WorldWideScience

Sample records for clouds sensitivity experiments

  1. The CLOUD experiment

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The Cosmics Leaving Outdoor Droplets (CLOUD) experiment as shown by Jasper Kirkby (spokesperson). Kirkby shows a sketch to illustrate the possible link between galactic cosmic rays and cloud formations. The CLOUD experiment uses beams from the PS accelerator at CERN to simulate the effect of cosmic rays on cloud formations in the Earth's atmosphere. It is thought that cosmic ray intensity is linked to the amount of low cloud cover due to the formation of aerosols, which induce condensation.

  2. Solar radiation absorption in the atmosphere due to water and ice clouds: Sensitivity experiments with plane-parallel clouds

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    One cloud radiation issue that has been troublesome for several decades is the absorption of solar radiation by clouds. Many hypotheses have been proposed to explain the discrepancies between observations and modeling results. A good review of these often-competing hypotheses has been provided by Stephens and Tsay. They characterize the available hypotheses as failing into three categories: (1) those linked to cloud microphysical and consequent optical properties; (2) those linked to the geometry and heterogeneity of clouds; and (3) those linked to atmospheric absorption.Current modeling practice is seriously inconsistent with new observational inferences concerning absorption of solar radiation in the atmosphere. The author and her colleagues contend that an emphasis on R may, therefore, not be the optimal way of addressing the cloud solar absorption issue. 4 refs., 1 fig.

  3. CLOUD Experiment - How it works -

    CERN Multimedia

    Jasper Kirkby

    2016-01-01

    A brief tour of the CLOUD experiment at CERN, and its scientific aims. CLOUD uses a special cloud chamber to study the possible link between galactic cosmic rays and cloud formation. The results should contribute much to our fundamental understanding of aerosols and clouds, and their affect on climate.

  4. Cloud radiative forcing sensitivity to Arctic synoptic regimes, surface type, cloud phase and cloud properties during the Fall 2014 Arctic Radiation, IceBridge and Sea-Ice Experiment (ARISE)

    Science.gov (United States)

    Segal-Rosenheimer, Michal; Redemann, Jens; Shinozuka, Yohei; Flynn, Connor; LeBanc, Samuel; Schmidt, Sebastian; Song, Shi; Bucholtz, Anthony; Reid, Elizabeth; Anderson, Bruce; Corr, Chelsea; Smith, William L.; Kato, Seiji; Spangenberg, Douglas A.; Hofton, Michelle; Moore, Richard; Winstead, Edward; Thornhill, Lee K.

    2015-04-01

    Surface cloud radiative forcing (CRF) estimates in the Arctic cover a wide range of values when comparing various datasets (e.g. MERRA, CERES), and show high bias when compared to in-situ ground-based flux measurement stations (e.g. in Greenland) [Wenshan and Zender, 2014]. These high variations and biases result from an intricate relationship between the prevailing synoptic regimes, surface types (open ocean versus sea-ice), and cloud properties [e.g. Barton et al., 2012; Bennartz et al., 2013]. To date, analyses are focused on large-scale or inter-annual comparisons [e.g. Barton et al., 2012; Taylor et al., 2014], or on several specific ground-based sites [Shupe et al., 2004; Sedlar et al., 2012]. Nevertheless, smaller scale CRF variations related to the sharp changes in sea-ice cover, cloud type and synoptic regimes in autumn are still not well understood. Here, we are focusing on assessing the CRF sensitivity to a composite variable matrix of atmospheric stability regimes, cloud profiles and properties and surface type changes during the NASA ARISE campaign conducted in the Fall of 2014 during the Arctic sea-ice minimum in the Beaufort Sea. We are interested in answering the following questions: (1) what are the combinations of distinct synoptic regimes, surface types, and cloud properties that result in the lowest or highest simulated CRF values over the Arctic Beaufort Sea during the autumn 2014 sea-ice growth period?, and (2) can we relate these simulated extremes to the observations made during the ARISE campaign? We are using the libRadtran radiative transfer modeling package to calculate the CRF sensitivity matrix, with daily gridded atmospheric profiles input from MERRA re-analysis, cloud fields and properties from CALIPSO, MODIS, AVHRR, daily variations in sea-ice margins from AMSR-2, and complementary airborne measurements collected on the C-130 during the campaign. In performing sensitivity analysis, we examine CRF extremes sorted by atmospheric

  5. Sensitivities of Amazonian clouds to aerosols and updraft speed

    Science.gov (United States)

    Cecchini, Micael A.; Machado, Luiz A. T.; Andreae, Meinrat O.; Martin, Scot T.; Albrecht, Rachel I.; Artaxo, Paulo; Barbosa, Henrique M. J.; Borrmann, Stephan; Fütterer, Daniel; Jurkat, Tina; Mahnke, Christoph; Minikin, Andreas; Molleker, Sergej; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Voigt, Christiane; Weinzierl, Bernadett; Wendisch, Manfred

    2017-08-01

    The effects of aerosol particles and updraft speed on warm-phase cloud microphysical properties are studied in the Amazon region as part of the ACRIDICON-CHUVA experiment. Here we expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution, putting the sensitivity quantifications into perspective in relation to in-cloud processing, and by considering the effects on droplet size distribution (DSD) shape. Our in situ aircraft measurements over the Amazon Basin cover a wide range of particle concentration and thermodynamic conditions, from the pristine regions over coastal and forested areas to the southern Amazon, which is highly polluted from biomass burning. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds, while updraft speeds have a modulating role in the latter and in total condensed water. The cloud microphysical properties were found to be highly variable with altitude above cloud base, which we used as a proxy for cloud evolution since it is a measure of the time droplets that were subject to cloud processing. We show that DSD shape is crucial in understanding cloud sensitivities. The aerosol effect on DSD shape was found to vary with altitude, which can help models to better constrain the indirect aerosol effect on climate.

  6. AN SENSITIVITY SIMULATION ABOUT CLOUD MICROPHYSICAL PROCESSES OF TYPHOON CHANCHU

    Institute of Scientific and Technical Information of China (English)

    LIN Wen-shi; WU Jian-bin; LI Jiang-nan; LIANG Xu-dong; FANG Xing-qin; XU Sui-shan

    2010-01-01

    With the Reisner-2 bulk microphysical parameterization of the fifth-generation Pennsylvania State University-U.S.National Center for Atmospheric Research(PSU-NCAR)Mesoscale Model(MMS),this paper investigates the microphysical sensitivities of Typhoon Chanchu.Four different microphysical sensitivity experiments were designed with an objective to evaluate their respective impacts in modulating intensity forecasts and microphysics budgets of the typhoon.The set of sensitivity experiments were conducted that comprised(a)a control experiment(CTL),(b)NEVPRW from which evaporation of rain water was suppressed,(c)NGP from which graupel was taken,and(d)NMLT from which melting of snow and graupel was removed.We studied the impacts of different cloud microphysical processes on the track,intensity and precipitation of the typhoon,as well as the kinematics,thermodynamics and vertical structural characteristics of hydrometeors in the inner core of the typhoon.Additionally,the budgets of the cloud microphysical processes in the fine domain were calculated to quantify the importance of each microphysical process for every sensitivity experiment.The primary results are as follows:(1)It is found that varying cloud microphysics parameters produce little sensitivity in typhoon track experiments.(2)The experiment of NGP produces the weakest storm,while the experiment of NMLT produces the strongest storm,and the experiment of NEVPRW also produces stronger storms than CTL.(3)Varying parameters of cloud microphysics have obvious impacts on the precipitation,kinematics,and thermodynamics of the typhoon and the vertical structural characteristics of hydrometeors in the typhoon's inner core.(4)Most budgets of cloud microphysics in NMLT are larger than in CTL,while they are 20%-60% smaller in NEVPRW than in CTL.

  7. Molecular Clouds: Observation to Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kane, J O; Ryutov, D D; Mizuta, A; Remington, B A; Pound, M W

    2004-05-06

    Our ongoing investigation of how 'Pillars' and other structure form in molecular clouds irradiated by ultraviolet (UV) stars has revealed that the Rayleigh-Taylor instability is strongly suppressed by recombination in the photoevaporated outflow, that clumps and filaments may be key, that the evolution of structure is well-modeled by compressible hydrodynamics, and that directionality of the UV radiation may have significant effects. We discuss a generic, flexible set of laboratory experiments that can address these issues.

  8. Opportunities for understanding of aerosol cloud interactions in the context of Marine Cloud Brightening Experiments

    Science.gov (United States)

    Rasch, Philip J.; Wood, Robert; Ackerman, Thomas P.

    2017-04-01

    Anthropogenic aerosol impacts on clouds constitute the largest source of uncertainty in radiative forcing of climate, confounding estimates of climate sensitivity to increases in greenhouse gases. Projections of future warming are also thus strongly dependent on estimates of aerosol effects on clouds. I will discuss the opportunities for improving estimates of aerosol effects on clouds from controlled field experiments where aerosol with well understood size, composition, amount, and injection altitude could be introduced to deliberately change cloud properties. This would allow scientific investigation to be performed in a manner much closer to a lab environment, and facilitate the use of models to predict cloud responses ahead of time, testing our understanding of aerosol cloud interactions.

  9. Bayesian Exploration of Cloud Microphysical Sensitivities in Mesoscale Cloud Systems

    Science.gov (United States)

    Posselt, D. J.

    2015-12-01

    It is well known that changes in cloud microphysical processes can have a significant effect on the structure and evolution of cloud systems. In particular, changes in water phase and the associated energy sources and sinks have a direct influence on cloud mass and precipitation, and an indirect effect on cloud system thermodynamic properties and dynamics. The details of cloud particle nucleation and growth, as well as the interactions among vapor, liquid, and ice phases, occur on scales too small to be explicitly simulated in the vast majority of numerical models. These processes are represented by approximations that introduce uncertainty into the simulation of cloud mass and spatial distribution and by extension the simulation of the cloud system itself. This presentation demonstrates how Bayesian methodologies can be used to explore the relationships between cloud microphysics and cloud content, precipitation, dynamics, and radiative transfer. Specifically, a Markov chain Monte Carlo algorithm is used to compute the probability distribution of cloud microphysical parameters consistent with particular mesoscale environments. Two different physical systems are considered. The first example explores the multivariate functional relationships between precipitation, cloud microphysics, and the environment in a deep convective cloud system. The second examines how changes in cloud microphysical parameters may affect orographic cloud structure, precipitation, and dynamics. In each case, the Bayesian framework can be shown to provide unique information on the inter-dependencies present in the physical system.

  10. Investigating CloudSat Retrievals Sensitivity to Forward Iterative Algorithm Parameters in the Mixed Cloud Layers

    Science.gov (United States)

    Qiu, Yujun; Lu, Chunsong

    2016-09-01

    When millimeter-wave cloud radar data are used for the forward iterative retrieval of the liquid water content (LWC) and effective radius of cloud droplets ( R e) in a cloud layer, the prior values and tolerance ranges of the cloud droplet number density ( N t), scale parameter ( R g) and spectral width parameter ( W g) in the iterative algorithm are the main factors that affect the retrieval accuracy. In this study, we used data from stratus and convective clouds that were simultaneously observed by CloudSat and aircraft to conduct a sensitivity analysis of N t, R g, and W g for the retrieval accuracies of LWC and R e in both stratus and convective clouds. N t is the least sensitive parameter for accurately retrieving stratus LWC and R e in both stratus and convective clouds, except for retrieving the convective cloud LWC. Opposite to N t, R g is the most sensitive parameter for both LWC and R e retrievals. As to the effects of parameter tolerance ranges on the retrievals of LWC and R e, the least important parameter is the N t tolerance range; the most important one is the W g tolerance range for retrieving convective cloud LWC and R e, the R g is the important parameter for retrieving stratus LWC and R e. To obtain accurate retrieved values for clouds in a specific region, it is important to use typical values of the sensitive parameters, which could be calculated from in situ observations of cloud droplet size distributions. In addition, the sensitivities of the LWC and R e to the three parameters are stronger in convective clouds than in stratus clouds. This may be related to the melting and merging of solid cloud droplets during the convective mixing process in the convective clouds.

  11. Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution

    Directory of Open Access Journals (Sweden)

    C. K. Carbajal Henken

    2015-03-01

    Full Text Available This work presents a study on the sensitivity of two satellite cloud height retrievals to cloud vertical distribution. The difference in sensitivity is exploited by relating the difference in the retrieved cloud heights to cloud vertical extent. The two cloud height retrievals, performed within the Freie Universität Berlin AATSR MERIS Cloud (FAME-C algorithm, are based on independent measurements and different retrieval techniques. First, cloud top temperature (CTT is retrieved from Advanced Along Track Scanning Radiometer (AATSR measurements in the thermal infrared. Second, cloud top pressure (CTP is retrieved from Medium Resolution Imaging Spectrometer (MERIS measurements in the oxygen-A absorption band. Both CTT and CTP are converted to cloud top height (CTH using atmospheric profiles from a numerical weather prediction model. A sensitivity study using radiative transfer simulations in the near-infrared and thermal infrared were performed to demonstrate the larger impact of the assumed cloud vertical extinction profile on MERIS than on AATSR top-of-atmosphere measurements. The difference in retrieved CTH (ΔCTH from AATSR and MERIS are related to cloud vertical extent (CVE as observed by ground-based lidar and radar at three ARM sites. To increase the impact of the cloud vertical extinction profile on the MERIS-CTP retrievals, single-layer and geometrically thin clouds are assumed in the forward model. The results of the comparison to the ground-based observations were separated into single-layer and multi-layer cloud cases. Analogous to previous findings, the MERIS-CTP retrievals appear to be close to pressure levels in the middle of the cloud. Assuming a linear relationship, the ΔCTH multiplied by 2.5 gives an estimate on the CVE for single-layer clouds. The relationship is weaker for multi-layer clouds. Due to large variations of cloud vertical extinction profiles occurring in nature, a quantitative estimate of the cloud vertical extent

  12. Radiative Effect of Clouds on Tropospheric Chemistry: Sensitivity to Cloud Vertical Distributions and Optical Properties

    Science.gov (United States)

    Liu, H.; Crawford, J. H.; Pierce, R. B.; Considine, D. B.; Logan, J. A.; Duncan, B. N.; Norris, P.; Platnick, S. E.; Chen, G.; Yantosca, R. M.; Evans, M. J.

    2005-12-01

    Representation of clouds in global models poses a significant challenge since most cloud processes occur on sub-grid scales and must be parameterized. Uncertainties in cloud distributions and optical properties are therefore a limiting factor in model assessments of the radiative effect of clouds on global tropospheric chemistry. We present an analysis of the sensitivity of the radiative effect of clouds to cloud vertical distributions and optical properties with the use of the GEOS-CHEM global 3-D chemistry transport model coupled with the Fast-J radiative transfer algorithm. GEOS-CHEM was driven with a series of meteorological archives (GEOS1-STRAT, GEOS-3, and GEOS-4) generated by the Goddard Earth Observing System data assimilation system (GEOS DAS) at the NASA global Modeling and Assimilation Office (GMAO), which have significantly different cloud optical depths and vertical distributions. The column cloud optical depths in GEOS-3 generally agree with the satellite retrieval products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Climatology Project (ISCCP) within ±10%, while those in GEOS1-STRAT and GEOS-4 are too low by factors of about 5 and 2, respectively. With respect to vertical distribution, clouds in GEOS-4 are optically much thinner in the tropical upper troposphere compared to those in GEOS1-STRAT and GEOS-3. Assuming linear scaling of cloud optical depth with cloud fraction in a grid-box, our model calculations indicate that the changes in global mean hydroxyl radical (OH) due to the radiative effect of clouds in June are about -1% (GEOS1-STRAT), 1% (GEOS-3), and 14% (GEOS-4), respectively. The effects on global mean OH are similar for GEOS1-STRAT and GEOS-3 due to similar vertical distributions of clouds, even though the column cloud optical depths in the two archives differ by a factor of about 5. Clouds in GEOS-4 have a much larger impact on global mean OH because more solar radiation is

  13. Sensitive Data Protection Based on Intrusion Tolerance in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Jingyu Wang

    2011-02-01

    Full Text Available Service integration and supply on-demand coming from cloud computing can significantly improve the utilization of computing resources and reduce power consumption of per service, and effectively avoid the error of computing resources. However, cloud computing is still facing the problem of intrusion tolerance of the cloud computing platform and sensitive data of new enterprise data center. In order to address the problem of intrusion tolerance of cloud computing platform and sensitive data in new enterprise data center, this paper constructs a virtualization intrusion tolerance system based on cloud computing by researching on the existing virtualization technology, and then presents a method of intrusion tolerance to protect sensitive data in cloud data center based on virtual adversary structure by utilizing secret sharing. This system adopts the method of hybrid fault model, active and passive replicas, state update and transfer, proactive recovery and diversity, and initially implements to tolerate F faulty replicas in N=2F+1 replicas and ensure that only F+1 active replicas to execute during the intrusion-free stage. The remaining replicas are all put into passive mode, which significantly reduces the resource consuming in cloud platform. At last we prove the reconstruction and confidentiality property of sensitive data by utilizing secret sharing.

  14. Global Observations of Cloud-Sensitive Aerosol Loadings in Low Level Marine Clouds

    Science.gov (United States)

    Cermak, J.; Andersen, H.; Fuchs, J.; Schwarz, K.

    2016-12-01

    This contribution presents a method to characterize the nonlinear relationship between aerosols and cloud droplets in marine boundary layer clouds based on global MODIS observations.Clouds play a crucial role in the climate system as their radiative properties and precipitation patterns significantly impact the Earth's energy balance. Cloud properties are determined by environmental conditions, as cloud formation requires the availability of water vapour ("precipitable water") and condensation nuclei in sufficiently saturated conditions. The ways in which aerosols as condensation nuclei in particular influence the optical, micro- and macrophysical properties of clouds are one of the largest remaining uncertainties in climate-change research. In particular, cloud droplet size is believed to be impacted, and thereby cloud reflectivity, lifetime, and precipitation susceptibility. However, the connection between aerosols and cloud droplets is nonlinear, due to various factors and processes. The impact of aerosols on cloud properties is thought to be strongest with low aerosol loadings, whereas it saturates with high aerosol loadings. To gain understanding of the processes that govern low cloud water properties in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. In this study, global Terra MODIS L3 data sets are used to identify at what aerosol loadings cloud droplet size shows the greatest sensitivity to changes in aerosol loading in marine boundary layer clouds. MODIS observations are binned in classes of aerosol loading to identify at what loading aerosol impact on cloud droplets is the strongest and at which loading it saturates. Results are connected to ERA-Interim and MACC data sets to identify connections of detected patterns to meteorology and aerosol species.

  15. Magellan: experiences from a Science Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya; Zbiegel, Piotr; Campbell, Scott; Bradshaw, Rick; Canon, Richard; Coghlan, Susan; Sakrejda, Iwona; Desai, Narayan; Declerck, Tina; Liu, Anping

    2011-02-02

    Cloud resources promise to be an avenue to address new categories of scientific applications including data-intensive science applications, on-demand/surge computing, and applications that require customized software environments. However, there is a limited understanding on how to operate and use clouds for scientific applications. Magellan, a project funded through the Department of Energy?s (DOE) Advanced Scientific Computing Research (ASCR) program, is investigating the use of cloud computing for science at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Facility (NERSC). In this paper, we detail the experiences to date at both sites and identify the gaps and open challenges from both a resource provider as well as application perspective.

  16. Magellan: experiences from a Science Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya; Zbiegel, Piotr; Campbell, Scott; Bradshaw, Rick; Canon, Richard; Coghlan, Susan; Sakrejda, Iwona; Desai, Narayan; Declerck, Tina; Liu, Anping

    2011-02-02

    Cloud resources promise to be an avenue to address new categories of scientific applications including data-intensive science applications, on-demand/surge computing, and applications that require customized software environments. However, there is a limited understanding on how to operate and use clouds for scientific applications. Magellan, a project funded through the Department of Energy?s (DOE) Advanced Scientific Computing Research (ASCR) program, is investigating the use of cloud computing for science at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Facility (NERSC). In this paper, we detail the experiences to date at both sites and identify the gaps and open challenges from both a resource provider as well as application perspective.

  17. Global observations of cloud-sensitive aerosol loadings in low-level marine clouds

    Science.gov (United States)

    Andersen, H.; Cermak, J.; Fuchs, J.; Schwarz, K.

    2016-11-01

    Aerosol-cloud interaction is a key component of the Earth's radiative budget and hydrological cycle, but many facets of its mechanisms are not yet fully understood. In this study, global satellite-derived aerosol and cloud products are used to identify at what aerosol loading cloud droplet size shows the greatest sensitivity to changes in aerosol loading (ACSmax). While, on average, cloud droplet size is most sensitive at relatively low aerosol loadings, distinct spatial and temporal patterns exist. Possible determinants for these are identified with reanalysis data. The magnitude of ACSmax is found to be constrained by the total columnar water vapor. Seasonal patterns of water vapor are reflected in the seasonal patterns of ACSmax. Also, situations with enhanced turbulent mixing are connected to higher ACSmax, possibly due to intensified aerosol activation. Of the analyzed aerosol species, dust seems to impact ACSmax the most, as dust particles increase the retrieved aerosol loading without substantially increasing the concentration of cloud condensation nuclei.

  18. Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution

    Science.gov (United States)

    Carbajal Henken, C. K.; Doppler, L.; Lindstrot, R.; Preusker, R.; Fischer, J.

    2015-08-01

    This work presents a study on the sensitivity of two satellite cloud height retrievals to cloud vertical distribution. The difference in sensitivity is exploited by relating the difference in the retrieved cloud heights to cloud vertical extent. The two cloud height retrievals, performed within the Freie Universität Berlin AATSR MERIS Cloud (FAME-C) algorithm, are based on independent measurements and different retrieval techniques. First, cloud-top temperature (CTT) is retrieved from Advanced Along Track Scanning Radiometer (AATSR) measurements in the thermal infrared. Second, cloud-top pressure (CTP) is retrieved from Medium Resolution Imaging Spectrometer (MERIS) measurements in the oxygen-A absorption band and a nearby window channel. Both CTT and CTP are converted to cloud-top height (CTH) using atmospheric profiles from a numerical weather prediction model. First, a sensitivity study using radiative transfer simulations in the near-infrared and thermal infrared was performed to demonstrate, in a quantitative manner, the larger impact of the assumed cloud vertical extinction profile, described in terms of shape and vertical extent, on MERIS than on AATSR top-of-atmosphere measurements. Consequently, cloud vertical extinction profiles will have a larger influence on the MERIS than on the AATSR cloud height retrievals for most cloud types. Second, the difference in retrieved CTH (ΔCTH) from AATSR and MERIS are related to cloud vertical extent (CVE), as observed by ground-based lidar and radar at three ARM sites. To increase the impact of the cloud vertical extinction profile on the MERIS-CTP retrievals, single-layer and geometrically thin clouds are assumed in the forward model. Similarly to previous findings, the MERIS-CTP retrievals appear to be close to pressure levels in the middle of the cloud. Assuming a linear relationship, the ΔCTH multiplied by 2.5 gives an estimate on the CVE for single-layer clouds. The relationship is stronger for single

  19. Results from the CERN pilot CLOUD experiment

    CERN Document Server

    Duplissy, J; Reichl, U; Winkler, P M; Pedersen, E; Makhmutov, V; Viisanen, Y; Kulmala, M; Wilhelmsson, M; Weingartner, E; Avngaard, M; Curtius, J; Veenhof, R; Laakso, L; Gagne, S; Harrison, R G; Sipila, M; David, A; Seinfeld, J H; Nieminen, T; Verheggen, B; Aplin, K L; Stratmann, F; Arnold, F; Makela, J; Kellett, B; Fastrup, B; Marsh, N D; Lockwood, M; Carslaw, K; Wehrle, G; Aufmhoff, H; Pedersen, J O P; Baltensperger, U; Onnela, A; Laaksonen, A; Enghoff, M B; Svensmark, J; Wex, H; Lillestol, E; Wagner, P E; Kirkby, J; Stozhkov, Y; Polny, J; Bondo, T; Bingham, R; Svensmark, H

    2010-01-01

    During a 4-week run in October-November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm(-3) s(-1), and growth rates between 2 and 37 nm h(-1). The corresponding H2SO4 concentrations were typically around 10(6) cm(-3) or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid...

  20. Aerosol-Cloud-Precipitation Interactions in WRF Model:Sensitivity to Autoconversion Parameterization

    Institute of Scientific and Technical Information of China (English)

    解小宁; 刘晓东

    2015-01-01

    Cloud-to-rain autoconversion process is an important player in aerosol loading, cloud morphology, and precipitation variations because it can modulate cloud microphysical characteristics depending on the par-ticipation of aerosols, and aff ects the spatio-temporal distribution and total amount of precipitation. By applying the Kessler, the Khairoutdinov-Kogan (KK), and the Dispersion autoconversion parameterization schemes in a set of sensitivity experiments, the indirect eff ects of aerosols on clouds and precipitation are investigated for a deep convective cloud system in Beijing under various aerosol concentration backgrounds from 50 to 10000 cm−3. Numerical experiments show that aerosol-induced precipitation change is strongly dependent on autoconversion parameterization schemes. For the Kessler scheme, the average cumulative precipitation is enhanced slightly with increasing aerosols, whereas surface precipitation is reduced signifi-cantly with increasing aerosols for the KK scheme. Moreover, precipitation varies non-monotonically for the Dispersion scheme, increasing with aerosols at lower concentrations and decreasing at higher concentrations. These diff erent trends of aerosol-induced precipitation change are mainly ascribed to diff erences in rain wa-ter content under these three autoconversion parameterization schemes. Therefore, this study suggests that accurate parameterization of cloud microphysical processes, particularly the cloud-to-rain autoconversion process, is needed for improving the scientifi c understanding of aerosol-cloud-precipitation interactions.

  1. Results from the CERN pilot CLOUD experiment

    Directory of Open Access Journals (Sweden)

    J. Duplissy

    2009-09-01

    Full Text Available During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the CLOUD1 experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm−3s−1, and growth rates between 2 and 37 nm h−1. The corresponding H2SO4 concentrations were typically around 106 cm−3 or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in

  2. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stephen A.; McCoy, Renata; Morrison, H.; Ackerman, Andrew; Avramov, Alexander; DeBoer, GIJS; Chen, Mingxuan; Cole, Jason N.; DelGenio, Anthony D.; Falk, Michael; Foster, Mike; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat; Larson, Vince; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg; Menon, Surabi; Neggers, Roel; Park, Sungsu; Poellot, M. R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben; Shupe, Matthew D.; Spangenberg, D.; Sud, Yogesh; Turner, David D.; Veron, Dana; Von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, G.

    2009-05-21

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the ARM Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of –15°C. While the cloud was water dominated, ice precipitation appears to have lowered the liquid water path to about 2/3 of the adiabatic value. The simulations, which were performed by seventeen single column and nine cloud-resolving models, generally underestimate the liquid water path with the median single-column and cloud-resolving model liquid water path a factor of 3 smaller than observed. While the simulated ice water path is in general agreement with the observed values, results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice phase microphysics is responsible for the strong model underestimate of liquid water path. Although no single factor is found to lead to a good simulation, these results emphasize the need for care in the model treatment of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be benchmark for model simulations of mixed-phase clouds.

  3. Liquid and Ice Cloud Microphysics in the CSU General Circulation Model. Part III: Sensitivity to Modeling Assumptions.

    Science.gov (United States)

    Fowler, Laura D.; Randall, David A.

    1996-03-01

    The inclusion of cloud microphysical processes in general circulation models makes it possible to study the multiple interactions among clouds, the hydrological cycle, and radiation. The gaps between the temporal and spatial scales at which such cloud microphysical processes work and those at which general circulation models presently function force climate modelers to crudely parameterize and simplify the various interactions among the different water species (namely, water vapor, cloud water, cloud ice, rain, and snow) and to use adjustable parameters to which large-scale models can be highly sensitive. Accordingly, the authors have investigated the sensitivity of the climate, simulated with the Colorado State University general circulation model, to various aspects of the parameterization of cloud microphysical processes and its interactions with the cumulus convection and radiative transfer parameterizations.The results of 120-day sensitivity experiments corresponding to perpetual January conditions have been compared with those of a control simulation in order to 1 ) determine the importance of advecting cloud water, cloud ice, rain, and snow at the temporal and spatial scale resolutions presently used in the model; 2) study the importance of the formation of extended stratiform anvils at the tops of cumulus towers, 3) analyze the role of mixed-phase clouds in determining the partitioning among cloud water, cloud ice, rain, and snow and, hence, their impacts on the simulated cloud optical properties; 4) evaluate the sensitivity of the atmospheric moisture budget and precipitation rates to a change in the fall velocities of rain and snow; 5) determine the model's sensitivity to the prescribed thresholds of autoconversion of cloud water to rain and cloud ice to snow; and 6) study the impact of the collection of supercooled cloud water by snow, as well as accounting for the cloud optical properties of snow.Results are presented in terms of 30-day mean differences

  4. Results from the CERN pilot CLOUD experiment

    Directory of Open Access Journals (Sweden)

    J. Duplissy

    2010-02-01

    Full Text Available During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm−3s−1, and growth rates between 2 and 37 nm h−1. The corresponding H2O concentrations were typically around 106 cm−3 or less. The experimentally-measured formation rates and htwosofour concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in

  5. The Sensitivity of Diagnostic Radiative Properties to Cloud Microphysics among Cloud-Resolving Model Simulations.

    Science.gov (United States)

    Xu, Kuan-Man

    2005-04-01

    This study examines the sensitivity of diagnosed radiative fluxes and heating rates to different treatments of cloud microphysics among cloud-resolving models (CRMs). The domain-averaged CRM outputs are used in this calculation. The impacts of the cloud overlap and uniform hydrometeor assumptions are examined using outputs having spatially varying cloud fields from a single CRM. It is found that the cloud overlap assumption impacts the diagnosis more significantly than the uniform hydrometeor assumption for all radiative fluxes. This is also the case for the longwave radiative cooling rate except for a layer above 7 km where it is more significantly impacted by the uniform hydrometeor assumption. The radiative cooling above upper-tropospheric anvils and the warming below these clouds are overestimated by about 0.5 K day-1 using the domain-averaged outputs. These results are used to further quantify intermodel differences in radiative properties due to different treatments of cloud microphysics among 10 CRMs. The magnitudes of the intermodel differences, as measured by the deviations from the consensus of 10 CRMs, are found to be smaller than those due to the cloud overlap assumption and comparable to those due to the uniform hydrometeor assumption for most shortwave radiative fluxes and the net radiative fluxes at the top of the atmosphere (TOA) and at the surface. For all longwave radiative fluxes, they are smaller than those due to cloud overlap and uniform hydrometeor assumptions. The consensus of all diagnosed radiative fluxes except for the surface downward shortwave flux agrees with observations to a degree that is close to the uncertainties of satellite- and ground-based measurements.

  6. Performing quantum computing experiments in the cloud

    Science.gov (United States)

    Devitt, Simon J.

    2016-09-01

    Quantum computing technology has reached a second renaissance in the past five years. Increased interest from both the private and public sector combined with extraordinary theoretical and experimental progress has solidified this technology as a major advancement in the 21st century. As anticipated my many, some of the first realizations of quantum computing technology has occured over the cloud, with users logging onto dedicated hardware over the classical internet. Recently, IBM has released the Quantum Experience, which allows users to access a five-qubit quantum processor. In this paper we take advantage of this online availability of actual quantum hardware and present four quantum information experiments. We utilize the IBM chip to realize protocols in quantum error correction, quantum arithmetic, quantum graph theory, and fault-tolerant quantum computation by accessing the device remotely through the cloud. While the results are subject to significant noise, the correct results are returned from the chip. This demonstrates the power of experimental groups opening up their technology to a wider audience and will hopefully allow for the next stage of development in quantum information technology.

  7. Ship Emission Influence on Clouds: A Sensitivity Assessment of ECHAM5-HAM

    Science.gov (United States)

    Peters, Karsten; Quaas, Johannes; Stier, Philip

    2010-05-01

    Clouds are of importance in the climate system because of their interaction with the hydrological cycle and the radiant energy flow. Anthropogenic activities come in hand with emissions of aerosols and aerosol precursor gases, making the quantification of their impact on cloud properties, e.g. cloud droplet number concentration, cloud lifetime or even cloud top height, a topic of ongoing research. Aerosol influence on cloud micro- and macrophysical properties are referred to as aerosol indirect effects and are subject to the largest uncertainties of all radiative forcing components of the Earth System when it comes to assessing human induced climate change. Seagoing ships are the least regulated sources of anthropogenic emissions, burning low-quality residual fuels containing high amounts of sulfur or even heavy metals. Combustion of such fuels produces, aside from gaseous species, large amounts of particulate matter (PM) consisting of elemental (black) and organic carbon, sulfate, ash and particles forming from sulfuric acid. The emitted particles can serve as cloud condensation nuclei (CCN) leading to aerosol indirect effects. In this study, we investigate the sensitivity of aerosol indirect effects as calculated by the ECHAM5-HAM aerosol-climate model with respect to ship emissions. The model is run for seven years (including a two year spinup, five years averaging for results) with a spatial resolution of 2.8° x 2.8° and prescribed sea surface properties (AMIP). We use parametrizations of aerosol cloud interactions to investigate aerosol indirect effects. Aerosol emissions from ships are provided by the recently compiled QUANTIFY emission inventory. The sensitivity runs performed use the emission of black carbon (BC) and sulfur dioxide (SO2) increased by a factor of 10(100), enabling a focus on the aerosol-cloud interactions when the marine boundary layer composition is significantly disturbed. Furthermore, experiments using increased BC(SO2) and unchanged SO

  8. Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers

    Directory of Open Access Journals (Sweden)

    K. Knobelspiesse

    2014-12-01

    Full Text Available The primary goal of this project has been to investigate if ground-based visible and near-infrared passive radiometers that have polarization sensitivity can determine the thermodynamic phase of overlying clouds, i.e. if they are comprised of liquid droplets or ice particles. While this knowledge is important by itself for our understanding of the global climate, it can also help improve cloud property retrieval algorithms that use total (unpolarized radiance to determine Cloud Optical Depth (COD. This is a potentially unexploited capability of some instruments in the NASA Aerosol Robotic Network (AERONET, which, if practical, could expand the products of that global instrument network at minimal additional cost. We performed simulations that found, for zenith observations, cloud thermodynamic phase is often expressed in the sign of the Q component of the Stokes polarization vector. We chose our reference frame as the plane containing solar and observation vectors, so the sign of Q indicates the polarization direction, parallel (positive or perpendicular (negative to that plane. Since the quantity of polarization is inversely proportional to COD, optically thin clouds are most likely to create a signal greater than instrument noise. Besides COD and instrument accuracy, other important factors for the determination of cloud thermodynamic phase are the solar and observation geometry (scattering angles between 40 and 60° are best, and the properties of ice particles (pristine particles may have halos or other features that make them difficult to distinguish from water droplets at specific scattering angles, while extreme ice crystal aspect ratios polarize more than compact particles. We tested the conclusions of our simulations using data from polarimetrically sensitive versions of the Cimel 318 sun photometer/radiometer that comprise AERONET. Most algorithms that exploit Cimel polarized observations use the Degree of Linear Polarization (Do

  9. The great dun fell cloud experiment 1993: An overview

    Science.gov (United States)

    Choularton, T. W.; Colvile, R. N.; Bower, K. N.; Gallagher, M. W.; Wells, M.; Beswick, K. M.; Arends, B. G.; Möls, J. J.; Kos, G. P. A.; Fuzzi, S.; Lind, J. A.; Orsi, G.; Facchini, M. C.; Laj, P.; Gieray, R.; Wieser, P.; Engelhardt, T.; Berner, A.; Kruisz, C.; Möller, D.; Acker, K.; Wieprecht, W.; Lüttke, J.; Levsen, K.; Bizjak, M.; Hansson, H.-C.; Cederfelt, S.-I.; Frank, G.; Mentes, B.; Martinsson, B.; Orsini, D.; Svenningsson, B.; Swietlicki, E.; Wiedensohler, A.; Noone, K. J.; Pahl, S.; Winkler, P.; Seyffer, E.; Helas, G.; Jaeschke, W.; Georgii, H. W.; Wobrock, W.; Preiss, M.; Maser, R.; Schell, D.; Dollard, G.; Jones, B.; Davies, T.; Sedlak, D. L.; David, M. M.; Wendisch, M.; Cape, J. N.; Hargreaves, K. J.; Sutton, M. A.; Storeton-West, R. L.; Fowler, D.; Hallberg, A.; Harrison, R. M.; Peak, J. D.

    The 1993 Ground-based Cloud Experiment on Great Dun Fell used a wide range of measurements of trace gases, aerosol particles and cloud droplets at five sites to study their sources and sinks especially those in cloud. These measurements have been interpreted using a variety of models. The conclusions add to our knowledge of air pollution, acidification of the atmosphere and the ground, eutrophication and climate change. The experiment is designed to use the hill cap cloud as a flow-through reactor, and was conducted in varying levels of pollution typical of much of the rural temperate continental northern hemisphere in spring-time.

  10. Simulating mixed-phase Arctic stratus clouds: Sensitivity to ice initiationmechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sednev, I.; Menon, S.; McFarquhar, G.

    2009-04-10

    The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during October 9th-10th, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-hour simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase

  11. Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms

    Directory of Open Access Journals (Sweden)

    G. McFarquhar

    2009-07-01

    Full Text Available The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9–10 October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors' concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process

  12. Sensitivity of cloud albedo to aerosol concentration and spectral dispersion of cloud droplet size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Iorga, G. [Faculty of Chemistry, University of Bucharest, Bucharest (Romania)]. E-mail: giorga@gw-chimie.math.unibuc.ro; Stefan, S. [Faculty of Physics, University of Bucharest, Bucharest (Romania)

    2007-07-15

    Both the enhancement of the aerosol number concentration and the relative dispersion of the cloud droplet size distribution (spectral dispersion) on a regional scale can modify the cloud reflectivity. This work is focused on the role that pre-cloud aerosol plays in cloud reflectivity. Log-normal aerosol size distributions were used to describe two aerosol types: marine and rural. The number of aerosols that activate to droplets was obtained based on Abdul-Razzak and Ghan's (2000) activation parameterization. The cloud albedo taking into account the spectral dispersion effect in the parameterization of cloud effective radius and in the scattering asymmetry factor has been estimated. Two different scaling factors to account for dispersion were used. The sensitivity of cloud albedo to spectral dispersion-cloud droplet number concentration relationship in connection to the changes in liquid water content (LWC), and the cloud droplet effective radius has been also investigated. We obtained higher values of effective radius when dispersion is taken into account, with respect to the base case (without considering dispersion). The inferred absolute differences in effective radius values between calculations with each of the scaling factors are below 0.8 {mu}m as LWC ranges between 0.1 and 1.0 g m-3. The optical depth decreased by up to 14% (marine), and up to 29% (continental) when dispersion is considered in both effective radius and asymmetry factor ({beta}LDR scaling factor). Correspondingly, the relative change in cloud albedo is up to 6% (marine) and up to 11% (continental) clouds. For continental clouds, the calculated effective radius when dispersion is considered fits well within the measured range of effective radius in SCAR-B project. The calculated cloud albedo when dispersion is considered shows better agreement with the estimated cloud albedo from measured effective radius in SCAR-B project than the cloud albedo calculated without dispersion. In cleaner

  13. Sensitivity to deliberate sea salt seeding of marine clouds – observations and model simulations

    Directory of Open Access Journals (Sweden)

    K. Alterskjær

    2011-10-01

    Full Text Available Sea salt seeding of marine clouds to increase their albedo is a proposed technique to counteract or slow global warming. In this study, we first investigate the susceptibility of marine clouds to sea salt injections, using observational data of cloud droplet number concentration, cloud optical depth, and liquid cloud fraction from the MODIS (Moderate Resolution Imaging Spectroradiometer instruments on board the Aqua and Terra satellites. We then compare the derived susceptibility function to a corresponding estimate from the Norwegian Earth System Model (NorESM. Results compare well between simulations and observations, showing that stratocumulus regions off the west coast of the major continents along with large regions in the Pacific and the Indian Oceans are susceptible.

    We then carry out geo-engineering experiments with a uniform increase of 10−9 kg m−2 s−1 in emissions of sea salt particles with a modal radius of 0.13 μm. The increased sea salt concentrations and the resulting change in marine cloud properties lead to a globally averaged forcing of −4.8 W m−2 at the top of the atmosphere, more than cancelling a doubling of CO2 concentrations. The forcing is large in areas found to be sensitive by using the susceptibility function, confirming its usefulness as an indicator of where to inject sea salt for maximum effect.

    Results also show that the effectiveness of sea salt seeding is reduced because the injected sea salt provide a large surface area for water vapor and gaseous sulphuric acid to condense on, thereby lowering the maximum supersaturation and suppressing the formation and lifetime of sulphate particles. In some areas, our simulations show an overall reduction in the CCN concentration and the number of activated cloud droplets decreases, resulting in a positive globally averaged forcing.

  14. Empirical modeling of plasma clouds produced by the Metal Oxide Space Clouds experiment

    Science.gov (United States)

    Pedersen, Todd R.; Caton, Ronald G.; Miller, Daniel; Holmes, Jeffrey M.; Groves, Keith M.; Sutton, Eric

    2017-05-01

    The Advanced Research Project Agency (ARPA) Long-Range Tracking And Instrumentation Radar (ALTAIR) radar at Kwajalein Atoll was used in incoherent scatter mode to measure plasma densities within two artificial clouds created by the Air Force Research Laboratory (AFRL) Metal Oxide Space Clouds (MOSC) experiment in May 2013. Optical imager, ionosonde, and ALTAIR measurements were combined to create 3-D empirical descriptions of the plasma clouds as a function of time, which match the radar measurements to within 15%. The plasma clouds closely track the location of the optical clouds, and the best fit plasma cloud widths are generally consistent with isotropic neutral diffusion. Cloud plasma densities decreased as a power of time, with exponents between -0.5 and -1.0, or much more slowly than the -1.5 predicted by diffusion. These exponents and estimates of total ion number from integration through the model volume are consistent with a scenario of slow ionization and a gradually increasing total number of ions with time, reaching a net ionization fraction of 20% after approximately half an hour. These robust representations of the plasma density are being used to study impacts of the artificial clouds on the dynamics of the background ionosphere and on RF propagation.

  15. Cosmic rays,Climate and the CERN CLOUD Experiment

    CERN Document Server

    CERN. Geneva

    2011-01-01

    For more than two centuries, scientists have been puzzled by observations of solar-climate variability yet the lack of any established physical mechanism. Some recent observations, although disputed, suggest that clouds may be influenced by cosmic rays, which are modulated by the solar wind. The CLOUD experiment aims to settle the question of whether or not cosmic rays have a climatically-significant effect on clouds by carrying out a series of carefully-controlled measurements in a large cloud chamber exposed to a beam from the CERN PS. This talk will present the scientific motivation for CLOUD and the first results, which have recently been published in Nature (Kirkby et al. (2011). Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429-433).

  16. Homomorphic encryption experiments on IBM's cloud quantum computing platform

    Science.gov (United States)

    Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-02-01

    Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

  17. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh; Ackerman, Andrew S.; Avramov, Alexander; de Boer, Gijs; Chen, Mingxuan; Cole, Jason N.S.; Del Genio, Anthony D.; Falk, Michael; Foster, Michael J.; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat F.; Larson, Vincent E.; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg M.; Menon, Surabi; Neggers, Roel A. J.; Park, Sungsu; Poellot, Michael R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben J.; Shupe, Matthew D.; Spangenberg, Douglas A.; Sud, Yogesh C.; Turner, David D.; Veron, Dana E.; von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey B.; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, Gong

    2009-02-02

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed average liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the average mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.

  18. Sensitivity of PARASOL multi-angle photo-polarimetric aerosol retrievals to cloud contamination

    Science.gov (United States)

    Stap, F. A.; Hasekamp, O.; Röckmann, T.

    2014-10-01

    An important problem in satellite remote sensing of aerosols is related to the need to perform an adequate cloud screening. If a cloud screening is applied that is not strict enough, the ground scene has the probability of residual cloud cover which causes large errors on the retrieved aerosol parameters. On the other hand, if the cloud screening procedure is too strict, too many clear sky cases, especially near-cloud scenes, will falsely be flagged cloudy. The detrimental effects of cloud contamination as well as the importance of aerosol cloud interactions that can be studied in these near-cloud scenes call for new approaches to cloud screening. Multi-angle, multi-wavelength photo-polarimetric measurements have a unique capability to distinguish between scattering by (liquid) cloud droplets and aerosol particles. In this paper the sensitivity of aerosol retrievals from multi-angle, photo-polarimetric measurements to cloud contamination is investigated and the ability to intrinsically filter the cloud contaminated scenes based on a goodness-of-fit criteria is evaluated. Hereto, an aerosol retrieval algorithm is applied to a partially clouded, synthetic data-set including partial cloud cover as well as non-cloud screened POLDER-3/PARASOL observations It is found that a goodness-of-fit filter, together with a filter on the coarse mode refractive index (mrcoarse > 1.335) and a cirrus screening adequately reject the cloud contaminated scenes. No bias nor larger SD are found in the retrieved parameters for this intrinsic cloud filter compared to the parameters retrieved in a priori cloud screened data-set (using MODIS/AQUA cloud masks) of PARASOL observations. Moreover, less high aerosol load scenes are misinterpreted as cloud contaminated. The retrieved aerosol optical thickness, single scattering albedo and Ångström exponent show good agreement with AERONET observations. Furthermore, the synthetic retrievals give confidence in the ability of the algorithm to

  19. Eastern Pacific Emitted Aerosol Cloud Experiment

    OpenAIRE

    Russell, Lynn M.; Sorooshian, Armin; Seinfeld, John H.; Albrecht, Bruce A.; Nenes, Athanasios; Ahlm, Lars; Chen, Yi-Chun; Coggon, Matthew; Craven, Jill S.; Flagan, Richard C.; Frossard, Amanda A.; Jonsson, Haflidi; Jung, Eunsil; Lin, Jack J.; Metcalf, Andrew R.

    2013-01-01

    Aerosol–cloud–radiation interactions are widely held to be the largest single source of uncertainty in climate model projections of future radiative forcing due to increasing anthropogenic emissions. The underlying causes of this uncertainty among modeled predictions of climate are the gaps in our fundamental understanding of cloud processes. There has been significant progress with both observations and models in addressing these important questions but quantifying them correctly is nontrivi...

  20. Meteorological observations in support of a hill cap cloud experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-06-01

    Humid air flows form a hill cap cloud over the Agana mountain ridge in the north-east of Tenerife. The HILLCLOUD project utilised this cloud formation to investigate the chemical and physical properties of cloud aerosols by land based observations. The project was part of the second Aerosol characterisation Experiment (ACE-2) of the International Global Atmospheric chemistry project (IGAC). The present report describes meteorological observations in support of the hill cap cloud experiment. Time-series of wind speed, wind direction, temperature and humidity were collected at ground-based meteorological stations during a period starting one year in advance of the main campaign. A series of radiosonde detecting the upstream stability and wind profile were launched during the main campaign. (au) 5 tabs., 32 ills., 6 refs.

  1. Sensitivity of PARASOL multi-angle photopolarimetric aerosol retrievals to cloud contamination

    Science.gov (United States)

    Stap, F. A.; Hasekamp, O. P.; Röckmann, T.

    2015-03-01

    An important problem in satellite remote sensing of aerosols is related to the need to perform an adequate cloud screening. If a cloud screening is applied that is not strict enough, the ground scene has the probability of residual cloud cover which causes large errors on the retrieved aerosol parameters. On the other hand, if the cloud-screening procedure is too strict, too many clear sky cases, especially near-cloud scenes, will falsely be flagged cloudy. The detrimental effects of cloud contamination as well as the importance of aerosol cloud interactions that can be studied in these near-cloud scenes call for new approaches to cloud screening. Multi-angle multi-wavelength photopolarimetric measurements have a unique capability to distinguish between scattering by (liquid) cloud droplets and aerosol particles. In this paper the sensitivity of aerosol retrievals from multi-angle photopolarimetric measurements to cloud contamination is investigated and the ability to intrinsically filter the cloud-contaminated scenes based on a goodness-of-fit criteria is evaluated. Hereto, an aerosol retrieval algorithm is applied to a partially clouded over-ocean synthetic data set as well as non-cloud-screened over-ocean POLDER-3/PARASOL observations. It is found that a goodness-of-fit filter, together with a filter on the coarse mode refractive index (mrcoarse > 1.335) and a cirrus screening, adequately rejects the cloud-contaminated scenes. No bias or larger SD are found in the retrieved parameters for this intrinsic cloud filter compared to the parameters retrieved in a priori cloud-screened data set (using MODIS/AQUA cloud masks) of PARASOL observations. Moreover, less high-aerosol load scenes are misinterpreted as cloud contaminated. The retrieved aerosol optical thickness, single scattering albedo and Ångström exponent show good agreement with AERONET observations. Furthermore, the synthetic retrievals give confidence in the ability of the algorithm to correctly

  2. Sensitivity analysis of upwelling thermal radiance in presence of clouds

    Science.gov (United States)

    Subramanian, S. V.; Tiwari, S. N.; Suttles, J. T.

    1981-01-01

    Total upwelling radiance at the top of the atmosphere is evaluated theoretically in the presence of clouds. The influence of cloud heights, thicknesses and different cloud covers on the upwelling radiance is also investigated. The characteristics of the two cloud types considered in this study closely correspond to altocumulus and cirrus with the cloud emissivity as a function of its liquid water (or ice) content. For calculation of the integrated transmittance of atmospheric gases such as, H2O, CO2, O3, and N2O, the Quasi Random Band (QRB) model approach is adopted. Results are obtained in three different spectral ranges and are compared with the clearsky radiance results. It is found that the difference between the clearsky and cloudy radiance increases with increasing cloud height and liquid water content. This difference also decreases as the surface temperature approaches the value of the cloud top temperature.

  3. Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zeng-Zhen [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Huang, Bohua; Schneider, Edwin K. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Hou, Yu-Tai; Yang, Fanglin [NCEP/NWS/NOAA, Environmental Modeling Center, Camp Springs, MD (United States); Wang, Wanqiu [NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Stan, Cristiana [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2011-05-15

    In this work, we examine the sensitivity of tropical mean climate and seasonal cycle to low clouds and cloud liquid water path (CLWP) by prescribing them in the NCEP climate forecast system (CFS). It is found that the change of low cloud cover alone has a minor influence on the amount of net shortwave radiation reaching the surface and on the warm biases in the southeastern Atlantic. In experiments where CLWP is prescribed using observations, the mean climate in the tropics is improved significantly, implying that shortwave radiation absorption by CLWP is mainly responsible for reducing the excessive surface net shortwave radiation over the southern oceans in the CFS. Corresponding to large CLWP values in the southeastern oceans, the model generates large low cloud amounts. That results in a reduction of net shortwave radiation at the ocean surface and the warm biases in the sea surface temperature in the southeastern oceans. Meanwhile, the cold tongue and associated surface wind stress in the eastern oceans become stronger and more realistic. As a consequence of the overall improvement of the tropical mean climate, the seasonal cycle in the tropical Atlantic is also improved. Based on the results from these sensitivity experiments, we propose a model bias correction approach, in which CLWP is prescribed only in the southeastern Atlantic by using observed annual mean climatology of CLWP. It is shown that the warm biases in the southeastern Atlantic are largely eliminated, and the seasonal cycle in the tropical Atlantic Ocean is significantly improved. Prescribing CLWP in the CFS is then an effective interim technique to reduce model biases and to improve the simulation of seasonal cycle in the tropics. (orig.)

  4. Sensitivity to deliberate sea salt seeding of marine clouds – observations and model simulations

    Directory of Open Access Journals (Sweden)

    K. Alterskjær

    2012-03-01

    Full Text Available Sea salt seeding of marine clouds to increase their albedo is a proposed technique to counteract or slow global warming. In this study, we first investigate the susceptibility of marine clouds to sea salt injections, using observational data of cloud droplet number concentration, cloud optical depth, and liquid cloud fraction from the MODIS (Moderate Resolution Imaging Spectroradiometer instruments on board the Aqua and Terra satellites. We then compare the derived susceptibility function to a corresponding estimate from the Norwegian Earth System Model (NorESM. Results compare well between simulations and observations, showing that stratocumulus regions off the west coast of the major continents along with large regions over the Pacific and the Indian Oceans are susceptible. At low and mid latitudes the signal is dominated by the cloud fraction.

    We then carry out geo-engineering experiments with a uniform increase over ocean of 10−9 kg m−2 s−1 in emissions of sea salt particles with a dry modal radius of 0.13 μm, an emission strength and areal coverage much greater than proposed in earlier studies. The increased sea salt concentrations and the resulting change in marine cloud properties lead to a globally averaged forcing of −4.8 W m−2 at the top of the atmosphere, more than cancelling the forcing associated with a doubling of CO2 concentrations. The forcing is large in areas found to be sensitive by using the susceptibility function, confirming its usefulness as an indicator of where to inject sea salt for maximum effect.

    Results also show that the effectiveness of sea salt seeding is reduced because the injected sea salt provides a large surface area for water vapor and gaseous sulphuric acid to condense on, thereby lowering the maximum supersaturation and suppressing the formation and lifetime of sulphate particles. In some areas, our simulations show an

  5. Fog Computing to protect real and sensitivity information in Cloud

    OpenAIRE

    Thogaricheti Ashwini; Anuradha.S.G

    2015-01-01

    Cloud computing can simply be described as computing based on the internet. In the past, people depended on physical computer storage or servers to run their programs. However, with the introduction of cloud computing, people as well as business enterprises can now access their programs through the internet. Due this ease, software companies and other agencies are shifting more towards cloud computing environment. To achieve better operational efficiency in many organizations and ...

  6. Artificial ionospheric modification: The Metal Oxide Space Cloud experiment

    Science.gov (United States)

    Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M.

    2017-05-01

    Clouds of vaporized samarium (Sm) were released during sounding rocket flights from the Reagan Test Site, Kwajalein Atoll in May 2013 as part of the Metal Oxide Space Cloud (MOSC) experiment. A network of ground-based sensors observed the resulting clouds from five locations in the Republic of the Marshall Islands. Of primary interest was an examination of the extent to which a tailored radio frequency (RF) propagation environment could be generated through artificial ionospheric modification. The MOSC experiment consisted of launches near dusk on two separate evenings each releasing 6 kg of Sm vapor at altitudes near 170 km and 180 km. Localized plasma clouds were generated through a combination of photoionization and chemi-ionization (Sm + O → SmO+ + e-) processes producing signatures visible in optical sensors, incoherent scatter radar, and in high-frequency (HF) diagnostics. Here we present an overview of the experiment payloads, document the flight characteristics, and describe the experimental measurements conducted throughout the 2 week launch window. Multi-instrument analysis including incoherent scatter observations, HF soundings, RF beacon measurements, and optical data provided the opportunity for a comprehensive characterization of the physical, spectral, and plasma density composition of the artificial plasma clouds as a function of space and time. A series of companion papers submitted along with this experimental overview provide more detail on the individual elements for interested readers.

  7. The role of clouds in climate model bias and sensitivity

    NARCIS (Netherlands)

    Lacagnina, C.

    2014-01-01

    Clouds are prominent in the climate system, since they play a major role in the way energy and water are cycled through the atmosphere. One of the most relevant impacts of the clouds on the earth's climate is their interaction with the radiative fluxes. Changes in this interaction in response to an

  8. The role of clouds in climate model bias and sensitivity

    NARCIS (Netherlands)

    Lacagnina, C.

