatically generate deployment scripts used by puppet to configure it to act as a designated role. In the event of a machine failure, the originally generated deployment scripts along with puppet can be used to easily reconfigure a new machine. The cluster definition produced in our CDRP is an integral part of automating cluster deployment

  5. Supersonic expansion of argon into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Habets, A H.M.

    1977-01-21

    A theoretical description of a free supersonic expansion process is given. Three distinct regions in the expansion are discussed, namely the continuum region, the gradual transition to the collisionless regime, and the free-molecular-flow stage. Important topics are the peaking-factor formalism, the thermal-conduction model, and the virtual-source formalism. The formation of the molecular beam from the expansion and condensation phenomena occurring in the expanding gas are discussed. The molecular beam machine used in the measurements is described and special attention is given to the cryopumps used in the supersonic sources as well as to the time-of-flight analysis of the molecular beam velocity distributions. Finally, the processing of experimental data is discussed, particularly the least-squares determination of best-fit representations of the measurements.

  6. Radial expansion for spinning conformal blocks

    CERN Document Server

    Costa, Miguel S.; Penedones, João; Trevisani, Emilio

    2016-07-12

    This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.

  7. Supersonic expansion of argon into vacuum

    International Nuclear Information System (INIS)

    Habets, A.H.M.

    1977-01-01

    A theoretical description of a free supersonic expansion process is given. Three distinct regions in the expansion are discussed, namely the continuum region, the gradual transition to the collisionless regime, and the free-molecular-flow stage. Important topics are the peaking-factor formalism, the thermal-conduction model, and the virtual-source formalism. The formation of the molecular beam from the expansion and condensation phenomena occurring in the expanding gas are discussed. The molecular beam machine used in the measurements is described and special attention is given to the cryopumps used in the supersonic sources as well as to the time-of-flight analysis of the molecular beam velocity distributions. Finally, the processing of experimental data is discussed, particularly the least-squares determination of best-fit representations of the measurements

  8. The relevance of grid expansion under zonal markets

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Joachim; Hagspiel, Simeon; Just, Lisa [ewi Energy Research and Scenarios gGmbH, Cologne (Germany); Cologne Univ. (Germany). Dept. of Economics; Brown, Tom [Frankfurt Institute of Advanced Studies (Germany)

    2015-12-15

    The European electricity market design is based on zonal markets with uniform prices. Locational price signals within these zones - necessary to ensure long-term efficiency - are not provided. Specifically, if intra-zonal congestion occurs due to missing grid expansion, the market design is revealed as inherently incomplete. This might lead to severe, unwanted distortions of the electricity market, both in the short- and in the long-term. In this paper, we study these distortions with a specific focus on the impact of restricted grid expansion under zonal markets. For this, we use a long term fundamental dispatch and investment model of the European electricity system and gradually restrict the allowed expansion of the transmission grid per decade. We find that the combination of an incomplete market design and restricted grid expansion leads to a misallocation of generation capacities and the inability to transport electricity to where it is needed. Consequences are severe and lead to load curtailment of up to 2-3 %. Moreover, missing grid expansion makes it difficult and costly to reach envisaged energy targets in the power sector. Hence, we argue that in the likely event of restricted grid expansion, either administrative measures or - presumably more efficient - an adaptation of the current market design to include locational signals will become necessary.

  9. The relevance of grid expansion under zonal markets

    International Nuclear Information System (INIS)

    Bertsch, Joachim; Hagspiel, Simeon; Just, Lisa

    2015-01-01

    The European electricity market design is based on zonal markets with uniform prices. Locational price signals within these zones - necessary to ensure long-term efficiency - are not provided. Specifically, if intra-zonal congestion occurs due to missing grid expansion, the market design is revealed as inherently incomplete. This might lead to severe, unwanted distortions of the electricity market, both in the short- and in the long-term. In this paper, we study these distortions with a specific focus on the impact of restricted grid expansion under zonal markets. For this, we use a long term fundamental dispatch and investment model of the European electricity system and gradually restrict the allowed expansion of the transmission grid per decade. We find that the combination of an incomplete market design and restricted grid expansion leads to a misallocation of generation capacities and the inability to transport electricity to where it is needed. Consequences are severe and lead to load curtailment of up to 2-3 %. Moreover, missing grid expansion makes it difficult and costly to reach envisaged energy targets in the power sector. Hence, we argue that in the likely event of restricted grid expansion, either administrative measures or - presumably more efficient - an adaptation of the current market design to include locational signals will become necessary.

