WorldWideScience

Sample records for cloud red giants

  1. Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nie, J. D.; Wood, P. R.

    2014-01-01

    Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.

  2. The Near-infrared Tip of the Red Giant Branch. II. An Absolute Calibration in the Large Magellanic Cloud

    Science.gov (United States)

    Hoyt, Taylor J.; Freedman, Wendy L.; Madore, Barry F.; Seibert, Mark; Beaton, Rachael L.; Hatt, Dylan; Jang, In Sung; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.

    2018-05-01

    We present a new empirical JHK absolute calibration of the tip of the red giant branch (TRGB) in the Large Magellanic Cloud (LMC). We use published data from the extensive Near-Infrared Synoptic Survey containing 3.5 million stars, 65,000 of which are red giants that fall within one magnitude of the TRGB. Adopting the TRGB slopes from a companion study of the isolated dwarf galaxy IC 1613, as well as an LMC distance modulus of μ 0 = 18.49 mag from (geometric) detached eclipsing binaries, we derive absolute JHK zero points for the near-infrared TRGB. For a comparison with measurements in the bar alone, we apply the calibrated JHK TRGB to a 500 deg2 area of the 2MASS survey. The TRGB reveals the 3D structure of the LMC with a tilt in the direction perpendicular to the major axis of the bar, which is in agreement with previous studies.

  3. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  4. Asteroseismology of 16,000 Kepler Red Giants

    DEFF Research Database (Denmark)

    Yu, Jie; Huber, Daniel; Bedding, Timothy R.

    2018-01-01

    (sigma(M) = 7.8%), radius (sigma(R) = 2.9%), and thus surface gravity (sigma(log g) = 0.01 dex). Thanks to the large red giant sample, we confirm that red-giant-branch (RGB) and helium-core-burning (HeB) stars collectively differ in the distribution of oscillation amplitude, granulation power, and width...

  5. Asteroseismic Diagram for Subgiants and Red Giants

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Ning; Tang, Yanke [College of Physics and Electronic information, Dezhou University, Dezhou 253023 (China); Yu, Peng [College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Dou, Xianghua, E-mail: ning_gai@163.com, E-mail: tyk450@163.com [Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou 253023 (China)

    2017-02-10

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ{sub 1}–Δ ν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ{sub 1}–Δ ν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M {sub ⊙}, the ΔΠ{sub 1}–Δ ν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ , which indicate similar evolution states especially for similar mass stars, on the ΔΠ{sub 1}–Δ ν diagram.

  6. Red giants: then and now

    Science.gov (United States)

    Faulkner, John

    Fred Hoyle's work on the structure and evolution of red giants, particularly his pathbreaking contribution with Martin Schwarzschild (Hoyle and Schwarzschild 1955), is both lauded and critically assessed. In his later lectures and work with students in the early 1960s, Hoyle presented more physical ways of understanding some of the approximations used, and results obtained, in that seminal paper. Although later ideas by other investigators will be touched upon, Hoyle's viewpoint - that low-mass red giants are essentially white dwarfs with a serious mass-storage problem - is still extremely fruitful. Over the years, I have further developed his method of attack. Relatively recently, I have been able to deepen and broaden the approach, finally extending the theory to provide a unifying treatment of the structure of low-mass stars from the main sequence though both the red-giant and horizontal-branch phases of evolution. Many aspects of these stars that had remained puzzling, even mysterious, for decades have now fallen into place, and some questions have been answered that were not even posed before. With low-mass red giants as the simplest example, this recent work emphasizes that stars, in general, may have at least two distinct but very important centres: (I) a geometrical centre, and (II) a separate nuclear centre, residing in a shell outside a zero-luminosity dense core for example. This two-centre perspective leads to an explicit, analytical, asymptotic theory of low-mass red-giant structure. It enables one to appreciate that the problem of understanding why such stars become red giants is one of anticipating a remarkable yet natural structural bifurcation that occurs in them. This bifurcation occurs because of a combination of known and understandable facts just summarized namely that, following central hydrogen exhaustion, a thin nuclear-burning shell does develop outside a more-or-less dense core. In the resulting theory, both ρsh/ρolinec and

  7. Surface Compositions of Red Giant Stars in Globular Clusters

    Science.gov (United States)

    Cheng, Eric; Lau, Marie; Smith, Graeme; Chen, Brian

    2018-01-01

    Globular clusters (GCs) are excellent “laboratories” to study the formation and evolution of our galaxy. In order to understand, more specifically, the chemical compositions and stellar evolution of the stars in GCs, we ask whether or not deep internal mixing occurs in red giants or if in fact the compositions come from the primordial interstellar medium or previous generations of stars. It has been discovered that as a star evolves up the red giant branch, the surface carbon abundance decreases, which is evidence of deep internal mixing. We questioned whether these processes also affect O or Na abundance as a star evolves. We collected measurement data of red giants from GCs out of academic journals and sorted the data into catalogs. Then, we plotted the catalogs into figures, comparing surface O and Na each with stellar luminosity. Statistical tests were ran to quantify the amount of correlation between the variables. Out of 27 GCs, we concluded that eight show a positive correlation between Na and luminosity, and two show a negative correlation between O and luminosity. Properties of GCs were compared to determine if chemical distribution in stars depends on GCs as the self-enrichment scenario suggests. We created histograms of sodium distribution to test for bimodality to examine if there are separate trends in each GC. In six GCs, two different sequences of red giants appear for Na versus luminosity, suggesting evidence that the depth of mixing may differ among each red giant in a GC. This study has provided new evidence that the changing chemical abundances on the surfaces of red giants can be due to stellar evolutionary effects and deep internal mixing, which may not necessarily depend on the GC and may differ in depth among each red giant. Through this study, we learn more about stellar evolution which will eventually help us understand the origins of our universe. Most of this work was carried out by high school students working under the auspices of

  8. Nitrogen depletion in field red giants

    DEFF Research Database (Denmark)

    Masseron, T.; Lagarde, N.; Miglio, A.

    2017-01-01

    , the behaviour of nitrogen data along the evolution confirms the existence of non-canonical extramixing on the red giant branch (RGB) for all low-mass stars in the field. But more surprisingly, the data indicate that nitrogen has been depleted between the RGB tip and the red clump. This may suggest that some...

  9. Red giants seismology

    Science.gov (United States)

    Mosser, B.; Samadi, R.; Belkacem, K.

    2013-11-01

    The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.

  10. Sparsely-Observed Pulsating Red Giants in the AAVSO Observing Program

    Science.gov (United States)

    Percy, J. R.

    2018-06-01

    This paper reports on time-series analysis of 156 pulsating red giants (21 SRa, 52 SRb, 33 SR, 50 Lb) in the AAVSO observing program for which there are no more than 150-250 observations in total. Some results were obtained for 68 of these stars: 17 SRa, 14 SRb, 20 SR, and 17 Lb. These results generally include only an average period and amplitude. Many, if not most of the stars are undoubtedly more complex; pulsating red giants are known to have wandering periods, variable amplitudes, and often multiple periods including "long secondary periods" of unknown origin. These results (or lack thereof) raise the question of how the AAVSO should best manage the observation of these and other sparsely-observed pulsating red giants.

  11. Pulsating red giants and supergiants as probes of galaxy formation and evolution

    Science.gov (United States)

    Theodorus van Loon, Jacco; Javadi, Atefeh; Khosroshahi, Habib; Rezaei, Sara; Golshan, Roya; Saberi, Maryam

    2015-08-01

    We have developed new techniques to use pulsating red giant and supergiants stars to reconstruct the star formation history of galaxies over cosmological time, as well as using them to map the dust production across their host galaxies. We describe the large programme on the Local Group spiral galaxy Triangulum (M33), which we have monitored at near-infrared wavelengths for several years using the United Kingdom InfraRed Telescope in Hawai'i. We outline the methodology and present the results for the central square kiloparsec (Javadi et al. 2011a,b, 2013) and - fresh from the press - the disc of M33 (Javadi et al. 2015, and in preparation). We also describe the results from our application of this new technique to other nearby galaxies: the Magellanic Clouds (published in Rezaei et al. 2014), the dwarf galaxies NGC 147 and 185 (Golshan et al. in preparation), and Centaurus A.

  12. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  13. Kepler Asteroseismology of Red-giant Stars

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J.

    2012-01-01

    The Kepler mission, launched in March 2009, has revolutionized asteroseismology, providing detailed observations of thousands of stars. This has allowed in-depth analyses of stars ranging from compact hot subdwarfs to red giants, and including the detection of solar-like oscillations in hundreds ...

  14. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    NARCIS (Netherlands)

    Bedding, T.R.; Mosser, B.; Huber, D.; Montalbán, J.; Beck, P.; Christensen-Dalsgaard, J.; Elsworth, Y.P.; García, R.A.; Miglio, A.; Stello, D.; White, T.R.; de Ridder, J.; Hekker, S.; Aerts, C.; Barban, C.; Belkacem, K.; Broomhall, A.M.; Brown, T.M.; Buzasi, D.L.; Carrier, F.; Chaplin, W.J.; Di Mauro, M.P.; Dupret, M.-A.; Frandsen, S.; Gilliland, R.L.; Goupil, M.J.; Jenkins, J.M.; Kallinger, T.; Kawaler, S.; Kjeldsen, H.; Mathur, S.; Noels, A.; Silva Aguirre, V.; Ventura, P.

    2011-01-01

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties

  15. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1990-01-01

    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  16. LARGE MAGELLANIC CLOUD DISTANCE AND STRUCTURE FROM NEAR-INFRARED RED CLUMP OBSERVATIONS

    International Nuclear Information System (INIS)

    Koerwer, Joel F.

    2009-01-01

    We have applied the Infrared Survey Facility Magellanic Clouds Point-Source Catalog to the mapping of the red clump (RC) distance modulus across the Large Magellanic Cloud (LMC). Using the J- (1.25 μm) and H- (1.63 μm) band data to derive a reddening free luminosity function and a theoretical RC absolute magnitude from stellar evolution libraries, we estimate a distance modulus to the LMC of μ = 18.54 ± 0.06. The best fitting plane inclination, i, and the position angle of the line of nodes, φ, have little dependence on the assumed RC absolute magnitude; we find i = 23. 0 5 ± 0. 0 4 and φ = 154. 0 6 ± 1. 0 2. It was also noted that many fields included a significant asymptotic giant branch bump population that must be accounted for.

  17. Large Magellanic Cloud Distance and Structure from Near-Infrared Red Clump Observations

    Science.gov (United States)

    Koerwer, Joel F.

    2009-07-01

    We have applied the Infrared Survey Facility Magellanic Clouds Point-Source Catalog to the mapping of the red clump (RC) distance modulus across the Large Magellanic Cloud (LMC). Using the J- (1.25 μm) and H- (1.63 μm) band data to derive a reddening free luminosity function and a theoretical RC absolute magnitude from stellar evolution libraries, we estimate a distance modulus to the LMC of μ = 18.54 ± 0.06. The best fitting plane inclination, i, and the position angle of the line of nodes, phi, have little dependence on the assumed RC absolute magnitude; we find i = 23fdg5 ± 0fdg4 and phi = 154fdg6 ± 1fdg2. It was also noted that many fields included a significant asymptotic giant branch bump population that must be accounted for.

  18. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    DEFF Research Database (Denmark)

    Bedding, Timothy R.; Mosser, Benoit; Huber, Daniel

    2011-01-01

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include...... uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell....... Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high...

  19. HD 181068: A Red Giant in a Triply Eclipsing Compact Hierarchical Triple System

    DEFF Research Database (Denmark)

    Derekas, A.; Kiss, Lazlo L.; Borkovits, T.

    2011-01-01

    by ground-based spectroscopy and interferometry, which show it to be a hierarchical triple with two types of mutual eclipses. The primary is a red giant that is in a 45-day orbit with a pair of red dwarfs in a close 0.9-day orbit. The red giant shows evidence for tidally induced oscillations that are driven...

  20. Presence of mixed modes in red giants in binary systems

    Directory of Open Access Journals (Sweden)

    Themeßl Nathalie

    2017-01-01

    Full Text Available The frequencies of oscillation modes in stars contain valueable information about the stellar properties. In red giants the frequency spectrum also contains mixed modes, with both pressure (p and gravity (g as restoring force, which are key to understanding the physical conditions in the stellar core. We observe a high fraction of red giants in binary systems, for which g-dominated mixed modes are not pronounced. This trend leads us to investigate whether this is specific for binary systems or a more general feature. We do so by comparing the fraction of stars with only p-dominated mixed modes in binaries and in a larger set of stars from the APOKASC sample. We find only p-dominated mixed modes in about 50% of red giants in detached eclipsing binaries compared to about 4% in the large sample. This could indicate that this phenomenon is tightly related to binarity and that the binary fraction in the APOKASC sample is about 8%.

  1. History of the stellar birthrate from lithium abundances in red giants

    International Nuclear Information System (INIS)

    Scalo, J.M.; Miller, G.E.

    1980-01-01

    The lithium abundance at the end of main-sequence evolution should increase strongly with mass for masses less than 1.4 M/sub sun/. It is shown that because of this dependence the frequency distribution of Li abundances in red giants is a sensitive probe of the history of the stellar birthrate in the solar neighborhood since the Li distribution directly reflects the stellar age distribution. A birthrate which decreases with time gives a smaller mean red giant Li abundance than an increasing birthrate because a larger fraction of red giants are older and hence less massive. Theoretical Li abundance frequency distributions are calculated for exponentially increasing, constant, and exponentially decreasing birthrates using a semiempirical prescription for main-sequence Li destruction, theoretical main-sequence lifetimes and red giant dilution factors, and self-consistent initial mass functions. The results are compared with the observed abundance distribution for 35 giants studied by Lambert and his colleagues. Allowing for uncertainties, we find that the ratio of present birthrate to average past birthrate has a value between 0.5 and 2. These limits are consistent with results of most other methods of determining the birthrate history, but the present method provides a considerably more stringent lower limit. It is also shown that, with more observational data, fluctuations in the birthrate with a time scale of about one billion years during the period between two and six billion years ago could be resolved

  2. Giant molecular cloud scaling relations: the role of the cloud definition

    Science.gov (United States)

    Khoperskov, S. A.; Vasiliev, E. O.; Ladeyschikov, D. A.; Sobolev, A. M.; Khoperskov, A. V.

    2016-01-01

    We investigate the physical properties of molecular clouds in disc galaxies with different morphologies: a galaxy without prominent structure, a spiral barred galaxy and a galaxy with flocculent structure. Our N-body/hydrodynamical simulations take into account non-equilibrium H2 and CO chemical kinetics, self-gravity, star formation and feedback processes. For the simulated galaxies, the scaling relations of giant molecular clouds, or so-called Larson's relations, are studied for two types of cloud definition (or extraction method): the first is based on total column density position-position (PP) data sets and the second is indicated by the CO (1-0) line emission used in position-position-velocity (PPV) data. We find that the cloud populations obtained using both cloud extraction methods generally have similar physical parameters, except that for the CO data the mass spectrum of clouds has a tail with low-mass objects M ˜ 103-104 M⊙. Owing toa varying column density threshold, the power-law indices in the scaling relations are significantly changed. In contrast, the relations are invariant to the CO brightness temperature threshold. Finally, we find that the mass spectra of clouds for PPV data are almost insensitive to the galactic morphology, whereas the spectra for PP data demonstrate significant variation.

  3. Perfluorooctanesulfonate and periluorooctanoate in red panda and giant panda from China.

    Science.gov (United States)

    Dai, Jiayin; Li, Ming; Jin, Yihe; Saito, Norimitsu; Xu, Muqi; Wei, Fuwen

    2006-09-15

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are important perfluorochemicals (PFCs) in various applications. Recently, it has been shown that these compounds are widespread in the environment, wildlife, and humans. The giant panda and the red panda belong to the order Carnivora, but are highly specialized as bamboo feeders. Both species are considered rare and endangered. In this study, we report for the first time on levels of PFOS and PFOA in serum of the giant panda and the red panda captured in zoos and animal parks from six provinces in China. PFOS was the predominant compound in all panda samples measured (ranging from 0.80 to 73.80 microg/L for red panda and from 0.76 to 19.00 microg/L for giant panda). The PFOA level ranged from 0.33 to 8.20 microg/L for red panda, and from 0.32 to 1.56 microg/L for giant panda. There was a positive significant correlation between concentrations of PFOS and PFOA in the serum obtained from pandas. No age- or sex- related differences were observed in concentrations of the fluorochemicals in panda sera. Greater concentrations of the fluorochemicals were found for those individuals collected from zoos near urbanized or industrialized areas than for other areas. These data combined with other reported data suggest that there are large differences in distribution of perfluorinated compounds in terrestrial animals.

  4. 77 FR 29871 - Establishment of Class E Airspace; Red Cloud, NE

    Science.gov (United States)

    2012-05-21

    ...-0426; Airspace Docket No. 11-ACE-7] Establishment of Class E Airspace; Red Cloud, NE AGENCY: Federal... at Red Cloud, NE. Controlled airspace is necessary to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Red Cloud Municipal Airport. The FAA is taking this action to enhance the...

  5. Ammonium hydrosulfide and clouds in the atmospheres of the giant planets.

    Science.gov (United States)

    Ibragimov, K. Yu.; Solodovnik, A. A.

    The physicochemical properties of two possible compounds - ammonium hydrosulfide (NH4SH) and ammonium sulfide (NH4)2S - that may be formed in a reaction of ammonia NH3 with hydrogen sulfide H2S are discussed, and the probability of their formation is analyzed on the basis of the Le Chatelier principle. It is shown that the conditions of their formation on the basis of available data on the concentration ratio of the reagents (NH3 and H2S) in the atmospheres of giant planets make the appearance of enough NH4SH for cloud formation highly problematic. Accordingly, the authors propose as an alternative candidate for a cloud-forming role ammonium sulfide (NH4)2S, for whose formation the conditions in the atmospheres of the giant planets are more favorable. The possible spatial localization of (NH4)2S clouds is estimated, and the result is used in an attempt to identify this compound as one of the chromophores.

  6. Internal rotation of 13 low-mass low-luminosity red giants in the Kepler field

    Science.gov (United States)

    Triana, S. A.; Corsaro, E.; De Ridder, J.; Bonanno, A.; Pérez Hernández, F.; García, R. A.

    2017-06-01

    Context. The Kepler space telescope has provided time series of red giants of such unprecedented quality that a detailed asteroseismic analysis becomes possible. For a limited set of about a dozen red giants, the observed oscillation frequencies obtained by peak-bagging together with the most recent pulsation codes allowed us to reliably determine the core/envelope rotation ratio. The results so far show that the current models are unable to reproduce the rotation ratios, predicting higher values than what is observed and thus indicating that an efficient angular momentum transport mechanism should be at work. Here we provide an asteroseismic analysis of a sample of 13 low-luminosity low-mass red giant stars observed by Kepler during its first nominal mission. These targets form a subsample of the 19 red giants studied previously, which not only have a large number of extracted oscillation frequencies, but also unambiguous mode identifications. Aims: We aim to extend the sample of red giants for which internal rotation ratios obtained by theoretical modeling of peak-bagged frequencies are available. We also derive the rotation ratios using different methods, and compare the results of these methods with each other. Methods: We built seismic models using a grid search combined with a Nelder-Mead simplex algorithm and obtained rotation averages employing Bayesian inference and inversion methods. We compared these averages with those obtained using a previously developed model-independent method. Results: We find that the cores of the red giants in this sample are rotating 5 to 10 times faster than their envelopes, which is consistent with earlier results. The rotation rates computed from the different methods show good agreement for some targets, while some discrepancies exist for others.

  7. Tests of two convection theories for red giant and red supergiant envelopes

    Science.gov (United States)

    Stothers, Richard B.; Chin, Chao-Wen

    1995-01-01

    Two theories of stellar envelope convection are considered here in the context of red giants and red supergiants of intermediate to high mass: Boehm-Vitense's standard mixing-length theory (MLT) and Canuto & Mazzitelli's new theory incorporating the full spectrum of turbulence (FST). Both theories assume incompressible convection. Two formulations of the convective mixing length are also evaluated: l proportional to the local pressure scale height (H(sub P)) and l proportional to the distance from the upper boundary of the convection zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red phase of core helium burning. Since the theoretically predicted effective temperatures for cool stars are known to be sensitive to the assigned value of the mixing length, this quantity has been individually calibrated for each evolutionary sequence. The calibration is done in a composite Hertzsprung-Russell diagram for the red giant and red supergiant members of well-observed Galactic open clusters. The MLT model requires the constant of proportionality for the convective mixing length to vary by a small but statistically significant amount with stellar mass, whereas the FST model succeeds in all cases with the mixing lenghth simply set equal to z. The structure of the deep stellar interior, however, remains very nearly unaffected by the choices of convection theory and mixing lenghth. Inside the convective envelope itself, a density inversion always occurs, but is somewhat smaller for the convectively more efficient MLT model. On physical grounds the FST model is preferable, and seems to alleviate the problem of finding the proper mixing length.

  8. 77 FR 4713 - Proposed Establishment of Class E Airspace; Red Cloud, NE

    Science.gov (United States)

    2012-01-31

    ...-0426; Airspace Docket No. 11-ACE-7] Proposed Establishment of Class E Airspace; Red Cloud, NE AGENCY... action proposes to establish Class E airspace at Red Cloud, NE. Controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAP) at Red Cloud Municipal Airport. The FAA is...

  9. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    International Nuclear Information System (INIS)

    Gaulme, P.; McKeever, J.; Rawls, M. L.; Jackiewicz, J.; Mosser, B.; Guzik, J. A.

    2013-01-01

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentially offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a δ-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the

  10. Violet and visual flux problems in red giant stars

    International Nuclear Information System (INIS)

    Faulkner, D.R.

    1989-01-01

    Red giant stars are sites of many astrophysically interesting processes and are important links to late stages of stellar evolution and the chemical history of the galaxy. Much of what is known about stars comes from their spectra, which are formed in the outer layers (atmospheres). Unfortunately the low temperatures in red giant atmospheres promote the formation of many molecules, and the resultant complexity of the spectra has slowed progress in obtaining good models of these objects and leaves many unanswered questions. Several of these problems are investigated. Spectra of red giants provide a natural classification according to composition: M stars are oxygen rich, C stars are carbon rich, while S stars are intermediate. One long standing problem with C stars has been the explanation of the severe lack of energy flux in the violet and near ultraviolet part of their spectrum, generally attributed to an unusual opacity. Results show that one source, SiC, is untenable, while the case for the other, C3, is severely weakened. Synthetic spectra from atmospheric models are compared to spectra of TX Psc, a C star, to show that the contribution of thousands of atomic lines are probably responsible for the violet and ultraviolet flux deficiency. The agreement between the synthetic spectra and observations is very good. K and M type stars also have a violet flux deficiency, though it is less severe than with carbon stars

  11. Towards realistic modelling of spectral line formation - lessons learnt from red giants

    Science.gov (United States)

    Lind, Karin

    2015-08-01

    Many decades of quantitative spectroscopic studies of red giants have revealed much about the formation histories and interlinks between the main components of the Galaxy and its satellites. Telescopes and instrumentation are now able to deliver high-resolution data of superb quality for large stellar samples and Galactic archaeology has entered a new era. At the same time, we have learnt how simplifying physical assumptions in the modelling of spectroscopic data can bias the interpretations, in particular one-dimensional homogeneity and local thermodynamic equilibrium (LTE). I will present lessons learnt so far from non-LTE spectral line formation in 3D radiation-hydrodynamic atmospheres of red giants, the smaller siblings of red supergiants.

  12. GIANT MOLECULAR CLOUD FORMATION IN DISK GALAXIES: CHARACTERIZING SIMULATED VERSUS OBSERVED CLOUD CATALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Benincasa, Samantha M.; Pudritz, Ralph E.; Wadsley, James [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Tasker, Elizabeth J. [Department of Physics, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810 (Japan)

    2013-10-10

    We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10{sup 4} M{sub ☉} and 10{sup 7} M{sub ☉}. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulated cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n{sub thresh} ≥ 10{sup 4} cm{sup –3}—is 3% per 10 Myr, in clouds of roughly 10{sup 6} M{sub ☉}. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.

  13. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    Science.gov (United States)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  14. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array

  15. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  16. Radio Emission from Red-Giant Hot Jupiters

    Science.gov (United States)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  17. New red giant star in the Kepler open cluster NGC 6819

    Science.gov (United States)

    Komucyeya, E.; Abedigamba, O. P.; Jurua, E.; Anguma, S. K.

    2018-05-01

    A recent study indicated that 39 red giant stars showing solar-like oscillations were discovered in the field of Kepleropen cluster NGC 6819. The study was based on photometric distance estimates of 27 stars out of the 39. Using photometric method alone may not be adequate to confirm the membership of these stars. The stars were not previously known in literature to belong to the open cluster NGC 6819. In this study, Kepler data was used to study the membership of the 27 stars. A plot of apparent magnitude as a function of the large frequency separation, supplemented with the proper motion and radial velocity values from literature revealed KIC 5112840 to lie on the same plane with the well known members of the cluster. Echelle diagram was constructed, and the median gravity-mode period spacings (ΔP) calculated for KIC 5112840. A value of ΔP = 66.3 s was obtained, thus placing the red giant star KIC 5112840 on the Red Giant Branch stage of evolution. Our evolutionary status result using the approach in this paper is in agreement with what is in the available literature.

  18. Grain-gas interaction in envelopes of red giants

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1976-01-01

    A model for the ejection of the dust shell of red giant stars through the action of the stellar radiation pressure is developed. Being momentum-coupled to the gas, the dust shell can drive an effective mass loss. On the other hand, the grain injection rate into the interstellar space can be estimated [pt

  19. New asteroseismic scaling relations based on the Hayashi track relation applied to red giant branch stars in NGC 6791 and NGC 6819

    International Nuclear Information System (INIS)

    Wu, T.; Li, Y.; Hekker, S.

    2014-01-01

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track (√(T eff )∼g p R q ) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and ν max (frequency of maximum oscillation power). The Δν and ν max values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and ν max , with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - ν max relation for red giant branch stars.

  20. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  1. Empirically Calibrated Asteroseismic Masses and Radii for Red Giants in the Kepler Fields

    Science.gov (United States)

    Pinsonneault, Marc; Elsworth, Yvonne; Silva Aguirre, Victor; Chaplin, William J.; Garcia, Rafael A.; Hekker, Saskia; Holtzman, Jon; Huber, Daniel; Johnson, Jennifer; Kallinger, Thomas; Mosser, Benoit; Mathur, Savita; Serenelli, Aldo; Shetrone, Matthew; Stello, Dennis; Tayar, Jamie; Zinn, Joel; APOGEE Team, KASC Team, APOKASC Team

    2018-01-01

    We report on the joint asteroseismic and spectroscopic properties of a sample of 6048 evolved stars in the fields originally observed by the Kepler satellite. We use APOGEE spectroscopic data taken from Data Release 13 of the Sloan Digital Sky Survey, combined with asteroseismic data analyzed by members of the Kepler Asteroseismic Science Consortium. With high statistical significance, the different pipelines do not have relative zero points that are the same as the solar values, and red clump stars do not have the same empirical relative zero points as red giants. We employ theoretically motivated corrections to the scaling relation for the large frequency spacing, and adjust the zero point of the frequency of maximum power scaling relation to be consistent with masses and radii for members of star clusters. The scatter in calibrator masses is consistent with our error estimation. Systematic and random mass errors are explicitly separated and identified. The measurement scatter, and random uncertainties, are three times larger for red giants where one or more technique failed to return a value than for targets where all five methods could do so, and this is a substantial fraction of the sample (20% of red giants and 25% of red clump stars). Overall trends and future prospects are discussed.

  2. Oscillating red giants in eclipsing binary systems: empirical reference value for asteroseismic scaling relation

    Science.gov (United States)

    Themeßl, N.; Hekker, S.; Southworth, J.; Beck, P. G.; Pavlovski, K.; Tkachenko, A.; Angelou, G. C.; Ball, W. H.; Barban, C.; Corsaro, E.; Elsworth, Y.; Handberg, R.; Kallinger, T.

    2018-05-01

    The internal structures and properties of oscillating red-giant stars can be accurately inferred through their global oscillation modes (asteroseismology). Based on 1460 days of Kepler observations we perform a thorough asteroseismic study to probe the stellar parameters and evolutionary stages of three red giants in eclipsing binary systems. We present the first detailed analysis of individual oscillation modes of the red-giant components of KIC 8410637, KIC 5640750 and KIC 9540226. We obtain estimates of their asteroseismic masses, radii, mean densities and logarithmic surface gravities by using the asteroseismic scaling relations as well as grid-based modelling. As these red giants are in double-lined eclipsing binaries, it is possible to derive their independent dynamical masses and radii from the orbital solution and compare it with the seismically inferred values. For KIC 5640750 we compute the first spectroscopic orbit based on both components of this system. We use high-resolution spectroscopic data and light curves of the three systems to determine up-to-date values of the dynamical stellar parameters. With our comprehensive set of stellar parameters we explore consistencies between binary analysis and asteroseismic methods, and test the reliability of the well-known scaling relations. For the three red giants under study, we find agreement between dynamical and asteroseismic stellar parameters in cases where the asteroseismic methods account for metallicity, temperature and mass dependence as well as surface effects. We are able to attain agreement from the scaling laws in all three systems if we use Δνref, emp = 130.8 ± 0.9 μHz instead of the usual solar reference value.

  3. Theoretical red-giant branches for globular clusters

    International Nuclear Information System (INIS)

    VandenBerg, D.A.

    1984-01-01

    The authors reports computations of stellar evolutionary sequences from the base of the red-giant branch to the helium flash. Representative models with masses in the range of 0.8 to 0.9 solar masses were selected in order that the stars on the giant branches had ages of approximately 16 billion yr. Initial numerical experiments indicated that a value of α = 1.6 for the ratio of the mixing length to the pressure scale height was needed to provide the best of the Z = 0.0001 model sequence with the observations of M92. Sequences for the other assumed metallicities, Z = 0.0003, 0.001, 0.003, and 0.006, were then computed for the same value of the mixing-length parameter and overlayed directly on the observations. (Auth.)

  4. VizieR Online Data Catalog: JHK lightcurves of red giants in the SMC (Takayama+, 2015)

    Science.gov (United States)

    Takayama, M.; Wood, P. R.; Ita, Y.

    2017-11-01

    This is JHK light curves of 7 oxygen rich stars and 14 carbon stars which show the variability of prominent long secondary periods (LSPs). Those stars are cross-identified with OGLE LSP variables in the Small Magellanic Cloud (Soszynski et al. 2011, J/AcA/61/217). A long-term multiband near-IR photometric survey for variable stars in the Large and Small Magellanic Clouds has been carried out at the South African Astronomical Observatory at Sutherland (Ita et al., in preparation). The SIRIUS camera attached to the IRSF 1.4 m telescope was used for this survey and more than 10 yr of observations in the near-IR bands J(1.25 μm), H(1.63 μm) and KS(2.14 μm) band were obtained. In this work, we select the SMC stars from the SIRIUS data base. We obtained the V- and I-band time series of SMC red giants from the OGLE project (Soszynski et al. 2011, J/AcA/61/217). (2 data files).

  5. Amplitudes of solar-like oscillations in red giants: Departures from the quasi-adiabatic approximation

    Directory of Open Access Journals (Sweden)

    Barban C.

    2013-03-01

    Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.

  6. Statistical characteristics of turbulence in giant molecular clouds. Part 1

    International Nuclear Information System (INIS)

    Ogul'chansky, Ya.Yu.

    1989-01-01

    Using the invariant group of transformations of equations for characteristic functional of turbulence in compressible medium the spectral characteristics in inertial range are obtained. The influence of magnetic field on the turbulent spectra is evaluated. The application of the results obtained to supersonical turbulence in giant molecular clouds is discussed. 42 refs

  7. Optical and theoretical studies of giant clouds in spiral galaxies

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Elmegreen, D.M.

    1980-01-01

    An optical study of four spiral galaxies, combined with radiative transfer models for transmitted and scattered light, has led to a determination of the opacities and masses of numerous dark patches and dust lanes that outline spiral structure. The observed compression factors for the spiral-like dust lanes are in accord with expectations from the theory of gas flow in spiral density waves. Several low density (10 2 cm -3 ) clouds containing 10 6 to 10 7 solar masses were also studied. These results are discussed in terms of recent theoretical models of cloud and star formation in spiral galaxies. The long-term evolution of giant molecular clouds is shown to have important consequences for the positions and ages of star formation sites in spiral arms. (Auth.)

  8. Formation of dust grains with impurities in red giant winds

    Science.gov (United States)

    Dominik, Carsten

    1994-01-01

    Among the several proposed carriers of diffuse interstellar bands (DIB's) are impurities in small dust grains, especially in iron oxide grains (Huffman 1977) and silicate grains (Huffman 1970). Most promising are single ion impurities since they can reproduce the observed band widths (Whittet 1992). These oxygen-rich grains are believed to originate mostly in the mass flows from red giants and in supernovae ejecta (e.g. Gehrz 1989). A question of considerable impact for the origin of DIB's is therefore, whether these grains are produced as mainly clean crystals or as some dirty materials. A formalism has been developed that allows tracking of the heterogeneous growth of a dust grain and its internal structure during the dust formation process. This formalism has been applied to the dust formation in the outflow from a red giant star.

  9. Gravity mode offset and properties of the evanescent zone in red-giant stars

    Science.gov (United States)

    Hekker, S.; Elsworth, Y.; Angelou, G. C.

    2018-03-01

    Context. The wealth of asteroseismic data for red-giant stars and the precision with which these data have been observed over the last decade calls for investigations to further understand the internal structures of these stars. Aim. The aim of this work is to validate a method to measure the underlying period spacing, coupling term, and mode offset of pure gravity modes that are present in the deep interiors of red-giant stars. We subsequently investigate the physical conditions of the evanescent zone between the gravity mode cavity and the pressure mode cavity. Methods: We implement an alternative mathematical description compared to what is used in the literature to analyse observational data and to extract the underlying physical parameters that determine the frequencies of mixed modes. This description takes the radial order of the modes explicitly into account, which reduces its sensitivity to aliases. Additionally, and for the first time, this method allows us to constrain the gravity mode offset ɛg for red-giant stars. Results: We find that this alternative mathematical description allows us to determine the period spacing ΔΠ and the coupling term q for the dipole modes within a few percent of values found in the literature. Additionally, we find that ɛg varies on a star-by-star basis and should not be kept fixed in the analysis. Furthermore, we find that the coupling factor is logarithmically related to the physical width of the evanescent region normalised by the radius at which the evanescent zone is located. Finally, the local density contrast at the edge of the core of red-giant branch models shows a tentative correlation with the offset ɛg. Conclusions: We are continuing to exploit the full potential of the mixed modes to investigate the internal structures of red-giant stars; in this case we focus on the evanescent zone. It remains, however, important to perform comparisons between observations and models with great care as the methods employed

  10. Convective-core Overshoot and Suppression of Oscillations: Constraints from Red Giants in NGC 6811

    Energy Technology Data Exchange (ETDEWEB)

    Arentoft, T.; Brogaard, K.; Jessen-Hansen, J.; Silva Aguirre, V.; Kjeldsen, H.; Mosumgaard, J. R. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Sandquist, E. L., E-mail: toar@phys.au.dk [San Diego State University, Department of Astronomy, San Diego, CA 92182 (United States)

    2017-04-01

    Using data from the NASA spacecraft Kepler , we study solar-like oscillations in red giant stars in the open cluster NGC 6811. We determine oscillation frequencies, frequency separations, period spacings of mixed modes, and mode visibilities for eight cluster giants. The oscillation parameters show that these stars are helium-core-burning red giants. The eight stars form two groups with very different oscillation power spectra; the four stars with the lowest Δ ν values display rich sets of mixed l = 1 modes, while this is not the case for the four stars with higher Δ ν . For the four stars with lowest Δ ν , we determine the asymptotic period spacing of the mixed modes, Δ P , which together with the masses we derive for all eight stars suggest that they belong to the so-called secondary clump. Based on the global oscillation parameters, we present initial theoretical stellar modeling that indicates that we can constrain convective-core overshoot on the main sequence and in the helium-burning phase for these ∼2 M {sub ⊙} stars. Finally, our results indicate less mode suppression than predicted by recent theories for magnetic suppression of certain oscillation modes in red giants.

  11. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  12. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    Directory of Open Access Journals (Sweden)

    Christiane Helling

    2014-04-01

    Full Text Available We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  13. Cloud fluid compression and softening in spiral arms and the formation of giant molecular cloud complexes

    International Nuclear Information System (INIS)

    Cowie, L.L.

    1981-01-01

    In this, the second paper of a series on the galactodynamics of the cloudy interstellar medium, we consider the response of such a gas to a forcing potential in the tight-winding density wave theory. The cloud fluid is treated in the hydrodynamic limit with an equation of state which softens at high densities. It is shown that in the inner regions of the galaxy, cooling of the cloud fluid in the arms can result in gravitational instability and the formation of large bound complexes of clouds which we identify with the giant molecular clouds (GMCs). Masses dimensions, distributions, and scale heights of the GMCs are predicted by the theory. It is suggested that the interstellar gas density in the disk is regulated by the gravitational instability mechanism in the arms which siphons material into star formation. Implications for the evolution of individual GMCs and for galactic morphology are discussed

  14. Mapping of the extinction in Giant Molecular Clouds using optical star counts

    OpenAIRE

    Cambresy, L.

    1999-01-01

    This paper presents large scale extinction maps of most nearby Giant Molecular Clouds of the Galaxy (Lupus, rho-Ophiuchus, Scorpius, Coalsack, Taurus, Chamaeleon, Musca, Corona Australis, Serpens, IC 5146, Vela, Orion, Monoceros R1 and R2, Rosette, Carina) derived from a star count method using an adaptive grid and a wavelet decomposition applied to the optical data provided by the USNO-Precision Measuring Machine. The distribution of the extinction in the clouds leads to estimate their total...

  15. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    International Nuclear Information System (INIS)

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.; Meszaros, Szabolcs; Allende Prieto, Carlos; Bizyaev, Dmitry; Garcìa Pèrez, Ana; Majewski, Steven R.; Schiavon, Ricardo; Holtzman, Jon; Johnson, Jennifer A.

    2013-01-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants (α Boo and μ Leo), two M-giants (β And and δ Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes 12 C, 13 C, 14 N, and 16 O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of 12 C synthesized during 4 He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to ∼0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  16. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Verne V.; Cunha, Katia [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Shetrone, Matthew D. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Meszaros, Szabolcs; Allende Prieto, Carlos [Instituto d' Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Garcia Perez, Ana; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Schiavon, Ricardo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5UX (United Kingdom); Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, Jennifer A., E-mail: vsmith@noao.edu [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  17. METALLICITIES, AGE-METALLICITY RELATIONSHIPS, AND KINEMATICS OF RED GIANT BRANCH STARS IN THE OUTER DISK OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Carrera, R.; Gallart, C.; Aparicio, A.; Hardy, E.

    2011-01-01

    The outer disk of the Large Magellanic Cloud (LMC) is studied in order to unveil clues about its formation and evolution. Complementing our previous studies in innermost fields (3 kpc ∼< R ∼< 7 kpc), we obtained deep color-magnitude diagrams in six fields with galactocentric distances from 5.2 kpc to 9.2 kpc and different azimuths. The comparison with isochrones shows that while the oldest population is approximately coeval in all fields, the age of the youngest populations increases with increasing radius. This agrees with the results obtained in the innermost fields. Low-resolution spectroscopy in the infrared Ca II triplet region has been obtained for about 150 stars near the tip of the red giant branch in the same fields. Radial velocities and stellar metallicities have been obtained from these spectra. The metallicity distribution of each field has been analyzed together with those previously studied. The metal content of the most metal-poor objects, which are also the oldest according to the derived age-metallicity relationships, is similar in all fields independently of the galactocentric distance. However, while the metallicity of the most metal-rich objects measured, which are the youngest ones, remains constant in the inner 6 kpc, it decreases with increasing radius from there on. The same is true for the mean metallicity. According to the derived age-metallicity relationships, which are consistent with being the same in all fields, this result may be interpreted as an outside-in formation scheme in opposition with the inside-out scenario predicted by ΛCDM cosmology for a galaxy like the LMC. The analysis of the radial velocities of our sample of giants shows that they follow a rotational cold disk kinematics. The velocity dispersion increases as metallicity decreases indicating that the most metal-poor/oldest objects are distributed in a thicker disk than the most metal-rich/youngest ones in agreement with the findings in other disks such as that of

  18. CA II TRIPLET SPECTROSCOPY OF SMALL MAGELLANIC CLOUD RED GIANTS. III. ABUNDANCES AND VELOCITIES FOR A SAMPLE OF 14 CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Parisi, M. C.; Clariá, J. J.; Marcionni, N. [Observatorio Astronómico, Universidad Nacional de Córdoba, Laprida 854, Córdoba, CP 5000 (Argentina); Geisler, D.; Villanova, S. [Departamento de Astronomía, Universidad de Concepción Casilla 160-C, Concepción (Chile); Sarajedini, A. [Department of Astronomy, University of Florida P.O. Box 112055, Gainesville, FL 32611 (United States); Grocholski, A. J., E-mail: celeste@oac.uncor.edu, E-mail: claria@oac.uncor.edu, E-mail: nmarcionni@oac.uncor.edu, E-mail: dgeisler@astro-udec.cl, E-mail: svillanova@astro-udec.cl, E-mail: ata@astro.ufl.edu, E-mail: grocholski@phys.lsu.edu [Department of Physics and Astronomy, Louisiana State University 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803-4001 (United States)

    2015-05-15

    We obtained spectra of red giants in 15 Small Magellanic Cloud (SMC) clusters in the region of the Ca ii lines with FORS2 on the Very Large Telescope. We determined the mean metallicity and radial velocity with mean errors of 0.05 dex and 2.6 km s{sup −1}, respectively, from a mean of 6.5 members per cluster. One cluster (B113) was too young for a reliable metallicity determination and was excluded from the sample. We combined the sample studied here with 15 clusters previously studied by us using the same technique, and with 7 clusters whose metallicities determined by other authors are on a scale similar to ours. This compilation of 36 clusters is the largest SMC cluster sample currently available with accurate and homogeneously determined metallicities. We found a high probability that the metallicity distribution is bimodal, with potential peaks at −1.1 and −0.8 dex. Our data show no strong evidence of a metallicity gradient in the SMC clusters, somewhat at odds with recent evidence from Ca ii triplet spectra of a large sample of field stars. This may be revealing possible differences in the chemical history of clusters and field stars. Our clusters show a significant dispersion of metallicities, whatever age is considered, which could be reflecting the lack of a unique age–metallicity relation in this galaxy. None of the chemical evolution models currently available in the literature satisfactorily represents the global chemical enrichment processes of SMC clusters.

  19. Extra-mixing in red giant stars: Challenges for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Palmerini, Sara; Maiorca, Enrico, E-mail: sara.pamerini@fisica.unipg.i [I.N.F.N. sezione di Perugia Dipartimento di Fisica Universita degli Studi di Perugia, via Pascoli, 06123, Perugia (Italy)

    2010-01-01

    The existence of extra-mixing phenomena has been often invoked as a possible solution for the Li-abundance puzzle in low-mass red giant stars. In particular, [1] have shown that extra-mixing phenomena induced by stellar magnetic fields can justify the surface Li enrichment as well as its depletion in low mass giants. In the framework of this model, we test here how sensitive is the Li production to the reaction rate for the {sup 7}Be electron capture, in order to establish whether the presence of intense magnetic fields can alter the Li yield.

  20. Solar-like Oscillations in Low-luminosity Red Giants: First Results from Kepler

    DEFF Research Database (Denmark)

    Bedding, T. R.; Huber, D.; Stello, D.

    2010-01-01

    We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30 minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from t...

  1. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    NARCIS (Netherlands)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the

  2. Recent Findings Related to Giant Cloud Condensation Nuclei in the Marine Boundary Layer and Impacts on Clouds and Precipitation

    Science.gov (United States)

    Sorooshian, Armin; Dadashazar, Hossein; Wang, Zhen; Crosbie, Ewan; Brunke, Michael; Zeng, Xubin; Jonsson, Haflidi; Woods, Roy; Flagan, Richard; Seinfeld, John

    2017-04-01

    This presentation reports on findings from multiple airborne field campaigns off the California coast to understand the sources, nature, and impacts of giant cloud condensation nuclei (GCCN). Aside from sea spray emissions, measurements have revealed that ocean-going ships can be a source of GCCN due to wake and stack emissions off the California coast. Observed particle number concentrations behind 10 ships exceeded those in "control" areas, exhibiting number concentration enhancement ratios (ERs) for minimum threshold diameters of 2, 10, and 20 μm as high as 2.7, 5.5, and 7.5, respectively. The data provide insights into how ER is related to a variety of factors (downwind distance, altitude, ship characteristics such as gross tonnage, length, and beam). The data also provide insight into the extent to which a size distribution parameter and a cloud water chemical measurement can capture the effect of sea salt on marine stratocumulus cloud properties. The two GCCN proxy variables, near-surface particle number concentration for diameter > 5 µm and cloud water chloride concentration, are significantly correlated with each other, and both exhibit expected relationships with other parameters that typically coincide with sea salt emissions. Factors influencing the relationship between these two GCCN proxy measurements will be discussed. When comparing twelve pairs of high and low chloride cloud cases (at fixed liquid water path and cloud drop number concentration), the average drop spectra for high chloride cases exhibit enhanced drop number at diameters exceeding 20 µm, especially above 30 µm. In addition, high chloride cases coincide with enhanced mean columnar R and negative values of precipitation susceptibility. The difference in drop effective radius (re) between high and low chloride conditions decreases with height in cloud, suggesting that some GCCN-produced rain drops precipitate before reaching cloud tops. The sign of cloud responses (i.e., re, R) to

  3. INTERNAL ROTATION OF THE RED-GIANT STAR KIC 4448777 BY MEANS OF ASTEROSEISMIC INVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Di Mauro, M. P.; Cardini, D. [INAF, IAPS Istituto di Astrofisica e Planetologia Spaziali, Roma (Italy); Ventura, R.; Paternò, L. [INAF, Astrophysical Observatory of Catania, Catania (Italy); Stello, D. [Sydney Institute for Astronomy, School of Physics, University of Sydney (Australia); Christensen-Dalsgaard, J.; Hekker, S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Dziembowski, W. A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Beck, P. G.; De Smedt, K.; Tkachenko, A. [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven (Belgium); Bloemen, S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Davies, G. R.; Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Univ. Paris Diderot, IRFU/Sap, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Elsworth, Y. [School of Physics and Astronomy, University of Birmingham (United Kingdom); Mosser, B. [LESIA, PSL Research University, CNRS, Universitè Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, Meudon Cedex (France)

    2016-01-20

    We study the dynamics of the stellar interior of the early red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the dipole mixed modes obtained from Kepler observations. In order to overcome the complexity of the oscillation pattern typical of red-giant stars, we present a procedure to extract the rotational splittings from the power spectrum. We find not only that the core rotates from a minimum of 8 to a maximum of 17 times faster than the surface, confirming previous inversion results generated for other red giants (Deheuvels et al.), but we also estimate the variation of the angular velocity within the helium core with a spatial resolution of 0.001R and verify the hypothesis of a sharp discontinuity in the inner stellar rotation. The results show that the entire core rotates rigidly and provide evidence for an angular velocity gradient around the base of the hydrogen-burning shell; however, we do not succeed in characterizing the rotational slope, due to the intrinsic limits of the applied techniques. The angular velocity, from the edge of the core, appears to decrease with increasing distance from the center, reaching an average value in the convective envelope of 68 ± 22 nHz. We conclude that a set of data that includes only dipolar modes is sufficient to infer quite accurately the rotation of a red giant not only in the dense core but also, with a lower level of confidence, in part of the radiative region and in the convective envelope.

  4. Formation of giant cloud complexes by the Parker-Jeans instability

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1982-01-01

    The Parker-Jeans instability is considered as a possible mechanism for forming the giant cloud complexes observed near OB associations. We use a previously derived dispersion relation to evaluate the masses and growth times of the dominant modes in this instability. The results show that massive clouds (Mroughly-equal10 6 M/sub sun/) can form quickly (roughly-equal12 million yr) in the high density environments (5 cm -3 ) associated with spiral density wave shocks. For densities larger than about 3 cm -3 , these clouds form primarily as a result of the self-graviational forces in the interstellar medium. Lower mass clouds (Mroughly-equal10 5 M/sub sun/) can form in lower density environments as a result of the pure Parker instability. The masses of the clouds that form when the density exceeds about 3 cm -3 are insensitive to the magnetic field strength, cosmic ray pressure, and ambient density (even in compressed media.). These masses are essentially the Jeans mass in a magnetic interstellar medium. The occurrence of a characteristic mass may explain the similarity of the local OB associations. The role of the Parker-Jeans instability as part of a complete theory of cloud formation is summarized

  5. Spectroscopy of Six Red Giants in the Draco Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Smith, Graeme H.; Siegel, Michael H.; Shetrone, Matthew D.; Winnick, Rebeccah

    2006-10-01

    Keck Observatory LRIS-B (Low Resolution Imaging Spectrometer) spectra are reported for six red giant stars in the Draco dwarf spheroidal galaxy and several comparison giants in the globular cluster M13. Indexes that quantify the strengths of the Ca II H and K lines, the λ3883 and λ4215 CN bands, and the λ4300 G band have been measured. These data confirm evidence of metallicity inhomogeneity within Draco obtained by previous authors. The four brightest giants in the sample have absolute magnitudes in the range -2.6intermediate-mass asymptotic giant branch stars to enrich the interstellar medium while star formation was still occurring. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  6. THE GLOBAL EVOLUTION OF GIANT MOLECULAR CLOUDS. II. THE ROLE OF ACCRETION

    International Nuclear Information System (INIS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Matzner, Christopher D.; McKee, Christopher F.

    2011-01-01

    We present virial models for the global evolution of giant molecular clouds (GMCs). Focusing on the presence of an accretion flow and accounting for the amount of mass, momentum, and energy supplied by accretion and star formation feedback, we are able to follow the growth, evolution, and dispersal of individual GMCs. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion and star formation contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud. Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with typical surface densities of order 50-200 M sun pc -2 , in good agreement with observations of GMCs in the Milky Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also increase, implying that the linewidth-size relation constitutes an age sequence. Lastly, we compare our models to observations of GMCs and associated young star clusters in the Large Magellanic Cloud and find good agreement between our model clouds and the observed relationship between H II regions, young star clusters, and GMCs.