    2014-01-01

    Clouds are prominent in the climate system, since they play a major role in the way energy and water are cycled through the atmosphere. One of the most relevant impacts of the clouds on the earth's climate is their interaction with the radiative fluxes. Changes in this interaction in response to an

  9. Fog Computing to protect real and sensitivity information in Cloud

    Directory of Open Access Journals (Sweden)

    Thogaricheti Ashwini

    2015-03-01

    Full Text Available Cloud computing can simply be described as computing based on the internet. In the past, people depended on physical computer storage or servers to run their programs. However, with the introduction of cloud computing, people as well as business enterprises can now access their programs through the internet. Due this ease, software companies and other agencies are shifting more towards cloud computing environment. To achieve better operational efficiency in many organizations and small or medium agencies is using Cloud environment for managing their data. It is a combination of a number of computing strategies and concepts such as Service Oriented Architecture (SOA, virtualization and other which rely on the Internet. Cloud Computing provides an easy way for accessing, managing and computation of user data, but it also has some severe security risks. Very common risks now days are data theft attacks. Data theft considered one of the top threats to cloud computing by the Cloud Security Alliance is. To deal with such cases and malicious intruders there are some techniques which are used to secure user data. A new technology called “Fog computing” is gaining attention of the cloud users nowadays. Fog computing improves the Quality of service and also reduces latency. According to Cisco, due to its wide geographical distribution the Fog computing is well suited for real time analytics and big data.Fog computing is a paradigm that extends Cloud computing and services to the edge of the network. Similar to Cloud, Fog provides data, compute, storage, and application services to end-users.

  10. Terahertz Remote Sensing of Ice Clouds - Sensitivity on Ice Dielectric Properties

    Science.gov (United States)

    Mendrok, J.; Baron, P.; Kasai, Y.

    2007-12-01

    simulated observation spectra arising from applying the different ice refractive index data. Furthermore, in order to derive the uncertainty in retrieved cloud properties the sensitivity of the atmospheric spectra to the ice refractive index on the one hand and cloud ice content as well as particle size on the other hand is compared. From that, conclusions will be drawn on requirements for future experiments to measure dielectric properties of ice for geophysical applications.

  11. Sensitivity of the hydrologic cycle to cloud changes in warm climates

    Science.gov (United States)

    Carlson, Henrik; Caballero, Rodrigo

    2016-04-01

    Climates of the deep past have posed the longstanding challenge to understand which mechanisms maintained very warm climates. Warm climates have been hard to simulate without very high CO2 concentrations compared to estimates from proxy data. Large climate sensitivity implies a route to warm temperatures without very high concentrations of CO2. In at least one model cloud feedbacks play a central role in increasing climate sensitivity with temperature. However, it is hard to evaluate cloud feedbacks using proxies. On the other hand, there are proxies that provide information about the hydrologic cycle for example through estimating aridity and isotope analysis of leaf wax. Cloud feedbacks could influence the hydrologic cycle through a change in the shortwave radiative flux at the surface that causes a change in latent heat flux and thereby a change in precipitation. We study the impact of clouds in a general circulation model for a broad range of temperatures. One set of simulations with variable clouds is compared to a set of simulations where clouds are represented by a climatology. Our aim to provide a constraint for cloud feedbacks based on hydrology proves elusive. Precipitation change with temperature is very similar regardless of cloud treatment and there is no saturation effect in precipitation as seen in idealized models. However, there is a large change in shortwave absorption by atmospheric water vapor. Our results indicate that the hydrologic cycle is not sensitive to cloud representation in Eocene-like climates but correct representation of shortwave absorption is essential.

  12. Sensitivity studies of developing convection in a cloud-resolving model

    Science.gov (United States)

    Petch, J. C.

    2006-01-01

    Cloud-resolving models (CRMs) remain an important tool for providing detailed process information about convection. In this short paper I focus on the development of deep convection and consider what can be considered a minimum expense benchmark simulation for comparison with a numerical weather-prediction model. To decide this a range of sensitivity studies are presented to aspects of the experimental set-up which strongly impact the computational expense. Many of the sensitivities shown in these CRM experiments are quite different to those seen in previous papers which have tended to focus more on deep active convection. Here it is shown that for the case-study presented a minimum expense benchmark simulation must be a 3D simulation. A 200 m horizontal grid length and a domain of 25 km are also required to capture the most important processes.

  13. New Approaches to Derive Aerosol-Cloud Sensitivity from Global Observations

    Science.gov (United States)

    Andersen, Hendrik; Cermak, Jan; Fuchs, Julia

    2017-04-01

    This contribution presents novel satellite-based approaches to analyze interactions between aerosols and marine liquid water clouds (ACI) on a global scale. Clouds play a central role in the Earth's radiative budget by increasing the albedo but also by interacting with outgoing thermal radiation, leading to a net cooling effect. Cloud properties are determined by environmental conditions, as cloud formation requires sufficiently saturated conditions as well as condensation nuclei on which the water vapor can condense. The ways in which aerosols influence the optical, micro- and macrophysical properties of clouds as condensation nuclei are among the largest remaining uncertainties in climate research. In particular, cloud droplet size is believed to be impacted, and subsequently cloud reflectivity, lifetime, and precipitation susceptibility may be modified. Advances in the understanding of the processes that govern liquid-water cloud properties are of great importance in order to increase accuracy of climate model predictions of a changing climate. Two methods that illustrate how global satellite retrievals may be combined with reanalysis data sets to enhance knowledge on global patterns of ACI are presented: 1. A novel change-point analysis is presented to detect aerosol loadings at which cloud droplet size shows the greatest sensitivity to changes in aerosol loading. The method is applied to Terra MODIS L3 data sets; patterns of the maximum aerosol-cloud sensitivity are analyzed. Results point towards the importance of water-vapor availability as the framework in which ACI take place. 2. In a multivariate approach to analyzing ACI on a system scale, global monthly aerosol, cloud and meteorology data sets are applied in artificial neural networks (ANN). The ability of ANNs to predict global cloud patterns is demonstrated and sensitivities are subsequently derived. On this basis, the magnitude of aerosol indirect effects is compared to other determinants, pointing

  14. Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzei P.; Ackerman, Andrew S.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven; Arnold, George; Van Diedenhoven, Bastiaan; hide

    2015-01-01

    We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website.

  15. Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzei P.; Ackerman, Andrew S.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven; Arnold, George; Van Diedenhoven, Bastiaan; Chowdhary, Jacek; Ottaviani, Matteo; Knobelspiesse, Kirk D.

    2015-01-01

    We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website.

  16. Inverse modeling of cloud-aerosol interactions -- Part 2: Sensitivity tests on liquid phase clouds using a Markov Chain Monte Carlo based simulation approach

    NARCIS (Netherlands)

    Partridge, D.G.; Vrugt, J.A.; Tunved, P.; Ekman, A.M.L.; Struthers, H.; Sooroshian, A.

    2012-01-01

    This paper presents a novel approach to investigate cloud-aerosol interactions by coupling a Markov chain Monte Carlo (MCMC) algorithm to an adiabatic cloud parcel model. Despite the number of numerical cloud-aerosol sensitivity studies previously conducted few have used statistical analysis tools t

  17. Sensitivity of Marine Warm Cloud Retrieval Statistics to Algorithm Choices: Examples from MODIS Collection 6

    Science.gov (United States)

    Platnick, S.; Wind, G.; Zhang, Z.; Ackerman, S. A.; Maddux, B. C.

    2012-12-01

    The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the 1.6, 2.1, and 3.7 μm spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "not-clear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud edges (defined by immediate adjacency to "clear" MOD/MYD35 pixels) as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the 1D cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.

  18. Sensitivity of Marine Warm Cloud Retrieval Statistics to Algorithm Choices: Examples from MODIS Collection 6

    Science.gov (United States)

    Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent

    2012-01-01

    The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.

  19. Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-10

    The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available.

  20. A SCHEDULING TECHNIQUE FOR QOS SENSITIVE JOBS IN CLOUD

    Directory of Open Access Journals (Sweden)

    S.P.Jeno Lovesum

    2014-07-01

    Full Text Available The aim of this paper is to introduce a new algorithm for QOS based resource scheduling. Cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources based on service-level agreements established through negotiation between the service provider and consumers. Resource scheduling, which is a part of resource management is an important process that takes place in storage cloud which falls under IaaS cloud, so that the available resources may be properly allocated to the requesting tasks in a best fit manner so that no resources are wasted. In this paper a new algorithm is designed for task scheduling to minimize memory wastage since our task is to store some files in the storage cloud, task completion time and task response time. The task manager checks all the virtual machine and assigns the task to proper virtual machine which will have least memory wastage.

  1. Arctic Boreal Vulnerability Experiment (ABoVE) Science Cloud

    Science.gov (United States)

    Duffy, D.; Schnase, J. L.; McInerney, M.; Webster, W. P.; Sinno, S.; Thompson, J. H.; Griffith, P. C.; Hoy, E.; Carroll, M.

    2014-12-01

    The effects of climate change are being revealed at alarming rates in the Arctic and Boreal regions of the planet. NASA's Terrestrial Ecology Program has launched a major field campaign to study these effects over the next 5 to 8 years. The Arctic Boreal Vulnerability Experiment (ABoVE) will challenge scientists to take measurements in the field, study remote observations, and even run models to better understand the impacts of a rapidly changing climate for areas of Alaska and western Canada. The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center (GSFC) has partnered with the Terrestrial Ecology Program to create a science cloud designed for this field campaign - the ABoVE Science Cloud. The cloud combines traditional high performance computing with emerging technologies to create an environment specifically designed for large-scale climate analytics. The ABoVE Science Cloud utilizes (1) virtualized high-speed InfiniBand networks, (2) a combination of high-performance file systems and object storage, and (3) virtual system environments tailored for data intensive, science applications. At the center of the architecture is a large object storage environment, much like a traditional high-performance file system, that supports data proximal processing using technologies like MapReduce on a Hadoop Distributed File System (HDFS). Surrounding the storage is a cloud of high performance compute resources with many processing cores and large memory coupled to the storage through an InfiniBand network. Virtual systems can be tailored to a specific scientist and provisioned on the compute resources with extremely high-speed network connectivity to the storage and to other virtual systems. In this talk, we will present the architectural components of the science cloud and examples of how it is being used to meet the needs of the ABoVE campaign. In our experience, the science cloud approach significantly lowers the barriers and risks to organizations

  2. The influence of extratropical cloud phase and amount feedbacks on climate sensitivity

    Science.gov (United States)

    Frey, William R.; Kay, Jennifer E.

    2017-07-01

    Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.

  3. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. II: Multi layered cloud

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H.; McCoy, Renata; Klein, Stephen A.; Xie, Shaocheng; Luo, Yali; Avramov, Alexander; Chen, Mingxuan; Cole, Jason N.; Falk, Michael; Foster, Mike; Del Genio, Anthony D.; Harrington, Jerry Y.; Hoose, Corinna; Khrairoutdinov, Marat; Larson, Vince; Liu, Xiaohong; McFarquhar, Greg; Poellot, M. R.; Von Salzen, Knut; Shipway, Ben; Shupe, Matthew D.; Sud, Yogesh C.; Turner, David D.; Veron, Dana; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey; Xu, Kuan-Man; Yang, Fanglin; Zhang, G.

    2009-05-21

    Results are presented from an intercomparison of single-column and cloud resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, the cloud-resolving models and models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models also tend to produce a larger cloud fraction than the single column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  4. Evolution of particle composition in CLOUD nucleation experiments

    CERN Document Server

    Keskinen, H; Joutsensaari, J; Tsagkogeorgas, G; Duplissy, J; Schobesberger, S; Gysel, M; Riccobono, F; Bianchi, F; Yli-Juuti, T; Lehtipalo, K; Rondo, L; Breitenlechner, M; Kupc, A; Almeida, J; Amorim, A; Dunne, E M; Downard, A J; Ehrhart, S; Franchin, A; Kajos, M K; Kirkby, J; Kurten, A; Nieminen, T; Makhmutov, V; Mathot, S; Miettinen, P; Onnela, A; Petaja, T; Praplan, A; Santos, F D; Schallhart, S; Sipila, M; Stozhkov, Y; Tome, A; Vaattovaara, P; Wimmer, D; Prevot, A; Dommen, J; Donahue, N M; Flagan, R C; Weingartner, E; Viisanen, Y; Riipinen, I; Hansel, A; Curtius, J; Kulmala, M; Worsnop, D R; Baltensperger, U; Wex, H; Stratmann, F; Laaksonen, A; Slowik, J G

    2013-01-01

    Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre europ ́ een pour la recherche nucl ́ eaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during theirgrowth from sizes of a few nanometers to tens of nanometers was derived from measured hygros...

  5. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    Energy Technology Data Exchange (ETDEWEB)

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  6. Sensitivity of the CCM climate to enhanced cloud absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kiehl, J. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States)

    1995-09-01

    Recent indications suggest that clouds may be absorbing more solar radiation than was previously thought. This research investigates some of the evidence for this hypothesis; potential physical mechanisms are briefly discussed as well. The climatic implications of the enhanced absorption are investigated using the NCAR Community Climate Model (CCM). It is found that the model`s heat budget in the tropical warm pool agrees more closely with observations when enhanced absorption is included. On the whole, the addition of enhanced absorption improves the model`s performance in the tropics and degrades it in the extra-tropics. 3 figs.

  7. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part II: Multi-layered cloud

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H; McCoy, R B; Klein, S A; Xie, S; Luo, Y; Avramov, A; Chen, M; Cole, J; Falk, M; Foster, M; Genio, A D; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; McFarquhar, G; Poellot, M; Shipway, B; Shupe, M; Sud, Y; Turner, D; Veron, D; Walker, G; Wang, Z; Wolf, A; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models tend to produce a larger cloud fraction than the single-column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  8. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. The ultimate goal is to reduce uncertainties in weather predictions and climate projections of droughts and floods in California. With the DOE G-1 aircraft and ARM Mobile Facility 2 (AMF2) well equipped for making aerosol and cloud measurements, ACAPEX focuses specifically on understanding how aerosols from local pollution and long-range transport affect the amount and phase of precipitation associated with atmospheric rivers. ACAPEX took place between January 12, 2015 and March 8, 2015 as part of CalWater 2015, which included four aircraft (DOE G-1, National Oceanic and Atmospheric Administration [NOAA] G-IV and P-3, and National Aeronautics and Space Administration [NASA] ER-2), the NOAA research ship Ron Brown, carrying onboard the AMF2, National Science Foundation (NSF)-sponsored aerosol and precipitation measurements at Bodega Bay, and the California Department of Water Resources extreme precipitation network.

  9. Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earth’s energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earth’s climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical “parameterizations” that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States

  10. Influence of galactic cosmic rays and solar variability on aerosols, clouds and climate: Results from the CLOUD experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, Joachim [Institute for Atmosph. and Envir. Sciences, Univ. of Frankfurt am Main (Germany)

    2013-07-01

    The potential influence of ions produced from galactic cosmic rays on the formation of new aerosol particles in the atmosphere may play an important role relevant for aerosol properties, cloud formation and climate. Variability of galactic cosmic rays due to modulating influences from the sun therefore may affect (regional) climate on various time scales. A quantitative understanding of the role of ions for atmospheric aerosol formation has not been reached, but also the dependence of aerosol formation on the concentration of the nucleating substances such as gaseous sulfuric acid, ammonia and amines is missing. Here results from the CLOUD experiment at CERN are presented. CLOUD is a new aerosol and cloud chamber facility at CERN. The chamber can be exposed to a pion beam from CERN to simulate various levels of atmospheric ionization. CLOUD has been set up to investigate aerosol and cloud processes under well-controlled laboratory conditions. We find that cosmic ray ionization substantially increases the nucleation rate of pure sulfuric acid/water particles while charge effects are much less pronounced for ternary systems including ammonia or dimethylamine. The results from the CLOUD experiments have been used to develop a new parameterization of aerosol nucleation which has been included in a global climate model. Impacts of our findings for cloud formation and climate are discussed.

  11. Impact of Ice Nucleation Parameterization on CAM5 Simulated Arctic Clouds and Radiation: A Sensitivity Study

    Science.gov (United States)

    Xie, S.; Liu, X.; Zhao, C.; Zhang, Y.

    2012-12-01

    Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model version 5 (CAM5) to ice nucleation parameterization is examined by testing a new and more physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The CAM5 default scheme parameterizes the IN number concentration simply as a function of ice supersaturation. The new scheme has led to a significant reduction in simulated IN number concentrations at all latitudes while changes in cloud and cloud properties are mainly seen in high latitudes and middle latitude storm tracks. In the Arctic region, there is a noticeable increase in mid- and high-level clouds and a decrease in low-level clouds. The smaller IN concentrations results in a considerable increase of cloud liquid water path and decrease of ice water path, which are likely related to the increase of optically intermediate and thick low- and middle-top clouds and the decrease of optically thin and intermediate high clouds, respectively. Overall, there is an increase of cloud optical depth of Arctic clouds, which leads to a stronger shortwave, longwave, and net cloud radiative forcing (cooling) at the top of the atmosphere. The comparison with satellite data indicates that the new scheme has slightly improved optically thin low cloud simulation, but produced too many optically thick middle and high clouds. A further comparison with Arctic ground-based measurements shows that the new scheme has led to a clearly better simulation of clouds and their properties, which helps reduce model errors in surface radiation. Uncertainties in these observations are discussed. Work at LLNL was performed under the auspices of the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by

  12. Sensitivity of lunar particle-detection experiments

    CERN Document Server

    Bray, Justin D

    2016-01-01

    The use of the Moon as a detector volume for ultra-high-energy neutrinos and cosmic rays, by searching for the Askaryan radio pulse produced when they interact in the lunar regolith, has been attempted by a range of projects over the past two decades. In this contribution, I discuss some of the technical considerations relevant to these experiments, and their consequent sensitivity to ultra-high-energy particles. I also discuss some possible future experiments, and highlight their potential.

  13. Thermal Sensitive Foils in Physics Experiments

    Science.gov (United States)

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  14. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Mark P.; Petersen, Walt A.; Bansemer, Aaron; Bharadwaj, Nitin; Carey, Larry; Cecil, D. J.; Collis, Scott M.; Del Genio, Anthony D.; Dolan, Brenda A.; Gerlach, J.; Giangrande, Scott; Heymsfield, Andrew J.; Heymsfield, Gerald; Kollias, Pavlos; Lang, T. J.; Nesbitt, Steve W.; Neumann, Andrea; Poellot, M. R.; Rutledge, Steven A.; Schwaller, Mathew R.; Tokay, Ali; Williams, C. R.; Wolff, D. B.; Xie, Shaocheng; Zipser, Edward J.

    2016-10-18

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deep convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms-1 supported growth of hail and large rain drops. Data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.

  15. Can nudging be used to quantify model sensitivities in precipitation and cloud forcing?: NUDGING AND MODEL SENSITIVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guangxing [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA; Wan, Hui [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA; Zhang, Kai [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA; Qian, Yun [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA; Ghan, Steven J. [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA

    2016-07-10

    Efficient simulation strategies are crucial for the development and evaluation of high resolution climate models. This paper evaluates simulations with constrained meteorology for the quantification of parametric sensitivities in the Community Atmosphere Model version 5 (CAM5). Two parameters are perturbed as illustrating examples: the convection relaxation time scale (TAU), and the threshold relative humidity for the formation of low-level stratiform clouds (rhminl). Results suggest that the fidelity and computational efficiency of the constrained simulations depend strongly on 3 factors: the detailed implementation of nudging, the mechanism through which the perturbed parameter affects precipitation and cloud, and the magnitude of the parameter perturbation. In the case of a strong perturbation in convection, temperature and/or wind nudging with a 6-hour relaxation time scale leads to non-negligible side effects due to the distorted interactions between resolved dynamics and parameterized convection, while a 1-year free running simulation can satisfactorily capture the annual mean precipitation sensitivity in terms of both global average and geographical distribution. In the case of a relatively weak perturbation the large-scale condensation scheme, results from 1-year free-running simulations are strongly affected by noise associated with internal variability, while nudging winds effectively reduces the noise, and reasonably reproduces the response of precipitation and cloud forcing to parameter perturbation. These results indicate that caution is needed when using nudged simulations to assess precipitation and cloud forcing sensitivities to parameter changes in general circulation models. We also demonstrate that ensembles of short simulations are useful for understanding the evolution of model sensitivities.

  16. PATMOS-x Cloud Climate Record Trend Sensitivity to Reanalysis Products

    Directory of Open Access Journals (Sweden)

    Michael J. Foster

    2016-05-01

    Full Text Available Continuous satellite-derived cloud records now extend over three decades, and are increasingly used for climate applications. Certain applications, such as trend detection, require a clear understanding of uncertainty as it relates to establishing statistical significance. The use of reanalysis products as sources of ancillary data could be construed as one such source of uncertainty, as there has been discussion regarding the suitability of reanalysis products for trend detection. Here we use three reanalysis products: Climate Forecast System Reanalysis (CFSR, Modern Era Retrospective Analysis for Research and Applications (MERRA and European Center for Medium range Weather Forecasting (ECMWF ERA-Interim (ERA-I as sources of ancillary data for the Pathfinder Atmospheres Extended/Advanced Very High Resolution Radiometer (PATMOS-x/AVHRR Satellite Cloud Climate Data Record (CDR, and perform inter-comparisons to determine how sensitive the climatology is to choice of ancillary data source. We find differences among reanalysis fields required for PATMOS-x processing, which translate to small but not insignificant differences in retrievals of cloud fraction, cloud top height and cloud optical depth. The retrieval variability due to choice of reanalysis product is on the order of one third the size of the retrieval uncertainty, making it a potentially significant factor in trend detection. Cloud fraction trends were impacted the most by choice of reanalysis while cloud optical depth trends were impacted the least. Metrics used to determine the skill of the reanalysis products for use as ancillary data found no clear best choice for use in PATMOS-x. We conclude use of reanalysis products as ancillary data in the PATMOS-x/AVHRR Cloud CDR do not preclude its use for trend detection, but for that application uncertainty in reanalysis fields should be better represented in the PATMOS-x retrieval uncertainty.

  17. Sensitivity studies associated with dosimetry experiment interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Bourganel, S.; Soldevila, M. [CEA/DANS/DM2S/SERMA, CEA Saclay, 91191, Gif sur Yvette (France); Ferrer, A.; Gregoire, G.; Destouches, C.; Beretz, D. [CEA/DEN-CAD/DER/SPEX, CEA Cadarache, F13108, Saint Paul lez Durance (France)

    2011-07-01

    Document available in abstract form only, full text of document follows: Interpretation of reactor dosimetry experiments with C/E comparison requires precise knowledge of parameters involved in modeling. Some parameters have more weight than others on the calculated values. So, sensitivity studies should be conducted to verify the importance of these parameters. The conclusions of these studies are used to refine the experiment modeling, or to correct uncertainty calculations. The results of these sensitivity studies allow a post-irradiation analysis, which can justify the discarding of some atypical C/M values. Derived uncertainties may be improved by the sensitivity analyses. Beyond classical parameters as geometry or composition, this paper describes some specific sensitivity studies conducted for dosimetry irradiation in reactor, and presents conclusions. These studies are based on dosimeters irradiated in the EOLE reactor facility at Cadarache CEA center. Conclusions drawn from these studies are generic and can be applied to any dosimetry study. Calculations performed for these studies were realized using TRIPOLI-4 Monte Carlo code. (authors)

  18. The Midcourse Space Experiment Infrared-Dark Cloud Catalog

    Science.gov (United States)

    Carey, S. J.; Egan, M. P.; Kuchar, T. A.; Mizuno, D.; Feldman, P. A.; Redman, R. O.; Price, S. D.

    2000-12-01

    We present a preliminary catalog of infrared-dark clouds (IRDCs) that were identified in the Midcourse Space Experiment (MSX) Galactic Plane Survey images. These objects are clearly visible as absorption features against the diffuse Galactic emission in the 8.3 micron MSX images. IRDCs are cold (T CS, C18O and HCO+. IRDC have a wide variety of shapes from globule-like to filamentary. We will present the filling factors, fractal dimension and other morphological identifiers for the IRDCs. In particular, the fractal dimension will be compared to the dimensions of other components of the ISM including GMCs and infrared cirrus. Few IRDCs are associated with previously observed star formation tracers such as far-infrared point sources and maser emission. The catalog will be cross-referenced with published observations of star formation tracers and the properties of previously identified star forming regions will be contrasted with the new objects detected by MSX.

  19. INTERNATIONAL EXPERIENCE OF CLOUD ORIENTED LEARNING ENVIRONMENT DESIGN IN SECONDARY SCHOOLS

    Directory of Open Access Journals (Sweden)

    Svitlana G. Lytvynova

    2014-06-01

    Full Text Available The article highlights the foreign experience of designing of cloud oriented learning environments (COLE in general secondary education. The projects in Russia, Germany, Czech Republic, Australia, China, Israel, Africa, Singapore, Brazil, Egypt, Colombia and the United States are analyzed. The analysis of completed projects found out the common problems of implementing of cloud oriented learning environments (security of personal data, technical problems of integration of cloud environments with existing systems, and productivity of cloud services and their advantages for secondary education (mobility of participants, volumetric cloud data storage, universally accessibility, regular software updating, ease of use, etc..

  20. Tropical Warm Pool International Cloud Experiment (TWP-ICE): Cloud and Rain Characteristics in the Australian Monsoon

    Energy Technology Data Exchange (ETDEWEB)

    PT May; C Jakob; JH Mather

    2004-05-30

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them. The experiment is a collaboration between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, the Bureau of Meteorology (BoM), the National Aeronautics and Space Administration (NASA), the European Commission DG RTD-1.2, and several United States, Australian, Canadian, and European Universities. This experiment will be undertaken over a 4-week period in early 2006. January and February corresponds to the wet phase of the Australia monsoon. This season has been selected because, despite Darwin’s coastal location, the convection that occurs over and near Darwin at this time is largely of maritime origin with a large fetch over water

  1. Cloud sensitivity studies for stratospheric and lower mesospheric ozone profile retrievals from measurements of limb scattered solar radiation

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2009-02-01

    Full Text Available Clouds in the atmosphere play an important role in reflection, absorption and transmission of solar radiation affecting trace gas retrievals. The main goal of this paper is to examine the sensitivity of stratospheric and lower mesospheric ozone retrievals from limb-scattered radiance measurements to clouds using the SCIATRAN radiative transfer model and retrieval package. Assuming an aerosol-free atmosphere and Mie phase functions for cloud particles, we compute the relative error of ozone profile retrievals in a cloudy atmosphere if clouds are neglected in the retrieval. To access altitudes from the lower stratosphere up to lower mesosphere, we combine the retrievals in the Chappuis and Hartley ozone absorption bands. We find significant cloud sensitivity of the limb ozone retrievals in the Chappuis bands at lower stratospheric altitudes. The relative error in the retrieved ozone concentrations gradually decreases with increasing altitude and becomes negligible above about 40 km. The parameters with the largest impact on the ozone retrievals are cloud optical thickness, ground albedo and solar zenith angle. Clouds with different geometrical thicknesses or different cloud altitudes have a similar impact on the ozone retrievals for a given cloud optical thickness value, if the clouds are outside the field of view of the instrument. The effective radius of water droplets has a small influence on the error, i.e., less than 0.5% at altitudes above the cloud top height. Furthermore, the impact of clouds on the ozone profile retrievals was found to have a rather small dependence on the solar azimuth angle (less than 1% for all possible azimuth angles. For the most frequent cloud types the total error is below 6% above 15 km altitude, if clouds are completely neglected in the retrieval. Neglecting clouds in the ozone profile retrievals generally leads to a low bias for a low ground albedo and to a high bias for a high ground albedo, assuming that the

  2. Evolution of particle composition in CLOUD nucleation experiments

    Directory of Open Access Journals (Sweden)

    H. Keskinen

    2013-06-01

    Full Text Available Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets chamber experiments at CERN (Centre européen pour la recherche nucléaire. The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during their growth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts. In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ~0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid

  3. Evaluating CloudSat Ice Water Retrievals Using a Cloud Resolving Model: Sensitivities to Frozen Particle Properties and Implications for Model-Data Comparisons

    Science.gov (United States)

    Woods, C. P.; Waliser, D.; Li, F.; Austin, R.; Stephens, G.; Vane, D.; Tao, W.; Tompkins, A.

    2007-12-01

    The sensitivities of CloudSat ice water content retrievals to frozen particle characteristics are tested by generating CloudSat-like retrievals from profiles of known ice water content. First, `truth' values of total ice water content are generated by a cloud-resolving model (MM5). The MM5 model profiles are generated using the Reisner- Thompson microphysical parameterization scheme, which allows for the existence of multiple types of frozen particles (cloud ice, snow and graupel). Next, a 94-GHz reflectivity simulator, called QuickBeam, is used to generate a CloudSat-like view of the model generated profiles. Since reflectivity is highly dependent on the characteristics of the scattering particles (e.g., density, size distribution), a set of tests are performed to determine the sensitivity of the reflectivity to the assumed properties of cloud ice and snow particles. Finally, the CloudSat ice water content retrieval algorithm is applied to the profiles of 94-GHz reflectivity, producing 'simulated retrieved' values of ice water content, which can be compared to the `truth' values. The comparisons suggest that CloudSat ice water content retrievals are sensitive to the frozen particle properties often parameterized in models (e.g., particle density, particle size distributions). The sensitivity tests provide a better understanding of how the different components of the frozen water mass impact the ice water content retrieved by CloudSat. Such information is important when comparing the measurements to modeled frozen water mass quantities, including those from various levels of sophistication in global climate models. Additionally, we demonstrate how information gained in this study may be used for improving the retrieval system. A simple height-based retrieval correction that effectively corrects for the vertically varying characteristics of frozen particles is examined.

  4. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  5. Antideuteron Sensitivity for the GAPS Experiment

    CERN Document Server

    Aramaki, T; Boggs, S E; von Doetinchem, P; Fuke, H; Mognet, S I; Ong, R A; Perez, K; Zweerink, J

    2015-01-01

    The General Antiparticle Spectrometer (GAPS) is a novel approach for indirect dark matter searches that exploits cosmic antiparticles, especially antideuterons. The GAPS antideuteron measurement utilizes distinctive detection methods using atomic X-rays and charged particles from the decay of exotic atoms as well as the timing and stopping range of the incoming particle, which together provide excellent antideuteron identification. Prior to the future balloon experiment, an accelerator test and a prototype flight were successfully conducted in 2005 and 2012 respectively, in order to verify the GAPS detection concept. This paper describes how the sensitivity of GAPS to antideuterons was estimated using a Monte Carlo simulation along with the atomic cascade model and the Intra-Nuclear Cascade model. The sensitivity for the GAPS antideuteron search obtained using this method is 2.0 $\\times 10^{-6}$ [m$^{-2}$s$^{-1}$sr$^{-1}$(GeV/$n$)$^{-1}$] for the proposed long duration balloon program (LDB, 35 days $\\times$ 3...

  6. Adjoint sensitivity of global cloud droplet number to aerosol and dynamical parameters

    Directory of Open Access Journals (Sweden)

    V. A. Karydis

    2012-10-01

    Full Text Available We present the development of the adjoint of a comprehensive cloud droplet formation parameterization for use in aerosol-cloud-climate interaction studies. The adjoint efficiently and accurately calculates the sensitivity of cloud droplet number concentration (CDNC to all parameterization inputs (e.g., updraft velocity, water uptake coefficient, aerosol number and hygroscopicity with a single execution. The adjoint is then integrated within three dimensional (3-D aerosol modeling frameworks to quantify the sensitivity of CDNC formation globally to each parameter. Sensitivities are computed for year-long executions of the NASA Global Modeling Initiative (GMI Chemical Transport Model (CTM, using wind fields computed with the Goddard Institute for Space Studies (GISS Global Circulation Model (GCM II', and the GEOS-Chem CTM, driven by meteorological input from the Goddard Earth Observing System (GEOS of the NASA Global Modeling and Assimilation Office (GMAO. We find that over polluted (pristine areas, CDNC is more sensitive to updraft velocity and uptake coefficient (aerosol number and hygroscopicity. Over the oceans of the Northern Hemisphere, addition of anthropogenic or biomass burning aerosol is predicted to increase CDNC in contrast to coarse-mode sea salt which tends to decrease CDNC. Over the Southern Oceans, CDNC is most sensitive to sea salt, which is the main aerosol component of the region. Globally, CDNC is predicted to be less sensitive to changes in the hygroscopicity of the aerosols than in their concentration with the exception of dust where CDNC is very sensitive to particle hydrophilicity over arid areas. Regionally, the sensitivities differ considerably between the two frameworks and quantitatively reveal why the models differ considerably in their indirect forcing estimates.

  7. Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment - Part 1: Distributions and variability

    Science.gov (United States)

    Jung, Eunsil; Albrecht, Bruce A.; Feingold, Graham; Jonsson, Haflidi H.; Chuang, Patrick; Donaher, Shaunna L.

    2016-07-01

    Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March-April 2010), which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter), particles that are large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan air layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ˜ 3 km, while most clouds were less than 1 km

  8. Inverse modelling of cloud-aerosol interactions – Part 2: Sensitivity tests on liquid phase clouds using a Markov chain Monte Carlo based simulation approach

    Directory of Open Access Journals (Sweden)

    D. G. Partridge

    2012-03-01

    Full Text Available This paper presents a novel approach to investigate cloud-aerosol interactions by coupling a Markov chain Monte Carlo (MCMC algorithm to an adiabatic cloud parcel model. Despite the number of numerical cloud-aerosol sensitivity studies previously conducted few have used statistical analysis tools to investigate the global sensitivity of a cloud model to input aerosol physiochemical parameters. Using numerically generated cloud droplet number concentration (CDNC distributions (i.e. synthetic data as cloud observations, this inverse modelling framework is shown to successfully estimate the correct calibration parameters, and their underlying posterior probability distribution.

    The employed analysis method provides a new, integrative framework to evaluate the global sensitivity of the derived CDNC distribution to the input parameters describing the lognormal properties of the accumulation mode aerosol and the particle chemistry. To a large extent, results from prior studies are confirmed, but the present study also provides some additional insights. There is a transition in relative sensitivity from very clean marine Arctic conditions where the lognormal aerosol parameters representing the accumulation mode aerosol number concentration and mean radius and are found to be most important for determining the CDNC distribution to very polluted continental environments (aerosol concentration in the accumulation mode >1000 cm−3 where particle chemistry is more important than both number concentration and size of the accumulation mode.

    The competition and compensation between the cloud model input parameters illustrates that if the soluble mass fraction is reduced, the aerosol number concentration, geometric standard deviation and mean radius of the accumulation mode must increase in order to achieve the same CDNC distribution.

    This study demonstrates that inverse modelling provides a flexible, transparent and

  9. Sensitivity of the southern West African mean atmospheric state to variations in low-level cloud cover as simulated by ICON

    Science.gov (United States)

    Kniffka, Anke; Knippertz, Peter; Fink, Andreas

    2017-04-01

    This contribution presents first results of numerical sensitivity experiments that are carried out in the framework of the project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa). DACCIWA aims to investigate the impact of the drastic increase in anthropogenic emissions in West Africa on the local weather and climate, for example through cloud-aerosol interactions or impacts on radiation and stability. DACCIWA organised a major international field campaign in West Africa in June-July 2016 and involves a wide range of modelling activities. Several studies have shown - and first results of the DACCIWA campaign confirm - that extensive ultra-low stratus clouds form in the southern parts of West Africa (8°W-8°E, 5-10°N) at night in connection with strong nocturnal low-level jets. The clouds persist long after sunrise and have therefore a substantial impact on the surface radiation budget and consequently on the diurnal evolution of the daytime, convectively mixed boundary layer. The objective of this study is to investigate the sensitivity of the West African monsoon system and its diurnal cycle to the radiative effects of these low clouds. The study is based on a series of daily 5-day sensitivity simulations using ICON, the operational numerical weather prediction model of the German Weather Service during the months July - September 2006. In these simulations, low clouds are made transparent, by artificially lowering the optical thickness information passed on to the model's radiation scheme. Results reveal a noticeable influence of the low-level cloud cover on the atmospheric mean state of our region of interest and beyond. Also the diurnal development of the convective boundary layer is influenced by the cloud modification. In the transparent-cloud experiments, the cloud deck tends to break up later in the day and is shifted to a higher altitude, thereby causing a short-lived intensification around 11 LT. The average rainfall patterns are

  10. Automated Grid Monitoring for the LHCb Experiment Through HammerCloud

    CERN Document Server

    Dice, Bradley

    2015-01-01

    The HammerCloud system is used by CERN IT to monitor the status of the Worldwide LHC Computing Grid (WLCG). HammerCloud automatically submits jobs to WLCG computing resources, closely replicating the workflow of Grid users (e.g. physicists analyzing data). This allows computation nodes and storage resources to be monitored, software to be tested (somewhat like continuous integration), and new sites to be stress tested with a heavy job load before commissioning. The HammerCloud system has been in use for ATLAS and CMS experiments for about five years. This summer's work involved porting the HammerCloud suite of tools to the LHCb experiment. The HammerCloud software runs functional tests and provides data visualizations. HammerCloud's LHCb variant is written in Python, using the Django web framework and Ganga/DIRAC for job management.

  11. Sensitivity of dispersion model forecasts of volcanic ash clouds to the physical characteristics of the particles

    Science.gov (United States)

    Beckett, F. M.; Witham, C. S.; Hort, M. C.; Stevenson, J. A.; Bonadonna, C.; Millington, S. C.

    2015-11-01

    This study examines the sensitivity of atmospheric dispersion model forecasts of volcanic ash clouds to the physical characteristics assigned to the particles. We show that the particle size distribution (PSD) used to initialise a dispersion model has a significant impact on the forecast of the mass loading of the ash particles in the atmosphere. This is because the modeled fall velocity of the particles is sensitive to the particle diameter. Forecasts of the long-range transport of the ash cloud consider particles with diameters between 0.1 μm and 100 μm. The fall velocity of particles with diameter 100 μm is over 5 orders of magnitude greater than a particle with diameter 0.1 μm, and 30 μm particles fall 88% slower and travel up to 5× further than a 100 μm particle. Identifying the PSD of the ash cloud at the source, which is required to initialise a model, is difficult. Further, aggregation processes are currently not explicitly modeled in operational dispersion models due to the high computational costs associated with aggregation schemes. We show that using a modified total grain size distribution (TGSD) that effectively accounts for aggregation processes improves the modeled PSD of the ash cloud and deposits from the eruption of Eyjafjallajökull in 2010. Knowledge of the TGSD of an eruption is therefore critical for reducing uncertainty in quantitative forecasts of ash cloud dispersion. The density and shape assigned to the model particles have a lesser but still significant impact on the calculated fall velocity. Accounting for the density distribution and sphericity of ash from the eruption of Eyjafjallajökull in 2010, modeled particles can travel up to 84% further than particles with default particle characteristics that assume the particles are spherical and have a fixed density.

  12. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    National Research Council Canada - National Science Library

    Valery N Shcherbakov; Carl G Schmitt; Andrew J Heymsfield

    2016-01-01

    ...) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60-°C range...

  13. Dynamics of molecular clouds: observations, simulations, and NIF experiments

    Science.gov (United States)

    Kane, Jave O.; Martinez, David A.; Pound, Marc W.; Heeter, Robert F.; Casner, Alexis; Mancini, Roberto C.

    2015-02-01

    For over fifteen years astronomers at the University of Maryland and theorists and experimentalists at LLNL have investigated the origin and dynamics of the famous Pillars of the Eagle Nebula, and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. Eagle Nebula was selected as one of the National Ignition Facility (NIF) Science programs, and has been awarded four NIF shots to study the cometary model of pillar formation. These experiments require a long-duration drive, 30 ns or longer, to drive deeply nonlinear ablative hydrodynamics. The NIF shots will feature a new long-duration x-ray source prototyped at the Omega EP laser, in which multiple hohlraums are driven with UV light in series for 10 ns each and reradiate the energy as an extended x-ray pulse. The new source will be used to illuminate a science package with directional radiation mimicking a cluster of stars. The scaled Omega EP shots tested whether a multi-hohlraum concept is viable — whether earlier time hohlraums would degrade later time hohlraums by preheat or by ejecting ablated plumes that would deflect the later beams. The Omega EP shots illuminated three 2.8 mm long by 1.4 mm diameter Cu hohlraums for 10 ns each with 4.3 kJ per hohlraum. At NIF each hohlraum will be 4 mm long by 3 mm in diameter and will be driven with 80 kJ per hohlraum.

  14. Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, RT [University of Washington; Protat, A [Australian Bureau of Meterology; Alexander, SP [Australian Antarctic Division

    2015-12-01

    Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in top-of-atmosphere (TOA) broadband radiative fluxes in this region are among the largest globally, with large implications for modeling both regional and global scale climate responses (e.g., Trenberth and Fasullo 2010, Ceppi et al. 2012). Recent analyses of model simulations suggest that model radiative errors in the Southern Ocean are due to a lack of low-level postfrontal clouds (including clouds well behind the front) and perhaps a lack of supercooled liquid water that contribute most to the model biases (Bodas-Salcedo et al. 2013, Huang et al. 2014). These assessments of model performance, as well as our knowledge of cloud and aerosol properties over the Southern Ocean, rely heavily on satellite data sets. Satellite data sets are incomplete in that the observations are not continuous (i.e., they are acquired only when the satellite passes nearby), generally do not sample the diurnal cycle, and view primarily the tops of cloud systems (especially for the passive instruments). This is especially problematic for retrievals of aerosol, low-cloud properties, and layers of supercooled water embedded within (rather than at the top of) clouds, as well as estimates of surface shortwave and longwave fluxes based on these properties.

  15. An Experience of Taiwan Policy Development To Accelerate Cloud Migration

    Directory of Open Access Journals (Sweden)

    Sheng-Chi Chen

    2014-07-01

    Full Text Available developing cloud computing is a key policy for government, while convenient service is an important issue for people living. In the beginning of 2010, the Taiwan Government has launched a “Cloud Computing Development Project”, and has devoted to service planning and investment activities. At the end of 2012, in a three-year comprehensive review and suggestion adoption from public and private sectors, the Taiwan Government adjusted the policy and rename as “Cloud Computing Application and Development Project”. From the perspectives of government application, industry development, and cloud open platform, this study describes how the vision drive goals and thinking push forward strategies. In the process of government and industry collaboration, it is progressively created value for cloud services. The Cloud Computing Project Management Office acts a key role as policy advisor, matching platform, and technical supporting to the achievements of (1 policy assessment and strategy enhancement; (2 construction of cloud open platform to the demand and supply linkage; (3 innovation and integration planning for government service application, leading to industry development.

  16. Simulation of low clouds in the Southeast Pacific by the NCEP GFS: sensitivity to vertical mixing

    Directory of Open Access Journals (Sweden)

    R. Sun

    2010-12-01

    Full Text Available The NCEP Global Forecast System (GFS model has an important systematic error shared by many other models: stratocumuli are missed over the subtropical eastern oceans. It is shown that this error can be alleviated in the GFS by introducing a consideration of the low-level inversion and making two modifications in the model's representation of vertical mixing. The modifications consist of (a the elimination of background vertical diffusion above the inversion and (b the incorporation of a stability parameter based on the cloud-top entrainment instability (CTEI criterion, which limits the strength of shallow convective mixing across the inversion. A control simulation and three experiments are performed in order to examine both the individual and combined effects of modifications on the generation of the stratocumulus clouds. Individually, both modifications result in enhanced cloudiness in the Southeast Pacific (SEP region, although the cloudiness is still low compared to the ISCCP climatology. If the modifications are applied together, however, the total cloudiness produced in the southeast Pacific has realistic values. This nonlinearity arises as the effects of both modifications reinforce each other in reducing the leakage of moisture across the inversion. Increased moisture trapped below the inversion than in the control run without modifications leads to an increase in cloud amount and cloud-top radiative cooling. Then a positive feedback due to enhanced turbulent mixing in the planetary boundary layer by cloud-top radiative cooling leads to and maintains the stratocumulus cover. Although the amount of total cloudiness obtained with both modifications has realistic values, the relative contributions of low, middle, and high layers tend to differ from the observations. These results demonstrate that it is possible to simulate realistic marine boundary clouds in large-scale models by implementing direct and physically based improvements in the

  17. Simulation of low clouds in the Southeast Pacific by the NCEP GFS: sensitivity to vertical mixing

    Directory of Open Access Journals (Sweden)

    R. Sun

    2010-08-01

    Full Text Available The NCEP Global Forecast System (GFS model has an important systematic error shared by many other models: stratocumuli are missed over the subtropical eastern oceans. It is shown that this error can be alleviated in the GFS by introducing a consideration of the low-level inversion and making two modifications in the model's representation of vertical mixing. The modifications consist of (a the elimination of background vertical diffusion above the inversion and (b the incorporation of a stability parameter based on the cloud-top entrainment instability (CTEI criterion, which limits the strength of shallow convective mixing across the inversion. A control simulation and three experiments are performed in order to examine both the individual and combined effects of modifications on the generation of the stratocumulus clouds. Individually, both modifications result in enhanced cloudiness in the Southeast Pacific (SEP region, although the cloudiness is still low compared to the ISCCP climatology. If the modifications are applied together, however, the total cloudiness produced in the southeast Pacific has realistic values. This nonlinearity arises as the effects of both modifications reinforce each other in reducing the leakage of moisture across the inversion. Increased moisture trapped below the inversion than in the control run without modifications leads to an increase in cloud amount and cloud-top radiative cooling. Then a positive feedback due to enhanced turbulent mixing in the planetary boundary layer by cloud-top radiative cooling leads to and maintains the stratocumulus cover. Although the amount of total cloudiness obtained with both modifications has realistic values, the relative contributions of low, middle, and high layers tend to differ from the observations. These results demonstrate that it is possible to simulate realistic marine boundary clouds in large-scale models by implementing direct and physically based improvements in the

  18. Simulation of low clouds in the Southeast Pacific by the NCEP GFS: sensitivity to vertical mixing

    Science.gov (United States)

    Sun, R.; Moorthi, S.; Xiao, H.; Mechoso, C. R.

    2010-12-01

    The NCEP Global Forecast System (GFS) model has an important systematic error shared by many other models: stratocumuli are missed over the subtropical eastern oceans. It is shown that this error can be alleviated in the GFS by introducing a consideration of the low-level inversion and making two modifications in the model's representation of vertical mixing. The modifications consist of (a) the elimination of background vertical diffusion above the inversion and (b) the incorporation of a stability parameter based on the cloud-top entrainment instability (CTEI) criterion, which limits the strength of shallow convective mixing across the inversion. A control simulation and three experiments are performed in order to examine both the individual and combined effects of modifications on the generation of the stratocumulus clouds. Individually, both modifications result in enhanced cloudiness in the Southeast Pacific (SEP) region, although the cloudiness is still low compared to the ISCCP climatology. If the modifications are applied together, however, the total cloudiness produced in the southeast Pacific has realistic values. This nonlinearity arises as the effects of both modifications reinforce each other in reducing the leakage of moisture across the inversion. Increased moisture trapped below the inversion than in the control run without modifications leads to an increase in cloud amount and cloud-top radiative cooling. Then a positive feedback due to enhanced turbulent mixing in the planetary boundary layer by cloud-top radiative cooling leads to and maintains the stratocumulus cover. Although the amount of total cloudiness obtained with both modifications has realistic values, the relative contributions of low, middle, and high layers tend to differ from the observations. These results demonstrate that it is possible to simulate realistic marine boundary clouds in large-scale models by implementing direct and physically based improvements in the model

  19. Application verification research of cloud computing technology in the field of real time aerospace experiment

    Science.gov (United States)

    Wan, Junwei; Chen, Hongyan; Zhao, Jing

    2017-08-01

    According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.

  20. Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment

    Science.gov (United States)

    Xie, Shaocheng; Klein, Stephen A.; Zhang, Minghua; Yio, John J.; Cederwall, Richard T.; McCoy, Renata

    2006-10-01

    This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related to the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Finally, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored.

  1. Sensitivity estimations for cloud droplet formation in the vicinity of the high alpine research station Jungfraujoch (3580 m a.s.l.

    Directory of Open Access Journals (Sweden)

    E. Hammer

    2014-10-01

    Full Text Available Aerosol radiative forcing estimates suffer from large uncertainties as a result of insufficient understanding of aerosol–cloud interactions. The main source of these uncertainties are dynamical processes such as turbulence and entrainment but also key aerosol parameters such as aerosol number concentration and size distribution, and to a much lesser extent, the composition. From June to August 2011 a Cloud and Aerosol Characterization Experiment (CLACE was performed at the high-alpine research station Jungfraujoch (Switzerland, 3580 m a.s.l. focusing on the activation of aerosol to form liquid-phase clouds (in the cloud base temperature range of −8 to 5 °C. With a box model the sensitivity of the effective peak supersaturation (SSpeak, an important parameter for cloud activation, to key aerosol and dynamical parameters was investigated. It was found that the updraft velocity, defining the cooling rate of an air parcel, is the parameter with the largest influence on SSpeak. Small-scale variations in the cooling rate with large amplitudes can significantly alter CCN activation. Thus, an accurate knowledge of the air parcel history is required to estimate SSpeak. The results show that the cloud base updraft velocities estimated from the horizontal wind measurements made at the Jungfraujoch can be divided by a factor of approximately 4 to get the updraft velocity required for the model to reproduce the observed SSpeak.

  2. The Deep Convective Clouds and Chemistry (DC3) Field Experiment

    Science.gov (United States)

    Barth, M. C.; Brune, W. H.; Cantrell, C. A.; Rutledge, S. A.; Crawford, J. H.; Huntrieser, H.; Homeyer, C. R.; Nault, B.; Cohen, R. C.; Pan, L.; Ziemba, L. D.

    2014-12-01

    The Deep Convective Clouds and Chemistry (DC3) field experiment took place in the central U.S. in May and June 2012 and had the objectives of characterizing the effect of thunderstorms on the chemical composition of the lower atmosphere and determining the chemical aging of upper troposphere (UT) convective outflow plumes. DC3 employed ground-based radars, lightning mapping arrays, and weather balloon soundings in conjunction with aircraft measurements sampling the composition of the inflow and outflow of a variety of thunderstorms in northeast Colorado, West Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the UT convective plume. The DC3 data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, and chemistry in the UT that is affected by the convection. In this presentation, we give an overview of the DC3 field campaign and highlight results from the campaign that are relevant to the upper troposphere and lower stratosphere region. These highlights include stratosphere-troposphere exchange in connection with thunderstorms, the 0-12 hour chemical aging and new particle formation in the UT outflow of a dissipating mesoscale convective system observed on June 21, 2012, and UT chemical aging in convective outflow as sampled the day after convection occurred and modeled in the Weather Research and Forecasting coupled with Chemistry model.

  3. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    National Research Council Canada - National Science Library

    M. Schnaiter; E. Järvinen; P. Vochezer; A. Abdelmonem; R. Wagner; O. Jourdan; G. Mioche; V. N. Shcherbakov; C. G. Schmitt; U. Tricoli; Z. Ulanowski; A. J. Heymsfield

    2015-01-01

    ...) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the −40 to −60 °C range...

  4. Cloud Experiment. View inside the chamber with Jasper Kirkby, Head leader of the project.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    CLOUD, the cutting-edge physics experiment that will shed light on climate-related matters, has finished its assembly phase and is starting taking data using a beam of protons from the Proton Synchrotron.

  5. X-Ray Shadowing Experiments Toward Infrared Dark Clouds

    Science.gov (United States)

    Anderson, L. E.; Snowden, S.; Bania, T. M.

    2009-01-01

    We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keY photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 deg Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 ke V emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the ISM, and to the birth of stars.

  6. Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties

    Directory of Open Access Journals (Sweden)

    E. J. Snow-Kropla

    2011-01-01

    Full Text Available The flux of cosmic rays to the atmosphere has been observed to correlate with cloud and aerosol properties. One proposed mechanism for these correlations is the "ion-aerosol clear-air" mechanism where the cosmic rays modulate atmospheric ion concentrations, ion-induced nucleation of aerosols and cloud condensation nuclei (CCN concentrations. We use a global chemical transport model with online aerosol microphysics to explore the dependence of CCN concentrations on the cosmic-ray flux. Expanding upon previous work, we test the sensitivity of the cosmic-ray/CCN connection to several uncertain parameters in the model including primary emissions, Secondary Organic Aerosol (SOA condensation and charge-enhanced condensational growth. The sensitivity of CCN to cosmic rays increases when simulations are run with decreased primary emissions, but show location-dependent behavior from increased amounts of secondary organic aerosol and charge-enhanced growth. For all test cases, the change in the concentration of particles larger than 80 nm between solar minimum (high cosmic ray flux and solar maximum (low cosmic ray flux simulations is less than 0.2%. The change in the total number of particles larger than 10 nm was larger, but always less than 1%. The simulated change in the column-integrated Ångström exponent was negligible for all test cases. Additionally, we test the predicted aerosol sensitivity to week-long Forbush decreases of cosmic rays and find that the maximum change in aerosol properties for these cases is similar to steady-state aerosol differences between the solar maximum and solar minimum. These results provide evidence that the effect of cosmic rays on CCN and clouds through the ion-aerosol clear-sky mechanism is limited by dampening from aerosol processes.

  7. Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties

    Directory of Open Access Journals (Sweden)

    E. J. Snow-Kropla

    2011-04-01

    Full Text Available The flux of cosmic rays to the atmosphere has been reported to correlate with cloud and aerosol properties. One proposed mechanism for these correlations is the "ion-aerosol clear-air" mechanism where the cosmic rays modulate atmospheric ion concentrations, ion-induced nucleation of aerosols and cloud condensation nuclei (CCN concentrations. We use a global chemical transport model with online aerosol microphysics to explore the dependence of CCN concentrations on the cosmic-ray flux. Expanding upon previous work, we test the sensitivity of the cosmic-ray/CCN connection to several uncertain parameters in the model including primary emissions, Secondary Organic Aerosol (SOA condensation and charge-enhanced condensational growth. The sensitivity of CCN to cosmic rays increases when simulations are run with decreased primary emissions, but show location-dependent behavior from increased amounts of secondary organic aerosol and charge-enhanced growth. For all test cases, the change in the concentration of particles larger than 80 nm between solar minimum (high cosmic ray flux and solar maximum (low cosmic ray flux simulations is less than 0.2 %. The change in the total number of particles larger than 10 nm was larger, but always less than 1 %. The simulated change in the column-integrated Ångström exponent was negligible for all test cases. Additionally, we test the predicted aerosol sensitivity to week-long Forbush decreases of cosmic rays and find that the maximum change in aerosol properties for these cases is similar to steady-state aerosol differences between the solar maximum and solar minimum. These results provide evidence that the effect of cosmic rays on CCN and clouds through the ion-aerosol clear-sky mechanism is limited by dampening from aerosol processes.

  8. Inverse modeling of cloud-aerosol interactions – Part 2: Sensitivity tests on liquid phase clouds using a Markov Chain Monte Carlo based simulation approach

    Directory of Open Access Journals (Sweden)

    D. G. Partridge

    2011-07-01

    Full Text Available This paper presents a novel approach to investigate cloud-aerosol interactions by coupling a Markov Chain Monte Carlo (MCMC algorithm to a pseudo-adiabatic cloud parcel model. Despite the number of numerical cloud-aerosol sensitivity studies previously conducted few have used statistical analysis tools to investigate the sensitivity of a cloud model to input aerosol physiochemical parameters. Using synthetic data as observed values of cloud droplet number concentration (CDNC distribution, this inverse modelling framework is shown to successfully converge to the correct calibration parameters.

    The employed analysis method provides a new, integrative framework to evaluate the sensitivity of the derived CDNC distribution to the input parameters describing the lognormal properties of the accumulation mode and the particle chemistry. To a large extent, results from prior studies are confirmed, but the present study also provides some additional insightful findings. There is a clear transition from very clean marine Arctic conditions where the aerosol parameters representing the mean radius and geometric standard deviation of the accumulation mode are found to be most important for determining the CDNC distribution to very polluted continental environments (aerosol concentration in the accumulation mode >1000 cm−3 where particle chemistry is more important than both number concentration and size of the accumulation mode.

    The competition and compensation between the cloud model input parameters illustrate that if the soluble mass fraction is reduced, both the number of particles and geometric standard deviation must increase and the mean radius of the accumulation mode must increase in order to achieve the same CDNC distribution.