  10. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  11. Cluster consensus in discrete-time networks of multiagents with inter-cluster nonidentical inputs.

    Science.gov (United States)

    Han, Yujuan; Lu, Wenlian; Chen, Tianping

    2013-04-01

    In this paper, cluster consensus of multiagent systems is studied via inter-cluster nonidentical inputs. Here, we consider general graph topologies, which might be time-varying. The cluster consensus is defined by two aspects: intracluster synchronization, the state at which differences between each pair of agents in the same cluster converge to zero, and inter-cluster separation, the state at which agents in different clusters are separated. For intra-cluster synchronization, the concepts and theories of consensus, including the spanning trees, scramblingness, infinite stochastic matrix product, and Hajnal inequality, are extended. As a result, it is proved that if the graph has cluster spanning trees and all vertices self-linked, then the static linear system can realize intra-cluster synchronization. For the time-varying coupling cases, it is proved that if there exists T > 0 such that the union graph across any T-length time interval has cluster spanning trees and all graphs has all vertices self-linked, then the time-varying linear system can also realize intra-cluster synchronization. Under the assumption of common inter-cluster influence, a sort of inter-cluster nonidentical inputs are utilized to realize inter-cluster separation, such that each agent in the same cluster receives the same inputs and agents in different clusters have different inputs. In addition, the boundedness of the infinite sum of the inputs can guarantee the boundedness of the trajectory. As an application, we employ a modified non-Bayesian social learning model to illustrate the effectiveness of our results.

  12. Relative efficiency and sample size for cluster randomized trials with variable cluster sizes.

    Science.gov (United States)

    You, Zhiying; Williams, O Dale; Aban, Inmaculada; Kabagambe, Edmond Kato; Tiwari, Hemant K; Cutter, Gary

    2011-02-01

    The statistical power of cluster randomized trials depends on two sample size components, the number of clusters per group and the numbers of individuals within clusters (cluster size). Variable cluster sizes are common and this variation alone may have significant impact on study power. Previous approaches have taken this into account by either adjusting total sample size using a designated design effect or adjusting the number of clusters according to an assessment of the relative efficiency of unequal versus equal cluster sizes. This article defines a relative efficiency of unequal versus equal cluster sizes using noncentrality parameters, investigates properties of this measure, and proposes an approach for adjusting the required sample size accordingly. We focus on comparing two groups with normally distributed outcomes using t-test, and use the noncentrality parameter to define the relative efficiency of unequal versus equal cluster sizes and show that statistical power depends only on this parameter for a given number of clusters. We calculate the sample size required for an unequal cluster sizes trial to have the same power as one with equal cluster sizes. Relative efficiency based on the noncentrality parameter is straightforward to calculate and easy to interpret. It connects the required mean cluster size directly to the required sample size with equal cluster sizes. Consequently, our approach first determines the sample size requirements with equal cluster sizes for a pre-specified study power and then calculates the required mean cluster size while keeping the number of clusters unchanged. Our approach allows adjustment in mean cluster size alone or simultaneous adjustment in mean cluster size and number of clusters, and is a flexible alternative to and a useful complement to existing methods. Comparison indicated that we have defined a relative efficiency that is greater than the relative efficiency in the literature under some conditions. Our measure

  13. Large negative thermal expansion provided by metal-organic framework MOF-5: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei, E-mail: leiw@buaa.edu.cn; Wang, Cong, E-mail: congwang@buaa.edu.cn; Sun, Ying; Shi, Kewen; Deng, Sihao; Lu, Huiqing