  7. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints

    Science.gov (United States)

    Nadège, Lagarde

    The availability of asteroseismic constraints for a large sample of red-giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. We use a detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al. 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. This study is already published in Lagarde et al. (2015)

  8. An oxygen-rich dust disk surrounding an evolved star in the Red Rectangle

    NARCIS (Netherlands)

    Waters, LBFM; Waelkens, C; van Winckel, H; Molster, FJ; Tielens, AGGM; van Loon, JT; Morris, PW; Cami, J; Bouwman, J; de Koter, A; de Jong, T; de Graauw, T

    1998-01-01

    The Red Rectangle(1) is the prototype of a class of carbon-rich reflection nebulae surrounding low-mass stars in the final stages of evolution. The central star of this nebula has ejected most of its layers (during the red-giant phase), which now form the surrounding cloud, and is rapidly evolving

  9. NH4SH and cloud cover in the atmospheres of the giant planets

    Science.gov (United States)

    Ibragimov, K. Iu.; Solodovnik, A. A.

    1991-02-01

    The probability of the formation of NH4SH and (NH4)2S is examined on the basis of the Le Chatelier principle. It is shown that it is very doubtful if NH4SH can be created in the atmospheres of the giant planets in quantities sufficient for cloud formation. Thus (NH4)2S is considered as a more likely candidate for cloud formation in the atmospheres of these planets, inasmuch as the conditions for its production there are more favorable.

  10. MAGNESIUM ISOTOPE RATIOS IN ω CENTAURI RED GIANTS

    International Nuclear Information System (INIS)

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-01-01

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R ∼ 100,000) and at Gemini-S with b-HROS (R ∼ 150,000) to determine magnesium isotope ratios for seven ω Cen red giants that cover a range in iron abundance from [Fe/H] = –1.78 to –0.78 dex, and for two red giants in M4 (NGC 6121). The ω Cen stars sample both the ''primordial'' (i.e., O-rich, Na- and Al-poor) and the ''extreme'' (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both ω Cen and M4 show ( 25 Mg, 26 Mg)/ 24 Mg isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the ω Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the 26 Mg/ 24 Mg ratio is highest at intermediate metallicities ([Fe/H] 26 Mg in the extreme population stars is notably higher than that of 25 Mg, in contrast to model predictions. The 25 Mg/ 24 Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.

  11. The Near-infrared Tip of the Red Giant Branch. I. A Calibration in the Isolated Dwarf Galaxy IC 1613

    Science.gov (United States)

    Madore, Barry F.; Freedman, Wendy L.; Hatt, Dylan; Hoyt, Taylor J.; Monson, Andrew J.; Beaton, Rachael L.; Rich, Jeffrey A.; Jang, In Sung; Lee, Myung Gyoon; Scowcroft, Victoria; Seibert, Mark

    2018-05-01

    Based on observations from the FourStar near-infrared camera on the 6.5 m Baade-Magellan telescope at Las Campanas, Chile, we present calibrations of the JHK luminosities of stars defining the tip of the red giant branch (TRGB) in the halo of the Local Group dwarf galaxy IC 1613. We employ metallicity-independent (rectified) T-band magnitudes—constructed using J-, H-, and K-band magnitudes and both (J ‑ H) and (J ‑ K) colors to flatten the upward-sloping red giant branch tips as otherwise seen in their apparent color–magnitude diagrams. We describe and quantify the advantages of working at these particular near-infrared wavelengths, which are applicable to both the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST). We also note that these same wavelengths can be accessed from the ground for an eventual tie-in to Gaia for absolute astrometry and parallaxes to calibrate the intrinsic luminosity of the TRGB. Adopting the color terms derived from the IC 1613 data, as well as the zero points from a companion study of the Large Magellanic Cloud, whose distance is anchored to the geometric distances of detached eclipsing binaries, we find a true distance modulus of 24.32 ± 0.02 (statistical) ±0.05 mag (systematic) for IC 1613, which compares favorably with the recently published multi-wavelength, multi-method consensus modulus of 24.30 ± 0.05 mag by Hatt et al.

  12. Modelling the Galactic bar using OGLE-II red clump giant stars

    NARCIS (Netherlands)

    Rattenbury, Nicholas J.; Mao, Shude; Sumi, Takahiro; Smith, Martin C.

    2007-01-01

    Red clump giant (RCG) stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration data base to constrain analytic triaxial models for the Galactic bar. We find the bar major-axis is

  13. Search for near-infrared counterparts of IRAS embedded sources in the M17 SW giant molecular cloud

    International Nuclear Information System (INIS)

    Elmegreen, D.M.; Phillips, J.; Beck, K.; Thomas, H.; Howard, J.

    1988-01-01

    Wide-field near-infrared and blue band plates of the region containing the M17 giant molecular cloud complex have been blinked to locate bright near-infrared stars that may be embedded in the M17 SW giant molecular cloud. Twenty such stars coincided with the positions of IRAS point sources that appeared embedded based on color-color diagrams. Some of these stars may be the sources of the infrared luminosities. Of the 20 stars, seven were too faint to appear on the B band plate. The optical magnitudes and colors determined from the plate image diameters were measured for the other 13 coincident stars; they are most likely upper main-sequence or pre-main-sequence stars with extinctions of 7 mag. The IRAS luminosity-temperature diagram indicates that the embedded sources in M17 are more massive than those in the Orion cloud. 35 references

  14. Giant molecular cloud collisions as triggers of star formation. VI. Collision-induced turbulence

    Science.gov (United States)

    Wu, Benjamin; Tan, Jonathan C.; Nakamura, Fumitaka; Christie, Duncan; Li, Qi

    2018-05-01

    We investigate collisions between giant molecular clouds (GMCs) as potential generators of their internal turbulence. Using magnetohydrodynamic (MHD) simulations of self-gravitating, magnetized, turbulent GMCs, we compare kinematic and dynamic properties of dense gas structures formed when such clouds collide compared to those that form in non-colliding clouds as self-gravity overwhelms decaying turbulence. We explore the nature of turbulence in these structures via distribution functions of density, velocity dispersions, virial parameters, and momentum injection. We find that the dense clumps formed from GMC collisions have higher effective Mach number, greater overall velocity dispersions, sustain near-virial equilibrium states for longer times, and are the conduit for the injection of turbulent momentum into high density gas at high rates.

  15. A sample of potential disk hosting first ascent red giants

    Science.gov (United States)

    Steele, Amy; Debes, John

    2018-01-01

    Observations of (sub)giants with planets and disks provide the first set of proof that disks can survive the first stages of post-main-sequence evolution, even though the disks are expected to dissipate by this time. The infrared (IR) excesses present around a number of post-main-sequence (PMS) stars could be due to a traditional debris disk with planets (e.g. kappa CrB), some remnant of enhanced mass loss (e.g. the shell-like structure of R Sculptoris), and/or background contamination. We present a sample of potential disk hosting first ascent red giants. These stars all have infrared excesses at 22 microns, and possibly host circumstellar debris. We summarize the characteristics of the sample to better inform the incidence rates of thermally emitting material around giant stars. A thorough follow-up study of these candidates would serve as the first step in probing the composition of the dust in these systems that have left the main sequence, providing clues to the degree of disk processing that occurs beyond the main-sequence.

  16. Atomic hydrogen in and around the giant molecular cloud near W3 and W4

    International Nuclear Information System (INIS)

    Hasegawa, T.; Sato, F.; Fukui, Y.

    1980-01-01

    Cold HI gas appears as self-absorption dips in the 21-cm line profiles in and around the giant molecular cloud near W3 and W4. The cold HI cloud is approximately 150 pc long and extends along the galactic plane. It consists of several fragments, each of which is typically approximately 25 pc in diameter and (1 - 4) X 10 4 solar masses. The [H 2 ]/[HI] ratio is estimated to be 15 - 50. The mass of the entire HI cloud amounts to approximately 10 5 solar masses which is comparable to that observed in CO emission. (Auth.)

  17. Solar-like oscillations in red giants observed with Kepler: comparison of global oscillation parameters from different methods

    DEFF Research Database (Denmark)

    Hekker, Saskia; Elsworth, Yvonne; De Ridder, Joris

    2011-01-01

    investigate the differences in results for global oscillation parameters of G and K red-giant stars due to different methods and definitions. We also investigate uncertainties originating from the stochastic nature of the oscillations. Methods: For this investigation we use Kepler data obtained during...... obtain results for the frequency of maximum oscillation power (ν_max) and the mean large separation () from different methods for over one thousand red-giant stars. The results for these parameters agree within a few percent and seem therefore robust to the different analysis methods and definitions...

  18. Far-ultraviolet fluorescence of carbon monoxide in the red giant Arcturus

    International Nuclear Information System (INIS)

    Ayres, T.R.; Moos, H.W.; Linsky, J.L.

    1981-01-01

    We present evidence that many of the weak features observed with the International Ultraviolet Explorer (IUE) in the far-ultraviolet (1150--2000 A) spectrum of the archetype red giant Arcturus (K2 III) are A--X fourth positive bands of carbon monoxide excited by chromospheric emissions of O I, C I, and H I. The appearance of fluorescent CO bands near the wavelengths of commonly used indicators of high-temperature (T>2 x 10 4 K) plasma, such as C II lambda1335 and C IV lambda1548, introduces a serious ambiguity in diagnosing the presence of hot material in the outer atmospheres of the cool giants by means of low-dispersion IUE spectra

  19. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. D. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Srinivasan, S.; Kemper, F.; Ling, B. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  20. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-01-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  1. STAR FORMATION IN DISK GALAXIES. I. FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS VIA GRAVITATIONAL INSTABILITY AND CLOUD COLLISIONS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Tan, Jonathan C.

    2009-01-01

    We investigate the formation and evolution of giant molecular clouds (GMCs) in a Milky-Way-like disk galaxy with a flat rotation curve. We perform a series of three-dimensional adaptive mesh refinement numerical simulations that follow both the global evolution on scales of ∼20 kpc and resolve down to scales ∼ H ≥ 100 cm -3 and track the evolution of individual clouds as they orbit through the galaxy from their birth to their eventual destruction via merger or via destructive collision with another cloud. After ∼140 Myr a large fraction of the gas in the disk has fragmented into clouds with masses ∼10 6 M sun and a mass spectrum similar to that of Galactic GMCs. The disk settles into a quasi-steady-state in which gravitational scattering of clouds keeps the disk near the threshold of global gravitational instability. The cloud collision time is found to be a small fraction, ∼1/5, of the orbital time, and this is an efficient mechanism to inject turbulence into the clouds. This helps to keep clouds only moderately gravitationally bound, with virial parameters of order unity. Many other observed GMC properties, such as mass surface density, angular momentum, velocity dispersion, and vertical distribution, can be accounted for in this simple model with no stellar feedback.

  2. PLANET ENGULFMENT BY ∼1.5-3 Msun RED GIANTS

    International Nuclear Information System (INIS)

    Kunitomo, M.; Ikoma, M.; Sato, B.; Ida, S.; Katsuta, Y.

    2011-01-01

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around ∼1.5-3 M sun stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (or the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M sun , which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M sun ), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses ∼> 2.5M sun , is required.

  3. Precision Distances with the Tip of the Red Giant Branch Method

    Science.gov (United States)

    Beaton, Rachael Lynn; Carnegie-Chicago Hubble Program Team

    2018-01-01

    The Carnegie-Chicago Hubble Program aims to construct a distance ladder that utilizes old stellar populations in the outskirts of galaxies to produce a high precision measurement of the Hubble Constant that is independent of Cepheids. The CCHP uses the tip of the red giant branch (TRGB) method, which is a statistical measurement technique that utilizes the termination of the red giant branch. Two innovations combine to make the TRGB a competitive route to the Hubble Constant (i) the large-scale measurement of trigonometric parallax by the Gaia mission and (ii) the development of both precise and accurate means of determining the TRGB in both nearby (~1 Mpc) and distant (~20 Mpc) galaxies. Here I will summarize our progress in developing these standardized techniques, focusing on both our edge-detection algorithm and our field selection strategy. Using these methods, the CCHP has determined equally precise (~2%) distances to galaxies in the Local Group (< 1 Mpc) and across the Local Volume (< 20 Mpc). The TRGB is, thus, an incredibly powerful and straightforward means to determine distances to galaxies of any Hubble Type and, thus, has enormous potential for putting any number of astrophyiscal phenomena on absolute units.

  4. STRUCTURAL GLITCHES NEAR THE CORES OF RED GIANTS REVEALED BY OSCILLATIONS IN G-MODE PERIOD SPACINGS FROM STELLAR MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, M. S.; Avelino, P. P. [Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Christensen-Dalsgaard, J. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Townsend, R. H. D., E-mail: mcunha@astro.up.pt [Department of Astronomy, University of Wisconsin–Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2015-06-01

    With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations—glitches—in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacing and inertia of non-radial modes during several phases of red giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the échelle diagram. Interestingly, along the red giant branch glitch-induced variation occurs only at the luminosity bump, potentially providing a direct seismic indicator of stars in that particular evolution stage. Similarly, we find the variation at only certain post-helium-ignition evolution stages, namely, in the early phases of helium core burning and at the beginning of helium shell burning, signifying the asymptotic giant branch bump. Based on our results, we note that assuming stars to be glitch-free, while they are not, can result in an incorrect estimate of the period spacing. We further note that including diffusion and mixing beyond classical Schwarzschild could affect the characteristics of the glitches, potentially providing a way to study these physical processes.

  5. Survival of the Jovian planets with the Sun a red giant

    International Nuclear Information System (INIS)

    Vila, S.C.

    1985-01-01

    The survival of the Jovian planets and their satellites as the Sun becomes a Red Giant is considered. It is found that the Jovian planets would not lose any matter - not even hydrogen. The satellites would lose their gaseous or volatile envelopes. Their rocky cores would resist melting and survive. Both the planets and the satellites would be unsuited to support human life. (Auth.)

  6. Survival of the Jovian planets with the Sun a red giant

    Energy Technology Data Exchange (ETDEWEB)

    Vila, S C

    1985-12-01

    The survival of the Jovian planets and their satellites as the Sun becomes a Red Giant is considered. It is found that the Jovian planets would not lose any matter - not even hydrogen. The satellites would lose their gaseous or volatile envelopes. Their rocky cores would resist melting and survive. Both the planets and the satellites would be unsuited to support human life. (Auth.).

  7. MULTI-WAVELENGTH RADIO CONTINUUM EMISSION STUDIES OF DUST-FREE RED GIANTS

    International Nuclear Information System (INIS)

    O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander; Drake, Stephen; Richards, Anita M. S.

    2013-01-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (α Boo: K2 III) and Aldebaran (α Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for α Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of α Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For α Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of α Boo. Finally, we develop a simple analytical wind model for α Boo based on our new long-wavelength flux measurements

  8. Multi-wavelength Radio Continuum Emission Studies of Dust-free Red Giants

    Science.gov (United States)

    O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander; Dranke, Stephen; Richards, Anita M. S.

    2013-01-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for alpha Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of alpha Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For alpha Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of alpha Boo. Finally, we develop a simple analytical wind model for alpha Boo based on our new long-wavelength flux measurements.

  9. MULTI-WAVELENGTH RADIO CONTINUUM EMISSION STUDIES OF DUST-FREE RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    O' Gorman, Eamon; Harper, Graham M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Drake, Stephen [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Richards, Anita M. S. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2013-10-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (α Boo: K2 III) and Aldebaran (α Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for α Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of α Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For α Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of α Boo. Finally, we develop a simple analytical wind model for α Boo based on our new long-wavelength flux measurements.

  10. From red giant to planetary nebula - Dust, asymmetry, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.; Jones, T.J.

    1991-01-01

    The polarization characteristics of stars in the stages of evolution from red giant to planetary nebula are investigated. Polarization is found to be a characteristic of the majority of these stars. The maximum observed polarization increases with age as the star evolves up the asymptotic giant branch (AGB) to the protoplanetary nebula phase, where the polarization reaches a maximum. The polarization then decreases as the star further evolves into a planetary nebula. These results indicate that aspherical mass loss is likely to be a continual feature of the late stages of stellar evolution, maintaining a clear continuity throughout the life of a star from the moment it first develops a measurable dust shell. The aspherical morphology seen in planetary nebulae has its origin in an intrinsic property of the star that is present at least as early as its arrival at the base of the AGB. 77 refs

  11. DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Palmerini, S.; Busso, M.; Maiorca, E.; Cristallo, S.; Abia, C.; Uttenthaler, S.; Gialanella, L.

    2011-01-01

    We reanalyze the problem of Li abundances in red giants of nearly solar metallicity. After outlining the problems affecting our knowledge of the Li content in low-mass stars (M ≤ 3 M sun ), we discuss deep-mixing models for the red giant branch stages suitable to account for the observed trends and for the correlated variations of the carbon isotope ratio; we find that Li destruction in these phases is limited to masses below about 2.3 M sun . Subsequently, we concentrate on the final stages of evolution for both O-rich and C-rich asymptotic giant branch (AGB) stars. Here, the constraints on extra-mixing phenomena previously derived from heavier nuclei (from C to Al), coupled to recent updates in stellar structure models (including both the input physics and the set of reaction rates used), are suitable to account for the observations of Li abundances below A(Li) ≡ log ε(Li) ≅ 1.5 (and sometimes more). Also, their relations with other nucleosynthesis signatures of AGB phases (like the abundance of F, and the C/O and 12 C/ 13 C ratios) can be explained. This requires generally moderate efficiencies (M-dot -6 M sun yr -1 ) for non-convective mass transport. At such rates, slow extra mixing does not remarkably modify Li abundances in early AGB phases; on the other hand, faster mixing encounters a physical limit in destroying Li, set by the mixing velocity. Beyond this limit, Li starts to be produced; therefore, its destruction on the AGB is modest. Li is then significantly produced by the third dredge up. We also show that effective circulation episodes, while not destroying Li, would easily bring the 12 C/ 13 C ratios to equilibrium, contrary to the evidence in most AGB stars, and would burn F beyond the limits shown by C(N) giants. Hence, we do not confirm the common idea that efficient extra mixing drastically reduces the Li content of C stars with respect to K-M giants. This misleading appearance is induced by biases in the data, namely: (1) the difficulty

  12. Detailed Study of the Internal Structure of a Red-giant Star Observed with Kepler

    DEFF Research Database (Denmark)

    Di Mauro, M. P.; Ventura, R.; Cardini, D.

    2012-01-01

    We study the internal structure and evolutionary state of KIC 4351319, a red-giant star observed with the Kepler satellite. The use of 25 individual oscillation frequencies, together with the accurate atmospheric data provided by ground-based spectroscopic observations, allowed us to estimate the...

  13. Oscillating Red Giants Observed during Campaign 1 of the Kepler K2 Mission: New Prospects for Galactic Archaeology

    Science.gov (United States)

    Stello, Dennis; Huber, Daniel; Sharma, Sanjib; Johnson, Jennifer; Lund, Mikkel N.; Handberg, Rasmus; Buzasi, Derek L.; Silva Aguirre, Victor; Chaplin, William J.; Miglio, Andrea; Pinsonneault, Marc; Basu, Sarbani; Bedding, Tim R.; Bland-Hawthorn, Joss; Casagrande, Luca; Davies, Guy; Elsworth, Yvonne; Garcia, Rafael A.; Mathur, Savita; Di Mauro, Maria Pia; Mosser, Benoit; Schneider, Donald P.; Serenelli, Aldo; Valentini, Marica

    2015-08-01

    NASA’s re-purposed Kepler mission—dubbed K2—has brought new scientific opportunities that were not anticipated for the original Kepler mission. One science goal that makes optimal use of K2's capabilities, in particular its 360° ecliptic field of view, is galactic archaeology—the study of the evolution of the Galaxy from the fossil stellar record. The thrust of this research is to exploit high-precision, time-resolved photometry from K2 in order to detect oscillations in red giant stars. This asteroseismic information can provide estimates of stellar radius (hence distance), mass, and age of vast numbers of stars across the Galaxy. Here we present the initial analysis of a subset of red giants, observed toward the north galactic gap, during the mission’s first full science campaign. We investigate the feasibility of using K2 data for detecting oscillations in red giants that span a range in apparent magnitude and evolutionary state (hence intrinsic luminosity). We demonstrate that oscillations are detectable for essentially all cool giants within the {log}g range ˜1.9-3.2. Our detection is complete down to {\\text{Kp}} ˜ 14.5, which results in a seismic sample with little or no detection bias. This sample is ideally suited to stellar population studies that seek to investigate potential shortcomings of contemporary Galaxy models.

  14. The initial giant umbrella cloud of the May 18th, 1980, explosive eruption of Mount St. Helens

    Science.gov (United States)

    Sparks, R.S.J.; Moore, J.G.; Rice, C.J.

    1986-01-01

    The initial eruption column of May 18th, 1980 reached nearly 30 km altitude and released 1017 joules of thermal energy into the atmosphere in only a few minutes. Ascent of the cloud resulted in forced intrusion of a giant umbrella-shaped cloud between altitudes of 10 and 20 km at radial horizontal velocities initially in excess of 50 m/s. The mushroom cloud expanded 15 km upwind, forming a stagnation point where the radial expansion velocity and wind velocity were equal. The cloud was initiated when the pyroclastic blast flow became buoyant. The flow reduced its density as it moved away from the volcano by decompression, by sedimentation, and by mixing with and heating the surrounding air. Observations indicate that much of the flow, covering an area of 600 km2, became buoyant within 1.5 minutes and abruptly ascended to form the giant cloud. Calculations are presented for the amount of air that must have been entrained into the flow to make it buoyant. Assuming an initial temperature of 450??C and a magmatic origin for the explosion, these calculations indicate that the flow became buoyant when its temperature was approximately 150??C and the flow consisted of a mixture of 3.25 ?? 1011 kg of pyroclasts and 5.0 ?? 1011 kg of air. If sedimentation is considered, these figures reduce to 1.1 ?? 1011 kg of pyroclasts and 1.0 ?? 1011 kg of air. ?? 1986.

  15. A High-Mass Cold Core in the Auriga-California Giant Molecular Cloud

    Science.gov (United States)

    Magnus McGehee, Peregrine; Paladini, Roberta; Pelkonen, Veli-Matti; Toth, Viktor; Sayers, Jack

    2015-08-01

    The Auriga-California Giant Molecular Cloud is noted for its relatively low star formation rate, especially at the high-mass end of the Initial Mass Function. We combine maps acquired by the Caltech Submillimeter Observatory's Multiwavelength Submillimeter Inductance Camera [MUSIC] in the wavelength range 0.86 to 2.00 millimeters with Planck and publicly-available Herschel PACS and SPIRE data in order to characterize the mass, dust properties, and environment of the bright core PGCC G163.32-8.41.

  16. A photometric study of the giant red variable stars with small amplitudes

    International Nuclear Information System (INIS)

    Wisse, P.N.J.

    1979-01-01

    Three colour UBV observations of southern semiregular and irregular red variable stars are presented. Well covered light and colour curves have been obtained for ca. 40 stars. In most cases the observations span more than one cycle. A short description is given for all individual variables. The observations are accurate enough to reveal many minor irregularities in the light variation. The SRb and Lb variables define a narrow curved strip in the (U-B) - (B-V) diagram. This strip has been called the Locus of Red Variables (LRV). The (U-B) of the variables is about 0.5 magnitudes bluer than that of the K III giants. (Auth.)

  17. ULTRAVIOLET ESCAPE FRACTIONS FROM GIANT MOLECULAR CLOUDS DURING EARLY CLUSTER FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Corey; Pudritz, Ralph [Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4M1 (Canada); Klessen, Ralf [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-01-01

    The UV photon escape fraction from molecular clouds is a key parameter for understanding the ionization of the interstellar medium and extragalactic processes such as cosmic reionization. We present the ionizing photon flux and the corresponding photon escape fraction ( f {sub esc}) arising as a consequence of star cluster formation in a turbulent, 10{sup 6} M {sub ⊙} giant molecular cloud, simulated using the code FLASH. We make use of sink particles to represent young, star-forming clusters coupled with a radiative transfer scheme to calculate the emergent UV flux. We find that the ionizing photon flux across the cloud boundary is highly variable in time and space due to the turbulent nature of the intervening gas. The escaping photon fraction remains at ∼5% for the first 2.5 Myr, followed by two pronounced peaks at 3.25 and 3.8 Myr with a maximum f {sub esc} of 30% and 37%, respectively. These peaks are due to the formation of large H ii regions that expand into regions of lower density, some of which reaching the cloud surface. However, these phases are short-lived, and f {sub esc} drops sharply as the H ii regions are quenched by the central cluster passing through high-density material due to the turbulent nature of the cloud. We find an average f {sub esc} of 15% with factor of two variations over 1 Myr timescales. Our results suggest that assuming a single value for f {sub esc} from a molecular cloud is in general a poor approximation, and that the dynamical evolution of the system leads to large temporal variation.

  18. Testing Scaling Relations for Solar-like Oscillations from the Main Sequence to Red Giants Using Kepler Data

    DEFF Research Database (Denmark)

    Huber, D.; Bedding, T.R.; Stello, D.

    2011-01-01

    ), and oscillation amplitudes. We show that the difference of the Δν-νmax relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M) s......We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (νmax), the large frequency separation (Δν...... scaling nor the revised scaling relation by Kjeldsen & Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of ~25%. The residuals show...

  19. Obscured asymptotic giant branch stars in the Magellanic Clouds .2. Near-infrared and mid-infrared counterparts

    NARCIS (Netherlands)

    Zijlstra, AA; Loup, C; Waters, LBFM; Whitelock, PA; vanLoon, JT; Guglielmo, F

    1996-01-01

    We have carried out an infrared search for obscured asymptotic giant branch (AGB) stars in the Magellanic Clouds. Fields were observed in the vicinity of IRAS sources with colours and flux densities consistent with such a classification. The survey uncovered a number of obscured AGE stars as well as

  20. Deep learning classification in asteroseismology using an improved neural network: results on 15 000 Kepler red giants and applications to K2 and TESS data

    Science.gov (United States)

    Hon, Marc; Stello, Dennis; Yu, Jie

    2018-05-01

    Deep learning in the form of 1D convolutional neural networks have previously been shown to be capable of efficiently classifying the evolutionary state of oscillating red giants into red giant branch stars and helium-core burning stars by recognizing visual features in their asteroseismic frequency spectra. We elaborate further on the deep learning method by developing an improved convolutional neural network classifier. To make our method useful for current and future space missions such as K2, TESS, and PLATO, we train classifiers that are able to classify the evolutionary states of lower frequency resolution spectra expected from these missions. Additionally, we provide new classifications for 8633 Kepler red giants, out of which 426 have previously not been classified using asteroseismology. This brings the total to 14983 Kepler red giants classified with our new neural network. We also verify that our classifiers are remarkably robust to suboptimal data, including low signal-to-noise and incorrect training truth labels.

  1. A simple model to describe intrinsic stellar noise for exoplanet detection around red giants

    DEFF Research Database (Denmark)

    North, Thomas S. H.; Chaplin, William J.; Gilliland, Ronald L.

    2017-01-01

    In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here, we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation and the stella...

  2. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes

    NARCIS (Netherlands)

    Beck, P.G.; Montalban, J.; Kallinger, T.; De Ridder, J.; Aerts, C.; García, R.A.; Hekker, S.; Dupret, M.-A.; Mosser, B.; Eggenberger, P.; Stello, D.; Elsworth, Y.; Frandsen, S.; Carrier, F.; Hillen, M.; Gruberbauer, M.; Christensen-Dalsgaard, J.; Miglio, A.; Valentini, M.; Bedding, T.R.; Kjeldsen, H.; Girouard, F.R.; Hall, J.R.; Ibrahim, K.A.

    2012-01-01

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars

  3. Modeling Radial Velocities and Eclipse Photometry of the Kepler Target KIC 4054905: an Oscillating Red Giant in an Eclipsing Binary

    Science.gov (United States)

    Benbakoura, M.; Gaulme, P.; McKeever, J.; Beck, P. G.; Jackiewicz, J.; García, R. A.

    2017-12-01

    Asteroseismology is a powerful tool to measure the fundamental properties of stars and probe their interiors. This is particularly efficient for red giants because their modes are well detectable and give information on their deep layers. However, the seismic relations used to infer the mass and radius of a star have been calibrated on the Sun. Therefore, it is crucial to assess their accuracy for red giants which are not perfectly homologous to it. We study eclipsing binaries with a giant component to test their validity. We identified 16 systems for which we intend to compare the dynamical masses and radii obtained by combined photometry and spectroscopy to the values obtained from asteroseismology. In the present work, we illustrate our approach on a system from our sample.

  4. Survey of red stars in the direction of the large Magellanic cloud

    International Nuclear Information System (INIS)

    Bappu, M.K.V.; Parthasarathy, M.; Scaria, K.K.

    1977-01-01

    A survey of red stars in the direction of the Large Magellanic Cloud using the technique of ultra-low dispersion spectroscopy is presented. A listing of the red stars in the 30 Doradus region is given for which finding charts and coordinates on the Hodge-Wright Atlas charts are provided. (author)

  5. Serosurvey of ex situ giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus fulgens) in China with implications for species conservation.

    Science.gov (United States)

    Loeffler, I Kati; Howard, JoGayle; Montali, Richard J; Hayek, Lee-Ann; Dubovi, Edward; Zhang, Zhihe; Yan, Qigui; Guo, Wanzhu; Wildt, David E

    2007-12-01

    Conservation strategies for the giant panda (Ailuropoda melanoleuca) include the development of a self-sustaining ex situ population. This study examined the potential significance of infectious pathogens in giant pandas ex situ. Serologic antibody titers against canine distemper virus (CDV), canine parvovirus (CPV), canine adenovirus (CAV), canine coronavirus (CCV), canine herpesvirus, canine parainfluenza virus (CPIV), Toxoplasma gondii, Neospora caninum, and Leptospira interrogans were measured in 44 samples taken from 19 giant pandas between 1998 and 2003 at the Chengdu Research Base of Giant Panda Breeding in Sichuan, China. Seroassays also included samples obtained in 2003 from eight red pandas (Ailurus fulgens) housed at the same institution. All individuals had been vaccinated with a Chinese canine vaccine that included modified live CDV, CPV, CAV, CCV, and CPIV. Positive antibody titers were found only against CDV, CPV, and T. gondii. Sera were negative for antibodies against the other six pathogens. Results indicate that the quality of the vaccine may not be reliable and that it should not be considered protective or safe in giant pandas and red pandas. Positive antibody titers against T. gondii were found in seven of the 19 giant pandas. The clinical, subclinical, or epidemiologic significance of infection with these pathogens via natural exposure or from modified live vaccines in giant pandas is unknown. Research in this area is imperative to sustaining a viable population of giant pandas and other endangered species.

  6. Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

    Science.gov (United States)

    Deheuvels, S.; Doğan, G.; Goupil, M. J.; Appourchaux, T.; Benomar, O.; Bruntt, H.; Campante, T. L.; Casagrande, L.; Ceillier, T.; Davies, G. R.; De Cat, P.; Fu, J. N.; García, R. A.; Lobel, A.; Mosser, B.; Reese, D. R.; Regulo, C.; Schou, J.; Stahn, T.; Thygesen, A. O.; Yang, X. H.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Eggenberger, P.; Gizon, L.; Mathis, S.; Molenda-Żakowicz, J.; Pinsonneault, M.

    2014-04-01

    Context. We still do not understand which physical mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the clear signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this question. Aims: Our aim is to probe the radial dependence of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts. Methods: We first extracted the rotational splittings and frequencies of the modes for six young Kepler red giants. We then performed a seismic modeling of these stars using the evolutionary codes Cesam2k and astec. By using the observed splittings and the rotational kernels of the optimal models, we inverted the internal rotation profiles of the six stars. Results: We obtain estimates of the core rotation rates for these stars, and upper limits to the rotation in their convective envelope. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, while their envelope spins down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found to be most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand. Conclusions: We characterized the differential rotation pattern of six young giants with a range of metallicities, and with both radiative and convective cores on the main sequence. This will bring observational constraints to the

  7. VLT/FLAMES spectroscopy of red giant branch stars in the Carina dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; Hill, V.; Tolstoy, E.; Venn, K. A.; Shetrone, M. D.; Irwin, M. J.; de Boer, T. J. L.; Starkenburg, E.; Salvadori, S.

    Context. The ages of individual red giant branch stars can range from 1 Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by the first dredge-up). This means that they

  8. Curve-of-growth analysis of a red giant in the globular cluster M13

    International Nuclear Information System (INIS)

    Griffin, R.

    1979-01-01

    A coude spectrogram of a red giant (L973) in the globular cluster M13 is analysed, with respect to α Boo, by the differential curve-of-growth technique. The overall metal abundance is found to be approximately one-tenth of that of α Boo, or one-fortieth that of the Sun. (author)

  9. Survival of a brown dwarf after engulfment by a red giant star.

    Science.gov (United States)

    Maxted, P F L; Napiwotzki, R; Dobbie, P D; Burleigh, M R

    2006-08-03

    Many sub-stellar companions (usually planets but also some brown dwarfs) orbit solar-type stars. These stars can engulf their sub-stellar companions when they become red giants. This interaction may explain several outstanding problems in astrophysics but it is unclear under what conditions a low mass companion will evaporate, survive the interaction unchanged or gain mass. Observational tests of models for this interaction have been hampered by a lack of positively identified remnants-that is, white dwarf stars with close, sub-stellar companions. The companion to the pre-white dwarf AA Doradus may be a brown dwarf, but the uncertain history of this star and the extreme luminosity difference between the components make it difficult to interpret the observations or to put strong constraints on the models. The magnetic white dwarf SDSS J121209.31 + 013627.7 may have a close brown dwarf companion but little is known about this binary at present. Here we report the discovery of a brown dwarf in a short period orbit around a white dwarf. The properties of both stars in this binary can be directly observed and show that the brown dwarf was engulfed by a red giant but that this had little effect on it.

  10. Detecting Solar-like Oscillations in Red Giants with Deep Learning

    Science.gov (United States)

    Hon, Marc; Stello, Dennis; Zinn, Joel C.

    2018-05-01

    Time-resolved photometry of tens of thousands of red giant stars from space missions like Kepler and K2 has created the need for automated asteroseismic analysis methods. The first and most fundamental step in such analysis is to identify which stars show oscillations. It is critical that this step be performed with no, or little, detection bias, particularly when performing subsequent ensemble analyses that aim to compare the properties of observed stellar populations with those from galactic models. However, an efficient, automated solution to this initial detection step still has not been found, meaning that expert visual inspection of data from each star is required to obtain the highest level of detections. Hence, to mimic how an expert eye analyzes the data, we use supervised deep learning to not only detect oscillations in red giants, but also to predict the location of the frequency at maximum power, ν max, by observing features in 2D images of power spectra. By training on Kepler data, we benchmark our deep-learning classifier against K2 data that are given detections by the expert eye, achieving a detection accuracy of 98% on K2 Campaign 6 stars and a detection accuracy of 99% on K2 Campaign 3 stars. We further find that the estimated uncertainty of our deep-learning-based ν max predictions is about 5%. This is comparable to human-level performance using visual inspection. When examining outliers, we find that the deep-learning results are more likely to provide robust ν max estimates than the classical model-fitting method.

  11. Correlation Of Giant Nuclei With Cloud Droplet Concentration

    Science.gov (United States)

    Jha, V.; Hudson, J. G.; Noble, S.

    2011-12-01

    The effect of giant nuclei (GN; larger than 1 micrometer particles produced by wind on the ocean surface) on warm rain has been debated for decades. During RICO (Rain in Cumulus over the Ocean) Hudson et al. (2011) found a negative correlation (R) between CCN concentrations at 1% supersaturation (S) and large cloud droplet concentrations (Fig. 1A). This reversal from positive R for CCN with total (or small) cloud droplet concentrations (left side of Fig. 1A) was explained by the greater competition for condensate, which thus limits droplet sizes when CCN concentrations are higher. The negative R increased in magnitude with altitude, and the droplet size where the maximum negative R occurred increased with altitude (Fig. 1A). However, at all altitudes this negative R decreased in magnitude for even larger cloud and drizzle drops (right side of Fig. 1A except highest altitude). The decrease in magnitude of the negative R was greater for increasing drop sizes at higher altitudes. Thus, at the higher altitudes, R for CCN with large drizzle drops was of low negative magnitude and even positive at the highest RICO altitudes. The disparity between CCN and drizzle drop concentrations precluded a causal relationship. But the high R between GN and drizzle drop concentrations at the highest altitudes (Fig. 1B) and the comparable concentrations indicated that GN were engendering drizzle. This is supported by the increasing R with altitude of the GN-drizzle drop R (right side of Fig. 1B). The conclusion of a GN-drizzle connection is also supported by the fact that CCN concentrations should inhibit drizzle. This analysis of Hudson et al. (2011) is here expanded to include correlations of CCN concentrations at lower S with cloud and drizzle drop concentrations to investigate intermediate relationships; i.e., between large nuclei (i.e., 0.1-1 micrometer; critical S 0.1-0.01%) and drizzle drop concentrations. A shortcoming of Hudson et al. (2011) was the small number of high

  12. DISCOVERY OF A RED GIANT WITH SOLAR-LIKE OSCILLATIONS IN AN ECLIPSING BINARY SYSTEM FROM KEPLER SPACE-BASED PHOTOMETRY

    International Nuclear Information System (INIS)

    Hekker, S.; Debosscher, J.; De Ridder, J.; Aerts, C.; Van Winckel, H.; Beck, P. G.; Blomme, J.; Huber, D.; Hidas, M. G.; Stello, D.; Bedding, T. R.; Gilliland, R. L.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Brown, T. M.; Borucki, W. J.; Koch, D.; Jenkins, J. M.; Southworth, J.; Pigulski, A.

    2010-01-01

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longer than 75 days.

  13. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  14. Surprising Rapid Collapse of Sirius B from Red Giant to White Dwarf Through Mass Transfer to Sirius a

    Science.gov (United States)

    Yousef, Shahinaz; Ali, Ola

    2013-03-01

    Sirius was observed in antiquity as a red star. In his famous astronomy textbook the Almagest written 140 AD, Ptolemy described the star Sirius as fiery red. He curiously depicted it as one of six red-colored stars. The other five are class M and K stars, such as Arcturus and Betelgeuse. Apparent confirmation in ancient Greek and Roman sources are found and Sirius was also reported red in Europe about 1400 years ago. Sirius must have changed to a white dwarf in the night of Ascension. The star chapter in the Quran started with "by the star as it collapsed (1) your companion have not gone astray nor being misled (2), and in verse 49 which is the rotation period of the companion Sirius B around Sirius A, it is said" He is the Lord of Sirius (49). If Sirius actually was red what could have caused it to change into the brilliant bluish-white star we see today? What the naked eye perceives as a single star is actually a binary star system, consisting of a white main sequence star of spectral type A1V, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. The red color indicates that the star seen then was a red giant. It looks that what they have seen in antiquity was Sirius B which was then a red giant and it collapsed to form a white dwarf. Since there is no evidence of a planetary nebula, then the red Sirius paradox can be solved in terms of stellar evolution with mass transfer. Sirius B was the most massive star which evolved to a red giant and filled the Roche lobe. Mass transfer to Sirius A occurred through the Lagrangian point. Sirius A then became more massive while Sirius B lost mass and shrank. Sirius B then collapsed abruptly into a white dwarf. In the case of Algol, Ptolmy observed it as white star but it was red at the time of El sufi. At present it is white. The rate of mass transfer from Sirius B to Sirius A, and from Algol B to A is estimated from observational data of colour change from red to bullish white to be 0

  15. 99 mTc-sulphur-colloid and heat-denatured 99mTc-labelled red cell scans demonstrating a giant intrapelvic spleen in a girl after splenectomy

    International Nuclear Information System (INIS)

    Kao, P.F.; Tzen, K.Y.; Tsai, M.F.; Lin, J.N.

    2001-01-01

    A 17 x 12 x 5-cm giant intrapelvic mass in a 14-year-old girl is reported. This mass developed 6 years after a splenectomy for splenic torsion. The heat-denatured 99 m Tc-labelled red cell scan and 99 m Tc- sulphur-colloid scan confirmed the specific red cell sequestration function and reticuloendothelial activity in the giant intrapelvic spleen. The size and development of the giant intrapelvic spleen are unusual. The usefulness of functional images to diagnosis the nature of the intrapelvic mass is well demonstrated. (orig.)

  16. Coloring Jupiter's clouds: Radiolysis of ammonium hydrosulfide (NH4SH)

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2018-03-01

    Here we present our recent studies on the color and spectral reflectance changes induced by ∼0.9 MeV proton irradiation of ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. Ultraviolet-visible spectroscopy was used to observe and identify reaction products in the ice sample and digital photography was used to document the corresponding color changes at 10-160 K. Our experiments clearly show that the resulting color of the sample depends not only on the irradiation dose but also the irradiation temperature. Furthermore, unlike in our most recent studies of irradiation of NH4SH at 120 K, which showed that higher irradiation doses caused the sample to appear green, the lower temperature studies now show that the sample becomes red after irradiation. However, comparison of these lower temperature spectra over the entire spectral range observed by HST shows that even though the color and spectrum resemble the color and spectrum of the GRS, there is still enough difference to suggest that another component may be needed to adequately fit spectra of the GRS and other red regions of Jupiter's clouds. Regardless, the presence of NH4SH in the atmosphere of Jupiter and other gas giants, combined with this compound's clear alteration via radiolysis, suggests that its contribution to the ultraviolet-visible spectra of any of these object's clouds is significant.

  17. Submillimeter Array {sup 12}CO (2-1) Imaging of the NGC 6946 Giant Molecular Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ya-Lin [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Sakamoto, Kazushi; Pan, Hsi-An, E-mail: yalinwu@email.arizona.edu [Academia Sinica, Institute of Astronomy and Astrophysics, Taiwan (China)

    2017-04-10

    We present a {sup 12}CO (2–1) mosaic map of the spiral galaxy NGC 6946 by combining data from the Submillimeter Array and the IRAM 30 m telescope. We identify 390 giant molecular clouds (GMCs) from the nucleus to 4.5 kpc in the disk. GMCs in the inner 1 kpc are generally more luminous and turbulent, some of which have luminosities >10{sup 6} K km s{sup −1} pc{sup 2} and velocity dispersions >10 km s{sup −1}. Large-scale bar-driven dynamics likely regulate GMC properties in the nuclear region. Similar to the Milky Way and other disk galaxies, GMC mass function of NGC 6946 has a shallower slope (index > −2) in the inner region, and a steeper slope (index < −2) in the outer region. This difference in mass spectra may be indicative of different cloud formation pathways: gravitational instabilities might play a major role in the nuclear region, while cloud coalescence might be dominant in the outer disk. Finally, the NGC 6946 clouds are similar to those in M33 in terms of statistical properties, but they are generally less luminous and turbulent than the M51 clouds.

  18. The star-forming content of the W3 giant molecular cloud

    Science.gov (United States)

    Moore, T. J. T.; Bretherton, D. E.; Fujiyoshi, T.; Ridge, N. A.; Allsopp, J.; Hoare, M. G.; Lumsden, S. L.; Richer, J. S.

    2007-08-01

    We have surveyed a ˜0.9 square degree area of the W3 giant molecular cloud (GMC) and star-forming region in the 850-μm continuum, using the Submillimetre Common-User Bolometer Array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps were detected with a mass range from around 13 to 2500 M⊙. Part of the W3 GMC is subject to an interaction with the H ii region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-μm traced structures is significantly altered by this interaction, being around 5-13 per cent in the undisturbed cloud but ˜25-37 per cent in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.

  19. TESTING CONVECTIVE-CORE OVERSHOOTING USING PERIOD SPACINGS OF DIPOLE MODES IN RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Montalban, J.; Noels, A.; Dupret, M.-A.; Scuflaire, R. [Institut d' Astrophysique et Geophysique de l' Universite de Liege, Allee du six Aout, 17 B-4000 Liege (Belgium); Miglio, A. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Ventura, P. [Osservatorio Astronomico di Roma-INAF, via Frascati 33, I-00040 Monteporzio Catone, Rome (Italy)

    2013-04-01

    Uncertainties on central mixing in main-sequence (MS) and core He-burning (He-B) phases affect key predictions of stellar evolution such as late evolutionary phases, chemical enrichment, ages, etc. We propose a test of the extension of extra-mixing in two relevant evolutionary phases based on period spacing ({Delta}P) of solar-like oscillating giants. From stellar models and their corresponding adiabatic frequencies (respectively, computed with ATON and LOSC codes), we provide the first predictions of the observable {Delta}P for stars in the red giant branch and in the red clump (RC). We find (1) a clear correlation between {Delta}P and the mass of the helium core (M{sub He}); the latter in intermediate-mass stars depends on the MS overshooting, and hence it can be used to set constraints on extra-mixing during MS when coupled with chemical composition; and (2) a linear dependence of the average value of the asymptotic period spacing (({Delta}P){sub a}) on the size of the convective core during the He-B phase. A first comparison with the inferred asymptotic period spacing for Kepler RC stars also suggests the need for extra-mixing during this phase, as evinced from other observational facts.

  20. Probing the Deep End of the Milky Way with New Oscillating Kepler Giants

    Science.gov (United States)

    Mathur, Savita; García, Rafael A.; Huber, Daniel; Regulo, Clara; Stello, Dennis; Beck, Paul G.; Houmani, Kenza; Salabert, David

    2017-10-01

    The Kepler mission has been a success in both exoplanet search and stellar physics studies. Red giants have actually been quite a highlight in the Kepler scene. The Kepler long and almost continuous four-year observations allowed us to detect oscillations in more than 15,000 red giants targeted by the mission. However by looking at the power spectra of 45,000 stars classified as dwarfs according to the Q1-16 Kepler star properties catalog, we detected red-giant like oscillations in 850 stars. Even though this is a small addition to the known red-giant sample, these misclassified stars represent a goldmine for galactic archeology studies. Indeed they happen to be fainter (down to Kp 16) and more distant (d>10kPc) than the known red giants, opening the possibility to probe unknown regions of our Galaxy. The faintness of these red giants with detected oscillations is very promising for detecting acoustic modes in red giants observed with K2 and TESS. In this talk, I will present this new sample of red giants with their revised stellar parameters derived from asteroseismology. Then I will discuss about the distribution of their masses, distances, and evolutionary states compared to the previously known sample of red giants.

  1. UNUSUALLY LUMINOUS GIANT MOLECULAR CLOUDS IN THE OUTER DISK OF M33

    International Nuclear Information System (INIS)

    Bigiel, F.; Blitz, L.; Plambeck, R. L.; Bolatto, A. D.; Leroy, A. K.; Walter, F.; Rosolowsky, E. W.; Lopez, L. A.

    2010-01-01

    We use high spatial resolution (∼7 pc) observations from the Combined Array for Research in Millimeter Wave Astronomy (CARMA) to derive detailed properties for eight giant molecular clouds (GMCs) at a galactocentric radius corresponding to approximately two CO scale lengths, or ∼0.5 optical radii (r 25 ), in the Local Group spiral galaxy M33. At this radius, molecular gas fraction, dust-to-gas ratio, and metallicity are much lower than in the inner part of M33 or in a typical spiral galaxy. This allows us to probe the impact of environment on GMC properties by comparing our measurements to previous data from the inner disk of M33, the Milky Way, and other nearby galaxies. The outer disk clouds roughly fall on the size-linewidth relation defined by extragalactic GMCs, but are slightly displaced from the luminosity-virial mass relation in the sense of having high CO luminosity compared to the inferred virial mass. This implies a different CO-to-H 2 conversion factor, which is on average a factor of 2 lower than the inner disk and the extragalactic average. We attribute this to significantly higher measured brightness temperatures of the outer disk clouds compared to the ancillary sample of GMCs, which is likely an effect of enhanced radiation levels due to massive star formation in the vicinity of our target field. Apart from brightness temperature, the properties we determine for the outer disk GMCs in M33 do not differ significantly from those of our comparison sample. In particular, the combined sample of inner and outer disk M33 clouds covers roughly the same range in size, line width, virial mass, and CO luminosity than the sample of Milky Way GMCs. When compared to the inner disk clouds in M33, however, we find even the brightest outer disk clouds to be smaller than most of their inner disk counterparts. This may be due to incomplete sampling or a potentially steeper cloud mass function at larger radii.

  2. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints - The open cluster NGC 6633 and field stars-

    Science.gov (United States)

    Lagarde, Nadège; Miglio, Andrea; Eggenberger, Patrick; Morel, Thierry; Montalbàn, Josefina; Mosser, Benoit

    2015-08-01

    The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations.We use the first detailed spectroscopic study of CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars.In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch.We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. Tighter constraints on the physics of the models would be possible if there were detailed knowledge of the core rotation rate and the asymptotic period spacing.

  3. The effects of age on red giant metallicities derived from the near-infrared CaII triplet

    NARCIS (Netherlands)

    Cole, AA; Smecker-Hane, TA; Tolstoy, E; Bosler, TL; Gallagher, JS

    2004-01-01

    We have obtained spectra with a resolution of similar to2.5 Angstrom in the region of approximate to7500-9500 Angstrom for 116 red giants in five galactic globular clusters and six old open clusters (five with published metallicities and one previously unmeasured). The signal-to-noise (S/N) ratio

  4. EXTENSIVE [C I] MAPPING TOWARD THE ORION-A GIANT MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Shimajiri, Yoshito; Oshima, Tai; Kawabe, Ryohei [Nobeyama Radio Observatory, 462-2 Nobeyama Minamimaki, Minamisaku District, Nagano Prefecture 384-1305 (Japan); Sakai, Takeshi; Kohno, Kotaro [Institute of Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Tsukagoshi, Takashi; Momose, Munetake [Ibaraki University, 2-1-1 Bunkyo Mito, Ibaraki Prefecture 310-8512 (Japan); Kitamura, Yoshimi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara 252-5210 (Japan); Saito, Masao, E-mail: Yoshito.Shimajiri@cea.fr [National Astronomical Observatory of Japan, 2-21-1 Osawa Mitaka, Tokyo 181-0015 (Japan)

    2013-09-10

    We have carried out wide-field (0.17 deg{sup 2}) and high-angular resolution (21.''3 {approx} 0.04 pc) observations in the [C I] line toward the Orion-A giant molecular cloud with the Atacama Submillimeter Telescope Experiment 10 m telescope in the On-The-Fly mode. The overall features of the [C I] emission are similar to those of the {sup 12}CO (J = 1-0) emission by Shimajiri et al. in 2011; the total intensity ratio of the [C I] to CO emission ranges from 0.05 to 0.2. The optical depth of the [C I] emission is found to be 0.1-0.75, suggesting optically thin emission. The column density of the [C I] emission is estimated to be (1.0-19) Multiplication-Sign 10{sup 17} cm{sup -2}. These results are consistent with the results of the previous [C I] observations with a low-angular resolution of 2.'2. In the nearly edge-on photon-dominated regions (PDRs) and their candidates of the Orion Bar, DLSF, M 43 Shell, and Region D, the distributions of the [C I] emission coincide with those of the {sup 12}CO emission, inconsistent with the prediction by the plane-parallel PDR model. In addition, the [C I] distribution in the Orion A cloud is found to be more similar to those of the {sup 13}CO (J = 1-0), C{sup 18}O (J = 1-0), and H{sup 13}CO{sup +} (J = 1-0) lines than that of the {sup 12}CO (J = 1-0) line, suggesting that the [C I] emission is not limited to the cloud surface, but is tracing the dense, inner parts of the cloud.