    For more polluted aerosol conditions, with a reduction in soluble mass fraction the parameter correlation becomes weaker and more non-linear over the range of possible solutions

  9. FOREIGN AND DOMESTIC EXPERIENCE OF INTEGRATING CLOUD COMPUTING INTO PEDAGOGICAL PROCESS OF HIGHER EDUCATIONAL ESTABLISHMENTS

    Directory of Open Access Journals (Sweden)

    Nataliia A. Khmil

    2016-01-01

    Full Text Available In the present article foreign and domestic experience of integrating cloud computing into pedagogical process of higher educational establishments (H.E.E. has been generalized. It has been stated that nowadays a lot of educational services are hosted in the cloud, e.g. infrastructure as a service (IaaS, platform as a service (PaaS and software as a service (SaaS. The peculiarities of implementing cloud technologies by H.E.E. in Ukraine and abroad have been singled out; the products developed by the leading IT companies for using cloud computing in higher education system, such as Microsoft for Education, Google Apps for Education and Amazon AWS Educate have been reviewed. The examples of concrete types, methods and forms of learning and research work based on cloud services have been provided.

  10. In-lab in-line digital holography for cloud particle measurement experiment

    Science.gov (United States)

    Li, Huaiqi; Ji, Feng; Li, Liang; Li, Baosheng; Ma, Fei

    2016-10-01

    In terms of climate science, getting the accurate cloud particle sizes, shape and number distributions is necessary for searching the influence of cloud on the environment, radiative transfer, remote sensing measurements and understanding precipitation formation. Many methods and instruments have been developed to measure cloud particles, yet there is still restricted to one-dimensional or two-dimensional projections of particle positions, unable to get the three-dimensional information of the spatial distribution of particles. In-line holography is particularly useful for particles field measurements, because it can directly get the three-dimensional information of the particles and quickly access and storage holographic image. In this paper, the main work is using digital in-line holographic system to measure simulated cloud particles in the laboratory. For digital recording hologram reconstructing, we consider the image intensity in conjunction with the edge sharpness of the particles, to obtain an automatically selected threshold of each particle. Using the threshold, we can get a binary image to identify the particles and separate the particles from background, and then get the information such as the location, shape, particle size of particles. The experimental results show that the in-line digital holography can be used to detect the cloud particles, which can gain many parameters of the simulated cloud particles in the plane perpendicular to the optical axis, and can estimate volume parameters of the simulated cloud particles. This experiment is a basis for the further in situ detection of atmospheric cloud particles.

  11. Variational assimilation of satellite cloud water/ice path and microphysics scheme sensitivity to the assimilation of a rainfall case

    Science.gov (United States)

    Chen, Yaodeng; Zhang, Ruizhi; Meng, Deming; Min, Jinzhong; Zhang, Lina

    2016-10-01

    Hydrometeor variables (cloud water and cloud ice mixing ratios) are added into the WRF three-dimensional variational assimilation system as additional control variables to directly analyze hydrometeors by assimilating cloud observations. In addition, the background error covariance matrix of hydrometeors is modeled through a control variable transform, and its characteristics discussed in detail. A suite of experiments using four microphysics schemes (LIN, SBU-YLIN, WDM6 and WSM6) are performed with and without assimilating satellite cloud liquid/ice water path. We find analysis of hydrometeors with cloud assimilation to be significantly improved, and the increment and distribution of hydrometeors are consistent with the characteristics of background error covariance. Diagnostic results suggest that the forecast with cloud assimilation represents a significant improvement, especially the ability to forecast precipitation in the first seven hours. It is also found that the largest improvement occurs in the experiment using the WDM6 scheme, since the assimilated cloud information can sustain for longer in this scheme. The least improvement, meanwhile, appears in the experiment using the SBU-YLIN scheme.

  12. Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature

    Directory of Open Access Journals (Sweden)

    F. Khosrawi

    2015-07-01

    Full Text Available More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O increase of 1 ppmv or a temperature decrease of 1 K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations. The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1 K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (2000–2014 from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O observed in the polar regions similar to that observed at midlatitudes and in the tropics. Although in the polar regions no significant trend is found in the lower stratosphere, we found from the observations a correlation between cold winters and enhanced water vapour mixing ratios.

  13. Cloud Resolving Simulations of Mixed-Phase Arctic Stratus Observed during BASE: Sensitivity to Concentration of Ice Crystals and Large-Scale Heat and Moisture Advection.

    Science.gov (United States)

    Jiang, Hongli; Cotton, William R.; Pinto, James O.; Curry, Judy A.; Weissbluth, Michael J.

    2000-07-01

    The authors' previous idealized, two-dimensional cloud resolving model (CRM) simulations of Arctic stratus revealed a surprising sensitivity to the concentrations of ice crystals. In this paper, simulations of an actual case study observed during the Beaufort and Arctic Seas Experiment are performed and the results are compared to the observed data.It is again found in the CRM simulations that the simulated stratus cloud is very sensitive to the concentration of ice crystals. Using midlatitude estimates of the availability of ice forming nuclei (IFN) in the model, the authors find that the concentrations of ice crystals are large enough to result in the almost complete dissipation of otherwise solid, optically thick stratus layers. A tenuous stratus can be maintained in the simulation when the continuous input of moisture through the imposed large-scale advection is strong enough to balance the ice production. However, in association with the large-scale moisture and warm advection, only by reducing the concentration of IFN to 0.3 of the midlatitude estimate values can a persistent, optically thick stratus layer be maintained. The results obtained from the reduced IFN simulation compare reasonably well with observations.The longwave radiative fluxes at the surface are significantly different between the solid stratus and liquid-water-depleted higher ice crystal concentration experiments.This work suggests that transition-season Arctic stratus can be very vulnerable to anthropogenic sources of IFN, which can alter cloud structure sufficiently to affect the rates of melting and freezing of the Arctic Ocean.The authors find that the Hallett-Mossop riming splintering mechanism is not activated in the simulations because the cloud droplets are very small and cloud temperatures are outside the range supporting efficient rime splintering. Thus, the conclusions drawn from the results presented in this paper may be applicable to only a limited class of Arctic stratus.

  14. Experiment on mass-stripping of interstellar cloud following shock passage

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J F; Robey, H F; Klein, R I; Miles, A R

    2006-10-17

    The interaction of supernova shocks and interstellar clouds is an important astrophysical phenomenon which can lead to mass-stripping (transfer of material from cloud to surrounding flow, ''mass-loading'' the flow) and possibly increase the compression in the cloud to high enough densities to trigger star formation. Our experiments attempt to simulate and quantify the mass-stripping as it occurs when a shock passes through interstellar clouds. We drive a strong shock using 5 kJ of the 30 kJ Omega laser into a cylinder filled with low-density foam with an embedded 120 {micro}m Al sphere simulating an interstellar cloud. The density ratio between Al and foam is {approx} 9. Time-resolved x-ray radiographs show the cloud getting compressed by the shock (t {approx} 5 ns), undergoing a classical Kelvin-Helmholtz roll-up (12 ns) followed by a Widnall instability (30 ns), an inherently 3d effect that breaks the 2d symmetry of the experiment. Material is continuously being stripped from the cloud at a rate which is shown to be inconsistent with laminar models for mass-stripping (the cloud is fully stripped by 80 ns-100 ns, ten times faster than the laminar model). We present a new model for turbulent mass-stripping that agrees with the observed rate and which should scale to astrophysical conditions, which occur at even higher Reynolds numbers than the current experiment. The new model combines the integral momentum equations, potential flow past a sphere, flat plate skin friction coefficients, and Spalding's law of the wall for turbulent boundary layers.

  15. Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6

    Directory of Open Access Journals (Sweden)

    M. Kamphus

    2009-07-01

    Full Text Available Two different single particle mass spectrometers were operated in parallel at the Swiss High Alpine Research Station Jungfraujoch (JFJ, 3580 m a.s.l. during the Cloud and Aerosol Characterization Experiment (CLACE 6 in February and March 2007. During mixed phase cloud events ice crystals from 5 μm up to 20 μm were separated from large ice aggregates, non-activated, interstitial aerosol particles and supercooled droplets using an Ice-Counterflow Virtual Impactor (Ice-CVI. During one cloud period supercooled droplets were additionally sampled and analyzed by changing the Ice-CVI setup. The small ice particles and droplets were evaporated by injection into dry air inside the Ice-CVI. The resulting ice and droplet residues (IR and DR were analyzed for size and composition by two single particle mass spectrometers: a custom-built Single Particle Laser-Ablation Time-of-Flight Mass Spectrometer (SPLAT and a commercial Aerosol Time of Flight Mass Spectrometer (ATOFMS, TSI Model 3800. During CLACE 6 the SPLAT instrument characterized 355 individual ice residues that produced a mass spectrum for at least one polarity and the ATOFMS measured 152 particles. The mass spectra were binned in classes, based on the combination of dominating substances, such as mineral dust, sulfate, potassium and elemental carbon or organic material. The derived chemical information from the ice residues is compared to the JFJ ambient aerosol that was sampled while the measurement station was out of clouds (several thousand particles analyzed by SPLAT and ATOFMS and to the composition of the residues of supercooled cloud droplets (SPLAT: 162 cloud droplet residues analyzed, ATOFMS: 1094. The measurements showed that mineral dust particles were strongly enhanced in the ice particle residues. 57% of the SPLAT spectra from ice residues were dominated by signatures from mineral compounds, and 78% of the ATOFMS spectra. Sulfate and nitrate containing particles were strongly

  16. Using the SAL technique for spatial verification of cloud processes: A sensitivity analysis

    CERN Document Server

    Weniger, Michael

    2016-01-01

    The feature based spatial verification method SAL is applied to cloud data, i.e. two-dimensional spatial fields of total cloud cover and spectral radiance. Model output is obtained from the COSMO-DE forward operator SynSat and compared to SEVIRI satellite data. The aim of this study is twofold. First, to assess the applicability of SAL to this kind of data, and second, to analyze the role of external object identification algorithms (OIA) and the effects of observational uncertainties on the resulting scores. As a feature based method, SAL requires external OIA. A comparison of three different algorithms shows that the threshold level, which is a fundamental part of all studied algorithms, induces high sensitivity and unstable behavior of object dependent SAL scores (i.e. even very small changes in parameter values can lead to large changes in the resulting scores). An in-depth statistical analysis reveals significant effects on distributional quantities commonly used in the interpretation of SAL, e.g. median...

  17. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prather, K. [Scripps Institution of Oceanography, La Jolla, CA (United States); Ralph, R. [National Oceanic and Atmospheric Administration, Washington, DC (United States); Rosenfeld, D. [The Hebrew University of Jerusalem (Israel); Spackman, R. [Science and Technology Corporation (STC), Hampton, VA (United States); DeMott, P. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C. [National Oceanic and Atmospheric Administration, Washington, DC (United States); Fan, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hagos, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hughes, M. [National Oceanic and Atmospheric Administration, Washington, DC (United States); Long, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutledge, S. [Colorado State Univ., Fort Collins, CO (United States); Waliser, D. [National Aeronautics and Space Administration (NASA), Washington, DC (United States); Wang, H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.

  18. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Directory of Open Access Journals (Sweden)

    L. Nichman

    2017-09-01

    Full Text Available Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD chamber at European Organisation for Nuclear Research (CERN. The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of −30, −40 and −50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI. Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot

  19. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Science.gov (United States)

    Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin

    2017-09-01

    Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly

  20. Influence of turbulence on the drop growth in warm clouds, Part II: Sensitivity studies with a spectral bin microphysics and a Lagrangian cloud model

    Directory of Open Access Journals (Sweden)

    Theres Riechelmann

    2015-04-01

    Full Text Available Raindrops in warm clouds grow faster than predicted by classical cloud models. One of the possible reasons for this discrepancy is the influence of cloud turbulence on the coagulation process. In Part I (Siewert et al., 2014 of this paper series, a turbulent collision kernel has been derived from wind tunnel experiments and direct numerical simulations (DNS. Here we use this new collision kernel to investigate the influence of turbulence on coagulation and rain formation using two models of different complexity: a one-dimensional model called RAINSHAFT (height as coordinate with cloud microphysics treated by a spectral bin model (BIN and a large-eddy simulation (LES model with cloud microphysics treated by Lagrangian particles (a so called Lagrangian Cloud Model, LCM. Simulations are performed for the case of no turbulence and for two situations with moderate and with extremely strong turbulence. The idealized 0- and 1-dimensional runs show, that large drops grow faster in the case turbulence is taken into account in the cloud microphysics, as was also found by earlier investigations of other groups. For moderate turbulence intensity, the acceleration is only weak, while it is more significant for strong turbulence. From the model intercomparison it turns out, that the BIN model produced large drops much faster than the LCM, independent of turbulence intensity. The differences are larger than those due to a variation in turbulence intensities. The diverging rate of formation of large drops is due to the use of different growth models for the coagulation process, i.e. the quasi-stochastic model in the spectral BIN model and the continuous growth model in LCM. From the results of this model intercomparison it is concluded, that the coagulation process has to be improved in future versions of the LCM. The LES-LCM model was also applied to the simulation of a single 3-D cumulus cloud. It turned out, that the effect of turbulence on drop formation

  1. Sensitivity estimations for cloud droplet formation in the vicinity of the high-alpine research station Jungfraujoch (3580 m a.s.l.

    Directory of Open Access Journals (Sweden)

    E. Hammer

    2015-09-01

    Full Text Available Aerosol radiative forcing estimates suffer from large uncertainties as a result of insufficient understanding of aerosol–cloud interactions. The main source of these uncertainties is dynamical processes such as turbulence and entrainment but also key aerosol parameters such as aerosol number concentration and size distribution, and to a much lesser extent, the composition. From June to August 2011 a Cloud and Aerosol Characterization Experiment (CLACE2011 was performed at the high-alpine research station Jungfraujoch (Switzerland, 3580 m a.s.l. focusing on the activation of aerosol to form liquid-phase clouds (in the cloud base temperature range of −8 to 5 °C. With a box model the sensitivity of the effective peak supersaturation (SSpeak, an important parameter for cloud activation, to key aerosol and dynamical parameters was investigated. The updraft velocity, which defines the cooling rate of an air parcel, was found to have the greatest influence on SSpeak. Small-scale variations in the cooling rate with large amplitudes can significantly alter CCN activation. Thus, an accurate knowledge of the air parcel history is required to estimate SSpeak. The results show that the cloud base updraft velocities estimated from the horizontal wind measurements made at the Jungfraujoch can be divided by a factor of approximately 4 to get the updraft velocity required for the model to reproduce the observed SSpeak. The aerosol number concentration and hygroscopic properties were found to be less important than the aerosol size in determining SSpeak. Furthermore turbulence is found to have a maximum influence when SSpeak is between approximately 0.2 and 0.4 %. Simulating the small-scale fluctuations with several amplitudes, frequencies and phases, revealed that independently of the amplitude, the effect of the frequency on SSpeak shows a maximum at 0.46 Hz (median over all phases and at higher frequencies, the maximum SSpeak decreases again.

  2. Sensitivity of summer ensembles of super-parameterized US mesoscale convective systems to cloud resolving model microphysics and resolution

    Science.gov (United States)

    Elliott, E.; Yu, S.; Kooperman, G. J.; Morrison, H.; Wang, M.; Pritchard, M. S.

    2014-12-01

    Microphysical and resolution sensitivities of explicitly resolved convection within mesoscale convective systems (MCSs) in the central United States are well documented in the context of single case studies simulated by cloud resolving models (CRMs) under tight boundary and initial condition constraints. While such an experimental design allows researchers to causatively isolate the effects of CRM microphysical and resolution parameterizations on modeled MCSs, it is still challenging to produce conclusions generalizable to multiple storms. The uncertainty associated with the results of such experiments comes both from the necessary physical constraints imposed by the limited CRM domain as well as the inability to evaluate or control model internal variability. A computationally practical method to minimize these uncertainties is the use of super-parameterized (SP) global climate models (GCMs), in which CRMs are embedded within GCMs to allow their free interaction with one another as orchestrated by large-scale global dynamics. This study uses NCAR's SP Community Atmosphere Model 5 (SP-CAM5) to evaluate microphysical and horizontal resolution sensitivities in summer ensembles of nocturnal MCSs in the central United States. Storm events within each run were identified using an objective empirical orthogonal function (EOF) algorithm, then further calibrated to harmonize individual storm signals and account for the temporal and spatial heterogeneity between them. Three summers of control data from a baseline simulation are used to assess model internal interannual variability to measure its magnitude relative to sensitivities in a number of distinct experimental runs with varying CRM parameters. Results comparing sensitivities of convective intensity to changes in fall speed assumptions about dense rimed species, one- vs. two-moment microphysics, and CRM horizontal resolution will be discussed.

  3. Cluster analysis of midlatitude oceanic cloud regimes: mean properties and temperature sensitivity

    Directory of Open Access Journals (Sweden)

    N. D. Gordon

    2010-07-01

    Full Text Available Clouds play an important role in the climate system by reducing the amount of shortwave radiation reaching the surface and the amount of longwave radiation escaping to space. Accurate simulation of clouds in computer models remains elusive, however, pointing to a lack of understanding of the connection between large-scale dynamics and cloud properties. This study uses a k-means clustering algorithm to group 21 years of satellite cloud data over midlatitude oceans into seven clusters, and demonstrates that the cloud clusters are associated with distinct large-scale dynamical conditions. Three clusters correspond to low-level cloud regimes with different cloud fraction and cumuliform or stratiform characteristics, but all occur under large-scale descent and a relatively dry free troposphere. Three clusters correspond to vertically extensive cloud regimes with tops in the middle or upper troposphere, and they differ according to the strength of large-scale ascent and enhancement of tropospheric temperature and humidity. The final cluster is associated with a lower troposphere that is dry and an upper troposphere that is moist and experiencing weak ascent and horizontal moist advection.

    Since the present balance of reflection of shortwave and absorption of longwave radiation by clouds could change as the atmosphere warms from increasing anthropogenic greenhouse gases, we must also better understand how increasing temperature modifies cloud and radiative properties. We therefore undertake an observational analysis of how midlatitude oceanic clouds change with temperature when dynamical processes are held constant (i.e., partial derivative with respect to temperature. For each of the seven cloud regimes, we examine the difference in cloud and radiative properties between warm and cold subsets. To avoid misinterpreting a cloud response to large-scale dynamical forcing as a cloud response to temperature, we require horizontal and vertical

  4. Sensitivity of PARASOL multi-angle photopolarimetric aerosol retrievals to cloud contamination

    NARCIS (Netherlands)

    Stap, F. A.; Hasekamp, O. P.; Roeckmann, Thomas

    2015-01-01

    An important problem in satellite remote sensing of aerosols is related to the need to perform an adequate cloud screening. If a cloud screening is applied that is not strict enough, the ground scene has the probability of residual cloud cover which causes large errors on the retrieved aerosol param

  5. Sensitivity of PARASOL multi-angle photopolarimetric aerosol retrievals to cloud contamination

    NARCIS (Netherlands)

    Stap, F. A.; Hasekamp, O. P.; Roeckmann, Thomas

    2015-01-01

    An important problem in satellite remote sensing of aerosols is related to the need to perform an adequate cloud screening. If a cloud screening is applied that is not strict enough, the ground scene has the probability of residual cloud cover which causes large errors on the retrieved aerosol

  6. Triggers for a high sensitivity charm experiment

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.C.

    1994-07-01

    Any future charm experiment clearly should implement an E{sub T} trigger and a {mu} trigger. In order to reach the 10{sup 8} reconstructed charm level for hadronic final states, a high quality vertex trigger will almost certainly also be necessary. The best hope for the development of an offline quality vertex trigger lies in further development of the ideas of data-driven processing pioneered by the Nevis/U. Mass. group.

  7. Sensitivity of S- and Ka-band matched dual-wavelength radar system for detecting nonprecipitating cloud

    Science.gov (United States)

    Vivekanandan, J.; Politovich, Marcia; Rilling, Robert; Ellis, Scott; Pratte, Frank

    2004-12-01

    Remote detection of cloud phase in either liquid, ice or mixed form a key microphysical observation. Evolution of a cloud system and associated radiative properties depend on microphysical characteristics. Polarization radars rely on the shape of the particle to delineate the regions of liquid and ice. For specified transmitter and receiver characteristics, it is easier to detect a high concentrations of larger atmospheric particles than a low concentration of small particles. However, the radar cross-section of a given hydrometeor increases as the transmit frequency of the radar increases. Thus, in spite of a low transmit power, the sensitivity of a millimeter-wave radar might be better than high powered centimeter-wave radars. Also, ground clutter echoes and receiver system noise powers are sensitive functions of radar transmit frequency. For example, ground clutter in centimeter-wave radar sample volumes might mask non-precipitating or lightly precipitating clouds. An optimal clutter filter or signal processing technique can be used to suppress clutter masking its effects and/or enhanced weak cloud echoes that have significantly different Doppler characteristics than stationary ground targets. In practice, it is imperative to investigate the actual performance of S and Ka-band radar systems to detect small-scale, weak cloud reflectivity. This paper describes radar characteristics and the sensitivity of the new system in non-precipitating conditions. Recently, a dual-wavelength S and Ka-band radar system with matched resolution volume and sensitivity was built to remotely detect supercooled liquid droplets. The detection of liquid water content was based on the fact that the shorter of the two wavelengths is more strongly attenuated by liquid water. The radar system was deployed during the Winter Icing Storms Project 2004 (WISP04) near Boulder, Colorado to detect and estimate liquid water content. Observations by dual-wavelength radar were collected in both non

  8. Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature

    Science.gov (United States)

    Khosrawi, F.; Urban, J.; Lossow, S.; Stiller, G.; Weigel, K.; Braesicke, P.; Pitts, M. C.; Rozanov, A.; Burrows, J. P.; Murtagh, D.

    2016-01-01

    More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O) increase of 1 ppmv or a temperature decrease of 1 K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1 K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (2000-2014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Performing linear regression analyses we derive from the Envisat/MIPAS (2002-2012) and Aura/MLS (2004-2014) observations predominantly positive changes in the potential temperature range 350 to 1000 K. The linear changes in water vapour derived from Envisat/MIPAS observations are largely insignificant, while those from Aura/MLS are mostly significant. For the temperature neither of the two instruments indicate any significant changes. Given the strong inter-annual variation observed in

  9. Sensitivity of the NEON Imaging Spectrometer Data Products to Cloud Conditions and Solar Illumination Geometry

    Science.gov (United States)

    Leisso, N.

    2016-12-01

    The National Ecological Observatory Network is a continental-scale ecological observatory funded by the NSF to collect and disseminate ecological data. NEON consists of standardized terrestrial, instrumental, and aquatic observation systems in addition to an airborne remote sensing component. The Airborne Observation Platform (AOP) group operates a payload of sensors including a waveform LiDAR, imaging spectrometer (NIS) and an RGB camera. To support the NEON project, three payloads are intended to annually acquire data over sites distributed throughout the United States in 20 individual eco-climatic regions during periods of vegetative peak greenness. The NIS is a push-broom visible to shortwave infrared (VSWIR) spectrometer (380 to 2500 nm) designed by NASA JPL for ecological applications. The NIS collects data at 5 nm spectral intervals with approximately 600 spatial pixels covering a 34-degree Field-of View. At the nominal operational flight altitude of 1000 m, the 1 mRad IFOV allows development of surface reflectance and higher-level data products at 1 m spatial resolution. Two of the primary operational constraints prohibiting accurate surface reflectance retrievals from the NIS, are 1) sufficiently clear cloud conditions and 2) sufficiently high solar zenith angles. To understand the limitations of the NIS and the quality of the derived data products under these constraints, a sensitivity analysis was undertaken which consisted of repeated NIS acquisitions with North-South and East-West flight lines over a consistent vegetated target area at Table Mountain, Colorado. Several flights were conducted as solar zenith angles varied from 20° to 70° and during clear and varying cloud conditions. During the acquisition, validation data in the form of field spectrometer measurements were acquired over two tarps of nominal 3% and 48% spectral reflectance, as well as of vegetation and gravel roadways within the target collection area. Results from the analysis showed

  10. Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5-HAM global circulation model

    Directory of Open Access Journals (Sweden)

    R. Makkonen

    2008-06-01

    Full Text Available The global aerosol-climate model ECHAM5-HAM was modified to improve the representation of new particle formation in the boundary layer. Activation-type nucleation mechanism was introduced to produce observed nucleation rates in lower troposphere. A simple and computationally efficient model for biogenic secondary organic aerosol (BSOA formation was implemented. We studied the sensitivity of aerosol and cloud droplet number concentrations (CDNC to these additions. Activation-type nucleation significantly increases aerosol number concentrations in the boundary layer. Increased particle number concentrations have a significant effect also on cloud droplet number concentrations and therefore on cloud properties. We performed calculations with activation nucleation coefficient values of 2×10-7 s−1, 2×10-6 s-1 and 2×10-5 s−1 to evaluate the sensitivity to this parameter. For BSOA we have used yields of 0.025, 0.07 and 0.15 to estimate the amount of monoterpene oxidation products available for condensation. The dynamic SOA scheme induces large regional changes to size distribution of organic carbon, and therefore affects particle optical properties and cloud droplet number concentrations locally. Comparison with satellite observation shows that activation-type nucleation significantly decreases the differences between observed and modeled values of cloud top CDNC.

  11. The Cloud Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX): overview and prominent results

    Science.gov (United States)

    Kulkarni, J. R.; Maheskumar, R. S.; Konwar, M.; Deshpande, C. G.; Morwal, S. B.; Padma Kumari, B.; Joshi, R. R.; Pandithurai, G.; Bhalwankar, R. V.; Mujumdar, V. R.; Goswami, B.; Rosenfeld, D.

    2009-12-01

    Cloud-Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX)”, an Indian national program, funded by Ministry of Earth Sciences, (MoES), Govt. of India is being conducted by Indian Institute of Tropical Meteorology (IITM), Pune during the period 2009-2012. CAIPEEX has two phases. Phase I is devoted for intensive cloud and aerosol observations over different parts of India using an instrumented aircraft. Phase II is devoted for randomized precipitation enhancement experiment. The phase I is being carried out during the period May-September 2009. The main scientific objectives of Phase I are : To measure background concentrations of aerosols and cloud condensation nuclei (CCN) during pre-monsoon and monsoon seasons over different parts of the country. Measurements of the associated differences in convective cloud microstructure and precipitation forming processes. The important preliminary results from the observational studies are: 1) During the pre-monsoon thick layer of brown haze extends to height of about 5-6 km at the foothills of the Himalaya, but does not normally spill over into the Tibetan Plateau. 2) The deep clouds that form in this layer are typically triggered at the slopes of the Himalaya. The clouds are super-continental microphysically, which means that the cloud drops are very small and prevent any warm rain. However, much ice is formed quickly, probably due to the ice nucleating activity of the aerosols. 3) In the pre-monsoon phase over central and southern India the clouds have similar nature as described for the foothills of the Himalaya, but with lower bases. Still, warm rain is substantially suppressed. During the monsoon, the clouds in the Bangalore-Hyderabad rain shadow area lose quickly their ability to produce warm rain with the increasing levels of CCN eastward away from the west coast. 4) A major finding was the dominance of thick haze in the Arabian Sea during the SW monsoon. It appears to be mostly of Arabian and

  12. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2008-04-01

    Full Text Available The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of SnomaxTM were investigated in the temperature range between −5 and −15°C. Water suspensions of these bacteria were directly spray into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of −5.7°. At this temperature, about 1% of the SnomaxTM cells induced freezing of the spray droplets before they evaporated in the cloud chamber. The other suspensions of living cells didn't induce any measurable ice concentration during spray formation at −5.7°. The remaining aerosol was exposed to typical cloud activation conditions in subsequent experiments with expansion cooling to about −11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets and then eventually acted as ice nuclei to freeze the droplets. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between −7 and −11°C with an INA fraction of the order of 10−4. The ice nucleation efficiency of SnomaxTM cells was much larger with an INA fraction of 0.2 at temperatures around −8°C.

  13. Experiences with distributed computing for meteorological applications: grid computing and cloud computing

    OpenAIRE

    Oesterle, F.; Ostermann, S; R. Prodan; G. J. Mayr

    2015-01-01

    Experiences with three practical meteorological applications with different characteristics are used to highlight the core computer science aspects and applicability of distributed computing to meteorology. Through presenting cloud and grid computing this paper shows use case scenarios fitting a wide range of meteorological applications from operational to research studies. The paper concludes that distributed computing complements and extends existing high performance comput...

  14. The Cloud Radar System

    Science.gov (United States)

    Racette, Paul; Heymsfield, Gerald; Li, Lihua; Tian, Lin; Zenker, Ed

    2003-01-01

    Improvement in our understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds including their physical dimensions, dynamical generation processes, and detailed microphysical properties. To this end, millimeter vave radar is a powerful tool by which clouds can be remotely sensed. The NASA Goddard Space Flight Center has developed the Cloud Radar System (CRS). CRS is a highly sensitive 94 GHz (W-band) pulsed-Doppler polarimetric radar that is designed to fly on board the NASA high-altitude ER-2 aircraft. The instrument is currently the only millimeter wave radar capable of cloud and precipitation measurements from above most all clouds. Because it operates from high-altitude, the CRS provides a unique measurement perspective for cirrus cloud studies. The CRS emulates a satellite view of clouds and precipitation systems thus providing valuable measurements for the implementation and algorithm validation for the upcoming NASA CloudSat mission that is designed to measure ice cloud distributions on the global scale using a spaceborne 94 GHz radar. This paper describes the CRS instrument and preliminary data from the recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). The radar design is discussed. Characteristics of the radar are given. A block diagram illustrating functional components of the radar is shown. The performance of the CRS during the CRYSTAL-FACE campaign is discussed.

  15. Global Sensitivity Analysis for Large-scale Socio-hydrological Models using the Cloud

    Science.gov (United States)

    Hu, Y.; Garcia-Cabrejo, O.; Cai, X.; Valocchi, A. J.; Dupont, B.

    2014-12-01

    In the context of coupled human and natural system (CHNS), incorporating human factors into water resource management provides us with the opportunity to understand the interactions between human and environmental systems. A multi-agent system (MAS) model is designed to couple with the physically-based Republican River Compact Administration (RRCA) groundwater model, in an attempt to understand the declining water table and base flow in the heavily irrigated Republican River basin. For MAS modelling, we defined five behavioral parameters (κ_pr, ν_pr, κ_prep, ν_prep and λ) to characterize the agent's pumping behavior given the uncertainties of the future crop prices and precipitation. κ and ν describe agent's beliefs in their prior knowledge of the mean and variance of crop prices (κ_pr, ν_pr) and precipitation (κ_prep, ν_prep), and λ is used to describe the agent's attitude towards the fluctuation of crop profits. Notice that these human behavioral parameters as inputs to the MAS model are highly uncertain and even not measurable. Thus, we estimate the influences of these behavioral parameters on the coupled models using Global Sensitivity Analysis (GSA). In this paper, we address two main challenges arising from GSA with such a large-scale socio-hydrological model by using Hadoop-based Cloud Computing techniques and Polynomial Chaos Expansion (PCE) based variance decomposition approach. As a result, 1,000 scenarios of the coupled models are completed within two hours with the Hadoop framework, rather than about 28days if we run those scenarios sequentially. Based on the model results, GSA using PCE is able to measure the impacts of the spatial and temporal variations of these behavioral parameters on crop profits and water table, and thus identifies two influential parameters, κ_pr and λ. The major contribution of this work is a methodological framework for the application of GSA in large-scale socio-hydrological models. This framework attempts to

  16. Size-dependent activation of aerosols into cloud droplets at a subarctic background site during the second Pallas Cloud Experiment (2nd PaCE: method development and data evaluation

    Directory of Open Access Journals (Sweden)

    T. Anttila

    2008-07-01

    Full Text Available In situ measurements of aerosol water uptake and activation of aerosols into cloud droplets provide information on how aerosols influence the microphysical properties of clouds. Here we present a computational scheme that can be used in connection with such measurements to assess the influence of the particle chemical composition and mixing state (in terms of the water uptake on the cloud nucleating ability of particles. Additionally, it provides an estimate for the peak supersaturation of water vapour reached during the formation of the observed cloud(s. The method was applied in interpreting results of a measurement campaign that focused on aerosol-cloud interactions taking place at a subarctic background site located in northern Finland (second Pallas Cloud Experiment, 2nd PaCE. A set of case studies was conducted, and the observed activation behavior could be successfully explained by a maximum supersaturation that varied between 0.18 and 0.26% depending on the case. In these cases, the diameter corresponding to the activated fraction of 50% was in the range of 110–140 nm, and the particles were only moderately water soluble with hygroscopic growth factors varying between 1.1 and 1.4. The conducted analysis showed that the activated fractions and the total number of particles acting as CCN are expected to be highly sensitive to the particle hygroscopicity. For example, the latter quantity varied over a factor between 1.8 and 3.1, depending on the case, when the mean hygroscopic growth factors were varied by 10%. Another important conclusion is that size-dependent activation profiles carries information on the mixing state of particles.

  17. Sensitivity of surface radiation budget to clouds over the Asian monsoon region

    Indian Academy of Sciences (India)

    S Balachandran; M Rajeevan

    2007-04-01

    Using the ISCCP–FD surface radiative flux data for the summer season (June to September) of the period 1992 to 1995, an analysis was done to understand the role of clouds on the surface radiation budget over the Asian monsoon region. At the top of atmosphere (TOA) of convective regions of the Asian monsoon region, the short wave radiative forcing (SWCRF) and long wave radiative forcing (LWCRF) do not cancel each other resulting in occurrence of the net cloud radiative forcing values exceeding −30W/m2. This type of imbalance between SWCRF and LWCRF at TOA is reflected down on the earth surface–atmosphere system also as an imbalance between surface netcloud radiative forcing (NETCRF) and atmospheric NETCRF. Based on the regression analysis of the cloud effects on the surface radiation budget quantities, it has been observed that generally, the variance explained by multiple type cloud data is 50% more than that of total cloud cover alone. In case of SWCRF, the total cloud cover can explain about 3% (7%) of the variance whereas the three cloud type descriptions of clouds can explain about 44% (42%) of the variance over oceanic (land) regions. This highlights the importance of cloud type information in explaining the variations of surface radiation budget. It has been observed that the clouds produce more cooling effect in short-wave band than the warming effect in long-wave band resulting in a net cooling at the surface. Over the oceanic region, variations in high cloud amount contribute more to variations in SWCRF while over land regions both middle and high cloud variations make substantial contributions to the variations in both SWCRF and NETCRF.

  18. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    Science.gov (United States)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  19. NCloud - Experimenting with Architecting and Facilitating Utility Services for establishing Educational Cloud

    Directory of Open Access Journals (Sweden)

    Madhuri Bhavsar

    2013-06-01

    Full Text Available Academic Institutions as well as Enterprises all over the globe have become heavily dependent on high performance computing systems for their day to day activities and hence it continues to seek opportunities to rationalize and optimize the utilization of resources. Continuous upgradation  of software and hardware have become important items of those organizations meetings creating budget pressure. In such scenario, Cloud computing services could provide many of those organizations to enhance the productivity keeping the budget expenditure low.The paper discusses the experiments carried out on our educational campus for architecting the cloud – hereafter referred as NCloud (Cloud built on Nirma Campus, configured using open source tools, furnishes the utility services which is leading towards an establishment of  a stepping stone for formation of knowledge cloud. Testbed formed for data center consists of 1 front-end and 16 worker node.  By using NCloud, user will be able to fulfill the demand  of infrastructure as a service in which user is provided an operating system with specific RAM and CPU cores. Utility oriented services in NCloud aims to charge user for what they use. For implementing utility oriented services, analysis of various major cloud providers is done including pricing models. Performance measures on heterogeneous platforms and the results obtained are included in the paper.

  20. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2008-10-01

    Full Text Available The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of Snomax™ were investigated in the temperature range between −5 and −15°C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of −5.7°C. At this temperature, about 1% of the Snomax™ cells induced immersion freezing of the spray droplets before the droplets evaporated in the cloud chamber. The living cells didn't induce any detectable immersion freezing in the spray droplets at −5.7°C. After evaporation of the spray droplets the bacterial cells remained as aerosol particles in the cloud chamber and were exposed to typical cloud formation conditions in experiments with expansion cooling to about −11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets. Then, only a minor fraction of the cells acted as heterogeneous ice nuclei either in the condensation or the immersion mode. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between −7 and −11°C with an ice nucleation (IN active fraction of the order of 10−4. In agreement to previous literature results, the ice nucleation efficiency of Snomax™ cells was much larger with an IN active fraction of 0.2 at temperatures around −8°C.

  1. The sensitivity of multiple equilibria in a cloud resolving model to sea surface temperature changes in weak temperature gradient simulations

    Science.gov (United States)

    Sentic, Stipo; Sessions, Sharon

    2012-10-01

    In the tropics, gravity waves quickly redistribute buoyancy anomalies, which leads to approximately weak temperature gradients (WTG) in the horizontal. In our cloud resolving model (CRM), the WTG approximation is enforced by relaxing potential temperature perturbations to a reference profile which represents the mean state of the atmosphere. To obtain reference profiles, the model is run in a non-WTG mode until radiative convective equilibrium (RCE). RCE vertical profiles of temperature and moisture are then used as reference profiles for WTG simulations. Continuing the work of Sessions et al (2010), we investigate the sensitivity of multiple equilibria in a CRM to changes in sea surface temperatures (SST). Multiple equilibria refers to a precipitating or non-precipitating steady state under identical forcing conditions. Specifically, we run RCE simulations for different SSTs to generate reference profiles representing different large scale environments for WTG simulations. We then perform WTG experiments for each SST with varying surface wind speeds. The model domain is initialized either with a completely dry troposphere, or with a RCE moisture profile. We find that the range of wind speeds maintaining both a dry and a precipitating steady state is strongly dependent on SST.

  2. Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE, Darwin 2006)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Long, Charles N.; Leung, Lai-Yung R.; Dudhia, Jimy; McFarlane, Sally A.; Mather, James H.; Ghan, Steven J.; Liu, Xiaodong

    2009-11-05

    Data from the Tropical Warm Pool I5 nternational Cloud Experiment (TWPICE) were used to evaluate two suites of high-resolution (4-7 km, convection-resolving) simulations of the Advanced Research Weather Research and Forecasting (WRF) model with a focus on the performance of different cloud microphysics (MP) schemes. The major difference between these two suites of simulations is with and without the reinitializing process. Whenreinitialized every three days, the four cloud MP schemes evaluated can capture the general profiles of cloud fraction, temperature, water vapor, winds, and cloud liquid and ice water content (LWC and IWC, respectively). However, compared with surface measurements of radiative and moisture fluxes and satellite retrieval of top-of-the-atmosphere (TOA) fluxes, disagreements do exist. Large discrepancies with observed LWC and IWC and derived radiative heating profiles can be attributed to both the limitations of the cloud property retrievals and model performance. The simulated precipitation also shows a wide range of uncertainty as compared with observations, which could be caused by the cloud MP schemes, complexity of land-sea configuration, and the high temporal and spatial variability. In general, our result indicates the importance of large-scale initial and lateral boundary conditions in re-producing basic features of cloudiness and its vertical structures. Based on our case study, we find overall the six-hydrometer single-moment MP scheme(WSM6) [Hong and Lim, 2006] in the WRF model si25 mulates the best agree- ment with the TWPICE observational analysis.

  3. Sensitivity Analysis on Fu-Liou-Gu Radiative Transfer Model for different lidar aerosol and cloud profiles

    Science.gov (United States)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Pappalardo, Gelsomina; Welton, Ellsworth J.

    2016-04-01

    The aerosol and cloud impact on climate change is evaluated in terms of enhancement or reduction of the radiative energy, or heat, available in the atmosphere and at the Earth's surface, from the surface (SFC) to the Top Of the Atmosphere (TOA) covering a spectral range from the UV (extraterrestrial shortwave solar radiation) to the far-IR (outgoing terrestrial longwave radiation). Systematic Lidar network measurements from permanent observational sites across the globe are available from the beginning of this current millennium. From the retrieved lidar atmospheric extinction profiles, inputted in the Fu-Liou-Gu (FLG) Radiative Transfer code, it is possible to evaluate the net radiative effect and heating rate of the different aerosol species and clouds. Nevertheless, the lidar instruments may use different techniques (elastic lidar, Raman lidar, multi-wavelength lidar, etc) that translate into uncertainty of the lidar extinction retrieval. The goal of this study is to assess, applying a MonteCarlo technique and the FLG Radiative Transfer model, the sensitivity in calculating the net radiative effect and heating rate of aerosols and clouds for the different lidar techniques, using both synthetic and real lidar data. This sensitivity study is the first step to implement an automatic algorithm to retrieve the net radiative forcing effect of aerosols and clouds from the long records of aerosol measurements available in the frame of EARLINET and MPLNET lidar networks.

  4. Engaging observers to look at clouds from both sides: connecting NASA mission science with authentic STEM experiences

    Science.gov (United States)

    Chambers, L. H.; Taylor, J.; Ellis, T. D.; McCrea, S.; Rogerson, T. M.; Falcon, P.

    2016-12-01

    In 1997, NASA's Clouds and the Earth's Radiant Energy System (CERES) team began engaging K-12 schools as ground truth observers of clouds. CERES seeks to understand cloud effects on Earth's energy budget; thus accurate detection and characterization of clouds is key. While satellite remote sensing provides global information about clouds, it is limited in time and resolution. Ground observers, on the other hand, can observe clouds at any time of day (and sometimes night), and can see small and thin clouds that are challenging to detect from space. In 2006, two active sensing satellites, CloudSat and CALIPSO, were launched into the A-Train, which already contained 2 CERES instruments on the Aqua spacecraft. The CloudSat team also engaged K-12 schools to observe clouds, through The GLOBE Program, with a specialized observation protocol customized for the narrow radar swath. While providing valuable data for satellite assessment, these activities also engage participants in accessible, authentic science that gets people outdoors, helps them develop observation skills, and is friendly to all ages. The effort has evolved substantially since 1997, adopting new technology to provide a more compelling experience to citizen observers. Those who report within 15 minutes of the passage of a wide range of satellites (Terra, Aqua, CloudSat, CALIPSO, NPP, as well as a number of geostationary satellites) are sent a satellite image centered on their location and are invited to extend the experience beyond simple observation to include analysis of the two different viewpoints. Over the years these projects have collected large amounts of cloud observations from every continent and ocean basin on Earth. A number of studies have been conducted comparing the ground observations to the satellite results. This presentation will provide an overview of those results and also describe plans for a coordinated, thematic cloud observation and data analysis activity going forward.

  5. Feasibility of reduced gravity experiments involving quiescent, uniform particle cloud combustion

    Science.gov (United States)

    Ross, Howard D.; Facca, Lily T.; Berlad, Abraham L.; Tangirala, Venkat

    1989-01-01

    The study of combustible particle clouds is of fundamental scientific interest as well as a practical concern. The principal scientific interests are the characteristic combustion properties, especially flame structure, propagation rates, stability limits, and the effects of stoichiometry, particle type, transport phenomena, and nonadiabatic processes on these properties. The feasibility tests for the particle cloud combustion experiment (PCCE) were performed in reduced gravity in the following stages: (1) fuel particles were mixed into cloud form inside a flammability tube; (2) when the concentration of particles in the cloud was sufficiently uniform, the particle motion was allowed to decay toward quiescence; (3) an igniter was energized which both opened one end of the tube and ignited the suspended particle cloud; and (4) the flame proceeded down the tube length, with its position and characteristic features being photographed by high-speed cameras. Gravitational settling and buoyancy effects were minimized because of the reduced gravity enviroment in the NASA Lewis drop towers and aircraft. Feasibility was shown as quasi-steady flame propagation which was observed for fuel-rich mixtures. Of greatest scientific interest is the finding that for near-stoichiometric mixtures, a new mode of flame propagation was observed, now called a chattering flame. These flames did not propagate steadily through the tube. Chattering modes of flame propagation are not expected to display extinction limits that are the same as those for acoustically undisturbed, uniform, quiescent clouds. A low concentration of fuel particles, uniformly distributed in a volume, may not be flammable but may be made flammable, as was observed, through induced segregation processes. A theory was developed which showed that chattering flame propagation was controlled by radiation from combustion products which heated the successive discrete laminae sufficiently to cause autoignition.

  6. Extending 'Deep Blue' aerosol retrieval coverage to cases of absorbing aerosols above clouds: sensitivity analysis and first case studies

    Energy Technology Data Exchange (ETDEWEB)

    Sayer, Andrew M.; Hsu, C.; Bettenhausen, Corey; Lee, Jae N.; Redemann, Jens; Schmid, Beat; Shinozuka, Yohei

    2016-05-07

    Cases of absorbing aerosols above clouds (AAC), such as smoke or mineral dust, are omitted from most routinely-processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar

  7. Study to perform preliminary experiments to evaluate particle generation and characterization techniques for zero-gravity cloud physics experiments

    Science.gov (United States)

    Katz, U.

    1982-01-01

    Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.

  8. Multilayer Cloud Detection Using MODIS: Sensitivity Tests Using a Forward Model

    Science.gov (United States)

    Wind, G.; Platnick, S.; King, M. D.

    2008-05-01

    The most recent processing effort for the MODIS Atmosphere Team, referred to as the Collection 5 stream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 km resolution. In order to investigate further the performance of the multilayer cloud detection algorithm we have run a set of forward models of multilayer clouds of varying layer separation, thermodynamic phase, optical and microphysical properties and varying surface and atmospheric conditions using the DISORT radiative transfer code. The model output, in the form of equivalent reflectances in the MODIS bands is then used as input to the operational MODIS cloud optical and microphysical properties retrieval algorithm and results are compared to the known truth of the DISORT input. We will present the results of this investigation with an emphasis on the applicability and skill of the MODIS multilayer cloud detection algorithm.

  9. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  10. Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India

    Energy Technology Data Exchange (ETDEWEB)

    Rajeevan, M.; Kesarkar, A.; Rao, T.N.; Radhakrishna, B. [National Atmospheric Research Lab., Gadanki (India); Thampi, S.B. [India Meteorological Dept., Chennai (India). Doppler Weather Radar Div.; Rajasekhar, M. [ISRO, Sriharikota (India). SHAR Center

    2010-07-01

    condensate profiles, which peaked around 5-6 km. As the results are dependent on initial conditions, in simulations with different initial conditions, different schemes may become closer to observations. The present study suggests not only large sensitivity but also variability of the microphysical schemes in the simulations of the thunderstorm. The study also emphasizes the need for a comprehensive observational campaign using multi-observational platforms to improve the parameterization of the cloud microphysics and land surface processes over the Indian region. (orig.)

  11. Projected Sensitivity of the SuperCDMS SNOLAB experiment

    CERN Document Server

    Agnese, R; Aramaki, T; Arnquist, I; Baker, W; Barker, D; Thakur, R Basu; Bauer, D A; Borgland, A; Bowles, M A; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Calkins, R; Cartaro, C; Cerdeño, D G; Chagani, H; Chen, Y; Cooley, J; Cornell, B; Cushman, P; Daal, M; Di Stefano, P C F; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Fritts, M; Gerbier, G; Ghaith, M; Godfrey, G L; Golwala, S R; Hall, J; Harris, H R; Hofer, T; Holmgren, D; Hong, Z; Hoppe, E; Hsu, L; Huber, M E; Iyer, V; Jardin, D; Jastram, A; Kelsey, M H; Kennedy, A; Kubik, A; Kurinsky, N A; Leder, A; Loer, B; Asamar, E Lopez; Lukens, P; Mahapatra, R; Mandic, V; Mast, N; Mirabolfathi, N; Moffatt, R A; Mendoza, J D Morales; Orrell, J L; Oser, S M; Page, K; Page, W A; Partridge, R; Pepin, M; Phipps, A; Poudel, S; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Roberts, A; Robinson, A E; Rogers, H E; Saab, T; Sadoulet, B; Sander, J; Schneck, K; Schnee, R W; Serfass, B; Speller, D; Stein, M; Street, J; Tanaka, H A; Toback, D; Underwood, R; Villano, A N; von Krosigk, B; Welliver, B; Wilson, J S; Wright, D H; Yellin, S; Yen, J J; Young, B A; Zhang, X; Zhao, X

    2016-01-01

    SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass ( 5 GeV/c$^2$). The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the "neutrino floor", where coherent scatters of solar neutrinos become a limiting background.

  12. Determination of Cloud Thermodynamic Phase with Ground Based, Polarimetrically Sensitive, Passive Sky Radiometers

    Science.gov (United States)

    Knobelspiesse, K. D.; van Diedenhoven, B.; Marshak, A.; Dunagan, S. E.; Holben, B. N.; Slutsker, I.

    2015-12-01

    When observed from the ground, optically thick clouds minimally polarize light, while the linear polarization direction (angle) of optically thin clouds contains information about thermodynamic phase. For instruments such at the Cimel radiometers that comprise the AErosol RObotic NEtwork (AERONET), these properties can also be exploited to aid cloud optical property retrievals. Using vector radiative transfer simulations, we explore the conditions most favorable to cloud thermodynamic phase determination, then test with actual AERONET data. Results indicate that this technique may be appropriate for some, but not all, conditions, and motivate a deeper investigation about the polarization direction measurement capability of Cimel instruments, which to date have been primarily used to determine degree of polarization. Recent work explores these measurement issues using a newly installed instrument at the NASA Ames Research Center in Moffett Field, California.

  13. Aerosol and cloud chemistry of amines from CCS - reactivity experiments and numerical modeling

    Science.gov (United States)

    Weller, Christian; Tilgner, Andreas; Herrmann, Hartmut

    2013-04-01

    Capturing CO2 from the exhaust of power plants using amine scrubbing is a common technology. Therefore, amines can be released during the carbon capture process. To investigate the tropospheric chemical fate of amines from CO2 capturing processes and their oxidation products, the impact of aqueous aerosol particles and cloud droplets on the amine chemistry has been considered. Aqueous phase reactivity experiments of NO3 radicals and ozone with relevant amines and their corresponding nitrosamines were performed. Furthermore, nitrosamine formation and nitrosamine photolysis was investigated during laboratory experiments. These experiments implicated that aqueous phase photolysis can be an effective sink for nitrosamines and that ozone is unreactive towards amines and nitrosamines. Multiphase phase oxidation schemes of amines, nitrosamines and amides were developed, coupled to the existing multiphase chemistry mechanism CAPRAM and built into the Lagrangian parcel model SPACCIM using published and newly measured data. As a result, both deliquescent particles and cloud droplets are important compartments for the multiphase processing of amines and their products. Amines can be readily oxidised by OH radicals in the gas and cloud phase during daytime summer conditions. However, amine oxidation is restricted during winter conditions with low photochemical activity leading to long lifetimes of amines. The importance of the gas and aqueous phase depends strongly on the partitioning of the different amines. Furthermore, the simulations revealed that the aqueous formation of nitrosamines in aerosol particles and could droplets is not a relevant process under tropospheric conditions.

  14. Sensitivity Study of Cloud Cover and Ozone Modeling to Microphysics Parameterization

    Science.gov (United States)

    Wałaszek, Kinga; Kryza, Maciej; Szymanowski, Mariusz; Werner, Małgorzata; Ojrzyńska, Hanna

    2017-02-01

    Cloud cover is a significant meteorological parameter influencing the amount of solar radiation reaching the ground surface, and therefore affecting the formation of photochemical pollutants, most of all tropospheric ozone (O3). Because cloud amount and type in meteorological models are resolved by microphysics schemes, adjusting this parameterization is a major factor determining the accuracy of the results. However, verification of cloud cover simulations based on surface data is difficult and yields significant errors. Current meteorological satellite programs provide many high-resolution cloud products, which can be used to verify numerical models. In this study, the Weather Research and Forecasting model (WRF) has been applied for the area of Poland for an episode of June 17th-July 4th, 2008, when high ground-level ozone concentrations were observed. Four simulations were performed, each with a different microphysics parameterization: Purdue Lin, Eta Ferrier, WRF Single-Moment 6-class, and Morrison Double-Moment scheme. The results were then evaluated based on cloud mask satellite images derived from SEVIRI data. Meteorological variables and O3 concentrations were also evaluated. The results show that the simulation using Morrison Double-Moment microphysics provides the most and Purdue Lin the least accurate information on cloud cover and surface meteorological variables for the selected high ozone episode. Those two configurations were used for WRF-Chem runs, which showed significantly higher O3 concentrations and better model-measurements agreement of the latter.

  15. The sensitivity of stratocumulus-capped mixed layers to cloud droplet concentration: do LES and mixed-layer models agree?

    Directory of Open Access Journals (Sweden)

    P. N. Blossey

    2009-12-01

    Full Text Available The sensitivity of a stratocumulus-capped mixed layer to a change in cloud droplet concentration is evaluated with a large-eddy simulation (LES and a mixed layer model (MLM, to see if the two model types agree on the strength of the second aerosol indirect effect. Good agreement can be obtained if the MLM entrainment closure explicitly reduces entrainment efficiency proportional to the rate of cloud droplet sedimentation at cloud top for cases in which the LES-simulated boundary layer remains well mixed, with a single peak in the vertical profile of vertical velocity variance.

    To achieve this agreement, the MLM entrainment closure and the drizzle parameterization must be modified from their observationally-based defaults. This is because the LES advection scheme and microphysical parameterization significantly bias the entrainment rate and precipitation profile compared to observational best guesses. Before this modification, the MLM simulates more liquid water path and much more drizzle at a given droplet concentration than the LES and is more sensitive to droplet concentration, even undergoing a drizzle-induced boundary layer collapse at low droplet concentrations. After this modification, both models predict a similar decrease of cloud liquid water path as droplet concentration increases, cancelling 30–50% of the Twomey effect for our case. The agreement breaks down at the lowest simulated droplet concentrations, for which the boundary layer in the LES is not well mixed.

    Our results highlight issues with both types of model. Potential LES biases due to inadequate resolution, subgrid mixing and microphysics must be carefully considered when trying to make a quantitative inference of the second indirect effect from an LES of a stratocumulus-topped boundary layer. On the other hand, even slight internal decoupling of the boundary layer invalidates MLM-predicted sensitivity to droplet concentrations.

  16. Victimization Experiences and the Stabilization of Victim Sensitivity

    Directory of Open Access Journals (Sweden)

    Mario eGollwitzer

    2015-04-01

    Full Text Available People reliably differ in the extent to which they are sensitive to being victimized by others. Importantly, victim sensitivity predicts how people behave in social dilemma situations: Victim-sensitive individuals are less likely to trust others and more likely to behave uncooperatively - especially in socially uncertain situations. This pattern can be explained with the Sensitivity to Mean Intentions (SeMI model, according to which victim sensitivity entails a specific and asymmetric sensitivity to contextual cues that are associated with untrustworthiness. Recent research is largely in line with the model’s prediction, but some issues have remained conceptually unresolved so far. For instance, it is unclear why and how victim sensitivity becomes a stable trait and which developmental and cognitive processes are involved in such stabilization. In the present article, we will discuss the psychological processes that contribute to a stabilization of victim sensitivity within persons, both across the life span (ontogenetic stabilization and across social situations (actual-genetic stabilization. Our theoretical framework starts from the assumption that experiences of being exploited threaten a basic need, the need to trust. This need is so fundamental that experiences that threaten it receive a considerable amount of attention and trigger strong affective reactions. Associative learning processes can then explain (a how certain contextual cues (e.g., facial expressions become conditioned stimuli that elicit equally strong responses, (b why these contextual untrustworthiness cues receive much more attention than, for instance, trustworthiness cues, and (c how these cues shape spontaneous social expectations (regarding other people’s intentions. Finally, avoidance learning can explain why these cognitive processes gradually stabilize and become a trait: the trait which is referred to as victim sensitivity.

  17. Vantage sensitivity: individual differences in response to positive experiences.

    Science.gov (United States)

    Pluess, Michael; Belsky, Jay

    2013-07-01

    The notion that some people are more vulnerable to adversity as a function of inherent risk characteristics is widely embraced in most fields of psychology. This is reflected in the popularity of the diathesis-stress framework, which has received a vast amount of empirical support over the years. Much less effort has been directed toward the investigation of endogenous factors associated with variability in response to positive influences. One reason for the failure to investigate individual differences in response to positive experiences as a function of endogenous factors may be the absence of adequate theoretical frameworks. According to the differential-susceptibility hypothesis, individuals generally vary in their developmental plasticity regardless of whether they are exposed to negative or positive influences--a notion derived from evolutionary reasoning. On the basis of this now well-supported proposition, we advance herein the new concept of vantage sensitivity, reflecting variation in response to exclusively positive experiences as a function of individual endogenous characteristics. After distinguishing vantage sensitivity from theoretically related concepts of differential-susceptibility and resilience, we review some recent empirical evidence for vantage sensitivity featuring behavioral, physiological, and genetic factors as moderators of a wide range of positive experiences ranging from family environment and psychotherapy to educational intervention. Thereafter, we discuss genetic and environmental factors contributing to individual differences in vantage sensitivity, potential mechanisms underlying vantage sensitivity, and practical implications.