    2016-06-01

    The thermodynamic properties and negative thermal expansion (NTE) behavior of metal-organic framework MOF-5 are investigated within the quasi-harmonic approximation, by using density functional theory. For nanoporous MOF-5, the temperature dependence of bulk modulus increases with increasing temperature, indicating that the resistance to compression is enhanced gradually. The large NTE behavior is obtained, which agrees reasonably with the experimental data. From the Grüneisen parameter as a function of temperature, it can be found that low-frequency phonons are closely associated with the NTE of MOF-5. The corresponding vibrational modes can be viewed as the results of local deformations (translation, rotation, twisting) of BDC (1,4-benzenedicarboxylate) linker and zinc clusters. The lowest-frequency phonon mode (the transverse motion of carboxylate groups and benzene ring, zinc clusters being as rigid units) is confirmed to be most responsible for thermal contraction. - Highlights: • The related thermodynamic properties and NTE behavior of MOF-5 are investigated by first principles. • Contrary to other inorganic NTE materials, bulk modulus of MOF-5 increases on heating. • The low-frequency phonons are closely associated with the NTE of MOF-5. • The NTE-contributing vibrational modes are elucidated clearly.

  14. Large negative thermal expansion provided by metal-organic framework MOF-5: A first-principles study

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Cong; Sun, Ying; Shi, Kewen; Deng, Sihao; Lu, Huiqing

    2016-01-01

    The thermodynamic properties and negative thermal expansion (NTE) behavior of metal-organic framework MOF-5 are investigated within the quasi-harmonic approximation, by using density functional theory. For nanoporous MOF-5, the temperature dependence of bulk modulus increases with increasing temperature, indicating that the resistance to compression is enhanced gradually. The large NTE behavior is obtained, which agrees reasonably with the experimental data. From the Grüneisen parameter as a function of temperature, it can be found that low-frequency phonons are closely associated with the NTE of MOF-5. The corresponding vibrational modes can be viewed as the results of local deformations (translation, rotation, twisting) of BDC (1,4-benzenedicarboxylate) linker and zinc clusters. The lowest-frequency phonon mode (the transverse motion of carboxylate groups and benzene ring, zinc clusters being as rigid units) is confirmed to be most responsible for thermal contraction. - Highlights: • The related thermodynamic properties and NTE behavior of MOF-5 are investigated by first principles. • Contrary to other inorganic NTE materials, bulk modulus of MOF-5 increases on heating. • The low-frequency phonons are closely associated with the NTE of MOF-5. • The NTE-contributing vibrational modes are elucidated clearly.

  15. Observations of concentrated generator regions in the nightside magnetosphere by Cluster/FAST conjunctions

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2006-03-01

    Full Text Available Here and in the companion paper, Marghitu et al. (2006, we investigate plausible auroral generator regions in the nightside auroral magnetosphere. In this article we use magnetically conjugate data from the Cluster and the FAST satellites during a 3.5-h long event from 19-20 September 2001. Cluster is in the Southern Hemisphere close to apogee, where it probes the plasma sheet and lobe at an altitude of about 18 RE. FAST is below the acceleration region at approximately 0.6 RE. Searching for clear signatures of negative power densities, E·J<0, in the Cluster data we can identify three concentrated generator regions (CGRs during our event. From the magnetically conjugate FAST data we see that the observed generator regions in the Cluster data correlate with auroral precipitation. The downward Poynting flux observed by Cluster, as well as the scale size of the CGRs, are consistent with the electron energy flux and the size of the inverted-V regions observed by FAST. To our knowledge, these are the first in-situ observations of the crossing of an auroral generator region. The main contribution to E·J<0 comes from the GSE EyJy. The electric field Ey is weakly negative during most of our entire event and we conclude that the CGRs occur when the duskward current Jy grows large and positive. We find that our observations are consistent with a local southward expansion of the plasma sheet and/or rather complicated, 3-D wavy structures propagating over the Cluster satellites. We find that the plasma is working against the magnetic field, and that kinetic energy is being converted into electromagnetic energy. Some of the energy is transported away as Poynting flux.