  5. On the observational characteristics of lithium-enhanced giant stars in comparison with normal red giants†

    Science.gov (United States)

    Takeda, Yoichi; Tajitsu, Akito

    2017-08-01

    While lithium is generally deficient in the atmosphere of evolved giant stars because of the efficient mixing-induced dilution, a small fraction of red giants show unusually strong Li lines indicative of conspicuous abundance excess. With the aim of shedding light on the origin of these peculiar stars, we carried out a spectroscopic study on the observational characteristics of 20 selected bright giants already known to be Li-rich from past studies, in comparison with the reference sample of a large number of normal late G-early K giants. Special attention was paid to clarifying any difference between the two samples from a comprehensive point of view (i.e., with respect to stellar parameters, rotation, activity, kinematic properties, 6Li/7Li ratio, and the abundances of Li, Be, C, O, Na, S, and Zn). Our sample stars are roughly divided into a “bump/clump group” and a “luminous group” according to their positions on the HR diagram. Regarding the former group [1.5 ≲ log (L/L⊙) ≲ 2 and M ∼ 1.5-3 M⊙], Li-enriched giants and normal giants appear practically similar in almost all respects except for Li, suggesting that surface Li enhancement in this group may be a transient episode which normal giants undergo at certain evolutionary stages in their lifetime. Meanwhile, those Li-rich giants belonging to the latter group [log (L/L⊙) ∼ 3 and M ∼ 3-5 M⊙] appear more anomalous in the sense that they tend to show higher rotation as well as higher activity, and that their elemental abundances (especially those derived from high-excitation lines) are apt to show apparent overabundances, though this might be due to a spurious effect reflecting the difficulty of abundance derivation in stars of higher rotation and activity. Our analysis confirmed considerable Be deficiency as well as absence of 6Li as the general characteristics of Li-rich giants under study, which implies that engulfment of planets is rather unlikely for the origin of Li-enrichment.

  6. Observations of red-giant variable stars by Aboriginal Australians

    Science.gov (United States)

    Hamacher, Duane W.

    2018-04-01

    Aboriginal Australians carefully observe the properties and positions of stars, including both overt and subtle changes in their brightness, for subsistence and social application. These observations are encoded in oral tradition. I examine two Aboriginal oral traditions from South Australia that describe the periodic changing brightness in three pulsating, red-giant variable stars: Betelgeuse (Alpha Orionis), Aldebaran (Alpha Tauri), and Antares (Alpha Scorpii). The Australian Aboriginal accounts stand as the only known descriptions of pulsating variable stars in any Indigenous oral tradition in the world. Researchers examining these oral traditions over the last century, including anthropologists and astronomers, missed the description of these stars as being variable in nature as the ethnographic record contained several misidentifications of stars and celestial objects. Arguably, ethnographers working on Indigenous Knowledge Systems should have academic training in both the natural and social sciences.

  7. Probing the core structure and evolution of red giants using gravity-dominated mixed modes observed with Kepler

    NARCIS (Netherlands)

    Mosser, B.; Goupil, M.J.; Belkacem, K.; Michel, E.; Stello, D.; Marques, J.P.; Elsworth, Y.; Barban, C.; Beck, P.G.; Bedding, T.R.; De Ridder, J.; García, R.A.; Hekker, S.; Kallinger, T.; Samadi, R.; Stumpe, M.C.; Barclay, T.; Burke, C.J.

    2012-01-01

    Context. There are now more than 22 months of long-cadence data available for thousands of red giants observed with the Kepler space mission. Consequently, we are able to clearly resolve fine details in their oscillation spectra and see many components of the mixed modes that probe the stellar core.

  8. {sup 99} {sup m}Tc-sulphur-colloid and heat-denatured {sup 99} {sup m}Tc-labelled red cell scans demonstrating a giant intrapelvic spleen in a girl after splenectomy

    Energy Technology Data Exchange (ETDEWEB)

    Kao, P.F. [Dept. of Nuclear Medicine, Chang Gung Memorial Hospital and Chang Gung University School of Medicine, Tauyuan, Taiwan (Taiwan); Dept. of Nuclear Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan (Taiwan); Tzen, K.Y.; Tsai, M.F. [Dept. of Nuclear Medicine, Chang Gung Memorial Hospital and Chang Gung University School of Medicine, Tauyuan, Taiwan (Taiwan); Lin, J.N. [Dept. of Paediatric Surgery, Chang Gung Childrens Hospital and Chang Gung University School of Medicine, Tauyuan, Taiwan (Taiwan)

    2001-04-01

    A 17 x 12 x 5-cm giant intrapelvic mass in a 14-year-old girl is reported. This mass developed 6 years after a splenectomy for splenic torsion. The heat-denatured {sup 99} {sup m}Tc-labelled red cell scan and {sup 99} {sup m}Tc- sulphur-colloid scan confirmed the specific red cell sequestration function and reticuloendothelial activity in the giant intrapelvic spleen. The size and development of the giant intrapelvic spleen are unusual. The usefulness of functional images to diagnosis the nature of the intrapelvic mass is well demonstrated. (orig.)

  9. DISCOVERY OF AN UNUSUALLY RED L-TYPE BROWN DWARF

    International Nuclear Information System (INIS)

    Gizis, John E.; Castro, Philip J.; Faherty, Jacqueline K.; Liu, Michael C.; Aller, Kimberly M.; Shaw, John D.; Vrba, Frederick J.; Harris, Hugh C.; Deacon, Niall R.

    2012-01-01

    We report the discovery of an unusually red brown dwarf found in a search for high proper motion objects using WISE and 2MASS data. WISEP J004701.06+680352.1 is moving at 0.''44 yr –1 and lies relatively close to the Galactic plane (b = 5. 0 2). Near-infrared photometry and spectroscopy reveals that this is one of the reddest (2MASS J – K s 2.55 ± 0.08 mag) field L dwarfs yet detected, making this object an important member of the class of unusually red L dwarfs. We discuss evidence for thick condensate clouds and speculate on the age of the object. Although models by different research groups agree that thick clouds can explain the red spectrum, they predict dramatically different effective temperatures, ranging from 1100 K to 1600 K. This brown dwarf is well suited for additional studies of extremely dusty substellar atmospheres because it is relatively bright (K s = 13.05 ± 0.03 mag), which should also contribute to an improved understanding of young gas-giant planets and the transition between L and T brown dwarfs.

  10. Chemistry and structure of giant molecular clouds in energetic environments

    Science.gov (United States)

    Anderson, Crystal Nicole

    2016-09-01

    Throughout the years many studies on Galactic star formation have been conducted. This resulted in the idea that giant molecular clouds (GMCs) are hierarchical in nature with substructures spanning a large range of sizes. The physical processes that determine how molecular clouds fragment, form clumps/cores and then stars depends strongly on both recent radiative and mechanical feed- back from massive stars and, on longer term, from enhanced cooling due to the buildup of metals. Radiative and mechanical energy input from stellar populations can alter subsequent star formation over a large part of a galaxy and hence is relevant to the evolution of galaxies. Much of our knowledge of star formation on galaxy wide scales is based on scaling laws and other parametric descriptions. But to understand the overall evolution of star formation in galaxies we need to watch the feedback processes at work on giant molecular cloud (GMC) scales. By doing this we can begin to answer how strong feedback environments change the properties of the substructure in GMCs. Tests of Galactic star formation theory to other galaxies has been a challenging process due to the lack of resolution with current instruments. Thus, only the nearest galaxies allow us to resolve GMCs and their substructures. The Large Magellanic Cloud (LMC), is one of the closest low metallicity dwarf galaxies (D˜ 50 kpc) and is close enough that current instruments can resolve the sub- structure of its GMCs to molecular gas tracers (e.g. HCO+, HCN, HNC, CS, C2H, N2H+) detected in the LMC at 1.5-40 pc scales and in NGC 5253 at 40 pc scales. I then compare the molecular gas detections to the Central Molecular Zone in our Galaxy. Dense molecular gas was detected in all of the sources. For the regions in the LMC, molecular lines of CS, N2H+, C 2H, HNC, HCO+ and HCN were all detected in N159W and N113 while only HCN, HCO+, HNC, and C2H were detected in 30Dor-10. Toward NGC 5253 only HCO+, HCN, C2H and CS were detected. I

  11. HUBBLE SPACE TELESCOPE CONSTRAINTS ON THE WINDS AND ASTROSPHERES OF RED GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Müller, Hans-Reinhard [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Harper, Graham M., E-mail: brian.wood@nrl.navy.mil [CASA, University of Colorado, Boulder, CO 80309-0389 (United States)

    2016-10-01

    We report on an ultraviolet spectroscopic survey of red giants observed by the Hubble Space Telescope , focusing on spectra of the Mg ii h and k lines near 2800 Å in order to study stellar chromospheric emission, winds, and astrospheric absorption. We focus on spectral types between K2 III and M5 III, a spectral type range with stars that are noncoronal, but possessing strong, chromospheric winds. We find a very tight relation between Mg ii surface flux and photospheric temperature, supporting the notion that all K2-M5 III stars are emitting at a basal flux level. Wind velocities ( V {sub w} ) are generally found to decrease with spectral type, with V {sub w} decreasing from ∼40 km s{sup −1} at K2 III to ∼20 km s{sup −1} at M5 III. We find two new detections of astrospheric absorption, for σ Pup (K5 III) and γ Eri (M1 III). This absorption signature had previously only been detected for α Tau (K5 III). For the three astrospheric detections, the temperature of the wind after the termination shock (TS) correlates with V {sub w} , but is lower than predicted by the Rankine–Hugoniot shock jump conditions, consistent with the idea that red giant TSs are radiative shocks rather than simple hydrodynamic shocks. A full hydrodynamic simulation of the γ Eri astrosphere is provided to explore this further.

  12. IS DUST FORMING ON THE RED GIANT BRANCH IN 47 Tuc?

    International Nuclear Information System (INIS)

    Boyer, Martha L.; Gordon, Karl D.; Meixner, Margaret; Sewilo, Marta; Shiao, Bernie; Van Loon, Jacco Th.; McDonald, Iain; Babler, Brian; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles; Misselt, Karl; Hora, Joe; Indebetouw, Remy; Whitney, Barbara

    2010-01-01

    Using Spitzer Infrared Array Camera (IRAC) observations from the SAGE-SMC Legacy program and archived Spitzer IRAC data, we investigate dust production in 47 Tuc, a nearby massive Galactic globular cluster. A previous study detected infrared excess, indicative of circumstellar dust, in a large population of stars in 47 Tuc, spanning the entire red giant branch (RGB). We show that those results suffered from effects caused by stellar blending and imaging artifacts and that it is likely that no stars below ∼1 mag from the tip of the RGB are producing dust. The only stars that appear to harbor dust are variable stars, which are also the coolest and most luminous stars in the cluster.

  13. Mass loss from red giants - A simple evolutionary model for NGC 7027

    Science.gov (United States)

    Jura, M.

    1984-01-01

    NGC 7027 is a young planetary nebula with the remnants of a red giant circumstellar envelope surrounding the central, ionized region. By comparing the outer molecular envelope with the inner ionized material, it is argued that the mass loss rate has decreased by at least a factor of 3, and more probably by about a factor of 10, during the past 1000 years. From this result, it is argued that the luminosity of the central star has also decreased substantially during the same time, consistent with models for the rapid evolution of stars just after they evolve off the asymptotic giant branch. In this picture, the distance to NGC 7027 is less than 1300 pc. NGC 7027 was the last (and best) example of a star where apparently the momentum in the outflowing mass /M(dot)v/ is considerably greater than the momentum in the radiation field (L/c). With the above description of this object, the evidence is now strong that quite often the mass lost from late-type giants is ultimately driven to infinity by radiation pressure on grains. If M(dot)v is as large as L/c for asymptotic branch stars, then it is expected that the total amount of mass lost during this stage of evolution is of the same magnitude as the initial mass of the star, and therefore this mass loss can profoundly affect the star's ultimate fate.

  14. Measuring Precise Radii of Giants Orbiting Giants to Distinguish Between Planet Evolution Models

    Science.gov (United States)

    Grunblatt, Samuel; Huber, Daniel; Lopez, Eric; Gaidos, Eric; Livingston, John

    2017-10-01

    Despite more than twenty years since the initial discovery of highly irradiated gas giant planets, the mechanism for planet inflation remains unknown. However, proposed planet inflation mechanisms can now be separated into two general classes: those which allow for post-main sequence planet inflation by direct irradiation from the host star, and those which only allow for slowed cooling of the planet over its lifetime. The recent discovery of two inflated warm Jupiters orbiting red giant stars with the NASA K2 Mission allows distinction between these two classes, but uncertainty in the planet radius blurs this distinction. Observing transits of these planets with the Spitzer Space Telescope would reduce stellar variability and thus planet radius uncertainties by approximately 50% relative to K2, allowing distinction between the two planet inflation model classes at a 3-sigma level. We propose to observe one transit of both known warm Jupiters orbiting red giant stars, K2-97b and EPIC228754001.01, to distinguish between planet model inflation classes and measure the planetary heating efficiency to 3-sigma precision. These systems are benchmarks for the upcoming NASA TESS Mission, which is predicted to discover an order of magnitude more red giant planet systems after launching next year.

  15. Discovery of a Red Giant with Solar-like Oscillations in an Eclipsing Binary System from Kepler Space-based Photometry

    DEFF Research Database (Denmark)

    Hekker, S.; Debosscher, J.; Huber, D.

    2010-01-01

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler...

  16. Rotational and radial velocities of 1.3-2.2 M {sub ☉} red giants in open clusters

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Joleen K., E-mail: jcarlberg@dtm.ciw.edu [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)

    2014-06-01

    This study presents the rotational distribution of red giant (RG) stars in 11 old to intermediate age open clusters. The masses of these stars are all above the Kraft break, so they lose negligible amounts of their birth angular momentum (AM) during the main-sequence (MS) evolution. However, they do span a mass range with quite different AM distributions imparted during formation, with the stars less massive than ∼1.6M {sub ☉} arriving on the MS with lower rotation rates than the more massive stars. The majority of RGs in this study are slow rotators across the entire red giant branch regardless of mass, supporting the picture that intermediate-mass stars rapidly spin down when they evolve off the MS and develop convection zones capable of driving a magnetic dynamo. Nevertheless, a small fraction of RGs in open clusters show some level of enhanced rotation, and faster rotators are as common in these clusters as in the field RG population. Most of these enhanced rotators appear to be red clump stars, which is also true of the underlying stellar sample, while others are clearly RGs that are above or below the clump. In addition to rotational velocities, the radial velocities (RVs) and membership probabilities of individual stars are also presented. Cluster heliocentric RVs for NGC 6005 and Pismis 18 are reported for the first time.

  17. Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet field

    Science.gov (United States)

    Hekker, S.; Kallinger, T.; Baudin, F.; De Ridder, J.; Barban, C.; Carrier, F.; Hatzes, A. P.; Weiss, W. W.; Baglin, A.

    2009-10-01

    Context: Observations during the first long run (~150 days) in the exo-planet field of CoRoT increase the number of G-K giant stars for which solar-like oscillations are observed by a factor of 100. This opens the possibility to study the characteristics of their oscillations in a statistical sense. Aims: We aim to understand the statistical distribution of the frequencies of maximum oscillation power (ν_max) in red giants and to search for a possible correlation between ν_max and the large separation (Δ ν). Methods: Red giants with detectable solar-like oscillations are identified using both semi-automatic and manual procedures. For these stars, we determine ν_max as the centre of a Gaussian fit to the oscillation power excess. For the determination of Δ ν, we use the autocorrelation of the Fourier spectra, the comb response function and the power spectrum of the power spectrum. Results: The resulting ν_max distribution shows a pronounced peak between 20-40 μHz. For about half of the stars we obtain Δ ν with at least two methods. The correlation between ν_max and Δ ν follows the same scaling relation as inferred for solar-like stars. Conclusions: The shape of the ν_max distribution can partly be explained by granulation at low frequencies and by white noise at high frequencies, but the population density of the observed stars turns out to be also an important factor. From the fact that the correlation between Δ ν and ν_max for red giants follows the same scaling relation as obtained for sun-like stars, we conclude that the sound travel time over the pressure scale height of the atmosphere scales with the sound travel time through the whole star irrespective of evolution. The fraction of stars for which we determine Δ ν does not correlate with ν_max in the investigated frequency range, which confirms theoretical predictions. The CoRoT space mission which was developed and is operated by the French space agency CNES, with participation of ESA

  18. An Extremely Lithium-rich Bright Red Giant in the Globular Cluster M3

    Science.gov (United States)

    Kraft, Robert P.; Peterson, Ruth C.; Guhathakurta, Puragra; Sneden, Christopher; Fulbright, Jon P.; Langer, G. Edward

    1999-06-01

    We have serendipitously discovered an extremely lithium-rich star on the red giant branch of the globular cluster M3 (NGC 5272). An echelle spectrum obtained with the Keck I High-Resolution Echelle Spectrograph reveals a Li I λ6707 resonance doublet of 520 mÅ equivalent width, and our analysis places the star among the most Li-rich giants known: logε(Li)~=+3.0. We determine the elemental abundances of this star, IV-101, and three other cluster members of similar luminosity and color and conclude that IV-101 has abundance ratios typical of giants in M3 and M13 that have undergone significant mixing. We discuss mechanisms by which a low-mass star may be so enriched in Li, focusing on the mixing of material processed by the hydrogen-burning shell just below the convective envelope. While such enrichment could conceivably happen only rarely, it may in fact regularly occur during giant-branch evolution but be rarely detected because of rapid subsequent Li depletion. Based on observations obtained with the Keck I Telescope of the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy (CARA), Inc., on behalf of the University of California and the California Institute of Technology. This Letter is dedicated to the memory of our beloved colleague Ed Langer, who died after a brief illness on February 16, 1999. Ed brought a unique theoretical perspective to our globular cluster abundance studies. His career truly embodied the academic ideals of inspiration in both teaching and research. He made friends wherever he traveled, and was an inspiration to students. We will miss him greatly.

  19. Molecular clouds in M31 and M33

    International Nuclear Information System (INIS)

    Blitz, L.

    1985-01-01

    In order to determine the properties of the molecular clouds in nearby spiral galaxies, 49 H II regions in M31 and 6 H II regions in M33 were observed using the J = 1→0 transition of CO. Of these, 17 were detected in M31 and two in M33. For the CO detection in M31, = 0.14 K, = 12.5 km s -1 , and = 2.1 K km s -1 . The two detections in M33, which are toward the giant H II regions NGC 604 and NGC 595, are somewhat weaker than the mean values for clouds in M31, neither T(/sub R/ nor ΔV shows any gradient with galactic radius, but is a decreasing function of radius. The mean values of and are considerably larger than the values that would be obtained by extrapolating local giant molecular clouds to the distance of M31. It is suggested that most of the CO emission is from small clouds in the beam which overwhelm the emission from the giant molecular clouds. Some observational tests of this suggestion are proposed. Like the molecular clouds in the Milky Way, the giant molecular clouds in M31 appear to be tidally limited. In M33 the larger inclination angle would make the observed contribution from small molecular clouds less significant, which is consistent with the observations

  20. ANGULAR MOMENTUM IN GIANT MOLECULAR CLOUDS. II. M33

    International Nuclear Information System (INIS)

    Imara, Nia; Bigiel, Frank; Blitz, Leo

    2011-01-01

    We present an analysis comparing the properties of 45 giant molecular clouds (GMCs) in M33 and the atomic hydrogen (H I) with which they are associated. High-resolution Very Large Array observations are used to measure the properties of H I in the vicinity of GMCs and in regions where GMCs have not been detected. The majority of molecular clouds coincide with a local peak in the surface density of atomic gas, though 7% of GMCs in the sample are not associated with high surface density atomic gas. The mean H I surface density in the vicinity of GMCs is 10 M sun pc -2 and tends to increase with GMC mass as Σ HI ∝ M 0.27 GMC . Thirty-nine of the 45 H I regions surrounding GMCs have linear velocity gradients of ∼0.05 km s -1 pc -1 . If the linear gradients previously observed in the GMCs result from rotation, 53% are counterrotating with respect to the local H I. And if the linear gradients in these local H I regions are also from rotation, 62% are counterrotating with respect to the galaxy. If magnetic braking reduced the angular momentum of GMCs early in their evolution, the angular velocity of GMCs would be roughly one order of magnitude lower than what is observed. Based on our observations, we consider the possibility that GMCs may not be rotating. Atomic gas not associated with GMCs has gradients closer to 0.03 km s -1 pc -1 , suggesting that events occur during the course of GMC evolution that may increase the shear in the atomic gas.

  1. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    Science.gov (United States)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  2. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Martins, F.; Bournaud, F.; Monier, R.; Reylé, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between --2.0 and

  3. Atmospheric parameters of 82 red giants in the Kepler field

    DEFF Research Database (Denmark)

    Overaa Thygesen, Anders; Frandsen, Søren; Bruntt, Hans

    2012-01-01

    spectroscopy and photometry shows good agreement within the uncertainties. We find good agreement between the spectroscopic log g and the log g derived from asteroseismology. Also, we see indications of a potential metallicity effect on the stellar oscillations. Conclusions. We have determined the fundamental...... elements were measured using equivalent widths of the spectral lines. Results. We identify discrepancies in log g and [Fe/H], compared to the parameters based on photometric indices in the Kepler Input Catalogue (larger than 2.0 dex for log g and [Fe/H] for individual stars). The Teff found from...... parameters and element abundances of 82 red giants. The large discrepancies between the spectroscopic log g and [Fe/H] and values in the Kepler Input Catalogue emphasize the need for further detailed spectroscopic follow-up of the Kepler targets in order to produce reliable results from the asteroseismic...

  4. The mass and age of the first SONG target: the red giant 46 LMi

    Science.gov (United States)

    Frandsen, S.; Fredslund Andersen, M.; Brogaard, K.; Jiang, C.; Arentoft, T.; Grundahl, F.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Weiss, E.; Pallé, P.; Antoci, V.; Kjærgaard, P.; Sørensen, A. N.; Skottfelt, J.; Jørgensen, U. G.

    2018-05-01

    Context. The Stellar Observation Network Group (SONG) is an initiative to build a worldwide network of 1m telescopes with high-precision radial-velocity spectrographs. Here we analyse the first radial-velocity time series of a red-giant star measured by the SONG telescope at Tenerife. The asteroseismic results demonstrate a major increase in the achievable precision of the parameters for red-giant stars obtainable from ground-based observations. Reliable tests of the validity of these results are needed, however, before the accuracy of the parameters can be trusted. Aims: We analyse the first SONG time series for the star 46 LMi, which has a precise parallax and an angular diameter measured from interferometry, and therefore a good determination of the stellar radius. We use asteroseismic scaling relations to obtain an accurate mass, and modelling to determine the age. Methods: A 55-day time series of high-resolution, high S/N spectra were obtained with the first SONG telescope. We derive the asteroseismic parameters by analysing the power spectrum. To give a best guess on the large separation of modes in the power spectrum, we have applied a new method which uses the scaling of Kepler red-giant stars to 46 LMi. Results: Several methods have been applied: classical estimates, seismic methods using the observed time series, and model calculations to derive the fundamental parameters of 46 LMi. Parameters determined using the different methods are consistent within the uncertainties. We find the following values for the mass M (scaling), radius R (classical), age (modelling), and surface gravity (combining mass and radius): M = 1.09 ± 0.04M⊙, R = 7.95 ± 0.11R⊙ age t = 8.2 ± 1.9 Gy, and logg = 2.674 ± 0.013. Conclusions: The exciting possibilities for ground-based asteroseismology of solar-like oscillations with a fully robotic network have been illustrated with the results obtained from just a single site of the SONG network. The window function is still a

  5. Jupiter's Great Red Spot upper cloud morphology and dynamics from JunoCam images

    Science.gov (United States)

    Sanchez-Lavega, A.; Hueso, R.; Eichstädt, G.; Orton, G.; Rogers, J.; Hansen, C. J.; Momary, T.; Tabataba-Vakili, F.

    2017-12-01

    We present an analysis of RGB color-composite images of the Great Red Spot (GRS) obtained with JunoCam during Juno's seventh close flyby (PJ7) on July 11, 2017. The images have been projected as 4 cylindrical maps with a resolution of 180 pixels per degree (about 7 km/pixel) spanning a temporal interval of 9 min 41s. The GRS shows a rich variety of cloud morphologies that reveal different dynamical processes in its interior. We consider three major regions. (1) An outer peripheral ring of homogeneous reddish clouds (width about 1,300 km) traces a laminar flow. A family of at least three packets of gravity waves with a mean wavelength of 75 km is present at the internal edge of the ring (in its northern side). They occupy an area of 2,500 km in length (East-West, EW) and 670 km in the North-South (NS) direction. Single clouds in the groups forming the wave have extents of 35 km EW and 70-135 km NS. (2) A large internal region of red clouds (width about 3,200 km) contains three morphologies: (a) fields of bright cumulus-like clusters, (b) long, dark curved filaments (about 7,000 km length with 100 km width), two of them converging into an arrowhead shape, and (c) individual anticyclonic vortices with radius of 500 km that grow due to the radial shear of the wind velocity in the GRS interior as previously measured. A cumulus cluster is conspicuous inside one such anticyclone. Each single cloud element is 50 km in size and the cluster has a 25-30 percent area coverage in cumulus-convective activity, presumably due to ammonia moist convection. (3) A central core has quasi-rectangular shape, extending about 5000 km EW and 3000 km NS, that is confined by elongated clouds distributed along its periphery. Its interior is filled with the redder clouds in the GRS that have a scale 100 km and form a turbulent pattern whose cloud orientations suggest three adjacent areas with alternating cyclonic-cyclonic-anticyclonic vorticity, each with radius 650-850 km.

  6. TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Huber, D.; Bedding, T. R.; Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Hekker, S. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Mosser, B. [LESIA, CNRS, Universite Pierre et Marie Curie, Universite Denis, Diderot, Observatoire de Paris, 92195 Meudon cedex (France); Verner, G. A.; Elsworth, Y. P.; Hale, S. J.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Bonanno, A. [INAF Osservatorio Astrofisico di Catania (Italy); Buzasi, D. L. [Eureka Scientific, 2452 Delmer Street Suite 100, Oakland, CA 94602-3017 (United States); Campante, T. L. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Kallinger, T. [Department of Physics and Astronomy, University of British Columbia, Vancouver (Canada); Silva Aguirre, V. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); De Ridder, J. [Instituut voor Sterrenkunde, K.U.Leuven (Belgium); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS, Universite Paris 7 Diderot, IRFU/SAp, Centre de Saclay, 91191, Gif-sur-Yvette (France); Appourchaux, T. [Institut d' Astrophysique Spatiale, UMR 8617, Universite Paris Sud, 91405 Orsay Cedex (France); Frandsen, S. [Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Houdek, G., E-mail: dhuber@physics.usyd.edu.au [Institute of Astronomy, University of Vienna, 1180 Vienna (Austria); and others

    2011-12-20

    We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen and Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.

  7. Ransom, Religion, and Red Giants: C.S. Lewis and Fred Hoyle

    Science.gov (United States)

    Larsen, Kristine

    2010-01-01

    Famed fantasy writer C.S. Lewis (1898-1963) was known to friends as a well-read astronomy aficionado. However, this medieval scholar and Christian apologist embraced a pre-Copernican universe (with its astrological overtones) in his Chronicles of Narnia series and defended the beauty and relevance of the geocentric model in his final academic work, "The Discarded Image". In the "Ransom Trilogy” ("Out of the Silent Planet", "Perelandra", and "That Hideous Strength") philologist Ransom (loosely based on Lewis's close friend J.R.R. Tolkien) travels to Lewis's visions of Mars and Venus, where he interacts with intelligent extraterrestrials, battles with evil scientists, and aids in the continuation of extraterrestrial Christian values. In the final book, Ransom is joined by a handful of colleagues in open warfare against the satanic N.I.C.E. (National Institute for Coordinated Experiments). Geneticist and evolutionary biologist J.B.S. Haldane criticized Lewis for his scientifically inaccurate descriptions of the planets, and his disdain for the scientific establishment. Lewis responded to the criticism in essays of his own. Another of Lewis's favorite scientific targets was atheist Fred Hoyle, whom he openly criticized for anti-Christian statements in Hoyle's BBC radio series. Writer and Lewis friend Dorothy L. Sayers voiced her own criticism of Hoyle. In a letter, Lewis dismissed Hoyle as "not a great philosopher (and none of my scientific colleagues think much of him as a scientist.” Given Lewis's lack of respect for Hoyle, and use of creative license in describing the planets, and the flat-earth, "geocentric” Narnia, it is surprising that Lewis very carefully includes an astronomically correct description of red giants in two novels in the Narnia series ("The Magician's Nephew" and "The Last Battle"). This inclusion is even more curious given that Fred Hoyle is well-known as one of the pioneers in the field of stellar death and the properties of red giants.

  8. PROBING THE DEEP END OF THE MILKY WAY WITH KEPLER : ASTEROSEISMIC ANALYSIS OF 854 FAINT RED GIANTS MISCLASSIFIED AS COOL DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, S. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); García, R. A.; Beck, P. G.; Houmani, K.; Salabert, D. [Laboratoire AIM, CEA/DRF-CNRS-Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Huber, D.; Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Regulo, C. [Universidad de La Laguna, Dpto de Astrofísica, E-38206, Tenerife (Spain)

    2016-08-10

    Asteroseismology has proven to be an excellent tool to determine not only global stellar properties with good precision, but also to infer the stellar structure, dynamics, and evolution for a large sample of Kepler stars. Prior to the launch of the mission, the properties of Kepler targets were inferred from broadband photometry, leading to the Kepler Input Catalog (KIC). The KIC was later revised in the Kepler Star Properties Catalog, based on literature values and an asteroseismic analysis of stars that were unclassified in the KIC. Here, we present an asteroseismic analysis of 45,400 stars that were classified as dwarfs in the Kepler Star Properties Catalog. We found that around 2% of the sample shows acoustic modes in the typical frequency range that put them in the red-giant category rather than the cool dwarf category. We analyze the asteroseismic properties of these stars, derive their surface gravities, masses, and radii, and present updated effective temperatures and distances. We show that the sample is significantly fainter than the previously known oscillating giants in the Kepler field, with the faintest stars reaching down to a Kepler magnitude of Kp ∼ 16. We demonstrate that 404 stars are at distances beyond 5 kpc and that the stars are significantly less massive than for the original Kepler red-giant sample, consistent with a population of distant halo giants. A comparison with a galactic population model shows that up to 40 stars might be genuine halo giants, which would increase the number of known asteroseismic halo stars by a factor of 4. The detections presented here will provide a valuable sample for galactic archeology studies.

  9. The Carnegie–Chicago Hubble Program. III. The Distance to NGC 1365 via the Tip of the Red Giant Branch

    Science.gov (United States)

    Jang, In Sung; Hatt, Dylan; Beaton, Rachael L.; Lee, Myung Gyoon; Freedman, Wendy L.; Madore, Barry F.; Hoyt, Taylor J.; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark

    2018-01-01

    The Carnegie–Chicago Hubble Program (CCHP) seeks to anchor the distance scale of Type Ia supernovae via the Tip of the Red Giant Branch (TRGB) method. Based on deep Hubble Space Telescope ACS/WFC imaging, we present an analysis of the TRGB for the metal-poor halo of NGC 1365, a giant spiral galaxy in the Fornax cluster that was host to the Type Ia supernova SN 2012fr. We have measured the extinction-corrected TRGB magnitude of NGC 1365 to be F814W = 27.34 ± 0.03stat ± 0.04sys mag. In advance of future direct calibration by Gaia, we adopt a provisional I-band TRGB luminosity set at the Large Magellanic Cloud and find a true distance modulus μ 0 = 31.29 ± 0.04stat ± 0.06sys mag or D = 18.1 ± 0.3stat ± 0.5sys Mpc. This measurement is in excellent agreement with recent Cepheid-based distances to NGC 1365 and reveals no significant difference in the distances derived from stars of Populations I and II for this galaxy. We revisit the error budget for the CCHP path to the Hubble constant based on the analysis presented here, i.e., that for one of the most distant Type Ia supernova hosts within our Program, and find that a 2.5% measurement is feasible with the current sample of galaxies and TRGB absolute calibration. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13691.

  10. FUNDAMENTAL PARAMETERS, INTEGRATED RED GIANT BRANCH MASS LOSS, AND DUST PRODUCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    International Nuclear Information System (INIS)

    McDonald, I.; Zijlstra, A. A.; Boyer, M. L.; Gordon, K.; Meixner, M.; Sewilo, M.; Shiao, B.; Whitney, B.; Van Loon, J. Th.; Hora, J. L.; Robitaille, T.; Babler, B.; Meade, M.; Block, M.; Misselt, K.

    2011-01-01

    Fundamental parameters and time evolution of mass loss are investigated for post-main-sequence stars in the Galactic globular cluster 47 Tucanae (NGC 104). This is accomplished by fitting spectral energy distributions (SEDs) to existing optical and infrared photometry and spectroscopy, to produce a true Hertzsprung-Russell diagram. We confirm the cluster's distance as d = 4611 +213 -200 pc and age as 12 ± 1 Gyr. Horizontal branch models appear to confirm that no more red giant branch mass loss occurs in 47 Tuc than in the more metal-poor ω Centauri, though difficulties arise due to inconsistencies between the models. Using our SEDs, we identify those stars that exhibit infrared excess, finding excess only among the brightest giants: dusty mass loss begins at a luminosity of ∼1000 L sun , becoming ubiquitous above L = 2000 L sun . Recent claims of dust production around lower-luminosity giants cannot be reproduced, despite using the same archival Spitzer imagery.

  11. Seismic probing of the first dredge-up event through the eccentric red-giant and red-giant spectroscopic binary KIC 9163796. How different are red-giant stars with a mass ratio of 1.015?

    Science.gov (United States)

    Beck, P. G.; Kallinger, T.; Pavlovski, K.; Palacios, A.; Tkachenko, A.; Mathis, S.; García, R. A.; Corsaro, E.; Johnston, C.; Mosser, B.; Ceillier, T.; do Nascimento, J.-D.; Raskin, G.

    2018-04-01

    Context. Binaries in double-lined spectroscopic systems (SB2) provide a homogeneous set of stars. Differences of parameters, such as age or initial conditions, which otherwise would have strong impact on the stellar evolution, can be neglected. The observed differences are determined by the difference in stellar mass between the two components. The mass ratio can be determined with much higher accuracy than the actual stellar mass. Aim. In this work, we aim to study the eccentric binary system KIC 9163796, whose two components are very close in mass and both are low-luminosity red-giant stars. Methods: We analysed four years of Kepler space photometry and we obtained high-resolution spectroscopy with the Hermes instrument. The orbital elements and the spectra of both components were determined using spectral disentangling methods. The effective temperatures, and metallicities were extracted from disentangled spectra of the two stars. Mass and radius of the primary were determined through asteroseismology. The surface rotation period of the primary is determined from the Kepler light curve. From representative theoretical models of the star, we derived the internal rotational gradient, while for a grid of models, the measured lithium abundance is compared with theoretical predictions. Results: From seismology the primary of KIC 9163796 is a star of 1.39 ± 0.06 M⊙, while the spectroscopic mass ratio between both components can be determined with much higher precision by spectral disentangling to be 1.015 ± 0.005. With such mass and a difference in effective temperature of 600 K from spectroscopy, the secondary and primary are, respectively, in the early and advanced stage of the first dredge-up event on the red-giant branch. The period of the primary's surface rotation resembles the orbital period within ten days. The radial rotational gradient between the surface and core in KIC 9163796 is found to be 6.9-1.0+2.0. This is a low value but not exceptional if

  12. Genetic diversity of giant clams (Tridacna spp.) and their associated Symbiodinium in the central Red Sea

    KAUST Repository

    Pappas, Melissa

    2017-05-19

    The biodiversity of the Red Sea remains relatively understudied, particularly for invertebrate taxa. Documenting present patterns of biodiversity is essential for better understanding Red Sea reef ecosystems and how these ecosystems may be impacted by stressors (such as fishing and climate change). Several species of giant clams (genus Tridacna) are reported from the Red Sea, although the majority of research effort has occurred in the Gulf of Aqaba. We investigated the genetic diversity (16S rDNA) of the Tridacna species found in the central Saudi Arabian Red Sea. We also investigated the genetic diversity (ITS rDNA) of symbiotic dinoflagellates Symbiodinium associated with these clams. Samples were collected from nine reefs on a cross-shelf gradient near Thuwal, Saudi Arabia. Two species, T. squamosa and T. maxima, were recorded, with the latter being the most abundant. Tridacna squamosina, a species recently reported in the northern Red Sea, was not found, suggesting that this species is not present or is very rare in our study region. All tridacnids sampled were found to harbor Symbiodinium grouped in Clade A, considered an opportunistic, heat-tolerant symbiont group in anemones and corals. The consistent association with Clade A Symbiodinium in central Red Sea tridacnids may reflect the consequence of adaptation to the relatively extreme conditions of the Red Sea. This study contributes to an ever-growing catalog of Red Sea biodiversity and serves as important baseline information for a region experiencing dynamic pressures.

  13. Genetic diversity of giant clams (Tridacna spp.) and their associated Symbiodinium in the central Red Sea

    KAUST Repository

    Pappas, Melissa; He, Song; Hardenstine, Royale; Kanee, Hana; Berumen, Michael L.

    2017-01-01

    The biodiversity of the Red Sea remains relatively understudied, particularly for invertebrate taxa. Documenting present patterns of biodiversity is essential for better understanding Red Sea reef ecosystems and how these ecosystems may be impacted by stressors (such as fishing and climate change). Several species of giant clams (genus Tridacna) are reported from the Red Sea, although the majority of research effort has occurred in the Gulf of Aqaba. We investigated the genetic diversity (16S rDNA) of the Tridacna species found in the central Saudi Arabian Red Sea. We also investigated the genetic diversity (ITS rDNA) of symbiotic dinoflagellates Symbiodinium associated with these clams. Samples were collected from nine reefs on a cross-shelf gradient near Thuwal, Saudi Arabia. Two species, T. squamosa and T. maxima, were recorded, with the latter being the most abundant. Tridacna squamosina, a species recently reported in the northern Red Sea, was not found, suggesting that this species is not present or is very rare in our study region. All tridacnids sampled were found to harbor Symbiodinium grouped in Clade A, considered an opportunistic, heat-tolerant symbiont group in anemones and corals. The consistent association with Clade A Symbiodinium in central Red Sea tridacnids may reflect the consequence of adaptation to the relatively extreme conditions of the Red Sea. This study contributes to an ever-growing catalog of Red Sea biodiversity and serves as important baseline information for a region experiencing dynamic pressures.

  14. GRANULATION SIGNATURES IN THE SPECTRUM OF THE VERY METAL-POOR RED GIANT HD 122563

    International Nuclear Information System (INIS)

    RamIrez, I.; Collet, R.; Asplund, M.; Lambert, D. L.; Allende Prieto, C.

    2010-01-01

    A very high resolution (R = λ/Δλ = 200, 000), high signal-to-noise ratio (S/N ≅ 340) blue-green spectrum of the very metal-poor ([Fe/H] ≅ -2.6) red giant star HD 122563 has been obtained by us at McDonald Observatory. We measure the asymmetries and core wavelengths of a set of unblended Fe I lines covering a wide range of line strength. Line bisectors exhibit the characteristic C-shape signature of surface convection (granulation) and they span from about 100 m s -1 in the strongest Fe I features to 800 m s -1 in the weakest ones. Core wavelength shifts range from about -100 to -900 m s -1 , depending on line strength. In general, larger blueshifts are observed in weaker lines, but there is increasing scatter with increasing residual flux. Assuming local thermodynamic equilibrium (LTE), we synthesize the same set of spectral lines using a state-of-the-art three-dimensional (3D) hydrodynamic simulation for a stellar atmosphere of fundamental parameters similar to those of HD 122563. We find good agreement between model predictions and observations. This allows us to infer an absolute zero point for the line shifts and radial velocity. Moreover, it indicates that the structure and dynamics of the simulation are realistic, thus providing support to previous claims of large 3D-LTE corrections to elemental abundances and fundamental parameters of very metal-poor red giant stars obtained with standard 1D-LTE spectroscopic analyses, as suggested by the hydrodynamic model used here.

  15. Modelling linewidths of Kepler red giants in NGC 6819

    Science.gov (United States)

    Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen

    2018-04-01

    We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red-giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler lightcurves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the nonlocal convection model.

  16. 77 FR 8895 - Public Land Order No. 7788; Withdrawal of National Forest System Land for the Red Cloud...

    Science.gov (United States)

    2012-02-15

    ... Land Order No. 7788; Withdrawal of National Forest System Land for the Red Cloud Campground; New Mexico... Cloud Campground within the Cibola National Forest, and to protect a capital investment in the... (FIRS) at 1-800-877-8339 to contact either of the above individuals during normal business hours. The...

  17. The physical properties of giant molecular cloud complexes in the outer Galaxy - Implications for the ratio of H2 column density to (C-12)O intensity

    Science.gov (United States)

    Sodroski, T. J.

    1991-01-01

    The physical properties of 35 giant molecular cloud complexes in the outer Galaxy were derived from the Goddard-Columbia surveys of the Galactic plane region (Dame et al., 1987). The spatial and radial velocity boundaries for the individual cloud complexes were estimated by analyzing the spatial and velocity structure of emission features in the (C-12)O surveys, and the distance to each cmplex was determined kinematically on the assumption of a flat rotation curve. The ratio of the H2 column density to the (C-12)O intensity for the outer Galaxy complexes was found to be about 6.0 x 10 to the 20th molecules/sq cm K per km/sec, which is by a factor of 2-3 greater than the value derived by other auhtors for the inner Galaxy complexes. This increase in the H2 column density/(C-12)O intensity with the distance from with the Galactic center is consistent with predictions of the optically thick cloudlet model of giant molecular cloud complexes.

  18. Dense gas and star formation in individual Giant Molecular Clouds in M31

    Science.gov (United States)

    Viaene, S.; Forbrich, J.; Fritz, J.

    2018-04-01

    Studies both of entire galaxies and of local Galactic star formation indicate a dependency of a molecular cloud's star formation rate (SFR) on its dense gas mass. In external galaxies, such measurements are derived from HCN(1-0) observations, usually encompassing many Giant Molecular Clouds (GMCs) at once. The Andromeda galaxy (M31) is a unique laboratory to study the relation of the SFR and HCN emission down to GMC scales at solar-like metallicities. In this work, we correlate our composite SFR determinations with archival HCN, HCO+, and CO observations, resulting in a sample of nine reasonably representative GMCs. We find that, at the scale of individual clouds, it is important to take into account both obscured and unobscured star formation to determine the SFR. When correlated against the dense-gas mass from HCN, we find that the SFR is low, in spite of these refinements. We nevertheless retrieve an SFR-dense-gas mass correlation, confirming that these SFR tracers are still meaningful on GMC scales. The correlation improves markedly when we consider the HCN/CO ratio instead of HCN by itself. This nominally indicates a dependency of the SFR on the dense-gas fraction, in contradiction to local studies. However, we hypothesize that this partly reflects the limited dynamic range in dense-gas mass, and partly that the ratio of single-pointing HCN and CO measurements may be less prone to systematics like sidelobes. In this case, the HCN/CO ratio would importantly be a better empirical measure of the dense-gas content itself.

  19. THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY?

    International Nuclear Information System (INIS)

    Boyer, M. L.; Gordon, K. D.; Meixner, M.; Sargent, B. A.; Srinivasan, S.; Riebel, D.; McDonald, I.; Van Loon, J. Th.; Clayton, G. C.; Sloan, G. C.

    2012-01-01

    We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 μm excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) × 10 –7 M ☉ yr –1 of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least ( –3 M ☉ of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.

  20. The pillars of creation giant molecular clouds, star formation, and cosmic recycling

    CERN Document Server

    Beech, Martin

    2017-01-01

    This book explores the mechanics of star formation, the process by which matter pulls together and creates new structures. Written for science enthusiasts, the author presents an accessible explanation of how stars are born from the interstellar medium and giant molecular clouds. Stars produce the chemicals that lead to life, and it is they that have enabled the conditions for planets to form and life to emerge. Although the Big Bang provided the spark of initiation, the primordial universe that it sired was born hopelessly sterile. It is only through the continued recycling of the interstellar medium, star formation, and stellar evolution that the universe has been animated beyond a chaotic mess of elementary atomic particles, radiation, dark matter, dark energy, and expanding spacetime. Using the Milky Way and the Eagle Nebula in particular as case studies, Beech follows every step of this amazing process. .

  1. A Velocity Structure Analysis of Giant Molecular Cloud Associated with HII Region S152

    Directory of Open Access Journals (Sweden)

    Woo-Yeol Choi

    2005-06-01

    Full Text Available S152 is a small bright emission nebula located in the Perseus arm. Its optical diameter corresponds to 1.5 pc for an adopted distance 3.5 kpc. However, S152 is a part of a giant molecular cloud complex, which consists of several dense cores, containing active star-forming sites, and well aligned arm-like features. We analyzed the FCRAO 12CO (J = 1→0 Outer Galaxy Survey data in this region to study the kinematical structure of this region, which resembles a big ``scorpion". We found that there exist three different velocity components, about --54.5, --50.4, --48.8 km s-1, depending on the position of the ``scorpion". There also exist velocity gradients of 0.21 km s-1 pc-1 and 0.16 km s-1 pc-1 through the whole extent of the ``scorpion". Interestingly, these two velocity gradients show an opposite direction with each other. It is likely that the velocity structure of this region may result from the mergence of different gas clouds, and the interaction with the SNR 109.1-1.0 occurred later, mostly at the region around the ``head of the scorpion" only.

  2. Clustering the Orion B giant molecular cloud based on its molecular emission.

    Science.gov (United States)

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. A clustering analysis based only on the J = 1 - 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes ( n H ~ 100 cm -3 , ~ 500 cm -3 , and > 1000 cm -3 ), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 - 0 line of HCO + and the N = 1 - 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO + and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO + intensity ratio in UV-illuminated regions. Finer distinctions in density classes ( n H ~ 7 × 10 3 cm -3 ~ 4 × 10 4 cm -3 ) for the densest regions are also

  3. On the red giant titanium oxide bands

    Science.gov (United States)

    Hanni, L.; Sitska, J.

    1985-12-01

    The dependence of TiO absorption in cool oxygen-sequence giant stars on the Teff and log g of their atmospheres is investigated theoretically on the basis of spectra simulated using the computer program described by Hanni (1983) and the giant model atmospheres of Johnson et al. (1980). The temperature dependence of the intensity jumps at the head of the alpha(1.0) band is determined from simulated spectra, and the jumps are related to spectral types using the calibration of Ridgway et al. (1980). The results are presented in tables and graphs and shown to be in good agreement with the empirical Teff/intensity-jump correlation of Boyarchuk (1969).

  4. Arsia Mons Spiral Cloud

    Science.gov (United States)

    2002-01-01

    One of the benefits of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission is the opportunity to observe how the planet's weather changes during a second full martian year. This picture of Arsia Mons was taken June 19, 2001; southern spring equinox occurred the same day. Arsia Mons is a volcano nearly large enough to cover the state of New Mexico. On this particular day (the first day of Spring), the MOC wide angle cameras documented an unusual spiral-shaped cloud within the 110 km (68 mi) diameter caldera--the summit crater--of the giant volcano. Because the cloud is bright both in the red and blue images acquired by the wide angle cameras, it probably consisted mostly of fine dust grains. The cloud's spin may have been induced by winds off the inner slopes of the volcano's caldera walls resulting from the temperature differences between the walls and the caldera floor, or by a vortex as winds blew up and over the caldera. Similar spiral clouds were seen inside the caldera for several days; we don't know if this was a single cloud that persisted throughout that time or one that regenerated each afternoon. Sunlight illuminates this scene from the left/upper left.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  5. Mass and age of red giant branch stars observed with LAMOST and Kepler

    Science.gov (United States)

    Wu, Yaqian; Xiang, Maosheng; Bi, Shaolan; Liu, Xiaowei; Yu, Jie; Hon, Marc; Sharma, Sanjib; Li, Tanda; Huang, Yang; Liu, Kang; Zhang, Xianfei; Li, Yaguang; Ge, Zhishuai; Tian, Zhijia; Zhang, Jinghua; Zhang, Jianwei

    2018-04-01

    Obtaining accurate and precise masses and ages for large numbers of giant stars is of great importance for unraveling the assemblage history of the Galaxy. In this paper, we estimate masses and ages of 6940 red giant branch (RGB) stars with asteroseismic parameters deduced from Kepler photometry and stellar atmospheric parameters derived from LAMOST spectra. The typical uncertainties of mass is a few per cent, and that of age is ˜20 per cent. The sample stars reveal two separate sequences in the age-[α/Fe] relation - a high-α sequence with stars older than ˜8 Gyr and a low-α sequence composed of stars with ages ranging from younger than 1 Gyr to older than 11 Gyr. We further investigate the feasibility of deducing ages and masses directly from LAMOST spectra with a machine learning method based on kernel based principal component analysis, taking a sub-sample of these RGB stars as a training data set. We demonstrate that ages thus derived achieve an accuracy of ˜24 per cent. We also explored the feasibility of estimating ages and masses based on the spectroscopically measured carbon and nitrogen abundances. The results are quite satisfactory and significantly improved compared to the previous studies.

  6. Extinctions and Distances to Dark Clouds from 2MASS, MegaCam and IPHAS Surveys: LDN 1525 in the Direction of the Aur OB1 Association

    Directory of Open Access Journals (Sweden)

    Straižys V.

    2010-12-01

    Full Text Available The possibility of applying photometry from the 2MASS J, H, Ks, MegaCam u, g and IPHAS r, i, Hα surveys for determining the distance to the dark cloud LDN1525 (TGU 1192 in the direction of the Aur OB1 association is investigated using the red clump giants. The main dust cloud, probably related to the emission nebulae Sh 2-232, Sh 2-233, Sh 2-235, the molecular cloud and the association Aur OB2, is found to be located at a distance of 1.3 kpc from the Sun. The nebula Sh 2-231 can be an object of the Perseus arm. The maximum extinction AV found in the cloud is close to 6 mag.