  18. Physico-chemical properties of cloud drop residual and interstitial particles sampled inside hill capped clouds during a field experiment in Central Europe

    Science.gov (United States)

    Mertes, S.; Schneider, J.; Merkel, M.; Roth, A.; Van Pinxteren, D.; Wiedensohler, A.; Herrmann, H.

    2011-12-01

    Aerosol-cloud interaction, particle activation and phase partitioning of ambient aerosol particles between the liquid and interstitial phase in continental boundary layer clouds were investigated during the Hill Cap Cloud Thuringia field experiment in autumn 2010 (HCCT 2010). An interstitial inlet (INT) and two counterflow virtual impactors (CVI) were operated inside cloud in order to separate and collect non-activated interstitial particles (IP) and cloud drops, respectively, on the mountain site Schmücke (938 m asl) in Central Europe. Both inlet types were designed for a separation diameter of 5 μm. Inside the CVI systems the collected drops are evaporated releasing dry cloud drop residues (CDR), which are closely related to the original cloud condensation nuclei forming the cloud. By two sets of instruments that measured the same parameter connected to each inlet type, the CDR and IP were micro-physically and chemically characterized simultaneously. Number concentration and size distribution were determined by a condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) + optical particle counter (OPC) at INT and CVI. The chemical composition of CDR and IP was inferred in various ways. The amount of black carbon in each reservoir was measured by two particle soot absorption photometers (PSAP) supplemented by a multiangle absorption photometer (MAAP) at the interstitial inlet only. The content of non-refractory chemical compounds was analyzed by a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) and a high-resolution (HR)-ToF- AMS for the CDR and IP, respectively. Filter and adsorption cartridge samples were taken at both inlet types to determine selected inorganic and organic species. The mixing state of single cloud drop residues was derived from the aircraft-based laser ablation aerosol mass spectrometer ALABAMA. During the analyzed cloud events, the cloud microphysical parameters measured by a particle volume monitor (PVM

  19. Blue skies for CLOUD

    CERN Multimedia

    2006-01-01

    Through the recently approved CLOUD experiment, CERN will soon be contributing to climate research. Tests are being performed on the first prototype of CLOUD, an experiment designed to assess cosmic radiation influence on cloud formation.

  20. Sense and sensitivity of double beta decay experiments

    CERN Document Server

    Gomez-Cadenas, J J; Sorel, M; Ferrario, P; Monrabal, F; Munoz, J; Novella, P

    2010-01-01

    The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, m_bb. In order to make sense of how the different experimental approaches compare, we apply the same recipe to a selection of proposals, comparing the resulting sensitivities. We assume nuclear matrix elements computed within the Interacting Shell Model framework throughout. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and bb isotope mass. For each proposal, both a conservative and an optimistic scenario for the experimental performance are studied. In the most optimistic scenari...

  1. Projected sensitivity of the SuperCDMS SNOLAB experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Aramaki, T.; Arnquist, I.; Baker, W.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Borgland, A.; Bowles, M. A.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cartaro, C.; Cerdeño, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Fritts, M.; Gerbier, G.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hong, Z.; Hoppe, E.; Hsu, L.; Huber, M. E.; Iyer, V.; Jardin, D.; Jastram, A.; Kelsey, M. H.; Kennedy, A.; Kubik, A.; Kurinsky, N. A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; Mast, N.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Orrell, J. L.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Poudel, S.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Roberts, A.; Robinson, A. E.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Serfass, B.; Speller, D.; Stein, M.; Street, J.; Tanaka, H. A.; Toback, D.; Underwood, R.; Villano, A. N.; von Krosigk, B.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, X.; Zhao, X.

    2017-04-07

    SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/c$^2$) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10$^{-43}$ cm$^2$ for a dark matter particle mass of 1 GeV/c$^2$, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced $^{3}$H and naturally occurring $^{32}$Si will be present in the detectors at some level. Even if these backgrounds are x10 higher than expected, the science reach of the HV detectors would be over three orders of magnitude beyond current results for a dark matter mass of 1 GeV/c$^2$. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particle masses (> 5 GeV/c$^2$). The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the "neutrino floor", where coherent scatters of solar neutrinos become a limiting background.

  2. ACE-2 HILLCLOUD. An overview of the ACE-2 ground-based cloud experiment

    DEFF Research Database (Denmark)

    Bower, B.K.N.; Choularton, T.W.; Gallagher, M.W.

    2000-01-01

    The ACE-2 HILLCLOUD experiment was carried out on the island of Tenerife in June-July 1997 to investigate the interaction of the boundary layer aerosol with a hill cap cloud forming over a ridge to the north-east of the island. The cloud was used as a natural flow through reactor to investigate......, (nocturnally for seven of the eight runs) and were carried out in a wide range of airmass conditions from clean maritime to polluted continental. Polluted air was characterised by higher than average concentrations of ozone (> 50 ppbv), fine and accumulation mode aerosols (>3000 and >1500 cm-3, respectively...... and hydrochloric acids were present as a result of outgassing from aerosol, the HNO3 from nitrate rich aerosol transported into the region from upwind of Tenerife, and HCl from sea salt aerosol newly formed at the sea surface. The oxidants hydrogen peroxide and ozone were abundant (i.e., were well in excess over...

  3. The Mid-latitude Continental Convective Clouds (MC3E) Experiment Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M [Brookhaven National Laboratory; Giangrande, S [Brookhaven National Laboratory; Kollias, P [Stony Brook University

    2014-04-01

    The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place from April 22 through June 6, 2011, centered at the ARM Southern Great Plains site (http://www.arm.gov/sites/sgp) in northcentral Oklahoma. MC3E was a collaborative effort between the ARM Climate Research Facility and the National Aeronautics and Space Administration’s (NASA’s) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The campaign leveraged the largest ground-based observing infrastructure available in the central United States, including recent upgrades through the American Recovery and Reinvestment Act of 2009, combined with an extensive sounding array, remote sensing and in situ aircraft observations, and additional radar and in situ precipitation instrumentation. The overarching goal of the campaign was to provide a three-dimensional characterization of convective clouds and precipitation for the purpose of improving the representation of convective lifecycle in atmospheric models and the reliability of satellite-based retrievals of precipitation.

  4. Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Matthew [Colorado State Univ., Fort Collins, CO (United States)

    2014-01-01

    The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.

  5. On the contribution of Aitken mode particles to cloud droplet populations at continental background areas – a parametric sensitivity study

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2007-05-01

    Full Text Available Aitken mode particles are potentially an important source of cloud droplets in continental background areas. In order to find out which physico-chemical properties of Aitken mode particles are most important regarding their cloud-nucleating ability, we applied a global sensitivity method to an adiabatic air parcel model simulating the number of cloud droplets formed on Aitken mode particles, CD2. The technique propagates uncertainties in the parameters describing the properties of Aitken mode to CD2. The results show that if the Aitken mode particles do not contain molecules that are able to reduce the particle surface tension more than 30% and/or decrease the mass accommodation coefficient of water, α, below 10−2, the chemical composition and modal properties may have roughly an equal importance at low updraft velocities characterized by maximum supersaturations <0.1%. For larger updraft velocities, however, the particle size distribution is clearly more important than the chemical composition. In general, CD2 exhibits largest sensitivity to the particle number concentration, followed by the particle size. Also the shape of the particle mode, characterized by the geometric standard deviation (GSD, can be as important as the mode mean size at low updraft velocities. Finally, the performed sensitivity analysis revealed also that the chemistry may dominate the total sensitivity of CD2 to the considered parameters if: 1 the value of α varies at least one order of magnitude more than what is expected for pure water surfaces (10−2–1, or 2 the particle surface tension varies more than roughly 30% under conditions close to reaching supersaturation.

  6. Sensitivities of Cumulus-Ensemble Rainfall in a Cloud-Resolving Model with Parameterized Large-Scale Dynamics.

    Science.gov (United States)

    Mapes, Brian E.

    2004-09-01

    The problem of closure in cumulus parameterization requires an understanding of the sensitivities of convective cloud systems to their large-scale setting. As a step toward such an understanding, this study probes some sensitivities of a simulated ensemble of convective clouds in a two-dimensional cloud-resolving model (CRM). The ensemble is initially in statistical equilibrium with a steady imposed background forcing (cooling and moistening). Large-scale stimuli are imposed as horizontally uniform perturbations nudged into the model fields over 10 min, and the rainfall response of the model clouds is monitored.In order to reduce a major source of artificial insensitivity in the CRM, a simple parameterization scheme is devised to account for heating-induced large-scale (i.e., domain averaged) vertical motions that would develop in nature but are forbidden by the periodic boundary conditions. The effects of this large-scale vertical motion are parameterized as advective tendency terms that are applied as a uniform forcing throughout the domain, just like the background forcing. This parameterized advection is assumed to lag rainfall (used as a proxy for heating) by a specified time scale. The time scale determines (via a gravity wave space time conversion factor) the size of the large-scale region represented by the periodic CRM domain, which can be of arbitrary size or dimensionality.The sensitivity of rain rate to deep cooling and moistening, representing an upward displacement by a large-scale wave of first baroclinic mode structure, is positive. Near linearity is found for ±1 K perturbations, and the sensitivity is about equally divided between temperature and moisture effects. For a second baroclinic mode (vertical dipole) displacement, the sign of the perturbation in the lower troposphere dominates the convective response. In this dipole case, the initial sensitivity is very large, but quantitative results are distorted by the oversimplified large

  7. Insights Into Atmospheric Aqueous Organic Chemistry Through Controlled Experiments with Cloud Water Surrogates

    Science.gov (United States)

    Turpin, B. J.; Ramos, A.; Kirkland, J. R.; Lim, Y. B.; Seitzinger, S.

    2011-12-01

    There is considerable laboratory and field-based evidence that chemical processing in clouds and wet aerosols alters organic composition and contributes to the formation of secondary organic aerosol (SOA). Single-compound laboratory experiments have played an important role in developing aqueous-phase chemical mechanisms that aid prediction of SOA formation through multiphase chemistry. In this work we conduct similar experiments with cloud/fog water surrogates, to 1) evaluate to what extent the previously studied chemistry is observed in these more realistic atmospheric waters, and 2) to identify additional atmospherically-relevant precursors and products that require further study. We used filtered Camden and Pinelands, NJ rainwater as a surrogate for cloud water. OH radical (~10-12 M) was formed by photolysis of hydrogen peroxide and samples were analyzed in real-time by electrospray ionization mass spectroscopy (ESI-MS). Discrete samples were also analyzed by ion chromatography (IC) and ESI-MS after IC separation. All experiments were performed in duplicate. Standards of glyoxal, methylglyoxal and glycolaldehyde and their major aqueous oxidation products were also analyzed, and control experiments performed. Decreases in the ion abundance of many positive mode compounds and increases in the ion abundance of many negative mode compounds (e.g., organic acids) suggest that precursors are predominantly aldehydes, organic peroxides and/or alcohols. Real-time ESI mass spectra were consistent with the expected loss of methylglyoxal and subsequent formation of pyruvate, glyoxylate, and oxalate. New insights regarding other potential precursors and products will be provided.

  8. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, A.S. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C.W.; Snider, J.B. [NOAA Environmental Technology Lab., Boulder, CO (United States); Lenshow, D.H.; Mayer, S.D. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  9. Cirrus cloud occurrence as function of ambient relative humidity: a comparison of observations obtained during the INCA experiment

    Directory of Open Access Journals (Sweden)

    J. Ström

    2003-01-01

    Full Text Available Based on in-situ observations performed during the Interhemispheric differences in cirrus properties from anthropogenic emissions (INCA experiment, we introduce and discuss the cloud presence fraction (CPF defined as the ratio between the number of data points determined to represent cloud at a given ambient relative humidity over ice (RHI divided by the total number of data points at that value of RHI. The CPFs are measured with four different cloud probes. Within similar ranges of detected particle sizes and concentrations, it is shown that different cloud probes yield results that are in good agreement with each other. The CPFs taken at Southern Hemisphere (SH and Northern Hemisphere (NH midlatitudes differ from each other. Above ice saturation, clouds occurred more frequently during the NH campaign. Local minima in the CPF as a function of RHI are interpreted as a systematic underestimation of cloud presence when cloud particles become invisible to cloud probes. Based on this interpretation, we find that clouds during the SH campaign formed preferentially at RHIs between 140 and 155%, whereas clouds in the NH campaign formed at RHIs somewhat below 130%. The data show that interstitial aerosol and ice particles coexist down to RHIs of 70-90%, demonstrating that the ability to distinguish between different particle types in cirrus conditions depends on the sensors used to probe the aerosol/cirrus system. Observed distributions of cloud water content differ only slightly between the NH and SH campaigns and seem to be only weakly, if at all, affected by the freezing aerosols.

  10. The sensitivity of stratocumulus-capped mixed layers to cloud droplet concentration: do LES and mixed-layer models agree?

    Directory of Open Access Journals (Sweden)

    J. Uchida

    2010-05-01

    Full Text Available The sensitivity of a stratocumulus-capped mixed layer to a change in cloud droplet concentration is evaluated with a large-eddy simulation (LES and a mixed layer model (MLM. The strength of the second aerosol indirect effect simulated by the two model types agrees within 50% for cases in which the LES-simulated boundary layer remains well mixed, if the MLM entrainment closure includes the effects of cloud droplet sedimentation.

    To achieve this agreement, parameters in the MLM entrainment closure and the drizzle parameterization must be retuned to match the LES. This is because the LES advection scheme and microphysical parameterization significantly bias the entrainment rate and precipitation profile compared to observational best guesses. Before this modification, the MLM simulates more liquid water path and much more drizzle at a given droplet concentration than the LES and is more sensitive to droplet concentration, even undergoing a drizzle-induced boundary layer collapse at low droplet concentrations. After this modification, both models predict a comparable decrease of cloud liquid water path as droplet concentration increases, cancelling 30–50% of the Twomey effect for our case. The agreement breaks down at the lowest simulated droplet concentrations, for which the boundary layer in the LES is not well mixed.

    Our results highlight issues with both types of model. Potential LES biases due to inadequate resolution, subgrid mixing and parameterized microphysics must be carefully considered when trying to make a quantitative inference of the second indirect effect from an LES of a stratocumulus-topped boundary layer. On the other hand, even slight internal decoupling of the boundary layer invalidates the central assumption of an MLM, substantially limiting the range of conditions that MLM-predicted sensitivities to droplet concentration are meaningful.

  11. Status and Current Sensitivity of the CELESTE Experiment

    CERN Document Server

    De Naurois, Mathieu

    2000-01-01

    The CELESTE experiment uses the heliostats of an old solar farm in the French Pyrenees to detect gamma ray air showers by the atmospheric Cerenkov technique. CELESTE has been operating since November 1999 with an array of 40 heliostats fully instrumented with 1GHz flash ADCs. Significant advances have been made in the detector simulations and in the data analysis techniques. We report here on results from recent observations of the Crab nebula above an energy threshold of 50GeV. The results and simulations illustrate the current sensitivity of the experiment.

  12. Light sterile neutrino sensitivity of 163Ho experiments

    CERN Document Server

    Gastaldo, L; Zavanin, E M

    2016-01-01

    We explore the sensitivity of $^{163}$Ho electron capture experiments to neutrino masses in the standard framework of three-neutrino mixing and in the framework of 3+1 neutrino mixing with a sterile neutrino which mixes with the three standard active neutrinos, as indicated by the anomalies found in short-baseline neutrino oscillations experiments. We calculate the sensitivity to neutrino masses and mixing for different values of the energy resolution of the detectors, of the unresolved pileup fraction and of the total statistics of events, considering the expected values of these parameters in the two planned stages of the ECHo project (ECHo-1k and ECHo-1M). We show that an extension of the ECHo-1M experiment with the possibility to collect $10^{16}$ events will be competitive with the KATRIN experiment. This statistics will allow to explore part of the 3+1 mixing parameter space indicated by the global analysis of short-baseline neutrino oscillation experiments. In order to cover all the allowed region, a s...

  13. Sensitivity of remote aerosol distributions to representation of cloud-aerosol interactions in a global climate model

    Directory of Open Access Journals (Sweden)

    H. Wang

    2013-01-01

    Full Text Available Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5, have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold increase in the winter (summer months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold

  14. Sensitivity of Remote Aerosol Distributions to Representation of Cloud-Aerosol Interactions in a Global Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong; Easter, Richard C.; Rasch, Philip J.; Wang, Minghuai; Liu, Xiaohong; Ghan, Steven J.; Qian, Yun; Yoon, Jin-Ho; Ma, Po-Lun; Vinoj, V.

    2013-06-05

    Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in

  15. Effect of ions on the measurement of sulphuric acid in the CLOUD experiment at CERN

    CERN Document Server

    Rondo, L; Ehrhart, S; Schobesberger, S; Franchin, A; Junninen, H; Petäjä, T; Sipilä, M; Worsnop, D R; Curtius, J

    2014-01-01

    Ternary aerosol nucleation experiments were conducted in the CLOUD chamber at CERN in order to investigate the influence of ions on new particle formation. Neutral and ion-induced nucleation experiments, i.e., with and without the presence of ions, were carried out under precisely controlled conditions. The sulphuric acid concentration was measured with a Chemical Ionization Mass Spectrometer (CIMS) during the new particle formation experiments. The added ternary trace gases were ammonia (NH3), dimethylamine (DMA, C2H7N) or oxidised products of pinanediol (PD, C10H18O2). When pinanediol was introduced into the chamber, an increase in the mass spectrometric signal used to determine the sulphuric acid concentration (m/z 97, i.e., HSO4−) was observed due to ions from the CLOUD chamber. The enhancement was only observed during ion-induced nucleation measurements by using either galactic cosmic rays (GCR) or the proton synchrotron (PS) pion beam for the ion generation, respectively. The ion effect typically invo...

  16. Antarctic clouds

    OpenAIRE

    Lachlan-Cope, Tom

    2010-01-01

    Sensitivity studies with global climate models show that, by their influence on the radiation balance, Antarctic clouds play a major role in the climate system, both directly at high southern latitudes and indirectly globally, as the local circulation changes lead to global teleconnections. Unfortunately, observations of cloud distribution in the Antarctic are limited and often of low quality because of the practical difficulty in observing clouds in the harsh Antarctic environment. The best ...

  17. The comparison of the results of numerical modeling and physical model experiment on laser polarization sensing of droplet clouds

    Science.gov (United States)

    Doroshkevich, A. A.; Bryukhanova, V. V.; Samokhvalov, I. V.; Stykon, A. P.

    2014-11-01

    The task of laser sensing of droplet clouds by coaxial lidar is considered. Lidar return due to single scattering is formed in the volume bounded by the radiation pattern of the transmitter, while the double-scattering is determined by a receiving system field of view. The volume of the scattering medium exceeding a receiving system field of view forms the signal higher scattering orders ( < 2). The results of the numerical modeling of the distribution (in the recording plane) polarization characteristics of lidar signal from droplet clouds in the double scattering approximation in comparison with the results of the physical model experiment simulating sounding of a droplet cloud are discussed in this paper.

  18. Projected Sensitivity of the SuperCDMS SNOLAB experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Aramaki, T.; Arnquist, Isaac J.; Baker, W.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Borgland, A.; Bowles, M. A.; Brink, Paul L.; Bunker, Raymond A.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cartaro, C.; Cerdeno, D.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Fritts, M.; Gerbier, G.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hong, Z.; Hoppe, Eric W.; Hsu, L.; Huber, M. E.; Iyer, V.; Jardin, D. M.; Jastram, A.; Kelsey, Michael H.; Kennedy, A.; Kubik, A.; Kurinsky, N. A.; Leder, A.; Loer, Ben M.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; Mast, N.; Mirabolfathi, M.; Moffatt, R. A.; Morales Mendoza, J. D.; Orrell, John L.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Poudel, S.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Roberts, A.; Robinson, A. E.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, Richard W.; Serfass, B.; Speller, D.; Stein, M.; Street, Joseph; Tanaka, H.; Toback, D.; Underwood, Ryan; Villano, A. N.; Von Krosigk, B.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, X.; Zhao, X.

    2017-04-07

    SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass particles (with masses ≤ 10 GeV/c^2) that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ∼1×10^−43 cm^2 for a dark matter particle mass of 1 GeV/c^2, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low-energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced H-3 and naturally occurring Si-32 will be present in the detectors at some level. Even if these backgrounds are 10 times higher than expected, the science reach of the HV detectors would be over 3 orders of magnitude beyond current results for a dark matter mass of 1 GeV/c^2. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particles with masses ≳5 GeV/c^2. The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the “neutrino floor,” where coherent scatters of solar neutrinos become a limiting background.

  19. Sense and sensitivity of double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Muñoz, J. [Instituto de Física Corpuscular (IFIC), CSIC and Universidad de Valencia, Calle Catedrático José Beltrán 2, 46071 Valencia (Spain); Novella, P. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Poves, A., E-mail: gomez@mail.cern.ch, E-mail: justo.martin-albo@ific.uv.es, E-mail: sorel@ific.uv.es, E-mail: paola.ferrario@ific.uv.es, E-mail: francesc.monrabal@ific.uv.es, E-mail: jmunoz@ific.uv.es, E-mail: pau.novella@ciemat.es, E-mail: alfredo.poves@uam.es [Dpto. de de Física Teórica and IFT-UAM/CSIC, Universidad Autónoma de Madrid, Calle Nicolás Cabrera 13-15, 28049 Madrid (Spain)

    2011-06-01

    The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, m{sub ββ}. In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a ''physics-motivated range'' (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and ββ isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that {sup 136}Xe-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses.

  20. Sensitivity experiments to mountain representations in spectral models

    Directory of Open Access Journals (Sweden)

    U. Schlese

    2000-06-01

    Full Text Available This paper describes a set of sensitivity experiments to several formulations of orography. Three sets are considered: a "Standard" orography consisting of an envelope orography produced originally for the ECMWF model, a"Navy" orography directly from the US Navy data and a "Scripps" orography based on the data set originally compiled several years ago at Scripps. The last two are mean orographies which do not use the envelope enhancement. A new filtering technique for handling the problem of Gibbs oscillations in spectral models has been used to produce the "Navy" and "Scripps" orographies, resulting in smoother fields than the "Standard" orography. The sensitivity experiments show that orography is still an important factor in controlling the model performance even in this class of models that use a semi-lagrangian formulation for water vapour, that in principle should be less sensitive to Gibbs oscillations than the Eulerian formulation. The largest impact can be seen in the stationary waves (asymmetric part of the geopotential at 500 mb where the differences in total height and spatial pattern generate up to 60 m differences, and in the surface fields where the Gibbs removal procedure is successful in alleviating the appearance of unrealistic oscillations over the ocean. These results indicate that Gibbs oscillations also need to be treated in this class of models. The best overall result is obtained using the "Navy" data set, that achieves a good compromise between amplitude of the stationary waves and smoothness of the surface fields.

  1. A Study of the Response of Deep Tropical Clouds to Mesoscale Processes. Part 2; Sensitivities to Microphysics, Radiation, and Surface Fluxes

    Science.gov (United States)

    Johnson, Daniel; Tao, Wei-Kuo; Simpson, Joanne

    2004-01-01

    The Goddard Cumulus Ensemble (GCE) model is used to examine the sensitivities of surface fluxes, explicit radiation, and ice microphysical processes on multi-day simulations of deep tropical convection over the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). The simulations incorporate large-scale advective temperature and moisture forcing, as well as large-scale momentum, that are updated every time step on a periodic lateral boundary grid. This study shows that when surface fluxes are eliminated, the mean atmosphere is much cooler and drier, convection and CAPE are much weaker, precipitation is less, and cloud coverage in stratiform regions much greater. Surface fluxes using the TOGA COARE flux algorithm are weaker than with the aerodynamic formulation, but closer to the observed fluxes. In addition, similar trends noted above for the case without surface fluxes are produced for the TOGA flux case, albeit to a much lesser extent. The elimination of explicit shortwave and longwave radiation is found to have only minimal effects on the mean thermodynamics, convection, and precipitation. However explicit radiation does have a significant impact on cloud temperatures and structure above 200 mb and on the overall mean vertical circulation. The removal of ice processes produces major changes in the structure of the cloud. Much of the liquid water is transported aloft and into anvils above the melting layer (600 mb), leaving narrow, but intense bands of rainfall in convective regions. The elimination of melting processes leads to greater hydrometeor mass below the melting layer, and produces a much warmer and moister boundary layer, leading to a greater mean CAPE. Finally, the elimination of the graupel species has only a small impact on mean total precipitation, thermodynamics, and dynamics of the simulation, but does produce much greater snow mass just above the melting layer. Some of these results differ from previous CRM

  2. Experience in Grid Site Testing for ATLAS, CMS and LHCb with HammerCloud

    CERN Document Server

    CERN. Geneva

    2012-01-01

    Frequent validation and stress testing of the network, storage and CPU resources of a grid site is essential to achieve high performance and reliability. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run such tests in an automated or on-demand manner. The ATLAS, CMS and LHCb experiments have all developed VO plugins for the service and have successfully integrated it into their grid operations infrastructures. This work will present the experience in running HammerCloud at full scale for more than 3 years and present solutions to the scalability issues faced by the service. First, we will show the particular challenges faced when integrating with CMS and LHCb offline computing, including customized dashboards to show site validation reports for the VOs and a new API to tightly integrate with the LHCbDIRAC Resource Status System. Next, a study of the automatic site exclusion component used by ATLAS will be presented along with results for tuning the exclusion ...

  3. Experience in Grid Site Testing for ATLAS, CMS and LHCb with HammerCloud

    CERN Document Server

    Van der Ster , D; Medrano Llamas, R; Legger , F; Sciaba, A; Sciacca, G; Ubeda Garca , M

    2012-01-01

    Frequent validation and stress testing of the network, storage and CPU resources of a grid site is essential to achieve high performance and reliability. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run such tests in an automated or on-demand manner. The ATLAS, CMS and LHCb experiments have all developed VO plugins for the service and have successfully integrated it into their grid operations infrastructures. This work will present the experience in running HammerCloud at full scale for more than 3 years and present solutions to the scalability issues faced by the service. First, we will show the particular challenges faced when integrating with CMS and LHCb offline computing, including customized dashboards to show site validation reports for the VOs and a new API to tightly integrate with the LHCbDIRAC Resource Status System. Next, a study of the automatic site exclusion component used by ATLAS will be presented along with results for tuning the exclusion p...

  4. The Complex Point Cloud for the Knowledge of the Architectural Heritage. Some Experiences

    Science.gov (United States)

    Aveta, C.; Salvatori, M.; Vitelli, G. P.

    2017-05-01

    The present paper aims to present a series of experiences and experimentations that a group of PhD from the University of Naples Federico II conducted over the past decade. This work has concerned the survey and the graphic restitution of monuments and works of art, finalized to their conservation. The targeted query of complex point cloud acquired by 3D scanners, integrated with photo sensors and thermal imaging, has allowed to explore new possibilities of investigation. In particular, we will present the scientific results of the experiments carried out on some important historical artifacts with distinct morphological and typological characteristics. According to aims and needs that emerged during the connotative process, with the support of archival and iconographic historical research, the laser scanner technology has been used in many different ways. New forms of representation, obtained directly from the point cloud, have been tested for the elaboration of thematic studies for documenting the pathologies and the decay of materials, for correlating visible aspects with invisible aspects of the artifact.

  5. THE COMPLEX POINT CLOUD FOR THE KNOWLEDGE OF THE ARCHITECTURAL HERITAGE. SOME EXPERIENCES

    Directory of Open Access Journals (Sweden)

    C. Aveta

    2017-05-01

    Full Text Available The present paper aims to present a series of experiences and experimentations that a group of PhD from the University of Naples Federico II conducted over the past decade. This work has concerned the survey and the graphic restitution of monuments and works of art, finalized to their conservation. The targeted query of complex point cloud acquired by 3D scanners, integrated with photo sensors and thermal imaging, has allowed to explore new possibilities of investigation. In particular, we will present the scientific results of the experiments carried out on some important historical artifacts with distinct morphological and typological characteristics. According to aims and needs that emerged during the connotative process, with the support of archival and iconographic historical research, the laser scanner technology has been used in many different ways. New forms of representation, obtained directly from the point cloud, have been tested for the elaboration of thematic studies for documenting the pathologies and the decay of materials, for correlating visible aspects with invisible aspects of the artifact.

  6. Monte Carlo Bayesian Inference on a Statistical Model of Sub-gridcolumn Moisture Variability Using High-resolution Cloud Observations . Part II; Sensitivity Tests and Results

    Science.gov (United States)

    da Silva, Arlindo M.; Norris, Peter M.

    2013-01-01

    Part I presented a Monte Carlo Bayesian method for constraining a complex statistical model of GCM sub-gridcolumn moisture variability using high-resolution MODIS cloud data, thereby permitting large-scale model parameter estimation and cloud data assimilation. This part performs some basic testing of this new approach, verifying that it does indeed significantly reduce mean and standard deviation biases with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud top pressure, and that it also improves the simulated rotational-Ramman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the OMI instrument. Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows finite jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast where the background state has a clear swath. This paper also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in the cloud observables on cloud vertical structure, beyond cloud top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification due to Riishojgaard (1998) provides some help in this respect, by better honoring inversion structures in the background state.

  7. Sensitivity of the Grid-point Atmospheric Model of IAP LASG (GAMIL1.1.0) Climate Simulations to Cloud Droplet Effective Radius and Liquid Water Path

    Institute of Scientific and Technical Information of China (English)

    LI Lijuan; Yuqing WANG; WANG Bin; ZHOU Wianjun

    2008-01-01

    This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest version of the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP) (GAMILI.I.0). Considerable negative biases in all flux components, and thus an energy imbalance, are found in GAMIL1.1.0. In order to alleviate the energy imbalance, two modifications, namely an increase in cloud droplet effective radius and a decrease in cloud liquid water path, have been made to the cloud properties used in GAMIL. With the increased cloud droplet effective radius, the single scattering albedo of clouds is reduced, and thus the reflection of solar radiation into space by clouds is reduced and the net solar radiation flux at the top of the atmosphere is increased. With the reduced cloud optical depth, the net surface shortwave radiation flux is increased, causing a net warming over the land surface. This results in an increase in both sensible and latent heat fluxes over the land regions, which is largely balanced by the increased terrestrial radiation fluxes. Consequently, the energy balance at the top of atmosphere and at the surface is achieved with energy flux components consistent with available satellite observations.

  8. Radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition

    Science.gov (United States)

    Rosenfield, Joan E.

    1992-01-01

    Results are presented of a study of the radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASE) in which daily 3D Type I nitric acid trihydrate (NAT) and Type II water ice polar stratospheric clouds (PSCs) were generated in the polar regions during AAOE and the AASE aircraft missions. Mission data on particular composition and size, together with NMC-analyzed temperatures, are used. For AAOE, both Type I and Type II clouds were formed for the time period August 23 to September 17, after which only Type I clouds formed. During AASE, while Type I clouds were formed for each day between January 3 and February 10, Type II clouds formed on only two days, January 24 and 31. Mie theory and a radiative transfer model are used to compute the radiative heating rates during the mission periods, for clear and cloudy lower sky cases. Only the Type II water ice clouds have a significant radiative effect, with the Type I NATO PSCs generating a net heating or cooling of 0.1 K/d or less.

  9. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  10. Surface temperature sensitivities from cloud cover variations in the Hummel-Kuhn radiative—convective model with three different cloud approximations

    OpenAIRE

    HUMMEL, JOHN R.

    2011-01-01

    In modeling the thermal structure of the atmosphere, the role of clouds is critically important. Clouds modify the solar flux distribution throughout the atmosphere, radiate significantly in the infrared, and provide large thermal reservoirs because of the large latent heat of water. In the best current radiative convective one-dimensional models the global atmosphere is modeled as the sum of clear and cloudy sky parts weighted by a fractional cloud cover. In considering the cloudy sky part,...

  11. Climatic sensitivity of the cloud cover and radiation balances over the North Slope of Alaska due to declining sea ice coverage

    Science.gov (United States)

    Cai, L.; Alexeev, V. A.; Arp, C. D.; Jones, B. M.

    2016-12-01

    In order to study the climatic impacts due to declining arctic sea ice in the Beaufort Sea and Chukchi Sea on the North Slope of Alaska in a decadal time scale, and to build a basis for further studying the climatic impacts by the potential lake ice melt in 21st century, a sensitivity experiment is designed originated from the dynamical downscaling of the Community Earth System Model (CESM1) by Weather Research & Forecast model with polar optimization (Polar WRF). The modeling domain has 119×99 grid points, with a 20 km grid spacing and the center latitude and longitude of 72°N and 155°W. Two decades respectively from the historical simulation and the RCP4.5 projection are chosen, which are the 1970's and the 2040's. Within the study area, the 2040's case produced up to 70% less sea ice extent compared with that in the 1970's case. Two sensitivity cases are also designed by switching the sea ice coverage between the historical and projected cases. The sea surface temperature (SST) is also revised to prevent unreasonable physics. This experiment results in the North Slope of Alaska being impacted by more precipitation, higher temperature, and more humid land surface in low sea ice coverage cases compared with the corresponding high sea ice coverage cases, and these differences reach their maximums in early winter. More in depth analysis on radiation balance found an abruptly increasing difference of the monthly mean downward longwave radiation flux (2 W/m2 vs. 13 W/m2) in early winter. The downward shortwave radiation flux, however, are less apparent during the summer months, with much smaller magnitude than longwave radiation flux. More variables like cloud fraction, as well as the cloud water and ice mix ratios on pressure levels are therefore involved to help portray the climatology of cloud cover and the impact to radiation balance over the North Slope of Alaska as the sea ice declining.

  12. Sensitivities to neutrino electromagnetic properties at the TEXONO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kosmas, T.S., E-mail: hkosmas@uoi.gr [Division of Theoretical Physics, University of Ioannina, GR 45110 Ioannina (Greece); Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740 07000 Mexico, DF (Mexico); Papoulias, D.K., E-mail: dimpap@cc.uoi.gr [Division of Theoretical Physics, University of Ioannina, GR 45110 Ioannina (Greece); AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, C/Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain); Tórtola, M., E-mail: mariam@ific.uv.es [AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, C/Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain); Valle, J.W.F. [AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, C/Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain)

    2015-11-12

    The possibility of measuring neutral-current coherent elastic neutrino–nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.

  13. Sensitivities to neutrino electromagnetic properties at the TEXONO experiment

    Directory of Open Access Journals (Sweden)

    T.S. Kosmas

    2015-11-01

    Full Text Available The possibility of measuring neutral-current coherent elastic neutrino–nucleus scattering (CENNS at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.

  14. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  15. Extending "Deep Blue" aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Schmid, B.; Shinozuka, Y.

    2016-05-01

    Cases of absorbing aerosols above clouds (AACs), such as smoke or mineral dust, are omitted from most routinely processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar sensors, for incorporation into a future version of the "Deep Blue" AOD data product. Detailed retrieval simulations suggest that these sensors should be able to determine AAC AOD with a typical level of uncertainty ˜25-50% (with lower uncertainties for more strongly absorbing aerosol types) and COD with an uncertainty ˜10-20%, if an appropriate aerosol optical model is known beforehand. Errors are larger, particularly if the aerosols are only weakly absorbing, if the aerosol optical properties are not known, and the appropriate model to use must also be retrieved. Actual retrieval errors are also compared to uncertainty envelopes obtained through the optimal estimation (OE) technique; OE-based uncertainties are found to be generally reasonable for COD but larger than actual retrieval errors for AOD, due in part to difficulties in quantifying the degree of spectral correlation of forward model error. The algorithm is also applied to two MODIS scenes (one smoke and one dust) for which near-coincident NASA Ames Airborne Tracking Sun photometer (AATS) data were available to use as a ground truth AOD data source, and found to be in good agreement, demonstrating the validity of the technique with real observations.

  16. Extending "Deep Blue" Aerosol Retrieval Coverage to Cases of Absorbing Aerosols Above Clouds: Sensitivity Analysis and First Case Studies

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Schmid, B.; Shinozuka, Y.

    2016-01-01

    Cases of absorbing aerosols above clouds (AACs), such as smoke or mineral dust, are omitted from most routinely processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar sensors, for incorporation into a future version of the "Deep Blue" AOD data product. Detailed retrieval simulations suggest that these sensors should be able to determine AAC AOD with a typical level of uncertainty approximately 25-50 percent (with lower uncertainties for more strongly absorbing aerosol types) and COD with an uncertainty approximately10-20 percent, if an appropriate aerosol optical model is known beforehand. Errors are larger, particularly if the aerosols are only weakly absorbing, if the aerosol optical properties are not known, and the appropriate model to use must also be retrieved. Actual retrieval errors are also compared to uncertainty envelopes obtained through the optimal estimation (OE) technique; OE-based uncertainties are found to be generally reasonable for COD but larger than actual retrieval errors for AOD, due in part to difficulties in quantifying the degree of spectral correlation of forward model error. The algorithm is also applied to two MODIS scenes (one smoke and one dust) for which near-coincident NASA Ames Airborne Tracking Sun photometer (AATS) data were available to use as a ground truth AOD data source, and found to be in good agreement, demonstrating the validity of the technique with real observations.

  17. Library development for Storj cloud clients in unsupported environments : Based on experiences in an Android environment

    OpenAIRE

    Comte, Gabriel

    2017-01-01

    The thesis illustrates the differences between presently common cloud architectures which are traditionally of a centralized form and decentralized cloud architectures. The latter particularly pays attention to the decentralized cloud provided by Storj Labs. Researching the Storj cloud further, it explains the advantages that its architecture entails and presents some of the difficulties coming with it. The main aim of the thesis is providing information for developers on how to programma...

  18. User experience integrated life-style cloud-based medical application.

    Science.gov (United States)

    Serban, Alexandru; Lupşe, Oana Sorina; Stoicu-Tivadar, Lăcrămioara

    2015-01-01

    Having a modern application capable to automatically collect and process data from users, based on information and lifestyle answers is one of current challenges for researchers and medical science. The purpose of the current study is to integrate user experience design (UXD) in a cloud-based medical application to improve patient safety, quality of care and organizational efficiency. The process consists of collecting traditional and new data from patients and users using online questionnaires. A questionnaire dynamically asks questions about the user's current diet and lifestyle. After the user will introduce the data, the application will formulate a presumptive nutritional plan and will suggest different medical recommendations regarding a healthy lifestyle, and calculates a risk factor for diseases. This software application, by design and usability will be an efficient tool dedicated for fitness, nutrition and health professionals.

  19. Kinematical analysis with the Emulsion Cloud Chamber in the OPERA experiment

    CERN Document Server

    Di Capua, F

    2010-01-01

    The OPERA experiment aims at measuring for the first time neutrino oscil- lation in appearance mode through the detection of ni-tau in an almost pure niμ beam produced at CERN SPS (CNGS), 730 km far from the detector. The ni-tau appearance signal is identified through the measurement of the decay daughter particles of the " lepton produced in CC ni-tau interactions. Since the short-lived " particle has, at the energy of the beam, an average decay length shorter than a 1 mm, a micrometric detection resolution is needed. The OPERA appara- tus is hybrid, using nuclear emulsion as high precision tracker and electronic detectors for the time stamp, event localization in the target and muon recon- struction. The Emulsion Cloud Chamber technique fulfils the requirement of a microscopic resolution together with a large target mass. The kinematical analysis allowed by this technique is described.

  20. Experience in Grid Site Testing for ATLAS, CMS and LHCb with HammerCloud

    Science.gov (United States)

    Elmsheuser, Johannes; Medrano Llamas, Ramón; Legger, Federica; Sciabà, Andrea; Sciacca, Gianfranco; Úbeda García, Mario; van der Ster, Daniel

    2012-12-01

    Frequent validation and stress testing of the network, storage and CPU resources of a grid site is essential to achieve high performance and reliability. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run such tests in an automated or on-demand manner. The ATLAS, CMS and LHCb experiments have all developed VO plugins for the service and have successfully integrated it into their grid operations infrastructures. This work will present the experience in running HammerCloud at full scale for more than 3 years and present solutions to the scalability issues faced by the service. First, we will show the particular challenges faced when integrating with CMS and LHCb offline computing, including customized dashboards to show site validation reports for the VOs and a new API to tightly integrate with the LHCbDIRAC Resource Status System. Next, a study of the automatic site exclusion component used by ATLAS will be presented along with results for tuning the exclusion policies. A study of the historical test results for ATLAS, CMS and LHCb will be presented, including comparisons between the experiments’ grid availabilities and a search for site-based or temporal failure correlations. Finally, we will look to future plans that will allow users to gain new insights into the test results; these include developments to allow increased testing concurrency, increased scale in the number of metrics recorded per test job (up to hundreds), and increased scale in the historical job information (up to many millions of jobs per VO).

  1. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  2. Sensitivity of Cirrus and Mixed-phase Clouds to the Ice Nuclei Spectra in McRAS-AC: Single Column Model Simulations

    Science.gov (United States)

    Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.

    2012-01-01

    The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.

  3. Sensitivity of cirrus and mixed-phase clouds to the ice nuclei spectra in McRAS-AC: single column model simulations

    Directory of Open Access Journals (Sweden)

    R. Morales Betancourt

    2012-06-01

    Full Text Available The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP and Barahona and Nenes (BN. The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T~260 K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted average values of IWP within ±15% of the observations.

  4. Sensitivity of cirrus and mixed-phase clouds to the ice nuclei spectra in McRAS-AC: single column model simulations

    Directory of Open Access Journals (Sweden)

    R. Morales Betancourt

    2012-11-01

    Full Text Available The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice nucleation parameterizations of Liu and Penner (LP and Barahona and Nenes (BN. The performance of both parameterizations was assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments were established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to describe the availability of IN for heterogeneous ice nucleation. The results showed large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there were some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to the effective transfer of liquid to ice, so that on average, the clouds were fully glaciated at T 260 K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted average values of IWP within ±15% of the observations.

  5. Idealized marine cloud brightening experiments G4cdnc from the geoengineering model intercomparison project GeoMIP

    Science.gov (United States)

    Weum Stjern, Camilla; Egill Kristjánsson, Jón; Boucher, Olivier; Cole, Jason N. S.; Jones, Andy; Kravitz, Ben; Niemeier, Ulrike; Muri, Helene; Phipps, Steven J.; Watanabe, Shingo

    2017-04-01

    Climate engineering could be considered as part of a response portfolio to contribute to reach such ambitious climate targets as those set by the Paris Agreement. Marine cloud brightening (MCB) is one of these techniques, which falls into the category of solar radiation management, or albedo modification, and aims to cool the climate by increasing the amount of solar radiation reflected by clouds. Existing model assessments of MCB have very different experimental set-ups, making comparison difficult. Therefore, the experiment G4cdnc was designed, in which several Earth system models performed the same perturbation of cloud properties, to assess the climate impacts. The G4cdnc experiment starts in year 2020 in the RCP4.5 scenario and dictates a 50% increase in cloud droplet number concentrations of low level clouds over global oceans for a duration of 50 years. Many of the models significantly underestimate low level cloud amounts; nevertheless, all the models simulate a cooling effect from MCB. The resulting net radiative forcing is of -1.8 Wm^-2 in the ensemble mean with large inter-model spread. The ensemble mean global cooling achieved is of -0.95 K with a particularly strong cooling over low latitude land masses. There is a global precipitation decrease of -0.08 mm/day due to a cooler climate, but in low latitudes there is a 0.03 mm/day increase over land from circulation changes. Inter-model differences can be partly explained by different cloud susceptibilities, but more studies are needed to fully understand the mechanisms involved.

  6. Direct Observation of Secondary Organic Aerosol Formation during Cloud Condensation-Evaporation Cycles (SOAaq) in Simulation Chamber Experiments

    Science.gov (United States)

    Doussin, J. F.; Bregonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Gratien, A.; Temime-Roussel, B.; Ravier, S.; Pangui, E.; Tapparo, A.; Kalberer, M.; Monod, A.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) undergo many reactions in the atmosphere and form a wide range of oxidised and water-soluble compounds. These compounds can partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and/or less volatile compounds which can remain in the particle phase after water evaporation and thus increase the organic aerosol mass (Ervens et al., 2011; Altieri et al., 2008; Couvidat et al., 2013). While this hypothesis is frequently discussed in the literature, so far, almost no direct observations of such a process have been provided.The aim of the present work is to study SOA formation from isoprene photooxidation during cloud condensation-evaporation cycles.The experiments were performed during the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM simulation chamber located at LISA. CESAM is a 4.2 m3 stainless steel chamber equipped with realistic irradiation sources and temperature and relative humidity (RH) controls (Wang et al., 2011). In each experiment, isoprene was allowed to oxidize during several hours in the presence on nitrogen oxides under dry conditions. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation was monitored on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The experimental protocol was optimised to generate cloud events in the simulation chamber, which allowed us to generate clouds lasting for ca. 10 minutes in the presence of light.In all experiments, we observed that during cloud formation, water-soluble gas-phase oxidation products (e.g., methylglyoxal, hydroxyacetone, acetaldehyde, formic acid, acetic acid and glycolaldehyde) readily partitioned into cloud

  7. Death of an Arctic Mixed Phase Cloud: How Changes in the Arctic Environment Influence Cloud Properties and Cloud Radiative Feedbacks

    Science.gov (United States)

    Roesler, E. L.; Posselt, D. J.

    2012-12-01

    Arctic mixed phase stratocumulus clouds exert an important influence on the radiative budget over the Arctic ocean and sea ice. Field programs and numerical experiments have shown the properties of these clouds to be sensitive to changes in the surface properties, thermodynamic environment, and aerosols. While it is clear that Arctic mixed-phase clouds respond to changes in the Arctic environment, uncertainty remains as to how climate warming will affect the cloud micro- and macrophysical properties. This is in no small part due to the fact that there are nonlinear interactions between changes in atmospheric and surface properties and changes in cloud characteristics. In this study, large-eddy simulations are performed of an arctic mixed phase cloud observed during the Indirect and Semi-Direct Aerosol Campaign. A parameter-space-filling uncertainty quantification technique is used to rigorously explore how simulated arctic mixed phase clouds respond to changes in the properties of the environment. Specifically, the cloud ice and aerosol concentration, surface sensible and latent heat fluxes, and large scale temperature, water vapor, and vertical motion are systematically changed, and the properties of the resulting clouds are examined. It is found that Arctic mixed phase clouds exhibit four characteristic behaviors: stability, growth, decay, and dissipation. Sets of environmental and surface properties that lead to the emergence of each type of behavior are presented, and the implications for the response of Arctic clouds to changes in climate are explored.

  8. Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments

    Science.gov (United States)

    Carrico, Christian M.; Petters, Markus D.; Kreidenweis, Sonia M.; Collett, Jeffrey L.; Engling, Guenter; Malm, William C.

    2008-04-01

    In this laboratory closure study, we compare sub- and supersaturated water uptake properties for aerosol particles possessing a range of hygroscopicity. Measurements for water sub-saturated conditions used a hygroscopic tandem differential mobility analyzer (HTDMA). Simultaneously, measurements of particle critical supersaturation were conducted on the same sample stream with a continuous flow cloud condensation nuclei (CCN) counter. For these experiments, we used filter-collected samples of biomass smoke generated in the combustion of two common wildland fire fuels, western sagebrush and Alaskan duff core. Extractions of separate sections of the filter were performed using two solvents, ultrapure water and methanol. The extracts were subsequently atomized, producing aerosols having a range of hygroscopic responses. HTDMA and CCN measurements were fit to a single-parameter model of water uptake, in which the fit parameter is denoted κ, the hygroscopicity parameter. Here, for the four extracts we observed mean values of the hygroscopicity parameter of 0.06 CCN-derived values of κ for each experiment agreed within approximately 20%. Applicability of the κ-parameterization to other multicomponent aerosols relevant to the atmosphere remains to be tested.

  9. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  10. Marine cloud brightening.

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  11. Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Brookhaven National Lab. (BNL), Upton, NY (United States); Dong, Xiquan [Univ. of North Dakota, Grand Forks, ND (United States); Wood, Robert [Univ. of Washington, Seattle, WA (United States)

    2016-04-01

    With their extensive coverage, low clouds greatly impact global climate. Presently, low clouds are poorly represented in global climate models (GCMs), and the response of low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The poor representations of low clouds in GCMs are in part due to inadequate observations of their microphysical and macrophysical structures, radiative effects, and the associated aerosol distribution and budget in regions where the aerosol impact is the greatest. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary-layer (MBL) clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. Boundary-layer aerosol in the ENA region is influenced by a variety of sources, leading to strong variations in cloud condensation nuclei (CCN) concentration and aerosol optical properties. Recently a permanent ENA site was established by the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility on Graciosa Island in the Azores, providing invaluable information on MBL aerosol and low clouds. At the same time, the vertical structures and horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol, the radiative properties, precipitation efficiency, and lifecycle of MBL clouds, and the cloud response to aerosol perturbations. Much of this data can be obtained only through aircraft-based measurements. In addition, the interconnected aerosol and cloud processes are best investigated by a study involving simultaneous in situ aerosol, cloud, and thermodynamics measurements. Furthermore, in situ measurements are also necessary for validating and improving ground-based retrieval algorithms at the ENA site. This project is motivated by the need

  12. Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments

    Directory of Open Access Journals (Sweden)

    J. Kim

    2015-07-01

    Full Text Available Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study, we focus on a challenging size range, i.e. particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake constrains their chemical composition. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA at subsaturated conditions (ca. 90 % relative humidity at 293 K to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7 experiments performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from α-pinene oxidation. The hygroscopicity parameter κ decreased with increasing particle size indicating decreasing acidity of particles. No clear effect of the sulfuric acid monomer concentrations on the hygroscopicities of 10 nm particles produced from sulfuric acid and dimethylamine was observed, whereas the hygroscopicity of 15 nm particles sharply decreased with decreasing sulfuric acid monomer concentrations. In particular, when the concentrations of sulfuric acid was 5.1 × 106 molecules cm−3 in the gas phase, and the dimethylamine mixing ratio was 11.8 ppt, the measured κ of 15 nm particles was 0.31 ± 0.01 close to the value reported for dimethylamine sulfate (DMAS (κDMAS ~ 0.28. Furthermore, the difference in κ between sulfuric acid and sulfuric acid-dimethylamine experiments increased with increasing particle size. The κ values of particles in the presence of sulfuric acid and

  13. Cloud-Based versus Local-Based Web Development Education: An Experimental Study in Learning Experience

    Science.gov (United States)

    Pike, Ronald E.; Pittman, Jason M.; Hwang, Drew

    2017-01-01

    This paper investigates the use of a cloud computing environment to facilitate the teaching of web development at a university in the Southwestern United States. A between-subjects study of students in a web development course was conducted to assess the merits of a cloud computing environment instead of personal computers for developing websites.…

  14. Overview of the Field Phase of the NASA Tropical Cloud Systems and Processes (TCSP)Experiment

    Science.gov (United States)

    Hood, Robbie E.; Zipser, Edward; Heymsfield, Gerald M.; Kakar, Ramesh; Halverson Jeffery; Rogers, Robert; Black, Michael

    2006-01-01

    The Tropical Cloud Systems and Processes experiment is sponsored by the National Aeronautics and Space Administration (NASA) to investigate characteristics of tropical cyclone genesis, rapid intensification and rainfall using a three-pronged approach that emphasizes satellite information, suborbital observations and numerical model simulations. Research goals include demonstration and assessment of new technology, improvements to numerical model parameterizations, and advancements in data assimilation techniques. The field phase of the experiment was based in Costa Rica during July 2005. A fully instrumented NASA ER-2 high altitude airplane was deployed with Doppler radar, passive microwave instrumentation, lightning and electric field sensors and an airborne simulator of visible and infrared satellite sensors. Other assets brought to TCSP were a low flying uninhabited aerial vehicle, and a surface-based radiosonde network. In partnership with the Intensity Forecasting Experiment of the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division, two NOAA P-3 aircraft instrumented with radar, passive microwave, microphysical, and dropsonde instrumentation were also deployed to Costa Rica. The field phase of TCSP was conducted in Costa Rica to take advantage of the geographically compact tropical cyclone genesis region of the Eastern Pacific Ocean near Central America. However, the unusual 2005 hurricane season provided numerous opportunities to sample tropical cyclone development and intensification in the Caribbean Sea and Gulf of Mexico as well. Development of Hurricane Dennis and Tropical Storm Gert were each investigated over several days in addition to Hurricane Emily as it was close to Saffir-Simpson Category 5 intensity. An overview of the characteristics of these storms along with the pregenesis environment of Tropical Storm Eugene in the Eastern Pacific will be presented.

  15. Discrimination of water, ice and aerosols by light polarisation in the CLOUD experiment

    Directory of Open Access Journals (Sweden)

    L. Nichman

    2015-11-01

    Full Text Available Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather and General Circulation Models (GCMs. The simultaneous detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud-particle size range below 50 μm, remains challenging in mixed phase, often unstable ice-water phase environments. The Cloud Aerosol Spectrometer with Polarisation (CASPOL is an airborne instrument that has the ability to detect such small cloud particles and measure their effects on the backscatter polarisation state. Here we operate the versatile Cosmics-Leaving-OUtdoor-Droplets (CLOUD chamber facility at the European Organisation for Nuclear Research (CERN to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water and ice particles. In this paper, optical property measurements of mixed phase clouds and viscous Secondary Organic Aerosol (SOA are presented. We report observations of significant liquid – viscous SOA particle polarisation transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarisation ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid, crystalline substances such as ammonium sulphate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentration and mixtures with respect to the CLOUD 8–9 campaigns and its potential contribution to Tropical Troposphere Layer (TTL analysis.

  16. Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD

    Science.gov (United States)

    Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok; Ahlm, Lars; Tröstl, Jasmin; Praplan, Arnaud P.; Schobesberger, Siegfried; Kürten, Andreas; Kirkby, Jasper; Bianchi, Federico; Duplissy, Jonathan; Hansel, Armin; Jokinen, Tuija; Keskinen, Helmi; Lehtipalo, Katrianne; Leiminger, Markus; Petäjä, Tuukka; Rissanen, Matti; Rondo, Linda; Simon, Mario; Sipilä, Mikko; Williamson, Christina; Wimmer, Daniela; Riipinen, Ilona; Virtanen, Annele; Smith, James N.

    2016-11-01

    New particle formation driven by acid-base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10-30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models, which predict a higher dimethylaminium fraction when NH3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO2 to sulfate. These results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid-base pairs in particles as small as 10 nm.

  17. The Midlatitude Continental Convective Clouds Experiment (MC3E sounding network: operations, processing and analysis

    Directory of Open Access Journals (Sweden)

    M. P. Jensen

    2014-09-01

    Full Text Available The Midlatitude Continental Convective Clouds Experiment (MC3E took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the Central Plains. A major component of the campaign was a 6-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing datasets. Over the course of the 46 day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript describes the details of the instrumentation used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings.

  18. submitter Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD

    CERN Document Server

    Lawler, Michael J; Kim, Jaeseok; Ahlm, Lars; Tröstl, Jasmin; Praplan, Arnaud P; Schobesberger, Siegfried; Kürten, Andreas; Kirkby, Jasper; Bianchi, Federico; Duplissy, Jonathan; Hansel, Armin; Jokinen, Tuija; Keskinen, Helmi; Lehtipalo, Katrianne; Leiminger, Markus; Petäjä, Tuukka; Rissanen, Matti; Rondo, Linda; Simon, Mario; Sipilä, Mikko; Williamson, Christina; Wimmer, Daniela; Riipinen, Ilona; Virtanen, Annele; Smith, James N

    2016-01-01

    New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models, which predict a higher dimethylaminium fraction when NH3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : ...