  16. Controlling Thermal Expansion: A Metal?Organic Frameworks Route

    OpenAIRE

    Balestra, Salvador R. G.; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A. Rabdel; Calero, Sofia

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal?organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model m...

  17. Surgically assisted rapid maxillary expansion in adults.

    Science.gov (United States)

    Pogrel, M A; Kaban, L B; Vargervik, K; Baumrind, S

    1992-01-01

    Twelve adults with maxillary width discrepancy of greater than 5 mm were treated by surgically assisted rapid maxillary expansion. The procedure consisted of bilateral zygomatic buttress and midpalatal osteotomies combined with the use of a tooth-borne orthopedic device postoperatively. Mean palatal expansion of 7.5 mm (range of 6 to 13 mm), measured in the first molar region, was achieved within 3 weeks in all patients. Expansion remained stable during the 12-month study period, with a mean relapse for the entire group of 0.88 +/- 0.48 mm. Morbidity was limited to mild postoperative discomfort. The results of this preliminary study indicated that surgically assisted rapid maxillary expansion is a safe, simple, and reliable procedure for achieving a permanent increase in skeletal maxillary width in adults. Further study is necessary to document the three-dimensional movements of the maxillary segments and long-term stability of the skeletal and dental changes.

  18. Eta-Expansion Does The Trick

    DEFF Research Database (Denmark)

    Danvy, Olivier; Malmkjær, Karoline; Palsberg, Jens

    1995-01-01

    Partial-evaluation folklore has it that massaging one's source programs can make them specialize better. In Jones, Gomard, and Sestoft's recent textbook, a whole chapter is dedicated to listing such “binding-time improvements”: nonstandard use of continuation-passing style, eta-expansion, and a p......Partial-evaluation folklore has it that massaging one's source programs can make them specialize better. In Jones, Gomard, and Sestoft's recent textbook, a whole chapter is dedicated to listing such “binding-time improvements”: nonstandard use of continuation-passing style, eta...... across dynamic case expressions. This requirement precisely accounts for the nonstandard use of continuation-passing style encountered in partial evaluation. Eta-expansion thus acts as a uniform binding-time coercion between values and contexts, be they of function type, product type, or disjoint......-expansion, and a popular transformation called “The Trick.” We provide a unified view of these binding-time improvements, from a typing perspective. Just as a proper treatment of product values in partial evaluation requires partially static values, a proper treatment of disjoint sums requires moving static contexts...

  19. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Wen, Z. L.; Han, J. L.

    2011-01-01

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 ∼ + - m 3.6 μ m colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z f ≥ 2 and evolved passively. The g' - z' and B - m 3.6μm colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z f ∼ 2, indicating star formation in high-redshift BCGs.

  20. Unequal cluster sizes in stepped-wedge cluster randomised trials: a systematic review.

    Science.gov (United States)

    Kristunas, Caroline; Morris, Tom; Gray, Laura

    2017-11-15

    To investigate the extent to which cluster sizes vary in stepped-wedge cluster randomised trials (SW-CRT) and whether any variability is accounted for during the sample size calculation and analysis of these trials. Any, not limited to healthcare settings. Any taking part in an SW-CRT published up to March 2016. The primary outcome is the variability in cluster sizes, measured by the coefficient of variation (CV) in cluster size. Secondary outcomes include the difference between the cluster sizes assumed during the sample size calculation and those observed during the trial, any reported variability in cluster sizes and whether the methods of sample size calculation and methods of analysis accounted for any variability in cluster sizes. Of the 101 included SW-CRTs, 48% mentioned that the included clusters were known to vary in size, yet only 13% of these accounted for this during the calculation of the sample size. However, 69% of the trials did use a method of analysis appropriate for when clusters vary in size. Full trial reports were available for 53 trials. The CV was calculated for 23 of these: the median CV was 0.41 (IQR: 0.22-0.52). Actual cluster sizes could be compared with those assumed during the sample size calculation for 14 (26%) of the trial reports; the cluster sizes were between 29% and 480% of that which had been assumed. Cluster sizes often vary in SW-CRTs. Reporting of SW-CRTs also remains suboptimal. The effect of unequal cluster sizes on the statistical power of SW-CRTs needs further exploration and methods appropriate to studies with unequal cluster sizes need to be employed. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Stochastic quantization and 1/N expansion