  7. Convective heating of the inner core of red giants prior to the peak of the core helium flash

    International Nuclear Information System (INIS)

    Cole, P.W.; Demarque, P.; Deupree, R.G.

    1985-01-01

    The effects of convective overshooting across the temperature inversion in the cores of red giants are investigated from the onset of the core convection zone to the peak of the core helium flash using a model for overshooting in stellar evolution, based on two-dimensional and three-dimensional hydrodynamic simulations of the core helium flash. A major effect of the overshooting is the substantial heating of the material interior to the temperature inversion, producing a smoother temperature profile. This interior heating is thus unimportant until approximately 1 week preceding the time of maximum temperature, but then produces temperature changes on a time scale short with respect to the evolution time scale. Interior heating (1) alters the standard relation of the maximum temperature and the density at the point of maximum temperature, (2) makes the maximum temperature occur at a smaller mass fraction, (3) causes the time of maximum temperature to occur hundreds of years earlier in the red giant evolution, and (4) redistributes the mass from the location of maximum temperature. Since the degree of degeneracy is known to affect the violence of the flash in the hydrodynamic phase, internal heating may play an important role in determining the subsequent evolution of the core

  8. Asteroseismology of old open clusters with Kepler: direct estimate of the integrated red giant branch mass-loss in NGC 6791 and 6819

    DEFF Research Database (Denmark)

    Miglio, A.; Brogaard, Karsten Frank; Stello, D.

    2012-01-01

    Mass-loss of red giant branch (RGB) stars is still poorly determined, despite its crucial role in the chemical enrichment of galaxies. Thanks to the recent detection of solar-like oscillations in G–K giants in open clusters with Kepler, we can now directly determine stellar masses...... for a statistically significant sample of stars in the old open clusters NGC 6791 and 6819. The aim of this work is to constrain the integrated RGB mass-loss by comparing the average mass of stars in the red clump (RC) with that of stars in the low-luminosity portion of the RGB [i.e. stars with L≲L(RC)]. Stellar...... masses were determined by combining the available seismic parameters νmax and Δν with additional photometric constraints and with independent distance estimates. We measured the masses of 40 stars on the RGB and 19 in the RC of the old metal-rich cluster NGC 6791. We find that the difference between...

  9. The development of the red giant branch. II - Astrophysical properties

    Science.gov (United States)

    Sweigart, Allen V.; Greggio, Laura; Renzini, Alvio

    1990-01-01

    Evolutionary sequences developed in another paper are used here to investigate the properties of the red giant branch (RGB) phase transition. Results are found for compositions in the range Y(MS) between 0.20 and 0.30 and Z between 0.004 and 0.04. The transition mass M(HeF) increases as either Y(MS) decreases or Z increases. The stellar population transition age t(HeF) is virtually independent of composition and close to 0.6 Gyr. The RGB phase transition occurs almost abruptly over a mass range of only a few tenths of a solar mass or, equivalently, over a time interval of about 0.2 Gyr in the life of a stellar population. During the RGB phase transition the core mass Mc at helium ignition increases very rapidly by about 0.15 solar mass, while the luminosity at the tip of the RGB increases by about one order of magnitude. Absolute minima are found for the values of Mc and the RGB tip luminosity.

  10. Surface effects on the red giant branch

    Science.gov (United States)

    Ball, W. H.; Themeßl, N.; Hekker, S.

    2018-05-01

    Individual mode frequencies have been detected in thousands of individual solar-like oscillators on the red giant branch (RGB). Fitting stellar models to these mode frequencies, however, is more difficult than in main-sequence stars. This is partly because of the uncertain magnitude of the surface effect: the systematic difference between observed and modelled frequencies caused by poor modelling of the near-surface layers. We aim to study the magnitude of the surface effect in RGB stars. Surface effect corrections used for main-sequence targets are potentially large enough to put the non-radial mixed modes in RGB stars out of order, which is unphysical. Unless this can be circumvented, model-fitting of evolved RGB stars is restricted to the radial modes, which reduces the number of available modes. Here, we present a method to suppress gravity modes (g-modes) in the cores of our stellar models, so that they have only pure pressure modes (p-modes). We show that the method gives unbiased results and apply it to three RGB solar-like oscillators in double-lined eclipsing binaries: KIC 8410637, KIC 9540226 and KIC 5640750. In all three stars, the surface effect decreases the model frequencies consistently by about 0.1-0.3 μHz at the frequency of maximum oscillation power νmax, which agrees with existing predictions from three-dimensional radiation hydrodynamics simulations. Though our method in essence discards information about the stellar cores, it provides a useful step forward in understanding the surface effect in RGB stars.

  11. Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

    Science.gov (United States)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-05-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.

  12. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  13. Large scale IRAM 30 m CO-observations in the giant molecular cloud complex W43

    Science.gov (United States)

    Carlhoff, P.; Nguyen Luong, Q.; Schilke, P.; Motte, F.; Schneider, N.; Beuther, H.; Bontemps, S.; Heitsch, F.; Hill, T.; Kramer, C.; Ossenkopf, V.; Schuller, F.; Simon, R.; Wyrowski, F.

    2013-12-01

    We aim to fully describe the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It was previously identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated W43-HERO, a large program using the IRAM 30 m telescope, which covers a wide dynamic range of scales from 0.3 to 140 pc. We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km s-1 and a spatial resolution of 12''. These maps cover an area of ~1.5 square degrees and include the two main clouds of W43 and the lower density gas surrounding them. A comparison to Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at approximately 6 kpc from the Sun. The resulting intensity cubes of the observed region are separated into subcubes, which are centered on single clouds and then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared to those derived from Herschel dust maps. The mass of a typical cloud is several 104 M⊙ while the total mass in the dense molecular gas (>102 cm-3) in W43 is found to be ~1.9 × 106 M⊙. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data probability distribution function may imply that those selectively show the gravitationally collapsing gas. Appendices are available in electronic form at http://www.aanda.orgThe final datacubes (13CO and C18O) for the entire survey are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A24

  14. Long-period variables in the Magellanic Clouds: Supergiants, AGB stars, supernova precursors, planetary nebula precursors, and enrichment of the interstellar medium

    International Nuclear Information System (INIS)

    Wood, P.; Bessell, M.S.; Fox, M.W.

    1983-01-01

    Infrared JHK magnitudes and low-dispersion red spectra have been obtained for 90 long-period variables (LPVs) in the Small and Large Magellanic Clouds. The LPVs fall into two distinct groups, core helium (or carbon) burning supergiants and stars on the asymptotic giant branch (AGB). The supergiants have small pulsation amplitudes in K ( or approx. =5 M/sub sun/ produce supernovae while less massive stars produce planetary nebulae with nebula masses from approx.0.1--2.1 M/sub sun/. The coreburning red supergiants appear highly overluminous for their pulsation mass, indicating that they have lost up to half their mass since the main-sequence phase

  15. Developing Atmospheric Retrieval Methods for Direct Imaging Spectroscopy of Gas Giants in Reflected Light I: Methane Abundances and Basic Cloud Properties

    Science.gov (United States)

    Lupu, R. E.; Marley, M. S.; Lewis, N.; Line, M.; Traub, W.; Zahnle, K.

    2016-01-01

    Reflected light spectroscopy and photometry of cool, directly imaged extrasolar giant planets are expected to be performed in the next decade by space-based telescopes equipped with optical wavelength coronagraphs and integral field spectrographs, such as the Wide-Field Infrared Survey Telescope (WFIRST). We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs an albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler (emcee) and a multimodal nested sampling algorithm (MultiNest) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model, and highlights possible discrepancies in the likelihood maps. Here we apply this methodology to simulated spectra of cool giant planets. As a proof-of-concept, our current atmospheric model contains 1 or 2 cloud layers, methane as a major absorber, and a H2-He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise, in the presence of spectral noise correlations. After internal validation, the method is applied to realistic reflected-light spectra of Jupiter, Saturn, and HD 99492 c, a likely observing target. We find that the presence or absence of clouds and methane can be determined with high accuracy, while parameters uncertainties are model-dependent.

  16. Formation of massive clouds and dwarf galaxies during tidal encounters

    Science.gov (United States)

    Kaufman, Michele; Elmegreen, Bruce G.; Thomasson, Magnus; Elmegreen, Debra M.

    1993-01-01

    Gerola et al. (1983) propose that isolated dwarf galaxies can form during galaxy interactions. As evidence of this process, Mirabel et al. (1991) find 10(exp 9) solar mass clouds and star formation complexes at the outer ends of the tidal arms in the Antennae and Superantennae galaxies. We describe observations of HI clouds with mass greater than 10(exp 8) solar mass in the interacting galaxy pair IC 2163/NGC 2207. This pair is important because we believe it represents an early stage in the formation of giant clouds during an encounter. We use a gravitational instability model to explain why the observed clouds are so massive and discuss a two-dimensional N-body simulation of an encounter that produces giant clouds.

  17. Particle decays in /sup 28/Si: The destruction of /sup 27/Al in red giants and novae

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, A E; Cella, C H; Kouzes, R T; Lowry, M M; Magnus, P V; Smith, M S; Mao, Z Q

    1988-10-10

    The /sup 27/Al(/sup 3/He,d)/sup 28/Si reaction has been used to populate states near the /sup 27/Al+p threshold and the ensuing proton and alpha decay has been measured. No evidence for new /sup 27/Al(p,..cap alpha..)/sup 24/Mg resonance strength was observed and consequently revised limits have been placed on the thermonuclear reaction rate. As a result, the /sup 27/Al(p,..cap alpha..)/sup 24/Mg reaction is found to be astrophysically unimportant at red-giant and nova temperatures.

  18. AGB [asymptotic giant branch]: Star evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1987-01-01

    Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs

  19. A YOUNG GIANT MOLECULAR CLOUD FORMED AT THE INTERFACE OF TWO COLLIDING SUPERSHELLS: OBSERVATIONS MEET SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J. R. [Department of Physics and Astronomy and MQ Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University, NSW 2109 (Australia); Ntormousi, E. [Service d' Astrophysique, CEA/DSM/IRFU Orme des Merisiers, Bat 709 Gif-sur-Yvette F-91191 (France); Fukui, Y.; Hayakawa, T. [Department of Physics and Astrophysics, Nagoya University, Chikusa-ku, Nagoya (Japan); Fierlinger, K., E-mail: joanne.dawson@mq.edu.au [University Observatory Munich, Scheinerstr. 1, D-81679 München (Germany)

    2015-01-20

    Dense, star-forming gas is believed to form at the stagnation points of large-scale interstellar medium flows, but observational examples of this process in action are rare. We here present a giant molecular cloud (GMC) sandwiched between two colliding Milky Way supershells, which we argue shows strong evidence of having formed from material accumulated at the collision zone. Combining {sup 12}CO, {sup 13}CO, and C{sup 18}O(J = 1-0) data with new high-resolution, three-dimensional hydrodynamical simulations of colliding supershells, we discuss the origin and nature of the GMC (G288.5+1.5), favoring a scenario in which the cloud was partially seeded by pre-existing denser material, but assembled into its current form by the action of the shells. This assembly includes the production of some new molecular gas. The GMC is well interpreted as non-self-gravitating, despite its high mass (M{sub H{sub 2}}∼1.7×10{sup 5} M{sub ⊙}), and is likely pressure confined by the colliding flows, implying that self-gravity was not a necessary ingredient for its formation. Much of the molecular gas is relatively diffuse, and the cloud as a whole shows little evidence of star formation activity, supporting a scenario in which it is young and recently formed. Drip-like formations along its lower edge may be explained by fluid dynamical instabilities in the cooled gas.

  20. Gas, dust, stars, star formation, and their evolution in M 33 at giant molecular cloud scales

    Science.gov (United States)

    Komugi, Shinya; Miura, Rie E.; Kuno, Nario; Tosaki, Tomoka

    2018-04-01

    We report on a multi-parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M 33. A catalog of GMCs identifed in 12CO(J = 3-2) was used to compile associated 12CO(J = 1-0), dust, stellar mass, and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components, PC1 and PC2, which retain 75% of the information from the original data set. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (activity compared to intermediate-age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ˜ 10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt-Kennicutt relation with the molecular gas term substituted by dust.

  1. Standard globular cluster giant branches in the (MI/V-IO) plane

    International Nuclear Information System (INIS)

    Da Costa, G.S.; Armandroff, T.E.

    1990-01-01

    CCD photometry in the V, I (Cousins) bandpasses is presented for a large number of giants in eight galactic globular clusters. The (V-I) O color of the giant branch accurately ranks clusters in metal abundance, and can accordingly be used to ascertain both metal abundances and abundance dispersions in old stellar populations. A relation is derived that yields the bolometric correction to the I magnitude for red giants as a function of (V-I) O color. With this relation, and the assumption of the LDZ distance scale, the bolometric magnitudes of the brightest red giants in the clusters were determined; good agreement is obtained with the predictions of stellar evolution theory for the luminosity of the He core flash. 63 refs

  2. Photometric metallicity map of the Small Magellanic Cloud

    Science.gov (United States)

    Choudhury, S.; Subramaniam, A.; Cole, A. A.; Sohn, Y.-J.

    2018-04-01

    We have created an estimated metallicity map of the Small Magellanic Cloud (SMC) using the Magellanic Cloud Photometric Survey (MCPS) and Optical Gravitational Lensing Experiment (OGLE III) photometric data. This is a first of its kind map of metallicity up to a radius of ˜2.5°. We identify the Red Giant Branch (RGB) in the V, (V - I) colour-magnitude diagrams of small sub-regions of varying sizes in both data sets. We use the slope of the RGB as an indicator of the average metallicity of a sub-region and calibrate the RGB slope to metallicity using available spectroscopic data for selected sub-regions. The average metallicity of the SMC is found to be [Fe/H] = -0.94 dex (σ[Fe/H] = 0.09) from OGLE III and [Fe/H] = -0.95 dex (σ[Fe/H] = 0.08) from MCPS. We confirm a shallow but significant metallicity gradient within the inner SMC up to a radius of 2.5° (-0.045 ± 0.004 to -0.067 ± 0.006 dex deg-1).

  3. Molecular clouds in Orion and Monoceros

    International Nuclear Information System (INIS)

    Maddalena, R.J.

    1986-01-01

    About one-eighth of a well-sampled 850 deg 2 region of Orion and Monoceros, extending from the Taurus dark cloud complex to the CMa OB 1 association, shows emission at the frequency of the J = 1 → 0 transition of CO coming from either local clouds (d 8 from the galactic plane or from more distant objects located within a few degrees of the plane and well outside the solar circle. Local giant molecular clouds associated with Orion A and B have enhanced temperatures and densities near their western edges possibly due to compression of molecular gas by a high pressure region created by the cumulative effects of ∼10 supernovae that occurred in the Orion OB association. Another giant molecular cloud found to be associated with Mon R2 may be related to the Orion clouds. Two filamentary clouds (one possible 200 pc long but only 3-10 pc wide) were found that may represent a new class of object; magnetic fields probably play a role in confining these filaments. An expanding ring of clouds concentric with the H II region S 264 and its ionizing 08 star λ Ori was also investigated, and a possible evolutionary sequence for the ring is given in detail: the clouds probably constitute fragments of the original cloud from which λ Ori formed, the gas pressure of the H II region and the rocket effect having disrupted the cloud and accelerated the fragments to their present velocities

  4. Physical properties of the red giant envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, W J [Instituto de Astronomia e Geofisico da Universidade de Sao Paulo (Brazil)

    1978-12-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained.

  5. High-resolution Spectroscopic Observations of Single Red Giants in Three Open Clusters: NGC 2360, NGC 3680, and NGC 5822

    Science.gov (United States)

    Peña Suárez, V. J.; Sales Silva, J. V.; Katime Santrich, O. J.; Drake, N. A.; Pereira, C. B.

    2018-02-01

    Single stars in open clusters with known distances are important targets in constraining the nucleosynthesis process since their ages and luminosities are also known. In this work, we analyze a sample of 29 single red giants of the open clusters NGC 2360, NGC 3680, and NGC 5822 using high-resolution spectroscopy. We obtained atmospheric parameters, abundances of the elements C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd, as well as radial and rotational velocities. We employed the local thermodynamic equilibrium atmospheric models of Kurucz and the spectral analysis code MOOG. Rotational velocities and light-element abundances were derived using spectral synthesis. Based on our analysis of the single red giants in these three open clusters, we could compare, for the first time, their abundance pattern with that of the binary stars of the same clusters previously studied. Our results show that the abundances of both single and binary stars of the open clusters NGC 2360, NGC 3680, and NGC 5822 do not have significant differences. For the elements created by the s-process, we observed that the open clusters NGC 2360, NGC 3680, and NGC 5822 also follow the trend already raised in the literature that young clusters have higher s-process element abundances than older clusters. Finally, we observed that the three clusters of our sample exhibit a trend in the [Y/Mg]-age relation, which may indicate the ability of the [Y/Mg] ratio to be used as a clock for the giants. Based on the observations made with the 2.2 m telescope at the European Southern Observatory (La Silla, Chile) under an agreement with Observatório Nacional and under an agreement between Observatório Nacional and Max-Planck Institute für Astronomie.

  6. POSSIBLE ORIGIN OF THE G2 CLOUD FROM THE TIDAL DISRUPTION OF A KNOWN GIANT STAR BY SGR A*

    International Nuclear Information System (INIS)

    Guillochon, James; Loeb, Abraham; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2014-01-01

    The discovery of the gas cloud G2 on a near-radial orbit about Sgr A* has prompted much speculation on its origin. In this Letter, we propose that G2 formed out of the debris stream produced by the removal of mass from the outer envelope of a nearby giant star. We perform hydrodynamical simulations of the returning tidal debris stream with cooling and find that the stream condenses into clumps that fall periodically onto Sgr A*. We propose that one of these clumps is the observed G2 cloud, with the rest of the stream being detectable at lower Brγ emissivity along a trajectory that would trace from G2 to the star that was partially disrupted. By simultaneously fitting the orbits of S2, G2, and ∼2000 candidate stars, and by fixing the orbital plane of each candidate star to G2 (as is expected for a tidal disruption), we find that several stars have orbits that are compatible with the notion that one of them was tidally disrupted to produce G2. If one of these stars were indeed disrupted, it last encountered Sgr A* hundreds of years ago and has likely encountered Sgr A* repeatedly. However, while these stars are compatible with the giant disruption scenario given their measured positions and proper motions, their radial velocities are currently unknown. If one of these stars' radial velocity is measured to be compatible with a disruptive orbit, it would strongly suggest that its disruption produced G2

  7. Clustering the Orion B giant molecular cloud based on its molecular emission

    Science.gov (United States)

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Context. Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims: We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods: We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional probability density function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results: A clustering analysis based only on the J = 1-0 lines of three isotopologues of CO proves sufficient to reveal distinct density/column density regimes (nH 100 cm-3, 500 cm-3, and >1000 cm-3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1-0 line of HCO+ and the N = 1-0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH 7 × 103 cm-3, 4 × 104 cm-3) for the densest regions are also

  8. Peak Bagging of red giant stars observed by Kepler: first results with a new method based on Bayesian nested sampling

    Science.gov (United States)

    Corsaro, Enrico; De Ridder, Joris

    2015-09-01

    The peak bagging analysis, namely the fitting and identification of single oscillation modes in stars' power spectra, coupled to the very high-quality light curves of red giant stars observed by Kepler, can play a crucial role for studying stellar oscillations of different flavor with an unprecedented level of detail. A thorough study of stellar oscillations would thus allow for deeper testing of stellar structure models and new insights in stellar evolution theory. However, peak bagging inferences are in general very challenging problems due to the large number of observed oscillation modes, hence of free parameters that can be involved in the fitting models. Efficiency and robustness in performing the analysis is what may be needed to proceed further. For this purpose, we developed a new code implementing the Nested Sampling Monte Carlo (NSMC) algorithm, a powerful statistical method well suited for Bayesian analyses of complex problems. In this talk we show the peak bagging of a sample of high signal-to-noise red giant stars by exploiting recent Kepler datasets and a new criterion for the detection of an oscillation mode based on the computation of the Bayesian evidence. Preliminary results for frequencies and lifetimes for single oscillation modes, together with acoustic glitches, are therefore presented.

  9. Peak Bagging of red giant stars observed by Kepler: first results with a new method based on Bayesian nested sampling

    Directory of Open Access Journals (Sweden)

    Corsaro Enrico

    2015-01-01

    Full Text Available The peak bagging analysis, namely the fitting and identification of single oscillation modes in stars’ power spectra, coupled to the very high-quality light curves of red giant stars observed by Kepler, can play a crucial role for studying stellar oscillations of different flavor with an unprecedented level of detail. A thorough study of stellar oscillations would thus allow for deeper testing of stellar structure models and new insights in stellar evolution theory. However, peak bagging inferences are in general very challenging problems due to the large number of observed oscillation modes, hence of free parameters that can be involved in the fitting models. Efficiency and robustness in performing the analysis is what may be needed to proceed further. For this purpose, we developed a new code implementing the Nested Sampling Monte Carlo (NSMC algorithm, a powerful statistical method well suited for Bayesian analyses of complex problems. In this talk we show the peak bagging of a sample of high signal-to-noise red giant stars by exploiting recent Kepler datasets and a new criterion for the detection of an oscillation mode based on the computation of the Bayesian evidence. Preliminary results for frequencies and lifetimes for single oscillation modes, together with acoustic glitches, are therefore presented.

  10. High-resolution Spectroscopic Abundances of Red Giant Branch Stars in NGC 6681

    Energy Technology Data Exchange (ETDEWEB)

    O’Malley, Erin M.; Chaboyer, Brian [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03784 (United States); Knaizev, Alexei [South African Astronomical Observatory, Cape Town (South Africa); McWilliam, Andrew [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2017-09-01

    We obtain high-resolution spectra of nine red giant branch stars in NGC 6681 and perform the first detailed abundance analysis of stars in this cluster. We confirm cluster membership for these stars based on consistent radial velocities of 214.5 ± 3.7 km s{sup −1} and find a mean [Fe/H] = −1.63 ± 0.07 dex and [ α /Fe] = 0.42 ± 0.11 dex. Additionally, we confirm the existence of a Na–O anti-correlation in NGC 6681 and identify two populations of stars with unique abundance trends. With the use of HST photometry from Sarajedini et al. and Piotto et al. we are able to identify these two populations as discrete sequences in the cluster CMD. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences in these populations, these results do help put constraints on possible polluter candidates.

  11. Physical properties of the red giant envelopes

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1978-01-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained [pt

  12. Role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors. 68 references

  13. Study at radio wavelengths of circumstellar envelopes around red giants

    International Nuclear Information System (INIS)

    Do Thi Hoai

    2015-01-01

    The thesis studies mass losing AGB stars and their circumstellar environments, with focus on the development of stellar outflows and their interaction with the surrounding medium. It uses emission from two tracers: carbon monoxide (CO), through its rotational lines in the millimeter range, probes the inner regions of the circumstellar shells out to photodissociation distances, while atomic hydrogen (HI, 21 cm) is better suited to the study of the external regions. The high spectral and spatial resolutions achieved in radio observations allow for a detailed exploration of the kinematics of the relatively slow outflows of red giants. After having introduced the subject, I discuss the case of an S-type star (RS Cnc) that has been observed in CO with the IRAM telescopes, as well as in HI with the VLA, concentrating on the modelling of the spatially resolved CO line profiles and illustrating the complementarity between HI and CO. Results of the CO modelling of other AGB stars observed at IRAM (EP Aqr, XHer and RXBoo) and of a post-AGB star observed with ALMA, the Red Rectangle, are also presented. The formation of the HI line profile in various cases of mass losing AGB stars, in particular YCVn for which a model is presented, is studied next, exploring several effects that might explain the lack of detected emission from stars with high mass loss rates. Similarities between the bipolar outflows of the AGB stars that have been studied, all having mass loss rates in the region of 10"-"7 solar masses per year and displaying nearly spherical morphologies are discussed together with the information on the gas temperature obtained from the simultaneous observation of two CO lines. (author)

  14. HST images of dark giants as dark matter: Part.I The black cocoon stars of Carina Nebula region

    International Nuclear Information System (INIS)

    Celis, S.L.

    2001-01-01

    In an evolutionary scenario, the existence of isolated dark giant objects known as Post M latest spectral type stars (1) (or black cocoon stars) are in the last stage of their life and, as extremely advanced old age objects, they cease to be stars. The photographic images of Carina nebula taken by the Hubble Space Telescope (HST) have been used to detect the post M-Iatest stars as dark silhouettes. The luminosity attenuation equation of M late stars (1), A = αS 3 , points out the baryonic dark matter envelopes the oldest red giants that produce earlier dark giants. This equation says that when the red giant star finishes to produce baryonic dark matter, the central star is extinguishing and transforms into dark giants and dusty globules that disperse cool gaseous matter into the interstellar space. These old dark objects have a size from 400 to 600 astronomical units (AU). The advanced dark giants, the dusty dark giants, might not contain a star within the molecular cloud that envelops it. In this case, the dark giants might produce the smaller and less massive dark globules of the Thackeray's globules type (less than 4 solar masses) where, Reupurth et al. (2) found that these globules are now in an advanced stage of disintegration and they found no evidence of star formation in any of these objects. The high-resolution of the Hubble images allows: The observation of isolated dark giants, dusty globules with central dark giants, the observation of partial eclipses or transiting of giant stars and the estimation of linear and angular diameters (ionised cocoons) of giant stellar objects. The dark giants of the image are identified them as objects with observed angular diameter. The large quantity of dark giants in a small sector of the sky suggests that they are densely populated (population stars III) and ubiquitous in the galactic disc. They can be located in isolated form or associated in dense Conglomerations of dark giants. At the same time, conglomerates of

  15. Environmental Catastrophes in the Earth's History Due to Solar Systems Encounters with Giant Molecular Clouds

    Science.gov (United States)

    Pavlov, Alexander A.

    2011-01-01

    In its motion through the Milky Way galaxy, the solar system encounters an average density (>=330 H atoms/cubic cm) giant molecular cloud (GMC) approximately every 108 years, a dense (approx 2 x 103 H atoms/cubic cm) GMC every approx 109 years and will inevitably encounter them in the future. However, there have been no studies linking such events with severe (snowball) glaciations in Earth history. Here we show that dramatic climate change can be caused by interstellar dust accumulating in Earth's atmosphere during the solar system's immersion into a dense (approx ,2 x 103 H atoms/cubic cm) GMC. The stratospheric dust layer from such interstellar particles could provide enough radiative forcing to trigger the runaway ice-albedo feedback that results in global snowball glaciations. We also demonstrate that more frequent collisions with less dense GMCs could cause moderate ice ages.

  16. The MACHO Project 9 Million Star Color-Magnitude Diagram of the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Basu, A.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.

    2000-01-01

    We present a 9 million star color-magnitude diagram (9M CMD) of the Large Magellanic Cloud (LMC) bar. The 9M CMD reveals a complex superposition of different-age and -metallicity stellar populations, with important stellar evolutionary phases occurring over 3 orders of magnitude in number density. First, we count the nonvariable red and blue supergiants and the associated Cepheid variables and measure the stellar effective temperatures defining the Cepheid instability strip. Lifetime predictions of stellar evolution theory are tested, with implications for the origin of low-luminosity Cepheids. The highly evolved asymptotic giant branch (AGB) stars in the 9M CMD have a bimodal distribution in brightness, which we interpret as discrete old populations ((greater-or-similar sign)1 Gyr). The faint AGB sequence may be metal-poor and very old. Comparing the mean properties of giant branch and horizontal-branch (HB) stars in the 9M CMD with those of clusters, we identify NGC 411 and M3 as templates for the admixture of old stellar populations in the bar. However, there are several indications that the old and metal-poor field population has a red HB morphology: the RR Lyrae variables lie preferentially on the red edge of the instability strip, the AGB bump is very red, and the ratio of AGB bump stars to RR Lyrae variables is quite large. If the HB second parameter is age, the old and metal-poor field population in the bar likely formed after the oldest LMC clusters. Lifetime predictions of stellar evolution theory lead us to associate a significant fraction of the ∼1 million red HB clump giants in the 9M CMD with the same old and metal-poor population producing the RR Lyrae stars and the AGB bump. In this case, compared with the age-dependent luminosity predictions of stellar evolution theory, the red HB clump is too bright relative to the RR Lyrae stars and AGB bump. Last, we show that the surface density profile of RR Lyrae variables is fitted by an exponential

  17. The MACHO Project 9 Million Star Color-Magnitude Diagram of the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Basu, A.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C. (and others)

    2000-05-01

    We present a 9 million star color-magnitude diagram (9M CMD) of the Large Magellanic Cloud (LMC) bar. The 9M CMD reveals a complex superposition of different-age and -metallicity stellar populations, with important stellar evolutionary phases occurring over 3 orders of magnitude in number density. First, we count the nonvariable red and blue supergiants and the associated Cepheid variables and measure the stellar effective temperatures defining the Cepheid instability strip. Lifetime predictions of stellar evolution theory are tested, with implications for the origin of low-luminosity Cepheids. The highly evolved asymptotic giant branch (AGB) stars in the 9M CMD have a bimodal distribution in brightness, which we interpret as discrete old populations ((greater-or-similar sign)1 Gyr). The faint AGB sequence may be metal-poor and very old. Comparing the mean properties of giant branch and horizontal-branch (HB) stars in the 9M CMD with those of clusters, we identify NGC 411 and M3 as templates for the admixture of old stellar populations in the bar. However, there are several indications that the old and metal-poor field population has a red HB morphology: the RR Lyrae variables lie preferentially on the red edge of the instability strip, the AGB bump is very red, and the ratio of AGB bump stars to RR Lyrae variables is quite large. If the HB second parameter is age, the old and metal-poor field population in the bar likely formed after the oldest LMC clusters. Lifetime predictions of stellar evolution theory lead us to associate a significant fraction of the {approx}1 million red HB clump giants in the 9M CMD with the same old and metal-poor population producing the RR Lyrae stars and the AGB bump. In this case, compared with the age-dependent luminosity predictions of stellar evolution theory, the red HB clump is too bright relative to the RR Lyrae stars and AGB bump. Last, we show that the surface density profile of RR Lyrae variables is fitted by an exponential

  18. THE ASYMPTOTIC GIANT BRANCH AND THE TIP OF THE RED GIANT BRANCH AS PROBES OF STAR FORMATION HISTORY: THE NEARBY DWARF IRREGULAR GALAXY KKH 98

    International Nuclear Information System (INIS)

    Melbourne, J.; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D. C.; Girardi, Leo; Dolphin, A.

    2010-01-01

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D = 2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (near-IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR-bright stars reaching over 1 mag below the tip of the RGB. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the red clump and the main-sequence turnoff for 0.5 Gyr old populations. Compared to the optical color-magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate-age (0.5-5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10 -4 M sun yr -1 ) for much of cosmic time. Except for the youngest main-sequence populations (age <0.1 Gyr), which are typically fainter than the AO data flux limit, the SFH estimated from the 592 IR-bright stars is a reasonable match to that derived from the much larger optical data set. Differences between the optical- and IR-derived SFHs for 0.1-1 Gyr populations suggest that current stellar evolution models may be overproducing the AGB by as much as a factor of 3 in this galaxy. At the depth of the AO data, the IR-luminous stars are not crowded. Therefore, these techniques can potentially be used to determine the stellar populations of galaxies at significantly further distances.

  19. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. IV. CONSTRUCTION AND VALIDATION OF A GRID OF MODELS FOR OXYGEN-RICH AGB STARS, RED SUPERGIANTS, AND EXTREME AGB STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Srinivasan, S.

    2011-01-01

    To measure the mass loss from dusty oxygen-rich (O-rich) evolved stars in the Large Magellanic Cloud (LMC), we have constructed a grid of models of spherically symmetric dust shells around stars with constant mass-loss rates using 2Dust. These models will constitute the O-rich model part of the 'Grid of Red supergiant and Asymptotic giant branch star ModelS' (GRAMS). This model grid explores four parameters-stellar effective temperature from 2100 K to 4700 K; luminosity from 10 3 to 10 6 L sun ; dust shell inner radii of 3, 7, 11, and 15 R star ; and 10.0 μm optical depth from 10 -4 to 26. From an initial grid of ∼1200 2Dust models, we create a larger grid of ∼69,000 models by scaling to cover the luminosity range required by the data. These models are available online to the public. The matching in color-magnitude diagrams and color-color diagrams to observed O-rich asymptotic giant branch (AGB) and red supergiant (RSG) candidate stars from the SAGE and SAGE-Spec LMC samples and a small sample of OH/IR stars is generally very good. The extreme AGB star candidates from SAGE are more consistent with carbon-rich (C-rich) than O-rich dust composition. Our model grid suggests lower limits to the mid-infrared colors of the dustiest AGB stars for which the chemistry could be O-rich. Finally, the fitting of GRAMS models to spectral energy distributions of sources fit by other studies provides additional verification of our grid and anticipates future, more expansive efforts.

  20. Stellar Evolution in NGC 6791: Mass Loss on the Red Giant Branch and the Formation of Low-Mass White Dwarfs

    Science.gov (United States)

    Kalirai, Jasonjot S.; Bergeron, P.; Hansen, Brad M. S.; Kelson, Daniel D.; Reitzel, David B.; Rich, R. Michael; Richer, Harvey B.

    2007-12-01

    We present the first detailed study of the properties (temperatures, gravities, and masses) of the NGC 6791 white dwarf population. This unique stellar system is both one of the oldest (8 Gyr) and most metal-rich ([Fe/H]~+0.4) open clusters in our Galaxy and has a color-magnitude diagram (CMD) that exhibits both a red giant clump and a much hotter extreme horizontal branch. Fitting the Balmer lines of the white dwarfs in the cluster using Keck/LRIS spectra suggests that most of these stars are undermassive, =0.43+/-0.06 Msolar, and therefore could not have formed from canonical stellar evolution involving the helium flash at the tip of the red giant branch. We show that at least 40% of NGC 6791's evolved stars must have lost enough mass on the red giant branch to avoid the flash and therefore did not convert helium into carbon-oxygen in their core. Such increased mass loss in the evolution of the progenitors of these stars is consistent with the presence of the extreme horizontal branch in the CMD. This unique stellar evolutionary channel also naturally explains the recent finding of a very young age (2.4 Gyr) for NGC 6791 from white dwarf cooling theory; helium-core white dwarfs in this cluster will cool ~3 times slower than carbon-oxygen-core stars, and therefore the corrected white dwarf cooling age is in fact >~7 Gyr, consistent with the well-measured main-sequence turnoff age. These results provide direct empirical evidence that mass loss is much more efficient in high-metallicity environments and therefore may be critical in interpreting the ultraviolet upturn in elliptical galaxies. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on observations obtained at the

  1. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Evan N.; Cohen, Judith G. [California Institute of Technology, 1200 E. California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Guhathakurta, Puragra [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Zhang, Andrew J. [The Harker School, 500 Saratoga Avenue, San Jose, CA 95129 (United States); Hong, Jerry [Palo Alto High School, 50 Embarcadero Road, Palo Alto, CA, 94301 (United States); Guo, Michelle [Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Guo, Rachel [Irvington High School, 41800 Blacow Road, Fremont, CA 94538 (United States); Cunha, Katia [Observatório Nacional, São Cristóvão Rio de Janeiro (Brazil)

    2016-03-10

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.

  2. ON THE SERENDIPITOUS DISCOVERY OF A Li-RICH GIANT IN THE GLOBULAR CLUSTER NGC 362

    Energy Technology Data Exchange (ETDEWEB)

    D’Orazi, Valentina; Gratton, Raffaele G.; Lucatello, Sara; Momany, Yazan [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova (Italy); Angelou, George C. [Max Planck Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Bragaglia, Angela; Carretta, Eugenio; Sollima, Antonio [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127, Bologna (Italy); Lattanzio, John C., E-mail: valentina.dorazi@oapd.inaf.it [Monash Centre for Astrophysics (MoCA), Monash University, Melbourne, VIC 3800 (Australia)

    2015-03-10

    We have serendipitously identified the first lithium-rich giant star located close to the red giant branch bump in a globular cluster. Through intermediate-resolution FLAMES spectra we derived a lithium abundance of A(Li) = 2.55 (assuming local thermodynamical equilibrium), which is extremely high considering the star’s evolutionary stage. Kinematic and photometric analysis confirm the object as a member of the globular cluster NGC 362. This is the fourth Li-rich giant discovered in a globular cluster, but is the only one known to exist at a luminosity close to the bump magnitude. The three previous detections are clearly more evolved, located close to, or beyond, the tip of their red giant branch. Our observations are able to discard the accretion of planets/brown dwarfs, as well as an enhanced mass-loss mechanism as a formation channel for this rare object. While the star sits just above the cluster bump luminosity, its temperature places it toward the blue side of the giant branch in the color–magnitude diagram. We require further dedicated observations to unambiguously identify the star as a red giant: we are currently unable to confirm whether Li production has occurred at the bump of the luminosity function or if the star is on the pre-zero-age horizontal branch. The latter scenario provides the opportunity for the star to have synthesized Li rapidly during the core helium flash or gradually during its red giant branch ascent via some extra mixing process.

  3. STAR FORMATION IN DISK GALAXIES. II. THE EFFECT OF STAR FORMATION AND PHOTOELECTRIC HEATING ON THE FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.

    2011-01-01

    We investigate the effect of star formation and diffuse photoelectric heating on the properties of giant molecular clouds (GMCs) formed in high-resolution (∼ H,c >100 cm -3 are identified as GMCs. Between 1000 and 1500 clouds are created in the simulations with masses M>10 5 M sun and 180-240 with masses M>10 6 M sun in agreement with estimates of the Milky Way's population. We find that the effect of photoelectric heating is to suppress the fragmentation of the interstellar medium, resulting in a filamentary structure in the warm gas surrounding clouds. This environment suppresses the formation of a retrograde rotating cloud population, with 88% of the clouds rotating prograde with respect to the galaxy after 300 Myr. The diffuse heating also reduces the initial star formation rate (SFR), slowing the conversation of gas into stars. We therefore conclude that the interstellar environment plays an important role in the GMC evolution. Our clouds live between 0 and 20 Myr with a high infant mortality (t' < 3 Myr) due to cloud mergers and star formation. Other properties, including distributions of mass, size, and surface density, agree well with observations. Collisions between our clouds are common, occurring at a rate of ∼ 1/4 of the orbital period. It is not clear whether such collisions trigger or suppress star formation at our current resolution. Our SFR is a factor of 10 higher than observations in local galaxies. This is likely due to the absence of localized feedback in our models.

  4. The Monoceros R2 Molecular Cloud

    Science.gov (United States)

    Carpenter, J. M.; Hodapp, K. W.

    2008-12-01

    The Monoceros R2 region was first recognized as a chain of reflection nebulae illuminated by A- and B-type stars. These nebulae are associated with a giant molecular cloud that is one of the closest massive star forming regions to the Sun. This chapter reviews the properties of the Mon R2 region, including the namesake reflection nebulae, the large scale molecula= r cloud, global star formation activity, and properties of prominent star forming regions in the cloud.

  5. Security Management Model in Cloud Computing Environment

    OpenAIRE

    Ahmadpanah, Seyed Hossein

    2016-01-01

    In the cloud computing environment, cloud virtual machine (VM) will be more and more the number of virtual machine security and management faced giant Challenge. In order to address security issues cloud computing virtualization environment, this paper presents a virtual machine based on efficient and dynamic deployment VM security management model state migration and scheduling, study of which virtual machine security architecture, based on AHP (Analytic Hierarchy Process) virtual machine de...

  6. Cloud Processed CCN Suppress Stratus Cloud Drizzle

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Conversion of sulfur dioxide to sulfate within cloud droplets increases the sizes and decreases the critical supersaturation, Sc, of cloud residual particles that had nucleated the droplets. Since other particles remain at the same sizes and Sc a size and Sc gap is often observed. Hudson et al. (2015) showed higher cloud droplet concentrations (Nc) in stratus clouds associated with bimodal high-resolution CCN spectra from the DRI CCN spectrometer compared to clouds associated with unimodal CCN spectra (not cloud processed). Here we show that CCN spectral shape (bimodal or unimodal) affects all aspects of stratus cloud microphysics and drizzle. Panel A shows mean differential cloud droplet spectra that have been divided according to traditional slopes, k, of the 131 measured CCN spectra in the Marine Stratus/Stratocumulus Experiment (MASE) off the Central California coast. K is generally high within the supersaturation, S, range of stratus clouds (< 0.5%). Because cloud processing decreases Sc of some particles, it reduces k. Panel A shows higher concentrations of small cloud droplets apparently grown on lower k CCN than clouds grown on higher k CCN. At small droplet sizes the concentrations follow the k order of the legend, black, red, green, blue (lowest to highest k). Above 13 µm diameter the lines cross and the hierarchy reverses so that blue (highest k) has the highest concentrations followed by green, red and black (lowest k). This reversed hierarchy continues into the drizzle size range (panel B) where the most drizzle drops, Nd, are in clouds grown on the least cloud-processed CCN (blue), while clouds grown on the most processed CCN (black) have the lowest Nd. Suppression of stratus cloud drizzle by cloud processing is an additional 2nd indirect aerosol effect (IAE) that along with the enhancement of 1st IAE by higher Nc (panel A) are above and beyond original IAE. However, further similar analysis is needed in other cloud regimes to determine if MASE was

  7. High-resolution spectra of stars in globular clusters. VI - Oxygen-deficient red giant stars in M13

    International Nuclear Information System (INIS)

    Brown, J.A.; Wallerstein, G.; Oke, J.B.

    1991-01-01

    From high-resolution, high signal-to-noise spectra, abundances of carbon, nitrogen, and oxygen and the C-12/C-13 ratio for five red giants in M13, including star II-67, which has previously been reported to be deficient in oxygen have been determined. Three of the five stars exhibit substantial oxygen deficiencies; O/Fe values range from +0.5 to less than about 0.3. The sum of the CNO nuclides is the same for all stars, which is interpreted as evidence that mixing of CNO-cycled material into the envelope is the cause of the variations in oxygen abundance. 41 refs

  8. The Stability of the Giant Clam Holobiont over Time and during Bleaching Stress

    KAUST Repository

    Pappas, Melissa

    2017-12-01

    The stability of marine photosymbiotic holobionts has major implications for the future of coral reef communities. This study aims to describe the stability of the Red Sea giant clam holobiont over the duration of one year and during induced bleaching stress under laboratory thermal manipulations. Tridacnid clams of the species Tridacna maxima were sampled at three reef locations near the central Saudi coast of the Red Sea. Associated Symbiodinium of Red Sea giant clams have previously been described to be part of only Clade A, which suggests a strong specificity in the clam-algal partnership, but specific types and potential shifting of types within this clade have not been examined for giant clams. The results from this study confirm that tridacnid symbiont types shift over time and the change between three A1 types suggests a biological and functional significance of two undescribed A1 Symbiodinium types. Experimental bleaching shows that Red Sea giant clams, although exposed to rather hot temperatures naturally, will bleach at 34°C after two weeks, and severely bleached clams likely will not recover. During bleaching, Symbiodinium types shift as well, and shift more drastically than seasonal shifts during the year. This shifting may be an evolved characteristic of the giant clam to aid in surviving major changes in the environment. However, more research is needed to determine if these holobionts are capable of keeping up with the global forecast of warming in reef environments.

  9. Characterization of the gut microbiota in the red panda (Ailurus fulgens).

    Science.gov (United States)

    Kong, Fanli; Zhao, Jiangchao; Han, Shushu; Zeng, Bo; Yang, Jiandong; Si, Xiaohui; Yang, Benqing; Yang, Mingyao; Xu, Huailiang; Li, Ying

    2014-01-01

    The red panda is the only living species of the genus Ailurus. Like giant pandas, red pandas are also highly specialized to feed mainly on highly fibrous bamboo. Although several studies have focused on the gut microbiota in the giant panda, little is known about the gut microbiota of the red panda. In this study, we characterized the fecal microbiota from both wild (n = 16) and captive (n = 6) red pandas using a pyrosequecing based approach targeting the V1-V3 hypervariable regions of the 16S rRNA gene. Distinct bacterial communities were observed between the two groups based on both membership and structure. Wild red pandas maintained significantly higher community diversity, richness and evenness than captive red pandas, the communities of which were skewed and dominated by taxa associated with Firmicutes. Phylogenetic analysis of the top 50 OTUs revealed that 10 of them were related to known cellulose degraders. To the best of our knowledge, this is the first study of the gut microbiota of the red panda. Our data suggest that, similar to the giant panda, the gut microbiota in the red panda might also play important roles in the digestion of bamboo.

  10. Gamma graphic findings in giant hepatic hemangioma

    International Nuclear Information System (INIS)

    Cano, R.; Morales, R.; Mendoza, P.; Ramirez, E.; Aguilar, C.

    1994-01-01

    The aim of the present work is to describe gamma graphic findings in patients with giant hepatic hemangiomas, when evaluated with 99m Tc red blood cell (RBC) imaging. Three patients with clinical suspicion of giant hepatic hemangiomas, who had had, ultrasound and computed tomography were studied with RBC using in vivo labelling with pyrophosphate. All cases had dynamic and static views. All cases showed hypoperfusion in dynamics views and over perfusion in delayed studies. Surgery confirmed diagnosis in two cases. 99m Tc RBC is a good method for diagnosis of giant hepatic hemangioma, which generally needs surgical treatment. (Authors). 24 refs., 2 figs

  11. Chemical Analysis of Asymptotic Giant Branch Stars in M62

    NARCIS (Netherlands)

    Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.

    2015-01-01

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al).

  12. SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). II. COOL EVOLVED STARS

    International Nuclear Information System (INIS)

    Boyer, Martha L.; Meixner, Margaret; Gordon, Karl D.; Shiao, Bernie; Srinivasan, Sundar; Van Loon, Jacco Th.; McDonald, Iain; Kemper, F.; Zaritsky, Dennis; Block, Miwa; Engelbracht, Charles W.; Misselt, Karl; Babler, Brian; Bracker, Steve; Meade, Marilyn; Whitney, Barbara; Hora, Joe; Robitaille, Thomas; Indebetouw, Remy; Sewilo, Marta

    2011-01-01

    We investigate the infrared (IR) properties of cool, evolved stars in the Small Magellanic Cloud (SMC), including the red giant branch (RGB) stars and the dust-producing red supergiant (RSG) and asymptotic giant branch (AGB) stars using observations from the Spitzer Space Telescope Legacy program entitled 'Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity SMC', or SAGE-SMC. The survey includes, for the first time, full spatial coverage of the SMC bar, wing, and tail regions at IR wavelengths (3.6-160 μm). We identify evolved stars using a combination of near-IR and mid-IR photometry and point out a new feature in the mid-IR color-magnitude diagram that may be due to particularly dusty O-rich AGB stars. We find that the RSG and AGB stars each contribute ∼20% of the global SMC flux (extended + point-source) at 3.6 μm, which emphasizes the importance of both stellar types to the integrated flux of distant metal-poor galaxies. The equivalent SAGE survey of the higher-metallicity Large Magellanic Cloud (SAGE-LMC) allows us to explore the influence of metallicity on dust production. We find that the SMC RSG stars are less likely to produce a large amount of dust (as indicated by the [3.6] - [8] color). There is a higher fraction of carbon-rich stars in the SMC, and these stars appear to reach colors as red as their LMC counterparts, indicating that C-rich dust forms efficiently in both galaxies. A preliminary estimate of the dust production in AGB and RSG stars reveals that the extreme C-rich AGB stars dominate the dust input in both galaxies, and that the O-rich stars may play a larger role in the LMC than in the SMC.

  13. ANGULAR MOMENTUM IN GIANT MOLECULAR CLOUDS. I. THE MILKY WAY

    International Nuclear Information System (INIS)

    Imara, Nia; Blitz, Leo

    2011-01-01

    We present a detailed analysis comparing the velocity fields in molecular clouds and the atomic gas that surrounds them in order to address the origin of the gradients. To that end, we present first-moment intensity-weighted velocity maps of the molecular clouds and surrounding atomic gas. The maps are made from high-resolution 13 CO observations and 21 cm observations from the Leiden/Argentine/Bonn Galactic H I Survey. We find that (1) the atomic gas associated with each molecular cloud has a substantial velocity gradient-ranging from 0.02 to 0.07 km s -1 pc -1 -whether or not the molecular cloud itself has a substantial linear gradient. (2) If the gradients in the molecular and atomic gas were due to rotation, this would imply that the molecular clouds have less specific angular momentum than the surrounding H I by a factor of 1-6. (3) Most importantly, the velocity gradient position angles in the molecular and atomic gas are generally widely separated-by as much as 130 deg. in the case of the Rosette molecular cloud. This result argues against the hypothesis that molecular clouds formed by simple top-down collapse from atomic gas.

  14. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    International Nuclear Information System (INIS)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-01-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  15. Star-to-star Iron Abundance Variations in Red Giant Branch Stars in the Galactic Globular Cluster NGC 3201

    Science.gov (United States)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-02-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  16. Amplitudes of solar-like oscillations: Constraints from red giants in open clusters observed by Kepler

    DEFF Research Database (Denmark)

    Stello, Dennis; Huber, Daniel; Kallinger, Thomas

    2011-01-01

    implies that the stellar parameters can be measured to much higher precision than what is usually achievable for single stars. This makes clusters ideal for exploring the relation between the mode amplitude of solar-like oscillations and the global stellar properties. We have analyzed data obtained......Scaling relations that link asteroseismic quantities to global stellar properties are important for gaining understanding of the intricate physics that underpins stellar pulsations. The common notion that all stars in an open cluster have essentially the same distance, age, and initial composition...... with NASA's Kepler space telescope to study solar-like oscillations in 100 red giant stars located in either of the three open clusters, NGC 6791, NGC 6819, and NGC 6811. By fitting the measured amplitudes to predictions from simple scaling relations that depend on luminosity, mass, and effective...