  19. The study of membrane formation via phase inversion method by cloud point and light scattering experiment

    Science.gov (United States)

    Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah

    2017-01-01

    The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.

  20. Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity

    OpenAIRE

    Su, Hui; Jiang, Jonathan H.; Zhai, Chengxing; Shen, Tsaepyng J.; Neelin, J. David; Stephens, Graeme L; Yung, Yuk L.

    2014-01-01

    It has long been recognized that differences in climate model-simulated cloud feedbacks are a primary source of uncertainties for the model-predicted surface temperature change induced by increasing greenhouse gases such as CO_2. Large-scale circulation broadly determines when and where clouds form and how they evolve. However, the linkage between large-scale circulation change and cloud radiative effect (CRE) change under global warming has not been thoroughly studied. By analyzing 15 climat...

  1. Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments

    Directory of Open Access Journals (Sweden)

    J. Kim

    2016-01-01

    Full Text Available Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study, we focus on a challenging size range, i.e., particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake is useful information for indirectly obtaining chemical composition of aerosol particles. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA at subsaturated conditions (ca. 90 % relative humidity at 293 K to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7 campaign performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid–dimethylamine, and sulfuric acid–organics derived from α-pinene oxidation. The hygroscopicity parameter κ decreased with increasing particle size, indicating decreasing acidity of particles. No clear effect of the sulfuric acid concentration on the hygroscopicity of 10 nm particles produced from sulfuric acid and dimethylamine was observed, whereas the hygroscopicity of 15 nm particles sharply decreased with decreasing sulfuric acid concentrations. In particular, when the concentration of sulfuric acid was 5.1 × 106 molecules cm−3 in the gas phase, and the dimethylamine mixing ratio was 11.8 ppt, the measured κ of 15 nm particles was 0.31 ± 0.01: close to the value reported for dimethylaminium sulfate (DMAS (κDMAS ∼ 0.28. Furthermore, the difference in κ between sulfuric acid and sulfuric acid–imethylamine experiments increased with increasing particle

  2. The NASA CloudSat/GPM Light Precipitation Validation Experiment (LPVEx)

    Science.gov (United States)

    Petersen, Walter A.; L'Ecuyer, Tristan; Moisseev, Dmitri

    2011-01-01

    Ground-based measurements of cool-season precipitation at mid and high latitudes (e.g., above 45 deg N/S) suggest that a significant fraction of the total precipitation volume falls in the form of light rain, i.e., at rates less than or equal to a few mm/h. These cool-season light rainfall events often originate in situations of a low-altitude (e.g., lower than 2 km) melting level and pose a significant challenge to the fidelity of all satellite-based precipitation measurements, especially those relying on the use of multifrequency passive microwave (PMW) radiometers. As a result, significant disagreements exist between satellite estimates of rainfall accumulation poleward of 45 deg. Ongoing efforts to develop, improve, and ultimately evaluate physically-based algorithms designed to detect and accurately quantify high latitude rainfall, however, suffer from a general lack of detailed, observationally-based ground validation datasets. These datasets serve as a physically consistent framework from which to test and refine algorithm assumptions, and as a means to build the library of algorithm retrieval databases in higher latitude cold-season light precipitation regimes. These databases are especially relevant to NASA's CloudSat and Global Precipitation Measurement (GPM) ground validation programs that are collecting high-latitude precipitation measurements in meteorological systems associated with frequent coolseason light precipitation events. In an effort to improve the inventory of cool-season high-latitude light precipitation databases and advance the physical process assumptions made in satellite-based precipitation retrieval algorithm development, the CloudSat and GPM mission ground validation programs collaborated with the Finnish Meteorological Institute (FMI), the University of Helsinki (UH), and Environment Canada (EC) to conduct the Light Precipitation Validation Experiment (LPVEx). The LPVEx field campaign was designed to make detailed measurements of

  3. Metals Are Important Contact Sensitizers: An Experience from Lithuania

    Directory of Open Access Journals (Sweden)

    Kotryna Linauskienė

    2017-01-01

    Full Text Available Background. Metals are very frequent sensitizers causing contact allergy and allergic contact dermatitis worldwide; up-to-date data based on patch test results has proved useful for the identification of a problem. Objectives. In this retrospective study prevalence of contact allergy to metals (nickel, chromium, palladium, gold, cobalt, and titanium in Lithuania is analysed. Patients/Methods. Clinical and patch test data of 546 patients patch tested in 2014–2016, in Vilnius University Hospital Santariskiu Klinikos, was analysed and compared with previously published data. Results. Almost third of tested patients (29.56% were sensitized to nickel. Younger women were more often sensitized to nickel than older ones (36% versus 22.8%, p=0.0011. Women were significantly more often sensitized to nickel than men (33% versus 6.1%, p<0.0001. Younger patients were more often sensitized to cobalt (11.6% versus 5.7%, p=0.0183. Sensitization to cobalt was related to sensitization to nickel (p<0.0001. Face dermatitis and oral discomfort were related to gold allergy (28% versus 6.9% dermatitis of other parts, p<0.0001. Older patients were patch test positive to gold(I sodium thiosulfate statistically significantly more often than younger ones (44.44% versus 21.21%, p=0.0281. Conclusions. Nickel, gold, cobalt, and chromium are leading metal sensitizers in Lithuania. Cobalt sensitization is often accompanied by sensitization to nickel. Sensitivity rate to palladium and nickel indicates possible cross-reactivity. No sensitization to titanium was found.

  4. Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity

    National Research Council Canada - National Science Library

    Su, Hui; Jiang, Jonathan H; Zhai, Chengxing; Shen, Tsaepyng J; Neelin, J. David; Stephens, Graeme L; Yung, Yuk L

    2014-01-01

    .... By analyzing 15 climate models, we show that the change of the Hadley Circulation exhibits meridionally varying weakening and strengthening structures, physically consistent with the cloud changes...

  5. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  6. Influence of Subpixel Scale Cloud Top Structure on Reflectances from Overcast Stratiform Cloud Layers

    Science.gov (United States)

    Loeb, N. G.; Varnai, Tamas; Winker, David M.

    1998-01-01

    Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel model theory suffer from systematic biases that depend on viewing geometry, even when observations are restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low sun elevations, the plane-parallel model significantly overestimates the reflectance dependence on view angle in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model assumption does not account for subpixel, scale variations in cloud-top height (i.e., "cloud bumps"). Monte Carlo simulation, comparing ID model radiances to radiances from overcast cloud field with 1) cloud-top height variation, but constant cloud volume extinction; 2) flat tops but horizontal variations in cloud volume extinction; and 3) variations in both cloud top height and cloud extinction are performed over a approximately equal to 4 km x 4 km domain (roughly the size of an individual GAC AVHRR pixel). The comparisons show that when cloud-top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those obtained observationally. In contrast, when clouds are assumed flat and only cloud extinction is variable, reflectance differences are much smaller and do not show any view-angle dependence. When both cloud-top height and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance reflectance difference. The reason 3D-1D reflectance differences are more sensitive to cloud-top height variations in the forward-scattering direction (at moderate to low, sun elevations) is because photons leaving the cloud field in that direction experience fewer scattering events (low-order scattering) and are restricted to the

  7. Screaming Clouds

    Science.gov (United States)

    Fikke, Svein; Egill Kristjánsson, Jón; Nordli, Øyvind

    2017-04-01

    "Mother-of-pearl clouds" appear irregularly in the winter stratosphere at high northern latitudes, about 20-30 km above the surface of the Earth. The size range of the cloud particles is near that of visible light, which explains their extraordinary beautiful colours. We argue that the Norwegian painter Edvard Munch could well have been terrified when the sky all of a sudden turned "bloodish red" after sunset, when darkness was expected. Hence, there is a high probability that it was an event of mother-of-pearl clouds which was the background for Munch's experience in nature, and for his iconic Scream. Currently, the leading hypothesis for explaining the dramatic colours of the sky in Munch's famous painting is that the artist was captivated by colourful sunsets following the enormous Krakatoa eruption in 1883. After carefully considering the historical accounts of some of Munch's contemporaries, especially the physicist Carl Störmer, we suggest an alternative hypothesis, namely that Munch was inspired by spectacular occurrences of mother-of-pearl clouds. Such clouds, which have a wave-like structure akin to that seen in the Scream were first observed and described only a few years before the first version of this motive was released in 1892. Unlike clouds related to conventional weather systems in the troposphere, mother-of-pearl clouds appear in the stratosphere, where significantly different physical conditions prevail. This result in droplet sizes within the range of visible light, creating the spectacular colour patterns these clouds are famous for. Carl Störmer observed such clouds, and described them in minute details at the age of 16, but already with a profound interest in science. He later noted that "..these mother-of-pearl clouds was a vision of indescribable beauty!" The authors find it logical that the same vision could appear scaring in the sensible mind of a young artist unknown to such phenomena.

  8. Probing ice clouds by broadband mid-infrared extinction spectroscopy: case studies from ice nucleation experiments in the AIDA aerosol and cloud chamber

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2006-01-01

    Full Text Available Series of infrared extinction spectra of ice crystals were recorded in the 6000–800 cm−1 wavenumber regime during expansion cooling experiments in the large aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe. Either supercooled sulphuric acid solution droplets or dry mineral dust particles were added as seed aerosols to initiate ice formation after having established ice supersaturated conditions inside the chamber. The various ice nucleation runs were conducted at temperatures between 237 and 195 K, leading to median sizes of the nucleated ice particles of 1–15 µm. The measured infrared spectra were fitted with reference spectra from T-matrix calculations to retrieve the number concentration as well as the number size distribution of the generated ice clouds. The precise evaluation of the time-dependent ice particle number concentrations, i.e., the rates of new ice particle formation, is of particular importance to quantitatively analyse the ice nucleation experiments in terms of nucleation rates and ice activation spectra. The ice particles were modelled as finite circular cylinders with aspect ratios ranging from 0.5 to 3.0. Benefiting from the comprehensive diagnostic tools for the characterisation of ice clouds which are available at the AIDA facility, the infrared retrieval results with regard to the ice particle number concentration could be compared to independent measurements with various optical particle counters. This provided a unique chance to quantitatively assess potential errors or solution ambiguities in the retrieval procedure which mainly originate from the difficulty to find an appropriate shape representation for the aspherical particle habits of the ice crystals. Based on these inter-comparisons, we demonstrate that there is no standard retrieval approach which can be routinely applied to all different experimental scenarios. In particular, the concept to account for the asphericity of the ice crystals

  9. The First Observed Cloud Echoes and Microphysical Parameter Retrievals by China’s 94-GHz Cloud Radar

    Institute of Scientific and Technical Information of China (English)

    WU Juxiu; WEI Ming; HANG Xin; ZHOU Jie; ZHANG Peichang; LI Nan

    2014-01-01

    By using the cloud echoes fi rst successfully observed by China’s indigenous 94-GHz SKY cloud radar, the macrostructure and microphysical properties of drizzling stratocumulus clouds in Anhui Province on 8 June 2013 are analyzed, and the detection capability of this cloud radar is discussed. The results are as follows. (1) The cloud radar is able to observe the time-varying macroscopic and microphysical parameters of clouds, and it can reveal the microscopic structure and small-scale changes of clouds. (2) The velocity spectral width of cloud droplets is small, but the spectral width of the cloud containing both cloud droplets and drizzle is large. When the spectral width is more than 0.4 m s-1, the radar refl ectivity factor is larger (over-10 dBZ). (3) The radar’s sensitivity is comparatively higher because the minimum radar refl ectivity factor is about-35 dBZ in this experiment, which exceeds the threshold for detecting the linear depolarized ratio (LDR) of stratocumulus (commonly -11 to -14 dBZ; decreases with increasing turbulence). (4) After distinguishing of cloud droplets from drizzle, cloud liquid water content and particle eff ective radius are retrieved. The liquid water content of drizzle is lower than that of cloud droplets at the same radar refl ectivity factor.

  10. Spatial and temporal distributions of ice nucleating particles during the Atmospheric Radiation Measurement (ARM) Cloud Aerosol Precipitation Experiment (ACAPEX)

    Science.gov (United States)

    Levin, E. J.; DeMott, P. J.; Suski, K. J.; Boose, Y.; Hill, T. C. J.; McCluskey, C. S.; Schill, G. P.; Duncan, D.; Al-Mashat, H.; Prather, K. A.; Sedlacek, A. J., III; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Pekour, M. S.; Leung, L. R.; Kreidenweis, S. M.

    2016-12-01

    California is currently under drought conditions and changes in precipitation due to future climate change scenarios are uncertain. Thus, understanding the controlling factors for precipitation in this region, and having the capability to accurately model these scenarios, is important. A crucial area in understanding precipitation is in the interplay between atmospheric moisture and aerosols. Specifically, ice nucleation in clouds is an important process controlling precipitation formation. A major component of CA's yearly precipitation comes from wintertime atmospheric river (AR) events which were the focus of the 2015 Atmospheric Radiation Measurement (ARM) Cloud Aerosol Precipitation Experiment (ACAPEX) and CalWater 2 campaigns. These two campaigns provided sampling platforms on four aircraft, including the ARM Aerial Facility G-1, as well as the NOAA Ron Brown research vessel and at a ground station at Bodega Bay, CA. Measurements of ice nucleating particles (INPs) were made with the Colorado State University (CSU) Continuous Flow Diffusion Chamber (CFDC) aboard the G-1 and at Bodega Bay, and using aerosol filter collections on these platforms as well as the Ron Brown for post-processing via immersion freezing in the CSU Ice Spectrometer. Aerosol composition was measured aboard the G-1 with the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS). Both the CFDC and ATOFMS sampled off of an isokinetic inlet when flying in clear air and a counter-flow virtual impactor in clouds to capture ice crystal and cloud droplet residuals. In this presentation we present ice nucleating particle concentrations before, during and after an AR event from air, ground and ocean-based measurements. We also examine INP concentration variability in orographic clouds and in clear air at altitude along the Sierra Nevada range, in the marine boundary layer and through the Central Valley, and relate these INP measurements to other aerosol physical and chemical properties.

  11. On CLOUD nine

    CERN Multimedia

    2009-01-01

    The team from the CLOUD experiment - the world’s first experiment using a high-energy particle accelerator to study the climate - were on cloud nine after the arrival of their new three-metre diameter cloud chamber. This marks the end of three years’ R&D and design, and the start of preparations for data taking later this year.

  12. Sensitivity of urban rainfall to anthropogenic heat flux: A numerical experiment

    Science.gov (United States)

    Holst, Christopher Claus; Tam, Chi-Yung; Chan, Johnny C. L.

    2016-03-01

    In this paper we investigate the sensitivity of local precipitation statistics to surface heat fluxes in an urban subdomain in the Pearl River Delta region, which is situated along the coast of south China. By conducting simulations of a past record-breaking rainfall event with a cloud-resolving model, we found that rainfall rates and the spatial distribution of accumulated rainfall are very sensitive to imposed urban surface heat fluxes. Diagnostics of the planetary boundary layer show increasing fluctuations of turbulence and buoyant turbulence production with increasing surface heat emission, causing increased near-surface mixing and convection. Heavy precipitation rates show a higher sensitivity than lighter rates. The extreme tail of the distribution is hence more affected. This study serves as an example of how sensitive the magnitude of local high impact weather phenomena can be to local forcing.

  13. Polarization-Sensitive Quantum Optical Coherence Tomography: Experiment

    CERN Document Server

    Booth, Mark C; Teich, Malvin Carl

    2010-01-01

    Polarization-sensitive quantum optical coherence tomography (PS-QOCT) makes use of a Type-II twin-photon light source for carrying out optical sectioning with polarization sensitivity. A BBO nonlinear optical crystal pumped by a Ti:sapphire psec-pulsed laser is used to confirm the theoretical underpinnings of this imaging paradigm. PS-QOCT offers even-order dispersion cancellation with simultaneous access to the group-velocity dispersion characteristics of the interstitial medium between the reflecting surfaces of the sample.

  14. Cirrus cloud occurrence as function of ambient relative humidity: A comparison of observations from the Southern and Northern Hemisphere midlatitudes obtained during the INCA experiment

    Directory of Open Access Journals (Sweden)

    J. Ström

    2003-06-01

    Full Text Available The occurrence frequency of cirrus clouds as function of ambient relative humidity over ice, based on in-situ observations performed during the INCA experiment, show a clear difference between the campaign carried out at Southern Hemisphere (SH midlatitudes and the campaign carried out at Northern Hemisphere (NH midlatitudes. At a given relative humidity above ice saturation, clouds are more frequent in the NH. At relative humidities near ice saturation, clouds defined as containing particles with sizes larger than 0.55 μm diameter and an integral number density above 0.2 cm−3 were present 70% of the time during the SH campaign, whereas clouds where present 95% of the time during the NH campaign. Using a size threshold of 1 μm diameter to define the presence of clouds result in a less frequent occurrence of 60% of the time in the SH campaign and 75% of the time in the NH campaign. The data show that the presence of particles is a common characteristic of cirrus clouds. Clouds at ice saturation defined as having crystal sizes of at least 5 μm diameter and a number density exceeding 0.001 cm−3 were present in about 80% of the time during the SH campaign, and almost 90% of the time during the NH campaign. The observations reveal a significant cloud presence fraction at humidities well below ice saturation. Local minima in the cloud presence fraction as a function of relative humidity are interpreted as systematic underestimation of cloud presence because cloud particles may become invisible to cloud probes. Based on this interpretation the data suggests that clouds in the SH form preferentially at relative humidities between 140 and 155%, whereas clouds in the NH formed at relative humidities less than 130%. A simple assumption about the probability to reach successively higher humidities in an ice supersaturated air parcel provides a model that explains the main trend of the cloud presence fraction as function of

  15. Collective resonance fluorescence in small and dense atom clouds: Comparison between theory and experiment

    CERN Document Server

    Jenkins, S D; Javanainen, J; Jennewein, S; Bourgain, R; Pellegrino, J; Sortais, Y R P; Browaeys, A

    2016-01-01

    We study the emergence of a collective optical response of a cold and dense $^{87}$Rb atomic cloud to a near-resonant low-intensity light when the atom number is gradually increased. Experimental observations are compared with microscopic stochastic simulations of recurrent scattering processes between the atoms that incorporate the atomic multilevel structure and the optical measurement setup. We analyze the optical response of an inhomogeneously-broadened gas and find that the experimental observations of the resonance line shifts and the total collected scattered light intensity in cold atom clouds substantially deviate from those of thermal atomic ensembles, indicating strong light-induced resonant dipole-dipole interactions between the atoms. At high densities, the simulations also predict a significantly slower decay of light-induced excitations in cold than in thermal atom clouds. The role of dipole-dipole interactions is discussed in terms of resonant coupling examples and the collective radiative exc...

  16. A New Method For A Sensitive Deuteron EDM Experiment

    CERN Document Server

    Semertzidis, Y K; Auzinsh, M; Balakin, V; Bazhan, A; Bennett, G W; Carey, R M; Cushman, P B; Debevec, P T; Dudnikov, A; Farley, F J M; Hertzog, D W; Iwasaki, M; Jungmann, Klaus; Kawall, D; Khazin, B I; Khriplovich, I B; Kirk, B; Kuno, Y; Lazarus, D M; Leipuner, L B; Logashenko, V; Lynch, K R; Marciano, W J; McNabb, R; Meng, W; Miller, J P; Morse, W M; Onderwater, Gerco; Orlov, Yu F; Ozben, C S; Prig, R; Rescia, S; Roberts, B L; Shafer-Ray, N; Silenko, A; Stephenson, E J; Yoshimura, K

    2003-01-01

    In this paper a new method is presented for particles in storage rings which could reach a statistical sensitivity of 10**(-27) e cm for the deuteron EDM. This implies an improvement of two orders of magnitude over the present best limits on the T-odd nuclear forces ksi parameter.

  17. Off-beam (multiply-scattered) lidar returns from stratus. 1; Cloud-information content and sensitivity to noise

    Science.gov (United States)

    Davis, Anthony B.; Cahalan, Robert F.

    1998-01-01

    We review the basic multiple scattering theory of off-beam lidar returns from optically thick clouds using the diffusion approximation. The shape of the temporal signal - the stretched pulse - depends primarily on the physical thickness of the cloud whereas its spatial counterpart - the diffuse spot - conveys specific information on the cloud's optical thickness, as do the absolute returns. This makes observation of the weak off-beam lidar returns an attractive prospect in remote sensing of cloud properties. By estimating the signal-to-noise ratio, we show that night-time measurements can be performed with existing technology. By the same criterion, day-time operation is a challenge that can only be met with a combination of cutting-edge techniques in filtering and in laser sources.

  18. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    Directory of Open Access Journals (Sweden)

    M. Salzmann

    2010-03-01

    Full Text Available A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS in the new model setup, but outgoing long-wave radiation (OLR decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR is of similar magnitude for the new and the original scheme.

  19. Understanding Discrepancies between Simulated and Measured Upwelling Microwave Brightness Temperatures: A Sensitivity Study on the Impact of Cloud Ice Microphysical and Scattering Parameterizations

    Science.gov (United States)

    Casella, D.; Hashino, T.; Mugnai, A.; Sanò, P.; Smith, E. A.; Tripoli, G. J.

    2009-09-01

    Most physically-based Bayesian algorithms for precipitation retrieval from satellite-borne microwave (MW) radiometers use cloud-radiation databases (CRD’s) that are composed of numerous detailed microphysical cloud profiles obtained from cloud resolving model (CRM) simulations, coupled with the simulated upwelling brightness temperatures (TB’s) at several MW frequencies. These TB’s are computed by applying radiative transfer (RT) schemes to the CRM profiles for the same frequencies and polarizations of the satellite MW radiometer measurements in use. Then, the ensemble of simulations is compared with the measurements to estimate the precipitation rate. A good agreement between simulations and measurements is obviously needed. Nevertheless, depending on frequency, there are several sources of discrepancy between simulated and measured TB’s. Here, we show the results of a sensitivity study on the impact of several different parameterizations that are used to compute the radiative properties of ice particles, as well as on the CRM skill in providing realistic descriptions of the microphysical structures of precipitating clouds. To this end, we use 2D-simulations of a case study of the KWAJEX campaign (that took place from 23 July to 14 September 1999), that were performed by the University of Wisconsin - Nonhydrostatic Modeling System (UW-NMS) using both a bulk microphysics scheme, as well as a new microphysical scheme called Advanced Microphysical Prediction System (AMPS) that explicitly predicts ice particle properties (such as size, particle density, and crystal habits).

  20. Cloud Formation

    Science.gov (United States)

    Graham, Mark Talmage

    2004-05-01

    Cloud formation is crucial to the heritage of modern physics, and there is a rich literature on this important topic. In 1927, Charles T.R. Wilson was awarded the Nobel Prize in physics for applications of the cloud chamber.2 Wilson was inspired to study cloud formation after working at a meteorological observatory on top of the highest mountain in Scotland, Ben Nevis, and testified near the end of his life, "The whole of my scientific work undoubtedly developed from the experiments I was led to make by what I saw during my fortnight on Ben Nevis in September 1894."3 To form clouds, Wilson used the sudden expansion of humid air.4 Any structure the cloud may have is spoiled by turbulence in the sudden expansion, but in 1912 Wilson got ion tracks to show up by using strobe photography of the chamber immediately upon expansion.5 In the interim, Millikan's study in 1909 of the formation of cloud droplets around individual ions was the first in which the electron charge was isolated. This study led to his famous oil drop experiment.6 To Millikan, as to Wilson, meteorology and physics were professionally indistinct. With his meteorological physics expertise, in WWI Millikan commanded perhaps the first meteorological observation and forecasting team essential to military operation in history.7 But even during peacetime meteorology is so much of a concern to everyone that a regular news segment is dedicated to it. Weather is the universal conversation topic, and life on land could not exist as we know it without clouds. One wonders then, why cloud formation is never covered in physics texts.

  1. A sensitivity study of the neutral-neutral reactions C + C3 and C + C5 in cold dense interstellar clouds

    CERN Document Server

    Wakelam, Valentine; Herbst, Eric; Talbi, Dahbia; Quan, Dongui; Caralp, Françoise

    2009-01-01

    Chemical networks used for models of interstellar clouds contain many reactions, some of them with poorly determined rate coefficients and/or products. In this work, we report a method for improving the predictions of molecular abundances using sensitivity methods and ab initio calculations. Based on the chemical network osu.2003, we used two different sensitivity methods to determine the most important reactions as a function of time for models of dense cold clouds. Of these reactions, we concentrated on those between C and C3 and between C and C5, both for their effect on specific important species such as CO and for their general effect on large numbers of species. We then used ab initio and kinetic methods to determine an improved rate coefficient for the former reaction and a new set of products, plus a slightly changed rate coefficient for the latter. Putting our new results in a pseudo-time-dependent model of cold dense clouds, we found that the abundances of many species are altered at early times, ba...

  2. Collision Experiment of an Arched Plasma-Filled Flux Rope and a Target Cloud of Initially Neutral Gas

    Science.gov (United States)

    Wongwaitayakornkul, Pakorn; Bellan, Paul; Li, Hui; Li, Shengtai

    2016-10-01

    Shocks occur in the co-rotating interaction regions just beyond the solar corona, in the corona during CME events, and when the solar wind impacts Earth's magnetosphere. The Caltech solar loop experiment investigates shock physics by creating an arched plasma-filled flux rope that expands to collide with a pre-injected, initially-neutral gas. We focus the investigation on the situation of a heavy-gas plasma (Argon) impacting a much lighter neutral gas cloud (Hydrogen). The neutral gas target cloud ionizes immediately upon being impacted and plasma-induced shock waves propagate in the target cloud away from the impact region. Analysis of data from magnetic probes, Langmuir probes, a fast camera, and spectroscopic measurements will be presented. The measurements suggest that a thin, compressed, ionized layer of hydrogen is formed just downstream of the Argon plasma loop and that thin, supersonic shocks form further downstream and propagate obliquely away from the plasma loop. Numerical simulation of an ideal MHD plasma is underway to enable comparison of the measurements with the predictions of MHD theory.

  3. Sensitivity-enhanced Experiments for the Measurement of J and Dipolar Coupling Constants

    Institute of Scientific and Technical Information of China (English)

    LIN,Dong-Hai(林东海); LIAO,Xin-Li(廖新丽)

    2002-01-01

    A sensitivity-enhanced IPAP NMR experiment was described in this paper, which separates the 1H-15N doublets into two different spectra to alleviate the problem of resonance overlaps and achieve the accurate measurement of J and residual dipolar coupling constants in proteins. This experiment offered 20%-60% sensitivity enhancement over the original IPAP experiment, and therefore produced more measurable resonances.Pulsed field gradient was used for coherence selection. Water-flip-back approach was used for water suppression. The sensitivity-enhanced IPAP experiment was employed in the measurement of 1JNH and 1DNH constants of the protein UBC9.

  4. Light scattering by clouds of cosmic dust analogues with carbonaceous compounds (PROGRA2 experiment)

    Science.gov (United States)

    Hadamcik, Edith; Renard, Jean-Baptiste; Levasseur-Regourd, Anny-Chantal; Lasue, Jeremie

    Carbonaceous compounds are found in numerous clouds of solid particles in the Solar System (e.g. Cometary comae, Interplanetary dust, Titan's aerosols). Fluffy aggregates of submicron sized grains and more compact particles up to some tens of micrometers were present in the particles captured by the Stardust mission in the coma of comet 81P/Wild 2 [1]. Complex organic refractories were found in the particles together with silicates [2,3], while CHON particles were detected by mass spectrometer, as previously by Vega 1 and Giotto at 1P/Halley [4,5]. Titan's aerosols are complex organics (CxNyHz) and their light scattering properties can only be interpreted if they present a fluffy aggregates structure [6]. The light scattered by the dust particles is partially linearly polarized with a polarization degree depending on the physical properties of the dust and on the geometry (phase angle) and wavelength of observations [7]. Laboratory scattering measurements with the PROGRA2 experiment [8] (in A300- CNES and ESA dedicated microgravity flights or on ground for low density particles) offer an alternative to simulate the scattering properties of real particles particularly for structures too large or too complex to be handled easily by numerical simulations. Experimental simulations have been performed on numerous samples underlying the characteristics of the polarimetric phase curves such as maximum and minimum polarization as a function of the properties of the particles (grains and particles size, structure, refractive index) [9,10]. These results were used to interpret variations in polarization in cometary comae [11,12] or in the Titan's atmosphere [13]. In this presentation we emphasize the optical properties due to the presence of organics and C-bearing materials and compare them to the optical properties of more transparent materials included or not in organics. Finally we give some examples of application to the interpretation of Solar System dust observations

  5. The Sensitivity of Arctic Ozone Loss to Polar Stratospheric Cloud Volume and Chlorine and Bromine Loading in a Chemistry and Transport Model

    Science.gov (United States)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Polansky, B. C.

    2006-01-01

    The sensitivity of Arctic ozone loss to polar stratospheric cloud volume (V(sub PSC)) and chlorine and bromine loading is explored using chemistry and transport models (CTMs). A simulation using multi-decadal output from a general circulation model (GCM) in the Goddard Space Flight Center (GSFC) CTM complements one recycling a single year s GCM output in the Global Modeling Initiative (GMI) CTM. Winter polar ozone loss in the GSFC CTM depends on equivalent effective stratospheric chlorine (EESC) and polar vortex characteristics (temperatures, descent, isolation, polar stratospheric cloud amount). Polar ozone loss in the GMI CTM depends only on changes in EESC as the dynamics repeat annually. The GSFC CTM simulation reproduces a linear relationship between ozone loss and Vpsc derived from observations for 1992 - 2003 which holds for EESC within approx.85% of its maximum (approx.1990 - 2020). The GMI simulation shows that ozone loss varies linearly with EESC for constant, high V(sub PSC).

  6. An airborne microwave radiometer and measurements of cloud liquid water

    Institute of Scientific and Technical Information of China (English)

    LEI Hengchi; JIN Dezhen; WEI Chong; SHEN Zhilai

    2003-01-01

    A single-channel (9.5 mm) airborne microwave radiometer with one antenna is developed. The retrieval methods and primary observation results of cloud liquid water and super-cooled cloud liquid water are discussed. The aircraft experiments show that the cloud liquid water and super-cooled liquid water can be sensitively monitored at some level of accuracy by the radiometer. The results of cloud liquid water content are reasonable and correspond well with the surface radar echo intensity. The design of the airborne radiometer and its retrieval methods are feasible, giving it application value.

  7. EPILEPSY A SOCIAL APPROACH: EXPERIENCE OF SENSITIZATION AND AWARENESS PUBLIC

    Directory of Open Access Journals (Sweden)

    Ivana Valeria Reyes Hernández

    2016-12-01

    Full Text Available Epilepsy as neurological disease affects the person who suffers from it by the deteriorating level of physical, mental, and personnel that results. It is a disease with various forms of manifestation, condition, and can occur at any age, regardless of race, social status, educational level. Condition is not well documented, by which communities have doubts, concerns, sometimes it becomes a social stigma, and it is unknown that is a controllable disease and that deterioration may decrease in the quality of life of the patient. This dissertation will present an approach of sensitization citizen in Venezuela to way of contributing with a perspective social on the disease. The methodology is of type documentary, bibliographic, field, and cross type. Applied an instrument in the visited social and communal spaces, their responses were reviewed at the same meeting and applied proactively public awareness program.

  8. Sensitivity and Discovery Potential of the PROSPECT Experiment

    CERN Document Server

    ,

    2015-01-01

    Measurements of the reactor antineutrino flux and spectrum compared to model predictions have revealed an apparent deficit in the interaction rates of reactor antineutrinos and an unexpected spectral deviation. PROSPECT, the Precision Reactor Oscillation Spectrum measurement, is designed to make a precision measurement of the antineutrino spectrum from a research reactor and search for signs of an eV-scale sterile neutrino. PROSPECT will be located at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and make use of a Highly Enriched Uranium reactor for a measurement of the pure U-235 antineutrino spectrum. An absolute measurement of this spectrum will constrain reactor models and improve our understanding of the reactor antineutrino spectrum. Additionally, the planned 3-ton lithium-doped liquid scintillator detector is ideally suited to perform a search for sterile neutrinos. This talk will focus on the sensitivity and discovery potential of PROSPECT and the detector design to achieve the...

  9. submitter Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments

    CERN Document Server

    Kim, J; Yli-Juuti, T; Lawler, M; Keskinen, H; Tröstl, J; Schobesberger, S; Duplissy, J; Amorim, A; Bianchi, F; Donahue, N M; Flagan, R C; Hakala, J; Heinritzi, M; Jokinen, T; Kürten, A; Laaksonen, A; Lehtipalo, K; Miettinen, P; Petäjä, T; Rissanen, M P; Rondo, L; Sengupta, K; Simon, M; Tomé, A; Williamson, C; Wimmer, D; Winkler, P M; Ehrhart, S; Ye, P; Kirkby, J; Curtius, J; Baltensperger, U; Kulmala, M; Lehtinen, K E J; Smith, J N; Riipinen, I; Virtanen, A

    2016-01-01

    Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study, we focus on a challenging size range, i.e., particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake is useful information for indirectly obtaining chemical composition of aerosol particles. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) at subsaturated conditions (ca. 90 % relative humidity at 293 K) to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7) campaign performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was meas...

  10. Comprehensive mechanisms for combustion chemistry: Experiment, modeling, and sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dryer, F.L.; Yetter, R.A. [Princeton Univ., NJ (United States)

    1993-12-01

    This research program is an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work are conducted in large diameter flow reactors, at pressures from one to twenty atmospheres, temperatures from 550 K to 1200 K, and with observed reaction times from 10{sup {minus}2} to 5 seconds. Gas sampling of stable reactant, intermediate, and product species concentrations provides not only substantial definition of the phenomenology of reaction mechanisms, but a significantly constrained set of kinetic information with negligible diffusive coupling. Analytical techniques used for detecting hydrocarbons and carbon oxides include gas chromatography (GC), and gas infrared (NDIR) and FTIR methods are utilized for continuous on-line sample detection of light absorption measurements of OH have also been performed in an atmospheric pressure flow reactor (APFR), and a variable pressure flow (VPFR) reactor is presently being instrumented to perform optical measurements of radicals and highly reactive molecular intermediates. The numerical aspects of the work utilize zero and one-dimensional pre-mixed, detailed kinetic studies, including path, elemental gradient sensitivity, and feature sensitivity analyses. The program emphasizes the use of hierarchical mechanistic construction to understand and develop detailed kinetic mechanisms. Numerical studies are utilized for guiding experimental parameter selections, for interpreting observations, for extending the predictive range of mechanism constructs, and to study the effects of diffusive transport coupling on reaction behavior in flames. Modeling using well defined and validated mechanisms for the CO/H{sub 2}/oxidant systems.

  11. VMware vCloud security

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    VMware vCloud Security provides the reader with in depth knowledge and practical exercises sufficient to implement a secured private cloud using VMware vCloud Director and vCloud Networking and Security.This book is primarily for technical professionals with system administration and security administration skills with significant VMware vCloud experience who want to learn about advanced concepts of vCloud security and compliance.

  12. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    1900-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  13. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    2013-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  14. The Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment (SALTRACE 2013) - An overview

    Science.gov (United States)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Althausen, Dietrich; Chouza, Fernando; Dollner, Maximilian; Farrell, David; Groß, Silke; Heinold, Bernd; Kristensen, Thomas B.; Mayol-Bracero, Olga L.; Omar, Ali; Prospero, Joseph; Sauer, Daniel; Schäfler, Andreas; Toledano, Carlos; Tegen, Ina

    2015-04-01

    Saharan mineral dust is regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the Sahara. During transport, the properties of mineral dust may be modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. To investigate the aging and modification of Saharan mineral dust during long-range transport across the Atlantic Ocean, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE was designed as a closure experiment combining ground-based lidar, in-situ and sun photometer instruments deployed on Cape Verde, Barbados and Puerto Rico, with airborne measurements of the DLR research aircraft Falcon, satellite observations and model simulations. During SALTRACE, mineral dust from five dust outbreaks was studied under different atmospheric conditions and a unique data set on the chemical, microphysical and optical properties of aged mineral dust was gathered. For the first time, Lagrangian sampling of a dust plume in the Cape Verde area on 17 June 2013 which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados was realized. Further highlights of SALTRACE include the formation and evolution of tropical storm Chantal in a dusty environment and the interaction of dust with mixed-phase clouds. In our presentation, we give an overview of the SALTRACE study, discuss the meteorological situation and the dust transport during SALTRACE and highlight selected results from SALTRACE.

  15. Sensitivity Studies of Dust Ice Nuclei Effect on Cirrus Clouds with the Community Atmosphere Model CAM5

    Science.gov (United States)

    Liu, Xiaohong; Zhang, Kai; Jensen, Eric J.; Gettelman, Andrew; Barahona, Donifan; Nenes, Athanasios; Lawson, Paul

    2012-01-01

    In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0+/-0.1Wm (sup-2) (1 uncertainty) and 2.4+/-0.1Wm (sup-2), respectively due to the presence of dust IN, with the net cloud forcing change of -0.40+/-0.20W m(sup-2). Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205-230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190- 205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (greater than 200 L(sup-1) and underestimate the frequency of low ice crystal number concentration (less than 30 L(sup-1) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.

  16. Alabama Ground Operations during the Deep Convective Clouds and Chemistry Experiment

    Science.gov (United States)

    Carey, Lawrence; Blakeslee, Richard; Koshak, William; Bain, Lamont; Rogers, Ryan; Kozlowski, Danielle; Sherrer, Adam; Saari, Matt; Bigelbach, Brandon; Scott, Mariana; Schultz, Elise; Schultz, Chris; Gatlin, Patrick; Wingo, Matt; Phillips, Dustin; Phillips, Chris; Peterson, Harold; Bailey, Jeff; Frederickson, Terryn; Hall, John; Bart, Nicole; Becker, Melissa; Pinkney, Kurtis; Rowe, Scott; Starzec, Mariusz

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) field campaign investigates the impact of deep, midlatitude convective clouds, including their dynamical, physical and lighting processes, on upper tropospheric composition and chemistry. DC3 science operations took place from 14 May to 30 June 2012. The DC3 field campaign utilized instrumented aircraft and ground ]based observations. The NCAR Gulfstream ]V (GV) observed a variety of gas ]phase species, radiation and cloud particle characteristics in the high ]altitude outflow of storms while the NASA DC ]8 characterized the convective inflow. Groundbased radar networks were used to document the kinematic and microphysical characteristics of storms. In order to study the impact of lightning on convective outflow composition, VHF ]based lightning mapping arrays (LMAs) provided detailed three ]dimensional measurements of flashes. Mobile soundings were utilized to characterize the meteorological environment of the convection. Radar, sounding and lightning observations were also used in real ]time to provide forecasting and mission guidance to the aircraft operations. Combined aircraft and ground ]based observations were conducted at three locations, 1) northeastern Colorado, 2) Oklahoma/Texas and 3) northern Alabama, to study different modes of deep convection in a variety of meteorological and chemical environments. The objective of this paper is to summarize the Alabama ground operations and provide a preliminary assessment of the ground ]based observations collected over northern Alabama during DC3. The multi ] Doppler, dual ]polarization radar network consisted of the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR), the UAHuntsville Mobile Alabama X ]band (MAX) radar and the Hytop (KHTX) Weather Surveillance Radar 88 Doppler (WSR ]88D). Lightning frequency and structure were observed in near real ]time by the NASA MSFC Northern Alabama LMA (NALMA). Pre ]storm and inflow proximity

  17. Enhancing detection sensitivity of SST-1 Thomson scattering experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Vishnu; Patel, Kiran; Thomas, Jinto; Kumar, Ajai, E-mail: ajai@ipr.res.in

    2016-10-15

    Thomson Scattering System (TSS) is the main diagnostic to extract electron temperature and density of steady state superconducting (SST-1) tokamak plasma. Silicon avalanche photo diode is used with low noise and fast signal conditioning electronics (SCE) to detect incoming Thomson scattered laser photons. A stringent requirement for the measurement is to detect high speed and low level light signal (detection of 100 numbers of Thomson scattered photons for 50 ns pulse width at input of active area of detector) in the presence of wide band electro-magnetic interference (EMI) noise. The electronics and instruments for different sub-systems kept in laboratory contribute to the radiated and conductive noise in a complex manner to the experiment, which can degrade the resultant signal to noise ratio (SNR <1). In general a repeated trial method with flexible grounding scheme are used to improve system signal to noise ratio, which is time consuming and less efficient. In the present work a simple, robust, cost-effective instrumentation system is used for the measurement and monitoring with improved ground scheme and shielding method to minimize noise, isolating the internal sub-system generated noise and external interference which leads to an improved SNR.

  18. Analysis and forecast experiments incorporating satellite soundings and cloud and water vapor drift wind information

    Science.gov (United States)

    Goodman, Brian M.; Diak, George R.; Mills, Graham A.

    1986-01-01

    A system for assimilating conventional meteorological data and satellite-derived data in order to produce four-dimensional gridded data sets of the primary atmospheric variables used for updating limited area forecast models is described. The basic principles of a data assimilation scheme as proposed by Lorenc (1984) are discussed. The design of the system and its incremental assimilation cycles are schematically presented. The assimilation system was tested using radiosonde, buoy, VAS temperature, dew point, gradient wind data, cloud drift, and water vapor motion data. The rms vector errors for the data are analyzed.

  19. Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias [Department of Theoretical Physics, School of Engineering Sciences,KTH Royal Institute of Technology, AlbaNova University Center,106 91 Stockholm (Sweden); Coloma, Pilar; Huber, Patrick [Center for Neutrino Physics, Virginia Tech,Blacksburg, VA 24061 (United States); Schwetz, Thomas [Max-Planck-Institut für Kernphysik,Saupfercheckweg 1, 69117 Heidelberg (Germany); Oskar Klein Centre for Cosmoparticle Physics,Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden)

    2014-03-05

    Determining the type of the neutrino mass ordering (normal versus inverted) is one of the most important open questions in neutrino physics. In this paper we clarify the statistical interpretation of sensitivity calculations for this measurement. We employ standard frequentist methods of hypothesis testing in order to precisely define terms like the median sensitivity of an experiment. We consider a test statistic T which in a certain limit will be normal distributed. We show that the median sensitivity in this limit is very close to standard sensitivities based on Δχ{sup 2} values from a data set without statistical fluctuations, such as widely used in the literature. Furthermore, we perform an explicit Monte Carlo simulation of the INO, JUNO, LBNE, NOνA, and PINGU experiments in order to verify the validity of the Gaussian limit, and provide a comparison of the expected sensitivities for those experiments.

  20. submitter Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    CERN Document Server

    Nichman, Leonid; Järvinen, Emma; Ignatius, Karoliina; Höppel, Niko Florian; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Kristensen, Thomas Bjerring; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-01-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary ...

  1. Competitive Comparison of Optimal Designs of Experiments for Sampling-based Sensitivity Analysis

    CERN Document Server

    Janouchova, Eliska

    2012-01-01

    Nowadays, the numerical models of real-world structures are more precise, more complex and, of course, more time-consuming. Despite the growth of a computational effort, the exploration of model behaviour remains a complex task. The sensitivity analysis is a basic tool for investigating the sensitivity of the model to its inputs. One widely used strategy to assess the sensitivity is based on a finite set of simulations for a given sets of input parameters, i.e. points in the design space. An estimate of the sensitivity can be then obtained by computing correlations between the input parameters and the chosen response of the model. The accuracy of the sensitivity prediction depends on the choice of design points called the design of experiments. The aim of the presented paper is to review and compare available criteria determining the quality of the design of experiments suitable for sampling-based sensitivity analysis.

  2. Cloud microphysics and surface properties in climate

    Energy Technology Data Exchange (ETDEWEB)

    Stamnes, K. [Univ. of Alaska, Fairbanks, AK (United States)

    1995-09-01

    Cloud optical thickness is determined from ground-based measurements of broadband incoming solar irradiance using a radiation model in which the cloud optical depth is adjusted until computed irradiance agrees with the measured value. From spectral measurements it would be feasible to determine both optical thickness and mean drop size, which apart from cloud structure and morphology, are the most important climatic parameters of clouds. A radiative convective model is used to study the sensitivity of climate to cloud liquid water amount and cloud drop size. This is illustrated in Figure 21.1 which shows that for medium thick clouds a 10 % increase in drop size yields a surface warming of 1.5{degrees}C, which is the same as that due to a doubling of carbon dioxide. For thick clouds, a 5% decrease in drop size is sufficient to offset the warming due to doubling of carbon dioxide. A radiative transfer model for the coupled atmosphere/sea ice/ocean system is used to study the partitioning of radiative energy between the three strata, and the potential for testing such a model in terms of planned experiments in the Arctic is discussed.

  3. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME

    Science.gov (United States)

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2017-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948

  4. Sensitivity experiments with an adaptation model of circulation of western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Shaji, C.; Rao, A.D.; Dube, S.K.

    One 18-level adaptation model of circulation with a flat bottom at 900 m depth has been used to study the sensitivity of the solution to different magnitudes of eddy viscosity and diffusivity coefficients. Three numerical experiments conducted...

  5. An overview of the design and analysis of simulation experiments for sensitivity analysis

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2005-01-01

    Sensitivity analysis may serve validation, optimization, and risk analysis of simulation models. This review surveys 'classic' and 'modern' designs for experiments with simulation models. Classic designs were developed for real, non-simulated systems in agriculture, engineering, etc. These designs

  6. The Cloud Processes of a Simulated Moderate Snowfall Event in North China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event in North China that occurred during 20-21 December 2002. Thirteen experiments are performed to test the sensitivity of the simulation to the cloud physics with different cumulus parameterization schemes and different options for the Goddard cloud microphysics parameterization schemes. It is shown that the cumulus parameterization scheme has little to do with the simulation result. The results also show that there are only four classes of water substances, namely the cloud water, cloud ice, snow, and vapor,in the simulation of the moderate snowfall event. The analysis of the cloud microphysics budgets in the explicit experiment shows that the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow, and the Bergeron process of cloud ice are the dominant cloud microphysical processes in the simulation. The accretion of cloud water by snow and the deposition growth of the snow are equally important in the development of the snow.

  7. Soot effects on clouds and solar absorption: Understanding the differences in recently published soot mitigation experiments. (Invited)

    Science.gov (United States)

    Bauer, S. E.; Menon, S.

    2010-12-01

    Attention has been drawn to black carbon aerosols, as a target for short-term mitigation of climate warming. This measure seems attractive because soot is assumed to warm the atmosphere and at the same time has a lifetime of just a few days. Therefore regulating soot emissions could, as a short-term action, potentially buy time by slowing global warming until regulations for longer lived greenhouse gases are set in place. Currently the scientific community debates the impacts of such mitigation measures, especially when considering indirect effects. We tested with the GISS/MATRIX model, a global climate model including detailed aerosol microphysics, the effect of reducing fossil fuel emissions and bio-fuel emissions and found that opposite changes in cloud droplet number concentration lead to positive cloud forcing numbers in the bio-fuel reduction case and negative forcing numbers in the diesel mitigation case. Similar experiments have been carried out and have recently been published by other modeling groups, finding partly similar partly contradicting results to our study. In this presentation we want to explain the differences in black carbon research carried out with complex microphysical models, by focusing on the treatment of mixing state, and separation between forcings and feedbacks.

  8. The Medium-Sensitive Experience and the Paradigmatic Experience of the Grotesque, 'Unnatural', or 'Monstrous'

    NARCIS (Netherlands)

    van den Oever, A.M.A.

    2013-01-01

    To create the conceptual space to analyze the evident and structural similarities between the art experience, the (new) media experience, and the media art experience, the author approaches the “medium” as “techniques” which “make [the seen] strange.” A disruption of the perceptual process, a

  9. THE MEDIUM-SENSITIVE EXPERIENCE AND THE PARADIGMATIC EXPERIENCE OF THE GROTESQUE, "UNNATURAL" OR "MONSTROUS"

    NARCIS (Netherlands)

    van den Oever, A. M. A.

    To create the conceptual space to analyze the evident and structural similarities between the art experience, the (new) media experience, and the media art experience, the author approaches the "medium" as "techniques" which "make [the seen] strange." A disruption of the perceptual process, a

  10. Sensitivity of Venus surface emissivity retrieval to model variations of CO2 opacity, cloud features, and deep atmosphere temperature field

    Science.gov (United States)

    Kappel, David; Arnold, Gabriele; Haus, Rainer

    2012-07-01

    The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express space probe has acquired a wealth of nightside emission spectra from Venus and provides the first global database for systematic atmospheric and surface studies in the IR. The infrared mapping channel (VIRTIS-M-IR) sounds the atmosphere and surface at high spatial and temporal resolution and coverage. Quantitative analyses of data call for a sophisticated radiative transfer simulation model of Venus' atmosphere to be used in atmospheric and surface parameter retrieval procedures that fit simulated spectra to the measured data. The surface emissivity can be retrieved from VIRTIS-M-IR measurements in the transparency windows around 1 μm, but it is not easy to derive, since atmospheric influences strongly interfere with surface information. There are mainly three atmospheric model parameters that may affect quantitative results of surface emissivity retrievals: CO_2 opacity, cloud features, and deep atmosphere temperature field. The CO_2 opacity with respect to allowed transitions is usually computed by utilizing a suitable line data base and certain line shape models that consider collisional line mixing. Both line data bases and shape models are not well established from measurements under the environmental conditions in the deep atmosphere of Venus. Pressure-induced additional continuum absorption introduces further opacity uncertainties. The clouds of Venus are usually modeled by a four-modal distribution of spherical droplets of about 75% sulfuric acid, where each mode is characterized by a different mean and standard deviation of droplet size distribution and a different initial altitude abundance profile. The influence of possible cloud mode variations on surface emissivity retrieval results is investigated in the paper. Future retrieval procedures will aim at a separation of cloud mode and surface emissivity variations using different atmospheric windows sounded by

  11. A scheme for process-tagged SO4 and BC aerosols in NCAR CCM3: Validation and sensitivity to cloud processes

    Science.gov (United States)

    Iversen, Trond; Seland, Øyvind

    2002-12-01

    A life cycle scheme for sulfate (SO4) and black carbon (BC) is implemented in an extended version of the National Center for Atmospheric Research (NCAR) Community Climate Model 3 (CCM3). The scheme includes emissions of dimethyl sulfide (DMS), SO2, and sulfate of natural and anthropogenic origins and emissions of BC from biomass burning and fossil fuel combustion. Chemistry and aerosol physics are parameterized based on prescribed oxidant levels and background aerosols of marine, continental, and polar origins. Aqueous chemistry depends on estimated exchange rate of cloudy and clear air. Particulate SO4 and BC are tagged by-production mechanisms for off-line reconstruction of aerosol optical and water activity properties. With emissions from International Panel on Climate Change (IPCC), calculations without feedback produce atmospheric turnover times (days) of 1.5 (SO2), 3.5 (SO4), and 4.7 (BC) for the year 2000 and 1.6 (SO2), 4.0 (SO4), and 4.7 (BC) for the year 2100 A2 emission scenario. The modeled SOx compounds compare within a factor 2 with observations at ground level in North America and Europe and for SO4 in the free troposphere. For BC, the ground-level concentrations are well within a factor 10 from observations over several regions. BC and SO4 are a factor 10 too low in Arctic winter, which can partly be linked to spurious low-level winter cloudiness. SO4 and BC are a factor 10 too high at ground-level low latitudes, and upper tropospheric SO2 is largely missing. These major model biases are caused by neglected transport and low scavenging efficiency in cumulus clouds. Cloud processes are discussed by sensitivity tests. SO4 and BC are found very sensitive to the vertical transport and scavenging in convective clouds. More research should aim at improved cloud parameterization schemes that address key processes associated with aerosols to reduce uncertainties associated with climate effects of anthropogenic aerosols.

  12. Security Architecture of Cloud Computing

    Directory of Open Access Journals (Sweden)

    V.KRISHNA REDDY

    2011-09-01

    Full Text Available The Cloud Computing offers service over internet with dynamically scalable resources. Cloud Computing services provides benefits to the users in terms of cost and ease of use. Cloud Computing services need to address the security during the transmission of sensitive data and critical applications to shared and public cloud environments. The cloud environments are scaling large for data processing and storage needs. Cloud computing environment have various advantages as well as disadvantages on the data security of service consumers. This paper aims to emphasize the main security issues existing in cloud computing environments. The security issues at various levels of cloud computing environment is identified in this paper and categorized based on cloud computing architecture. This paper focuses on the usage of Cloud services and security issues to build these cross-domain Internet-connected collaborations.

  13. A Privacy-aware Virtual Machine Migration Framework on Hybrid Clouds

    Directory of Open Access Journals (Sweden)

    Hongli Zhang

    2014-05-01

    Full Text Available With the proliferation of hybrid clouds in both cost-saving and effectiveness, a growing number of users are building their own private cloud. However, private cloud can only provide limited resource, and always resorts to public cloud in order to meet elastic service requirements. Generally, public cloud is operated by commercial service providers (CSPs who are not completely honest with users to some extent. So, existing hybrid clouds service models are hampered by privacy concerns, and one of the main reasons is that a majority of users’ workloads involves sensitive contents and therefore can’t be directly outsourced to public cloud without proper protection. In this paper, we present a novel framework that makes such privacy-aware VM migration effectively. At First, all the users’ workloads are uploading and running in private cloud VMs then labeling the sensitive and non-sensitive VMs. Then, we design an effective way focusing on how to get VM migration queue without introducing heavy inter-cloud communication traffic after migration. Finally, non-sensitive VMs are migrated to public cloud with utmost effort by live migration premised on minimal service level agreement (SLA disruption. Experiment results illustrate that our proposed framework is effective while occurring an acceptable communication overhead

  14. An Experimental Validation of Public Cloud Mobile Banking

    Directory of Open Access Journals (Sweden)

    Olawande Daramola

    2014-06-01

    Full Text Available Currently, financial institutions incur huge expenditure to implement and maintain mobile banking (m-Banking solutions and this cost is bound to rise significantly, as more customers subscribe to m-Banking services. Cloud computing has potential to facilitate reduced cost, high scalability and a variable cost structure that could guarantee cheaper, reliable and sustainable m-Banking in the long term. While the adoption of organizational private clouds seems natural for banks because of the sensitive nature of banking transactions, some have argued for the adoption of public clouds as a better alternative, despite concerns on issues such as trust, security and privacy. However, there is lack of sufficient empirical evidence in the literature on the suitability of public clouds for m-Banking. Hence, this study presents an investigation of the use of public cloud for m-Banking. A prototype cloud-based m-Banking application was developed using a public platform-as-a-service (Paas cloud model, which was evaluated for usability and robustness in a controlled experiment. The evaluation result shows that m-Banking on public cloud is viable, if the cloud-based application is sufficiently robust and usable. The result also indicates that m-Banking services on public cloud are suitable for adoption by the banking industry.

  15. On clocks and clouds

    Directory of Open Access Journals (Sweden)

    M. K. Witte

    2013-09-01

    Full Text Available Cumulus clouds exhibit a life cycle that consists of: (a the growth phase (increasing size, most notably in the vertical direction; (b the mature phase (growth ceases; any precipitation that develops is strongest during this period; and (c the dissipation phase (cloud dissipates because of precipitation and/or entrainment; no more dynamical support. Although radar can track clouds over time and give some sense of the age of a cloud, most aircraft in situ measurements lack temporal context. We use large eddy simulations of trade wind cumulus cloud fields from cases during the Barbados Oceanographic and Meteorological Experiment (BOMEX and Rain In Cumulus over the Ocean (RICO campaigns to demonstrate a potential cumulus cloud "clock". We find that the volume-averaged total water mixing ratio rt is a useful cloud clock for the 12 clouds studied. A cloud's initial rt is set by the subcloud mixed-layer mean rt and decreases monotonically from the initial value due primarily to entrainment. The clock is insensitive to aerosol loading, environmental sounding and extrinsic cloud properties such as lifetime and volume. In some cases (more commonly for larger clouds, multiple pulses of buoyancy occur, which complicate the cumulus clock by replenishing rt. The clock is most effectively used to classify clouds by life phase.

  16. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation.

    Science.gov (United States)

    Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi

    2016-12-16

    Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.