    International Nuclear Information System (INIS)

    Brunelli, J.C.; Mendes, R.S.

    1992-10-01

    We study the 1/N expansion of field theories in the stochastic quantization method of Parisi and Wu using the supersymmetric functional approach. This formulation provides a systematic procedure to implement the 1/N expansion which resembles the ones used in the equilibrium. The 1/N perturbation theory for the non linear sigma model in two dimensions is worked out as an example. (author). 19 refs., 5 figs

  2. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR

    Science.gov (United States)

    Takegoshi, K.; Miyazawa, Norihiro; Sharma, Kshama; Madhu, P. K.

    2015-04-01

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.

  3. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR

    International Nuclear Information System (INIS)

    Takegoshi, K.; Miyazawa, Norihiro; Sharma, Kshama; Madhu, P. K.

    2015-01-01

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order

  4. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Takegoshi, K., E-mail: takeyan@kuchem.kyoto-u.ac.jp; Miyazawa, Norihiro [Division of Chemistry, Graduate School of Science, Kyoto University, 606-8502 Kyoto (Japan); Sharma, Kshama [TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075 (India); Madhu, P. K. [TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075 (India); Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

    2015-04-07

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.

  5. Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings

    International Nuclear Information System (INIS)

    Zhang, Jianbao; Ma, Zhongjun; Zhang, Gang

    2013-01-01

    This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme is confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network

  6. Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings

    Science.gov (United States)

    Zhang, Jianbao; Ma, Zhongjun; Zhang, Gang

    2013-12-01

    This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme is confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network.

  7. Semi-supervised clustering methods.

    Science.gov (United States)

    Bair, Eric

    2013-01-01

    Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, information about the clusters is available in addition to the values of the features. For example, the cluster labels of some observations may be known, or certain observations may be known to belong to the same cluster. In other cases, one may wish to identify clusters that are associated with a particular outcome variable. This review describes several clustering algorithms (known as "semi-supervised clustering" methods) that can be applied in these situations. The majority of these methods are modifications of the popular k-means clustering method, and several of them will be described in detail. A brief description of some other semi-supervised clustering algorithms is also provided.

  8. A summation procedure for expansions in orthogonal polynomials

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Grinstein, F.F.

    1977-01-01

    Approximants to functions defined by formal series expansions in orthogonal polynomials are introduced. They are shown to be convergent even out of the elliptical domain where the original expansion converges

  9. Future urban land expansion and implications for global croplands.

    Science.gov (United States)

    Bren d'Amour, Christopher; Reitsma, Femke; Baiocchi, Giovanni; Barthel, Stephan; Güneralp, Burak; Erb, Karl-Heinz; Haberl, Helmut; Creutzig, Felix; Seto, Karen C

    2017-08-22

    Urban expansion often occurs on croplands. However, there is little scientific understanding of how global patterns of future urban expansion will affect the world's cultivated areas. Here, we combine spatially explicit projections of urban expansion with datasets on global croplands and crop yields. Our results show that urban expansion will result in a 1.8-2.4% loss of global croplands by 2030, with substantial regional disparities. About 80% of global cropland loss from urban expansion will take place in Asia and Africa. In both Asia and Africa, much of the cropland that will be lost is more than twice as productive as national averages. Asia will experience the highest absolute loss in cropland, whereas African countries will experience the highest percentage loss of cropland. Globally, the croplands that are likely to be lost were responsible for 3-4% of worldwide crop production in 2000. Urban expansion is expected to take place on cropland that is 1.77 times more productive than the global average. The loss of cropland is likely to be accompanied by other sustainability risks and threatens livelihoods, with diverging characteristics for different megaurban regions. Governance of urban area expansion thus emerges as a key area for securing livelihoods in the agrarian economies of the Global South.