  17. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  18. Nursery of Giants

    Science.gov (United States)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. This image is a large-scale mosaic assembled from individual photographs obtained with the InfraRed Array Camera (IRAC) aboard Spitzer. The image covers an area about two times that of a full moon. The mosaic is a composite of images obtained at mid-infrared wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of 10,000 light-years. Protruding out from DR21 toward the bottom left of the image is a gaseous outflow (green), containing both carbon monoxide and molecular hydrogen. Data from the Spitzer spectrograph, which breaks light into its constituent individual wavelengths, indicate the presence of hot steam formed as the outflow heats the surrounding molecular gas. Outflows are physical signatures of processes that create supersonic beams, or jets, of gas. They are usually accompanied by discs of material around the new star, which likely contain the materials from which future planetary systems are formed. Additional newborn stars, depicted in green, can be seen surrounding the DR21 region

  19. Characterization of the gut microbiota in the red panda (Ailurus fulgens.

    Directory of Open Access Journals (Sweden)

    Fanli Kong

    Full Text Available The red panda is the only living species of the genus Ailurus. Like giant pandas, red pandas are also highly specialized to feed mainly on highly fibrous bamboo. Although several studies have focused on the gut microbiota in the giant panda, little is known about the gut microbiota of the red panda. In this study, we characterized the fecal microbiota from both wild (n = 16 and captive (n = 6 red pandas using a pyrosequecing based approach targeting the V1-V3 hypervariable regions of the 16S rRNA gene. Distinct bacterial communities were observed between the two groups based on both membership and structure. Wild red pandas maintained significantly higher community diversity, richness and evenness than captive red pandas, the communities of which were skewed and dominated by taxa associated with Firmicutes. Phylogenetic analysis of the top 50 OTUs revealed that 10 of them were related to known cellulose degraders. To the best of our knowledge, this is the first study of the gut microbiota of the red panda. Our data suggest that, similar to the giant panda, the gut microbiota in the red panda might also play important roles in the digestion of bamboo.

  20. Chemical Abundances of Red Giant Branch Stars in the Globular Cluster NGC 288

    Science.gov (United States)

    Hsyu, Tiffany; Johnson, C. I.; Pilachowski, C. A.; Lee, Y.; Rich, R. M.

    2013-01-01

    We present chemical abundances and radial velocities for ~30 red giant branch (RGB) stars in the globular cluster NGC 288. The results are based on moderate resolution (R≈18,000) and moderate signal-to-noise ratio 50-75) obtained with the Hydra multi-object spectrograph on the Blanco 4m telescope. NGC 288 has been shown to exhibit two separate RGBs and we investigate possible differences in metallicity and/or light element abundances between stars on each branch. We present a new filter tracing for the CTIO Calcium HK narrow band filter and explore its effects on previous globular cluster color-magnitude diagrams. We also compare the light element abundance patterns of NGC 288 to those of other similar metallicity halo clusters. This material is based upon work supported by the National Science Foundation under award No.AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grants AST-0709479 and AST-121120995.

  1. Kinematics and Metallicity of M31 Red Giants: The Giant Southern Stream and Discovery of a Second Cold Component at R=20 kpc

    Science.gov (United States)

    Kalirai, Jasonjot S.; Guhathakurta, Puragra; Gilbert, Karoline M.; Reitzel, David B.; Majewski, Steven R.; Rich, R. Michael; Cooper, Michael C.

    2006-04-01

    We present spectroscopic observations of red giant branch (RGB) stars in the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10 m telescope. The three fields targeted in this study are in the M31 spheroid, outer disk, and giant southern stream. In this paper, we focus on the kinematics and chemical composition of RGB stars in the stream field located at a projected distance of R=20 kpc from M31's center. A mix of stellar populations is found in this field. M31 RGB stars are isolated from Milky Way dwarf star contaminants using a variety of spectral and photometric diagnostics. The radial velocity distribution of RGB stars displays a clear bimodality-a primary peak centered at v¯1=-513 km s-1 and a secondary one at v¯2=-417 km s-1-along with an underlying broad component that is presumably representative of the smooth spheroid of M31. Both peaks are found to be dynamically cold with intrinsic velocity dispersions of σ(v)~16 km s-1. The mean metallicity and metallicity dispersion of stars in the two peaks is also found to be similar: ~-0.45 and σ([Fe/H])=0.2. The observed velocity of the primary peak is consistent with that predicted by dynamical models for the stream, but there is no obvious explanation for the secondary peak. The nature of the secondary cold population is unclear: it may represent (1) tidal debris from a satellite merger event that is superimposed on, but unrelated to, the giant southern stream; (2) a wrapped around component of the giant southern stream; or (3) a warp or overdensity in M31's disk at Rdisk>50 kpc (this component is well above the outward extrapolation of the smooth exponential disk brightness profile). Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous

  2. Lithium in Open Cluster Red Giants Hosting Substellar Companions

    Science.gov (United States)

    Carlberg, Joleen K.; Smith, Verne V.; Cunha, Katia; Carpenter, Kenneth G.

    2016-02-01

    We have measured stellar parameters, [Fe/H], lithium abundances, rotation, and 12C/13C in a small sample of red giants (RGs) in three open clusters that are each home to a RG star that hosts a substellar companion (SSC) (NGC 2423 3, NGC 4349 127, and BD+12 1917 in M67). Our goal is to explore whether the presence of SSCs influences the Li content. Both 12C/13C and stellar rotation are measured as additional tracers of stellar mixing. One of the companion hosts, NGC 2423 3, is found to be Li-rich with A(Li){}{{NLTE}} = 1.56 dex, and this abundance is significantly higher than the A(Li) of the two comparison stars in NGC 2423. All three SSC hosts have the highest A(Li) and 12C/13C when compared to the control RGs in their respective clusters; however, except for NGC 2423 3, at least one control star has similarly high abundances within the uncertainties. Higher A(Li) could suggest that the formation or presence of planets plays a role in the degree of internal mixing on or before the RG branch. However, a multitude of factors affect A(Li) during the RG phase, and when the abundances of our sample are compared with the abundances of RGs in other open clusters available in the literature, we find that they all fall well within a much larger distribution of A(Li) and 12C/13C. Thus, even the high Li in NGC 2423 3 cannot be concretely tied to the presence of the SSC.

  3. The magnetic fields at the surface of active single G-K giants

    Science.gov (United States)

    Aurière, M.; Konstantinova-Antova, R.; Charbonnel, C.; Wade, G. A.; Tsvetkova, S.; Petit, P.; Dintrans, B.; Drake, N. A.; Decressin, T.; Lagarde, N.; Donati, J.-F.; Roudier, T.; Lignières, F.; Schröder, K.-P.; Landstreet, J. D.; Lèbre, A.; Weiss, W. W.; Zahn, J.-P.

    2015-02-01

    Aims: We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. In our sample, 24 stars are identified from the literature as presenting moderate to strong signs of magnetic activity. An additional 7 stars are identified as those in which thermohaline mixing appears not to have occured, which could be due to hosting a strong magnetic field. Finally, we observed 17 additional very bright stars which enable a sensitive search to be performed with the spectropolarimetric technique. Methods: We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets. We treat the spectropolarimetric data using the least-squares deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measure the classical S-index activity indicator for the Ca ii H&K lines, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. Results: We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars. However no detections were obtained in the 7 thermohaline deviant giants. The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a "magnetic strip" for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro

  4. Library of Giant Planet Reflection Spectra for WFirst and Future Space Telescopes

    Science.gov (United States)

    Smith, Adam J. R. W.; Fortney, Jonathan; Morley, Caroline; Batalha, Natasha E.; Lewis, Nikole K.

    2018-01-01

    Future large space space telescopes will be able to directly image exoplanets in optical light. The optical light of a resolved planet is due to stellar flux reflected by Rayleigh scattering or cloud scattering, with absorption features imprinted due to molecular bands in the planetary atmosphere. To aid in the design of such missions, and to better understand a wide range of giant planet atmospheres, we have built a library of model giant planet reflection spectra, for the purpose of determining effective methods of spectral analysis as well as for comparison with actual imaged objects. This library covers a wide range of parameters: objects are modeled at ten orbital distances between 0.5 AU and 5.0 AU, which ranges from planets too warm for water clouds, out to those that are true Jupiter analogs. These calculations include six metalicities between solar and 100x solar, with a variety of different cloud thickness parameters, and across all possible phase angles.

  5. INFRARED PERIOD-LUMINOSITY RELATIONS OF EVOLVED VARIABLE STARS IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Riebel, David; Meixner, Margaret; Fraser, Oliver; Srinivasan, Sundar; Cook, Kem; Vijh, Uma

    2010-01-01

    We combine variability information from the MAssive Compact Halo Objects survey of the Large Magellanic Cloud with infrared photometry from the Spitzer Space Telescope Surveying the Agents of a Galaxy's Evolution survey to create a data set of ∼30,000 variable red sources. We photometrically classify these sources as being on the first ascent of the red giant branch, or as being in one of three stages along the asymptotic giant branch (AGB): oxygen-rich, carbon-rich, or highly reddened with indeterminate chemistry ('extreme' AGB candidates). We present linear period-luminosity (P-L) relationships for these sources using eight separate infrared bands (J, H, K s , 3.6, 4.5, 5.8, 8.0, and 24 μm) as proxies for the luminosity. We find that the wavelength dependence of the slope of the P-L relationship is different for different photometrically determined classes of AGB stars. Stars photometrically classified as O-rich show the least variation of slope with wavelength, while dust enshrouded extreme AGB stars show a pronounced trend toward steeper slopes with increasing wavelength. We find that O-rich AGB stars pulsating in the fundamental mode obey a period-magnitude relation with a slope of -3.41 ± 0.04 when magnitude is measured in the 3.6 μm band, in contrast to C-rich AGB stars, which obey a relation of slope -3.77 ± 0.05.

  6. CHEMICAL ABUNDANCE ANALYSIS OF A NEUTRON-CAPTURE ENHANCED RED GIANT IN THE BULGE PLAUT FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I.; Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); McWilliam, Andrew, E-mail: cijohnson@astro.ucla.edu, E-mail: rmr@astro.ucla.edu, E-mail: cjohnson@cfa.harvard.edu, E-mail: andy@obs.carnegiescience.edu [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

    2013-09-20

    We present chemical abundances for 27 elements ranging from oxygen to erbium in the metal-poor ([Fe/H] = –1.67) bulge red giant branch star 2MASS 18174532-3353235. The results are based on equivalent width and spectrum synthesis analyses of a high-resolution (R ∼ 30, 000) spectrum obtained with the Magellan-MIKE spectrograph. While the light (Z ∼< 30) element abundance patterns match those of similar metallicity bulge and halo stars, the strongly enhanced heavy element abundances are more similar to 'r-II' halo stars (e.g., CS 22892-052) typically found at [Fe/H] ∼< – 2.5. We find that the heaviest elements (Z ≥ 56) closely follow the scaled-solar r-process abundance pattern. We do not find evidence supporting significant s-process contributions; however, the intermediate mass elements (e.g., Y and Zr) appear to have been produced through a different process than the heaviest elements. The light and heavy element abundance patterns of 2MASS 18174532-3353235 are in good agreement with the more metal-poor r-process enhanced stars CS 22892-052 and BD +17{sup o}3248. 2MASS 18174532-3353235 also shares many chemical characteristics with the similar metallicity but comparatively α-poor Ursa Minor dwarf galaxy giant COS 82. Interestingly, the Mo and Ru abundances of 2MASS 18174532-3353235 are also strongly enhanced and follow a similar trend recently found to be common in moderately metal-poor main-sequence turn-off halo stars.

  7. The Magellanic clouds

    International Nuclear Information System (INIS)

    1989-01-01

    As the two galaxies nearest to our own, the Magellanic Clouds hold a special place in studies of the extragalactic distance scale, of stellar evolution and the structure of galaxies. In recent years, results from the South African Astronomical Observatory (SAAO) and elsewhere have shown that it is possible to begin understanding the three dimensional structure of the Clouds. Studies of Magellanic Cloud Cepheids have continued, both to investigate the three-dimensional structure of the Clouds and to learn more about Cepheids and their use as extragalactic distance indicators. Other research undertaken at SAAO includes studies on Nova LMC 1988 no 2 and red variables in the Magellanic Clouds

  8. Qualitative explanations for red giant formation

    International Nuclear Information System (INIS)

    Bhaskar, R.; Nigam, A.

    1991-01-01

    Recent research on giant formation has focused on the need for qualitative explanations. The explanations have the following general, qualitative form: the polytrope n assumes a certain value, that makes (d ln r)/(d ln z) take on a very large value; large increases in r can then be explained in terms of small changes in the variable z. This form is applicable to all the explanations current in the literature: they all have (1) either implicitly or explicitly, both a hydrostatic component and a luminosity-opacity component, and (2) a reliance on singular solutions. Dimensional analysis reveals that power laws that assume the polytrope n to 5 are identical in both the hydrostatic and luminosity-based explanations. 12 refs

  9. Red Clump stars in Kepler open cluster NGC 6819

    Directory of Open Access Journals (Sweden)

    Abedigamba O.P.

    2015-01-01

    Full Text Available We measure the large frequency separation, Δν, and the frequency of maximum amplitude, νmax, for 10 Red Clump (RC single member (SM stars in the Kepler open cluster NGC 6819. We derive luminosities and masses for each individual RC star. A comparison of the observations with an isochrone of Age = 2.5 Gyr, Z = 0.017 with no mass loss using a statistical techniques is made. A fractional mass loss of 5 ± 3 percent is obtained if we assume that no correction to Δν between RC and red-giant branch (RGB is necessary. However, models suggest that an effective correction of about 1.9 percent in Δν is required to obtain the correct mass of RC stars owing to the different internal structures of stars in the two evolutionary stages. In this case we find that the mass loss in the red giant branch is not significantly different from zero. This finding confirms that of [6]. It is clear that the mass estimate obtained by asteroseismology is not sufficient to deduce the mass loss on the red giant branch. However, it is clearly only a few percent at most.

  10. Mass loss by stars at the stage of the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Y.L.

    1986-01-01

    For a given initial stellar mass function, star formation function, and initial chemical composition, distributions have been constructed for stars of the asymptotic giant branch by luminosity, and for white dwarfs by mass, by calculating the approximate evolution of a large number of stars. Variants are calculated with different assumptions about the mass loss in the asymptotic branch. Theory can be reconciled with observation only if it is assumed that at this stage there is also a still large mass loss in addition to the stellar wind and the ejection of a planetary nebula shell. This provides the explanation for the absence in the Magellanic clouds of carbon stars with M /sub bol/ 1.0M /sub ./. The degenerate carbon-oxygen nuclei of stars evolving along the asymptotic giant branch cannot attain the Chandrasekhar limit on account of the great mass loss by the stars. The luminosity of stars of the asymptotic giant branch in the globular clusters of the Magellanic Clouds is a good indicator of the age of the clusters

  11. A white dwarf companion to the main-sequence star 4 Omicron(1) Orionis and the binary hypothesis for the origin of peculiar red giants

    Science.gov (United States)

    Ake, Thomas B.; Johnson, Hollis R.

    1988-01-01

    Ultraviolet spectra of the peculiar red giants (PRGs) called MS stars are investigated, and the discovery of a white dwarf (WD) companion to the MS star 4 Omicron(1) Orionis is reported. The observations and data analysis are discussed and compared with those for field WDs in order to derive parameters for the WD and the luminosity of the primary. Detection limits for the other MS stars investigated are derived, and the binary hypothesis for PRGs is reviewed.

  12. The PdBI arcsecond whirlpool survey (PAWS): Environmental dependence of giant molecular cloud properties in M51

    International Nuclear Information System (INIS)

    Colombo, Dario; Hughes, Annie; Schinnerer, Eva; Meidt, Sharon E.; Leroy, Adam K.; Pety, Jérôme; Dumas, Gaëlle; Schuster, Karl F.; Dobbs, Clare L.; García-Burillo, Santiago; Thompson, Todd A.; Kramer, Carsten

    2014-01-01

    Using data from the PdBI Arcsecond Whirlpool Survey (PAWS), we have generated the largest extragalactic giant molecular cloud (GMC) catalog to date, containing 1507 individual objects. GMCs in the inner M51 disk account for only 54% of the total 12 CO(1-0) luminosity of the survey, but on average they exhibit physical properties similar to Galactic GMCs. We do not find a strong correlation between the GMC size and velocity dispersion, and a simple virial analysis suggests that ∼30% of GMCs in M51 are unbound. We have analyzed the GMC properties within seven dynamically motivated galactic environments, finding that GMCs in the spiral arms and in the central region are brighter and have higher velocity dispersions than inter-arm clouds. Globally, the GMC mass distribution does not follow a simple power-law shape. Instead, we find that the shape of the mass distribution varies with galactic environment: the distribution is steeper in inter-arm region than in the spiral arms, and exhibits a sharp truncation at high masses for the nuclear bar region. We propose that the observed environmental variations in the GMC properties and mass distributions are a consequence of the combined action of large-scale dynamical processes and feedback from high-mass star formation. We describe some challenges of using existing GMC identification techniques for decomposing the 12 CO(1-0) emission in molecule-rich environments, such as M51's inner disk.

  13. AMPLITUDES OF SOLAR-LIKE OSCILLATIONS: CONSTRAINTS FROM RED GIANTS IN OPEN CLUSTERS OBSERVED BY KEPLER

    International Nuclear Information System (INIS)

    Stello, Dennis; Huber, Daniel; Bedding, Timothy R.; Benomar, Othman; Kallinger, Thomas; Basu, Sarbani; Mosser, BenoIt; Hekker, Saskia; Mathur, Savita; GarcIa, Rafael A.; Kjeldsen, Hans; Grundahl, Frank; Christensen-Dalsgaard, Joergen; Gilliland, Ronald L.; Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne P.; Meibom, Soeren; Molenda-Zakowicz, Joanna; Szabo, Robert

    2011-01-01

    Scaling relations that link asteroseismic quantities to global stellar properties are important for gaining understanding of the intricate physics that underpins stellar pulsations. The common notion that all stars in an open cluster have essentially the same distance, age, and initial composition implies that the stellar parameters can be measured to much higher precision than what is usually achievable for single stars. This makes clusters ideal for exploring the relation between the mode amplitude of solar-like oscillations and the global stellar properties. We have analyzed data obtained with NASA's Kepler space telescope to study solar-like oscillations in 100 red giant stars located in either of the three open clusters, NGC 6791, NGC 6819, and NGC 6811. By fitting the measured amplitudes to predictions from simple scaling relations that depend on luminosity, mass, and effective temperature, we find that the data cannot be described by any power of the luminosity-to-mass ratio as previously assumed. As a result we provide a new improved empirical relation which treats luminosity and mass separately. This relation turns out to also work remarkably well for main-sequence and subgiant stars. In addition, the measured amplitudes reveal the potential presence of a number of previously unknown unresolved binaries in the red clump in NGC 6791 and NGC 6819, pointing to an interesting new application for asteroseismology as a probe into the formation history of open clusters.

  14. Giant Planets in Reflected Light: What Science Can We Expect?

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    Interpreting the reflection spectra of cool giant planets will be a challenge. Spectra of such worlds are expected to be primarily shaped by scattering from clouds and hazes and punctuated by absorption bands of methane, water, and ammonia. While the warmest giants may be cloudless, their atmospheres will almost certainly sport substantial photochemical hazes. Furthermore the masses of most direct imaging targets will be constrained by radial velocity observations, their radii, and thus atmospheric gravity, will be imperfectly known. The uncertainty in planet radius and gravity will compound with uncertain aerosol properties to make estimation of key absorber abundances difficult. To address such concerns our group is developing atmospheric retrieval tools to constrain quantities of interest, particular gas mixing ratios. We have applied our Markov Chain Monte Carlo methods to simulated data of the quality expected from the WFIRST CGI instrument and found that given sufficiently high SNR data we can confidentially identify and constrain the abundance of methane, cloud top pressures, gravity, and the star-planet-observer phase angle. In my presentation I will explain the expected characteristics of cool extrasolar giant planet reflection spectra, discuss these and other challenges in their interpretation, and summarize the science results we can expect from direct imaging observations.

  15. A FIRST LOOK AT THE AURIGA-CALIFORNIA GIANT MOLECULAR CLOUD WITH HERSCHEL AND THE CSO: CENSUS OF THE YOUNG STELLAR OBJECTS AND THE DENSE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Paul M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Fallscheer, Cassandra [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Ginsburg, Adam [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States); Terebey, Susan [Department of Physics and Astronomy PS315, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Andre, Philippe; Koenyves, Vera [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Di Francesco, James; Matthews, Brenda C. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Peterson, Dawn E., E-mail: pmh@astro.as.utexas.edu, E-mail: Cassandra.Fallscheer@nrc-cnrc.gc.ca, E-mail: adam.ginsburg@colorado.edu, E-mail: sterebe@calstatela.edu, E-mail: pandre@cea.fr, E-mail: vera.konyves@cea.fr, E-mail: tbourke@cfa.harvard.edu, E-mail: James.DiFrancesco@nrc-cnrc.gc.ca, E-mail: Brenda.Matthews@nrc-cnrc.gc.ca, E-mail: dpeterson@spacescience.org [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80303 (United States)

    2013-02-20

    We have mapped the Auriga/California molecular cloud with the Herschel PACS and SPIRE cameras and the Bolocam 1.1 mm camera on the Caltech Submillimeter Observatory with the eventual goal of quantifying the star formation and cloud structure in this giant molecular cloud (GMC) that is comparable in size and mass to the Orion GMC, but which appears to be forming far fewer stars. We have tabulated 60 compact 70/160 {mu}m sources that are likely pre-main-sequence objects and correlated those with Spitzer and WISE mid-IR sources. At 1.1 mm, we find 18 cold, compact sources and discuss their properties. The most important result from this part of our study is that we find a modest number of additional compact young objects beyond those identified at shorter wavelengths with Spitzer. We also describe the dust column density and temperature structure derived from our photometric maps. The column density peaks at a few Multiplication-Sign 10{sup 22} cm{sup -2} (N {sub H2}) and is distributed in a clear filamentary structure along which nearly all of the pre-main-sequence objects are found. We compare the young stellar object surface density to the gas column density and find a strong nonlinear correlation between them. The dust temperature in the densest parts of the filaments drops to {approx}10 K from values {approx}14-15 K in the low-density parts of the cloud. We also derive the cumulative mass fraction and probability density function of material in the cloud, which we compare with similar data on other star-forming clouds.

  16. A FIRST LOOK AT THE AURIGA-CALIFORNIA GIANT MOLECULAR CLOUD WITH HERSCHEL AND THE CSO: CENSUS OF THE YOUNG STELLAR OBJECTS AND THE DENSE GAS

    International Nuclear Information System (INIS)

    Harvey, Paul M.; Fallscheer, Cassandra; Ginsburg, Adam; Terebey, Susan; André, Philippe; Könyves, Vera; Bourke, Tyler L.; Di Francesco, James; Matthews, Brenda C.; Peterson, Dawn E.

    2013-01-01

    We have mapped the Auriga/California molecular cloud with the Herschel PACS and SPIRE cameras and the Bolocam 1.1 mm camera on the Caltech Submillimeter Observatory with the eventual goal of quantifying the star formation and cloud structure in this giant molecular cloud (GMC) that is comparable in size and mass to the Orion GMC, but which appears to be forming far fewer stars. We have tabulated 60 compact 70/160 μm sources that are likely pre-main-sequence objects and correlated those with Spitzer and WISE mid-IR sources. At 1.1 mm, we find 18 cold, compact sources and discuss their properties. The most important result from this part of our study is that we find a modest number of additional compact young objects beyond those identified at shorter wavelengths with Spitzer. We also describe the dust column density and temperature structure derived from our photometric maps. The column density peaks at a few × 10 22 cm –2 (N H2 ) and is distributed in a clear filamentary structure along which nearly all of the pre-main-sequence objects are found. We compare the young stellar object surface density to the gas column density and find a strong nonlinear correlation between them. The dust temperature in the densest parts of the filaments drops to ∼10 K from values ∼14-15 K in the low-density parts of the cloud. We also derive the cumulative mass fraction and probability density function of material in the cloud, which we compare with similar data on other star-forming clouds.

  17. THREE DISCRETE GROUPS WITH HOMOGENEOUS CHEMISTRY ALONG THE RED GIANT BRANCH IN THE GLOBULAR CLUSTER NGC 2808

    International Nuclear Information System (INIS)

    Carretta, E.

    2014-01-01

    We present the homogeneous reanalysis of Mg and Al abundances from high resolution UVES/FLAMES spectra for 31 red giants in the globular cluster NGC 2808. We found a well defined Mg-Al anticorrelation reaching a regime of subsolar Mg abundance ratios, with a spread of about 1.4 dex in [Al/Fe]. The main result from the improved statistics of our sample is that the distribution of stars is not continuous along the anticorrelation because they are neatly clustered into three distinct clumps, each with different chemical compositions. One group (P) shows a primordial composition of field stars of similar metallicity, and the other two (I and E) have increasing abundances of Al and decreasing abundances of Mg. The fraction of stars we found in the three components (P: 68%, I: 19%, E: 13%) is in excellent agreement with the ratios computed for the three distinct main sequences in NGC 2808: for the first time there is a clear correspondence between discrete photometric sequences of dwarfs and distinct groups of giants with homogeneous chemistry. The composition of the I group cannot be reproduced by mixing of matter with extreme processing in hot H-burning and gas with pristine, unprocessed composition, as also found in the recent analysis of three discrete groups in NGC 6752. This finding suggests that different classes of polluters were probably at work in NGC 2808 as well

  18. Age-resolved chemistry of red giants in the solar neighbourhood

    Science.gov (United States)

    Feuillet, Diane K.; Bovy, Jo; Holtzman, Jon; Weinberg, David H.; García-Hernández, D.; Hearty, Fred R.; Majewski, Steven R.; Roman-Lopes, Alexandre; Rybizki, Jan; Zamora, Olga

    2018-06-01

    In the age of high-resolution spectroscopic stellar surveys of the Milky Way, the number of stars with detailed abundances of multiple elements is rapidly increasing. These elemental abundances are directly influenced by the evolutionary history of the Galaxy, but this can be difficult to interpret without an absolute timeline of the abundance enrichment. We present age-abundance trends for [M/H], [α/M], and 17 individual elements using a sample of 721 solar neighbourhood Hipparcos red giant stars observed by Apache Point Observatory Galactic Evolution Experiment. These age trends are determined through a Bayesian hierarchical modelling method presented by Feuillet et al. We confirm that the [α/M]-age relation in the solar neighbourhood is steep and relatively narrow (0.20 dex age dispersion), as are the [O/M]-age and [Mg/M]-age relations. The age trend of [C/N] is steep and smooth, consistent with stellar evolution. The [M/H]-age relation has a mean age dispersion of 0.28 dex and a complex overall structure. The oldest stars in our sample are those with the lowest and highest metallicities, while the youngest stars are those with solar metallicity. These results provide strong constraints on theoretical models of Galactic chemical evolution (GCE). We compare them to the predictions of one-zone GCE models and multizone mixtures, both analytic and numerical. These comparisons support the hypothesis that the solar neighbourhood is composed of stars born at a range of Galactocentric radii, and that the most metal-rich stars likely migrated from a region with earlier and more rapid star formation such as the inner Galaxy.

  19. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    International Nuclear Information System (INIS)

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.; Gilmore, Gerard F.; Grebel, Eva K.; Bienaymé, Olivier; Siebert, Arnaud; Bland-Hawthorn, Joss; Freeman, Ken C.; Gibson, Brad K.; Munari, Ulisse; Navarro, Julio F.; Parker, Quentin A.; Watson, Fred G.; Reid, Warren; Seabroke, George M.; Siviero, Alessandro; Steinmetz, Matthias; Williams, Mary; Zwitter, Tomaz

    2011-01-01

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] 7 Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) 7 Be (which burns to 7 Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.

  20. The Properties of a Giant Jet Reflected in a Simultaneous Sprite

    DEFF Research Database (Denmark)

    Neubert, Torsten; Chanrion, Olivier Arnaud; Arnone, E.

    2011-01-01

    Thunderstorm clouds may discharge directly to the ionosphere in spectacular luminous jets - the largest electric discharges of our planet. The properties of these "giants," such as their polarity, conductivity, and currents, have been predicted by models, but are poorly characterized by measureme...

  1. Red giants and yellow stragglers in the young open cluster NGC 2447

    Science.gov (United States)

    da Silveira, M. D.; Pereira, C. B.; Drake, N. A.

    2018-06-01

    In this work we analysed, using high-resolution spectroscopy, a sample of 12 single and 4 spectroscopic binary stars of the open cluster NGC 2447. For the single stars, we obtained atmospheric parameters and chemical abundances of Li, C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, Nd, Eu. Rotational velocities were obtained for all the stars. The abundances of the light elements and Eu and the rotational velocities were derived using spectral synthesis technique. We obtained a mean metallicity of [Fe/H] = -0.17 ± 0.05. We found that the abundances of all elements are similar to field giants and/or giants of open clusters, even for the s-process elements, which are enhanced as in other young open clusters. We show that the spectroscopic binaries NGC 2447-26, 38, and 42 are yellow-straggler stars, of which the primary is a giant star and the secondary a main-sequence A-type star.

  2. Comparison of cloud optical depth and cloud mask applying BRDF model-based background surface reflectance

    Science.gov (United States)

    Kim, H. W.; Yeom, J. M.; Woo, S. H.

    2017-12-01

    Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With

  3. Infrared studies of two dark clouds

    International Nuclear Information System (INIS)

    Elias, J.H.

    1978-01-01

    The IC5146 dark cloud complex was surveyed in the infrared in order to identify and study associated young stellar objects. Most of the objects detected in the survey appears to be field stars, predominantly late-type giants. Three young objects were detected in the survey: the BO star BD + 46 x 3474, the Ae star BD + 46 x 3471, and a previously unidentified object which appear to be a heavily obscured FU Ori star. The properties of the last two objects are examined in detail, and an attempt is made to produce reasonable models for them. It is suggested that FU Ori stars are binaries, and some consequences of this model are described. Photometry of the brighter stars in the IC5146 cluster was used to establish a distance to the cluster of 900 +- 100 pc. A near-infrared survey was also conducted of nearly 18 square degrees of the Ophiuchus dark cloud complex. Additional observations were made of selected objects found in this region, in order to identify and study the young stars associated with the cloud. These observations show that very recent star formation has been largely restricted to a small region no more than a few parsecs in extent at the center of the dark cloud complex. Most of the young stars do not appear to be main sequence stars. At least three of these objects appear to be surrounded by infrared reflection nebulae. Many of the objects studies are background K and M giants which can be used to determine the near-infrared extinction due to the dark cloud

  4. Red Sirius

    Energy Technology Data Exchange (ETDEWEB)

    Martynov, D Ya

    1976-01-01

    A hypothesis is proposed explaining the assumption that Sirius changed its colour from red in the second century to pale blue in the tenth century A.D. The hypothesis is based on the possibility of transformation of a Sirius satellite (Sirius B) from a red giant in the past to a white dwarf in the present. Such a transformation would have been accompanied by an explosion of Sirius B, which is clearly visible from the Earth. The fact that the increase in Sirius brightness by 4-5 units is not reflected in historical chronicles is attributed to the degradation of sciences in Europe in 4-10 centuries.

  5. CO(J = 2 - 1) study of molecular clouds in the southwest arm of M31

    International Nuclear Information System (INIS)

    Kutner, M.L.; Verter, F.; Rickard, L.J.

    1990-01-01

    The first map of M31 in the CO(J = 2 - 1) transition, covering a 3 arcmin by 3 arcmin section of the SW arm-interarm region, is presented. The CO spectra in the arm region defined by H II regions are characterized by strong, narrow features which are interpreted here to be giant molecular clouds with masses of a few 100,000 solar masses. The interarm emission is interpreted as an ensemble of small clouds with masses of a few 10,000 solar masses. On the arm about 70 percent of the emission comes from large clouds, while off the arm essentially all of it comes from small clouds. The mass surface density on this section of M31 is about that of a comparable section of the Scutum arm of the Galaxy. The velocities of the giant clouds in the arm are shifted with respect to the rest of the molecular and atomic gas by about 15 km/s. This may be due to cloud response to passage through the spiral arm potential. 49 refs

  6. Islands in the Sky: Ecophysiological Cloud-Vegetation Linkages in Southern Appalachian Mountain Cloud Forests

    Science.gov (United States)

    Reinhardt, K.; Emanuel, R. E.; Johnson, D. M.

    2013-12-01

    Mountain cloud forest (MCF) ecosystems are characterized by a high frequency of cloud fog, with vegetation enshrouded in fog. The altitudinal boundaries of cloud-fog zones co-occur with conspicuous, sharp vegetation ecotones between MCF- and non-MCF-vegetation. This suggests linkages between cloud-fog and vegetation physiology and ecosystem functioning. However, very few studies have provided a mechanistic explanation for the sharp changes in vegetation communities, or how (if) cloud-fog and vegetation are linked. We investigated ecophysiological linkages between clouds and trees in Southern Appalachian spruce-fir MCF. These refugial forests occur in only six mountain-top, sky-island populations, and are immersed in clouds on up to 80% of all growing season days. Our fundamental research questions was: How are cloud-fog and cloud-forest trees linked? We measured microclimate and physiology of canopy tree species across a range of sky conditions (cloud immersed, partly cloudy, sunny). Measurements included: 1) sunlight intensity and spectral quality; 2) carbon gain and photosynthetic capacity at leaf (gas exchange) and ecosystem (eddy covariance) scales; and 3) relative limitations to carbon gain (biochemical, stomatal, hydraulic). RESULTS: 1) Midday sunlight intensity ranged from very dark (2500 μmol m-2 s-1), and was highly variable on minute-to-minute timescales whenever clouds were present in the sky. Clouds and cloud-fog increased the proportion of blue-light wavelengths 5-15% compared to sunny conditions, and altered blue:red and red:far red ratios, both of which have been shown to strongly affect stomatal functioning. 2) Cloud-fog resulted in ~50% decreased carbon gain at leaf and ecosystem scales, due to sunlight levels below photosynthetic light-saturation-points. However, greenhouse studies and light-response-curve analyses demonstrated that MCF tree species have low light-compensation points (can photosynthesize even at low light levels), and maximum

  7. Jupiter's Multi-level Clouds

    Science.gov (United States)

    1997-01-01

    Clouds and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the cloud systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with clouds down to a level about three times the atmospheric pressure at the Earth's surface.By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude clouds and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial clouds, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper clouds can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.The false color image (lower right) succinctly shows various cloud and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal cloud cover; green denotes cool temperatures of the tropospheric clouds; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and reflectivity

  8. Surface Magnetic Fields on Giants and Supergiants

    Science.gov (United States)

    Lebre, Agnès

    2018-04-01

    After a short introduction to spectropolarimetry and the tecnics allowing for the detection of surface fields, I will review the numerous and various detections of magnetic fields at the surface of giant and supergiant stars. On Betelgeuse, the prototype of Red Supergiants, I will present recent results collected after a 10 years long spectropolarimetric survey.

  9. Construction and application of Red5 cluster based on OpenStack

    Science.gov (United States)

    Wang, Jiaqing; Song, Jianxin

    2017-08-01

    With the application and development of cloud computing technology in various fields, the resource utilization rate of the data center has been improved obviously, and the system based on cloud computing platform has also improved the expansibility and stability. In the traditional way, Red5 cluster resource utilization is low and the system stability is poor. This paper uses cloud computing to efficiently calculate the resource allocation ability, and builds a Red5 server cluster based on OpenStack. Multimedia applications can be published to the Red5 cloud server cluster. The system achieves the flexible construction of computing resources, but also greatly improves the stability of the cluster and service efficiency.

  10. DEVELOPING ATMOSPHERIC RETRIEVAL METHODS FOR DIRECT IMAGING SPECTROSCOPY OF GAS GIANTS IN REFLECTED LIGHT. I. METHANE ABUNDANCES AND BASIC CLOUD PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Lupu, Roxana E. [BAER Institute/NASA Ames Research Center, Moffet Field, CA 94035 (United States); Marley, Mark S.; Zahnle, Kevin [NASA Ames Research Center, Moffet Field, CA 94035 (United States); Lewis, Nikole [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Line, Michael [Univ. California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Traub, Wesley A., E-mail: Roxana.E.Lupu@nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-12-01

    Upcoming space-based coronagraphic instruments in the next decade will perform reflected light spectroscopy and photometry of cool directly imaged extrasolar giant planets. We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs a geometric albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler ( emcee ) and a multimodal nested sampling algorithm ( MultiNest ) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model and highlights possible discrepancies in the likelihood maps. As a proof of concept, our current atmospheric model contains one or two cloud layers, methane as a major absorber, and a H{sub 2}–He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise ratio in the presence of spectral noise correlations. After internal validation, the method is applied to realistic spectra of Jupiter, Saturn, and HD 99492c, a model observing target. We find that the presence or absence of clouds and methane can be determined with high confidence, while parameter uncertainties are model dependent and correlated. Such general methods will also be applicable to the interpretation of direct imaging spectra of cloudy terrestrial planets.

  11. Young α-enriched giant stars in the solar neighbourhood

    DEFF Research Database (Denmark)

    Martig, Marie; Rix, Hans-Walter; Aguirre, Victor Silva

    2015-01-01

    We derive age constraints for 1639 red giants in the APOKASC sample for which seismic parameters from Kepler, as well as effective temperatures, metallicities and [alpha/Fe] values from APOGEE DR12 (Apache Point Observatory Galactic Evolution Experiment Data Release 12) are available. We investig...

  12. The JHKs Magnitudes of the Red Giant Branch Tip and the Distance Moduli of Nearby Dwarf Galaxy NGC 205

    Directory of Open Access Journals (Sweden)

    M. Y. Jung

    2009-12-01

    Full Text Available We have used the near-infrared JHKS photometric data of resolved stars in a nearby dwarf elliptical galaxy NGC 205 to determine the magnitudes of the red giant branch tip (TRGB. By applying Savitzky-Golay filter to the observed luminosity functions (LFs in each band, we derived the second derivatives of the LFs so as to determine the magnitudes of the TRGB. Absolute magnitudes of the TRGB in JHKs bands were measured from the Yonsei-Yale isochrones. By comparing the determined apparent magnitudes and the theoretical absolute magnitudes of the TRGB, we estimated the distance moduli of NGC 205 to be (m-M = 24.10±0:08, 24.08±0.12 and 24.14±0.14 in J, H, and Ks bands, respectively.

  13. THE CALIFORNIA MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F.

    2009-01-01

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). Both a uniform foreground star density and measurements of the cloud's velocity field from CO observations indicate that this cloud is likely a coherent structure at a single distance. From comparison of foreground star counts with Galactic models, we derive a distance of 450 ± 23 pc to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of ∼ 10 5 M sun , rivaling the Orion (A) molecular cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion molecular cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps of both clouds shows that the new cloud contains only 10% the amount of high extinction (A K > 1.0 mag) material as is found in the OMC. This, in turn, suggests that the level of star formation activity and perhaps the star formation rate in these two clouds may be directly proportional to the total amount of high extinction material and presumably high density gas within them and that there might be a density threshold for star formation on the order of n(H 2 ) ∼ a few x 10 4 cm -3 .

  14. Mass loss by stars on the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Yu.L.

    1986-01-01

    The theoretical populations of white dwarfs and carbon stars were generated for Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and luminosity distribution of carbon stars is discussed and the results are compared with observations. This comparison suggested that a signioficant mass loss by stars on the asymptotic giant branch occurs besides stellar wind and planetary nebulae ejection. Thus it is possible to explain the absence of carbon stars with Msub(bol) 1.0 Msub(sun). The luminosity of asymptotic giant branch stars in the globular clusters of the Magellanic Clouds appears to be a very good indicator of the age

  15. Chemical Abundances of Red Giant Branch Stars in the Globular Clusters NGC 6333 and NGC 6366

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. M.; Pilachowski, C. A.; Kunder, A. M.

    2013-01-01

    We present chemical abundances and radial velocities for >20 red giant branch (RGB) stars in the Galactic globular clusters NGC 6333 ([Fe/H]≈-1.8) and NGC 6366 ([Fe/H]≈-0.6). The results are based on moderate resolution (R=18,000), high signal-to-noise ratio (>100) spectra obtained with the Hydra multifiber positioner and bench spectrograph on the WIYN 3.5m telescope at Kitt Peak National Observatory. Both objects are likely associated with the Galactic bulge globular cluster system, and we therefore compare the cluster abundance patterns with those of nearby bulge field stars. Additionally, we investigate differences in the O-Na anticorrelation and neutron-capture element dispersion between the two clusters, and compare their abundance patterns with those of similar metallicity halo globular clusters. This material is based upon work supported by the National Science Foundation under award No. AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grant AST-0709479 and AST-121120995.

  16. Infra-red data of extended sources as a measure of the star formation rate

    International Nuclear Information System (INIS)

    Puget, J.-L.

    1985-01-01

    Molecular cloud complexes are gravitationally bound systems which contain molecular clouds, HII regions and possibly OB associations after they evaporated their parent cloud. A large fraction of the energy (50%) radiated by the O and B stars is converted into infra-red. Less massive stars still embedded in molecular clouds or still in their vicinity will also see most of their radiation absorbed by dust and reemitted in the infra-red. The two quantities the author deduces directly from the data are: the ratio of the far-infra-red luminosity due to recently formed stars to the mass of gas, as a measure of the star formation rate; and the infra-red excess (IRE): the ratio of the far-infra-red luminosity to the luminosity of HII regions in the Lyman α line, which gives information on the initial mass function. Finally he discusses the possible links between star formation and some of the relevant physical conditions in the molecular clouds: amount and temperature distribution of dust. (Auth.)

  17. The red supergiant population in the Perseus arm

    Science.gov (United States)

    Dorda, R.; Negueruela, I.; González-Fernández, C.

    2018-04-01

    We present a new catalogue of cool supergiants in a section of the Perseus arm, most of which had not been previously identified. To generate it, we have used a set of well-defined photometric criteria to select a large number of candidates (637) that were later observed at intermediate resolution in the infrared calcium triplet spectral range, using a long-slit spectrograph. To separate red supergiants from luminous red giants, we used a statistical method, developed in previous works and improved in the present paper. We present a method to assign probabilities of being a red supergiant to a given spectrum and use the properties of a population to generate clean samples, without contamination from lower luminosity stars. We compare our identification with a classification done using classical criteria and discuss their respective efficiencies and contaminations as identification methods. We confirm that our method is as efficient at finding supergiants as the best classical methods, but with a far lower contamination by red giants than any other method. The result is a catalogue with 197 cool supergiants, 191 of which did not appear in previous lists of red supergiants. This is the largest coherent catalogue of cool supergiants in the Galaxy.

  18. Infrared tip of the red giant branch and distances to the MAFFEI/IC 342 group

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Po-Feng; Tully, R. Brent; Jacobs, Bradley A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, HI 96822 (United States); Rizzi, Luca [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Karachentsev, Igor D. [Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnij Arkhyz, Karachai-Cherkessian Republic 369167 (Russian Federation)

    2014-07-01

    In this paper, we extend the use of the tip of the red giant branch (TRGB) method to near-infrared wavelengths from the previously used I-band, using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). Upon calibration of a color dependency of the TRGB magnitude, the IR TRGB yields a random uncertainty of ∼5% in relative distance. The IR TRGB methodology has an advantage over the previously used Advance Camera for Surveys F606W and F814W filter set for galaxies that suffer from severe extinction. Using the IR TRGB methodology, we obtain distances toward three principal galaxies in the Maffei/IC 342 complex, which are located at low Galactic latitudes. New distance estimates using the TRGB method are 3.45{sub −0.13}{sup +0.13} Mpc for IC 342, 3.37{sub −0.23}{sup +0.32} Mpc for Maffei 1, and 3.52{sub −0.30}{sup +0.32} Mpc for Maffei 2. The uncertainties are dominated by uncertain extinction, especially for Maffei 1 and Maffei 2. Our IR calibration demonstrates the viability of the TRGB methodology for observations with the James Webb Space Telescope.

  19. RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR

    International Nuclear Information System (INIS)

    Barclay, Thomas; Huber, Daniel; Rowe, Jason F.; Quintana, Elisa V.; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Foreman-Mackey, Daniel

    2015-01-01

    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M Jup planet orbiting a red giant star

  20. A dearth of OH/IR stars in the Small Magellanic Cloud

    Science.gov (United States)

    Goldman, Steven R.; van Loon, Jacco Th.; Gómez, José F.; Green, James A.; Zijlstra, Albert A.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Groenewegen, Martin A. T.; Oliveira, Joana M.

    2018-01-01

    We present the results of targeted observations and a survey of 1612-, 1665- and 1667-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Small Magellanic Cloud (SMC), using the Parkes and Australia Telescope Compact Array (ATCA) radio telescopes. No clear OH maser emission has been detected in any of our observations targeting luminous, long-period, large-amplitude variable stars, which have been confirmed spectroscopically and photometrically to be mid- to late-M spectral type. These observations have probed 3-4 times deeper than any OH maser survey in the SMC. Using a bootstrapping method with Large Magellanic Cloud (LMC) and Galactic OH/IR star samples and our SMC observation upper limits, we have calculated the likelihood of not detecting maser emission in any of the two sources considered to be the top maser candidates to be less than 0.05 per cent, assuming a similar pumping mechanism as the LMC and Galactic OH/IR sources. We have performed a population comparison of the Magellanic Clouds and used Spitzer IRAC and MIPS photometry to confirm that we have observed all high luminosity SMC sources that are expected to exhibit maser emission. We suspect that, compared to the OH/IR stars in the Galaxy and LMC, the reduction in metallicity may curtail the dusty wind phase at the end of the evolution of the most massive cool stars. We also suspect that the conditions in the circumstellar envelope change beyond a simple scaling of abundances and wind speed with metallicity.

  1. Molecular Cloud Structures and Massive Star Formation in N159

    Science.gov (United States)

    Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.

    2018-02-01

    The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (<1). The threshold for massive star formation in N159W is 501 M ⊙ pc‑2, and the threshold for massive star formation in N159E is 794 M ⊙ pc‑2. We find that 13CO is more photodissociated in N159E than N159W. The most massive YSO in N159E has cleared out a molecular gas hole in its vicinity. All the massive YSO candidates in N159E have a more evolved spectral energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.

  2. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    Science.gov (United States)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  3. The chemical composition of red giants in 47 Tucanae. II. Magnesium isotopes and pollution scenarios

    Science.gov (United States)

    Thygesen, A. O.; Sbordone, L.; Ludwig, H.-G.; Ventura, P.; Yong, D.; Collet, R.; Christlieb, N.; Melendez, J.; Zaggia, S.

    2016-04-01

    Context. The phenomenon of multiple populations in globular clusters is still far from understood, with several proposed mechanisms to explain the observed behaviour. The study of elemental and isotopic abundance patterns are crucial for investigating the differences among candidate pollution mechanisms. Aims: We derive magnesium isotopic ratios for 13 stars in the globular cluster 47 Tucanae (NGC 104) to provide new, detailed information about the nucleosynthesis that has occurred within the cluster. For the first time, the impact of 3D model stellar atmospheres on the derived Mg isotopic ratios is investigated. Methods: Using both tailored 1D atmospheric models and 3D hydrodynamical models, we derive magnesium isotopic ratios from four features of MgH near 5135 Å in 13 giants near the tip of the red giant branch, using high signal-to-noise, high-resolution spectra. Results: We derive the magnesium isotopic ratios for all stars and find no significant offset of the isotopic distribution between the pristine and the polluted populations. Furthermore, we do not detect any statistically significant differences in the spread in the Mg isotopes in either population. No trends were found between the Mg isotopes and [Al/Fe]. The inclusion of 3D atmospheres has a significant impact on the derived 25Mg/24Mg ratio, increasing it by a factor of up to 2.5, compared to 1D. The 26Mg/24Mg ratio, on the other hand, essentially remains unchanged. Conclusions: We confirm the results seen from other globular clusters, where no strong variation in the isotopic ratios is observed between stellar populations, for observed ranges in [Al/Fe]. We see no evidence for any significant activation of the Mg-Al burning chain. The use of 3D atmospheres causes an increase of a factor of up to 2.5 in the fraction of 25Mg, resolving part of the discrepancy between the observed isotopic fraction and the predictions from pollution models. Based on observations made with the ESO Very Large Telescope

  4. A BAYESIAN APPROACH TO LOCATING THE RED GIANT BRANCH TIP MAGNITUDE. II. DISTANCES TO THE SATELLITES OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Conn, A. R.; Parker, Q. A.; Zucker, D. B. [Department of Physics and Astronomy, Macquarie University, NSW 2109 (Australia); Ibata, R. A.; Martin, N. F. [Observatoire Astronomique, Universite de Strasbourg, CNRS, F-67000 Strasbourg (France); Lewis, G. F. [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, Sydney, NSW 2006 (Australia); McConnachie, A. W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia V9E 2E7 (Canada); Irwin, M. J.; Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Tanvir, N. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Fardal, M. A. [University of Massachusetts, Department of Astronomy, LGRT 619-E, 710 N. Pleasant Street, Amherst, MA 01003-9305 (United States); Ferguson, A. M. N. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Valls-Gabaud, D. [Observatoire de Paris, LERMA, 61 Avenue de l' Observatoire, F-75014 Paris (France)

    2012-10-10

    In 'A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (Part I)', a new technique was introduced for obtaining distances using the tip of the red giant branch (TRGB) standard candle. Here we describe a useful complement to the technique with the potential to further reduce the uncertainty in our distance measurements by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars are weighted according to their probability of being true object members. We then re-test our modified algorithm using random-realization artificial data to verify the validity of the generated posterior probability distributions (PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a three-dimensional view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satellite distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single publication, using a single method, a comprehensive coverage of the distances to the companion galaxies of M31 is presented, encompassing the dwarf spheroidals Andromedas I-III, V, IX-XXVII, and XXX along with NGC 147, NGC 185, M33, and M31 itself. Of these, the distances to Andromedas XXIV-XXVII and Andromeda XXX have never before been derived using the TRGB. Object distances are determined from high-resolution tip magnitude posterior distributions generated using the Markov Chain Monte Carlo technique and associated sampling of these distributions to take into account uncertainties in foreground extinction and the absolute magnitude of the TRGB as well as photometric errors. The distance PPDs obtained for each object both with and without the aforementioned prior are made available to the reader in tabular form. The large object coverage takes advantage of the unprecedented size and photometric depth of the Pan-Andromeda Archaeological Survey

  5. Dark clouds in the vicinity of the emission nebula Sh2-205: interstellar extinction and distances

    Science.gov (United States)

    Straižys, V.; Čepas, V.; Boyle, R. P.; Zdanavičius, J.; Maskoliūnas, M.; Kazlauskas, A.; Zdanavičius, K.; Černis, K.