  17. Sensitivity of the SHiP experiment to a light scalar particle mixing with the Higgs

    CERN Document Server

    Lanfranchi, Gaia

    2017-01-01

    This conceptual study shows the ultimate sensitivity of the SHiP experiment for the search of a light scalar particle mixing with the Higgs for a dataset corresponding to 5-years of SHiP operation at a nominal intensity of 4 1013 protons on target per second. The sensitivity as a function of the length of the vessel and of its distance from the target as well as a function of the background contamination is also studied.

  18. 27-day solar forcing of mesospheric temperature, water vapor and polar mesospheric clouds from the AIM SOFIE and CIPS satellite experiments

    Science.gov (United States)

    Thomas, Gary; Thurairajah, Brentha; von Savigny, Christian; Hervig, Mark; Snow, Martin

    2016-04-01

    Solar cycle variations of ultraviolet radiation have been implicated in the 11-year and 27-day variations of Polar Mesospheric Cloud (PMC) properties. Both of these variations have been attributed to variable solar ultraviolet heating and photolysis, but no definitive studies of the mechanisms are available. The solar forcing issue is critical toward answering the broader question of whether PMC's have undergone long-term changes, and if so, what is the nature of the responsible long-term climate forcings? One of the principal goals of the Aeronomy of Ice in the Mesosphere satellite mission was to answer the question: "How does changing solar irradiance affect PMCs and the environment in which they form?" We describe an eight-year data set from the AIM Solar Occultation for Ice Experiment (SOFIE) and the AIM Cloud Imaging and Particle Size (CIPS) experiment. Together, these instruments provide high-precision measurements of high-latitude summertime temperature (T), water vapor (H2O), and PMC ice properties for the period 2007-present. The complete temporal coverage of the summertime polar cap region for both the primary atmospheric forcings of PMC (T and H2O), together with a continually updated time series of Lyman-alpha solar irradiance, allows an in-depth study of the causes and effects of 27-day PMC variability. The small responses of these variables, relative to larger day-to-day changes from gravity waves, tides, inter-hemispheric coupling, etc. require a careful statistical analysis to isolate the solar influence. We present results for the 27-day responses of T, H2O and PMC for a total of 15 PMC seasons, (30 days before summer solstice to 60 days afterward, for both hemispheres). We find that the amplitudes and phase relationships are not consistent with the expected mechanisms of solar UV heating and photolysis - instead we postulate a primarily dynamical response, in which a periodic vertical wind heats/cools the upper mesosphere, and modulates PMC

  19. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations

    Science.gov (United States)

    Wood, R.; Mechoso, C. R.; Bretherton, C. S.; Weller, R. A.; Huebert, B.; Straneo, F.; Albrecht, B. A.; Coe, H.; Allen, G.; Vaughan, G.; Daum, P.; Fairall, C.; Chand, D.; Gallardo Klenner, L.; Garreaud, R.; Grados, C.; Covert, D. S.; Bates, T. S.; Krejci, R.; Russell, L. M.; de Szoeke, S.; Brewer, A.; Yuter, S. E.; Springston, S. R.; Chaigneau, A.; Toniazzo, T.; Minnis, P.; Palikonda, R.; Abel, S. J.; Brown, W. O. J.; Williams, S.; Fochesatto, J.; Brioude, J.; Bower, K. N.

    2011-01-01

    The VAMOS1 Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted. 1 Variability of the American Monsoon Systems, an international CLIVAR program.

  20. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx: goals, platforms, and field operations

    Directory of Open Access Journals (Sweden)

    R. Wood

    2011-01-01

    Full Text Available The VAMOS1 Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted.

    1 Variability of the American Monsoon Systems, an international CLIVAR program.

  1. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx: goals, platforms, and field operations

    Directory of Open Access Journals (Sweden)

    R. Wood

    2010-09-01

    Full Text Available The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites.

    The two central themes of VOCALS-REx are designed to improve understanding of (a links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and given a summary of the missions conducted.

  2. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.; Springston, S.; Mechoso, C. R.; Bretherton, C. S.; A.Weller, R.; Huebert, B.; Straneo, F.; Albrecht, B. A.; Coe, H.; Allen, G.; Vaughan, G.; Daum, P.; Fairall, C.; Chand, D.; Klenner, L. G.; Garreaud, R.; Grados, C.; Covert, D. S.; Bates, T. S.; Krejci, R.; Russell, L. M.; Szoeke, S. d.; Brewer, A.; Yuter, S. E.; Chaigneau, A.; Toniazzo, T.; Minnis, P.; Palikonda, R.; Abel, S. J.; Brown, W. O. J.; Williams, S.; Fochesatto, J.; Brioude, J.; Bower, K. N

    2011-01-21

    The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted.

  3. Power spectrum sensitivity of raster-scanned CMB experiments in the presence of 1/f noise

    Science.gov (United States)

    Crawford, Tom

    2007-09-01

    We investigate the effects of 1/f noise on the ability of a particular class of cosmic microwave background experiments to measure the angular power spectrum of temperature anisotropy. We concentrate on experiments that operate primarily in raster-scan mode and develop formalism that allows us to calculate analytically the effect of 1/f noise on power-spectrum sensitivity for this class of experiments and determine the benefits of raster-scanning at different angles relative to the sky field versus scanning at only a single angle (cross-linking versus not cross-linking). We find that the sensitivity of such experiments in the presence of 1/f noise is not significantly degraded at moderate spatial scales (ℓ˜100) for reasonable values of scan speed and 1/f knee. We further find that the difference between cross-linked and non-cross-linked experiments is small in all cases and that the non-cross-linked experiments are preferred from a raw sensitivity standpoint in the noise-dominated regime—i.e., in experiments in which the instrument noise is greater than the sample variance of the target power spectrum at the scales of interest. This analysis does not take into account systematic effects.

  4. Non-standard interactions spoiling the CP violation sensitivity at DUNE and other long baseline experiments

    CERN Document Server

    Masud, Mehedi

    2016-01-01

    It is by now established that neutrino oscillations occur due to non-zero masses and parameters in the leptonic mixing matrix. The extraction of oscillation parameters may be complicated due to subleading effects such as non-standard neutrino interactions (NSI) and one needs to have a fresh look how a particular parameter value is inferred from experimental data. In the present work, we focus on an important parameter entering the oscillation framework - the leptonic CP violating phase $\\delta$, about which we know very little. We demonstrate that the sensitivity to CP violation gets significantly impacted due to NSI effects for the upcoming long baseline experiment, Deep Underground Neutrino Experiment (DUNE). We also draw a comparison with the sensitivities of other ongoing neutrino beam experiments such as NOvA, and T2K, as well as a future generation experiment, T2HK.

  5. Fast cloud parameter retrievals of MIPAS/Envisat

    Directory of Open Access Journals (Sweden)

    R. Spang

    2011-12-01

    similar to that of space- and ground-based lidars, with a tendency for higher cloud top heights and consequently higher sensitivity for some of the MIPAS detection methods. For the high cloud amount (HCA, pressure levels below 440 hPa on global scales the sensitivity of MIPAS is significantly greater than that of passive nadir viewers. This means that the high cloud fraction will be underestimated in the ISCCP dataset compared to the amount of high clouds deduced by MIPAS. Good correspondence in seasonal variability and geographical distribution of cloud occurrence and zonal means of cloud top height is found in a detailed comparison with a climatology for subvisible cirrus clouds from the Stratospheric Aerosol and Gas Experiment II (SAGE II limb sounder. Overall, validation with various sensors shows the need to consider differences in sensitivity, and especially the viewing geometries and field-of-view size, to make the datasets comparable (e.g. applying integration along the limb path through nadir cloud fields. The simulation of the limb path integration will be an important issue for comparisons with cloud-resolving global circulation or chemical transport models.

  6. Application of Radar Reflectivity Factor in Initializing Cloud-Resolving Mesoscale Model. Part Ⅱ: Numerical Simulation Experiments

    Institute of Scientific and Technical Information of China (English)

    LIU Hongya; XU Haiming; XUE Jishan; HU Zhijin; SHEN Tongli

    2008-01-01

    Microphysics elements and vertical velocity retrieved were incorporated using the nudging method into the initial data assimilation of GRAPES (Global/Regional Assimilation and Prediction System) model.Simulation experiments indicated that nudging technique was effective in forcing the model forecast gradually consistent to the observations, yielding the thermodynamically and dynamically balanced analysis field. As viewed from the simulation results, water vapor is vital to precipitation, and it is a governing factor for the amount and duration of precipitation. The initial cloud water, rain water, and vertical velocity determine the strength distribution of convection and precipitation at the beginning time of forecast; the horizontal wind field steers the motion of the mesoscale weather system embedded in and impacts the position of precipitation zone to a large extent. The simulation experiments show that the influence of the initial retrieval data on prediction weakens with the increase of forecast time, and within the first hour of forecast, the retrieval data have an important impact on the evolution of the weather system, but its influence becomes trivial after the first three hours. Changing the nudging coefficient and the integral time-spacing of numerical model will bring some influences to the results. Herein only one radar reflectivity was used, the radar observations did not cover the whole model domain, and some empirical parameters were used in the retrieval method, therefore some differences still lie between simulation and observation to a certain extent, and further studies on several aspects are expected.

  7. Secure Cloud Architecture

    Directory of Open Access Journals (Sweden)

    Kashif Munir

    2013-02-01

    Full Text Available Cloud computing is set of resources and services offered through the Internet. Cloud services are delivered from data centers located throughout the world. Cloud computing facilitates its consumers by providing virtual resources via internet. The biggest challenge in cloud computing is the security and privacy problems caused by its multi-tenancy nature and the outsourcing of infrastructure, sensitive data and critical applications. Enterprises are rapidly adopting cloud services for their businesses, measures need to be developed so that organizations can be assured of security in their businesses and can choose a suitable vendor for their computing needs. Cloud computing depends on the internet as a medium for users to access the required services at any time on pay-per-use pattern. However this technology is still in its initial stages of development, as it suffers from threats and vulnerabilities that prevent the users from trusting it. Various malicious activitiesfrom illegal users have threatened this technology such as data misuse, inflexible access control and limited monitoring. The occurrence of these threats may result into damaging or illegal access of critical and confidential data of users. In this paper we identify the most vulnerable security threats/attacks in cloud computing, which will enable both end users and vendors to know a bout the k ey security threats associated with cloud computing and propose relevant solution directives to strengthen security in the Cloud environment. We also propose secure cloud architecture for organizations to strengthen the security.

  8. Developing cultural sensitivity: nursing students' experiences of a study abroad programme.

    Science.gov (United States)

    Ruddock, Heidi C; Turner, de Sales

    2007-08-01

    This paper is a report of a study to explore whether having an international learning experience as part of a nursing education programme promoted cultural sensitivity in nursing students. background: Many countries are becoming culturally diverse, but healthcare systems and nursing education often remain mono-cultural and focused on the norms and needs of the majority culture. To meet the needs of all members of multicultural societies, nurses need to develop cultural sensitivity and incorporate this into caregiving. A Gadamerian hermeneutic phenomenological approach was adopted. Data were collected in 2004 by using in-depth conversational interviews and analysed using the Turner method. Developing cultural sensitivity involves a complex interplay between becoming comfortable with the experience of making a transition from one culture to another, making adjustments to cultural differences, and growing personally. Central to this process was the students' experience of studying in an unfamiliar environment, experiencing stress and varying degrees of culture shock, and making a decision to take on the ways of the host culture. These actions led to an understanding that being sensitive to another culture required being open to its dynamics, acknowledging social and political structures, and incorporating other people's beliefs about health and illness. The findings suggest that study abroad is a useful strategy for bridging the theory-practice divide. However, further research is needed with larger and more diverse students to test the generalizability of the findings. Longitudinal research is also needed to assess the impact of study abroad programmes on the deliver of culturally sensitive care.

  9. Large-eddy simulation of organized precipitating trade wind cumulus clouds

    Directory of Open Access Journals (Sweden)

    A. Seifert

    2013-01-01

    Full Text Available Trade wind cumulus clouds often organize in along-wind cloud streets and across-wind mesoscale arcs. We present a benchmark large-eddy simulation which resolves the individual clouds as well as the mesoscale organization on scales of O(10 km. Different methods to quantify organization of cloud fields are applied and discussed. Using perturbed physics large-eddy simulations experiments the processes leading to the formation of cloud clusters and the mesoscale arcs are revealed. We find that both cold pools as well as the sub-cloud layer moisture field are crucial to understand the organization of precipitating shallow convection. Further sensitivity studies show that microphysical assumptions can have a pronounced impact on the onset of cloud organization.

  10. Factors Controlling the Properties of Multi-Phase Arctic Stratocumulus Clouds

    Science.gov (United States)

    Fridlind, Ann; Ackerman, Andrew; Menon, Surabi

    2005-01-01

    The 2004 Multi-Phase Arctic Cloud Experiment (M-PACE) IOP at the ARM NSA site focused on measuring the properties of autumn transition-season arctic stratus and the environmental conditions controlling them, including concentrations of heterogeneous ice nuclei. Our work aims to use a large-eddy simulation (LES) code with embedded size-resolved aerosol and cloud microphysics to identify factors controlling multi-phase arctic stratus. Our preliminary simulations of autumn transition-season clouds observed during the 1994 Beaufort and Arctic Seas Experiment (BASE) indicated that low concentrations of ice nuclei, which were not measured, may have significantly lowered liquid water content and thereby stabilized cloud evolution. However, cloud drop concentrations appeared to be virtually immune to changes in liquid water content, indicating an active Bergeron process with little effect of collection on drop number concentration. We will compare these results with preliminary simulations from October 8-13 during MPACE. The sensitivity of cloud properties to uncertainty in other factors, such as large-scale forcings and aerosol profiles, will also be investigated. Based on the LES simulations with M-PACE data, preliminary results from the NASA GlSS single-column model (SCM) will be used to examine the sensitivity of predicted cloud properties to changing cloud drop number concentrations for multi-phase arctic clouds. Present parametrizations assumed fixed cloud droplet number concentrations and these will be modified using M-PACE data.

  11. Sensory-processing sensitivity moderates the association between childhood experiences and adult life satisfaction.

    Science.gov (United States)

    Booth, Charlotte; Standage, Helen; Fox, Elaine

    2015-12-01

    There are few studies testing the differential susceptibility hypothesis (DSH: hypothesizing that some individuals are more responsive to both positive and negative experiences) with adult personality traits. The current study examined the DSH by investigating the moderating effect of sensory-processing sensitivity (SPS) on childhood experiences and life satisfaction. A total of 185 adults completed measures of SPS, positive/negative childhood experiences and life satisfaction. SPS did moderate the association between childhood experiences and life satisfaction. Simple slopes analysis compared those reporting high and low SPS (+/-1 SD) and revealed that the difference was observed only for those who reported negative childhood experiences; with the high SPS group reporting lower life satisfaction. There was no difference observed in those reporting positive childhood experiences, which supported a diathesis-stress model rather than the DSH.

  12. The Role of Sensitizing Experiences in Music Performance Anxiety in Adolescent Musicians

    Science.gov (United States)

    Osborne, Margaret S.; Kenny, Dianna T.

    2008-01-01

    Aversive performance incidents play a role in the development of some anxiety disorders. The role of sensitizing experiences in the development of music performance anxiety (MPA) in adolescent music students has not yet been explored. Two-hundred-and-ninety-eight music students were asked to provide written descriptions of their worst performance,…

  13. The application of time-dependent ice crystal trajectory and growth model for the evaluation of cloud seeding experiment using liquid carbon dioxide

    Science.gov (United States)

    Nishiyama, K.; Wakimizu, K.; Maki, T.; Suzuki, Y.; Morita, O.; Tomine, K.

    2012-12-01

    This study evaluated the results of cloud seeding experiment conducted on 17th January, 2008, in western Kyushu, Japan, using simplified time-dependent ice crystal growth and trajectory cloud model, which is characterized by 1) depositional diffusion growth process only of an ice crystal, and 2) the pursuit of the growing ice crystal based on wind field and ice crystal terminal velocity. For the estimation of the ice crystal growth and trajectory, the model specifies ice supersaturation ratio that expresses the degree of competition growth among ice crystals formed by LC seeding for existing water vapor, assuming no effect of natural ice crystals. The model is based on ice crystal growth along a- and c-axes depending on air temperature and ice supersatuation, according to Chen and Lamb (1994). The cloud seeding experiment was conducted by applying homogeneous nucleation (rapid cooling of air mass and subsequent formation of many ice crystals~1013/g LC) of Liquid Carbon (LC) dioxide seeding under typical winter-type snowfall-inducing weather situation characterized by the outbreak of cold air masses from the Siberia. The result of aircraft horizontally-penetrating seeding of LC into lower layer (-2 degree C) of supercooled convective cloud with 1km thickness above the freezing level led to the formation of an artificially-induced 'isolated' radar echo (the left figures of Fig. 1) in dominant 'no-natural radar echo region'. In other words, natural biases were eliminated by the formation of the isolated radar echo. This fact provides the shortcut for evaluating the result of cloud seeding experiment. In the next, the observed cloud seeding results were evaluated by estimating the trajectory of artificially-induced growing ice crystal. The results show that the trajectory of artificial ice crystals depends on the degree of completion growth mode. Free growth brings rapid growth of an ice crystal and, therefore, the ice crystal falls into lower layers for a short time

  14. Cloud Processed CCN Affect Cloud Microphysics

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  15. Climate Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Lindzen, Richard [M.I.T.

    2011-11-09

    Warming observed thus far is entirely consistent with low climate sensitivity. However, the result is ambiguous because the sources of climate change are numerous and poorly specified. Model predictions of substantial warming aredependent on positive feedbacks associated with upper level water vapor and clouds, but models are notably inadequate in dealing with clouds and the impacts of clouds and water vapor are intimately intertwined. Various approaches to measuring sensitivity based on the physics of the feedbacks will be described. The results thus far point to negative feedbacks. Problems with these approaches as well as problems with the concept of climate sensitivity will be described.

  16. Search Cloud

    Science.gov (United States)

    ... of this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this ... of Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search ...

  17. Building Cultural Sensitivity and Interprofessional Collaboration Through a Study Abroad Experience.

    Science.gov (United States)

    Gilliland, Irene; Attridge, Russell T; Attridge, Rebecca L; Maize, David F; McNeill, Jeanette

    2016-01-01

    Study abroad (SA) experiences for health professions students may be used to heighten cultural sensitivity to future patients and incorporate interprofessional education (IPE). Two groups of nursing and pharmacy students participated in an SA elective over a 2-year period, traveling to China and India. Both groups improved significantly in knowledge, awareness, and skills following the travel experiences. Student reflections indicate that the SA experience was transformative, changing their views of travel, other cultures, personal environment, collaboration with other health professionals, and themselves. Use of SA programs is a novel method to encourage IPE, with a focus on enhancing the acquisition of cultural competency skills. Copyright 2016, SLACK Incorporated.

  18. Fast cloud parameter retrievals of MIPAS/Envisat

    Directory of Open Access Journals (Sweden)

    R. Spang

    2012-08-01

    and tropospheric clouds similar to that of space- and ground-based lidars, with a tendency for higher cloud top heights and consequently higher sensitivity for some of the MIPAS detection methods. For the high cloud amount (HCA, pressure levels below 440 hPa on global scales the sensitivity of MIPAS is significantly greater than that of passive nadir viewers. This means that the high cloud fraction will be underestimated in the ISCCP dataset compared to the amount of high clouds deduced by MIPAS. Good correspondence in seasonal variability and geographical distribution of cloud occurrence and zonal means of cloud top height is found in a detailed comparison with a climatology for subvisible cirrus clouds from the Stratospheric Aerosol and Gas Experiment II (SAGE II limb sounder. Overall, validation with various sensors shows the need to consider differences in sensitivity, and especially the viewing geometries and field-of-view size, to make the datasets comparable (e.g. applying integration along the limb path through nadir cloud fields. The simulation of the limb path integration will be an important issue for comparisons with cloud-resolving global circulation or chemical transport models.

  19. Cloud point extraction-fluorimetric combined methodology for the determination of trace warfarin based on the sensitization effect of supramolecule

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zheng [Department of Applied Chemistry of College of Science, Xi' an University of Technology, Xi' an 710048 (China); College of Chemistry and Materials Science, Northwest University, 229 North Taibai Road, Xi' an 710069 (China); Yan Hongtao, E-mail: cz610@163.com [College of Chemistry and Materials Science, Northwest University, 229 North Taibai Road, Xi' an 710069 (China)

    2012-03-15

    Compared to the fluorescence spectra of warfarin in pure ethanol and in the presence of the nonionic surfactant Tergitol 15-S-7 after cloud point extraction (CPE), it can be seen that the fluorescence emission peak underwent an obvious red shift and the fluorescence intensity of warfarin was significantly increased in the presence of Tergitol 15-S-7. In order to confirm Tergitol 15-S-7-induced supramolecular effects, the investigations on the fluorescence quantum yields of warfarin in the micellar medium and pure ethanol were performed. The experimental results showed that the supramolecular interactions between Tergitol 15-S-7 and the warfarin excimers played a key role for improving the warfarin fluorescence properties. Based on these facts, a simple fluorometric method combined with CPE for the determination of trace warfarin was developed for the first time. Under optimized experimental conditions, the linear concentration range for warfarin was 3.0 Multiplication-Sign 1.0{sup -9}-1.0 Multiplication-Sign 10{sup -6} mol L{sup -1} and the detection limit was 3.3 Multiplication-Sign 10{sup -10} mol L{sup -1}. And, the proposed method was approved to be appropriate for monitoring warfarin in actual pharmaceutical formulations and biological fluid samples by recovery test, in comparison with other reported methods being satisfactory. - Highlights: Black-Right-Pointing-Pointer A CPE fluorescence method for trace warfarin was developed for the first time. Black-Right-Pointing-Pointer Supramolecule effects play a key role for improving the fluorescence property. Black-Right-Pointing-Pointer Notion presents an opportunity so far neglected area of CPE investigation. Black-Right-Pointing-Pointer Without previous treatment, urine species after CPE had no significant interference.

  20. Sensitivity of atmospheric neutrino experiments to neutrino non-standard interactions

    CERN Document Server

    Fukasawa, Shinya

    2016-01-01

    We study the sensitivity of atmospheric neutrino experiments to the neutrino non-standard interactions (NSI) which is motivated by the tension between the two mass squared differences extracted from the KamLAND and solar neutrino experiments. In this study the sensitivity of the future Hyper-Kamiokande experiments for 4438 days to NSI is shown. Assuming that the mass hierarchy is known, we find that the best-fit value from the solar neutrino and KamLAND data can be tested at more than 8 $\\sigma$, while the one from the global analysis can be examined at 5.0 $\\sigma$ (1.4 $\\sigma$) for the normal (inverted) mass hierarchy.

  1. Spaceborne cloud-profiling radar: instrument parameter optimization for resolving highly layered cloud structures

    Science.gov (United States)

    Lin, Chung-Chi; Tinel, Claire; Caillault, Karine; Testud, Jacques; Caubet, Eric

    2003-04-01

    EarthCARE, a candidate Earth Explorer Core mission of ESA, aims to improve our knowledge of the impact of clouds and aerosols on the Earth's radiative budget. The satellite will carry two nadir sounding active instruments: a Cloud Profiling Radar (CPR) and a backscatter lidar. In addition, a multispectral cloud-imager, a Fourier transform spectrometer and a broadband radiometer complement the payload. The objective of the present study was to optimize the parameters of the CPR for retrieving accurate radiative profiles for highly layered cloud structures. Realistic cloud scenarios taken from ground-based experiments have been used for simulating the radar response to cloud layers. A radar simulator was developed initially for one-dimensional simulation of the radar echos. The cloud microphysical properties were retrieved using a model as a function of the reflectivity factor and temperature, based on information from in-situ measurements. An extensive parametric analysis was performed for various vertical resolutions and sensitivities which have direct impacts on the radar design and necessary resources on-board the satellite. The analysis demonstrated that the proposed radar characteristics will meet the top-of-the-atmosphere radiative flux density estimation accuracy of 10 W/m2 as recommended by WCRP.

  2. SenSyF Experience on Integration of EO Services in a Generic, Cloud-Based EO Exploitation Platform

    Science.gov (United States)

    Almeida, Nuno; Catarino, Nuno; Gutierrez, Antonio; Grosso, Nuno; Andrade, Joao; Caumont, Herve; Goncalves, Pedro; Villa, Guillermo; Mangin, Antoine; Serra, Romain; Johnsen, Harald; Grydeland, Tom; Emsley, Stephen; Jauch, Eduardo; Moreno, Jose; Ruiz, Antonio

    2016-08-01

    SenSyF is a cloud-based data processing framework for EO- based services. It has been pioneer in addressing Big Data issues from the Earth Observation point of view, and is a precursor of several of the technologies and methodologies that will be deployed in ESA's Thematic Exploitation Platforms and other related systems.The SenSyF system focuses on developing fully automated data management, together with access to a processing and exploitation framework, including Earth Observation specific tools. SenSyF is both a development and validation platform for data intensive applications using Earth Observation data. With SenSyF, scientific, institutional or commercial institutions developing EO- based applications and services can take advantage of distributed computational and storage resources, tailored for applications dependent on big Earth Observation data, and without resorting to deep infrastructure and technological investments.This paper describes the integration process and the experience gathered from different EO Service providers during the project.

  3. Metadata Management of Cloud Storage Platform Based on Sensitive Information Self-Management%敏感数据自主可控的云存储平台元数据管理

    Institute of Scientific and Technical Information of China (English)

    许青林; 覃国民; 姜文超; 谢燕丽

    2014-01-01

    Considering the sensitive information security issue on the traditional cloud storage platform, It divided metadata management into two parts , the client side metadata management-Sub-Metadata Server ( Sub-MS) and the cloud side metadata management-Core Metadata Server( CMS) .Sub-MS aimed to ex-tract independently ,maintain,read and write and store the metadata with sensitive information, which used the random redundancy algorithm in maintaining mapping relations, based on the redundancy be-tween files and data blocks, to improve the files storage security.At the same time, Sub-MS used the re-quest synchronism strategy to keep the consistency of mapping relations from data blocks to Data Server ( DS) between Sub-MS and CMS, to insure the stability and reliability of the whole storage system.With multi-user concurrent access, the experiment about performance of reading and writing for the data sets of different sizes indicates that compared with HDFS and GFS, SISM still has good reading and writing per-formance and data persistence capabilities in managing metadata of sensitive information by itself.%针对传统云存储平台的敏感数据的安全问题,将元数据管理分成客户端元数据管理与云端元数据管理两部分,元数据子服务器自主提取、维护、读写和存储敏感信息的元数据,在映射关系方面采用基于文件与数据块之间冗余随机映射算法提高文件存储的安全性,同时采用按需询问同步策略保障元数据子服务器与云端元数据服务器之间的数据块到数据存储中心映射关系的一致性,确保整个存储系统的稳定性与可靠性。在多用户并发访问下,对不同规模数据集的读、写性能的实验测试表明,该存储系统在自主管理敏感信息元数据的前提下,与HDFS、GFS相比仍具有较好读写性能和稳定的数据持久化能力。

  4. Comparisons of Mixed-Phase Icing Cloud Simulations with Experiments Conducted at the NASA Propulsion Systems Laboratory

    Science.gov (United States)

    Bartkus, Tadas P.; Struk, Peter M.; Tsao, Jen-Ching

    2017-01-01

    This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines. Experimentally measured air temperature, humidity, total water content, liquid and ice water content, as well as cloud particle size, are compared with model predictions. The model showed good trend agreement with experimentally measured values, but often over-predicted aero-thermodynamic changes. This discrepancy is likely attributed to radial variations that this one-dimensional model does not address. One of the key findings of this work is that greater aero-thermodynamic changes occur when humidity conditions are low. In addition a range of mixed-phase clouds can be achieved by varying only the tunnel humidity conditions, but the range of humidities to generate a mixed-phase cloud becomes smaller when clouds are composed of smaller particles. In general, the model predicted melt fraction well, in particular with clouds composed of larger particle sizes.

  5. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment SALTRACE 2013 - Overview and Early Results (Invited)

    Science.gov (United States)

    Weinzierl, B.; Ansmann, A.; Reitebuch, O.; Freudenthaler, V.; Müller, T.; Kandler, K.; Althausen, D.; Busen, R.; Dollner, M.; Dörnbrack, A.; Farrell, D. A.; Gross, S.; Heimerl, K.; Klepel, A.; Kristensen, T. B.; Mayol-Bracero, O. L.; Minikin, A.; Prescod, D.; Prospero, J. M.; Rahm, S.; Rapp, M.; Sauer, D. N.; Schaefler, A.; Toledano, C.; Vaughan, M.; Wiegner, M.

    2013-12-01

    Mineral dust is an important player in the global climate system. In spite of substantial progress in the past decade, many questions in our understanding of the atmospheric and climate effects of mineral dust remain open such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds. To close gaps in our understanding of mineral dust in the climate system, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling. During SALTRACE, the DLR research aircraft Falcon was based on Sal, Cape Verde, between 11 and 17 June, and on Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties and with a nadir-looking 2-μm wind lidar. Ground-based lidar and in-situ instruments were deployed in Barbados and Puerto Rico. Mineral dust from several dust outbreaks was measured by the Falcon between Senegal and Florida. On the eastern side of the Atlantic, dust plumes extended up to 6 km altitude, while the dust layers in the Caribbean were mainly below 4.5 km. The aerosol optical thickness of the dust outbreaks studied ranged from 0.2 to 0.6 at 500 nm in Barbados. Highlights during SALTRACE included the sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June near Barbados. The event was also captured by the ground-based lidar and in-situ instrumentation. Another highlight was the formation of tropical storm

  6. An Overview of the Lightning - Atmospheric Chemistry Aspects of the Deep Convective Clouds and Chemistry (DC3) Experiment

    Science.gov (United States)

    Pickering, K. E.; Barth, M. C.; Koshak, W.; Bucsela, E. J.; Allen, D. J.; Weinheimer, A.; Ryerson, T.; Huntrieser, H.; Bruning, E.; MacGorman, D.; Krehbiel, P.; Thomas, R.; Carey, L.

    2012-01-01

    Some of the major goals of the DC3 experiment are to determine the contribution of lightning to NO(x) in the anvils of observed thunderstorms, examine the relationship of lightning NO(x) production to flash rates and to lightning channel lengths, and estimate the relative production per flash for cloud-to-ground flashes and intracloud flashes. In addition, the effects of lightning NO(x) production on photochemistry downwind of thunderstorms is also being examined. The talk will survey the observation types that were conducted during DC3 relevant to these goals and provide an overview of the analysis and modeling techniques which are being used to achieve them. NO(x) was observed on three research aircraft during DC3 (the NCAR G-V, the NASA DC-8, and the DLR Falcon) in flights through storm anvils in three study regions (NE Colorado, Central Oklahoma to West Texas, and northern Alabama) where lightning mapping arrays (LMAs) and radar coverage were available. Initial comparisons of the aircraft NOx observations in storm anvils relative to flash rates have been conducted, which will be followed with calculations of the flux of NO(x) through the anvils, which when combined with observed flash rates can be used to estimate storm-average lightning NOx production per flash. The WRF-Chem model will be run for cloud-resolved simulations of selected observed storms during DC3. Detailed lightning information from the LMAs (flash rates and flash lengths as a function of time and vertical distributions of flash channel segments) will be input to the model along with assumptions concerning NO(x) production per CG flash and per IC flash. These assumptions will be tested through comparisons with the aircraft NOx data from anvil traverses. A specially designed retrieval method for lightning NO2 column amounts from the OMI instrument on NASA fs Aura satellite has been utilized to estimate NO2 over the region affected by selected DC3 storms. Combined with NO(x) to NO2 ratios from the

  7. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, T., E-mail: yamaguti@phy.saitama-u.ac.jp [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Suzaki, F. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Izumikawa, T. [RI Center, Niigata University, Niigata 951-8510 (Japan); Miyazawa, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Morimoto, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Suzuki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Tokanai, F. [Department of Physics, Yamagata University, Yamagata 990-8560 (Japan); Furuki, H.; Ichihashi, N.; Ichikawa, C. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Kitagawa, A. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Kuboki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Momota, S. [School of Environmental Science and Engineering, Kochi University of Technology, Kochi 782-8502 (Japan); Nagae, D. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Nagashima, M.; Nakamura, Y. [Department of Physics, Niigata University, Niigata 950-2181 (Japan); Nishikiori, R.; Niwa, T. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Ohtsubo, T. [Department of Physics, Niigata University, Niigata 950-2181 (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); and others

    2013-12-15

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments.

  8. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6.

    Science.gov (United States)

    Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Helene; Douville, Herve; Good, Peter; Kay, Jennifer E.; Tselioudis, George

    2017-01-01

    The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions 'How does the Earth system respond to forcing?' and 'What are the origins and consequences of systematic model biases?' and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation

  9. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6

    Science.gov (United States)

    Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Hélène; Douville, Hervé; Good, Peter; Kay, Jennifer E.; Klein, Stephen A.; Marchand, Roger; Medeiros, Brian; Pier Siebesma, A.; Skinner, Christopher B.; Stevens, Bjorn; Tselioudis, George; Tsushima, Yoko; Watanabe, Masahiro

    2017-01-01

    The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions How does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and

  10. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6.

    Science.gov (United States)

    Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Helene; Douville, Herve; Good, Peter; Kay, Jennifer E.; hide

    2017-01-01

    The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions 'How does the Earth system respond to forcing?' and 'What are the origins and consequences of systematic model biases?' and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation

  11. Enhanced sensitivity to Lorentz invariance violations in short-range gravity experiments

    CERN Document Server

    Shao, Cheng-Gang; Tan, Yu-Jie; Luo, Jun; Yang, Shan-Qing; Tobar, Michael Edmund

    2016-01-01

    Recently, first limits on putative Lorentz invariance violation coefficients in the pure gravity sector were determined by the reanalysis of short-range gravity experiments. Such experiments search for new physics at sidereal frequencies. They are not, however, designed to optimize the signal strength of a Lorentz invariance violation force; in fact the Lorentz violating signal is suppressed in the planar test mass geometry employed in those experiments. We describe a short-range torsion pendulum experiment with enhanced sensitivity to possible Lorentz violating signals. A periodic, striped test mass geometry is used to augment the signal. Careful arrangement of the phases of the striped patterns on opposite ends of the pendulum further enhances the signal while simultaneously suppressing the Newtonian background.

  12. An overview of the Ice Nuclei Research Unit Jungfraujoch/Cloud and Aerosol Characterization Experiment 2013 (INUIT-JFJ/CLACE-2013)

    Science.gov (United States)

    Schneider, Johannes

    2014-05-01

    Ice formation in mixed phase tropospheric clouds is an essential prerequisite for the formation of precipitation at mid-latitudes. Ice formation at temperatures warmer than -35°C is only possible via heterogeneous ice nucleation, but up to now the exact pathways of heterogeneous ice formation are not sufficiently well understood. The research unit INUIT (Ice NUcleation research unIT), funded by the Deutsche Forschungsgemeinschaft (DFG FOR 1525) has been established in 2012 with the objective to investigate heterogeneous ice nucleation by combination of laboratory studies, model calculation and field experiments. The main field campaign of the INUIT project (INUIT-JFJ) was conducted at the High Alpine Research Station Jungfraujoch (Swiss Alps, 3580 m asl) during January and February 2013, in collaboration with several international partners in the framework of CLACE2013. The instrumentation included a large set of aerosol chemical and physical analysis instruments (particle counters, particle sizers, particle mass spectrometers, cloud condensation nuclei counters, ice nucleus counters etc.), that were operated inside the Sphinx laboratory and sampled in mixed phase clouds through two ice selective inlets (Ice-CVI, ISI) as well as through a total aerosol inlet that was used for out-of-cloud aerosol measurements. Besides the on-line measurements, also samples for off-line analysis (ESEM, STXM) have been taken in and out of clouds. Furthermore, several cloud microphysics instruments were operated outside the Sphinx laboratory. First results indicate that a large fraction of ice residues sampled from mixed phase clouds contain organic material, but also mineral dust. Soot and lead were not found to be enriched in ice residues. The concentration of heterogeneous ice nuclei was found to be variable (ranging between 100 per liter) and to be strongly dependent on the operating conditions of the respective IN counter. The number size distribution of ice residues appears to

  13. Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors

    CERN Document Server

    Wang, Hongxin; Li, Yu-Feng; Cao, Guofu; Chen, Shenjian

    2016-01-01

    We report the neutrino mass hierarchy (MH) sensitivity of medium baseline reactor neutrino experiments with multiple detectors. Sensitivity of determining the MH can be significantly improved by adding a near detector and combining both the near and far detectors. The size of the sensitivity improvement is related to accuracy of the individual mass-splitting measurements and requires strict control on the relative energy scale uncertainty of the near and far detectors. We study the impact of both baseline and target mass of the near detector on the combined sensitivity. A figure-of-merit is defined to optimize the baseline and target mass of the near detector and the optimal selections are $\\sim$13~km and $\\sim$4~kton respectively for a far detector with the 20~kton target mass and 52.5~km baseline. As typical examples of future medium baseline reactor neutrino experiments, the optimal location and target mass of the near detector are selected for JUNO and RENO-50. Finally, we discuss distinct effects of the ...

  14. BEVERAGES DRINKING HABITS AND TOOTH SENSITIVITY EXPERIENCE AMONG ADOLESCENT SECONDARY SCHOOL STUDENTS

    OpenAIRE

    Tokumbo, Bamise Cornelius; Oluniyi, Olusile Adeyemi; Adebanke, Kolawole Kikelomo; Ozovehe, Peter Augustine

    2014-01-01

    AIM: The recent increase in consumption of acidic beverages is thought to be the leading cause of dental erosion observed among adolescents. The study assessed the drinking habits of Adolescent Secondary School Students and also evaluated their tooth sensitivity experience. MATERIALS AND METHODS: The survey was conducted among adolescent secondary school students. Purposely, students in boarding hostels were excluded. The sample was selected from twelve public and private secondary schools th...

  15. 12th Rencontres du Vietnam : High Sensitivity Experiments Beyond the Standard Model

    CERN Document Server

    2016-01-01

    The goal of this workshop is to gather researchers, theoreticians, experimentalists and young scientists searching for physics beyond the Standard Model of particle physics using high sensitivity experiments. The standard model has been very successful in describing the particle physics world; the Higgs-Englert-Brout boson discovery is its last major discovery. Complementary to the high energy frontier explored at colliders, real opportunities for discovery exist at the precision frontier, testing fundamental symmetries and tracking small SM deviations.

  16. Saving the planet with bin packing - Experiences using 2D and 3D bin packing of virtual machines for greener clouds

    OpenAIRE

    Hage, Thomas; Begnum, Kyrre; Yazidi, Anis

    2014-01-01

    Greener cloud computing has recently become an extremely pertinent research topic in academy and among practitioners. Despite the abundance of the state of the art studies that tackle the problem, the vast majority of them solely rely on simulation, and do not report real settings experience. Thus, the theoretical models might overlook some of the practical details that might emerge in real life scenarios. In this paper, we try to bridge the aforementioned gap in the l...

  17. DGSA: A Matlab toolbox for distance-based generalized sensitivity analysis of geoscientific computer experiments

    Science.gov (United States)

    Park, Jihoon; Yang, Guang; Satija, Addy; Scheidt, Céline; Caers, Jef

    2016-12-01

    Sensitivity analysis plays an important role in geoscientific computer experiments, whether for forecasting, data assimilation or model calibration. In this paper we focus on an extension of a method of regionalized sensitivity analysis (RSA) to applications typical in the Earth Sciences. Such applications involve the building of large complex spatial models, the application of computationally extensive forward modeling codes and the integration of heterogeneous sources of model uncertainty. The aim of this paper is to be practical: 1) provide a Matlab code, 2) provide novel visualization methods to aid users in getting a better understanding in the sensitivity 3) provide a method based on kernel principal component analysis (KPCA) and self-organizing maps (SOM) to account for spatial uncertainty typical in Earth Science applications and 4) provide an illustration on a real field case where the above mentioned complexities present themselves. We present methods that extend the original RSA method in several ways. First we present the calculation of conditional effects, defined as the sensitivity of a parameter given a level of another parameters. Second, we show how this conditional effect can be used to choose nominal values or ranges to fix insensitive parameters aiming to minimally affect uncertainty in the response. Third, we develop a method based on KPCA and SOM to assign a rank to spatial models in order to calculate the sensitivity on spatial variability in the models. A large oil/gas reservoir case is used as illustration of these ideas.

  18. Grid heterogeneity in in-silico experiments: an exploration of drug screening using DOCK on cloud environments.

    Science.gov (United States)

    Yim, Wen-Wai; Chien, Shu; Kusumoto, Yasuyuki; Date, Susumu; Haga, Jason

    2010-01-01

    Large-scale in-silico screening is a necessary part of drug discovery and Grid computing is one answer to this demand. A disadvantage of using Grid computing is the heterogeneous computational environments characteristic of a Grid. In our study, we have found that for the molecular docking simulation program DOCK, different clusters within a Grid organization can yield inconsistent results. Because DOCK in-silico virtual screening (VS) is currently used to help select chemical compounds to test with in-vitro experiments, such differences have little effect on the validity of using virtual screening before subsequent steps in the drug discovery process. However, it is difficult to predict whether the accumulation of these discrepancies over sequentially repeated VS experiments will significantly alter the results if VS is used as the primary means for identifying potential drugs. Moreover, such discrepancies may be unacceptable for other applications requiring more stringent thresholds. This highlights the need for establishing a more complete solution to provide the best scientific accuracy when executing an application across Grids. One possible solution to platform heterogeneity in DOCK performance explored in our study involved the use of virtual machines as a layer of abstraction. This study investigated the feasibility and practicality of using virtual machine and recent cloud computing technologies in a biological research application. We examined the differences and variations of DOCK VS variables, across a Grid environment composed of different clusters, with and without virtualization. The uniform computer environment provided by virtual machines eliminated inconsistent DOCK VS results caused by heterogeneous clusters, however, the execution time for the DOCK VS increased. In our particular experiments, overhead costs were found to be an average of 41% and 2% in execution time for two different clusters, while the actual magnitudes of the execution time

  19. The StEllar Counterparts of COmpact high velocity clouds (SECCO) survey. II. Sensitivity of the survey and an Atlas of Synthetic Dwarf Galaxies

    CERN Document Server

    Beccari, G; Battaglia, G; Ibata, R; Martin, N; Testa, V; Cignoni, M; Correnti, M

    2016-01-01

    SECCO is a survey devoted to the search for stellar counterparts within Ultra Compact High Velocity Clouds. In this contribution we present the results of a set of simulations aimed at the quantitative estimate of the sensitivity of the survey as a function of the total luminosity, size and distance of the stellar systems we are looking for. For all our synthetic galaxies we assumed an exponential surface brightness profile and an old and metal-poor population. The synthetic galaxies are simulated both on the images and on the photometric catalogs, taking into account all the observational effects. In the fields where the available observational material is of the top quality we detect synthetic galaxies as >=5 sigma over-densities of resolved stars down to muV,h=30.0 mag/arcsec2, for D<=1.5 Mpc, and down to muV,h~29.5 mag/arcsec2, for D<=2.5 Mpc. In the field with the worst observational material of the whole survey we detect synthetic galaxies with muV,h<=28.8 mag/arcsec2 out to D<=1.0 Mpc, and ...

  20. A green analytical procedure for sensitive and selective determination of antimony in environmental and biological samples by ligandless cloud point extraction

    Science.gov (United States)

    Rezaei, Vida; Samadi-Maybodi, Abdolraouf

    2012-09-01

    A very simple, environmental friendly and sensitive method based on the cloud point extraction (CPE) separation and spectrophotometric detection has been developed for the determination of antimony. The method is founded on the color reaction of Sb (III) with iodide in acidic medium and subsequent micelle-mediated extraction of the product using the non-ionic surfactant, Triton X-114, in the absence of any chelating agent. The Effects of reaction and extraction parameters were studied and optimum conditions were established. The calibration graph was linear in the range of 0.80-95 ng mL-1 of antimony in the initial solution with r = 0.9994 (n = 9). Detection limit based on three times the standard deviation of the blank (3Sb) was 0.23 ng mL-1 and the relative standard deviation (R.S.D.) for 10 and 70 ng mL-1 of antimony were 3.32 and 1.85% (n = 8), respectively. The proposed method was compared with other methods and favorably applied to evaluate this metal in some real samples, including seawater, antileishmanial drug (glucantime) and human serum.

  1. New particle-dependent parameterizations of heterogeneous freezing processes: sensitivity studies of convective clouds with an air parcel model

    Directory of Open Access Journals (Sweden)

    K. Diehl

    2015-06-01

    Full Text Available Based on the outcome of laboratory results, new particle-dependent parameterizations of heterogeneous freezing were derived and used to improve and extend a two-dimensional spectral microphysics scheme. They include (1 a particle-type dependent parameterization of immersion freezing using the numbers of active sites per mass, (2 a particle-type and size-resolved parameterization of contact freezing, and (3 a particle-type dependent description of deposition freezing. The modified microphysical scheme was embedded in an adiabatic air parcel model with entrainment. Sensitivity studies were performed to simulate convective situations and the impact of ice nuclei concentrations and types on ice formation. As a central diagnostic parameter the ice water fraction IWF was selected which is the relation of the ice water content to the total water content. The following parameters were varied: initial aerosol particle number size distributions, types of ice nucleating particles, strength of convection, and the fractions of potential ice nucleating particles. Single and coupled freezing processes were investigated. The results show that immersion freezing seems to be the most efficient process and, in competition with contact freezing, the dominant process. Contact freezing is constrained by the collision kernel between supercooled drops and potential ice nucleating particles and becomes relevant at temperatures lower than −25 °C. The importance of deposition freezing lies in secondary ice formation, i.e. small ice particles produced by deposition nucleation trigger the freezing of supercooled drops by collisions. Thus, a broader ice particle spectrum is generated than by immersion and contact freezing. Competition of contact and deposition freezing is negligible because of involved particle sizes. As already suggested in literature, mineral dust particles seem to be the most important ice nucleating particles. Biological particles are probably not

  2. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Vaughan T. J.

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing

  3. A position sensitive silicon detector for AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Multimedia

    Gligorova, A

    2014-01-01

    The AEḡIS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is located at the Antiproton Decelerator (AD) at CERN and studies antimatter. The main goal of the AEḡIS experiment is to carry out the first measurement of the gravitational acceleration for antimatter in Earth’s gravitational field to a 1% relative precision. Such a measurement would test the Weak Equivalence Principle (WEP) of Einstein’s General Relativity. The gravitational acceleration for antihydrogen will be determined using a set of gravity measurement gratings (Moiré deflectometer) and a position sensitive detector. The vertical shift due to gravity of the falling antihydrogen atoms will be detected with a silicon strip detector, where the annihilation of antihydrogen will take place. This poster presents part of the development process of this detector.

  4. Arctic ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983-1990

    Science.gov (United States)

    Schweiger, Axel J.; Key, Jeffrey R.

    1994-01-01

    Radiative fluxes and cloud forcings for the ocean areas of the Arctic are computed from the monthly cloud product of the International Satellite Cloud Climatology Project (ISCCP) for 1983-90. Spatially averaged short-wave fluxes are compared well with climatological values, while downwelling longwave fluxes are significantly lower. This is probably due to the fact that the ISCCP cloud amounts are underestimates. Top-of-the-atmosphere radiative fluxes are in excellent agreement with measurements from the Earth Radiation Budget Experiment (ERBE). Computed cloud forcings indicate that clouds have a warming effect at the surface and at the top of the atmosphere during winter and a cooling effect during summer. The net radiative effect of clouds is larger at the surface during winter but greater at the top of the atmosphere during summer. Overall the net radiative effect of clouds at the top of the atmosphere is one of cooling. This is in contrast to a previous result from ERBE data showing arctic cloud forcings have a net warming effect. Sensitivities to errors in input parameters are generally greater during winter with cloud amount being the most important paarameter. During summer the surface radiation balance is most sensitive to errors in the measurements of surface reflectance. The results are encouraging, but the estimated error of 20 W/sq m in surface net radiative fluxes is too large, given that estimates of the net radiative warming effect due to a doubling of CO2 are on the order of 4 W/sq m. Because it is difficult to determine the accuracy of results with existing in situ observations, it is recommended that the development of improved algorithms for the retrieval of surface radiative properties be accompanied by the simultaneous assembly of validation datasets.

  5. Measuring the electron neutrino mass with improved sensitivity: the HOLMES experiment

    Science.gov (United States)

    Giachero, A.; Alpert, B. K.; Becker, D. T.; Bennett, D. A.; Biasotti, M.; Brofferio, C.; Ceriale, V.; Ceruti, G.; Corsini, D.; Day, P. K.; De Gerone, M.; Dressler, R.; Faverzani, M.; Ferri, E.; Fowler, J. W.; Fumagalli, E.; Gallucci, G.; Gard, J. D.; Gatti, F.; Hays-Wehle, J. P.; Heinitz, S.; Hilton, G. C.; Köster, U.; Lusignoli, M.; Mates, J. A. B.; Nisi, S.; Nucciotti, A.; Orlando, A.; Parodi, L.; Pessina, G.; Pizzigoni, G.; Puiu, A.; Ragazzi, S.; Reintsema, C. D.; Ribeiro Gomes, M.; Schmidt, D. R.; Schumann, D.; Siccardi, F.; Sisti, M.; Swetz, D. S.; Terranova, F.; Ullom, J. N.; Vale, L. R.

    2017-02-01

    HOLMES is a new experiment aiming at directly measuring the neutrino mass with a sensitivity below 2 eV . HOLMES will perform a calorimetric measurement of the energy released in the decay of 163Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress has allowed to design a sensitive experiment. HOLMES will deploy a 1000 pixels array of low temperature microcalorimeters with implanted 163Ho nuclei. HOLMES, besides being an important step forward in the direct neutrino mass measurement with a calorimetric approach, will also establish the potential of this approach to extend the sensitivity down to 0.1 eV and lower. The detectors used for the HOLMES experiment will be Mo/Cu bilayers TESs (Transition Edge Sensors) on SiNx membrane with gold absorbers. Microwave multiplexed rf-SQUIDs are the best available technique to read out large array of such detectors. An extensive R&D activity is in progress in order to maximize the multiplexing factor while preserving the performances of the individual detectors. To embed the 163Ho into the gold absorbers a custom mass separator ion implanter is being developed. The current activities are focused on the the single detector performances optimization and on the 163Ho isotope production and embedding. A preliminary measurement of a sub-array of 4× 16 detectors is planned late in 2017. In this contribution we present the HOLMES project with its technical challenges, its status and perspectives.

  6. Radiative Effects of Water Clouds on Heat, Cloud Microphysical and Surface Rainfall Budgets Associated with Pre-Summer Torrential Rainfall

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2014-01-01

    Full Text Available This study investigates thermal, cloud microphysical and surface-rainfall responses to the radiative effects of water clouds by analyzing two pairs of two-dimensional cloud-resolving model sensitivity experiments of a pre-summer heavy rainfall event. In the presence of the radiative effects of ice clouds, exclusion of the radiative effects of water clouds reduces the model domain mean rain rate through the mean hydrometeor increase, which is associated with the decreases in the melting of graupel and cloud ice caused by enhanced local atmospheric cooling. In the absence of the radiative effects of ice clouds, removal of the radiative effects of water clouds increases model domain mean rain rate via the enhancements in the mean net condensation and the mean hydrometeor loss. The enhanced mean net condensation and increased mean latent heat are related to the strengthened mean infrared radiative cooling in the lower troposphere. The increased mean hydrometeor loss associated with the reduction in the melting of graupel is caused by the enhanced local atmospheric cooling.

  7. Validation of the CALIPSO-CALIOP extinction coefficients from in situ observations in midlatitude cirrus clouds during the CIRCLE-2 experiment

    Science.gov (United States)

    Mioche, Guillaume; Josset, Damien; Gayet, Jean-FrançOis; Pelon, Jacques; Garnier, Anne; Minikin, Andreas; Schwarzenboeck, Alfons

    2010-01-01

    This paper presents a comparison of combined Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) extinction retrievals with airborne lidar and in situ cirrus cloud measurements. Specially oriented research flights were carried out in western Europe in May 2007 during the Cirrus Cloud Experiment (CIRCLE-2) with the German Deutsches Zentrum für Luft- und Raumfahrt (DLR) and the French Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) Falcon aircraft equipped for remote and in situ measurements, respectively. Four cirrus cloud situations including thin cirrus layers and outflow cirrus linked to midlatitude fronts and convective systems were chosen to perform experimental collocated observations along the satellite overpasses. The measurements were carried out with temperatures ranging between -38°C and -60°C and with extinction coefficients no larger than 2 km-1. Comparisons between CALIOP and airborne lidar (LEANDRE New Generation (LNG)) attenuated backscatter coefficients reveal much larger CALIOP values for one frontal cirrus situation which could be explained by oriented pristine ice crystals. During the four selected cases the CALIOP cirrus extinction profiles were compared with in situ extinction coefficients derived from the Polar Nephelometer. The results show a very good agreement for two situations (frontal and outflow cases) despite very different cloud conditions. The slope parameters of linear fittings of CALIOP extinction coefficients with respect to in situ measurements are 0.90 and 0.94, with correlation coefficients of 0.69 and only 0.36 for the latter case because of a small number of measurements. On the contrary, significant differences are evidenced for two other situations. In thin frontal cirrus at temperatures ranging between -58°C and -60°C, systematic larger CALIOP extinctions can be explained by horizontally

  8. A single-quantum methyl {sup 13}C-relaxation dispersion experiment with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Lundstroem, Patrik; Vallurupalli, Pramodh [University of Toronto, Departments of Medical Genetics, Biochemistry and Chemistry (Canada); Religa, Tomasz L. [Medical Research Council Centre for Protein Engineering (United Kingdom); Dahlquist, Frederick W. [University of California at Santa Barbara, Department of Chemistry and Biochemistry (United States); Kay, Lewis E. [University of Toronto, Departments of Medical Genetics, Biochemistry and Chemistry (Canada)], E-mail: kay@pound.med.utoronto.ca

    2007-05-15

    A pulse sequence is described for recording single-quantum {sup 13}C-methyl relaxation dispersion profiles of {sup 13}C-selectively labeled methyl groups in proteins that offers significant improvements in sensitivity relative to existing approaches where initial magnetization derives from {sup 13}C polarization. Sensitivity gains in the new experiment are achieved by making use of polarization from {sup 1}H spins and {sup 1}H {sup {yields}} {sup 13}C {sup {yields}} {sup 1}H type magnetization transfers. Its utility has been established by applications involving three different protein systems ranging in molecular weight from 8 to 28 kDa, produced using a number of different selective labeling approaches. In all cases exchange parameters from both {sup 13}C{sup {yields}}{sup 1}H and {sup 1}H {sup {yields}} {sup 13}C {sup {yields}} {sup 1}H classes of experiment are in good agreement, with gains in sensitivity of between 1.7 and 4-fold realized using the new scheme.

  9. Interferometrically stable, enclosed, spinning sample cell for spectroscopic experiments on air-sensitive samples

    Science.gov (United States)

    Baranov, Dmitry; Hill, Robert J.; Ryu, Jisu; Park, Samuel D.; Huerta-Viga, Adriana; Carollo, Alexa R.; Jonas, David M.

    2017-01-01

    In experiments with high photon flux, it is necessary to rapidly remove the sample from the beam and to delay re-excitation until the sample has returned to equilibrium. Rapid and complete sample exchange has been a challenge for air-sensitive samples and for vibration-sensitive experiments. Here, a compact spinning sample cell for air and moisture sensitive liquid and thin film samples is described. The principal parts of the cell are a copper gasket sealed enclosure, a 2.5 in. hard disk drive motor, and a reusable, chemically inert glass sandwich cell. The enclosure provides an oxygen and water free environment at the 1 ppm level, as demonstrated by multi-day tests with sodium benzophenone ketyl radical. Inside the enclosure, the glass sandwich cell spins at ≈70 Hz to generate tangential speeds of 7-12 m/s that enable complete sample exchange at 100 kHz repetition rates. The spinning cell is acoustically silent and compatible with a ±1 nm rms displacement stability interferometer. In order to enable the use of the spinning cell, we discuss centrifugation and how to prevent it, introduce the cycle-averaged resampling rate to characterize repetitive excitation, and develop a figure of merit for a long-lived photoproduct buildup.