  10. Evolution of density-dependent movement during experimental range expansions.

    Science.gov (United States)

    Fronhofer, E A; Gut, S; Altermatt, F

    2017-12-01

    Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  11. Edgeworth Expansion Based Model for the Convolutional Noise pdf

    Directory of Open Access Journals (Sweden)

    Yonatan Rivlin

    2014-01-01

    Full Text Available Recently, the Edgeworth expansion up to order 4 was used to represent the convolutional noise probability density function (pdf in the conditional expectation calculations where the source pdf was modeled with the maximum entropy density approximation technique. However, the applied Lagrange multipliers were not the appropriate ones for the chosen model for the convolutional noise pdf. In this paper we use the Edgeworth expansion up to order 4 and up to order 6 to model the convolutional noise pdf. We derive the appropriate Lagrange multipliers, thus obtaining new closed-form approximated expressions for the conditional expectation and mean square error (MSE as a byproduct. Simulation results indicate hardly any equalization improvement with Edgeworth expansion up to order 4 when using optimal Lagrange multipliers over a nonoptimal set. In addition, there is no justification for using the Edgeworth expansion up to order 6 over the Edgeworth expansion up to order 4 for the 16QAM and easy channel case. However, Edgeworth expansion up to order 6 leads to improved equalization performance compared to the Edgeworth expansion up to order 4 for the 16QAM and hard channel case as well as for the case where the 64QAM is sent via an easy channel.

  12. Comparing clustering models in bank customers: Based on Fuzzy relational clustering approach

    Directory of Open Access Journals (Sweden)

    Ayad Hendalianpour

    2016-11-01

    Full Text Available Clustering is absolutely useful information to explore data structures and has been employed in many places. It organizes a set of objects into similar groups called clusters, and the objects within one cluster are both highly similar and dissimilar with the objects in other clusters. The K-mean, C-mean, Fuzzy C-mean and Kernel K-mean algorithms are the most popular clustering algorithms for their easy implementation and fast work, but in some cases we cannot use these algorithms. Regarding this, in this paper, a hybrid model for customer clustering is presented that is applicable in five banks of Fars Province, Shiraz, Iran. In this way, the fuzzy relation among customers is defined by using their features described in linguistic and quantitative variables. As follows, the customers of banks are grouped according to K-mean, C-mean, Fuzzy C-mean and Kernel K-mean algorithms and the proposed Fuzzy Relation Clustering (FRC algorithm. The aim of this paper is to show how to choose the best clustering algorithms based on density-based clustering and present a new clustering algorithm for both crisp and fuzzy variables. Finally, we apply the proposed approach to five datasets of customer's segmentation in banks. The result of the FCR shows the accuracy and high performance of FRC compared other clustering methods.

  13. Thermal and Hygric Expansion of High Performance Concrete

    OpenAIRE

    J. Toman; R. Černý

    2001-01-01

    The linear thermal expansion coefficient of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C, and the linear hygric expansion coefficient was determined in the moisture range from dry material to saturation water content. Comparative methods were applied for measurements of both coefficients. The experimental results show that both the effect of temperature on the values of linear thermal expansion coefficients and the effect of moisture on th...

  14. Management of cluster headache

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-01-01

    The prevalence of cluster headache is 0.1% and cluster headache is often not diagnosed or misdiagnosed as migraine or sinusitis. In cluster headache there is often a considerable diagnostic delay - an average of 7 years in a population-based survey. Cluster headache is characterized by very severe...... or severe orbital or periorbital pain with a duration of 15-180 minutes. The cluster headache attacks are accompanied by characteristic associated unilateral symptoms such as tearing, nasal congestion and/or rhinorrhoea, eyelid oedema, miosis and/or ptosis. In addition, there is a sense of restlessness...... and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment...