    2016-05-01

    Results of CCD photometry in the seven-colour Vilnius system for 922 stars down to V = 16-17 mag and for 302 stars down to 19.5 mag are used to investigate the interstellar extinction in an area of 1.5 square degrees in the direction of the P7 and P8 clumps of the dark cloud TGU H942, which lies in the vicinity of the emission nebula Sh2-205. In addition, we used 662 red clump giants that were identified by combining the 2MASS and WISE infrared surveys. The resulting plots of extinction versus distance were compared with previous results of the distribution and radial velocities of CO clouds and with dust maps in different passbands of the IRAS and WISE orbiting observatories. A possible distance of the front edge of the nearest cloud layer at 130 ± 10 pc was found. This dust layer probably covers all the investigated area, which results in extinction of up to 1.8 mag in some directions. A second rise of the extinction seems to be present at 500-600 pc. Within this layer, the clumps P7 and P8 of the dust cloud TGU H942, the Sh2-205 emission nebula, and the infrared cluster FSR 655 are probably located. In the direction of these clouds, we identified 88 young stellar objects and a new infrared cluster. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A21

  6. POPULATION EFFECTS ON THE METALLICITY DISTRIBUTION FUNCTION DERIVED FROM THE RED GIANT BRANCH

    International Nuclear Information System (INIS)

    Ordoñez, Antonio J.; Sarajedini, Ata

    2015-01-01

    We have tested the reliability of the red giant branch (RGB) as a metallicity indicator accounting for observational errors as well as the complexity of star formation histories and chemical evolution histories observed in various stellar systems. We generate model color–magnitude diagrams (CMDs) produced with a variety of evolutionary histories and compare the resultant metallicity estimates from the colors and magnitudes of RGB stars to the true input metallicities. We include realistic models for photometric errors and completeness in our synthetic CMDs. As expected, for simple simple stellar populations dominated by old stars, the RGB provides a very accurate estimate of the modular metallicity value for a population. An error in the age of a system targeted for this type of study may produce metallicity errors of a few tenths of a dex. The size of this metallicity error depends linearly on the age error, and we find this dependence to be stronger with more precise photometry. If the population has experienced any significant star formation within the last ∼6 Gyr, the metallicity estimates, [M/H], derived from the RGB may be in error by up to ∼0.5 dex. Perhaps the most important consideration for this technique is an accurate, independent estimate of the average age for the target stellar system, especially if it is probable that a significant fraction of the population formed less than ∼6 Gyr ago

  7. Cold H I clouds near the supernova remnant W44

    International Nuclear Information System (INIS)

    Sato, F.

    1986-01-01

    The cold H I clouds near the supernova remnant W44 are investigated by the use of the Maryland-Green Bank Survey (Westerhout 1973). Several clouds with a mean diameter of about 20 pc are distributed in the region. They do not seem to make a shell around W44, contrary to the suggestion by Knapp and Kerr (1974) based on the low-resolution data at coarse grids. Some of them form a chain, about 100 pc in length, extending approximately along the galactic equator. It resembles the cold H I cloud near W3 and W4. The major constituent of the clouds is probably the hydrogen molecule, and the total mass of the entire complex amounts to 25,000 81,000 solar masses. The estimated Jeans mass indicates that they will contract to dense molecular clouds. Therefore, it may safely be concluded that the cold H1 cloud complex near W44 is a giant molecular cloud at an early evolutionary stage. 14 references

  8. Compression of turbulent magnetized gas in giant molecular clouds

    Science.gov (United States)

    Birnboim, Yuval; Federrath, Christoph; Krumholz, Mark

    2018-01-01

    Interstellar gas clouds are often both highly magnetized and supersonically turbulent, with velocity dispersions set by a competition between driving and dissipation. This balance has been studied extensively in the context of gases with constant mean density. However, many astrophysical systems are contracting under the influence of external pressure or gravity, and the balance between driving and dissipation in a contracting, magnetized medium has yet to be studied. In this paper, we present three-dimensional magnetohydrodynamic simulations of compression in a turbulent, magnetized medium that resembles the physical conditions inside molecular clouds. We find that in some circumstances the combination of compression and magnetic fields leads to a rate of turbulent dissipation far less than that observed in non-magnetized gas, or in non-compressing magnetized gas. As a result, a compressing, magnetized gas reaches an equilibrium velocity dispersion much greater than would be expected for either the hydrodynamic or the non-compressing case. We use the simulation results to construct an analytic model that gives an effective equation of state for a coarse-grained parcel of the gas, in the form of an ideal equation of state with a polytropic index that depends on the dissipation and energy transfer rates between the magnetic and turbulent components. We argue that the reduced dissipation rate and larger equilibrium velocity dispersion has important implications for the driving and maintenance of turbulence in molecular clouds and for the rates of chemical and radiative processes that are sensitive to shocks and dissipation.

  9. Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia

    Science.gov (United States)

    Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.

    2009-12-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.

  10. THE MAGELLANIC MOPRA ASSESSMENT (MAGMA). I. THE MOLECULAR CLOUD POPULATION OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Wong, Tony; Chu, You-Hua; Gruendl, Robert A.; Looney, Leslie W.; Seale, Jonathan; Welty, Daniel E.; Hughes, Annie; Maddison, Sarah; Ott, Jürgen; Muller, Erik; Fukui, Yasuo; Kawamura, Akiko; Mizuno, Yoji; Pineda, Jorge L.; Bernard, Jean-Philippe; Paradis, Deborah; Henkel, Christian; Klein, Ulrich

    2011-01-01

    We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11 pc resolution in the CO(1-0) line. Targets were chosen based on a limiting CO flux and peak brightness as measured by the NANTEN survey. The observations were conducted with the ATNF Mopra Telescope as part of the Magellanic Mopra Assessment. We identify clouds as regions of connected CO emission and find that the distributions of cloud sizes, fluxes, and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dL∝L –2 , suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a cloud's kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends with the CO luminosity or the likelihood of hosting young stellar object (YSO) candidates, casting further doubt on the assumption of virialization for molecular clouds in the LMC. Higher CO luminosity increases the likelihood of a cloud harboring a YSO candidate, and more luminous YSOs are more likely to be coincident with detectable CO emission, confirming the close link between giant molecular clouds and massive star formation.

  11. Fast Winds and Mass Loss from Metal-Poor Field Giants

    Science.gov (United States)

    Dupree, A. K.; Smith, Graeme H.; Strader, Jay

    2009-11-01

    Echelle spectra of the infrared He I λ10830 line were obtained with NIRSPEC on the Keck 2 telescope for 41 metal-deficient field giant stars including those on the red giant branch (RGB), asymptotic giant branch (AGB), and red horizontal branch (RHB). The presence of this He I line is ubiquitous in stars with T effgsim 4500 K and MV fainter than -1.5, and reveals the dynamics of the atmosphere. The line strength increases with effective temperature for T effgsim 5300 K in RHB stars. In AGB and RGB stars, the line strength increases with luminosity. Fast outflows (gsim 60 km s-1) are detected from the majority of the stars and about 40% of the outflows have sufficient speed as to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity for our sample ([Fe/H]= -0.7 to -3.0), suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from ~3 × 10-10 to ~6 × 10-8 M sun yr-1 estimated from the Sobolev approximation for line formation represent values with evolutionary significance for red giants and RHB stars. We estimate that 0.2 M sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for "wind smothering" of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density. Data presented herein were obtained at the W. M. Keck Observatory, which

  12. Molecular clouds in the Carina arm - the largest objects, associated regions of star formation, and the Carina arm in the Galaxy

    International Nuclear Information System (INIS)

    Grabelsky, D.A.; Cohen, R.S.; Bronfman, L.; Thaddeus, P.

    1988-01-01

    The Columbia CO survey of the southern Galactic plane is used to identify giant molecular clouds and cloud complexes in the Vela-Carina-Centaurus section of the Galaxy. Twenty-seven giant molecular clouds between l = 270 and 300 deg are catalogued and their heliocentric distances given. In addition, 16 clouds at l greater than 300 deg beyond the solar circle extend the catalog to include the very distant portion of the Carina arm. The most massive clouds in the catalog trace the Carina arm over 23 kpc in the plane of the Galaxy. The average mass of these objects is 1.4 x 10 to the 6th solar, and their average spacing along the arm is 700 pc. The composite distribution projected onto the Galactic plane of the largest molecular clouds in the Carina arm and of similarly massive clouds in the first and second quadrants strongly suggests that the Carina and Sagittarius arms form a single spiral arm about 40 kpc in length wrapping two-thirds of the way around the Galaxy. Descriptions of each cloud, including identification of associated star-forming regions, are presented in an appendix. 76 references

  13. Destruction of /sup 18/O in red giants. A search for a sub-threshold resonance in the /sup 18/O+p system

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, A E; Pitt, M L

    1986-09-08

    The /sup 18/O(/sup 3/He,d)/sup 19/F reaction has been used to determine if a presumed sub-threshold resonance at Esub(c.m.)=-94 KeV in the /sup 18/O(p,..cap alpha..)/sup 15/N reaction exists at an astrophysically significant level. No evidence for this state was observed which implies a dimensionless reduced width thetasub(p)/sup 2/<5 . 10/sup -5/. In addition, a proton width GAMMAsub(p)=2 x 10/sup -19/ eV has been determined for a d-wave resonance located at Esub(c.m.)=20 keV. The resulting thermonuclear reaction rate is slow enough to ensure that /sup 18/O is not destroyed at red-giant temperatures.

  14. NON-RADIAL OSCILLATIONS IN M-GIANT SEMI-REGULAR VARIABLES: STELLAR MODELS AND KEPLER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Stello, Dennis; Compton, Douglas L.; Bedding, Timothy R.; Kiss, Laszlo L.; Bellamy, Beau [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); García, Rafael A. [Laboratoire AIM, CEA/DSM-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Mathur, Savita, E-mail: stello@physics.usyd.edu.au [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States)

    2014-06-10

    The success of asteroseismology relies heavily on our ability to identify the frequency patterns of stellar oscillation modes. For stars like the Sun this is relatively easy because the mode frequencies follow a regular pattern described by a well-founded asymptotic relation. When a solar-like star evolves off the main sequence and onto the red giant branch its structure changes dramatically, resulting in changes in the frequency pattern of the modes. We follow the evolution of the adiabatic frequency pattern from the main sequence to near the tip of the red giant branch for a series of models. We find a significant departure from the asymptotic relation for the non-radial modes near the red giant branch tip, resulting in a triplet frequency pattern. To support our investigation we analyze almost four years of Kepler data of the most luminous stars in the field (late K and early M type) and find that their frequency spectra indeed show a triplet pattern dominated by dipole modes even for the most luminous stars in our sample. Our identification explains previous results from ground-based observations reporting fine structure in the Petersen diagram and sub-ridges in the period-luminosity diagram. Finally, we find ''new ridges'' of non-radial modes with frequencies below the fundamental mode in our model calculations, and we speculate they are related to f modes.

  15. Impacts of cloud immersion on microclimate, photosynthesis and water relations of fraser fir in a temperate mountain cloud forest

    Science.gov (United States)

    Keith Reinhardt; William K. Smith

    2010-01-01

    The red spruce-Fraser fir ecosystem (Picea rubens Sarg.-Abies fraseri [Pursh] Poir.) of the southern Appalachian mountains is a temperate zone cloud forest immersed in clouds for 30 to 40 percent of a typical summer day, and experiencing immersion on about 65 percent of all days annually. We compared the microclimate,...

  16. THE MID-INFRARED EXTINCTION LAW IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Gao, Jian; Jiang, B. W.; Xue, M. Y.; Li, Aigen

    2013-01-01

    Based on photometric data from the Spitzer/SAGE survey, using red giants as extinction tracers, the mid-infrared (MIR) extinction laws in the Large Magellanic Cloud (LMC) are derived for the first time in the form of A λ /A K S . This quantity refers to the extinction in the four Infrared Array Camera (IRAC) bands (i.e., [3.6], [4.5], [5.8], and [8.0] μm) relative to the Two Micron All Sky Survey K S band at 2.16 μm. We obtain the near-infrared extinction coefficient to be E(J – H)/E(H – K S ) ≈ 1.29 ± 0.04 and E(J – K S )/E(H – K S ) ≈ 1.94 ± 0.04. The wavelength dependence of the MIR extinction A λ /A K S in the LMC varies from one sightline to another. The overall mean MIR extinction is A [3.6] /A K S ∼0.72±0.03, A [4.5] /A K S ∼0.94±0.03, A [5.8] /A K S ∼0.58±0.04, and A [8.0] /A K S ∼0.62±0.05. Except for the extinction in the IRAC [4.5] μm band, which may be contaminated by the 4.6 μm CO gas absorption of red giants used to trace LMC extinction, the extinction in the other three IRAC bands show a flat curve, close to the Milky Way R V = 5.5 model extinction curve, where R V is the optical total-to-selective extinction ratio. The possible systematic bias caused by the correlated uncertainties of K S – λ and J – K S is explored in terms of Monte Carlo simulations. We find that this bias could lead to an overestimation of A λ /A K S in the MIR

  17. ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS

    International Nuclear Information System (INIS)

    Liu, Chao; Wu, Yue; Deng, Li-Cai; Wang, Liang; Wang, Wei; Li, Guang-Wei; Fang, Min; Fu, Jian-Ning; Hou, Yong-Hui; Zhang, Yong

    2015-01-01

    Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surface gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data

  18. ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Wu, Yue; Deng, Li-Cai; Wang, Liang; Wang, Wei; Li, Guang-Wei [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20 A Datun Road, Beijing 100012 (China); Fang, Min [Departamento de Física Teórica, Facultad de Ciencias, Universidad Autonóma de Madrid, E-28049 Cantoblanco, Madrid (Spain); Fu, Jian-Ning [Department of Astronomy, Beijing Normal University, 19 Avenue Xinjiekouwai, Beijing 100875 (China); Hou, Yong-Hui; Zhang, Yong, E-mail: liuchao@nao.cas.cn [Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China)

    2015-07-01

    Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surface gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data.

  19. Structure of the Large Magellanic Cloud from near infrared magnitudes of red clump stars

    Science.gov (United States)

    Subramanian, S.; Subramaniam, A.

    2013-04-01

    Context. The structural parameters of the disk of the Large Magellanic Cloud (LMC) are estimated. Aims: We used the JH photometric data of red clump (RC) stars from the Magellanic Cloud Point Source Catalog (MCPSC) obtained from the InfraRed Survey Facility (IRSF) to estimate the structural parameters of the LMC disk, such as the inclination, i, and the position angle of the line of nodes (PAlon), φ. Methods: The observed LMC region is divided into several sub-regions, and stars in each region are cross-identified with the optically identified RC stars to obtain the near infrared magnitudes. The peak values of H magnitude and (J - H) colour of the observed RC distribution are obtained by fitting a profile to the distributions and by taking the average value of magnitude and colour of the RC stars in the bin with largest number. Then the dereddened peak H0 magnitude of the RC stars in each sub-region is obtained from the peak values of H magnitude and (J - H) colour of the observed RC distribution. The right ascension (RA), declination (Dec), and relative distance from the centre of each sub-region are converted into x,y, and z Cartesian coordinates. A weighted least square plane fitting method is applied to this x,y,z data to estimate the structural parameters of the LMC disk. Results: An intrinsic (J - H)0 colour of 0.40 ± 0.03 mag in the Simultaneous three-colour InfraRed Imager for Unbiased Survey (SIRIUS) IRSF filter system is estimated for the RC stars in the LMC and a reddening map based on (J - H) colour of the RC stars is presented. When the peaks of the RC distribution were identified by averaging, an inclination of 25°.7 ± 1°.6 and a PAlon = 141°.5 ± 4°.5 were obtained. We estimate a distance modulus, μ = 18.47 ± 0.1 mag to the LMC. Extra-planar features which are both in front and behind the fitted plane are identified. They match with the optically identified extra-planar features. The bar of the LMC is found to be part of the disk within 500

  20. Happy birthday, supernova

    International Nuclear Information System (INIS)

    Schorn, R.A.

    1988-01-01

    The advances in understanding that have been made concerning SN 1987A in the year since it appeared are reviewed. The rapidity of the initial rise in brightness and the relatively faint absolute magnitude during the first few weeks have been found to be due to the progenitor star's being a blue giant, relatively small compared to a red giant. The nitrogen lines in the spectrum are evidence that the star was once a red giant whose stellar wind was so strong that the resulting loss of material converted the star into a blue giant. The variations in the light curve of the supernova are explained in terms of the radioactive decay of Ni-56 and Co-56 and the interaction of the resulting gamma rays with the debris cloud. Some of the remaining unanswered questions are summarized

  1. A WASHINGTON PHOTOMETRIC SURVEY OF THE LARGE MAGELLANIC CLOUD FIELD STAR POPULATION

    Energy Technology Data Exchange (ETDEWEB)

    Piatti, Andres E. [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28, 1428, Ciudad de Buenos Aires (Argentina); Geisler, Doug; Mateluna, Renee, E-mail: andres@iafe.uba.ar [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2012-10-01

    We present photometry for an unprecedented database of some 5.5 million stars distributed throughout the Large Magellanic Cloud main body, from 21 fields covering a total area of 7.6 deg{sup 2}, obtained from Washington CT{sub 1} T{sub 2} CTIO 4 m MOSAIC data. Extensive artificial star tests over the whole mosaic image data set and the observed behavior of the photometric errors with magnitude demonstrate the accuracy of the morphology and clearly delineate the position of the main features in the color-magnitude diagrams (CMDs). The representative T{sub 1}(MS TO) mags are on average {approx}0.5 mag brighter than the T{sub 1} mags for the 100% completeness level of the respective field, allowing us to derive an accurate age estimate. We have analyzed the CMD Hess diagrams and used the peaks in star counts at the main sequence turnoff and red clump (RC) locations to age date the most dominant sub-population (or 'representative' population) in the stellar population mix. The metallicity of this representative population is estimated from the locus of the most populous red giant branch track. We use these results to derive age and metallicity estimates for all of our fields. The analyzed fields span age and metallicity ranges covering most of the galaxy's lifetime and chemical enrichment, i.e., ages and metallicities between {approx}1 and 13 Gyr and {approx}-0.2 and -1.2 dex, respectively. We show that the dispersions associated with the mean ages and metallicities represent in general a satisfactory estimate of the age/metallicity spread ({approx}1-3 Gyr/0.2-0.3 dex), although a few subfields have a slightly larger age/metallicity spread. Finally, we revisit the study of the vertical structure (VS) phenomenon, a striking feature composed of stars that extend from the bottom, bluest end of the RC to {approx}0.45 mag fainter. We confirm that the VS phenomenon is not clearly seen in most of the studied fields and suggest that its occurrence is linked to

  2. A WASHINGTON PHOTOMETRIC SURVEY OF THE LARGE MAGELLANIC CLOUD FIELD STAR POPULATION

    International Nuclear Information System (INIS)

    Piatti, Andrés E.; Geisler, Doug; Mateluna, Renee

    2012-01-01

    We present photometry for an unprecedented database of some 5.5 million stars distributed throughout the Large Magellanic Cloud main body, from 21 fields covering a total area of 7.6 deg 2 , obtained from Washington CT 1 T 2 CTIO 4 m MOSAIC data. Extensive artificial star tests over the whole mosaic image data set and the observed behavior of the photometric errors with magnitude demonstrate the accuracy of the morphology and clearly delineate the position of the main features in the color-magnitude diagrams (CMDs). The representative T 1 (MS TO) mags are on average ∼0.5 mag brighter than the T 1 mags for the 100% completeness level of the respective field, allowing us to derive an accurate age estimate. We have analyzed the CMD Hess diagrams and used the peaks in star counts at the main sequence turnoff and red clump (RC) locations to age date the most dominant sub-population (or 'representative' population) in the stellar population mix. The metallicity of this representative population is estimated from the locus of the most populous red giant branch track. We use these results to derive age and metallicity estimates for all of our fields. The analyzed fields span age and metallicity ranges covering most of the galaxy's lifetime and chemical enrichment, i.e., ages and metallicities between ∼1 and 13 Gyr and ∼–0.2 and –1.2 dex, respectively. We show that the dispersions associated with the mean ages and metallicities represent in general a satisfactory estimate of the age/metallicity spread (∼1-3 Gyr/0.2-0.3 dex), although a few subfields have a slightly larger age/metallicity spread. Finally, we revisit the study of the vertical structure (VS) phenomenon, a striking feature composed of stars that extend from the bottom, bluest end of the RC to ∼0.45 mag fainter. We confirm that the VS phenomenon is not clearly seen in most of the studied fields and suggest that its occurrence is linked to some other condition(s) in addition to the appropriate age

  3. The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model

    Directory of Open Access Journals (Sweden)

    A. Teller

    2006-01-01

    Full Text Available Numerical experiments were carried out using the Tel-Aviv University 2-D cloud model to investigate the effects of increased concentrations of Cloud Condensation Nuclei (CCN, giant CCN (GCCN and Ice Nuclei (IN on the development of precipitation and cloud structure in mixed-phase sub-tropical convective clouds. In order to differentiate between the contribution of the aerosols and the meteorology, all simulations were conducted with the same meteorological conditions. The results show that under the same meteorological conditions, polluted clouds (with high CCN concentrations produce less precipitation than clean clouds (with low CCN concentrations, the initiation of precipitation is delayed and the lifetimes of the clouds are longer. GCCN enhance the total precipitation on the ground in polluted clouds but they have no noticeable effect on cleaner clouds. The increased rainfall due to GCCN is mainly a result of the increased graupel mass in the cloud, but it only partially offsets the decrease in rainfall due to pollution (increased CCN. The addition of more effective IN, such as mineral dust particles, reduces the total amount of precipitation on the ground. This reduction is more pronounced in clean clouds than in polluted ones. Polluted clouds reach higher altitudes and are wider than clean clouds and both produce wider clouds (anvils when more IN are introduced. Since under the same vertical sounding the polluted clouds produce less rain, more water vapor is left aloft after the rain stops. In our simulations about 3.5 times more water evaporates after the rain stops from the polluted cloud as compared to the clean cloud. The implication is that much more water vapor is transported from lower levels to the mid troposphere under polluted conditions, something that should be considered in climate models.

  4. The Vela Cloud: A Giant H I Anomaly in the NGC 3256 GROUP

    Science.gov (United States)

    English, Jayanne; Koribalski, B.; Bland-Hawthorn, J.; Freeman, K. C.; McCain, Claudia F.

    2010-01-01

    We present Australia Telescope Compact Array (ATCA) observations of a galaxy-sized intergalactic H I cloud ("the Vela Cloud") in the NGC 3256 galaxy group. The group contains the prominent merging galaxy NGC 3256, which is surrounded by a number of H I fragments, the tidally disturbed galaxy NGC 3263, and several other peculiar galaxies. The Vela Cloud, with an H I mass of 3-5 × 10^9 M_{⊙}, resides southeast of NGC 3256 and west of NGC 3263, within an area of 9' × 16' (100 kpc × 175 kpc for an adopted distance of 38 Mpc). In our ATCA data the Vela Cloud appears as three diffuse components and contains four density enhancements. The Vela Cloud's properties, together with its group environment, suggest that it has a tidal origin. Each density enhancement contains ˜ 10^{8} M_{⊙} of H I gas, which is sufficient material for the formation of globular cluster progenitors. However, if we represent the enhancements as Bonnor-Ebert spheres, then the pressure of the surrounding H I would need to increase by at least a factor of 9 in order to cause the collapse of an enhancement. Thus we do not expect them to form massive bound stellar systems like super star clusters or tidal dwarf galaxies. Since the H I density enhancements have some properties in common with high-velocity clouds, we explore whether they may evolve to be identified with these starless clouds instead. Original plate material is copyright © the Royal Observatory Edinburgh and the Anglo-Australian Observatory. The plates were processed into the present compressed digital form with their permission. The Digitized Sky Survey was produced at the Space Telescope Science Institute under US Government grant NAG W-2166.

  5. Cloud Atlas: Discovery of Rotational Spectral Modulations in a Low-mass, L-type Brown Dwarf Companion to a Star

    Science.gov (United States)

    Manjavacas, Elena; Apai, Dániel; Zhou, Yifan; Karalidi, Theodora; Lew, Ben W. P.; Schneider, Glenn; Cowan, Nicolas; Metchev, Stan; Miles-Páez, Paulo A.; Burgasser, Adam J.; Radigan, Jacqueline; Bedin, Luigi R.; Lowrance, Patrick J.; Marley, Mark S.

    2018-01-01

    Observations of rotational modulations of brown dwarfs and giant exoplanets allow the characterization of condensate cloud properties. As of now, rotational spectral modulations have only been seen in three L-type brown dwarfs. We report here the discovery of rotational spectral modulations in LP261-75B, an L6-type intermediate surface gravity companion to an M4.5 star. As a part of the Cloud Atlas Treasury program, we acquired time-resolved Wide Field Camera 3 grism spectroscopy (1.1–1.69 μm) of LP261-75B. We find gray spectral variations with the relative amplitude displaying only a weak wavelength dependence and no evidence for lower-amplitude modulations in the 1.4 μm water band than in the adjacent continuum. The likely rotational modulation period is 4.78 ± 0.95 hr, although the rotational phase is not well sampled. The minimum relative amplitude in the white light curve measured over the whole wavelength range is 2.41% ± 0.14%. We report an unusual light curve, which seems to have three peaks approximately evenly distributed in rotational phase. The spectral modulations suggests that the upper atmosphere cloud properties in LP261-75B are similar to two other mid-L dwarfs of typical infrared colors, but differ from that of the extremely red L-dwarf WISE0047.

  6. First detection of rotational CO line emission in a red giant branch star

    Science.gov (United States)

    Groenewegen, M. A. T.

    2014-01-01

    Context. For stars with initial masses below ~1 M⊙, the mass loss during the first red giant branch (RGB) phase dominates mass loss in the later asymptotic giant branch (AGB) phase. Nevertheless, mass loss on the RGB is still often parameterised by a simple Reimers law in stellar evolution models. Aims: To try to detect CO thermal emission in a small sample of nearby RGB stars with reliable Hipparcos parallaxes that were shown to have infrared excess in an earlier paper. Methods: A sample of five stars was observed in the CO J = 2-1 and J = 3-2 lines with the IRAM and APEX telescopes. Results: One star, the one with the largest mass-loss rate based on the previous analysis of the spectral energy distribution, was detected. The expansion velocity is unexpectedly large at 12 km s-1. The line profile and intensity are compared to the predictions from a molecular line emission code. The standard model predicts a double-peaked profile, while the observations indicate a flatter profile. A model that does fit the data has a much smaller CO envelope (by a factor of 3), and a CO abundance that is two times larger and/or a larger mass-loss rate than the standard model. This could indicate that the phase of large mass loss has only recently started. Conclusions: The detection of CO in an RGB star with a luminosity of only ~1300 L⊙ and a mass-loss rate as low as a few 10-9M⊙ yr-1 is important and the results also raise new questions. However, ALMA observations are required in order to study the mass-loss process of RGB stars in more detail, both for reasons of sensitivity (6 h of integration in superior weather at IRAM were needed to get a 4σ detection in the object with the largest detection probability), and spatial resolution (to determine the size of the CO envelope). Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme ID 091.D-0073 (ESO time) and 091.F-9322 (Swedish time). Based on observations with the Atacama

  7. Chemical Abundances of Red Giant Stars in the Globular Cluster M107 (NGC 6171)

    Science.gov (United States)

    O'Connell, Julia E.; Johnson, Christian I.; Pilachowski, Catherine A.; Burks, Geoffrey

    2011-10-01

    We present chemical abundances of Al and several Fe-Peak and neutron-capture elements for 13 red giant branch stars in the Galactic globular cluster NGC 6171 (M107). The abundances were determined using equivalent width and spectrum synthesis analyses of moderate-resolution ( R ˜ 15,000), moderate signal-to-noise ratio ( ˜ 80) spectra obtained with the WIYN telescope and Hydra multifiber spectrograph. A comparison between photometric and spectroscopic effective temperature estimates seems to indicate that a reddening value of E(B - V) = 0.46 may be more appropriate for this cluster than the more commonly used value of E(B - V) = 0.33. Similarly, we found that a distance modulus of (m - M)V ≈ 13.7 provided reasonable surface gravity estimates for the stars in our sample. Our spectroscopic analysis finds M107 to be moderately metal-poor with = -0.93 and also exhibits a small star-to-star metallicity dispersion (σ = 0.04). These results are consistent with previous photometric and spectroscopic studies. Aluminum appears to be moderately enhanced in all program stars ( = +0.39, σ = 0.11). The relatively small star-to-star scatter in [Al/Fe] differs from the trend found in more metal-poor globular clusters, and is more similar to what is found in clusters with [Fe/H] ≳ -1. The cluster also appears to be moderately r-process-enriched with = +0.32 (σ = 0.17).

  8. The Stability of the Giant Clam Holobiont over Time and during Bleaching Stress

    KAUST Repository

    Pappas, Melissa

    2017-01-01

    Experimental bleaching shows that Red Sea giant clams, although exposed to rather hot temperatures naturally, will bleach at 34°C after two weeks, and severely bleached clams likely will not recover. During bleaching, Symbiodinium types shift as well, and shift more drastically than seasonal shifts during the year. This shifting may be an evolved characteristic of the giant clam to aid in surviving major changes in the environment. However, more research is needed to determine if these holobionts are capable of keeping up with the global forecast of warming in reef environments.

  9. Tharsis Limb Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Annotated image of Tharsis Limb Cloud 7 September 2005 This composite of red and blue Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired on 6 July 2005 shows an isolated water ice cloud extending more than 30 kilometers (more than 18 miles) above the martian surface. Clouds such as this are common in late spring over the terrain located southwest of the Arsia Mons volcano. Arsia Mons is the dark, oval feature near the limb, just to the left of the 'T' in the 'Tharsis Montes' label. The dark, nearly circular feature above the 'S' in 'Tharsis' is the volcano, Pavonis Mons, and the other dark circular feature, above and to the right of 's' in 'Montes,' is Ascraeus Mons. Illumination is from the left/lower left. Season: Northern Autumn/Southern Spring

  10. Amino acid composition and functional properties of giant red sea cucumber ( Parastichopus californicus) collagen hydrolysates

    Science.gov (United States)

    Liu, Zunying; Su, Yicheng; Zeng, Mingyong

    2011-03-01

    Giant red sea cucumber ( Parastichopus californicus) is an under-utilized species due to its high tendency to autolysis. The aim of this study was to evaluate the functional properties of collagen hydrolysates from this species. The degree of hydrolysis (DH), amino acid composition, SDS-PAGE, emulsion activity index (EAI), emulsion stability index (ESI), foam expansion (FE), and foam stability (FS) of hydrolysates were investigated. The effects of pH on the EAI, ESI FE and FS of hydrolysates were also investigated. The results indicated that the β and α 1 chains of the collagen were effectively hydrolyzed by trypsin at 50°c with an Enzyme/Substrate (E/S) ration of 1:20 (w:w). The DH of collagen was up to 17.3% after 3 h hydrolysis with trypsin. The hydrolysates had a molecular weight distribution of 1.1-17 kDa, and were abundant in glycine (Gly), proline (Pro), glutamic acid (Glu), alanine (Ala) and hydroxyproline (Hyp) residues. The hydrolysates were fractionated into three fractions ( 10 kDa), and the fraction of 3-10 kDa exhibited a higher EAI value than the fraction of > 10 kDa ( P 10 kDa had higher FE and FS values than other fractions ( P 10 kDa showed higher FE value, respectively. They are hoped to be utilized as functional ingredients in food and nutraceutical industries.

  11. Jovian cloud structure from 5-mu M images

    Science.gov (United States)

    Ortiz, J. L.; Moreno, F.; Molina, A.; Roos-Serote, M.; Orton, G. S.

    1999-09-01

    Most radiative transfer studies place the cloud clearings responsible for the 5-mu m bright areas at pressure levels greater than 1.5 bar whereas the low-albedo clouds are placed at lower pressure levels, in the so-called ammonia cloud. If this picture is correct, and assuming that the strong vertical shear of the zonal wind detected by the Galileo Entry Probe exists at all latitudes in Jupiter, the bright areas at 5 mu m should drift faster than the dark clouds, which is not observed. At the Galileo Probe Entry latitude this can be explained by a wave, but this is not a likely explanation for all regions where the anticorrelation between 5-mu m brightness and red-nIR reflectivity is observed. Therefore, either the vertical zonal wind shears are not global or cloud clearings and dark clouds are located at the same pressure level. We have developed a multiple scattering radiative transfer code to model the limb-darkening at several jovian features derived from IRTF 4.8-mu m images, in order to retrieve information on the cloud levels. The limb darkening coefficients range from 1.4 at hot spots to 0.58 at the Equatorial Region. We also find that reflected light is dominant over thermal emission in the Equatorial Region, as already pointed out by other investigators. Preliminary results from our code tend to favor the idea that the ammonia cloud is a very high-albedo cloud with little influence on the contrast seen in the red and nIR and that a deeper cloud at P >1.5 bar can be responsible for the cloud clearings and for the low-albedo features simultaneously. This research was supported by the Comision Interministerial de Ciencia y Tecnologia under contract ESP96-0623.

  12. Stability of interstellar clouds containing magnetic fields

    International Nuclear Information System (INIS)

    Langer, W.D.; and Bell Laboratories, Crawford Hill Laboratory, Holmdel, NJ)

    1978-01-01

    The stability of interstellar clouds against gravitational collapse and fragmentation in the presence of magnetic fields is investigated. A magnetic field can provide pressure support against collapse if it is strongly coupled to the neutral gas; this coupling is mediated by ion-neutral collisions in the gas. The time scale for the growth of perturbations in the gas is found to be a sensitive function of the fractional ion abundance of the gas. For a relatively large fractional ion abundance, corresponding to strong coupling, the collapse of the gas is retarded. Star formation is inhibited in dense clouds and the collapse time for diffuse clouds cn exceed the limit on their lifetime set by disruptive processes. For a small fractional ion abundance, the magnetic fields do not inhibit collapse and the distribution of the masses of collapsing fragments are likely to be quite different in regions of differing ion abundance. The solutions also predict the existence of large-scale density waves corresponding to two gravitational-magnetoacoustic modes. The conditions which best support these modes correspond to those found in the giant molecular clouds

  13. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    International Nuclear Information System (INIS)

    Polsdofer, Elizabeth; Marengo, M.; Seale, J.; Sewiło, M.; Vijh, U. P.; Terrazas, M.; Meixner, M.

    2015-01-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S 3 MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. An error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  14. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    Energy Technology Data Exchange (ETDEWEB)

    Polsdofer, Elizabeth; Marengo, M. [Iowa State University, Department of Physics and Astronomy, 12 Physics Hall, Ames, Iowa 50011 (United States); Seale, J.; Sewiło, M. [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Vijh, U. P.; Terrazas, M. [Ritter Astrophysical Research Center, University of Toledo, Toledo, OH 43606 (United States); Meixner, M., E-mail: empolsdofer@gmail.com [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. An error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  15. DETAILED ABUNDANCES OF RED GIANTS IN THE GLOBULAR CLUSTER NGC 1851: C+N+O AND THE ORIGIN OF MULTIPLE POPULATIONS

    International Nuclear Information System (INIS)

    Villanova, S.; Geisler, D.; Piotto, G.

    2010-01-01

    We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the globular cluster NGC 1851 distributed along the two RGBs of the (v, v-y) color-magnitude diagram. We determined abundances for C+N+O, Na, α, iron-peak, and s-elements. We found that the two RGB populations significantly differ in their light (N, O, Na) and s-element content. On the other hand, they do not show any significant difference in their α and iron-peak element content. More importantly, the two RGB populations do not show any significant difference in their total C+N+O content. Our results do not support previous hypotheses suggesting that the origins of the two RGBs and the two subgiant branches of the cluster are related to different content of either α (including Ca) or iron-peak elements, or C+N+O abundance, due to a second generation polluted by Type II supernovae.

  16. A general theory for the lifetimes of giant molecular clouds under the influence of galactic dynamics

    Science.gov (United States)

    Jeffreson, Sarah M. R.; Kruijssen, J. M. Diederik

    2018-05-01

    We propose a simple analytic theory for environmentally dependent molecular cloud lifetimes, based on the large-scale (galactic) dynamics of the interstellar medium. Within this theory, the cloud lifetime is set by the time-scales for gravitational collapse, galactic shear, spiral arm interactions, epicyclic perturbations, and cloud-cloud collisions. It is dependent on five observable quantities, accessible through measurements of the galactic rotation curve, the gas and stellar surface densities, and the gas and stellar velocity dispersions of the host galaxy. We determine how the relative importance of each dynamical mechanism varies throughout the space of observable galactic properties, and conclude that gravitational collapse and galactic shear play the greatest role in setting the cloud lifetime for the considered range of galaxy properties, while cloud-cloud collisions exert a much lesser influence. All five environmental mechanisms are nevertheless required to obtain a complete picture of cloud evolution. We apply our theory to the galaxies M31, M51, M83, and the Milky Way, and find a strong dependence of the cloud lifetime upon galactocentric radius in each case, with a typical cloud lifetime between 10 and 50 Myr. Our theory is ideally suited for systematic observational tests with the Atacama Large Millimetre/submillimetre array.

  17. Calibrating the Near-Infrared Tip of the Red Giant Branch with Multiwavelength Photometry

    Science.gov (United States)

    Durbin, Meredith

    2017-08-01

    The near-infrared (NIR) tip of the red giant branch (TRGB) shows outstanding promise as a distance indicator. In the JWST era, the NIR-TRGB will bridge the gap from local geometric parallax (with Gaia) out to the low-velocity Hubble flow in a single step, in all types of galaxies. However, there currently exist several impediments to JWST's using the TRGB to full advantage. Dalcanton et al. (2012) presented the most comprehensive dataset available for calibrating the TRGB absolute magnitude, with optical and NIR coverage of 23 nearby dwarf and spiral galaxies spanning a wide range of ages and metallicities. However, subtle offsets between this dataset, theoretical models, and globular clusters raise concerns about the calibration.We propose to perform a complete re-reduction and re-analysis of this dataset. We have developed a pipeline that leverages simultaneous fitting of optical and NIR data to produce NIR photometry of higher quality and completeness, with up to 1.5 mag greater depth than can be achieved with the NIR alone. With this added depth, improvements in photometric precision, and updated WFC3/IR PSFs and flux calibration, we will derive uniform, precise, and accurate NIR TRGB measurements, with which we will be able to resolve standing issues with the TRGB color-absolute magnitude relation and its behavior with changing star-formation histories. This work will lay the groundwork for extending the TRGB distance scale out to at least 37 Mpc with JWST. We will release the resulting 4-filter optical-NIR photometry as HLSPs for use by the community before the launch of JWST, to serve as a resource for proposing for stellar population observations in the NIR.

  18. Red Misfits in the Sloan Digital Sky Survey: properties of star-forming red galaxies

    Science.gov (United States)

    Evans, Fraser A.; Parker, Laura C.; Roberts, Ian D.

    2018-06-01

    We study Red Misfits, a population of red, star-forming galaxies in the local Universe. We classify galaxies based on inclination-corrected optical colours and specific star formation rates derived from the Sloan Digital Sky Survey Data Release 7. Although the majority of blue galaxies are star-forming and most red galaxies exhibit little to no ongoing star formation, a small but significant population of galaxies (˜11 per cent at all stellar masses) are classified as red in colour yet actively star-forming. We explore a number of properties of these galaxies and demonstrate that Red Misfits are not simply dusty or highly inclined blue cloud galaxies or quiescent red galaxies with poorly constrained star formation. The proportion of Red Misfits is nearly independent of environment, and this population exhibits both intermediate morphologies and an enhanced likelihood of hosting an active galactic nucleus. We conclude that Red Misfits are a transition population, gradually quenching on their way to the red sequence and this quenching is dominated by internal processes rather than environmentally driven processes. We discuss the connection between Red Misfits and other transition galaxy populations, namely S0s, red spirals, and green valley galaxies.

  19. Why is the Great Red Spot Red? The Exogenic, Photolytic Origin of the UV/Blue-Absorbing Chromophores of Jupiter’s Great Red Spot as Determined by Spectral Analysis of Cassini/VIMS Observations using New Laboratory Optical Coefficients

    Science.gov (United States)

    Baines, Kevin H.; Carlson, Robert W.; Momary, Thomas W.

    2014-11-01

    For centuries, a major question for Jupiter has been: Why is the Great Red Spot red? In particular, two major theories have been proposed: (1) that the coloring is due to photolytic processes in the upper cloud layer, or (2) it is due to the upwellimg of red materials processed relatively deep within the troposphere. Utilizing indices of refraction for red choromophores generated by the photolysis of ammonia and acetylene in the laboratory, we present results of a spectral analysis of the core of Jupiter’s Great Red Spot (GRS) as observed by the visual channel of the Cassini/Visual Infrared Mapping Spectrometer (VIMS). Consistent with the physical origin of such laboratory-generated chromophores in Jupiter - i.e., by solar-driven UV photolysis within the upper levels of the GRS structure near ~ 0.3 bar - our spectral modeling yields satisfactory results for such Mie scattering chromophores only when they are confined to the upper ~ 100 mbar of the GRS. Beneath this reddish upper cloud layer, our models indicate that the remainder of the GRS cloud - assumed to extend down to at least the ammonia condensation level near 0.6 bar - must be relatively spectrally bright throughout the UV-red spectrum; that is, they must be predominantly a whitish or grey color at depth. Thus, our 0.35-1.0 micron spectral models of the GRS are inconsistent with an endogenic origin of the reddish coloring originating in the depths of Jupiter, but are consistent with a photolytic origin due to the photolysis of ammonia and acetylene in the upper troposphere.

  20. Toward long-term all-sky time domain surveys-SINDICS: a prospective concept for a Seismic INDICes Survey of half a million red giants

    Directory of Open Access Journals (Sweden)

    Michel Eric

    2015-01-01

    Full Text Available CoRoT and Kepler have brought a new and deep experience in long-term photometric surveys and how to use them. This is true for exoplanets characterizing, stellar seismology and beyond for studying several other phenomena, like granulation or activity. Based on this experience, it has been possible to propose new generation projects, like TESS and PLATO, with more specific scientific objectives and more ambitious observational programs in terms of sky coverage and/or duration of the observations. In this context and as a prospective exercise, we explore here the possibility to set up an all-sky survey optimized for seismic indices measurement, providing masses, radii and evolution stages for half a million solar-type pulsators (subgiants and red giants, in our galactic neighborhood and allowing unprecedented stellar population studies.

  1. OGLE-ing the Magellanic system: stellar populations in the Magellanic Bridge

    International Nuclear Information System (INIS)

    Skowron, D. M.; Jacyszyn, A. M.; Udalski, A.; Szymański, M. K.; Skowron, J.; Poleski, R.; Kozłowski, S.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Mróz, P.; Pietrukowicz, P.; Ulaczyk, K.; Wyrzykowski, Ł.

    2014-01-01

    We report the discovery of a young stellar bridge that forms a continuous connection between the Magellanic Clouds. This finding is based on number density maps for stellar populations found in data gathered by OGLE-IV that fully cover over 270 deg 2 of the sky in the Magellanic Bridge area. This is the most extensive optical survey of this region to date. We find that the young population is present mainly in the western half of the MBR, which, together with the newly discovered young population in the eastern Bridge, form a continuous stream of stars connecting both galaxies along δ ∼ –73.5 deg. The young population distribution is clumped, with one of the major densities close to the SMC and the other fairly isolated and located approximately mid-way between the Clouds, which we call the OGLE island. These overdensities are well matched by H I surface density contours, although the newly found young population in the eastern Bridge is offset by ∼2 deg north from the highest H I density contour. We observe a continuity of red clump stars between the Magellanic Clouds which represent an intermediate-age population. Red clump stars are present mainly in the southern and central parts of the Magellanic Bridge, below its gaseous part, and their presence is reflected by a strong deviation from the radial density profiles of the two galaxies. This may indicate either a tidal stream of stars, or that the stellar halos of the two galaxies overlap. On the other hand, we do not observe such an overlap within an intermediate-age population represented by the top of the red giant branch and the asymptotic giant branch stars. We also see only minor mixing of the old populations of the Clouds in the southern part of the Bridge, represented by the lowest part of the red giant branch.

  2. OGLE-ing the Magellanic system: stellar populations in the Magellanic Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Skowron, D. M.; Jacyszyn, A. M.; Udalski, A.; Szymański, M. K.; Skowron, J.; Poleski, R.; Kozłowski, S.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Mróz, P.; Pietrukowicz, P.; Ulaczyk, K.; Wyrzykowski, Ł., E-mail: dszczyg@astrouw.edu.pl [Warsaw University Astronomical Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa (Poland)

    2014-11-10

    We report the discovery of a young stellar bridge that forms a continuous connection between the Magellanic Clouds. This finding is based on number density maps for stellar populations found in data gathered by OGLE-IV that fully cover over 270 deg{sup 2} of the sky in the Magellanic Bridge area. This is the most extensive optical survey of this region to date. We find that the young population is present mainly in the western half of the MBR, which, together with the newly discovered young population in the eastern Bridge, form a continuous stream of stars connecting both galaxies along δ ∼ –73.5 deg. The young population distribution is clumped, with one of the major densities close to the SMC and the other fairly isolated and located approximately mid-way between the Clouds, which we call the OGLE island. These overdensities are well matched by H I surface density contours, although the newly found young population in the eastern Bridge is offset by ∼2 deg north from the highest H I density contour. We observe a continuity of red clump stars between the Magellanic Clouds which represent an intermediate-age population. Red clump stars are present mainly in the southern and central parts of the Magellanic Bridge, below its gaseous part, and their presence is reflected by a strong deviation from the radial density profiles of the two galaxies. This may indicate either a tidal stream of stars, or that the stellar halos of the two galaxies overlap. On the other hand, we do not observe such an overlap within an intermediate-age population represented by the top of the red giant branch and the asymptotic giant branch stars. We also see only minor mixing of the old populations of the Clouds in the southern part of the Bridge, represented by the lowest part of the red giant branch.

  3. Ca II TRIPLET SPECTROSCOPY OF SMALL MAGELLANIC CLOUD RED GIANTS. I. ABUNDANCES AND VELOCITIES FOR A SAMPLE OF CLUSTERS

    International Nuclear Information System (INIS)

    Parisi, M. C.; Claria, J. J.; Grocholski, A. J.; Geisler, D.; Sarajedini, A.

    2009-01-01

    We have obtained near-infrared spectra covering the Ca II triplet lines for a large number of stars associated with 16 Small Magellanic Cloud (SMC) clusters using the VLT + FORS2. These data compose the largest available sample of SMC clusters with spectroscopically derived abundances and velocities. Our clusters span a wide range of ages and provide good areal coverage of the galaxy. Cluster members are selected using a combination of their positions relative to the cluster center as well as their location in the color-magnitude diagram, abundances, and radial velocities (RVs). We determine mean cluster velocities to typically 2.7 km s -1 and metallicities to 0.05 dex (random errors), from an average of 6.4 members per cluster. By combining our clusters with previously published results, we compile a sample of 25 clusters on a homogeneous metallicity scale and with relatively small metallicity errors, and thereby investigate the metallicity distribution, metallicity gradient, and age-metallicity relation (AMR) of the SMC cluster system. For all 25 clusters in our expanded sample, the mean metallicity [Fe/H] = -0.96 with σ = 0.19. The metallicity distribution may possibly be bimodal, with peaks at ∼-0.9 dex and -1.15 dex. Similar to the Large Magellanic Cloud (LMC), the SMC cluster system gives no indication of a radial metallicity gradient. However, intermediate age SMC clusters are both significantly more metal-poor and have a larger metallicity spread than their LMC counterparts. Our AMR shows evidence for three phases: a very early (>11 Gyr) phase in which the metallicity reached ∼-1.2 dex, a long intermediate phase from ∼10 to 3 Gyr in which the metallicity only slightly increased, and a final phase from 3 to 1 Gyr ago in which the rate of enrichment was substantially faster. We find good overall agreement with the model of Pagel and Tautvaisiene, which assumes a burst of star formation at 4 Gyr. Finally, we find that the mean RV of the cluster system

  4. Exploring H2O Prominence in Reflection Spectra of Cool Giant Planets

    Science.gov (United States)

    MacDonald, Ryan J.; Marley, Mark S.; Fortney, Jonathan J.; Lewis, Nikole K.

    2018-05-01

    The H2O abundance of a planetary atmosphere is a powerful indicator of formation conditions. Inferring H2O in the solar system giant planets is challenging, due to condensation depleting the upper atmosphere of water vapor. Substantially warmer hot Jupiter exoplanets readily allow detections of H2O via transmission spectroscopy, but such signatures are often diminished by the presence of clouds composed of other species. In contrast, highly scattering water clouds can brighten planets in reflected light, enhancing molecular signatures. Here, we present an extensive parameter space survey of the prominence of H2O absorption features in reflection spectra of cool (T eff clouds brighten the planet: T eff ∼ 150 K, g ≳ 20 ms‑2, f sed ≳ 3, m ≲ 10× solar. In contrast, planets with g ≲ 20 ms‑2 and T eff ≳ 180 K display substantially prominent H2O features embedded in the Rayleigh scattering slope from 0.4 to 0.73 μm over a wide parameter space. High f sed enhances H2O features around 0.94 μm, and enables these features to be detected at lower temperatures. High m results in dampened H2O absorption features, due to water vapor condensing to form bright, optically thick clouds that dominate the continuum. We verify these trends via self-consistent modeling of the low-gravity exoplanet HD 192310c, revealing that its reflection spectrum is expected to be dominated by H2O absorption from 0.4 to 0.73 μm for m ≲ 10× solar. Our results demonstrate that H2O is manifestly detectable in reflected light spectra of cool giant planets only marginally warmer than Jupiter, providing an avenue to directly constrain the C/O and O/H ratios of a hitherto unexplored population of exoplanetary atmospheres.

  5. Encounters of The Solar System With Molecular Clouds

    International Nuclear Information System (INIS)

    Wickramasinghe, J. T.

    2008-01-01

    The solar system has penetrated about 5 -- 10 giant molecular clouds over its history, and passes within 5 parsecs of a star-forming nebula every 100 million years or so. Numerical simulations of the effect of such encounters in perturbing the Oort cloud of comets are carried out using standard n-body computational techniques. It is found that the ingress of comets into the inner planetary system during such encounters amounts to factors of ∼100 over the average. During an encounter the impact rate of comets onto Earth increases by a comparable factor. The of ages of impact craters on the Earth is shown to be consistent with predictions from the model

  6. GLOBULAR AND OPEN CLUSTERS OBSERVED BY SDSS/SEGUE: THE GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Heather L.; Ma, Zhibo; Connor, Thomas; Schechtman-Rook, Andrew; Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Clem, James L. [Department of Physics, Grove City College, 100 Campus Dr., Grove City, PA 16127 (United States); An, Deokkeun [Department of Science Education, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Casagrande, Luca [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Rockosi, Constance [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States); Yanny, Brian [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia IL 60510 (United States); Beers, Timothy C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46656 (United States); Johnson, Jennifer A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Schneider, Donald P., E-mail: hlm5@case.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-15

    We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the Sloan Digital Sky Survey (SDSS)/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, we also present a new variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from T{sub eff} to g–r for giants of near solar abundance, using IRFM T{sub eff} measures of stars with good ugriz  and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.

  7. IRAS associations with dark clouds of opacity class 6

    International Nuclear Information System (INIS)

    Parker, N.D.