  10. Systematic impact of spent nuclear fuel on θ13 sensitivity at reactor neutrino experiment

    Institute of Scientific and Technical Information of China (English)

    AN Feng-Peng; TIAN Xin-Chun; ZHAN Liang; CAO Jun

    2009-01-01

    Reactor neutrino oscillation experiments, such as Daya Bay, Double Chooz and RENO are designed to determine the neutrino mixing angle θ13 with a sensitivity of 0.01--0.03 in sin2 2θ13 at 90% confidence level, an improvement over the current limit by more than one order of magnitude. The control of systematic uncertainties is critical to achieving the sin2 2θ13 sensitivity goal of these experiments. Antineutrinos emitted from spent nuclear fuel (SNF) would distort the soft part of energy spectrum and may introduce a non-negligible systematic uncertainty. In this article, a detailed calculation of SNF neutrinos is performed taking account of the operation of a typical reactor and the event rate in the detector is obtained. A further estimation shows that the event rate contribution of SNF neutrinos is less than 0.2% relative to the reactor neutrino signals. A global χ2 analysis shows that this uncertainty will degrade the θ13 sensitivity at a negligible level.

  11. Interferometrically stable, enclosed, spinning sample cell for spectroscopic experiments on air-sensitive samples.

    Science.gov (United States)

    Baranov, Dmitry; Hill, Robert J; Ryu, Jisu; Park, Samuel D; Huerta-Viga, Adriana; Carollo, Alexa R; Jonas, David M

    2017-01-01

    In experiments with high photon flux, it is necessary to rapidly remove the sample from the beam and to delay re-excitation until the sample has returned to equilibrium. Rapid and complete sample exchange has been a challenge for air-sensitive samples and for vibration-sensitive experiments. Here, a compact spinning sample cell for air and moisture sensitive liquid and thin film samples is described. The principal parts of the cell are a copper gasket sealed enclosure, a 2.5 in. hard disk drive motor, and a reusable, chemically inert glass sandwich cell. The enclosure provides an oxygen and water free environment at the 1 ppm level, as demonstrated by multi-day tests with sodium benzophenone ketyl radical. Inside the enclosure, the glass sandwich cell spins at ≈70 Hz to generate tangential speeds of 7-12 m/s that enable complete sample exchange at 100 kHz repetition rates. The spinning cell is acoustically silent and compatible with a ±1 nm rms displacement stability interferometer. In order to enable the use of the spinning cell, we discuss centrifugation and how to prevent it, introduce the cycle-averaged resampling rate to characterize repetitive excitation, and develop a figure of merit for a long-lived photoproduct buildup.

  12. Techniques for the measurements of the line of sight velocity of high altitude Barium clouds

    Science.gov (United States)

    Mende, S. B.

    1981-01-01

    It is demonstrated that for maximizing the scientific output of future ion cloud release experiments a new type of instrument is required which will measure the line of sight velocity of the ion cloud by the Doppler Technique. A simple instrument was constructed using a 5 cm diameter solid Fabry-Perot etalon coupled to a low light level integrating television camera. It was demonstrated that the system has both the sensitivity and spectral resolution for the detection of ion clouds and the measurement of their line of sight Doppler velocity. The tests consisted of (1) a field experiment using a rocket barium cloud release to check the sensitivity, (2) laboratory experiments to show the spectral resolving capabilities of the system. The instrument was found to be operational if the source was brighter than about 1 kilorayleigh and it had a wavelength resolution much better than .2A which corresponds to about 12 km/sec or an acceleration potential of 100 volts.

  13. Long-term Numerical Simulations of Clouds in Contrast to ARM Observational Data

    Science.gov (United States)

    Zeng, X.; Tao, W.; Peters-Lidard, C.; Lang, S.; Simpson, J.; Kumar, S.; Eastman, J.; Shie, C.; Geiger, J.

    2006-05-01

    Two 20-day continental cases in the middle latitude are simulated with a three-dimensional (3D) cloud- resolving model (CRM) in contrast to Atmospheric Radiation Measurement (ARM) data. All numerical experiments, as compared with observations, give reasonable simulations of surface rainfall but over prediction of cloud residues in the upper troposphere. Such modeling phenomenon on the over prediction of cloud residues was also noticed by Wu et al. (1998) in the simulation of oceanic clouds. Surface fluxes from a land surface model are compared with those from observations. Using the two kinds of surface flux data, the sensitivity of clouds to surface fluxes is studied, showing that the surface fluxes from the land surface model brings about the reasonable simulation of cloud fraction in the lower troposphere.

  14. CLOUD DETECTION OF OPTICAL SATELLITE IMAGES USING SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    K.-Y. Lee

    2016-06-01

    Full Text Available Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012 uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate

  15. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    Science.gov (United States)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection

  16. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S. T. [Harvard University, Cambridge, Massachusetts; Artaxo, P. [University of São Paulo, São Paulo, Brazil; Machado, L. [National Institute for Space Research, São José dos Campos, Brazil; Manzi, A. O. [National Institute of Amazonian Research, Manaus, Amazonas, Brazil; Souza, R. A. F. [Amazonas State University, Amazonas, Brazil; Schumacher, C. [Texas A& amp,M University, College Station, Texas; Wang, J. [Brookhaven National Laboratory, Upton, New York; Biscaro, T. [National Institute for Space Research, São José dos Campos, Brazil; Brito, J. [University of São Paulo, São Paulo, Brazil; Calheiros, A. [National Institute for Space Research, São José dos Campos, Brazil; Jardine, K. [Lawrence Berkeley National Lab, Berkeley, California; Medeiros, A. [Amazonas State University, Amazonas, Brazil; Portela, B. [National Institute of Amazonian Research, Manaus, Amazonas, Brazil; de Sá, S. S. [Harvard University, Cambridge, Massachusetts; Adachi, K. [Meteorological Research Institute, Tsukuba, Ibaraki, Japan; Aiken, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico; Albrecht, R. [University of São Paulo, São Paulo, Brazil; Alexander, L. [Pacific Northwest National Laboratory, Richland, Washington; Andreae, M. O. [Max Planck Institute for Chemistry, Mainz, Germany; Barbosa, H. M. J. [University of São Paulo, São Paulo, Brazil; Buseck, P. [Arizona State University, Tempe, Arizona; Chand, D. [Pacific Northwest National Laboratory, Richland, Washington; Comstock, J. M. [Pacific Northwest National Laboratory, Richland, Washington; Day, D. A. [University of Colorado Boulder, Boulder, Colorado; Dubey, M. [Los Alamos National Laboratory, Los Alamos, New Mexico; Fan, J. [Pacific Northwest National Laboratory, Richland, Washington; Fast, J. [Pacific Northwest National Laboratory, Richland, Washington; Fisch, G. [Aeronautic and Space Institute, São José dos Campos, Brazil; Fortner, E. [Aerodyne, Inc., Billerica, Massachusetts; Giangrande, S. [Brookhaven National Laboratory, Upton, New York; Gilles, M. [Lawrence Berkeley National Lab, Berkeley, California; Goldstein, A. H. [University of California, Berkeley, Berkeley, California; Guenther, A. [University of California, Irvine, Irvine, California; Hubbe, J. [Pacific Northwest National Laboratory, Richland, Washington; Jensen, M. [Brookhaven National Laboratory, Upton, New York; Jimenez, J. L. [University of Colorado Boulder, Boulder, Colorado; Keutsch, F. N. [Harvard University, Cambridge, Massachusetts; Kim, S. [University of California, Irvine, Irvine, California; Kuang, C. [Brookhaven National Laboratory, Upton, New York; Laskin, A. [Pacific Northwest National Laboratory, Richland, Washington; McKinney, K. [Harvard University, Cambridge, Massachusetts; Mei, F. [Pacific Northwest National Laboratory, Richland, Washington; Miller, M. [Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Nascimento, R. [Amazonas State University, Amazonas, Brazil; Pauliquevis, T. [Federal University of São Paulo, São Paulo, Brazil; Pekour, M. [Pacific Northwest National Laboratory, Richland, Washington; Peres, J. [University of São Paulo, São Paulo, Brazil; Petäjä, T. [University of Helsinki, Helsinki, Finland; Pöhlker, C. [Max Planck Institute for Chemistry, Mainz, Germany; Pöschl, U. [Max Planck Institute for Chemistry, Mainz, Germany; Rizzo, L. [Federal University of São Paulo, São Paulo, Brazil; Schmid, B. [Pacific Northwest National Laboratory, Richland, Washington; Shilling, J. E. [Pacific Northwest National Laboratory, Richland, Washington; Dias, M. A. Silva [University of São Paulo, São Paulo, Brazil; Smith, J. N. [University of California, Irvine, Irvine, California; Tomlinson, J. M. [Pacific Northwest National Laboratory, Richland, Washington; Tóta, J. [Federal University of West Para, Santarém, Pará, Brazil; Wendisch, M. [University of Leipzig, Leipzig, Germany

    2017-05-01

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across two years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied USA, employed an unparalleled suite of measurements at nine ground sites and onboard two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.

  17. Triangulation Error Analysis for the Barium Ion Cloud Experiment. M.S. Thesis - North Carolina State Univ.

    Science.gov (United States)

    Long, S. A. T.

    1973-01-01

    The triangulation method developed specifically for the Barium Ion Cloud Project is discussed. Expression for the four displacement errors, the three slope errors, and the curvature error in the triangulation solution due to a probable error in the lines-of-sight from the observation stations to points on the cloud are derived. The triangulation method is then used to determine the effect of the following on these different errors in the solution: the number and location of the stations, the observation duration, east-west cloud drift, the number of input data points, and the addition of extra cameras to one of the stations. The pointing displacement errors, and the pointing slope errors are compared. The displacement errors in the solution due to a probable error in the position of a moving station plus the weighting factors for the data from the moving station are also determined.

  18. VUV-sensitive silicon-photomultipliers for the nEXO-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, Gerrit; Bayerlein, Reimund; Hufschmidt, Patrick; Jamil, Ako; Schneider, Judith; Wagenpfeil, Michael; Ziegler, Tobias; Hoessl, Juergen; Anton, Gisela; Michel, Thilo [ECAP, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany)

    2016-07-01

    The nEXO (next Enriched Xenon Observatory) experiment will search for the neutrinoless double beta decay of Xe-136 with a liquid xenon TPC (Time ProjectionChamber). The sensitivity of the experiment is related to the energy resolution, which itself depends on the accuracies of the measurements of the amount of drifting electrons and the number of scintillation photons with their wavelength being in the vacuum ultraviolet band. Silicon Photomultipliers (SiPM) shall be used for the detection of the scintillation light, since they can be produced extremely radiopure. Commercially available SiPM do not fulfill all requirements of the nEXO experiment, thus a dedicated development is necessary. To characterize the silicon photomultipliers, we have built a test apparatus for xenon liquefaction, in which a VUV-sensitive photomultiplier tube can be operated together with the SiPM. In this contribution we present our apparatus for the SiPM characterization measurements and our latest results on the test of the silicon photomultipliers for the detection of xenon scintillation light.

  19. Exploring the sensitivity of current and future experiments to $\\theta_{\\odot}$

    CERN Document Server

    Bandyopadhyay, A; Goswami, S; Bandyopadhyay, Abhijit; Choubey, Sandhya; Goswami, Srubabati

    2003-01-01

    The first results from the KamLAND experiment in conjunction with the global solar neutrino data has demonstrated striking ability to constrain the $\\Delta m^2_\\odot$ ($\\Delta m^2_{21}$) very precisely. However the allowed range of $\\theta_{\\odot}$ ($\\theta_{12}$) did not change much with the inclusion of the KamLAND results. In this paper we probe if future data from KamLAND can increase the accuracy of the allowed range in $\\theta_{\\odot}$ and conclude that even after 3 kton-year of statistics, KamLAND may find it hard to improve the bounds on the mixing angle obtained from the current solar neutrino data. We discuss the $\\theta_{12}$ sensitivity of the survival probabilities in matter (vacuum) as is relevant for the solar (KamLAND) experiments. We find that the presence of matter effects in the survival probabilities for $^8B$ neutrinos give the solar neutrino experiments SK and SNO an edge over KamLAND, as far as $\\theta_{12}$ sensitivity is concerned, particularly near maximal mixing. Among solar neutrin...

  20. Sensitivity of the T2HKK experiment to the non-standard interaction

    CERN Document Server

    Fukasawa, Shinya; Yasuda, Osamu

    2016-01-01

    If the flavor dependent non-standard interactions (NSI) in neutrino propagation exist, then the matter effect is modified and the modification is parametrized by the dimensionless parameter $\\epsilon_{\\alpha\\beta}~(\\alpha,\\beta=e, \\mu, \\tau)$. In this paper we discuss the sensitivity of the T2HKK experiment, whose possibility is now seriously discussed as a future extension of the T2K experiment, to such NSI. On the assumption that $\\epsilon_{\\alpha\\mu}=0~(\\alpha=e, \\mu\\tau)$ and $\\epsilon_{\\tau\\tau}=|\\epsilon_{e\\tau}|/(1+\\epsilon_{ee})$, which are satisfied by other experiments to a good approximation, we find that, among the possible off-axis flux configurations of 1.3$^\\circ$, $1.5^\\circ$, $2.0^\\circ$ and 2.5$^\\circ$, the case of the off-axis angle 1.3$^\\circ$ gives the highest sensitivity to $\\epsilon_{ee}$ and $|\\epsilon_{e\\tau}|$. Our results show that the $1.3^\\circ$ off-axis configuration can exclude NSI for $|\\epsilon_{ee}|\\gtrsim 1$ or $|\\epsilon_{e\\tau}|\\gtrsim 0.2$ at 3$\\sigma$. We also find that ...

  1. Cloud processing of soluble gases

    Science.gov (United States)

    Laj, P.; Fuzzi, S.; Facchini, M. C.; Lind, J. A.; Orsi, G.; Preiss, M.; Maser, R.; Jaeschke, W.; Seyffer, E.; Helas, G.; Acker, K.; Wieprecht, W.; Möller, D.; Arends, B. G.; Mols, J. J.; Colvile, R. N.; Gallagher, M. W.; Beswick, K. M.; Hargreaves, K. J.; Storeton-West, R. L.; Sutton, M. A.

    Experimental data from the Great Dun Fell Cloud Experiment 1993 were used to investigate interactions between soluble gases and cloud droplets. Concentrations of H 2O 2, SO 2, CH 3COOOH, HCOOH, and HCHO were monitored at different sites within and downwind of a hill cap cloud and their temporal and spatial evolution during several cloud events was investigated. Significant differences were found between in-cloud and out-of-cloud concentrations, most of which could not be explained by simple dissolution into cloud droplets. Concentration patterns were analysed in relation to the chemistry of cloud droplets and the gas/liquid equilibrium. Soluble gases do not undergo similar behaviour: CH 3COOH simply dissolves in the aqueous phase and is outgassed upon cloud dissipation; instead, SO 2 is consumed by its reaction with H 2O 2. The behaviour of HCOOH is more complex because there is evidence for in-cloud chemical production. The formation of HCOOH interferes with the odd hydrogen cycle by enhancing the liquid-phase production of H 2O 2. The H 2O 2 concentration in cloud therefore results from the balance of consumption by oxidation of SO 2 in-cloud production, and the rate by which it is supplied to the system by entrainment of new air into the clouds.

  2. Research on cloud computing solutions

    Directory of Open Access Journals (Sweden)

    Liudvikas Kaklauskas

    2015-07-01

    Full Text Available Cloud computing can be defined as a new style of computing in which dynamically scala-ble and often virtualized resources are provided as a services over the Internet. Advantages of the cloud computing technology include cost savings, high availability, and easy scalability. Voas and Zhang adapted six phases of computing paradigms, from dummy termi-nals/mainframes, to PCs, networking computing, to grid and cloud computing. There are four types of cloud computing: public cloud, private cloud, hybrid cloud and community. The most common and well-known deployment model is Public Cloud. A Private Cloud is suited for sensitive data, where the customer is dependent on a certain degree of security.According to the different types of services offered, cloud computing can be considered to consist of three layers (services models: IaaS (infrastructure as a service, PaaS (platform as a service, SaaS (software as a service. Main cloud computing solutions: web applications, data hosting, virtualization, database clusters and terminal services. The advantage of cloud com-puting is the ability to virtualize and share resources among different applications with the objective for better server utilization and without a clustering solution, a service may fail at the moment the server crashes.DOI: 10.15181/csat.v2i2.914

  3. Solar variability and clouds

    CERN Document Server

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  4. Economic sensitivity study of UCG based on field performance, theory, and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Boysen, J.E.; Gunn, R.D.

    1979-11-01

    This paper provides the results of an economic analysis in which uncertainty has been minimized through the use of the following three types of information: (1) theoretical and experimental correlations of underground coal gasification (UCG) operating parameters; (2) detailed process design based on operational experience; and (3) sensitivity variables. Independent variables cannot be fixed with certainty - for example, gas heating values are known for short-term field tests but remain uncertain for a long-term commercial operation. Such variables are designated sensitivity variables and are over their entire probable range. Other sensitivity variables are percent gas loss, well spacing, and the volumetric combustion sweep efficiency (VCSE). Depth and thickness of the coal seam are also designated sensitivity variables because they are strictly site-specific. A total of 1,296 cases have been considered in order to cover a full range of all sensitivity variables. Only-dirty gas selling prices are calculated in order to avoid assumptions concerning unproven methods of gas cleanup. Results show that the seam depth/thickness ratio is the most important variable affecting the economics of UCG. Low BTU gas from a thick coal seam of moderate depth (30 ft. seam at 600 ft.) can compete with current natural gas prices on a BTU basis even under poor operating conditions such as high leakage and low heating value. Well spacing and gas heating value also have notable impacts on the economics of UCG. The gas leakage rate and VCSE affect the economic results to a lesser extent for the range of values considered. Further research is needed in optimum well spacing, methods for control of the gas heating value, gas cleanup and utilization, environmental impact, and subsidence.

  5. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE

    Directory of Open Access Journals (Sweden)

    Mikhail Ovchinnikov

    2011-06-01

    Full Text Available An intercomparison of six cloud-resolving and large-eddy simulation models is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA and First ISCCP Regional Experiment - Arctic Cloud Experiment (FIRE-ACE. Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN concentrations. All of the baseline and sensitivity simulations group into two distinct quasi-steady states associated with either persistent mixed-phase clouds or all-ice clouds after the first few hours of integration, implying the existence of multiple equilibria. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed-phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all-ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed-phase cloud for deposition rates in the cloud layer greater than about 1-2x10-5 g kg-1 s-1. These results indicate the critical importance of precipitation-radiative-dynamical interactions in simulating cloud phase, which have been neglected in previous fixed-dynamical parcel

  6. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H.; Zuidema, Paquita; Ackerman, Andrew; Avramov, Alexander; de Boer, Gijs; Fan, Jiwen; Fridlind, Ann; Hashino, Tempei; Harrington, Jerry Y.; Luo, Yali; Ovchinnikov, Mikhail; Shipway, Ben

    2011-06-16

    An intercomparison of six cloud-resolving and large-eddy simulation models is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA) and First ISCCP Regional Experiment - Arctic Cloud Experiment (FIRE-ACE). Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN) concentrations. All of the baseline and sensitivity simulations group into two distinct quasi-steady states associated with either persistent mixed-phase clouds or all-ice clouds after the first few hours of integration, implying the existence of multiple equilibria. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed-phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all-ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed-phase cloud for deposition rates in the cloud layer greater than about 1-2x10-5 g kg-1 s-1. These results indicate the critical importance of precipitation-radiative-dynamical interactions in simulating cloud phase, which have been neglected in previous fixed-dynamical parcel studies of the cloud

  7. Cloud Governance

    DEFF Research Database (Denmark)

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  8. Use of A-train satellite observations (CALIPSO-PARASOL) to evaluate tropical cloud properties in the LMDZ5 GCM

    Science.gov (United States)

    Konsta, D.; Dufresne, J.-L.; Chepfer, H.; Idelkadi, A.; Cesana, G.

    2016-08-01

    of tropical oceanic clouds. This process-oriented evaluation shows that the cloud population characterized by intermediate values of cloud cover and cloud reflectance can be split in two groups of clouds when using monthly mean values of cloud cover and cloud reflectance: one group with low to intermediate values of the cloud cover, and one group with cloud cover close to one. The precise determination of cloud height allows us to focus on specific types of clouds (i.e. boundary layer clouds, high clouds, low-level clouds with no clouds above). For low-level clouds over the tropical oceans, the relationship between instantaneous values of the cloud cover and of the cloud reflectance reveals a major bias in the simulated liquid water content for both model versions. The origin of this bias is identified and possible improvements, such as considering the sub-grid heterogeneity of cloud properties, are investigated using sensitivity experiments. In summary, the analysis of the relationship between different instantaneous and collocated variables allows for process-oriented evaluations. These evaluations may in turn help to improve model parameterizations, and may also help to bridge the gap between model evaluation and model development.

  9. Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors.

    Science.gov (United States)

    De Groote, F; Van Campen, A; Jonkers, I; De Schutter, J

    2010-07-20

    We assessed and compared sensitivities of dynamic simulations to musculotendon (MT) parameters for gait and dynamometer experiments. Our aim with this comparison was to investigate whether dynamometer experiments could provide information about MT-parameters that are important to reliably study MT-function during gait. This would mean that dynamometer experiments could be used to estimate these parameters. Muscle contribution to the joint torque (MT-torque) rather than relative MT-force primarily affects the resulting gait pattern and torque measured by the dynamometer. In contrast to recent studies, therefore, we assessed the sensitivity of the MT-torque, rather than the sensitivity of the relative MT-force. Based on sensitivity of the MT-torque to a parameter perturbation, MT-parameters of the knee flexors and extensors were classified in three categories: low, medium, and high. For gait, classification was based on the average sensitivity during a gait cycle. For isometric and isokinetic dynamometer experiments, classification was based on the highest sensitivity found in the experiments. The calculated muscle contributions to the knee torque during gait and dynamometer experiments had a high sensitivity to only a limited number of MT-parameters of the knee flexors and extensors, suggesting that not all MT-parameters need to be estimated. In general, the highest sensitivity was found for tendon slack length. However, for some muscles the sensitivity to the optimal fibre length or the maximal isometric muscle force was also high or medium. The classification of the individual MT-parameters for gait and dynamometer experiments was largely similar. We therefore conclude that dynamometer experiments provide information about MT-parameters important to reliably study MT-function during gait, so that subject-specific estimates of MT-parameters could be made based on dynamometer experiments.

  10. The StEllar Counterparts of COmpact high velocity clouds (SECCO) survey. II. Sensitivity of the survey and the atlas of synthetic dwarf galaxies

    Science.gov (United States)

    Beccari, G.; Bellazzini, M.; Battaglia, G.; Ibata, R.; Martin, N.; Testa, V.; Cignoni, M.; Correnti, M.

    2016-06-01

    The searching for StEllar Counterparts of COmpact high velocity clouds (SECCO) survey is devoted to the search for stellar counterparts within ultra compact high velocity clouds that are candidate low-mass, low-luminosity galaxies. We present the results of a set of simulations aimed at the quantitative estimate of the sensitivity of the survey as a function of the total luminosity, size, and distance of the stellar systems we are looking for. For all of our synthetic galaxies we assumed an exponential surface brightness profile and an old and metal-poor population. The synthetic galaxies are simulated both on the images and on the photometric catalogues, taking all the observational effects into account. In the fields where the available observational material is of top quality (≃36% of the SECCO fields), we detect synthetic galaxies as ≥5σ over-densities of resolved stars down to μV,h ≃ 30.0 mag/arcsec2, for D ≤ 1.5 Mpc, and down to μV,h ≃ 29.5 mag/arcsec2, for D ≤ 2.5 Mpc. In the field with the worst observational material of the whole survey, we detect synthetic galaxies with μV,h ≤ 28.8 mag/arcsec2 out to D ≤ 1.0 Mpc, and those with μV,h ≤ 27.5 mag/arcsec2 out to D ≤ 2.5 Mpc. Dwarf galaxies with MV = -10.0, with sizes in the range spanned by known dwarfs, are detected by visual inspection of the images up to D = 5 Mpc independent of the image quality. In the best quality images, dwarfs are partially resolved into stars up to D = 3.0 Mpc and completely unresolved at D = 5 Mpc. As an independent test of the sensitivity of our images to low surface brightness galaxies, we report on the detection of several dwarf spheroidal galaxies probably located in the Virgo cluster with MV ≲ -8.0 and μV,h ≲ 26.8 mag/arcsec2. The nature of the previously discovered SECCO 1 stellar system, also likely located in the Virgo cluster, is rediscussed in comparison with these dwarfs. While specific for the SECCO survey, our study may also provide general

  11. Geostationary Coastal and Air Pollution Events (GEO-CAPE) Sensitivity Analysis Experiment

    Science.gov (United States)

    Lee, Meemong; Bowman, Kevin

    2014-01-01

    Geostationary Coastal and Air pollution Events (GEO-CAPE) is a NASA decadal survey mission to be designed to provide surface reflectance at high spectral, spatial, and temporal resolutions from a geostationary orbit necessary for studying regional-scale air quality issues and their impact on global atmospheric composition processes. GEO-CAPE's Atmospheric Science Questions explore the influence of both gases and particles on air quality, atmospheric composition, and climate. The objective of the GEO-CAPE Observing System Simulation Experiment (OSSE) is to analyze the sensitivity of ozone to the global and regional NOx emissions and improve the science impact of GEO-CAPE with respect to the global air quality. The GEO-CAPE OSSE team at Jet propulsion Laboratory has developed a comprehensive OSSE framework that can perform adjoint-sensitivity analysis for a wide range of observation scenarios and measurement qualities. This report discusses the OSSE framework and presents the sensitivity analysis results obtained from the GEO-CAPE OSSE framework for seven observation scenarios and three instrument systems.

  12. A common control group - optimising the experiment design to maximise sensitivity.

    Directory of Open Access Journals (Sweden)

    Simon Bate

    Full Text Available Methods for choosing an appropriate sample size in animal experiments have received much attention in the statistical and biological literature. Due to ethical constraints the number of animals used is always reduced where possible. However, as the number of animals decreases so the risk of obtaining inconclusive results increases. By using a more efficient experimental design we can, for a given number of animals, reduce this risk. In this paper two popular cases are considered, where planned comparisons are made to compare treatments back to control and when researchers plan to make all pairwise comparisons. By using theoretical and empirical techniques we show that for studies where all pairwise comparisons are made the traditional balanced design, as suggested in the literature, maximises sensitivity. For studies that involve planned comparisons of the treatment groups back to the control group, which are inherently more sensitive due to the reduced multiple testing burden, the sensitivity is maximised by increasing the number of animals in the control group while decreasing the number in the treated groups.

  13. Studying the physics potential of long-baseline experiments in terms of new sensitivity parameters

    CERN Document Server

    Singh, Mandip

    2016-01-01

    We investigate physics opportunities to constraint leptonic CP-violation phase $\\delta_{CP}$ through numerical analysis of working neutrino oscillation probability parameters, in the context of long base line experiments. Numerical analysis of two parameters, the " transition probability $\\delta_{CP}$ phase sensitivity parameter ($A^M$) " and " CP-violation probability $\\delta_{CP}$ phase sensitivity parameter ($A^{CP}$) ", as function of beam energy and/or base line has been preferably carried out. It is an elegant technique to broadly analyze different experiments to constraint $\\delta_{CP}$ phase and also to investigate mass hierarchy in the leptonic sector. The positive and negative values of parameter $A^{CP}$ corresponding to either of hierarchy in the specific beam energy ranges, could be a very promising way to explore mass hierarchy and $\\delta_{CP}$ phase. The keys to more robust bounds on $\\delta_{CP}$ phase are improvements of the involved detection techniques to explore bit low energy and relativ...

  14. Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Xin, E-mail: hxwang@iphy.me [Department of Physics, Nanjing University, Nanjing 210093 (China); Zhan, Liang; Li, Yu-Feng; Cao, Guo-Fu [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Shen-Jian [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2017-05-15

    We report the neutrino mass hierarchy (MH) determination of medium baseline reactor neutrino experiments with multiple detectors, where the sensitivity of measuring the MH can be significantly improved by adding a near detector. Then the impact of the baseline and target mass of the near detector on the combined MH sensitivity has been studied thoroughly. The optimal selections of the baseline and target mass of the near detector are ∼12.5 km and ∼4 kton respectively for a far detector with the target mass of 20 kton and the baseline of 52.5 km. As typical examples of future medium baseline reactor neutrino experiments, the optimal location and target mass of the near detector are selected for the specific configurations of JUNO and RENO-50. Finally, we discuss distinct effects of the reactor antineutrino energy spectrum uncertainty for setups of a single detector and double detectors, which indicate that the spectrum uncertainty can be well constrained in the presence of the near detector.

  15. Sensitivity of a general circulation model to land surface parameters in African tropical deforestation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, K.; Royer, J.F. [Meteo-France CNRM, 42 Avenue G. Coriolis, 31057, Toulouse Cedex 1 (France)

    2004-06-01

    During the last two decades, several land surface schemes for use in climate, regional and/or mesoscale, hydrological and ecological models have been designed. Incorrect parametrization of land-surface processes and prescription of the surface parameters in atmospheric modeling, can result in artificial changes of the horizontal gradient of the sensible heat flux. Thus, an error in horizontal temperature gradient within the lower atmosphere may be introduced. The reliability of the model depends on the quality of boundary layer scheme implemented and its sensitivity to the bare soil and vegetation parameters. In this study, a series of sensitivity experiments has been conducted over broad time scales, using a version of the ARPEGE Climate Model coupled to the ISBA land surface scheme in order to investigate model sensitivity to separate changes in land surface parameters over Africa. Effects of perturbing vegetation cover, distribution of soil depth, albedo of vegetation, roughness length, leaf area index and minimum stomatal resistance were explored by using a simple statistical analysis. Identifying which parameters are important in controlling turbulent energy fluxes, temperature and soil moisture is dependent on which variables are used to determine sensibility, which type of vegetation and climate regime is being simulated and the magnitude and sign of the parameter change. This study does not argue that a particular parameter is important in ISBA, rather it shows that no general ranking of parameters is possible. So, it is essential to specify all land surface parameters with greater precision when attempting to determine the climate response to modification of the land surface. The implication of ISBA being sensitive to parameters that cannot be validated suggests that there will always be considerable doubt over the predictive quality of land-surface schemes. (orig.)

  16. Cloud optics

    CERN Document Server

    Kokhanovsky, A

    2006-01-01

    Clouds affect the climate of the Earth, and they are an important factor in the weather. Therefore, their radiative properties must be understood in great detail. This book summarizes current knowledge on cloud optical properties, for example their ability to absorb, transmit, and reflect light, which depends on the clouds' geometrical and microphysical characteristics such as sizes of droplets and crystals, their shapes, and structures. In addition, problems related to the image transfer through clouds and cloud remote sensing are addressed in this book in great detail. This book can be an im

  17. The sensitizing capacity of Compositae plants. VI. Guinea pig sensitization experiments with ornamental plants and weeds using different methods.

    Science.gov (United States)

    Zeller, W; de Gols, M; Hausen, B M

    1985-01-01

    Experimental studies in guinea pigs using ether extracts of 20 different species of the Compositae plant family were carried out with the open epicutaneous method (OET) and the guinea pig maximization test (GPMT). The results demonstrate that Cnicus benedictus (blessed thistle), Chrysanthemum leucanthemum (marguerite, ox-eye daisy) and Helianthus debilis (dwarf sunflower) are strong sensitizers while Helenium amarum (bitterweed), Gaillardia amblyodon (blanket flower), Artemisia ludoviciana (prairie sage), Ambrosia trifida (giant ragweed) and Solidago virgaurea (goldenrod) are medium sensitizers. Twelfe species revealed only a weak or no sensitizing capacity; among those were corn flower, wormwood, mugwort, coltsfoot and dandelion. Cross-reactivities were observed in a considerable number of the investigated plant species. The sensitizing power as well as the observed cross-reactions depend on the occurrence of sesquiterpene lactones which have an alpha-methylene group exocyclic to the lactone in common ("immunologic requisite"). As a practical consequence, patients suffering from allergic contact dermatitis due to Compositae species are strictly requested to avoid contact with the offending species and all related species to prevent recurrences of their skin lesions.

  18. Use of Data Denial Experiments to Evaluate ESA Forecast Sensitivity Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Zack, J; Natenberg, E J; Knowe, G V; Manobianco, J; Waight, K; Hanley, D; Kamath, C

    2011-09-13

    wind speed and vertical temperature difference. Ideally, the data assimilation scheme used in the experiments would have been based upon an ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-Colombia Basin sensitivity patterns in the previous studies. However, the use of an EnKF system at high resolution is impractical because of the very high computational cost. Thus, it was decided to use the three-dimensional variational analysis data assimilation that is less computationally intensive and more economically practical for generating operational forecasts. There are two tasks in the current project effort designed to validate the ESA observational system deployment approach in order to move closer to the overall goal: (1) Perform an Observing System Experiment (OSE) using a data denial approach which is the focus of this task and report; and (2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-Colombia basin region. The results of this task are presented in a separate report. The objective of the OSE task involves validating the ESA-MOOA results from the previous sensitivity studies for the Mid-Columbia Basin by testing the impact of existing meteorological tower measurements on the 0- to 6-hour ahead 80-m wind forecasts at the target locations. The testing of the ESA-MOOA method used a combination of data assimilation techniques and data denial experiments to accomplish the task objective.

  19. Atmospheric conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting open-water and sea-ice surfaces during melt and freeze-up seasons

    OpenAIRE

    Sotiropoulou, G.; Tjernström, M.; Sedlar, J.; Achtert, P; Brooks, BJ; Brooks, IM; Persson, POG; Prytherch, J.; Salisbury, DJ; Shupe, MD; Johnston, PE; Wolfe, D.

    2016-01-01

    The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces near the ice edge, offering insight into the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmo...

  20. Cloud-Aerosol-Radiation (CAR ensemble modeling system

    Directory of Open Access Journals (Sweden)

    X.-Z. Liang

    2013-04-01

    Full Text Available A Cloud-Aerosol-Radiation (CAR ensemble modeling system has been developed to incorporate the largest choices of alternative parameterizations for cloud properties (cover, water, radius, optics, geometry, aerosol properties (type, profile, optics, radiation transfers (solar, infrared, and their interactions. These schemes form the most comprehensive collection currently available in the literature, including those used by the world leading general circulation models (GCMs. The CAR provides a unique framework to determine (via intercomparison across all schemes, reduce (via optimized ensemble simulations, and attribute specific key factors for (via physical process sensitivity analyses the model discrepancies and uncertainties in representing greenhouse gas, aerosol and cloud radiative forcing effects. This study presents a general description of the CAR system and illustrates its capabilities for climate modeling applications, especially in the context of estimating climate sensitivity and uncertainty range caused by cloud-aerosol-radiation interactions. For demonstration purpose, the evaluation is based on several CAR standalone and coupled climate model experiments, each comparing a limited subset of the full system ensemble with up to 896 members. It is shown that the quantification of radiative forcings and climate impacts strongly depends on the choices of the cloud, aerosol and radiation schemes. The prevailing schemes used in current GCMs are likely insufficient in variety and physically biased in a significant way. There exists large room for improvement by optimally combining radiation transfer with cloud property schemes.

  1. High-resolution WRF simulation of cloud properties over the super typhoon Haiyan: physics parameterizations and comparison against MODIS

    Science.gov (United States)

    Islam, Tanvir; Srivastava, Prashant K.; Dai, Qiang

    2016-11-01

    Numerical weather prediction (NWP) models can complement the satellite technology in simulating the cloud properties, especially in extreme storm events, when gathering new data becomes more than essential for accurate weather forecasting. In this study, we investigate the capability of the Weather Research and Forecasting (WRF) model to realistically simulate some important cloud properties in high-resolution grids, such as cloud phase (e.g., liquid or ice) and cloud water path. The sensitivity of different combinations of physics parameterizations to the simulated cloud fields is studied. The experiment is conducted on a super typhoon event by configuring the WRF model in two domains, with two-way nesting, allowing bidirectional information exchange between the parent and the nest. In order to do the assessment, the simulated cloud fields are compared against MODIS-derived cloud properties from one overpass scene. While the simulations have been able to capture the spatial distribution of cloud properties reasonably well, produced cloud quantities such as ice water path has been significantly overestimated when compared to the MODIS optical cloud information. The microphysics parameterizations are found to be more sensitive than the planetary boundary layer (PBL) parameterizations.

  2. Large scale and cloud-based multi-model analytics experiments on climate change data in the Earth System Grid Federation

    Science.gov (United States)

    Fiore, Sandro; Płóciennik, Marcin; Doutriaux, Charles; Blanquer, Ignacio; Barbera, Roberto; Donvito, Giacinto; Williams, Dean N.; Anantharaj, Valentine; Salomoni, Davide D.; Aloisio, Giovanni

    2017-04-01

    In many scientific domains such as climate, data is often n-dimensional and requires tools that support specialized data types and primitives to be properly stored, accessed, analysed and visualized. Moreover, new challenges arise in large-scale scenarios and eco-systems where petabytes (PB) of data can be available and data can be distributed and/or replicated, such as the Earth System Grid Federation (ESGF) serving the Coupled Model Intercomparison Project, Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). A case study on climate models intercomparison data analysis addressing several classes of multi-model experiments is being implemented in the context of the EU H2020 INDIGO-DataCloud project. Such experiments require the availability of large amount of data (multi-terabyte order) related to the output of several climate models simulations as well as the exploitation of scientific data management tools for large-scale data analytics. More specifically, the talk discusses in detail a use case on precipitation trend analysis in terms of requirements, architectural design solution, and infrastructural implementation. The experiment has been tested and validated on CMIP5 datasets, in the context of a large scale distributed testbed across EU and US involving three ESGF sites (LLNL, ORNL, and CMCC) and one central orchestrator site (PSNC). The general "environment" of the case study relates to: (i) multi-model data analysis inter-comparison challenges; (ii) addressed on CMIP5 data; and (iii) which are made available through the IS-ENES/ESGF infrastructure. The added value of the solution proposed in the INDIGO-DataCloud project are summarized in the following: (i) it implements a different paradigm (from client- to server-side); (ii) it intrinsically reduces data movement; (iii) it makes lightweight the end-user setup; (iv) it fosters re-usability (of data, final

  3. Sensitivity analysis and numerical experiments on transient test of compact heat exchanger surfaces

    Institute of Scientific and Technical Information of China (English)

    Hesheng REN; Lingjun LAI; Yongzheng CUI

    2008-01-01

    A single-blow transient testing technique con-sidering the effect of longitudinal heat conduction is sug-gested for determining the average convection heat transfer coefficient of compact heat exchanger surface. By matching the measured outlet fluid temperature vari-ation with similar theoretical curves, the dimensionless longitudinal conduction parameter λ1, the time constant of the inlet fluid temperature τ+, and the number of heat transfer units Ntu can be determined simultaneously using the Levenberg-Marquardt nonlinear parameter estima-tion method. Both sensitivity analysis and numerical experiments with simulated measurements containing random errors show that the method in the present invest-igation provides satisfactory accuracy of the estimated parameter Ntu, which characterizes the heat transfer per-formance of compact heat exchanger surfaces.

  4. Laboratory coded aperture imaging experiments: radial hole coded masks and depth-sensitive CZT detectors

    CERN Document Server

    Hong, J; Zhang, M; Bellm, E C; Yousef, A; Noss, J; Grindlay, J E; Narita, T

    2004-01-01

    The proposed black-hole finder mission EXIST will consist of multiple wide-field hard X-ray coded-aperture telescopes. The high science goals set for the mission require innovations in telescope design. In particular, wide energy band coverage and fine angular resolution require relatively thick coded masks and thick detectors compared to their pixel size, which may introduce mask self-collimation and depth-induced image blurring with conventional design approaches. Previously we proposed relatively simple solutions to these potential problems: radial hole for mask selfcollimation and cathode depth sensing detector for image blurring. We have now performed laboratory experiments to explore the potential of these two techniques. The experimental results show that the radial hole mask greatly alleviates mask self-collimation and a ~1 mm resolution depth-sensitive detector scheme can be relatively easily achieved for the large scale required for EXIST.

  5. Quantum-dot-sensitized solar cells: understanding linker molecules through theory and experiment.

    Science.gov (United States)

    Margraf, Johannes T; Ruland, Andrés; Sgobba, Vito; Guldi, Dirk M; Clark, Timothy

    2013-02-19

    We have investigated the role of linker molecules in quantum-dot-sensitized solar cells (QDSSCs) using density-functional theory (DFT) and experiments. Linkers not only govern the number of attached QDs but also influence charge separation, recombination, and transport. Understanding their behavior is therefore not straightforward. DFT calculations show that mercaptopropionic acid (MPA) and cysteine (Cys) exhibit characteristic binding configurations on TiO(2) surfaces. This information is used to optimize the cell assembly process, yielding Cys-based cells that significantly outperform MPA cells, and reach power conversion efficiencies (PCE) as high as 2.7% under AM 1.5 illumination. Importantly, the structural information from theory also helps understand the cause for this improved performance.

  6. Anxiety sensitivity and its impact on pain experiences and conditions: a state of the art.

    Science.gov (United States)

    Stewart, Sherry H; Asmundson, Gordon J G

    2006-01-01

    This paper serves as an introduction to the special issue of Cognitive Behaviour Therapy devoted to the topic of anxiety sensitivity (AS) and its impact on pain experiences and conditions. We provide a historical overview of relevant cognitive behavioural models of chronic pain, summarize recent models incorporating the AS construct, and introduce the papers in the special issue. These papers are organized into two sets--basic laboratory-based investigations and relatively more applied studies. We attempt to highlight some of the most important findings from each of these investigations and studies, in turn. Then, we consider several important conclusions derived from the set of special issue papers and the implications of these for the practice of cognitive-behavioural interventions with pain populations. Finally, we make several suggestions for directions for future investigations in this burgeoning area of cognitive behavioural research and practice.

  7. Learning VMware vCloud Air

    CERN Document Server

    Wadia, Yohan Rohinton

    2015-01-01

    This book is intended for cloud engineers or administrators who wish to explore and gain hands-on experience of VMware vCloud Air. To make the most of this book, it would be beneficial to have a bit of familiarity with basic VMware vCloud concepts, but no prior experience is required.

  8. The arrival of the CLOUD chamber

    CERN Multimedia

    CERN AVC

    2009-01-01

    The team from the CLOUD experiment - the world’s first experiment using a high-energy particle accelerator to study the climate - were on cloud nine after the arrival of their new three-metre diameter cloud chamber. This marks the end of three years’ R&D; and design, and the start of preparations for data taking later this year.

  9. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Zeynalov, Sh. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Mosow region (Russian Federation)

    2016-09-11

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in {sup 235}U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  10. Early experience shapes amygdala sensitivity to race: an international adoption design.

    Science.gov (United States)

    Telzer, Eva H; Flannery, Jessica; Shapiro, Mor; Humphreys, Kathryn L; Goff, Bonnie; Gabard-Durman, Laurel; Gee, Dylan D; Tottenham, Nim

    2013-08-14

    In the current study, we investigated how complete infant deprivation to out-group race impacts behavioral and neural sensitivity to race. Although monkey models have successfully achieved complete face deprivation in early life, this is typically impossible in human studies. We overcame this barrier by examining youths with exclusively homogenous racial experience in early postnatal development. These were youths raised in orphanage care in either East Asia or Eastern Europe as infants and later adopted by American families. The use of international adoption bolsters confidence of infant exposure to race (e.g., to solely Asian faces or European faces). Participants completed an emotional matching task during functional MRI. Our findings show that deprivation to other-race faces in infancy disrupts recognition of emotion and results in heightened amygdala response to out-group faces. Greater early deprivation (i.e., later age of adoption) is associated with greater biases to race. These data demonstrate how early social deprivation to race shapes amygdala function later in life and provides support that early postnatal development may represent a sensitive period for race perception.

  11. Successful Renal Transplantation with Desensitization in Highly Sensitized Patients: A Single Center Experience

    Science.gov (United States)

    Yoon, Hye Eun; Hyoung, Bok Jin; Hwang, Hyeon Seok; Lee, So Young; Jeon, Youn Joo; Song, Joon Chang; Oh, Eun-Jee; Park, Sun Cheol; Choi, Bum Soon; Moon, In Sung; Kim, Yong Soo

    2009-01-01

    Intravenous immunoglobulin (IVIG) and/or plasmapheresis (PP) are effective in preventing antibody-mediated rejection (AMR) of kidney allografts, but AMR is still a problem. This study reports our experience in living donor renal transplantation in highly sensitized patients. Ten patients with positive crossmatch tests or high levels of panel-reactive antibody (PRA) were included. Eight patients were desensitized with pretransplant PP and low dose IVIG, and two were additionally treated with rituximab. Allograft function, number of acute rejection (AR) episodes, protocol biopsy findings, and the presence of donor-specific antibody (DSA) were evaluated. With PP/IVIG, six out of eight patients showed good graft function without AR episodes. Protocol biopsies revealed no evidence of tissue injury or C4d deposits. Of two patients with AR, one was successfully treated with PP/IVIG, but the other lost graft function due to de novo production of DSA. Thereafter, rituximab was added to PP/IVIG in two cases. Rituximab gradually decreased PRA levels and the percentage of peripheral CD20+ cells. DSA was undetectable and protocol biopsy showed no C4d deposits. The graft function was stable and there were no AR episodes. Conclusively, desensitization using PP/IVIG with or without rituximab increases the likelihood of successful living donor renal transplantation in sensitized recipients. PMID:19194545

  12. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    Science.gov (United States)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  13. Improving Sensitivity of Enzyme to Organophosphorous Compounds by Combining Experiment and Theory Methods

    Institute of Scientific and Technical Information of China (English)

    WANG Yue-xi; WANG Ye; HAN Wei-wei; FENG Yan

    2012-01-01

    In this paper,we compared the sensitivities of AFEST(a thermophilic esterase from the archaea Archaeoglobus fulgidus) and acetylcholinesterase(AChE) towards five organophosphorus compounds(OPs) by means of molecular docking,and found that only the docking energy between AFEST and dichlorvos is lower than that between AChE and dichlorvos.Via the docking model of AFEST and dichlorvos,Arg43 was found to play an important role in the interaction between AFEST and dichlorvos by means of stabilizing the complex.Then mutant R43S was constructed,the IC50(the concentration required to reduce virus-induced cytopathicity by 50% is estimated as 50%inhibitory concentration) of which to dichlorvos was lower than that of the wild type AFEST by a factor of 1.56,indicating the enhanced sensitivity of mutant R43S to dichlorvos.Combining of theory with experiment,we have obtained important structure-function information of AFEST,which will be helpful to the further studies of esterase.

  14. The interaction of early life experiences with COMT val158met affects anxiety sensitivity.

    Science.gov (United States)

    Baumann, C; Klauke, B; Weber, H; Domschke, K; Zwanzger, P; Pauli, P; Deckert, J; Reif, A

    2013-11-01

    The pathogenesis of anxiety disorders is considered to be multifactorial with a complex interaction of genetic factors and individual environmental factors. Therefore, the aim of this study was to examine gene-by-environment interactions of the genes coding for catechol-O-methyltransferase (COMT) and monoamine oxidase A (MAOA) with life events on measures related to anxiety. A sample of healthy subjects (N = 782; thereof 531 women; mean age M = 24.79, SD = 6.02) was genotyped for COMT rs4680 and MAOA-uVNTR (upstream variable number of tandem repeats), and was assessed for childhood adversities [Childhood Trauma Questionnaire (CTQ)], anxiety sensitivity [Anxiety Sensitivity Index (ASI)] and anxious apprehension [Penn State Worry Questionnaire (PSWQ)]. Main and interaction effects of genotype, environment and gender on measures related to anxiety were assessed by means of regression analyses. Association analysis showed no main gene effect on either questionnaire score. A significant interactive effect of childhood adversities and COMT genotype was observed: Homozygosity for the low-active met allele and high CTQ scores was associated with a significant increment of explained ASI variance [R(2) = 0.040, false discovery rate (FDR) corrected P = 0.04]. A borderline interactive effect with respect to MAOA-uVNTR was restricted to the male subgroup. Carriers of the low-active MAOA allele who reported more aversive experiences in childhood exhibited a trend for enhanced anxious apprehension (R(2) = 0.077, FDR corrected P = 0.10). Early aversive life experiences therefore might increase the vulnerability to anxiety disorders in the presence of homozygosity for the COMT 158met allele or low-active MAOA-uVNTR alleles.

  15. Cross-section sensitivity and uncertainty analysis of the FNG copper benchmark experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kodeli, I., E-mail: ivan.kodeli@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Kondo, K. [Karlsruhe Institute of Technology, Postfach 3640, D-76021 Karlsruhe (Germany); Japan Atomic Energy Agency, Rokkasho-mura (Japan); Perel, R.L. [Racah Institute of Physics, Hebrew University of Jerusalem, IL-91904 Jerusalem (Israel); Fischer, U. [Karlsruhe Institute of Technology, Postfach 3640, D-76021 Karlsruhe (Germany)

    2016-11-01

    A neutronics benchmark experiment on copper assembly was performed end 2014–beginning 2015 at the 14-MeV Frascati neutron generator (FNG) of ENEA Frascati with the objective to provide the experimental database required for the validation of the copper nuclear data relevant for ITER design calculations, including the related uncertainties. The paper presents the pre- and post-analysis of the experiment performed using cross-section sensitivity and uncertainty codes, both deterministic (SUSD3D) and Monte Carlo (MCSEN5). Cumulative reaction rates and neutron flux spectra, their sensitivity to the cross sections, as well as the corresponding uncertainties were estimated for different selected detector positions up to ∼58 cm in the copper assembly. This permitted in the pre-analysis phase to optimize the geometry, the detector positions and the choice of activation reactions, and in the post-analysis phase to interpret the results of the measurements and the calculations, to conclude on the quality of the relevant nuclear cross-section data, and to estimate the uncertainties in the calculated nuclear responses and fluxes. Large uncertainties in the calculated reaction rates and neutron spectra of up to 50%, rarely observed at this level in the benchmark analysis using today's nuclear data, were predicted, particularly high for fast reactions. Observed C/E (dis)agreements with values as low as 0.5 partly confirm these predictions. Benchmark results are therefore expected to contribute to the improvement of both cross section as well as covariance data evaluations.

  16. Cloud Technology May Widen Genomic Bottleneck - TCGA

    Science.gov (United States)

    Computational biologist Dr. Ilya Shmulevich suggests that renting cloud computing power might widen the bottleneck for analyzing genomic data. Learn more about his experience with the Cloud in this TCGA in Action Case Study.

  17. Evaluating the Performance of the Goddard Multi-Scale Modeling Framework with Different Cloud Microphysical Schemes

    Science.gov (United States)

    Chern, J.; Tao, W.; Lang, S. E.; Matsui, T.

    2012-12-01

    The accurate representation of clouds and cloud processes in atmospheric general circulation models (GCMs) with relatively coarse resolution (~100 km) has been a long-standing challenge. With the rapid advancement in computational technology, new breed of GCMs that are capable of explicitly resolving clouds have been developed. Though still computationally very expensive, global cloud-resolving models (GCRMs) with horizontal resolutions of 3.5 to 14 km are already being run in an exploratory manner. Another less computationally demanding approach is the multi-scale modeling framework (MMF) that replaces conventional cloud parameterizations with a cloud-resolving model (CRM) in each grid column of a GCM. The Goddard MMF is based on the coupling of the Goddard Cumulus Ensemble (GCE), a CRM model, and the GEOS global model. In recent years a few new and improved microphysical schemes are developed and implemented to the GCE based on observations from field campaigns. It is important to evaluating these microphysical schemes for global applications such as the MMFs and GCRMs. Two-year (2007-2008) MMF sensitivity experiments have been carried out with different cloud microphysical schemes. The model simulated mean and variability of surface precipitation, cloud types, cloud properties such as cloud amount, hydrometeors vertical profiles, and cloud water contents, etc. in different geographic locations and climate regimes are evaluated against TRMM, CloudSat and CALIPSO satellite observations. The Goddard MMF has also been coupled with the Goddard Satellite Data Simulation Unit (G-SDSU), a system with multi-satellite, multi-sensor, and multi-spectrum satellite simulators. The statistics of MMF simulated radiances and backscattering can be directly compared with satellite observations to evaluate the performance of different cloud microphysical schemes. We will assess the strengths and/or deficiencies in of these microphysics schemes and provide guidance on how to improve

  18. Influence of Ethnic-Related Diversity Experiences on Intercultural Sensitivity of Students at a Public University in Malaysia

    Science.gov (United States)

    Tamam, Ezhar; Abdullah, Ain Nadzimah

    2012-01-01

    In this study, the authors examine the influence of ethnic-related diversity experiences on intercultural sensitivity among Malaysian students at a multiethnic, multicultural and multilingual Malaysian public university. Results reveal a significant differential level of ethnic-related diversity experiences (but not at the level of intercultural…

  19. Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea

    Science.gov (United States)

    Clementi, Emanuela; Oddo, Paolo; Drudi, Massimiliano; Pinardi, Nadia; Korres, Gerasimos; Grandi, Alessandro

    2017-07-01

    This work describes the first step towards a fully coupled modelling system composed of an ocean circulation and a wind wave model. Sensitivity experiments are presented for the Mediterranean Sea where the hydrodynamic model NEMO is coupled with the third-generation wave model WaveWatchIII (WW3). Both models are implemented at 1/16° horizontal resolution and are forced by ECMWF 1/4° horizontal resolution atmospheric fields. The models are two-way coupled at hourly intervals exchanging the following fields: sea surface currents and temperature are transferred from NEMO to WW3 by modifying the mean momentum transfer of waves and the wind speed stability parameter, respectively. The neutral drag coefficient computed by WW3 is then passed to NEMO, which computes the surface stress. Five-year (2009-2013) numerical experiments were carried out in both uncoupled and coupled mode. In order to validate the modelling system, numerical results were compared with coastal and drifting buoys and remote sensing data. The results show that the coupling of currents with waves improves the representation of the wave spectrum. However, the wave-induced drag coefficient shows only minor improvements in NEMO circulation fields, such as temperature, salinity, and currents.

  20. Increasing sensitivity of pulse EPR experiments using echo train detection schemes

    Science.gov (United States)

    Mentink-Vigier, F.; Collauto, A.; Feintuch, A.; Kaminker, I.; Tarle, V.; Goldfarb, D.

    2013-11-01

    Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12 h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo - either primary, stimulated or refocused - a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion.

  1. Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea

    Science.gov (United States)

    Clementi, Emanuela; Oddo, Paolo; Drudi, Massimiliano; Pinardi, Nadia; Korres, Gerasimos; Grandi, Alessandro

    2017-10-01

    This work describes the first step towards a fully coupled modelling system composed of an ocean circulation and a wind wave model. Sensitivity experiments are presented for the Mediterranean Sea where the hydrodynamic model NEMO is coupled with the third-generation wave model WaveWatchIII (WW3). Both models are implemented at 1/16° horizontal resolution and are forced by ECMWF 1/4° horizontal resolution atmospheric fields. The models are two-way coupled at hourly intervals exchanging the following fields: sea surface currents and temperature are transferred from NEMO to WW3 by modifying the mean momentum transfer of waves and the wind speed stability parameter, respectively. The neutral drag coefficient computed by WW3 is then passed to NEMO, which computes the surface stress. Five-year (2009-2013) numerical experiments were carried out in both uncoupled and coupled mode. In order to validate the modelling system, numerical results were compared with coastal and drifting buoys and remote sensing data. The results show that the coupling of currents with waves improves the representation of the wave spectrum. However, the wave-induced drag coefficient shows only minor improvements in NEMO circulation fields, such as temperature, salinity, and currents.