  15. Cycle expansions: From maps to turbulence

    Science.gov (United States)

    Lan, Y.

    2010-03-01

    We present a derivation, a physical explanation and applications of cycle expansions in different dynamical systems, ranging from simple one-dimensional maps to turbulence in fluids. Cycle expansion is a newly devised powerful tool for computing averages of physical observables in nonlinear chaotic systems which combines many innovative ideas developed in dynamical systems, such as hyperbolicity, invariant manifolds, symbolic dynamics, measure theory and thermodynamic formalism. The concept of cycle expansion has a deep root in theoretical physics, bearing a close analogy to cumulant expansion in statistical physics and effective action functional in quantum field theory, the essence of which is to represent a physical system in a hierarchical way by utilizing certain multiplicative structures such that the dominant parts of physical observables are captured by compact, maneuverable objects while minor detailed variations are described by objects with a larger space and time scale. The technique has been successfully applied to many low-dimensional dynamical systems and much effort has recently been made to extend its use to spatially extended systems. For one-dimensional systems such as the Kuramoto-Sivashinsky equation, the method turns out to be very effective while for more complex real-world systems including the Navier-Stokes equation, the method is only starting to yield its first fruits and much more work is needed to enable practical computations. However, the experience and knowledge accumulated so far is already very useful to a large set of research problems. Several such applications are briefly described in what follows. As more research effort is devoted to the study of complex dynamics of nonlinear systems, cycle expansion will undergo a fast development and find wide applications.

  16. Lessons from Early Medicaid Expansions Under Health Reform..

    Data.gov (United States)

    U.S. Department of Health & Human Services — Lessons from Early Medicaid Expansions Under Health Reform, Interviews with Medicaid Officials In a new study entitled Lessons from Early Medicaid Expansions Under...

  17. Thermal expansion accompanying the glass-liquid transition and crystallization

    Directory of Open Access Journals (Sweden)

    M. Q. Jiang

    2015-12-01

    Full Text Available We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1 bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  18. Thermal expansion model for multiphase electronic packaging materials

    International Nuclear Information System (INIS)

    Allred, B.E.; Warren, W.E.

    1991-01-01

    Control of thermal expansion is often necessary in the design and selection of electronic packages. In some instances, it is desirable to have a coefficient of thermal expansion intermediate between values readily attainable with single or two phase materials. The addition of a third phase in the form of fillers, whiskers, or fibers can be used to attain intermediate expansions. To help design the thermal expansion of multiphase materials for specific applications, a closed form model has been developed that accurately predicts the effective elastic properties of isotropic filled materials and transversely isotropic lamina. Properties of filled matrix materials are used as inputs to the lamina model to obtain the composite elastic properties as a function of the volume fraction of each phase. Hybrid composites with two or more fiber types are easily handled with this model. This paper reports that results for glass, quartz, and Kevlar fibers with beta-eucryptite filled polymer matrices show good agreement with experimental results for X, Y, and Z thermal expansion coefficients

  19. Cluster Dynamics: Laying the Foundation for Tailoring the Design of Cluster ASSE

    Science.gov (United States)

    2016-02-25

    AFRL-AFOSR-VA-TR-2016-0081 CLUSTER DYNAMICS: LAYING THE FOUNDATION FOR TAILORING THE DESIGN OF CLUSTER ASSE Albert Castleman PENNSYLVANIA STATE...15-10-2015 4. TITLE AND SUBTITLE CLUSTER DYNAMICS: LAYING THE FOUNDATION FOR TAILORING THE DESIGN OF CLUSTER ASSEMBLED NANOSCALE MATERIALS 5a... clusters as the building blocks of new materials with tailored properties that are beneficial to the AFOSR. Our continuing program is composed of two

  20. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.; Huepo, Sebastian; Calo, Victor M.; Galvis, Juan

    2015-01-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.