    1988-01-01

    Accurate positions of the opacity class 6 clouds from the Lynds Catalog of Dark Nebulae have been measured on blue and red prints from the Polomar Observatory Sky Survey (POSS) plates. These revised positions and the dimensions of ellipses fitted to the clouds are listed. The IRAS point source catalog has been searched for sources lying within the boundaries of the 147 clouds in the sample. The distribution and properties of these IRAS sources are discussed briefly. (author)

  8. The giant branch of omega Centauri. I. Abundance variations due to mixing

    International Nuclear Information System (INIS)

    Bessell, M.S.; Norris, J.

    1976-01-01

    David Dunlap Observatory (DDO) intermediate-band and RI photometry, together with low-dispersion spectra of a representative sample of stars on the upper giant branch were analysed. Several conclusions were: i) The large width of the giant branch is inseparably connected with mixing. All stars on the red side of the upper giant branch appear to have greatly enhanced features of the CN molecule, with no comparable enhancement of [Fe/H]. ii) A positive correlation between [Fe/H] and the CN excess deltaC (41--42) exists in ω Cen similar to that reported by McClure and Norris for NGC 362. We suggest that this can be explained by the effect of the strong CN band at lambda3800 on the 38 filter of the DDO system. A broad continuum depression around lambda4000 exists in the mixed stars and may also contribute to the correlation. iii) The stars on the blue side of the giant branch show no evidence for mixing and yield an abundance [Fe/H]=-2.1 +- 0.2. It appears that the material from which the cluster formed was as metal deficient as the very metal poor globular clusters. iv) The strong CN enhancement in stars on the red side of the giant branch is not accompanied by greatly enhanced features of CH and C 2 as found in the CH stars. We suggest that the CN stars have O/C>1 and that during the mixing process much of the material now seen at the surface of these objects has been processed through the CN cycle. v) The large width of the branch seen in the (V, B--V) -plane is greatly reduced in the (R, R--I) -plane. This suggests to us that blocking effects are predominant in causing the observed spread in (B--V). We consider the problem that ω Cen is apparently unique in possessing an anomalously wide giant branch. We investigate the possibility that the effect could result from anomalously large angular momentum, and suggest that it might be profitable to observe the highly flattened cluster NGC 6273 to ascertain if it exhibits the same phenomenon

  9. NOEMA Observations of a Molecular Cloud in the Low-metallicity Galaxy Kiso 5639

    Science.gov (United States)

    Elmegreen, Bruce G.; Herrera, Cinthya; Rubio, Monica; Elmegreen, Debra Meloy; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Olmo-García, Amanda

    2018-06-01

    A giant star-forming region in a metal-poor dwarf galaxy has been observed in optical lines with the 10 m Gran Telescopio Canarias (GTC) and in the emission line of CO(1–0) with the Northern Extended Millimeter Array (NOEMA) mm-wave interferometer. The metallicity was determined to be 12+{log}({{O}}/{{H}})=7.83+/- 0.09, from which we estimate a conversion factor of α CO ∼ 100 M ⊙ pc‑2(K km s‑1)‑1 and a molecular cloud mass of ∼2.9 × 107 M ⊙. This is an enormous concentration of molecular mass at one end of a small galaxy, suggesting a recent accretion. The molecular cloud properties seem normal: the surface density, 120 M ⊙ pc‑2, is comparable to that of a standard giant molecular cloud; the cloud’s virial ratio of ∼1.8 is in the star formation range; and the gas consumption time, 0.5 Gyr, at the present star formation rate is typical for molecular regions. The low metallicity implies that the cloud has an average visual extinction of only 0.8 mag, which is close to the threshold for molecule formation. With such an extinction threshold, molecular clouds in metal-poor regions should have high surface densities and high internal pressures. If high pressure is associated with the formation of massive clusters, then metal-poor galaxies such as dwarfs in the early universe could have been the hosts of metal-poor globular clusters.

  10. FIRST OBSERVATIONAL SIGNATURE OF ROTATIONAL DECELERATION IN A MASSIVE, INTERMEDIATE-AGE STAR CLUSTER IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaohan [School of Physics, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Li, Chengyuan; De Grijs, Richard [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Deng, Licai, E-mail: grijs@pku.edu.cn [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China)

    2016-07-20

    While the extended main-sequence turnoffs (eMSTOs) found in almost all 1–2 Gyr old star clusters in the Magellanic Clouds are often explained by postulating extended star formation histories (SFHs), the tight subgiant branches (SGBs) seen in some clusters challenge this popular scenario. Puzzlingly, the SGB of the eMSTO cluster NGC 419 is significantly broader at bluer than at redder colors. We carefully assess and confirm the reality of this observational trend. If we would assume that the widths of the features in color–magnitude space were entirely owing to a range in stellar ages, the SFHs of the eMSTO stars and the blue SGB region would be significantly more prolonged than that of the red part of the SGB. This cannot be explained by assuming an internal age spread. We show that rotational deceleration of a population of rapidly rotating stars, a currently hotly debated alternative scenario, naturally explains the observed trend along the SGB. Our analysis shows that a “converging” SGB could be produced if the cluster is mostly composed of rapidly rotating stars that slow down over time owing to the conservation of angular momentum during their evolutionary expansion from main-sequence turnoff stars to red giants.

  11. THE SECOND SURVEY OF THE MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD BY NANTEN. II. STAR FORMATION

    International Nuclear Information System (INIS)

    Kawamura, Akiko; Mizuno, Yoji; Minamidani, Tetsuhiro; Mizuno, Norikazu; Onishi, Toshikazu; Fukui, Yasuo; Fillipovic, Miroslav D.; Staveley-Smith, Lister; Kim, Sungeun; Mizuno, Akira

    2009-01-01

    We studied star formation activities in the molecular clouds in the Large Magellanic Cloud. We have utilized the second catalog of 272 molecular clouds obtained by NANTEN to compare the cloud distribution with signatures of massive star formation including stellar clusters, and optical and radio H II regions. We find that the molecular clouds are classified into three types according to the activities of massive star formation: Type I shows no signature of massive star formation; Type II is associated with relatively small H II region(s); and Type III with both H II region(s) and young stellar cluster(s). The radio continuum sources were used to confirm that Type I giant molecular clouds (GMCs) do not host optically hidden H II regions. These signatures of massive star formation show a good spatial correlation with the molecular clouds in the sense that they are located within ∼100 pc of the molecular clouds. Among possible ideas to explain the GMC types, we favor that the types indicate an evolutionary sequence; i.e., the youngest phase is Type I, followed by Type II, and the last phase is Type III, where the most active star formation takes place leading to cloud dispersal. The number of the three types of GMCs should be proportional to the timescale of each evolutionary stage if a steady state of massive star and cluster formation is a good approximation. By adopting the timescale of the youngest stellar clusters, 10 Myr, we roughly estimate the timescales of Types I, II, and III to be 6 Myr, 13 Myr, and 7 Myr, respectively, corresponding to a lifetime of 20-30 Myr for the GMCs with a mass above the completeness limit, 5 x 10 4 M sun .

  12. Carbon Flux Through the Giant Barrel Sponge Xestospongia testudinaria in the Red Sea

    KAUST Repository

    Wooster, Michael K.

    2017-11-01

    Sponges have important ecological functions on coral reefs because they are regionally abundant, competitively dominant, and process large volumes of seawater. The sponge loop hypothesis proposes that sponges consume dissolved organic carbon (DOC) and then releases the carbon as shed cellular detritus back to the reef benthos. Within this context, we examined the carbon flux mediated by the giant barrel sponge, Xestospongia testudinaria, on reefs in the Red Sea, where sponge abundance is comparatively low relative to coral reefs elsewhere, such as the Caribbean. Seawater samples were collected from the incurrent and excurrent (In-Ex) flow of 40 sponges from inshore, mid-shelf, and offshore reefs between 18° and 22°N latitude off the coast of Saudi Arabia. Concentrations of DOC and living particulate organic carbon (LPOC) were significantly higher in incurrent (ambient) seawater on inshore reefs than mid-shelf and offshore reefs. Consistent with studies of X. muta in the Caribbean, the diet of X. testudinaria is comprised primarily of DOC; mean values of the nutritional components across all sites were 60.5% DOC, 35.7% detritus, and 3.8% LPOC. Taking into account the specific filtration rates of nutritional components and oxygen consumption of sponges across the inshore-offshore gradient, there is evidence (1) of a threshold concentration of DOC below which sponges cease to be net consumers of DOC, and (2) that sponges on offshore reefs are food-limited. Contrary to the sponge loop hypothesis, there was no evidence that X. testudinaria, returned DOC to the benthos in the form of detritus, but was, instead, a net consumer of detritus from the water column. Unlike the cryptic, interstitial sponges that were studied to advance the sponge-loop hypothesis, emergent sponges may have an alternate pathway for returning DOC to the benthos by converting it to sponge biomass rather than sponge detritus.

  13. The Carnegie-Chicago Hubble Program. II. The Distance to IC 1613: The Tip of the Red Giant Branch and RR Lyrae Period-luminosity Relations

    Science.gov (United States)

    Hatt, Dylan; Beaton, Rachael L.; Freedman, Wendy L.; Madore, Barry F.; Jang, In-Sung; Hoyt, Taylor J.; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark

    2017-08-01

    IC 1613 is an isolated dwarf galaxy within the Local Group. Low foreground and internal extinction, low metallicity, and low crowding make it an invaluable testbed for the calibration of the local distance ladder. We present new, high-fidelity distance estimates to IC 1613 via its Tip of the Red Giant Branch (TRGB) and its RR Lyrae (RRL) variables as part of the Carnegie-Chicago Hubble Program, which seeks an alternate local route to H 0 using Population II stars. We have measured a TRGB magnitude {I}{ACS}{TRGB}=20.35+/- {0.01}{stat}+/- {0.01}{sys} mag using wide-field observations obtained from the IMACS camera on the Magellan-Baade telescope. We have further constructed optical and near-infrared RRL light curves using archival BI- and new H-band observations from the ACS/WFC and WFC3/IR instruments on board the Hubble Space Telescope (HST). In advance of future Gaia data releases, we set provisional values for the TRGB luminosity via the Large Magellanic Cloud and Galactic RRL zero-points via HST parallaxes. We find corresponding true distance moduli {μ }0{TRGB}=24.30+/- {0.03}{stat}+/- {0.05}{sys} {mag} and =24.28+/- {0.04}{stat+{sys}} mag. We compare our results to a body of recent publications on IC 1613 and find no statistically significant difference between the distances derived from Population I and II stars. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #10505 and #13691. Additional observations are credited to the Observatories of the Carnegie Institution of Washington for the use of Magellan-Baade IMACS. Presented as part of a dissertation to the Department of Astronomy and Astrophysics, The University of Chicago, in partial fulfillment of the requirements for the Ph.D. degree.

  14. THE ACS NEARBY GALAXY SURVEY TREASURY. IX. CONSTRAINING ASYMPTOTIC GIANT BRANCH EVOLUTION WITH OLD METAL-POOR GALAXIES

    International Nuclear Information System (INIS)

    Girardi, Leo; Williams, Benjamin F.; Gilbert, Karoline M.; Rosenfield, Philip; Dalcanton, Julianne J.; Marigo, Paola; Boyer, Martha L.; Dolphin, Andrew; Weisz, Daniel R.; Skillman, Evan; Melbourne, Jason; Olsen, Knut A. G.; Seth, Anil C.

    2010-01-01

    In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M sun , [Fe/H]∼ sun . This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.

  15. THE MID-INFRARED EXTINCTION LAW IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jian; Jiang, B. W.; Xue, M. Y. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Li, Aigen, E-mail: jiangao@bnu.edu.cn, E-mail: bjiang@bnu.edu.cn, E-mail: lia@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2013-10-10

    Based on photometric data from the Spitzer/SAGE survey, using red giants as extinction tracers, the mid-infrared (MIR) extinction laws in the Large Magellanic Cloud (LMC) are derived for the first time in the form of A{sub λ}/A{sub K{sub S}}. This quantity refers to the extinction in the four Infrared Array Camera (IRAC) bands (i.e., [3.6], [4.5], [5.8], and [8.0] μm) relative to the Two Micron All Sky Survey K{sub S} band at 2.16 μm. We obtain the near-infrared extinction coefficient to be E(J – H)/E(H – K{sub S} ) ≈ 1.29 ± 0.04 and E(J – K{sub S} )/E(H – K{sub S} ) ≈ 1.94 ± 0.04. The wavelength dependence of the MIR extinction A{sub λ}/A{sub K{sub S}} in the LMC varies from one sightline to another. The overall mean MIR extinction is A{sub [3.6]}/A{sub K{sub S}}∼0.72±0.03, A{sub [4.5]}/A{sub K{sub S}}∼0.94±0.03, A{sub [5.8]}/A{sub K{sub S}}∼0.58±0.04, and A{sub [8.0]}/A{sub K{sub S}}∼0.62±0.05. Except for the extinction in the IRAC [4.5] μm band, which may be contaminated by the 4.6 μm CO gas absorption of red giants used to trace LMC extinction, the extinction in the other three IRAC bands show a flat curve, close to the Milky Way R{sub V} = 5.5 model extinction curve, where R{sub V} is the optical total-to-selective extinction ratio. The possible systematic bias caused by the correlated uncertainties of K{sub S} – λ and J – K{sub S} is explored in terms of Monte Carlo simulations. We find that this bias could lead to an overestimation of A{sub λ}/A{sub K{sub S}} in the MIR.

  16. Growth and replication of red rain cells at 121°C and their red fluorescence

    Science.gov (United States)

    Gangappa, Rajkumar; Wickramasinghe, Chandra; Wainwright, Milton; Kumar, A. Santhosh; Louis, Godfrey

    2010-09-01

    We have shown that the red cells found in the Red Rain (which fell on Kerala, India, in 2001) survive and grow after incubation for periods of up to two hours at 121°C . Under these conditions daughter cells appear within the original mother cells and the number of cells in the samples increases with length of exposure to 121°C. No such increase in cells occurs at room temperature, suggesting that the increase in daughter cells is brought about by exposure of the Red Rain cells to high temperatures. This is an independent confirmation of results reported earlier by two of the present authors, claiming that the cells can replicate under high pressure at temperatures upto 300°C. The flourescence behaviour of the red cells is shown to be in remarkable correspondence with the extended red emission observed in the Red Rectagle planetary nebula and other galactic and extragalactic dust clouds, suggesting, though not proving an extraterrestrial origin.

  17. A new photometric model of the Galactic bar using red clump giants

    Science.gov (United States)

    Cao, Liang; Mao, Shude; Nataf, David; Rattenbury, Nicholas J.; Gould, Andrew

    2013-09-01

    We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants from the Optical Gravitational Lensing Experiment (OGLE) III survey. The data were recently published by Nataf et al. for 9019 fields towards the bulge and have 2.94 × 106 RC stars over a viewing area of 90.25 deg^2. The data include the number counts, mean distance modulus (μ), dispersion in μ and full error matrix, from which we fit the data with several triaxial parametric models. We use the Markov Chain Monte Carlo method to explore the parameter space and find that the best-fitting model is the E3 model, with the distance to the GC 8.13 kpc, the ratio of semimajor and semiminor bar axis scalelengths in the Galactic plane x0, y0 and vertical bar scalelength z0 x0: y0: z0 ≈ 1.00: 0.43: 0.40 (close to being prolate). The scalelength of the stellar density profile along the bar's major axis is ˜0.67 kpc and has an angle of 29.4°, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is 2.78 × 106, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic Centre, the excess to the estimated mass content is ˜5.8 per cent. We estimate that the total mass of the bar is ˜1.8 × 1010 M⊙. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.

  18. Heavy-element yields and abundances of asymptotic giant branch models with a Small Magellanic Cloud metallicity

    Science.gov (United States)

    Karakas, Amanda I.; Lugaro, Maria; Carlos, Marília; Cseh, Borbála; Kamath, Devika; García-Hernández, D. A.

    2018-06-01

    We present new theoretical stellar yields and surface abundances for asymptotic giant branch (AGB) models with a metallicity appropriate for stars in the Small Magellanic Cloud (SMC, Z = 0.0028, [Fe/H] ≈ -0.7). New evolutionary sequences and post-processing nucleosynthesis results are presented for initial masses between 1 and 7 M⊙, where the 7 M⊙ is a super-AGB star with an O-Ne core. Models above 1.15 M⊙ become carbon rich during the AGB, and hot bottom burning begins in models M ≥ 3.75 M⊙. We present stellar surface abundances as a function of thermal pulse number for elements between C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g. 12C/13C), which can be compared to observations. The integrated stellar yields are presented for each model in the grid for hydrogen, helium, and all stable elements from C to Bi. We present evolutionary sequences of intermediate-mass models between 4 and 7 M⊙ and nucleosynthesis results for three masses (M = 3.75, 5, and 7 M⊙) including s-process elements for two widely used AGB mass-loss prescriptions. We discuss our new models in the context of evolved AGB and post-AGB stars in the SMCs, barium stars in our Galaxy, the composition of Galactic globular clusters including Mg isotopes with a similar metallicity to our models, and to pre-solar grains which may have an origin in metal-poor AGB stars.

  19. Studies of IR-screening smoke clouds

    Energy Technology Data Exchange (ETDEWEB)

    Cudzilo, S. [Military Univ. of Technology, Warsaw (Poland)

    2001-02-01

    This paper contains some results of research on the IR-screening capability of smoke clouds generated during the combustion process of varied pyrotechnic formulations. The smoke compositions were made from some oxygen or oxygen-free mixtures containing metal and chloroorganic compounds or mixtures based on red phosphorus. The camouflage effectiveness of clouds generated by these formulations was investigated under laboratory conditions with an infrared camera. The technique employed enables determination of radiant temperature distributions in a smoke cloud treated as an energy equivalent of a grey body emission. The results of the analysis of thermographs from the camera were the basis on which the mixtures producing screens of the highest countermeasure for thermal imaging systems have been chosen. (orig.)

  20. The Segue K giant survey. II. A catalog of distance determinations for the Segue K giants in the galactic halo

    International Nuclear Information System (INIS)

    Xue, Xiang-Xiang; Rix, Hans-Walter; Ma, Zhibo; Morrison, Heather L.; Harding, Paul; Beers, Timothy C.; Ivans, Inese I.; Jacobson, Heather R.; Johnson, Jennifer; Lee, Young Sun; Lucatello, Sara; Rockosi, Constance M.; Sobeck, Jennifer S.; Yanny, Brian; Zhao, Gang; Allende Prieto, Carlos

    2014-01-01

    We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g – r) 0 color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes, and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.

  1. TESTING THE ASTEROSEISMIC SCALING RELATIONS FOR RED GIANTS WITH ECLIPSING BINARIES OBSERVED BY KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Gaulme, P.; McKeever, J.; Jackiewicz, J.; Rawls, M. L. [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Corsaro, E. [Laboratoire AIM, CEA/DRF-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Mosser, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, F-92195 Meudon (France); Southworth, J. [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom); Mahadevan, S.; Bender, C.; Deshpande, R., E-mail: gaulme@nmsu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-12-01

    Given the potential of ensemble asteroseismology for understanding fundamental properties of large numbers of stars, it is critical to determine the accuracy of the scaling relations on which these measurements are based. From several powerful validation techniques, all indications so far show that stellar radius estimates from the asteroseismic scaling relations are accurate to within a few percent. Eclipsing binary systems hosting at least one star with detectable solar-like oscillations constitute the ideal test objects for validating asteroseismic radius and mass inferences. By combining radial velocity (RV) measurements and photometric time series of eclipses, it is possible to determine the masses and radii of each component of a double-lined spectroscopic binary. We report the results of a four-year RV survey performed with the échelle spectrometer of the Astrophysical Research Consortium’s 3.5 m telescope and the APOGEE spectrometer at Apache Point Observatory. We compare the masses and radii of 10 red giants (RGs) obtained by combining radial velocities and eclipse photometry with the estimates from the asteroseismic scaling relations. We find that the asteroseismic scaling relations overestimate RG radii by about 5% on average and masses by about 15% for stars at various stages of RG evolution. Systematic overestimation of mass leads to underestimation of stellar age, which can have important implications for ensemble asteroseismology used for Galactic studies. As part of a second objective, where asteroseismology is used for understanding binary systems, we confirm that oscillations of RGs in close binaries can be suppressed enough to be undetectable, a hypothesis that was proposed in a previous work.

  2. Automated cloud classification using a ground based infra-red camera and texture analysis techniques

    Science.gov (United States)

    Rumi, Emal; Kerr, David; Coupland, Jeremy M.; Sandford, Andrew P.; Brettle, Mike J.

    2013-10-01

    Clouds play an important role in influencing the dynamics of local and global weather and climate conditions. Continuous monitoring of clouds is vital for weather forecasting and for air-traffic control. Convective clouds such as Towering Cumulus (TCU) and Cumulonimbus clouds (CB) are associated with thunderstorms, turbulence and atmospheric instability. Human observers periodically report the presence of CB and TCU clouds during operational hours at airports and observatories; however such observations are expensive and time limited. Robust, automatic classification of cloud type using infrared ground-based instrumentation offers the advantage of continuous, real-time (24/7) data capture and the representation of cloud structure in the form of a thermal map, which can greatly help to characterise certain cloud formations. The work presented here utilised a ground based infrared (8-14 μm) imaging device mounted on a pan/tilt unit for capturing high spatial resolution sky images. These images were processed to extract 45 separate textural features using statistical and spatial frequency based analytical techniques. These features were used to train a weighted k-nearest neighbour (KNN) classifier in order to determine cloud type. Ground truth data were obtained by inspection of images captured simultaneously from a visible wavelength colour camera at the same installation, with approximately the same field of view as the infrared device. These images were classified by a trained cloud observer. Results from the KNN classifier gave an encouraging success rate. A Probability of Detection (POD) of up to 90% with a Probability of False Alarm (POFA) as low as 16% was achieved.

  3. Interpretation of the spectrum of the Red Rectangle

    International Nuclear Information System (INIS)

    Greenstein, J.L.; Oke, J.B.

    1977-01-01

    The strong infrared source centered on HD 44179 has been observed with the multichannel spectrophotometer from 0.35μ to 1.1μ. The stellar spectrum is anomalous. If we fit a model atmosphere suitable for a late B giant it must have a circumstellar shell. If it is a low-gravity F bright giant its reported slit spectrum suggests unusual composition. The total luminosity is high, from the far infrared fluxes. The nebula, the Red Rectangle, has been observed without stellar contamination. Largely of the reflection type, it is unusual in being considerably redder than the star. The surface brightness is interpreted from the first-order and exact theory of scattering by grains in an optically thick nebula, with the star in front. The color is ascribed to the variation of the albedo with frequency. An unusual feature is a broad upward rise in brightness of the nebula, centered at 6600 A, requiring a four-fold increase in albedo over a region 1700 A wide (full width at half maximum). The albedo is so high that the most favorable geometry must be assumed; otherwise the red maximum might require fluorescence. If the high reflectivity in the red is a feature of the dust grains, they have composition quite different from other reflection nebulae, meteorites, or planets

  4. Spectral discrimination of giant reed (Arundo donax L.): A seasonal study in riparian areas

    Science.gov (United States)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2013-06-01

    The giant reed (Arundo donax L.) is amongst the one hundred worst invasive alien species of the world, and it is responsible for biodiversity loss and failure of ecosystem functions in riparian habitats. In this work, field spectroradiometry was used to assess the spectral separability of the giant reed from the adjacent vegetation and from the common reed, a native similar species. The study was conducted at different phenological periods and also for the giant reed stands regenerated after mechanical cutting (giant reed_RAC). A hierarchical procedure using Kruskal-Wallis test followed by Classification and Regression Trees (CART) was used to select the minimum number of optimal bands that discriminate the giant reed from the adjacent vegetation. A new approach was used to identify sets of wavelengths - wavezones - that maximize the spectral separability beyond the minimum number of optimal bands. Jeffries Matusita and Bhattacharya distance were used to evaluate the spectral separability using the minimum optimal bands and in three simulated satellite images, namely Landsat, IKONOS and SPOT. Giant reed was spectrally separable from the adjacent vegetation, both at the vegetative and the senescent period, exception made to the common reed at the vegetative period. The red edge region was repeatedly selected, although the visible region was also important to separate the giant reed from the herbaceous vegetation and the mid infrared region to the discrimination from the woody vegetation. The highest separability was obtained for the giant reed_RAC stands, due to its highly homogeneous, dense and dark-green stands. Results are discussed by relating the phenological, morphological and structural features of the giant reed stands and the adjacent vegetation with their optical traits. Weaknesses and strengths of the giant reed spectral discrimination are highlighted and implications of imagery selection for mapping purposes are argued based on present results.

  5. Kuwano's peculiar object is a novalike (symbiotic) binary with a red giant. Discussion of observational results

    International Nuclear Information System (INIS)

    Belyakina, T.S.; Gershberg, R.E.; Efimov, Yu.S.; Krasnobabtsev, V.I.; Pavlenko, E.P.; Petrov, P.P.; Chuvaev, K.K.; Shenavrin, V.I.

    1982-01-01

    Photometric, polarimetric and spectral observations carried out at the Crimea permit to conclude that the Kuwano object is a binary system that consists of an M-giant and of a low-luminosity star. During the 1979 flare, the absolute magnitude of the weak component has increased up to about -6sup(m), the M-giant had apparently small variations as well. A distance to the object is estimated to be 5-7 kpc, and it is located certainly out of the galactic plane. Similarities between the Kuwano object and slow novae and symbiotic stars are noted [ru

  6. Cloud computing y protección de datos

    Directory of Open Access Journals (Sweden)

    Ramón Miralles López

    2011-01-01

    Full Text Available

    El cloud computing es una arquitectura de prestación y/o aprovisionamiento de servicios de tecnologías de la información y la comunicación, que está tomando mucho protagonismo, y que, según los analistas, en los próximos años se consolidará tanto por lo que respecta a los usuarios individuales de la red y servicios en línea, como en las empresas, que afectará a su manera de utilizar las TIC. 

    Con relación a los usuarios de la red el cloud computing tiene muchos puntos de conexión con la Web 2.0 y para las empresas está estrechamente relacionado con los procesos de outsourcing de los servicios TIC.

    En este artículo se identifican y analizan las cuestiones más relevantes del binomio cloud computing y protección de datos de carácter personal.

  7. Simultaneous colour visualizations of multiple ALS point cloud attributes for land cover and vegetation analysis

    Science.gov (United States)

    Zlinszky, András; Schroiff, Anke; Otepka, Johannes; Mandlburger, Gottfried; Pfeifer, Norbert

    2014-05-01

    LIDAR point clouds hold valuable information for land cover and vegetation analysis, not only in the spatial distribution of the points but also in their various attributes. However, LIDAR point clouds are rarely used for visual interpretation, since for most users, the point cloud is difficult to interpret compared to passive optical imagery. Meanwhile, point cloud viewing software is available allowing interactive 3D interpretation, but typically only one attribute at a time. This results in a large number of points with the same colour, crowding the scene and often obscuring detail. We developed a scheme for mapping information from multiple LIDAR point attributes to the Red, Green, and Blue channels of a widely used LIDAR data format, which are otherwise mostly used to add information from imagery to create "photorealistic" point clouds. The possible combinations of parameters are therefore represented in a wide range of colours, but relative differences in individual parameter values of points can be well understood. The visualization was implemented in OPALS software, using a simple and robust batch script, and is viewer independent since the information is stored in the point cloud data file itself. In our case, the following colour channel assignment delivered best results: Echo amplitude in the Red, echo width in the Green and normalized height above a Digital Terrain Model in the Blue channel. With correct parameter scaling (but completely without point classification), points belonging to asphalt and bare soil are dark red, low grassland and crop vegetation are bright red to yellow, shrubs and low trees are green and high trees are blue. Depending on roof material and DTM quality, buildings are shown from red through purple to dark blue. Erroneously high or low points, or points with incorrect amplitude or echo width usually have colours contrasting from terrain or vegetation. This allows efficient visual interpretation of the point cloud in planar

  8. Electronographic photometry of star clusters in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Walker, M.F.

    1979-01-01

    Electronographic magnitudes and colours of 78 stars in the cluster Hodge 11 in the Large Magellanic Cloud have been measured to V = 21.5 on electrographs taken with a Spectracon image-converter attached to the focus of the 1.5-m (60-inch) Cerro Tololo reflector. The zero point of the electronographic photometry was provided by photoelectric observations of four stars in the cluster field using the same telescope. The colour-magnitude diagram of the cluster consists of an evolved main sequence, whose termination point corresponds to an age of about 6 x 10 8 yr, but with a giant branch which is displaced blueward by about Δ(B-V) 0 = 0.4 from the positions of the giant branches of open clusters of similar age in our Galaxy. (author)

  9. Relating Line Width and Optical Depth for CO Emission in the Large Mgellanic Cloud

    Science.gov (United States)

    Wojciechowski, Evan; Wong, Tony; Bandurski, Jeffrey; MC3 (Mapping CO in Molecular Clouds in the Magellanic Clouds) Team

    2018-01-01

    We investigate data produced from ALMA observations of giant molecular clouds (GMCs) located in the Large Magellanic Cloud (LMC), using 12CO(2–1) and 13CO(2–1) emission. The spectral line width is generally interpreted as tracing turbulent rather than thermal motions in the cloud, but could also be affected by optical depth, especially for the 12CO line (Hacar et al. 2016). We compare the spectral line widths of both lines with their optical depths, estimated from an LTE analysis, to evaluate the importance of optical depth effects. Our cloud sample includes two regions recently published by Wong et al. (2017, submitted): the Tarantula Nebula or 30 Dor, an HII region rife with turbulence, and the Planck cold cloud (PCC), located in a much calmer environment near the fringes of the LMC. We also include four additional LMC clouds, which span intermediate levels of star formation relative to these two clouds, and for which we have recently obtained ALMA data in Cycle 4.

  10. Post-giant evolution of helium stars

    International Nuclear Information System (INIS)

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  11. VARIABLE STARS IN THE LARGE MAGELLANIC CLOUD GLOBULAR CLUSTER NGC 2257. I. RESULTS BASED ON 2007-2008 B, V PHOTOMETRY

    International Nuclear Information System (INIS)

    Nemec, James M.; Walker, Alistair; Jeon, Young-Beom

    2009-01-01

    The variable stars in the Large Magellanic Cloud star cluster NGC 2257 are reinvestigated using photometry (to ∼20th mag) of over 400 new B, V CCD images taken with the CTIO 0.9 m telescope on 14 nights in 2007 December and 2008 January. New period searches have been made using two independent algorithms (CLEAN, Period04); the resultant periods of most of the stars are consistent with the pulsation periods derived previously, and where there are discrepancies these have been resolved. For the B and V light curves, accurate Fourier coefficients and parameters are given. Six new variable stars have been discovered (V45-50), including a bright candidate long-period variable star showing secondary oscillations (V45) and two anomalously bright RRc stars (V48 and V50), which are shown to be brightened and reddened by nearby red giant stars. Also discovered among the previously known variable stars are three double-mode RR Lyrae stars (V8, V16, and V34) and several Blazhko variables. Archival Hubble Space Telescope images and the photometry by Johnson et al. have been used to define better the properties of the most crowded variable stars. The total number of cluster variable stars now stands at forty-seven: 23 RRab stars, four of which show Blazhko amplitude variations; 20 RRc stars, one showing clear Blazhko variations and another showing possible Blazhko variations; the three RRd stars, all having the dominant period ∼0.36 day and period ratios P 1 /P 0 ∼0.7450; and an LPV star located near the tip of the red giant branch. A comparison of the RRd stars with those in other environments shows them to be most similar to those in IC4499.

  12. Giant grains

    International Nuclear Information System (INIS)

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  13. The Spitzer survey of interstellar clouds in the gould belt. VI. The Auriga-California molecular cloud observed with IRAC and MIPS

    International Nuclear Information System (INIS)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Harvey, Paul M.; Gutermuth, Robert A.; Huard, Tracy L.; Miller, Jennifer F.; Tothill, Nicholas F. H.; Nutter, David; Bourke, Tyler L.; DiFrancesco, James; Jørgensen, Jes K.; Allen, Lori E.; Chapman, Nicholas L.; Dunham, Michael M.; Merín, Bruno; Terebey, Susan; Peterson, Dawn E.

    2014-01-01

    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70, and 160 μm observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg 2 with IRAC and 10.47 deg 2 with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors, and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHα 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the relative fraction of YSOs in earlier (Class I and F) and later (Class II) classes compared to other clouds. We perform simple SED modeling of the YSOs with disks to compare the mid-IR properties to disks in other clouds and identify 14 classical transition disk candidates. Although the AMC is similar in mass, size, and distance to the OMC, it is forming about 15-20 times fewer stars.

  14. The Spitzer survey of interstellar clouds in the gould belt. VI. The Auriga-California molecular cloud observed with IRAC and MIPS

    Energy Technology Data Exchange (ETDEWEB)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C. [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Harvey, Paul M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Huard, Tracy L.; Miller, Jennifer F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Tothill, Nicholas F. H. [School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Nutter, David [School of Physics and Astronomy, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); DiFrancesco, James [National Research Council Herzberg Astronomy and Astrophysics, Victoria, BC, V9E 2E7 (Canada); Jørgensen, Jes K. [Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-DK-2100 Copenhagen Ø. (Denmark); Allen, Lori E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Chapman, Nicholas L. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Merín, Bruno [Herschel Science Centre, ESAC-ESA, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Terebey, Susan [Department of Physics and Astronomy PS315, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Peterson, Dawn E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); and others

    2014-05-01

    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70, and 160 μm observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg{sup 2} with IRAC and 10.47 deg{sup 2} with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors, and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHα 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the relative fraction of YSOs in earlier (Class I and F) and later (Class II) classes compared to other clouds. We perform simple SED modeling of the YSOs with disks to compare the mid-IR properties to disks in other clouds and identify 14 classical transition disk candidates. Although the AMC is similar in mass, size, and distance to the OMC, it is forming about 15-20 times fewer stars.

  15. Size-density relations in dark clouds: Non-LTE effects

    International Nuclear Information System (INIS)

    Maloney, P.

    1986-01-01

    One of the major goals of molecular astronomy has been to understand the physics and dynamics of dense interstellar clouds. Because the interpretation of observations of giant molecular clouds is complicated by their very complex structure and the dynamical effects of star formation, a number of studies have concentrated on dark clouds. Leung, Kutner and Mead (1982) (hereafter LKM) and Myers (1983), in studies of CO and NH 3 emission, concluded that dark clouds exhibit significant correlations between linewidth and cloud radius of the form delta v varies as R(0.5) and between mean density and radius of the form n varies as R(-1), as originally suggested by Larson (1981). This result suggests that these objects are in virial equilibrium. However, the mean densities inferred from the CO data of LKM are based on an local thermodynamic equilibrium (LTE) analysis of their 13CO data. At the very low mean densities inferred by LKM for the larger clouds in their samples, the assumption of LTE becomes very questionable. As most of the range in R in the density-size correlation comes from the clouds observed in CO, it seems worthwhile to examine how non-LTE effects will influence the derived densities. Microturbulent models of inhomogeneous clouds of varying central concentration with the linewidth-size and mean density-size relations found by Myers show sub-thermal excitation of the 13CO line in the larger clouds, with the result that LTE analysis considerbly underestimates the actual column density. A more general approach which doesn't require detailed modeling of the clouds is to consider whether the observed T/sub R/*(13CO)/T/sub R/*(12CO) ratios in the clouds studied by LKM are in the range where the LTE-derived optical depths be seriously in error due to sub-thermal excitation of the 13CO molecule

  16. Third year effects of cloudwater and ozone on red spruce seedlings

    International Nuclear Information System (INIS)

    Pier, P.A.; Thornton, F.C.; McDuffie, C. Jr.

    1991-01-01

    The reduction in growth of high elevation red spruce in the eastern US has been attributed in part to greater exposure to atmospheric pollution which occurs at high elevation. The authors objective was to evaluate the impact of ambient ozone and cloudwater deposition on the growth of red spruce seedlings at a high elevation site. Potted native and Phyton-grown (Phyton Technologies) red spruce seedlings were exposed in open-top field chambers at Whitetop Mountain, Virginia (elevation 1,680) for the third season to treatments of: (1) exclusion of clouds and 50% reduction in ambient O 3 (COE), (2) O 3 with clouds excluded (CO), (3) exposure to clouds and O 3 , as control chambers (CC), and (4) open plots (AA). Plant biomass components and diameter increment growth for both seedling types were not affected by treatments. Photosynthesis was not enhanced by removal of cloudwater and O 3 . Respiration (R d ) generally was not affected by treatments; however, R d in native seedling needles of previous year and two-year previous growth was significantly greater in CC than CO and COE on several sampling dates, indicating that cloudwater and O 3 may be causing higher R d

  17. Giant-Planet Chemistry: Ammonium Hydrosulfide (NH4SH), Its IR Spectra and Thermal and Radiolytic Stabilities

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.; Chanover, Nancy J.; Simon, Amy A.

    2015-01-01

    Here we present our recent studies of proton-irradiated and unirradiated ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. We irradiated both crystalline and amorphous NH4SH at 10-160 K and used IR spectroscopy to observe and identify reaction products in the ice, specifically NH3 and long-chained sulfur-containing ions. Crystalline NH4SH was amorphized during irradiation at all temperatures studied with the rate being the fastest at the lowest temperatures. Irradiation of amorphous NH4SH at approximately 10-75 K showed that 60-80% of the NH4 + remained when equilibrium was reached, and that NH4SH destruction rates were relatively constant within this temperature range. Irradiations at higher temperatures produced different dose dependence and were accompanied by pressure outbursts that, in some cases, fractured the ice. The thermal stability of irradiated NH4SH was found to be greater than that of unirradiated NH4SH, suggesting that an irradiated giant-planet cloud precipitate can exist at temperatures and altitudes not previously considered.

  18. Molecular cloud-scale star formation in NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Menten, Karl M. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Bouy, Hervé [Centro de Astrobiología, (INTA-CSIC), Departamento de Astrofísica, POB 78, ESAC Campus, 28691 Villanueva dela Cañada (Spain)

    2014-07-01

    We present the results of a galaxy-wide study of molecular gas and star formation in a sample of 76 H II regions in the nearby spiral galaxy NGC 300. We have measured the molecular gas at 250 pc scales using pointed CO(J = 2-1) observations with the Atacama Pathfinder Experiment telescope. We detect CO in 42 of our targets, deriving molecular gas masses ranging from our sensitivity limit of ∼10{sup 5} M {sub ☉} to 7 × 10{sup 5} M {sub ☉}. We find a clear decline in the CO detection rate with galactocentric distance, which we attribute primarily to the decreasing radial metallicity gradient in NGC 300. We combine Galaxy Evolution Explorer far-ultraviolet, Spitzer 24 μm, and Hα narrowband imaging to measure the star formation activity in our sample. We have developed a new direct modeling approach for computing star formation rates (SFRs) that utilizes these data and population synthesis models to derive the masses and ages of the young stellar clusters associated with each of our H II region targets. We find a characteristic gas depletion time of 230 Myr at 250 pc scales in NGC 300, more similar to the results obtained for Milky Way giant molecular clouds than the longer (>2 Gyr) global depletion times derived for entire galaxies and kiloparsec-sized regions within them. This difference is partially due to the fact that our study accounts for only the gas and stars within the youngest star-forming regions. We also note a large scatter in the NGC 300 SFR-molecular gas mass scaling relation that is furthermore consistent with the Milky Way cloud results. This scatter likely represents real differences in giant molecular cloud physical properties such as the dense gas fraction.

  19. BD+15 2940 AND HD 233604: TWO GIANTS WITH PLANETS CLOSE TO THE ENGULFMENT ZONE

    International Nuclear Information System (INIS)

    Nowak, G.; Niedzielski, A.; Adamów, M.; Maciejewski, G.; Wolszczan, A.

    2013-01-01

    We report the discovery of planetary-mass companions to two red giants by the ongoing Penn State-Toruń Planet Search (PTPS) conducted with the 9.2 m Hobby-Eberly Telescope. The 1.1 M ☉ K0-giant, BD+15 2940, has a 1.1 M J minimum mass companion orbiting the star at a 137.5 day period in a 0.54 AU orbit what makes it the closest—in planet around a giant and possible subject of engulfment as the consequence of stellar evolution. HD 233604, a 1.5 M ☉ K5-giant, is orbited by a 6.6 M J minimum mass planet which has a period of 192 days and a semi-major axis of only 0.75 AU making it one of the least distant planets to a giant star. The chemical composition analysis of HD 233604 reveals a relatively high 7 Li abundance which may be a sign of its early evolutionary stage or recent engulfment of another planet in the system. We also present independent detections of planetary-mass companions to HD 209458 and HD 88133, and stellar activity-induced radial velocity variations in HD 166435, as part of the discussion of the observing and data analysis methods used in the PTPS project.

  20. The origin of Halley-type comets: probing the inner Oort cloud

    Science.gov (United States)

    Levison, H.; Dones, L.; Duncan, M.

    2000-10-01

    We have integrated the orbits of 27,700 test particles initially entering the planetary system from the Oort cloud in order to study the origin of Halley-type comets (HTCs). We included the gravitational influence of the Sun, giant planets, passing stars, and galactic tides. We find that an isotropically distributed Oort cloud does not reproduce the observed orbital element distribution of the HTCs. In order to match the observations, the initial inclination distribution of the progenitors of the HTCs must be similar to the observed HTC inclination distribution. We can match the observations with an Oort cloud that consists of an isotropic outer cloud and a disk-like massive inner cloud. These idealized two-component models have inner disks with median inclinations that range from 10 to 50o. This analysis represents the first link between observations and the structure of the inner Oort cloud. HFL and LD gratefully acknowledges grants provided by the NASA Origins of Solar Systems and Planetary Geology and Geophysics Programs. MJD is grateful for the continuing financial support of the Natural Science and Engineering Research Council of Canada and for financial support for work done inthe U.S.from NASA Planetary Geology and Geophysics Programs.

  1. GIANT HERBIG-HARO FLOWS IN L1228: A SECOND LOOK

    International Nuclear Information System (INIS)

    Devine, D.; Chiriboga, D.; Smart, K.; Bally, J.

    2009-01-01

    We present second epoch narrowband Hα and [S II] images of the giant Herbig-Haro flows HH199 and HH200 in the L1228 molecular cloud. Proper motions for several members of the HH200 flow were determined by comparing the new images to similar narrowband images taken 13 years earlier. Based on our measurements, the HH200 flow is inclined by 15 deg. to the plane of the sky and has a steady, fixed outflow axis with P.A. = 49 deg. There is a general nonlinear decline in the proper motions with increasing distance from the source, and it appears that successive eruption episodes have cleared out a relatively free channel through the L1228 cloud. The bright knot HH200B6 is located at the end of the channel along the edge of L1228, and appears to be tracing the location where the outflow erupts from the cloud. We did not detect any proper motions for HH200B6, and suggest that it is the plug of material that has been bored out by the cumulative effects of numerous eruptions along a steady outflow axis. The proper motions combined with the spacing of the HH200 knots along the flow axis are consistent with a velocity variable outflow, which erupts periodically on timescales of the order of 600 years. The relatively small size of the knots combined with the large proper motions and derived bow-shock speeds would seem to rule out the presence of a less collimated wind component. We also discuss the HH199 flow, which is radically different from HH200. The members of the HH199 flow exhibited large changes in the morphology and emission, and were not suitable for determining proper motions. The HH200 and HH199 flows appear to be the opposite ends of the spectrum of giant HH flows.

  2. The Spitzer Survey of Interstellar Clouds in the Gould Belt. VI. The Auriga-California Molecular Cloud Observed with IRAC and MIPS

    Science.gov (United States)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Harvey, Paul M.; Gutermuth, Robert A.; Huard, Tracy L.; Tothill, Nicholas F. H.; Nutter, David; Bourke, Tyler L.; DiFrancesco, James; Jorgensen, Jes K.; hide

    2014-01-01

    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70 and 160 micrometers observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg(exp 2) with IRAC and 10.47 deg2 with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkH(alpha) 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the fraction of YSOs in the region with disks relative to an estimate of the diskless YSO population. Although the AMC is similar in mass, size and distance to the OMC, it is forming about 15 - 20 times fewer stars.

  3. Allometry indicates giant eyes of giant squid are not exceptional.

    Science.gov (United States)

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  4. Formation of massive stars in OB associations and giant molecular clouds

    International Nuclear Information System (INIS)

    Lada, C.J.

    1980-01-01

    Certain interesting patterns are being perceived in the morphology of the regions which have recently produced massive OB stars. In particular, current evidence seems to favour the notion that the formation of massive stars takes place at the edges and not the centres of large molecular cloud complexes. It is this aspect of the observations that is discussed in the present paper. The phenomena described here will pertain to massive stars only. Specifically, stars with spectral types earlier than B3 will be considered since it is usually only these stars that produce sufficient havoc (e.g., maser sources, CO bright spots, H II regions) to noticeably affect their early environments. The corresponding phenomena for lower mass stars could be entirely different. A review is first presented of what has been learned about the OB star formation process from studies of the visible OB stars themselves. Then, newly derived information pertaining to the most recent episodes of OB star birth in galactic molecular clouds is discussed. Finally, a short discussion of the significance of the results and their implications for possible star formation mechanisms will be made. (U.K.)

  5. KARAKTERISTIK MINYAK CAMPURAN RED PALM OIL DENGAN PALM KERNEL OLEIN (Characteristics of Oil Blends from Red Palm Oil and Palm Kernel Olein

    Directory of Open Access Journals (Sweden)

    Maria Ulfah

    2016-10-01

    Full Text Available Characteristics of oil blends has been produced from red palm oil (RPO and palm kernel olein (PKOo with seven ratios with a total of 100, namely A (0:100, B (25:75, C (40:60, D (50:50, E (60:40, F (75:25 and G (100:0 v/v investigated with randomized complete block design. The result showed that different of ratio levels RPO and PKOo have some effects on peroxide value, saponification value, melting point, cloud point and β-carotene content from RPO-PKOo oil blends, but has not effect on free fatty acid content. Higher level of PKOo content on formulas oil blends were decreased of saponification value and melting point, but was increased of cloud point. The best of RPOPKOo oil blends has been obtained at ratio 50:50 (v/v, with 459.52 ppm β-carotene, 1.35 meq/kg peroxide value, 0.09 % free fatty acid, 202.60 saponification value, 24.15 oC melting point and 7.15 oC cloud point. Fatty acids composition were 1.24 % capric acid, 29.00 % lauric acid, 10.09 % miristic acid, 23.10 % palmitic acid, 5.84 linoleic acid, 27.30 % oleic acid and 3.43 % stearic acid. Keywords: Red palm oil, palm kernel olein, oil blends, chemical and physical properties ABSTRAK Sifat-sifat minyak campuran yang dihasilkan dari red palm oil (RPO dan palm kernel olein (PKOo dengan tujuh tingkat rasio yang totalnya 100, yaitu A (0:100, B (25:75, C (40:60, D (50:50, E (60:40, F (75:25 dan G (100:0 (v/v dikaji menggunakan rancangan acak lengkap kelompok. Hasil penelitian menunjukkan bahwa rasio RPO:PKOo mempengaruhi angka peroksida, angka penyabunan, melting point, cloud point dan kadar β-karoten dari minyak campuran RPO-PKOo yang dihasilkan, namun tidak mempengaruhi kadar asam lemak bebas. Peningkatan jumlah PKOo yang ditambahkan dalam minyak campuran RPO-PKOo, akan menurunkan angka penyabunan dan melting point, namun akan menaikkan cloud point. Produk minyak campuran RPO-PKOo terbaik diperoleh pada rasio 50:50 (v/v, dengan kadar β-karoten 459,52 ppm, angka peroksida 1,35 meq

  6. A violent interaction between the dwarf galaxy UGC 7636 and the giant elliptical galaxy NGC 4472

    Science.gov (United States)

    Mcnamara, Brian R.; Sancisi, Renzo; Henning, Patricia A.; Junor, William

    1994-01-01

    We present new U, B, R, and H I imagery of the Virgo Cluster giant elliptical galaxy NGC 4472 and its interacting dwarf companion galaxy UGC 7636. Using a composite image reconstruction technique, we show that a trail of debris approx. 5 arcmin in length and approx. 1 arcmin in width (30x6 kpc for a Virgo cluster distance of 20 Mpc) is projected northward from the dwarf galaxy. A cloud of H I is projected along the northwest edge of the debris between the dwarf and gE. The dwarf's nuclear morphology is irregular and bow-shaped on what appears to be its leading edge. Apart from a number of isolated blue regions, most of of the trailing debris is similar in color to the dwarf's nucleus. Only a modest enhancement of star formation appears to have been induced by the interaction. Although separated by 15 kpc, the H I and stellar morphologies are remarkably similar. The stars and H I appear to have been tidally distorted in situ, prior to the cloud's removal by ram pressure. If the H I has maintained its shape by magnetic support, a magnetic field strength an order of magnitude larger than the galaxy's is required. Ram pressure deceleration due to the cloud's motion through NGC 4472's x-ray-emitting interstellar medium shold be sufficient for the cloud to become gravitationally bound to NGC 4472. The H I cloud is not self-gravitating and may fragment and be destroyed in the interaction. UGC 7636 will probably be disrupted by NGC 4472's strong tidal forces; the stellar debris will disperse into the Virgo cluster or become bound to NGC 4472's halo on eccentric orbits. The debris captured in the collision will have a negligible impact on NGC 4472's stellar and gaseous content. On the other hand, if similar interactions are common in giant elliptical galaxies, they could alter or deplete surrounding dwarf galaxy populations, fuel bursts of nuclear activity, and perhaps provide a source of magnetic energy to their interstellar media.

  7. Clouds and Chemistry in the Atmosphere of Extrasolar Planet HR8799b

    Energy Technology Data Exchange (ETDEWEB)

    Barman, T S; Macintosh, B A; Konopacky, Q M; Marois, C

    2011-03-21

    Using the integral field spectrograph OSIRIS, on the Keck II telescope, broad near-infrared H and K-band spectra of the young exoplanet HR8799b have been obtained. In addition, six new narrow-band photometric measurements have been taken across the H and K bands. These data are combined with previously published photometry for an analysis of the planet's atmospheric properties. Thick photospheric dust cloud opacity is invoked to explain the planet's red near-IR colors and relatively smooth near-IR spectrum. Strong water absorption is detected, indicating a Hydrogen-rich atmosphere. Only weak CH{sub 4} absorption is detected at K band, indicating efficient vertical mixing and a disequilibrium CO/CH{sub 4} ratio at photospheric depths. The H-band spectrum has a distinct triangular shape consistent with low surface gravity. New giant planet atmosphere models are compared to these data with best fitting bulk parameters, T{sub eff} = 1100K {+-} 100 and log(g) = 3.5 {+-} 0.5 (for solar composition). Given the observed luminosity (log L{sub obs}/L{sub {circle_dot}} {approx} -5.1), these values correspond to a radius of 0.75 R{sub Jup{sub 0.12}{sup +0.17}} and mass {approx} 0.72 M{sub Jup{sub -0.6}{sup +2.6}} - strikingly inconsistent with interior/evolution models. Enhanced metallicity (up to {approx} 10 x that of the Sun) along with thick clouds and non-equilibrium chemistry are likely required to reproduce the complete ensemble of spectroscopic and photometric data and the low effective temperatures (< 1000K) required by the evolution models.