  2. Cloud Computing

    CERN Document Server

    Antonopoulos, Nick

    2010-01-01

    Cloud computing has recently emerged as a subject of substantial industrial and academic interest, though its meaning and scope is hotly debated. For some researchers, clouds are a natural evolution towards the full commercialisation of grid systems, while others dismiss the term as a mere re-branding of existing pay-per-use technologies. From either perspective, 'cloud' is now the label of choice for accountable pay-per-use access to third party applications and computational resources on a massive scale. Clouds support patterns of less predictable resource use for applications and services a

  3. ATLAS Cloud R&D

    Science.gov (United States)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  4. Turning remote sensing to cloud services: Technical research and experiment%遥感云服务平台技术研究与实验

    Institute of Scientific and Technical Information of China (English)

    任伏虎; 王晋年

    2012-01-01

    遥感云服务是基于云计算技术,整合各种遥感信息和技术资源,通过互联网以按需共享的方式提供的遥感应用服务.本文在分析遥感云服务的基本模式和技术特点的基础上,阐述了遥感云服务的技术体系及关键技术,包括遥感数据云存储、遥感数据云处理、遥感应用云服务以及遥感数据云安全技术等,设计了遥感云服务平台总体架构和功能模块,并介绍了作者团队基于云计算技术研发的遥感云服务平台原型系统.该系统支持用户根据业务选择遥感数据和应用软件,在云服务平台自动部署的虚拟机上进行在线使用.实验表明,遥感云服务平台可以汇聚来自不同服务商的遥感信息、应用软件和计算资源,为用户提供一体化的按需应用服务,对于遥感技术的普及应用和产业化发展具有重要意义.%Remote sensing cloud services are the remote sensing application services provided through a network as a way of on-demand sharing of integrated remote sensing information and technological resources based-on cloud computing. Up on the analysis of service models and technical requirements, the author highlights the key technologies of remote sensing cloud services, including remote sensing data cloud storage, processing, application and security. We propose an architecture and functional design of the remote sensing cloud service platform and introduce a prototype developed by our R&D team. This remote sensing cloud service prototype allows users to choose required remote sensing data and software, and automatically deploys them to a virtual computer that users can access through Internet to perform their remote sensing data processing and application. Experiments show that the remote sensing cloud service platform can gather remote sensing information, software and computing resources from different providers, and provides them for sharing on user's demand. Such a remote sensing service

  5. Redox-sensitivity and mobility of selected pharmaceutical compounds in a laboratory column experiment

    Science.gov (United States)

    Banzhaf, S.; Nödler, K.; Licha, T.; Krein, A.; Scheytt, T.

    2012-04-01

    Laboratory column experiments are suitable to investigate the sediment water interaction and to study the transport behaviour of solutes. Processes like retardation and degradation can be identified and quantified. The conducted experiment, which is closely connected to a field study in Luxembourg, investigated the transport behaviour of selected pharmaceutical compounds and their redox-dependent metabolism under water saturated conditions. Fine-grained natural sediment with a low hydraulic conductivity from a study site in Luxembourg was filled into the column. The water for the experiment was taken from a small stream at the same fieldsite. It was spiked with four pharmaceutical compounds (carbamazepine, diclofenac, ibuprofen, sulfamethoxazole) with concentrations between 170 and 300 ng/L for the different substances. The chosen pharmaceuticals were also detected in groundwater and surface water samples at the study site and used to qualify exchange/mixing of surface water and groundwater (BANZHAF et al., 2011). As some of the substances are known to exhibit redox-sensitive degradation, the redox-conditions were systematically varied throughout the experiment. This was realised by adding nitrate at the inflow of the column. During the experiment, which lasted for 2.5 months, four different nitrate concentrations (20-130 mg/L) were applied, beginning with the highest concentration. During the experiment water from the reservoir tank was sampled daily in order to detect a potential degradation of the pharmaceutical compounds before they enter the column. The effluent water was sampled every three hours to guarantee a maximum resolution for the analysis of the pharmaceuticals where necessary. In addition, major ions were analysed in the influent and effluent samples. Throughout the experiment physicochemical parameters (oxidation reduction potential (ORP), dissolved oxygen, electrical conductivity, and pH-value) were measured and logged at the outflow of the column

  6. The sensitivity of past and near-future lunar radio experiments to ultra-high-energy cosmic rays and neutrinos

    CERN Document Server

    Bray, Justin

    2016-01-01

    Various experiments have been conducted to search for the radio emission from ultra-high-energy particles interacting in the lunar regolith. Although they have not yielded any detections, they have been successful in establishing upper limits on the flux of these particles. I present a review of these experiments in which I re-evaluate their sensitivity to radio pulses, accounting for effects which were neglected in the original reports, and compare them with prospective near-future experiments. In several cases, I find that past experiments were substantially less sensitive than previously believed. I apply existing analytic models to determine the resulting limits on the fluxes of ultra-high-energy neutrinos and cosmic rays. In the latter case, I amend the model to accurately reflect the fraction of the primary particle energy which manifests in the resulting particle cascade, resulting in a substantial improvement in the estimated sensitivity to cosmic rays. Although these models are in need of further ref...

  7. Sensitivity of Next-Generation Tritium Beta-Decay Experiments for keV-Scale Sterile Neutrinos

    CERN Document Server

    Mertens, S; Groh, S; Drexlin, G; Glueck, F; Huber, A; Poon, A W P; Steidl, M; Steinbrink, N; Weinheimer, C

    2014-01-01

    We investigate the sensitivity of tritium $\\beta$-decay experiments for keV-scale sterile neutrinos. Relic sterile neutrinos in the keV mass range can contribute both to the cold and warm dark matter content of the universe. This work shows that a large-scale tritium beta-decay experiment, similar to the KATRIN experiment that is under construction, can reach a statistical sensitivity of the active-sterile neutrino mixing of $\\sin^2\\theta \\sim 10^{-8}$. The effect of uncertainties in the known theoretical corrections to the tritium $\\beta$-decay spectrum were investigated, and found not to affect the sensitivity significantly. It is demonstrated that controlling uncorrelated systematic effects will be one of the main challenges in such an experiment.

  8. A modelling study of moisture redistribution by thin cirrus clouds

    Directory of Open Access Journals (Sweden)

    T. Dinh

    2014-05-01

    Full Text Available A high resolution 2-dimensional numerical model is used to study the moisture redistribution following homogeneous ice nucleation induced by Kelvin waves in the tropical tropopause layer (TTL. We compare results for dry/moist initial conditions, and three levels of complexity for the representation of cloud processes: full bin microphysics and radiative effects of the ice, ditto but without radiative effects, and instantaneous removal of moisture in excess of saturation upon nucleation. Cloud evolution and the profiles of moisture redistribution are found to be sensitive to initial conditions and cloud processes. Ice sedimentation leads to a downward flux of water. On the other hand, the cloud radiative heating induces upward advection of the cloudy air. This results in an upward flux of water vapour if the cloudy air is moister (or drier than the environment, which is typically when the environment is subsaturated (or supersaturated. The numerical results show that only a small fraction (less than 25% of the cloud experiences nucleation. Sedimentation and reevaporation are important, and hydrated layers in observation may be as good an indicator as dehydrated layers for the occurrence of thin cirrus clouds. The calculation with instantaneous removal of condensates misses the hydration by construction, but also underestimates dehydration due to lack of moisture removal from sedimenting particles below the nucleation level, and due to nucleation before reaching the minimum saturation mixing ratio. The sensitivity to initial conditions and cloud processes suggests that it is difficult to reach generic, quantitative conclusions regarding the role of thin cirrus clouds for the moisture distribution in the TTL and stratosphere.

  9. Managing Clouds in Cloud Platforms

    CERN Document Server

    Ahmat, Kamal A

    2010-01-01

    Managing cloud services is a fundamental challenge in todays virtualized environments. These challenges equally face both providers and consumers of cloud services. The issue becomes even more challenging in virtualized environments that support mobile clouds. Cloud computing platforms such as Amazon EC2 provide customers with flexible, on demand resources at low cost. However, they fail to provide seamless infrastructure management and monitoring capabilities that many customers may need. For instance, Amazon EC2 doesn't fully support cloud services automated discovery and it requires a private set of authentication credentials. Salesforce.com, on the other hand, do not provide monitoring access to their underlying systems. Moreover, these systems fail to provide infrastructure monitoring of heterogenous and legacy systems that don't support agents. In this work, we explore how to build a cloud management system that combines heterogeneous management of virtual resources with comprehensive management of phys...

  10. The MARE project: a new {sup 187}Re neutrino mass experiment with sub eV sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, D., E-mail: david.schaeffer@mib.infn.it [Universita di Milano-Bicocca and Sezione INFN di Milano-Bicocca (Italy); Gatti, F.; Gallinaro, G.; Pergolesi, D.; Repetto, P.; Ribeiro-Gomes, M. [Universita di Genova and Sezione INFN di Genova (Italy); Kelley, R.; Kilbourne, C.A.; Porter, F.S. [Goddard Space Flight Center, NASA, Maryland (United States); Enss, C.; Fleischmann, A.; Gastaldo, L. [University of Heidelberg, Kirkhhof-Institute of Physics (Germany); Andreotti, E.; Foggetta, L.; Giuliani, A.; Pedretti, M.; Prest, M.; Rusconi, C.; Sangiorgio, S. [Universita di Insubria, Como and Sezione INFN di Milano-Bicocca (Italy); Arnaboldi, C. [Universita di Milano-Bicocca and Sezione INFN di Milano-Bicocca (Italy); and others

    2011-12-15

    A large worldwide collaboration is growing around the project of Micro-calorimeter Arrays for a Rhenium Experiment (MARE) for a direct calorimetric measurement of the neutrino mass with a sensitivity of about 0.2 eV/c{sup 2}. Many groups are joining their experience and technical expertise in a common effort towards this challenging experiment which will use the most recent and advanced developments of the thermal detection technique.

  11. Cloud Vertical Structure variability within MODIS Cloud Regimes according to CloudSat-CALIPSO

    Science.gov (United States)

    Cho, N.; Oreopoulos, L.; Lee, D.

    2016-12-01

    To advance the understanding of the relationships and associations between active and passive views of cloud systems systematic comparisons are needed. We take advantage of A-Train's capability to collect a multitude of coincident measurements of atmospheric hydrometeors to develop a framework for examining cloud vertical structure (CVS). The backbone of our comparisons are cloud regimes (CRs) derived from co-varying cloud optical thickness and cloud top pressure retrieved from the MODIS radiometer. CloudSat and CALIPSO observations containing information about cloud occurrence throughout atmospheric layers are segregated and composited according to the MODIS regime classification for Aqua-only CR occurrences. With this approach, vertical profiles of cloud systems are organized in a way that allows them to be thoroughly studied and compared. We examine the frequency of occurrence within each MODIS CR of coarsely resolved CVS permutations (namely the possible combinations of clouds occurring at high, middle, and low altitudes either in isolation or in various configurations of contiguous or non-contiguous overlap). We look for similarities and extreme contrasts in CVS among MODIS CRs, dependence of CVS on the degree of deviation from the CR centroid, and regional dependences within the occurrences of the same CR. The presentation aims to demonstrate pathways towards a better knowledge of the information content of each type (i.e., active/passive) of measurement and to expose categories of cloud systems where the combination of measurements with different strengths and sensitivities is helping rather than confounding interpretations of the nature of cloudiness.

  12. H{sub 2} EXCITATION STRUCTURE ON THE SIGHTLINES TO {delta} SCORPII AND {zeta} OPHIUCI: FIRST RESULTS FROM THE SUB-ORBITAL LOCAL INTERSTELLAR CLOUD EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    France, Kevin; Nell, Nicholas; Kane, Robert; Green, James C. [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Burgh, Eric B. [SOFIA/USRA, NASA Ames Research Center, M/S N232-12, Moffett Field, CA 94035 (United States); Beasley, Matthew, E-mail: kevin.france@colorado.edu [Planetary Resources, Inc., 93 S Jackson St 50680, Seattle, WA 98104-2818 (United States)

    2013-07-20

    We present the first science results from the Sub-orbital Local Interstellar Cloud Experiment (SLICE): moderate resolution 1020-1070 A spectroscopy of four sightlines through the local interstellar medium. High signal-to-noise (S/N) spectra of {eta} Uma, {alpha} Vir, {delta} Sco, and {zeta} Oph were obtained during a 2013 April 21 rocket flight. The SLICE observations constrain the density, molecular photoexcitation rates, and physical conditions present in the interstellar material toward {delta} Sco and {zeta} Oph. Our spectra indicate a factor of two lower total N(H{sub 2}) than previously reported for {delta} Sco, which we attribute to higher S/N and better scattered light control in the new SLICE observations. We find N(H{sub 2}) = 1.5 Multiplication-Sign 10{sup 19} cm{sup -2} on the {delta} Sco sightline, with kinetic and excitation temperatures of 67 and 529 K, respectively, and a cloud density of n{sub H} = 56 cm{sup -3}. Our observations of the bulk of the molecular sightline toward {zeta} Oph are consistent with previous measurements (N(H{sub 2}) Almost-Equal-To 3 Multiplication-Sign 10{sup 20} cm{sup -2} at T{sub 01}(H{sub 2}) = 66 K and T{sub exc} = 350 K). However, we detect significantly more rotationally excited H{sub 2} toward {zeta} Oph than previously observed. We infer a cloud density in the rotationally excited component of n{sub H} Almost-Equal-To 7600 cm{sup -3} and suggest that the increased column densities of excited H{sub 2} are a result of the ongoing interaction between {zeta} Oph and its environment; also manifest as the prominent mid-IR bowshock observed by WISE and the presence of vibrationally excited H{sub 2} molecules observed by the Hubble Space Telescope.

  13. Sex-specific retinal pigmentation results in sexually dimorphic long-wavelength-sensitive photoreceptors in the eastern pale clouded yellow butterfly, Colias erate

    NARCIS (Netherlands)

    Ogawa, Yuri; Kinoshita, Michiyo; Stavenga, Doekele G.; Arikawa, Kentaro

    The compound eyes of the eastern pale clouded yellow butterfly, Colias erate, contain three types of ommatidia (I, II and III), identifiable by the differing arrangements of pigment clusters around the rhabdoms. The pigment color is red in all ommatidial types except for type II ommatidia of

  14. Sex-specific retinal pigmentation results in sexually dimorphic long-wavelength-sensitive photoreceptors in the eastern pale clouded yellow butterfly, Colias erate

    NARCIS (Netherlands)

    Ogawa, Yuri; Kinoshita, Michiyo; Stavenga, Doekele G.; Arikawa, Kentaro

    2013-01-01

    The compound eyes of the eastern pale clouded yellow butterfly, Colias erate, contain three types of ommatidia (I, II and III), identifiable by the differing arrangements of pigment clusters around the rhabdoms. The pigment color is red in all ommatidial types except for type II ommatidia of females

  15. Cloud Control

    Science.gov (United States)

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  16. Cloud Cover

    Science.gov (United States)

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  17. Cloud Computing

    CERN Document Server

    Mirashe, Shivaji P

    2010-01-01

    Computing as you know it is about to change, your applications and documents are going to move from the desktop into the cloud. I'm talking about cloud computing, where applications and files are hosted on a "cloud" consisting of thousands of computers and servers, all linked together and accessible via the Internet. With cloud computing, everything you do is now web based instead of being desktop based. You can access all your programs and documents from any computer that's connected to the Internet. How will cloud computing change the way you work? For one thing, you're no longer tied to a single computer. You can take your work anywhere because it's always accessible via the web. In addition, cloud computing facilitates group collaboration, as all group members can access the same programs and documents from wherever they happen to be located. Cloud computing might sound far-fetched, but chances are you're already using some cloud applications. If you're using a web-based email program, such as Gmail or Ho...

  18. A data assimilation experiment of RASTA airborne cloud radar data during HyMeX IOP16

    Science.gov (United States)

    Saussereau, Gaël; Caumont, Olivier; Delanoë, Julien

    2015-04-01

    The main goal of HyMeX first special observing period (SOP1), which took place from 5 September to 5 November 2012, was to document the heavy precipitation events and flash floods that regularly affect the north-western Mediterranean coastal areas. In the two-month campaign, around twenty rainfall events were documented in France, Italy, and Spain. Among the instrumental platforms that were deployed during SOP1, the Falcon 20 of the Safire unit (http://www.safire.fr/) made numerous flights in storm systems so as to document their thermodynamic, microphysical, and dynamical properties. In particular, the RASTA cloud radar (http://rali.projet.latmos.ipsl.fr/) was aboard this aircraft. This radar measures vertical profiles of reflectivity and Doppler velocity above and below the aircraft. This unique instrument thus allows us to document the microphysical properties and the speed of wind and hydrometeors in the clouds, quasi-continuously in time and at a 60-m vertical resolution. For this field campaign, a special version of the numerical weather prediction (NWP) Arome system was developed to cover the whole north-western Mediterranean basin. This version, called Arome-WMed, ran in real time during the SOP in order to, notably, schedule the airborne operations, especially in storm systems. Like the operational version, Arome-WMed delivers forecasts at a horizontal resolution of 2.5 km with a one-moment microphysical scheme that predicts the evolution of six water species: water vapour, cloud liquid water, rainwater, pristine ice, snow, and graupel. Its three-dimensional variational (3DVar) data assimilation (DA) system ingests every three hours (at 00 UTC, 03 UTC, etc.) numerous observations (radiosoundings, ground automatic weather stations, radar, satellite, GPS, etc.). In order to provide improved initial conditions to Arome-WMed, especially for heavy precipitation events, RASTA data were assimilated in Arome-WMed 3DVar DA system for IOP16 (26 October 2012), to

  19. Ethical Sensitivity in Nursing Ethical Leadership: A Content Analysis of Iranian Nurses Experiences.

    Science.gov (United States)

    Esmaelzadeh, Fatemeh; Abbaszadeh, Abbas; Borhani, Fariba; Peyrovi, Hamid

    2017-01-01

    Considering that many nursing actions affect other people's health and life, sensitivity to ethics in nursing practice is highly important to ethical leaders as a role model. The study aims to explore ethical sensitivity in ethical nursing leaders in Iran. This was a qualitative study based on the conventional content analysis in 2015. Data were collected using deep and semi-structured interviews with 20 Iranian nurses. The participants were chosen using purposive sampling. Data were analyzed using conventional content analysis. In order to increase the accuracy and integrity of the data, Lincoln and Guba's criteria were considered. Fourteen sub-categories and five main categories emerged. Main categories consisted of sensitivity to care, sensitivity to errors, sensitivity to communication, sensitivity in decision making and sensitivity to ethical practice. Ethical sensitivity appears to be a valuable attribute for ethical nurse leaders, having an important effect on various aspects of professional practice and help the development of ethics in nursing practice.

  20. On construction of experiment platform of Hadvop based cloud computing%基于Hadoop的云计算试验平台搭建研究

    Institute of Scientific and Technical Information of China (English)

    张岩; 郭松; 赵国海

    2013-01-01

    Hadoop is a free open source cloud platform, which is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is a reliable, efficient, scalable cloud platform, is very suitable for simulation test in laboratory environment. In this paper, with the help of some software such as virtual machine VMware, Linux, ubuntu, Hadoop, java-jdk, the building process in the stand-alone environment of virtual cloud platform was described in detail based on the Hadoop. The building process of virtual cloud platform in a specific example was also elaborated. It was described that how to install Hadoop and Java and how to set up in detail. It completed the experiment environment, and point out that some problem must be paid attention during the building process, such as example for user right, path configuration and using of SSH service program. This experimental platform provides the basis for the development of system middleware and application service.%Hadoop是一个免费的开源云平台,是允许在集群计算机上分布式处理大数据的软件框架.它是一种可靠、高效、可伸缩的云平台,很适合在实验室环境下进行模拟测试.以Hadoop为基础,借助虚拟机VMware以及Linux、ubuntu、Hadoop、java-jdk等软件,详细地介绍了单机环境下的虚拟云平台搭建过程,并给出具体的实例搭建过程.在设计实例中详细的论述了虚拟机、java、Hadoop等软件的安装、设置、测试过程.实现了在实验室环境对云平台的虚拟,并提出了在搭建试验平台时应该注意的用户权限、路径配置和使用SSH服务程序等问题.该试验平台为系统中间件和应用服务的开发提供了基础.

  1. Contrasting sea-ice and open-water boundary layers during melt and freeze-up seasons: Some result from the Arctic Clouds in Summer Experiment.

    Science.gov (United States)

    Tjernström, Michael; Sotiropoulou, Georgia; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara; Brooks, Ian; Persson, Ola; Prytherch, John; Salsbury, Dominic; Shupe, Matthew; Johnston, Paul; Wolfe, Dan

    2016-04-01

    With more open water present in the Arctic summer, an understanding of atmospheric processes over open-water and sea-ice surfaces as summer turns into autumn and ice starts forming becomes increasingly important. The Arctic Clouds in Summer Experiment (ACSE) was conducted in a mix of open water and sea ice in the eastern Arctic along the Siberian shelf during late summer and early autumn 2014, providing detailed observations of the seasonal transition, from melt to freeze. Measurements were taken over both ice-free and ice-covered surfaces, offering an insight to the role of the surface state in shaping the lower troposphere and the boundary-layer conditions as summer turned into autumn. During summer, strong surface inversions persisted over sea ice, while well-mixed boundary layers capped by elevated inversions were frequent over open-water. The former were often associated with advection of warm air from adjacent open-water or land surfaces, whereas the latter were due to a positive buoyancy flux from the warm ocean surface. Fog and stratus clouds often persisted over the ice, whereas low-level liquid-water clouds developed over open water. These differences largely disappeared in autumn, when mixed-phase clouds capped by elevated inversions dominated in both ice-free and ice-covered conditions. Low-level-jets occurred ~20-25% of the time in both seasons. The observations indicate that these jets were typically initiated at air-mass boundaries or along the ice edge in autumn, while in summer they appeared to be inertial oscillations initiated by partial frictional decoupling as warm air was advected in over the sea ice. The start of the autumn season was related to an abrupt change in atmospheric conditions, rather than to the gradual change in solar radiation. The autumn onset appeared as a rapid cooling of the whole atmosphere and the freeze up followed as the warm surface lost heat to the atmosphere. While the surface type had a pronounced impact on boundary

  2. H2 Excitation Structure on the Sightlines to delta Scorpius and zeta Ophiucus - First Results from the Sub-orbital Local Interstellar Cloud Experiment

    CERN Document Server

    France, Kevin; Kane, Robert; Burgh, Eric B; Beasley, Matthew; Green, James C

    2013-01-01

    We present the first science results from the Sub-orbital Local Interstellar Cloud Experiment (SLICE): moderate resolution 1020-1070A spectroscopy of four sightlines through the local interstellar medium. High signal-to-noise (S/N) spectra of eta Uma, alpha Vir, delta Sco, and zeta Oph were obtained during a 21 April 2013 rocket flight. The SLICE observations constrain the density, molecular photoexcitation rates, and physical conditions present in the interstellar material towards delta Sco and zeta Oph. Our spectra indicate a factor of two lower total N(H2) than previously reported for delta Sco, which we attribute to higher S/N and better scattered light control in the new SLICE observations. We find N(H2) = 1.5 x 10^{19} cm^{-2} on the delta Sco sightline, with kinetic and excitation temperatures of 67 and 529 K, respectively, and a cloud density of n_{H} = 56 cm^{-3}. Our observations of the bulk of the molecular sightline toward zeta Oph are consistent with previous measurements (N(H2) ~ 3 x 10^{20} cm^...

  3. Cloud computing patterns fundamentals to design, build, and manage cloud applications

    CERN Document Server

    Fehling, Christoph; Retter, Ralph; Schupeck, Walter; Arbitter, Peter

    2014-01-01

    The current work provides CIOs, software architects, project managers, developers, and cloud strategy initiatives with a set of architectural patterns that offer nuggets of advice on how to achieve common cloud computing-related goals. The cloud computing patterns capture knowledge and experience in an abstract format that is independent of concrete vendor products. Readers are provided with a toolbox to structure cloud computing strategies and design cloud application architectures. By using this book cloud-native applications can be implemented and best suited cloud vendors and tooling for i

  4. Design and implementation of a reliable and cost-effective cloud computing infrastructure: the INFN Napoli experience

    Science.gov (United States)

    Capone, V.; Esposito, R.; Pardi, S.; Taurino, F.; Tortone, G.

    2012-12-01

    Over the last few years we have seen an increasing number of services and applications needed to manage and maintain cloud computing facilities. This is particularly true for computing in high energy physics, which often requires complex configurations and distributed infrastructures. In this scenario a cost effective rationalization and consolidation strategy is the key to success in terms of scalability and reliability. In this work we describe an IaaS (Infrastructure as a Service) cloud computing system, with high availability and redundancy features, which is currently in production at INFN-Naples and ATLAS Tier-2 data centre. The main goal we intended to achieve was a simplified method to manage our computing resources and deliver reliable user services, reusing existing hardware without incurring heavy costs. A combined usage of virtualization and clustering technologies allowed us to consolidate our services on a small number of physical machines, reducing electric power costs. As a result of our efforts we developed a complete solution for data and computing centres that can be easily replicated using commodity hardware. Our architecture consists of 2 main subsystems: a clustered storage solution, built on top of disk servers running GlusterFS file system, and a virtual machines execution environment. GlusterFS is a network file system able to perform parallel writes on multiple disk servers, providing this way live replication of data. High availability is also achieved via a network configuration using redundant switches and multiple paths between hypervisor hosts and disk servers. We also developed a set of management scripts to easily perform basic system administration tasks such as automatic deployment of new virtual machines, adaptive scheduling of virtual machines on hypervisor hosts, live migration and automated restart in case of hypervisor failures.

  5. Teaching Cybersecurity Using the Cloud

    Science.gov (United States)

    Salah, Khaled; Hammoud, Mohammad; Zeadally, Sherali

    2015-01-01

    Cloud computing platforms can be highly attractive to conduct course assignments and empower students with valuable and indispensable hands-on experience. In particular, the cloud can offer teaching staff and students (whether local or remote) on-demand, elastic, dedicated, isolated, (virtually) unlimited, and easily configurable virtual machines.…

  6. Snow and ice on Bear Lake (Alaska – sensitivity experiments with two lake ice models

    Directory of Open Access Journals (Sweden)

    Tido Semmler

    2012-03-01

    Full Text Available Snow and ice thermodynamics of Bear Lake (Alaska are investigated with a simple freshwater lake model (FLake and a more complex snow and ice thermodynamic model (HIGHTSI. A number of sensitivity experiments have been carried out to investigate the influence of snow and ice parameters and of different complexity on the results. Simulation results are compared with observations from the Alaska Lake Ice and Snow Observatory Network. Adaptations of snow thermal and optical properties in FLake can largely improve accuracy of the results. Snow-to-ice transformation is important for HIGHTSI to calculate the total ice mass balance. The seasonal maximum ice depth is simulated in FLake with a bias of −0.04 m and in HIGHTSI with no bias. Correlation coefficients between ice depth measurements and simulations are high (0.74 for FLake and 0.9 for HIGHTSI. The snow depth simulation can be improved by taking into account a variable snow density. Correlation coefficients for surface temperature are 0.72 for FLake and 0.81 for HIGHTSI. Overall, HIGHTSI gives slightly more accurate surface temperature than FLake probably due to the consideration of multiple snow and ice layers and the expensive iteration calculation procedure.

  7. Azimuthally sensitive Hanbury Brown-Twiss interferometry measured with the ALICE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gramling, Johanna Lena

    2011-07-01

    Bose-Einstein correlations of identical pions emitted in high-energy particle collisions provide information about the size of the source region in space-time. If analyzed via HBT Interferometry in several directions with respect to the reaction plane, the shape of the source can be extracted. Hence, HBT Interferometry provides an excellent tool to probe the characteristics of the quark-gluon plasma possibly created in high-energy heavy-ion collisions. This thesis introduces the main theoretical concepts of particle physics, the quark gluon plasma and the technique of HBT interferometry. The ALICE experiment at the CERN Large Hadron Collider (LHC) is explained and the first azimuthallyintegrated results measured in Pb-Pb collisions at √(s{sub NN})=2.76 TeV with ALICE are presented. A detailed two-track resolution study leading to a global pair cut for HBT analyses has been performed, and a framework for the event plane determination has been developed. The results from azimuthally sensitive HBT interferometry are compared to theoretical models and previous measurements at lower energies. Oscillations of the transverse radii in dependence on the pair emission angle are observed, consistent with a source that is extended out-of-plane.

  8. On the Juno radio science experiment: models, algorithms and sensitivity analysis

    Science.gov (United States)

    Tommei, G.; Dimare, L.; Serra, D.; Milani, A.

    2015-01-01

    Juno is a NASA mission launched in 2011 with the goal of studying Jupiter. The probe will arrive to the planet in 2016 and will be placed for one year in a polar high-eccentric orbit to study the composition of the planet, the gravity and the magnetic field. The Italian Space Agency (ASI) provided the radio science instrument KaT (Ka-Band Translator) used for the gravity experiment, which has the goal of studying the Jupiter's deep structure by mapping the planet's gravity: such instrument takes advantage of synergies with a similar tool in development for BepiColombo, the ESA cornerstone mission to Mercury. The Celestial Mechanics Group of the University of Pisa, being part of the Juno Italian team, is developing an orbit determination and parameters estimation software for processing the real data independently from NASA software ODP. This paper has a twofold goal: first, to tell about the development of this software highlighting the models used, secondly, to perform a sensitivity analysis on the parameters of interest to the mission.

  9. Sensitivity improvements to the YbF electron electric dipole moment experiment

    Science.gov (United States)

    Rabey, Isabel; Devlin, Jack; Sauer, Ben; Hudson, Jony; Tarbutt, Mike; Hinds, Ed

    The electron is predicted to have a small electric dipole moment (EDM). The size of this fundamental property is intimately connected to the breaking of time reversal symmetry (T) in nature. The Standard Model, which does include a small amount of T asymmetry, predicts the EDM to be too small to ever detect at demachine since the last measurement. We have increased the statistical sensitivity of our interferometer by increasing the number of YbF molecules that participate in the experiment and by increasing their detection probability. We demonstrate several hardware developments that combine laser, microwave and rf fields which, when applied to YbF, can pump six times more population into the initial measurement state. In the detection region we have used techniques developed for molecular laser cooling, including resonant polarisation modulation, to dramatically increase the number of scattered photons by a factor of 10. Combining all improvements, the statistical uncertainty of our measurement is expected to be reduced by a factor of ninety, allowing us to search for physics beyond the Standard Model and below the recent upper limit of de<8.9x10-29 e.cm.

  10. On the Juno Radio Science Experiment: models, algorithms and sensitivity analysis

    CERN Document Server

    Tommei, Giacomo; Serra, Daniele; Milani, Andrea

    2014-01-01

    Juno is a NASA mission launched in 2011 with the goal of studying Jupiter. The probe will arrive to the planet in 2016 and will be placed for one year in a polar high-eccentric orbit to study the composition of the planet, the gravity and the magnetic field. The Italian Space Agency (ASI) provided the radio science instrument KaT (Ka-Band Translator) used for the gravity experiment, which has the goal of studying the Jupiter's deep structure by mapping the planet's gravity: such instrument takes advantage of synergies with a similar tool in development for BepiColombo, the ESA cornerstone mission to Mercury. The Celestial Mechanics Group of the University of Pisa, being part of the Juno Italian team, is developing an orbit determination and parameters estimation software for processing the real data independently from NASA software ODP. This paper has a twofold goal: first, to tell about the development of this software highlighting the models used, second, to perform a sensitivity analysis on the parameters ...

  11. Sensitivity Evaluation of the Daily Thermal Predictions of the AGR-1 Experiment in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grant Hawkes; James Sterbentz; John Maki

    2011-05-01

    A temperature sensitivity evaluation has been performed for the AGR-1 fuel experiment on an individual capsule. A series of cases were compared to a base case by varying different input parameters into the ABAQUS finite element thermal model. These input parameters were varied by ±10% to show the temperature sensitivity to each parameter. The most sensitive parameters are the outer control gap distance, heat rate in the fuel compacts, and neon gas fraction. Thermal conductivity of the compacts and graphite holder were in the middle of the list for sensitivity. The smallest effects were for the emissivities of the stainless steel, graphite, and thru tubes. Sensitivity calculations were also performed varying with fluence. These calculations showed a general temperature rise with an increase in fluence. This is a result of the thermal conductivity of the fuel compacts and graphite holder decreasing with fluence.

  12. Insights from a refined decomposition of cloud feedbacks

    Science.gov (United States)

    Zelinka, Mark D.; Zhou, Chen; Klein, Stephen A.

    2016-09-01

    Decomposing cloud feedback into components due to changes in several gross cloud properties provides valuable insights into its physical causes. Here we present a refined decomposition that separately considers changes in free tropospheric and low cloud properties, better connecting feedbacks to individual governing processes and avoiding ambiguities present in a commonly used decomposition. It reveals that three net cloud feedback components are robustly nonzero: positive feedbacks from increasing free tropospheric cloud altitude and decreasing low cloud cover and a negative feedback from increasing low cloud optical depth. Low cloud amount feedback is the dominant contributor to spread in net cloud feedback but its anticorrelation with other components damps overall spread. The ensemble mean free tropospheric cloud altitude feedback is roughly 60% as large as the standard cloud altitude feedback because it avoids aliasing in low cloud reductions. Implications for the "null hypothesis" climate sensitivity from well-understood and robustly simulated feedbacks are discussed.

  13. Normalized sensitivities and parameter identifiability of in situ diffusion experiments on Callovo-Oxfordian clay at Bure site

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Dewonck, S.; Zheng, L.; Yang, Q.; Naves, A.

    2009-10-01

    DIR (Diffusion of Inert and Reactive tracers) is an experimental program performed by ANDRA at Bure underground research laboratory in Meuse/Haute Marne (France) to characterize diffusion and retention of radionuclides in Callovo-Oxfordian (C-Ox) argillite. In situ diffusion experiments were performed in vertical boreholes to determine diffusion and retention parameters of selected radionuclides. C-Ox clay exhibits a mild diffusion anisotropy due to stratification. Interpretation of in situ diffusion experiments is complicated by several non-ideal effects caused by the presence of a sintered filter, a gap between the filter and borehole wall and an excavation disturbed zone (EdZ). The relevance of such non-ideal effects and their impact on estimated clay parameters have been evaluated with numerical sensitivity analyses and synthetic experiments having similar parameters and geometric characteristics as real DIR experiments. Normalized dimensionless sensitivities of tracer concentrations at the test interval have been computed numerically. Tracer concentrations are found to be sensitive to all key parameters. Sensitivities are tracer dependent and vary with time. These sensitivities are useful to identify which are the parameters that can be estimated with less uncertainty and find the times at which tracer concentrations begin to be sensitive to each parameter. Synthetic experiments generated with prescribed known parameters have been interpreted automatically with INVERSE-CORE{sup 2D} and used to evaluate the relevance of non-ideal effects and ascertain parameter identifiability in the presence of random measurement errors. Identifiability analysis of synthetic experiments reveals that data noise makes difficult the estimation of clay parameters. Parameters of clay and EdZ cannot be estimated simultaneously from noisy data. Models without an EdZ fail to reproduce synthetic data. Proper interpretation of in situ diffusion experiments requires accounting for filter

  14. New spectral methods in cloud and aerosol remote sensing applications

    Science.gov (United States)

    Schmidt, K. Sebastian; McBride, Patrick; Pilewskie, Peter; Feingold, Graham; Jiang, Hongli

    2010-05-01

    We present new remote sensing techniques that rely on spectral observations of clouds and aerosols in the solar wavelength range. As a first example, we show how the effects of heterogeneous clouds, aerosols of changing optical properties, and the surface within one pixel can be distinguished by means of their spectral signatures. This example is based on data from the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS, Houston, Texas, 2006), Large Eddy Simulations (LES) of polluted boundary layer clouds, and 3-dimensional radiative transfer calculations. In a second example, we show that the uncertainty of cloud retrievals can be improved considerably by exploiting the spectral information around liquid water absorption features in the near-infrared wavelength range. This is illustrated with spectral transmittance data from the NOAA International Chemistry Experiment in the Arctic LOwer Troposphere (ICEALOT, 2008). In contrast to reflected radiance, transmitted radiance is only weakly sensitive to cloud effective drop radius, and only cloud optical thickness can be obtained from the standard dual-channel technique. We show that effective radius and liquid water path can also be retrieved with the new spectral approach, and validate our results with microwave liquid water path measurements.

  15. Securing Cloud from Cloud Drain

    Directory of Open Access Journals (Sweden)

    Niva Das

    2014-09-01

    Full Text Available Today, in the world of communication, connected systems is growing at a rapid pace. To accommodate this growth the need for computational power and storage is also increasing at a similar rate. Companies are investing a large amount of resources in buying, maintaining and ensuring availability of the system to their customers. To mitigate these issues, cloud computing is playing a major role [1]. The underlying concept of cloud computing dates back to the ‘50s but the term entering into widespread usage can be traced to 2006 when Amazon.com announced the Elastic Compute Cloud. In this paper, we will discuss about cloud security approaches. We have used the term “CloudDrain” to define data leakage in case of security compromise.

  16. The Evolution of Cloud Computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; The ATLAS collaboration; Berghaus, Frank; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

  17. Cloud migration

    CERN Document Server

    Höllwarth, Tobias

    2012-01-01

    This book is designed for managers and entrepreneurs, who are considering improving the economics and flexibility of their IT solutions and infrastructures. The book is also for readers who wish to learn more about the Cloud, but do not want to become specialists.This book discusses the technical, legal, fiscal, economic, organisational and environmental aspects of Cloud services. If you are looking for practical advice on vendor selection and certification, as well as real world Cloud project case studies, this is the book to consult.It is the result of a highly cooper

  18. Cloud Computing

    CERN Document Server

    Baun, Christian; Nimis, Jens; Tai, Stefan

    2011-01-01

    Cloud computing is a buzz-word in today's information technology (IT) that nobody can escape. But what is really behind it? There are many interpretations of this term, but no standardized or even uniform definition. Instead, as a result of the multi-faceted viewpoints and the diverse interests expressed by the various stakeholders, cloud computing is perceived as a rather fuzzy concept. With this book, the authors deliver an overview of cloud computing architecture, services, and applications. Their aim is to bring readers up to date on this technology and thus to provide a common basis for d

  19. Ground-based experiments complement microgravity flight opportunities in the investigation of the effects of space flight on the immune response: is protein kinase C gravity sensitive?

    Science.gov (United States)

    Chapes, S. K.; Woods, K. M.; Armstrong, J. W.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    This manuscript briefly reviews ground-based and flight experiments, discusses how those experiments complement each other, and details how those experiments lead us to speculate about the gravity-sensitive nature of protein kinase C.

  20. Evaluation of Nimbus 7 THIR/CLE and Air Force three-dimensional Nephanalysis estimates of cloud amount. [Temperature-Humidity Infrared Radiometer/Clouds Earth Radiation Budget Experiment

    Science.gov (United States)

    Stowe, L. L.

    1984-01-01

    Three different estimates of the percent of fixed geographical regions (160 x 160 km) either free of cloud (clear) or covered by low, middle, and high (opaque) cloud have been intercompared. The estimates were derived by analysts interpreting geosynchronous satellite images, with concurrent meteorological observations; from Nimbus 7 temperature humidity infrared radiometer (THIR) CLOUD ERB (CLE) data; and from Air Force three dimensional nephanalysis (3DN) data. Air Force 3DN agrees better with the analyst than THIR/CLE, except for high cloud amount; the CLE and 3DN results tend to overestimate clear amount when clear amount is large and underestimate it when clear amount is small, by 10-20 percent for CLE and by 5-10 percent for 3DN, and both agree well with the analyst in the mean. Systematic and random errors for 3DN and CLE are specified. CLE estimates of cloud amount over land at night should not be used for scientific purposes unless restricted to high cloud amount. It is believed that the CLR and 3DN are the only two digitized, global cloud type and amount data sets in existence.

  1. Introducing Cloud Computing Topics in Curricula

    Science.gov (United States)

    Chen, Ling; Liu, Yang; Gallagher, Marcus; Pailthorpe, Bernard; Sadiq, Shazia; Shen, Heng Tao; Li, Xue

    2012-01-01

    The demand for graduates with exposure in Cloud Computing is on the rise. For many educational institutions, the challenge is to decide on how to incorporate appropriate cloud-based technologies into their curricula. In this paper, we describe our design and experiences of integrating Cloud Computing components into seven third/fourth-year…

  2. Introducing Cloud Computing Topics in Curricula

    Science.gov (United States)

    Chen, Ling; Liu, Yang; Gallagher, Marcus; Pailthorpe, Bernard; Sadiq, Shazia; Shen, Heng Tao; Li, Xue

    2012-01-01

    The demand for graduates with exposure in Cloud Computing is on the rise. For many educational institutions, the challenge is to decide on how to incorporate appropriate cloud-based technologies into their curricula. In this paper, we describe our design and experiences of integrating Cloud Computing components into seven third/fourth-year…

  3. Simple Cloud Chambers Using Gel Ice Packs

    Science.gov (United States)

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  4. Numerical Simulation of the Evolution of Snow Cover and Its Sensitivity Experiments

    Institute of Scientific and Technical Information of China (English)

    CHEN Haishan; SUN Zhaobo

    2005-01-01

    By using Comprehensive Land Surface Model (CLSM), three snow cases, i.e., France Col de Porte 1993/1994, 1994/1995 and BOREAS SSA-OJP 1994/1995, were simulated. The simulated results were compared with the observations to examine the capability of the model to describe the evolutions of snow cover under two different land cover conditions. Several sensitivity experiments were performed to investigate the effects of the parameterization schemes of some snow cover internal processes and vegetation on the model results. Results suggest that the CLSM simulates the basic processes of snow cover accurately and describes the features of snow cover evolutions reasonably, indicating that the model has the potential to model the processes related to the snow cover evolution. It is also found that the different parameterization schemes of the snowfall density and snow water holding capacity have significant effects on the simulation of snow cover. The estimation of snowfall density mainly impacts the simulated snow depth, and the underestimation (overestimation) of the snowfall density increases (decreases) the snow depth simulated significantly but with little effect on the simulated snow water equivalent (SWE). The parameterization of the snow water holding capacity plays a crucial role in the evolution of snow cover, especially in the ablation of snow cover. Larger snow water holding capacity usually leads to larger snow density and heat capacity by storing more liquid water in the snow layer, and makes the temperature of snow cover and the snow ablation vary more slowly.To a smaller snow water holding capacity, contrary is the case. The results also show that the physical processes related to the snow cover variation are different, which are dependent on the vegetation existed.Vegetation plays an important role in the evolution of soil-snow system by changing the energy balance at the snow-soil surface. The existence of vegetation is favorable to the maintenance of snow

  5. Construction of Experiment Teaching Platform Based on the Cloud Desktop%基于桌面云的实验教学平台的构建

    Institute of Scientific and Technical Information of China (English)

    郭芬; 李静锴; 张安定

    2015-01-01

    本科实验教学课程是本科教学的重要组成部分,传统实验教学中心的模式已不能适应计算机软件专业的发展和需求。本文针对传统实验教学平台存在的问题,充分利用桌面云技术的优势,构建基于桌面云的实验教学平台。该平台面向实验教学过程的各个环节,涉及到实验室的管理、学生上机实验的考勤和管理、实验教学镜像的制作、服务器集群的监控等过程。学生可通过本文构建的桌面云实验教学平台按需自助的通过云终端获取实验资源,从而最大化满足学生对学习资源的需求。同时该平台有利于教师教学资源及教学成果的共享,从而提高实验教学的质量,促进学院学科建设的发展。%Experimental teaching is very important for university teaching, and the traditional experiment teaching mode can not adapt to the development of computer software. An teaching platform for experiment is constructed, which is based on the cloud desktop. The platform takes each factor for experiment teaching into account, involving the management of laboratory, attendance of students, setting up of environment image, and server cluster monitoring, etc. The experiment teaching platform can meet the needs of students in learning resources as best as it can, students can access to the resources on-demand self-service via cloud terminal. At the same time, it is beneficial for teaching resources sharing so as to improve the quality of experiment teaching.

  6. EpViX: A cloud-based tool for epitope reactivity analysis and epitope virtual crossmatching to identify low immunologic risk donors for sensitized recipients.

    Science.gov (United States)

    Anunciação, Fernando Antonio Costa; Sousa, Luiz Claudio Demes da Mata; da Silva, Adalberto Socorro; Marroquim, Mário Sérgio Coelho; Coelho, Antônio Gilberto Borges; Willcox, Glauco Henrique; de Andrade, João Marcelo Medeiros; Corrêa, Bruno de Melo; Guimarães, Elisabeth Lima; do Monte, Semiramis Jamil Hadad

    2015-11-01

    One of the challenges facing solid organ transplantation programs globally is the identification of low immunological risk donors for sensitized recipients by HLA allele genotype. Because recognition of donor HLA alleles by host antibodies is at the core of organ rejection, the objective of this work was to develop a new version of the EpHLA software, named EpViX, which uses an HLAMatchmaker algorithm and performs automated epitope virtual crossmatching at the initiation of the organ donation process. EpViX is a free, web-based application developed for use over the internet on a tablet, smartphone or computer. This program was developed using the Ruby programming language and the Ruby-on-Rails framework. To improve the user experience, the EpViX software interface was developed based on the best human–computer interface practices. To simplify epitope analysis and virtual crossmatching, the program was integrated with important available web-based resources, such as OPTN, IMGT/HLA and the International HLA Epitope Registry. We successfully developed a program that allows people to work collaboratively and effectively during the donation process by accurately predicting negative crossmatches, saving time and other resources.

  7. The sensitivity of past and near-future lunar radio experiments to ultra-high-energy cosmic rays and neutrinos

    Science.gov (United States)

    Bray, J. D.

    2016-04-01

    Various experiments have been conducted to search for the radio emission from ultra-high-energy (UHE) particles interacting in the lunar regolith. Although they have not yielded any detections, they have been successful in establishing upper limits on the flux of these particles. I present a review of these experiments in which I re-evaluate their sensitivity to radio pulses, accounting for effects which were neglected in the original reports, and compare them with prospective near-future experiments. In several cases, I find that past experiments were substantially less sensitive than previously believed. I apply existing analytic models to determine the resulting limits on the fluxes of UHE neutrinos and cosmic rays (CRs). In the latter case, I amend the model to accurately reflect the fraction of the primary particle energy which manifests in the resulting particle cascade, resulting in a substantial improvement in the estimated sensitivity to CRs. Although these models are in need of further refinement, in particular to incorporate the effects of small-scale lunar surface roughness, their application here indicates that a proposed experiment with the LOFAR telescope would test predictions of the neutrino flux from exotic-physics models, and an experiment with a phased-array feed on a large single-dish telescope such as the Parkes radio telescope would allow the first detection of CRs with this technique, with an expected rate of one detection per 140 h.

  8. Exploring the Effects of Cloud Vertical Structure on Cloud Microphysical Retrievals based on Polarized Reflectances

    Science.gov (United States)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.

    2013-12-01

    A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.

  9. Getting started with Citrix CloudPortal

    CERN Document Server

    U, Puthiyavan

    2013-01-01

    The book will follow a step-by-step, tutorial-based approach and show readers how to take advantage of Citrix CloudPortal's capabilities.This book is ideal for administrators and engineers new to the Citrix Cloud Solution CPSM, CPBM, and who are looking to get a good grounding in Citrix's new product. It's assumed that you will have some experience in the basics of cloud computing already. No prior knowledge of CloudPortal is expected.

  10. The Influence of Interviewer Presence and Survey Mode on Question Sensitivity : Results From a Fake Good/Fake Bad Experiment

    NARCIS (Netherlands)

    Wegkamp, Annemiek; Ongena, Yfke; Haan, Marieke

    2014-01-01

    This paper examines whether interviewer presence and survey mode affect the sensitivity of questions in survey interviews. A comparison is made between web surveys and paper & pencil surveys. A fake good/fake bad experiment was designed to find out which questions of the European Social Survey are s

  11. Reflexive Positioning in a Politically Sensitive Situation: Dealing with the Threats of Researching the West Bank Settler Experience

    Science.gov (United States)

    Possick, Chaya

    2009-01-01

    For the past 7 years, the author has conducted qualitative research projects revolving around the experiences of West Bank settlers. The political situation in Israel in general, and the West Bank in particular, has undergone rapid and dramatic political, military, and social changes during this period. In highly politically sensitive situations…

  12. Simulating Electron Clouds in Heavy-Ion Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R.H.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik,A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J-L.; Stoltz, P.; Veitzer, S.

    2005-04-07

    Contaminating clouds of electrons are a concern for most accelerators of positive-charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly-, weakly-, and un-magnetized. They describe their approach to such self-consistency, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyro period in the magnets. They present tests and applications: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the High-Current Experiment (HCX) at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam and an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-timestep mover to accurately calculate the instability.

  13. Potential New Lidar Observations for Cloud Studies

    Science.gov (United States)

    Winker, Dave; Hu, Yong; Narir, Amin; Cai, Xia

    2015-01-01

    The response of clouds to global warming represents a major uncertainty in estimating climate sensitivity. These uncertainties have been tracked to shallow marine clouds in the tropics and subtropics. CALIOP observations have already been used extensively to evaluate model predictions of shallow cloud fraction and top height (Leahy et al. 2013; Nam et al 2012). Tools are needed to probe the lowest levels of the troposphere. The large footprint of satellite lidars gives large multiple scattering from clouds which presents new possibilities for cloud retrievals to constrain model predictions.

  14. Securing Data Transfer in Cloud Environment

    Directory of Open Access Journals (Sweden)

    K. S. Wagh

    2014-05-01

    Full Text Available Data security and access control is one of the most challenging ongoing research work in cloud computing, due to users outsourcing their sensitive data to cloud providers. The various existing solutions that use pure cryptographic techniques to mitigate these security and access control problems suffer from heavy computational overhead on the data owner as well as the cloud service provider for key distribution and management. Cloud storage moves the user’s data to large data centers, that are remotely located, on which user does not have any control. This unique feature of the cloud poses many new security challenges which need to be clearly understood and resolved.

  15. Correlation between the adaptive response and individual sensitivity to monoepoxybutene in in vitro experiments on human lymphocytes.

    Science.gov (United States)

    Sasiadek, M; Paprocka-Borowicz, M

    1997-05-23

    Individual variations in the susceptibility to mutagenic/carcinogenic chemicals depend on the activity of xenobiotic metabolizing enzymes and on DNA- and chromosome-damage repair systems. Monoepoxybutene (MEB) is a genotoxic metabolite of 1,3-butadiene (BD), which has been classified as a probable carcinogen in humans. The purpose of the present study was to investigate by in vitro experiments on human whole blood lymphocytes (WBL), whether an individual sensitivity to MEB correlates with the adaptive response to the tested agent. In the analyzed group, 8.3% of blood donors were relatively sensitive to MEB. The comparison of SCE induction in cultures pretreated and not pretreated with an adaptive dose (AD) of MEB showed, that there was an adaptive response to MEB. The adaptive response in the group of relatively sensitive donors was similar to that of the relatively resistant ones. This result suggests that individual sensitivity to the tested agent and adaptive response depend on different biological mechanisms.

  16. Water Vapor and Cloud Radiative Forcings over the Pacific Ocean Simulated by the LASG/IAP AGCM: Sensitivity to Convection Schemes

    Institute of Scientific and Technical Information of China (English)

    WU Chunqiang; ZHOU Tianjun; SUN De-Zheng; BAO Qing

    2011-01-01

    Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASG/IAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang-McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Nifio warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwav e CRF (LWCRF) and its response to El Nino warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Nifio warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are discussed.

  17. Sensitivity analysis for CORSOR models simulating fission product release in LOFT-LP-FP-2 severe accident experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hoseyni, Seyed Mohsen [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Basic Sciences; Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Young Researchers and Elite Club; Pourgol-Mohammad, Mohammad [Sahand Univ. of Technology, Tabriz (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Yousefpour, Faramarz [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-03-15

    This paper deals with simulation, sensitivity and uncertainty analysis of LP-FP-2 experiment of LOFT test facility. The test facility simulates the major components and system response of a pressurized water reactor during a LOCA. MELCOR code is used for predicting the fission product release from the core fuel elements in LOFT LP-FP-2 experiment. Moreover, sensitivity and uncertainty analysis is performed for different CORSOR models simulating release of fission products in severe accident calculations for nuclear power plants. The calculated values for the fission product release are compared under different modeling options to the experimental data available from the experiment. In conclusion, the performance of 8 CORSOR modeling options is assessed for available modeling alternatives in the code structure.

  18. Cloud Top Scanning radiometer (CTS)

    Science.gov (United States)

    1978-01-01

    A scanning radiometer to be used for measuring cloud radiances in each of three spectral regions is described. Significant features incorporated in the Cloud Top Scanner design are: (1) flexibility and growth potential through use of easily replaceable modular detectors and filters; (2) full aperture, multilevel inflight calibration; (3) inherent channel registration through employment of a single shared field stop; and (4) radiometric sensitivity margin in a compact optical design through use of Honeywell developed (Hg,Cd)Te detectors and preamplifiers.

  19. High-Sensitivity Measurement of 3He-4He Isotopic Ratios for Ultracold Neutron Experiments

    CERN Document Server

    Mumm, H P; Bauder, W; Abrams, N; Deibel, C M; Huffer, C R; Huffman, P R; Schelhammer, K W; Swank, C M; Janssens, R; Jiang, C L; Scott, R H; Pardo, R C; Rehm, K E; Vondrasek, R; O'Shaughnessy, C M; Paul, M; Yang, L

    2016-01-01

    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of 3He to 4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10e-14 level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of 3He/4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude.

  20. Coupling between lower-tropospheric convective mixing and low-level clouds: Physical mechanisms and dependence on convection scheme.

    Science.gov (United States)

    Vial, Jessica; Bony, Sandrine; Dufresne, Jean-Louis; Roehrig, Romain

    2016-12-01

    Several studies have pointed out the dependence of low-cloud feedbacks on the strength of the lower-tropospheric convective mixing. By analyzing a series of single-column model experiments run by a climate model using two different convective parametrizations, this study elucidates the physical mechanisms through which marine boundary-layer clouds depend on this mixing in the present-day climate and under surface warming. An increased lower-tropospheric convective mixing leads to a reduction of low-cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the convective mixing and to boundary-layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower-tropospheric drying induced by the convective mixing, which damps the reduction of the low-cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low-cloud radiative cooling, which enhances the reduction of the low-cloud fraction. The relative importance of these two different processes depends on the closure of the convective parameterization. The convective scheme that favors the coupling between latent heat flux and low-cloud radiative cooling exhibits a stronger sensitivity of low-clouds to convective mixing in the present-day climate, and a stronger low-cloud feedback in response to surface warming. In this model, the low-cloud feedback is stronger when the present-day convective mixing is weaker and when present-day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low-cloud feedbacks observationally is discussed.

  1. The Psychological Essence of the Child Prodigy Phenomenon: Sensitive Periods and Cognitive Experience.

    Science.gov (United States)

    Shavinina, Larisa V.

    1999-01-01

    Examination of the child prodigy phenomenon suggests it is a result of extremely accelerated mental development during sensitive periods that leads to the rapid growth of a child's cognitive resources and their construction into specific exceptional achievements. (Author/DB)

  2. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaorong [Institute of Optics and Electronics, Chinese Academy of Sciences and Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Bincheng [Institute of Optics and Electronics, Chinese Academy of Sciences and Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209 (China)

    2015-02-15

    Surface thermal lens is a highly sensitive photothermal technique to measure low absorption losses of various solid materials. In such applications, the sensitivity of surface thermal lens is a key parameter for measuring extremely low absorption. In this paper, we experimentally investigated the influence of probe beam wavelength on the sensitivity of surface thermal lens for measuring the low absorptance of optical laser components. Three probe lasers with wavelength 375 nm, 633 nm, and 1570 nm were used, respectively, to detect the surface thermal lens amplitude of a highly reflective coating sample excited by a cw modulated Gaussian beam at 1064 nm. The experimental results showed that the maximum amplitude of surface thermal lens signal obtained at corresponding optimized detection distance was inversely proportional to the wavelength of the probe beam, as predicted by previous theoretical model. The sensitivity of surface thermal lens could