  8. Discovery of a protostar in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Gatley, I.; Becklin, E.E.; Hyland, A.R.; Jones, T.J.

    1981-01-01

    A near infrared search of the H II region/molecular cloud complex N 159 in the Large Magellanic Cloud has revealed a very red (H-K = 2.1, K-L' = 2.7) compact object. The location, brightness, colour and 2.1 to 2.4 μm spectrum of this source suggest that it is very young, and similar to the galactic infrared 'protostars'. This is the first identification of an infrared protostar in an external galaxy. Its discovery provides direct evidence of current star formation in the Large Magellanic Cloud, and suggests that regions of star formation in external galaxies will appear similar to those in the Milky Way. (author)

  9. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  10. Size-density relations in dark clouds: Non-LTE effects

    Science.gov (United States)

    Maloney, P.

    1986-01-01

    One of the major goals of molecular astronomy has been to understand the physics and dynamics of dense interstellar clouds. Because the interpretation of observations of giant molecular clouds is complicated by their very complex structure and the dynamical effects of star formation, a number of studies have concentrated on dark clouds. Leung, Kutner and Mead (1982) (hereafter LKM) and Myers (1983), in studies of CO and NH3 emission, concluded that dark clouds exhibit significant correlations between linewidth and cloud radius of the form delta v varies as R(0.5) and between mean density and radius of the form n varies as R(-1), as originally suggested by Larson (1981). This result suggests that these objects are in virial equilibrium. However, the mean densities inferred from the CO data of LKM are based on an local thermodynamic equilibrium (LTE) analysis of their 13CO data. At the very low mean densities inferred by LKM for the larger clouds in their samples, the assumption of LTE becomes very questionable. As most of the range in R in the density-size correlation comes from the clouds observed in CO, it seems worthwhile to examine how non-LTE effects will influence the derived densities. One way to assess the validity of LTE-derived densities is to construct cloud models and then to interpret them in the same way as the observed data. Microturbulent models of inhomogeneous clouds of varying central concentration with the linewidth-size and mean density-size relations found by Myers show sub-thermal excitation of the 13CO line in the larger clouds, with the result that LTE analysis considerbly underestimates the actual column density. A more general approach which doesn't require detailed modeling of the clouds is to consider whether the observed T sub R*(13CO)/T sub R*(12CO) ratios in the clouds studied by LKM are in the range where the LTE-derived optical depths (and hence column densities) can be seriously in error due to sub-thermal excitation of the 13CO

  11. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  12. ABUNDANCES IN THE LOCAL REGION. I. G AND K GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Luck, R. Earle, E-mail: rel2@case.edu [Department of Astronomy, Case Western Reserve University 10900 Euclid Avenue, Cleveland, OH 44106-7215 (United States)

    2015-09-15

    Parameters and abundances for 1133 stars of spectral types F, G, and K of luminosity class III have been derived. In terms of stellar parameters, the primary point of interest is the disagreement between gravities derived with masses determined from isochrones, and gravities determined from an ionization balance. This is not a new result per se, but the size of this sample emphasizes the severity of the problem. A variety of arguments led to the selection of the ionization-balance gravity as the working value. The derived abundances indicate that the giants in the solar region have Sun-like total abundances and abundance ratios. Stellar evolution indicators have also been investigated with the Li abundances and the [C/Fe] and C/O ratios, indicating that standard processing has been operating in these stars. The more salient result for stellar evolution is that the [C/Fe] data across the red-giant clump indicates the presence of mass-dependent mixing in accord with standard stellar evolution predictions.

  13. ON THE NEED FOR DEEP-MIXING IN ASYMPTOTIC GIANT BRANCH STARS OF LOW MASS

    International Nuclear Information System (INIS)

    Busso, M.; Palmerini, S.; Maiorca, E.; Cristallo, S.; Abia, C.; Straniero, O.; Gallino, R.; Cognata, M. La

    2010-01-01

    The photospheres of low-mass red giants show CNO isotopic abundances that are not satisfactorily accounted for by canonical stellar models. The same is true for the measurements of these isotopes and of the 26 Al/ 27 Al ratio in presolar grains of circumstellar origin. Non-convective mixing, occurring during both red giant branch (RGB) and asymptotic giant branch (AGB) stages, is the explanation commonly invoked to account for the above evidence. Recently, the need for such mixing phenomena on the AGB was questioned, and chemical anomalies usually attributed to them were suggested to be formed in earlier phases. We have therefore re-calculated extra-mixing effects in low-mass stars for both the RGB and AGB stages, in order to verify the above claims. Our results contradict them; we actually confirm that slow transport below the convective envelope occurs also on the AGB. This is required primarily by the oxygen isotopic mix and the 26 Al content of presolar oxide grains. Other pieces of evidence exist, in particular from the isotopic ratios of carbon stars of type N, or C(N), in the Galaxy and in the LMC, as well as of SiC grains of AGB origin. We further show that, when extra-mixing occurs in the RGB phases of Population I stars above about 1.2 M sun , this consumes 3 He in the envelope, probably preventing the occurrence of thermohaline diffusion on the AGB. Therefore, we argue that other extra-mixing mechanisms should be active in those final evolutionary phases.

  14. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells.

    Science.gov (United States)

    Prescott, Hilary M A; Manning, Craig; Gardner, Aaron; Ritchie, William A; Pizzi, Romain; Girling, Simon; Valentine, Iain; Wang, Chengdong; Jahoda, Colin A B

    2015-01-01

    Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP) cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D) skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca); red panda (Ailurus fulgens); and Asiatic lion (Panthera leo persica). m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF) cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of sample numbers

  15. Giant Panda (Ailuropoda melanoleuca Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Hilary M A Prescott

    Full Text Available Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca; red panda (Ailurus fulgens; and Asiatic lion (Panthera leo persica. m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of

  16. ANALYTICAL SOLUTIONS FOR RADIATIVE TRANSFER: IMPLICATIONS FOR GIANT PLANET FORMATION BY DISK INSTABILITY

    International Nuclear Information System (INIS)

    Boss, Alan P.

    2009-01-01

    The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.

  17. THE DUSTIEST POST-MAIN SEQUENCE STARS IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Olivia C.; Meixner, Margaret; Roman-Duval, Julia [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sewiło, Marta [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Hony, Sacha [Institut für Theoretische Astrophysik, Zentrum für Astronomie, Universitt Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2015-10-01

    Using observations from the Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds (MC), we have found 35 evolved stars and stellar end products that are bright in the far-infrared. These 28 (LMC) and 7 (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found 13 low- to intermediate-mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae, and a symbiotic star. We also identify 10 high mass stars, including 4 of the 15 known B[e] stars in the MC, 3 extreme red supergiants that are highly enshrouded by dust, a Luminous Blue Variable, a Wolf–Rayet star, and two supernova remnants. Further, we report the detection of 9 probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the MC. The Herschel emission may either be due to dust produced by the evolved star or it may arise from swept-up interstellar medium material.

  18. A possibly universal red chromophore for modeling color variations on Jupiter

    Science.gov (United States)

    Sromovsky, L. A.; Baines, K. H.; Fry, P. M.; Carlson, R. W.

    2017-07-01

    A new laboratory-generated chemical compound made from photodissociated ammonia (NH3) molecules reacting with acetylene (C2H2) was suggested as a possible coloring agent for Jupiter's Great Red Spot (GRS) by Carlson et al. (2016, Icarus 274, 106-115). Baines et al. (2016, Icarus, submitted) showed that the GRS spectrum measured by the visual channels of the Cassini VIMS instrument in 2000 could be accurately fit by a cloud model in which the chromophore appeared as a physically thin layer of small particles immediately above the main cloud layer of the GRS. Here we show that the same chromophore and same layer location can also provide close matches to the short wavelength spectra of many other cloud features on Jupiter, suggesting this material may be a nearly universal chromophore that could explain the various degrees of red coloration on Jupiter. This is a robust conclusion, even for 12% changes in VIMS calibration and large uncertainties in the refractive index of the main cloud layer due to uncertain fractions of NH4SH and NH3 in its cloud particles. The chromophore layer can account for color variations among north and south equatorial belts, equatorial zone, and the Great Red Spot, by varying particle size from 0.12 μm to 0.29 μm and 1-μm optical depth from 0.06 to 0.76. The total mass of the chromophore layer is much less variable, ranging from 18 to 30 μg/cm2, except in the equatorial zone, where it is only 10-13 μg/cm2. We also found a depression of the ammonia volume mixing ratio in the two belt regions, which averaged 0.4 - 0.5 ×10-4 immediately below the ammonia condensation level, while the other regions averaged twice that value.

  19. Propiedades químicas de estrellas del campo de la Nube Menor de Magallanes

    Science.gov (United States)

    Parisi, M. C.; Geisler, D.; Clariá, J. J.; Carraro, G.; Villanova, S.; Marcionni, N.; Sarajedini, A.; Grocholski, A. J.

    2015-08-01

    In this paper we analyze the chemical properties of 400 red giant stars belonging to 15 areas spread over the Small Magellanic Cloud (SMC). Metallicities were determined from the equivalent widths of the CaII triplet lines, measured on spectra obtained with the FORS2 instrument at the Very Large Telescope located on Paranal (Chile). We add to this sample other 350 red giant stars previously investigated by our group using the same technique. Using this extended sample, we analyze and discuss the metallicity distribution and the possible existence of a metallicity gradient among the field stars of the SMC. We also compare our results to the chemical properties inferred for the corresponding 30 star clusters of the SMC, whose metallicities have been determined in a homogeneous scale.

  20. Influence of Giant CCN on warm rain processes in the ECHAM5 GCM

    Directory of Open Access Journals (Sweden)

    R. Posselt

    2008-07-01

    Full Text Available Increased Cloud Condensation Nuclei (CCN load due to anthropogenic activity might lead to non-precipitating clouds because the cloud drops become smaller (for a constant liquid water content and, therefore, less efficient in rain formation (aerosol indirect effect. Adding giant CCN (GCCN into such a cloud can initiate precipitation (namely, drizzle and, therefore, might counteract the aerosol indirect effect.

    The effect of GCCN on global climate on warm clouds and precipitation within the ECHAM5 General Circulation Model (GCM is investigated. Therefore, the newly introduced prognostic rain scheme (Posselt and Lohmann, 2007 is applied so that GCCN are directly activated into rain drops. The ECHAM5 simulations with incorporated GCCN show that precipitation is affected only locally. On the global scale, the precipitation amount does not change. Cloud properties like total water (liquid + rain water and cloud drop number show a larger sensitivity to GCCN. Depending on the amount of added GCCN, the reduction of total water and cloud drops account for up to 20% compared to the control run without GCCN. Thus, the incorporation of the GCCN accelerate the hydrological cycle so that clouds precipitate faster (but not more and less condensed water is accumulated in the atmosphere.

    An estimate of the anthropogenic aerosol indirect effect on the climate is obtained by comparing simulations for present-day and pre-industrial climate. The introduction of the prognostic rain scheme lowered the anthropogenic aerosol indirect effect significantly compared to the standard ECHAM5 with the diagnostic rain scheme. The incorporation of the GCCN changes the model state, especially the cloud properties like TWP and Nl. The precipitation changes only locally but globally the precipitation is unaffected because it has to equal the global mean evaporation rate. Changing the cloud properties leads to a local reduction of the aerosol indirect

  1. The Lithium-, r- and s-Enhanced Metal-Poor Giant HK-II 17435-00532

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Prieto, Carlos Allende; Sneden, Christopher; Frebel, Anna; Shetrone, Matthew; Rhee, Jaehyon; Gallino, Roberto; Bisterzo, Sara; Beers, Timothy C.; Cowan, John J.

    2008-01-01

    We present the first detailed abundance analysis of the metal-poor giant HK-II 17435-00532. This star was observed as part of the University of Texas Long-Term Chemical Abundances of Stars in the Halo (CASH) Project. A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R∼15000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor ([Fe/H] = -2.2) star has an unusually high lithium abundance (logε(Li) = +2.1), mild carbon ([C/Fe] = +0.7) and sodium ([Na/Fe] = +0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe] = +0.8) and r-process ([Eu/Fe] = +0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing mechanisms that connect the convective envelope with the outer regions of the H-burning shell. If so, HK-II 17435-00532 is the most metal-poor starin which this short-lived phase of Li enrichment has been observed. The r- and s-process material was not produced in this star but was either present in the gas from which HK-II 17435-00532 formed or was transferred to it from a more massive binary companion. Despite the current non-detection of radial velocity variations (over a time span of ∼180 days), it is possible that HK-II 17435-00532 is in a long-period binary system, similar to other stars with both r and s enrichment

  2. The evolution of comets and the detectability of Extra-Solar Oort Clouds

    International Nuclear Information System (INIS)

    Stern, S.A.

    1989-01-01

    According the standard theory, comets are natural products of solar system formation, ejected to the Oort Cloud by gravitational scattering events during the epoch of giant planet formation. Stored far from the Sun for billions of years, comets almost certainly contain a record of the events which occurred during (and perhaps even before) the epoch of planetary formation. Two themes are examined of the evolutionary processes that affect comets in the Oort Cloud, and a search for evidence of Extra-Solar Oort Clouds (ESOCs). With regard to cometary evolution in the Oort Cloud, it was found that luminous O stars and supernovae have heated the surface layers of all comets on numerous occasions to 20 to 30 K and perhaps once to 50 K. Interstellar medium (ISM) interactions blow small grains out of the Oort Clouds, and erode the upper few hundred g/cu cm of material from cometary surfaces. The findings presented contradict the standard view that comets do not undergo physical change in the Oort Cloud. A logical consequence of the intimate connection between the Oort Cloud and our planetary system is that the detection of comet clouds around other stars would strongly indicate the sites of extant extra-solar planetary systems. A search was conducted for infrared IR emission from debris in ESOCs. After examining 17 stars using the Infrared Astronomical Satellite data base, only upper limits on ESOC emission could be set

  3. Constraining stellar physics from red-giant stars in binaries – stellar rotation, mixing processes and stellar activity

    Directory of Open Access Journals (Sweden)

    Beck P. G.

    2017-01-01

    Full Text Available The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to an improved understanding of stellar structure and evolution - in particular for solar-like oscillators in this context. Binary stars are fascinating objects. Because they were formed together, binary systems provide a set of two stars with very well constrained parameters. Those can be used to study properties and physical processes, such as the stellar rotation, dynamics and rotational mixing of elements and allows us to learn from the differences we find between the two components. In this work, we discussed a detailed study of the binary system KIC 9163796, discovered through Kepler photometry. The ground-based follow-up spectroscopy showed that this system is a double-lined spectroscopic binary, with a mass ratio close to unity. However, the fundamental parameters of the components of this system as well as their lithium abundances differ substantially. Kepler photometry of this system allows to perform a detailed seismic analysis as well as to derive the orbital period and the surface rotation rate of the primary component of the system. Indications of the seismic signature of the secondary are found. The differing parameters are best explained with both components located in the early and the late phase of the first dredge up at the bottom of the red-giant branch. Observed lithium abundances in both components are in good agreement with prediction of stellar models including rotational mixing. By combining observations and theory, a comprehensive picture of the system can be drawn.

  4. Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment – Part 1: Distributions and variability

    Directory of Open Access Journals (Sweden)

    E. Jung

    2016-07-01

    Full Text Available Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March–April 2010, which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS Twin Otter (TO research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter, particles that are large enough to be effective giant cloud condensation nuclei (CCN. The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer, Africa (Saharan air layer, and mid-latitudes (continental pollution plumes. Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ∼ 3 km, while most

  5. Empirical photometric calibration of the Gaia red clump: Colours, effective temperature, and absolute magnitude

    Science.gov (United States)

    Ruiz-Dern, L.; Babusiaux, C.; Arenou, F.; Turon, C.; Lallement, R.

    2018-01-01

    Context. Gaia Data Release 1 allows the recalibration of standard candles such as the red clump stars. To use those stars, they first need to be accurately characterised. In particular, colours are needed to derive interstellar extinction. As no filter is available for the first Gaia data release and to avoid the atmosphere model mismatch, an empirical calibration is unavoidable. Aims: The purpose of this work is to provide the first complete and robust photometric empirical calibration of the Gaia red clump stars of the solar neighbourhood through colour-colour, effective temperature-colour, and absolute magnitude-colour relations from the Gaia, Johnson, 2MASS, HIPPARCOS, Tycho-2, APASS-SLOAN, and WISE photometric systems, and the APOGEE DR13 spectroscopic temperatures. Methods: We used a 3D extinction map to select low reddening red giants. To calibrate the colour-colour and the effective temperature-colour relations, we developed a MCMC method that accounts for all variable uncertainties and selects the best model for each photometric relation. We estimated the red clump absolute magnitude through the mode of a kernel-based distribution function. Results: We provide 20 colour versus G-Ks relations and the first Teff versus G-Ks calibration. We obtained the red clump absolute magnitudes for 15 photometric bands with, in particular, MKs = (-1.606 ± 0.009) and MG = (0.495 ± 0.009) + (1.121 ± 0.128)(G-Ks-2.1). We present a dereddened Gaia-TGAS HR diagram and use the calibrations to compare its red clump and its red giant branch bump with Padova isochrones. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A116

  6. CO line ratios in molecular clouds: the impact of environment

    Science.gov (United States)

    Peñaloza, Camilo H.; Clark, Paul C.; Glover, Simon C. O.; Klessen, Ralf S.

    2018-04-01

    Line emission is strongly dependent on the local environmental conditions in which the emitting tracers reside. In this work, we focus on modelling the CO emission from simulated giant molecular clouds (GMCs), and study the variations in the resulting line ratios arising from the emission from the J = 1-0, J = 2-1, and J = 3-2 transitions. We perform a set of smoothed particle hydrodynamics simulations with time-dependent chemistry, in which environmental conditions - including total cloud mass, density, size, velocity dispersion, metallicity, interstellar radiation field (ISRF), and the cosmic ray ionization rate (CRIR) - were systematically varied. The simulations were then post-processed using radiative transfer to produce synthetic emission maps in the three transitions quoted above. We find that the cloud-averaged values of the line ratios can vary by up to ±0.3 dex, triggered by changes in the environmental conditions. Changes in the ISRF and/or in the CRIR have the largest impact on line ratios since they directly affect the abundance, temperature, and distribution of CO-rich gas within the clouds. We show that the standard methods used to convert CO emission to H2 column density can underestimate the total H2 molecular gas in GMCs by factors of 2 or 3, depending on the environmental conditions in the clouds.

  7. A PATCHY CLOUD MODEL FOR THE L TO T DWARF TRANSITION

    International Nuclear Information System (INIS)

    Marley, Mark S.; Saumon, Didier; Goldblatt, Colin

    2010-01-01

    One mechanism suggested for the L to T dwarf spectral type transition is the appearance of relatively cloud-free regions across the disk of brown dwarfs as they cool. The existence of partly cloudy regions has been supported by evidence for variability in dwarfs in the late L to early T spectral range, but no self-consistent atmosphere models of such partly cloudy objects have yet been constructed. Here, we present a new approach for consistently modeling partly cloudy brown dwarfs and giant planets. We find that even a small fraction of cloud holes dramatically alter the atmospheric thermal profile, spectra, and photometric colors of a given object. With decreasing cloudiness objects briskly become bluer in J - K and brighten in J band, as is observed at the L/T transition. Model spectra of partly cloudy objects are similar to our models with globally homogenous, but thinner, clouds. Hence, spectra alone may not be sufficient to distinguish partial cloudiness although variability and polarization measurements are potential observational signatures. Finally, we note that partial cloud cover may be an alternative explanation for the blue L dwarfs.

  8. Evidence for a rotating helical filament in L1641, part of the Orion cloud complex

    International Nuclear Information System (INIS)

    Uchida, Y.

    1991-01-01

    Interstellar cloud structures, typically 10-30 pc long and 3-5 pc wide, are often seen extending outwards from dense clouds that show marked enhancement of star formation within them. We have used the Nagoya 4-m radiotelescope to study one such 'streamer', L1641, a part of the giant molecular-cloud complex in Orion, lying south of the Kleinmann-Low (KL) nebula. Using the 110-GHz line of 13 Co (J=1-0), we have obtained intensity and velocity data, and find within the streamer a dense filament with a helical structure, spinning in the same sense as the gas in the Orion KL region. We propose a model for this structure in which the streamer, through the action of the interstellar magnetic field, acts as an angular-momentum drain on the Orion KL region, allowing it to collapse. In this model, the ∼30-pc-long streamer is essential to the formation of the cloud, as well as the formation of stars within the dense cloud. (author)

  9. SAGE-VAR: AN INFRARED SURVEY OF VARIABILITY IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Riebel, D. [Department of Physics, United States Naval Academy, 572 C Holloway Road, Annapolis, MD 21402 (United States); Boyer, M. L. [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Srinivasan, S. [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Whitelock, P.; Feast, M. [Astrophysics, Cosmology and Gravity Centre, Astronomy Department, University of Cape Town, Rondebosch 7701 (South Africa); Meixner, M.; Shiao, B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Babler, B.; Meade, M.; Whitney, B. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Groenewegen, M. A. T. [Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels (Belgium); Ita, Y., E-mail: riebel.d@gmail.com [Astronomical Institute, Graduate School of Science, Tohoku University, 6-3 Aramaki Aoba, Aoba-ku, Sendai, Miyagi 980-8578 (Japan)

    2015-07-01

    We present the first results from the Surveying the Agents of Galaxy Evolution (SAGE)-Var program, a follow up to the Spitzer legacy program SAGE (Meixner et al.). We obtained four epochs of photometry at 3.6 and 4.5 μm covering the bar of the LMC and the central region of the SMC in order to probe the variability of extremely red sources missed by variability surveys conducted at shorter wavelengths, and to provide additional epochs of observation for known variables. Our six total epochs of observations allow us to probe infrared (IR) variability on 15 different timescales ranging from ∼20 days to ∼5 yr. Out of a full catalog of 1 717 554 (LMC) and 457 760 (SMC) objects, we find 10 (LMC) and 6 (SMC) large amplitude Asymptotic Giant Branch (AGB) variables without optically measured variability owing to circumstellar dust obscuration. The catalog also contains multiple observations of known AGB variables, type I and II Cepheids, eclipsing variables, R CrB stars, and young stellar objects, which will be discussed in following papers. Here we present IR Period–Luminosity (PL) relations for classical Cepheids in the Magellanic Clouds, as well as improved PL relationships for AGB stars pulsating in the fundamental mode using mean magnitudes constructed from six epochs of observations.

  10. SAGE-VAR: AN INFRARED SURVEY OF VARIABILITY IN THE MAGELLANIC CLOUDS

    International Nuclear Information System (INIS)

    Riebel, D.; Boyer, M. L.; Srinivasan, S.; Whitelock, P.; Feast, M.; Meixner, M.; Shiao, B.; Babler, B.; Meade, M.; Whitney, B.; Groenewegen, M. A. T.; Ita, Y.

    2015-01-01

    We present the first results from the Surveying the Agents of Galaxy Evolution (SAGE)-Var program, a follow up to the Spitzer legacy program SAGE (Meixner et al.). We obtained four epochs of photometry at 3.6 and 4.5 μm covering the bar of the LMC and the central region of the SMC in order to probe the variability of extremely red sources missed by variability surveys conducted at shorter wavelengths, and to provide additional epochs of observation for known variables. Our six total epochs of observations allow us to probe infrared (IR) variability on 15 different timescales ranging from ∼20 days to ∼5 yr. Out of a full catalog of 1 717 554 (LMC) and 457 760 (SMC) objects, we find 10 (LMC) and 6 (SMC) large amplitude Asymptotic Giant Branch (AGB) variables without optically measured variability owing to circumstellar dust obscuration. The catalog also contains multiple observations of known AGB variables, type I and II Cepheids, eclipsing variables, R CrB stars, and young stellar objects, which will be discussed in following papers. Here we present IR Period–Luminosity (PL) relations for classical Cepheids in the Magellanic Clouds, as well as improved PL relationships for AGB stars pulsating in the fundamental mode using mean magnitudes constructed from six epochs of observations

  11. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-01

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z ∼> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z ∼> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  12. MOLECULAR CLOUD EVOLUTION. III. ACCRETION VERSUS STELLAR FEEDBACK

    International Nuclear Information System (INIS)

    Vazquez-Semadeni, Enrique; ColIn, Pedro; Gomez, Gilberto C.; Ballesteros-Paredes, Javier; Watson, Alan W.

    2010-01-01

    We numerically investigate the effect of feedback from the ionization heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE), which we treat as an instantaneous, time-dependent quantity. We follow the GMCs' evolution from their formation to advanced star-forming stages. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. Our results are as follows: (1) in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable star formation rates. (2) However, the dense gas mass is larger in general in the presence of feedback, while the total mass (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that it is determined mainly by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars, because it acts directly to reheat and disperse the gas that is directly on its way to forming stars. (3) The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size ∼10 pc. This naturally explains the larger observed SFEs of massive-star-forming regions. (4) The clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds, rather than being equilibrium entities, are the centers of a larger-scale collapse, in which accretion replenishes the mass consumed by star formation. (5) The higher-density regions within the clouds are in a similar situation, accreting gas infalling from the less-dense, more extended regions of the clouds. (6) The density probability density functions of the regions containing the clouds in general exhibit a shape

  13. Production of Generation-2 Mekong giant catfish (Pangasinodon gigas cultured with Spirulina sp.

    Directory of Open Access Journals (Sweden)

    Kriangsak Meng-umphan

    2008-11-01

    Full Text Available The purpose of this study is to evaluate the treatment of Spirulina-supplemented pellet feed to 5-year-old F1 groups of Mekong giant catfish (Pangasinodon gigas from the brood stock and intended for use as breeders. The effects on their growth and maturation when cultured in an earthen pond were observed. Results revealed that, compared to control, there was more gain in weight while the feed conversion ratio was lower. The number of red blood cells was also higher while that of white blood cells was lower, compared to control. Out of 18 treated fish (9 males and 9 females, 6 males and 2 females gave sperms and eggs while none from control group did. It was concluded that Spirulina supplemented in pellet feed can improve growth and maturation performance to the brood stock of Mekong giant catfish.

  14. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  15. Cloud Imagers Offer New Details on Earth's Health

    Science.gov (United States)

    2009-01-01

    A stunning red sunset or purple sunrise is an aesthetic treat with a scientific explanation: The colors are a direct result of the absorption or reflectance of solar radiation by atmospheric aerosols, minute particles (either solid or liquid) in the Earth s atmosphere that occur both naturally and because of human activity. At the beginning or end of the day, the Sun s rays travel farther through the atmosphere to reach an observer s eyes and more green and yellow light is scattered, making the Sun appear red. Sunset and sunrise are especially colorful when the concentration of atmospheric particles is high. This ability of aerosols to absorb and reflect sunlight is not just pretty; it also determines the amount of radiation and heat that reaches the Earth s surface, and can profoundly affect climate. In the atmosphere, aerosols are also important as nuclei for the condensation of water droplets and ice crystals. Clouds with fewer aerosols cannot form as many water droplets (called cloud particles), and consequently, do not scatter light well. In this case, more sunlight reaches the Earth s surface. When aerosol levels in clouds are high, however, more nucleation points can form small liquid water droplets. These smaller cloud particles can reflect up to 90 percent of visible radiation to space, keeping the heat from ever reaching Earth s surface. The tendency for these particles to absorb or reflect the Sun s energy - called extinction by astronomers - depends on a number of factors, including chemical composition and the humidity and temperature in the surrounding air; because cloud particles are so small, they are affected quickly by minute changes in the atmosphere. Because of this sensitivity, atmospheric scientists study cloud particles to anticipate patterns and shifts in climate. Until recently, NASA s study of atmospheric aerosols and cloud particles has been focused primarily on satellite images, which, while granting large-scale atmospheric analysis

  16. Implementación física, lógica, seguridad y respaldos en Cloud de la red de voz IP y datos del Distrito Educativo Ambato 1

    OpenAIRE

    Masaquiza Pinto, William Danilo

    2017-01-01

    1. Introducción. --2. Planteamiento de la Propuesta de Trabajo. --3. Marco Teórico. --4. Metodología. --5. Resultados. --6. Conclusiones y Recomendaciones. --Apéndices. La presente investigación tiene como objetivo implementar la red de voz IP y datos del Distrito Educativo Ambato 1 de manera física y lógica con medidas de seguridad y respaldos en Cloud (nube) para garantizar resultados eficaces y eficientes en la sistematización de procesos, aprovechando las NTICs, enfocado en redes infor...

  17. Monstrous Ice Cloud System in Titan's Present South Polar Stratosphere

    Science.gov (United States)

    Anderson, Carrie; Samuelson, Robert; McLain, Jason; Achterberg, Richard; Flasar, F. Michael; Milam, Stefanie

    2015-11-01

    During southern autumn when sunlight was still available, Cassini's Imaging Science Subsystem discovered a cloud around 300 km near Titan's south pole (West, R. A. et al., AAS/DPS Abstracts, 45, #305.03, 2013); the cloud was later determined by Cassini's Visible and InfraRed Mapping Spectrometer to contain HCN ice (de Kok et al., Nature, 514, pp 65-67, 2014). This cloud has proven to be only the tip of an extensive ice cloud system contained in Titan's south polar stratosphere, as seen through the night-vision goggles of Cassini's Composite InfraRed Spectrometer (CIRS). As the sun sets and the gloom of southern winter approaches, evidence is beginning to accumulate from CIRS far-IR spectra that a massive system of nitrile ice clouds is developing in Titan's south polar stratosphere. Even during the depths of northern winter, nothing like the strength of this southern system was evident in corresponding north polar regions.From the long slant paths that are available from limb-viewing CIRS far-IR spectra, we have the first definitive detection of the ν6 band of cyanoacetylene (HC3N) ice in Titan’s south polar stratosphere. In addition, we also see a strong blend of nitrile ice lattice vibration features around 160 cm-1. From these data we are able to derive ice abundances. The most prominent (and still chemically unidentified) ice emission feature, the Haystack, (at 220 cm-1) is also observed. We establish the vertical distributions of the ice cloud systems associated with both the 160 cm-1 feature and the Haystack. The ultimate aim is to refine the physical and possibly the chemical relationships between the two. Transmittance thin film spectra of nitrile ice mixtures obtained in our Spectroscopy for Planetary ICes Environments (SPICE) laboratory are used to support these analyses.

  18. Mixing core material into the envelopes of red grants

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1986-01-01

    A discussion is presented of calculations of four core helium flashes in red giant stars. The starting point for these calculations is a point source explosion on the polar axis of a two-dimensional finite difference grid. The amount of residue of the core helium flash mixed into and above the hydrogen shell is calculated at four temperatures for the elements carbon, oxygen, neon, magnesium, silicon, and sulfur. 7 refs., 1 tab

  19. Features of Jupiter's Great Red Spot

    Science.gov (United States)

    1996-01-01

    This montage features activity in the turbulent region of Jupiter's Great Red Spot (GRS). Four sets of images of the GRS were taken through various filters of the Galileo imaging system over an 11.5 hour period on 26 June, 1996 Universal Time. The sequence was designed to reveal cloud motions. The top and bottom frames on the left are of the same area, northeast of the GRS, viewed through the methane (732 nm) filter but about 70 minutes apart. The top left and top middle frames are of the same area and at the same time, but the top middle frame is taken at a wavelength (886 nm) where methane absorbs more strongly. (Only high clouds can reflect sunlight in this wavelength.) Brightness differences are caused by the different depths of features in the two images. The bottom middle frame shows reflected light at a wavelength (757 nm) where there are essentially no absorbers in the Jovian atmosphere. The white spot is to the northwest of the GRS; its appearance at different wavelengths suggests that the brightest elements are 30 km higher than the surrounding clouds. The top and bottom frames on the right, taken nine hours apart and in the violet (415 nm) filter, show the time evolution of an atmospheric wave northeast of the GRS. Visible crests in the top right frame are much less apparent 9 hours later in the bottom right frame. The misalignment of the north-south wave crests with the observed northwestward local wind may indicate a shift in wind direction (wind shear) with height. The areas within the dark lines are 'truth windows' or sections of the images which were transmitted to Earth using less data compression. Each of the six squares covers 4.8 degrees of latitude and longitude (about 6000 square kilometers). North is at the top of each frame.Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The

  20. AN EXTREME ANALOGUE OF ϵ AURIGAE: AN M-GIANT ECLIPSED EVERY 69 YEARS BY A LARGE OPAQUE DISK SURROUNDING A SMALL HOT SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.; Conroy, Kyle E. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Siverd, Robert J. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Pepper, Joshua [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 (United States); Tang, Sumin [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kafka, Stella [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States); Gaudi, B. Scott; Stevens, Daniel J.; Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Beatty, Thomas G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Shappee, Benjamin J. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2016-05-01

    We present TYC 2505-672-1 as a newly discovered and remarkable eclipsing system comprising an M-type red giant that undergoes a ∼3.45 year long, near-total eclipse (depth of ∼4.5 mag) with a very long period of ∼69.1 years. TYC 2505-672-1 is now the longest-period eclipsing binary system yet discovered, more than twice as long as that of the currently longest-period system, ϵ Aurigae. We show from analysis of the light curve including both our own data and historical data spanning more than 120 years and from modeling of the spectral energy distribution, both before and during eclipse, that the red giant primary is orbited by a moderately hot source ( T {sub eff} ≈ 8000 K) that is itself surrounded by an extended, opaque circumstellar disk. From the measured ratio of luminosities, the radius of the hot companion must be in the range of 0.1–0.5 R {sub ⊙} (depending on the assumed radius of the red giant primary), which is an order of magnitude smaller than that for a main sequence A star and 1–2 orders of magnitude larger than that for a white dwarf. The companion is therefore most likely a “stripped red giant” subdwarf-B type star destined to become a He white dwarf. It is, however, somewhat cooler than most sdB stars, implying a very low mass for this “pre-He-WD” star. The opaque disk surrounding this hot source may be a remnant of the stripping of its former hydrogen envelope. However, it is puzzling how this object became stripped, given that it is at present so distant (orbital semimajor axis of ∼24 au) from the current red giant primary star. Extrapolating from our calculated ephemeris, the next eclipse should begin in early UT 2080 April and end in mid UT 2083 September (eclipse center UT 2081 December 24). In the meantime, radial velocity observations would establish the masses of the components, and high-cadence UV observations could potentially reveal oscillations of the hot companion that would further constrain its evolutionary

  1. Spectroscopy of chromospheric lines of giants in the globular cluster

    Science.gov (United States)

    Dupree, A. K.; Hartmann, Lee; Smith, Graeme H.; Rodgers, A. W.; Roberts, W. H.; Zucker, D. B.

    1994-01-01

    Spectroscopic observations of chromospheric transitions (Mg II, H-alpha, and Ca II K) from two red giants (A31 and A59) in the globular cluster NGC 6572 were made with the Goddard High Resolution Spectrograph on the Hubble Space Telescope and the coude spectrograph of the 1.9 m telescope at the Mount Stromlo Observatory. These measurements give evidence for chromospheric activity and outward motions within the atmospheres. The surface flux of the Mg II emission is comparable to that in disk population giants of similar (B-V) color. The Mg II profiles are asymmetric, which is most likely caused by absorption in an expanding stellar atmosphere and/or by possible interstellar features. Notches are found in the core of the H-alpha line of A59, which are similar to those found in Cepheids. This suggests that shocks are present in the atmosphere of A59 and indicates that hydrodynamic phenomena are influencing the levvel of chromospheric emission and producing upper atmospheric motions which may lead to mass loss.

  2. Rapid formation of gas giants, ice giants and super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Boss, A P [DTM, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)], E-mail: boss@dtm.ciw.edu

    2008-08-15

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more.

  3. Rapid formation of gas giants, ice giants and super-Earths

    International Nuclear Information System (INIS)

    Boss, A P

    2008-01-01

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more

  4. Inner solar system material discovered in the Oort cloud.

    Science.gov (United States)

    Meech, Karen J; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R; Berdyugina, Svetlana; Keane, Jacqueline V; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J

    2016-04-01

    We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud.

  5. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  6. Giant Planets of Our Solar System Atmospheres, Composition, and Structure

    CERN Document Server

    Irwin, Patrick G. J

    2009-01-01

    This book reviews the current state of knowledge of the atmospheres of the giant gaseous planets: Jupiter, Saturn, Uranus, and Neptune. The current theories of their formation are reviewed and their recently observed temperature, composition and cloud structures are contrasted and compared with simple thermodynamic, radiative transfer and dynamical models. The instruments and techniques that have been used to remotely measure their atmospheric properties are also reviewed, and the likely development of outer planet observations over the next two decades is outlined. This second edition has been extensively updated following the Cassini mission results for Jupiter/Saturn and the newest ground-based measurements for Uranus/Neptune as well as on the latest development in the theories on planet formation.

  7. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. VI. LUMINOSITIES AND MASS-LOSS RATES ON POPULATION SCALES

    International Nuclear Information System (INIS)

    Riebel, D.; Meixner, M.; Srinivasan, S.; Sargent, B.

    2012-01-01

    We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to ∼30,000 asymptotic giant branch (AGB) and red supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published data set consists of thousands of evolved stars with individually determined evolutionary parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between oxygen- and carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 2.1 × 10 –5 M ☉ yr –1 , equivalent to a total mass injection rate (including the gas) into the ISM of ∼6 × 10 –3 M ☉ yr –1 . Carbon stars inject two and a half times as much dust into the ISM as do O-rich AGB stars, but the same amount of mass. We determine a bolometric correction factor for C-rich AGB stars in the K s band as a function of J – K s color, BC K s = -0.40(J-K s ) 2 + 1.83(J-K s ) + 1.29. We determine several IR color proxies for the dust mass-loss rate (M-dot d ) from C-rich AGB stars, such as log M-dot d = (-18.90/((K s -[8.0])+3.37) - 5.93. We find that a larger fraction of AGB stars exhibiting the 'long-secondary period' phenomenon are more O-rich than stars dominated by radial pulsations, and AGB stars without detectable mass loss do not appear on either the first-overtone or fundamental-mode pulsation sequences.

  8. Disruption of a red giant star by a supermassive black hole and the case of PS1-10jh

    International Nuclear Information System (INIS)

    Bogdanović, Tamara; Cheng, Roseanne M.; Amaro-Seoane, Pau

    2014-01-01

    The development of a new generation of theoretical models for tidal disruptions is timely, as increasingly diverse events are being captured in surveys of the transient sky. Recently, Gezari et al. reported a discovery of a new class of tidal disruption events: the disruption of a helium-rich stellar core, thought to be a remnant of a red giant (RG) star. Motivated by this discovery and in anticipation of others, we consider tidal interaction of an RG star with a supermassive black hole (SMBH) which leads to the stripping of the stellar envelope and subsequent inspiral of the compact core toward the black hole. Once the stellar envelope is removed the inspiral of the core is driven by tidal heating as well as the emission of gravitational radiation until the core either falls into the SMBH or is tidally disrupted. In the case of the tidal disruption candidate PS1-10jh, we find that there is a set of orbital solutions at high eccentricities in which the tidally stripped hydrogen envelope is accreted by the SMBH before the helium core is disrupted. This places the RG core in a portion of parameter space where strong tidal heating can lift the degeneracy of the compact remnant and disrupt it before it reaches the tidal radius. We consider how this sequence of events explains the puzzling absence of the hydrogen emission lines from the spectrum of PS1-10jh and gives rise to its other observational features.

  9. Disruption of a red giant star by a supermassive black hole and the case of PS1-10jh

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanović, Tamara; Cheng, Roseanne M. [Center for Relativistic Astrophysics, School of Physics, Georgia Tech, Atlanta, GA 30332 (United States); Amaro-Seoane, Pau, E-mail: tamarab@gatech.edu, E-mail: rcheng@gatech.edu, E-mail: Pau.Amaro-Seoane@aei.mpg.de [Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam (Germany)

    2014-06-20

    The development of a new generation of theoretical models for tidal disruptions is timely, as increasingly diverse events are being captured in surveys of the transient sky. Recently, Gezari et al. reported a discovery of a new class of tidal disruption events: the disruption of a helium-rich stellar core, thought to be a remnant of a red giant (RG) star. Motivated by this discovery and in anticipation of others, we consider tidal interaction of an RG star with a supermassive black hole (SMBH) which leads to the stripping of the stellar envelope and subsequent inspiral of the compact core toward the black hole. Once the stellar envelope is removed the inspiral of the core is driven by tidal heating as well as the emission of gravitational radiation until the core either falls into the SMBH or is tidally disrupted. In the case of the tidal disruption candidate PS1-10jh, we find that there is a set of orbital solutions at high eccentricities in which the tidally stripped hydrogen envelope is accreted by the SMBH before the helium core is disrupted. This places the RG core in a portion of parameter space where strong tidal heating can lift the degeneracy of the compact remnant and disrupt it before it reaches the tidal radius. We consider how this sequence of events explains the puzzling absence of the hydrogen emission lines from the spectrum of PS1-10jh and gives rise to its other observational features.

  10. Atmospheric parameters and chemical properties of red giants in the CoRoT asteroseismology fields

    Science.gov (United States)

    Morel, T.; Miglio, A.; Lagarde, N.; Montalbán, J.; Rainer, M.; Poretti, E.; Eggenberger, P.; Hekker, S.; Kallinger, T.; Mosser, B.; Valentini, M.; Carrier, F.; Hareter, M.; Mantegazza, L.

    2014-04-01

    A precise characterisation of the red giants in the seismology fields of the CoRoT satellite is a prerequisite for further in-depth seismic modelling. High-resolution FEROS and HARPS spectra were obtained as part of the ground-based follow-up campaigns for 19 targets holding great asteroseismic potential. These data are used to accurately estimate their fundamental parameters and the abundances of 16 chemical species in a self-consistent manner. Some powerful probes of mixing are investigated (the Li and CNO abundances, as well as the carbon isotopic ratio in a few cases). The information provided by the spectroscopic and seismic data is combined to provide more accurate physical parameters and abundances. The stars in our sample follow the general abundance trends as a function of the metallicity observed in stars of the Galactic disk. After an allowance is made for the chemical evolution of the interstellar medium, the observational signature of internal mixing phenomena is revealed through the detection at the stellar surface of the products of the CN cycle. A contamination by NeNa-cycled material in the most massive stars is also discussed. With the asteroseismic constraints, these data will pave the way for a detailed theoretical investigation of the physical processes responsible for the transport of chemical elements in evolved, low- and intermediate-mass stars. Based on observations collected at La Silla Observatory, ESO (Chile) with the FEROS and HARPS spectrograph at the 2.2 and 3.6-m telescopes under programs LP178.D-0361, LP182.D-0356, and LP185.D-0056.Appendix A is available in electronic form at http://www.aanda.orgTables A.2 to A.6 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A119

  11. An LTE effective temperature scale for red supergiants in the Magellanic clouds

    Science.gov (United States)

    Tabernero, H. M.; Dorda, R.; Negueruela, I.; González-Fernández, C.

    2018-05-01

    We present a self-consistent study of cool supergiants (CSGs) belonging to the Magellanic clouds. We calculated stellar atmospheric parameters using LTE KURUCZ and MARCS atmospheric models for more than 400 individual targets by fitting a careful selection of weak metallic lines. We explore the existence of a Teff scale and its implications in two different metallicity environments (each Magellanic cloud). Critical and in-depth tests have been performed to assess the reliability of our stellar parameters (i.e. internal error budget, NLTE systematics). In addition, several Monte Carlo tests have been carried out to infer the significance of the Teff scale found. Our findings point towards a unique Teff scale that seems to be independent of the environment.

  12. ON INFRARED EXCESSES ASSOCIATED WITH Li-RICH K GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Rebull, Luisa M. [Spitzer Science Center (SSC) and Infrared Science Archive (IRSA), Infrared Processing and Analysis Center - IPAC, 1200 E. California Blvd., California Institute of Technology, Pasadena, CA 91125 (United States); Carlberg, Joleen K. [NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Gibbs, John C.; Cashen, Sarah; Datta, Ashwin; Hodgson, Emily; Lince, Megan [Glencoe High School, 2700 NW Glencoe Rd., Hillsboro, OR 97124 (United States); Deeb, J. Elin [Bear Creek High School, 9800 W. Dartmouth Pl., Lakewood, CO 80227 (United States); Larsen, Estefania; Altepeter, Shailyn; Bucksbee, Ethan; Clarke, Matthew [Millard South High School, 14905 Q St., Omaha, NE 68137 (United States); Black, David V., E-mail: rebull@ipac.caltech.edu [Walden School of Liberal Arts, 4230 N. University Ave., Provo, UT 84604 (United States)

    2015-10-15

    Infrared (IR) excesses around K-type red giants (RGs) have previously been discovered using Infrared Astronomy Satellite (IRAS) data, and past studies have suggested a link between RGs with overabundant Li and IR excesses, implying the ejection of circumstellar shells or disks. We revisit the question of IR excesses around RGs using higher spatial resolution IR data, primarily from the Wide-field Infrared Survey Explorer. Our goal was to elucidate the link between three unusual RG properties: fast rotation, enriched Li, and IR excess. Our sample of RGs includes those with previous IR detections, a sample with well-defined rotation and Li abundance measurements with no previous IR measurements, and a large sample of RGs asserted to be Li-rich in the literature; we have 316 targets thought to be K giants, about 40% of which we take to be Li-rich. In 24 cases with previous detections of IR excess at low spatial resolution, we believe that source confusion is playing a role, in that either (a) the source that is bright in the optical is not responsible for the IR flux, or (b) there is more than one source responsible for the IR flux as measured in IRAS. We looked for IR excesses in the remaining sources, identifying 28 that have significant IR excesses by ∼20 μm (with possible excesses for 2 additional sources). There appears to be an intriguing correlation in that the largest IR excesses are all in Li-rich K giants, though very few Li-rich K giants have IR excesses (large or small). These largest IR excesses also tend to be found in the fastest rotators. There is no correlation of IR excess with the carbon isotopic ratio, {sup 12}C/{sup 13}C. IR excesses by 20 μm, though relatively rare, are at least twice as common among our sample of Li-rich K giants. If dust shell production is a common by-product of Li enrichment mechanisms, these observations suggest that the IR excess stage is very short-lived, which is supported by theoretical calculations. Conversely, the

  13. Pulsating red variables

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1990-01-01

    The observational characteristics of pulsating red variables are reviewed with particular emphasis on the Miras. These variables represent the last stage in the evolution of stars on the Asymptotic Giant Branch (AGB). A large fraction of the IRAS sources in the Bulge are Mira variables and a subset of these are also OH/IR sources. Their periods range up to 720 days, though most are between 360 and 560 days. At a given period those stars with the highest pulsation amplitudes have the highest mass-loss rates; this is interpreted as evidence for a causal connection between mass-loss and pulsation. It is suggested that once an AGB star has become a Mira it will evolve with increasing pulsation amplitude and mass-loss, but with very little change of luminosity or logarithmic period. 26 refs

  14. DETERMINING AGES OF APOGEE GIANTS WITH KNOWN DISTANCES

    Energy Technology Data Exchange (ETDEWEB)

    Feuillet, Diane K.; Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Bovy, Jo [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Girardi, Léo [Osservatorio Astronomico di Padova—INAF, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); MacDonald, Nick [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Nidever, David L., E-mail: feuilldk@nmsu.edu [Large Synoptic Survey Telescope, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2016-01-20

    We present a sample of 705 local giant stars observed using the New Mexico State University 1 m telescope with the Sloan Digital Sky Survey-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph, for which we estimate stellar ages and the local star formation history (SFH). The high-resolution (R ∼ 22,500), near infrared (1.51–1.7 μm) APOGEE spectra provide measurements of stellar atmospheric parameters (temperature, surface gravity, [M/H], and [α/M]). Due to the smaller uncertainties in surface gravity possible with high-resolution spectra and accurate Hipparcos distance measurements, we are able to calculate the stellar masses to within 30%. For giants, the relatively rapid evolution up the red giant branch allows the age to be constrained by the mass. We examine methods of estimating age using both the mass–age relation directly and a Bayesian isochrone matching of measured parameters, assuming a constant SFH. To improve the SFH prior, we use a hierarchical modeling approach to constrain the parameters of the model SFH using the age probability distribution functions of the data. The results of an α-dependent Gaussian SFH model show a clear age–[α/M] relation at all ages. Using this SFH model as the prior for an empirical Bayesian analysis, we determine ages for individual stars. The resulting age–metallicity relation is flat, with a slight decrease in [M/H] at the oldest ages and a ∼0.5 dex spread in metallicity across most ages. For stars with ages ≲1 Gyr we find a smaller spread, consistent with radial migration having a smaller effect on these young stars than on the older stars.

  15. Lithium abundances and metallicities in stars near the main-sequence turnoff and a giant in M67

    International Nuclear Information System (INIS)

    Garcia Lopez, R.J.; Rebolo, R.; Beckman, J.E.

    1988-01-01

    The iron abundance of seven stars near the main-sequence (MS) turnoff and a giant in M67 are spectroscopically derived, and the results are discussed. The resulting mean iron abundance of the turnoff stars is (Fe/H) = 0.04 + or - 0.04. Taken together with previous determinations for younger clusters, this shows that there has been relatively little change of the iron abundance in the solar neighborhood during the last 5 Gyr. Lithium was detected in one unevolved star and marginally in the giant, while in the other MS stars only upper limits were found. The considerable differences in Li abundances for stars with similar surface temperature imply that there is at least one parameter affecting Li depletion apart from stellar mass and metallicity. Nonsimultaneous star formation in the cluster cloud explain the scatter in lithium abundances. 50 references

  16. Discovery of a warm, dusty giant planet around HIP 65426

    Science.gov (United States)

    Chauvin, G.; Desidera, S.; Lagrange, A.-M.; Vigan, A.; Gratton, R.; Langlois, M.; Bonnefoy, M.; Beuzit, J.-L.; Feldt, M.; Mouillet, D.; Meyer, M.; Cheetham, A.; Biller, B.; Boccaletti, A.; D'Orazi, V.; Galicher, R.; Hagelberg, J.; Maire, A.-L.; Mesa, D.; Olofsson, J.; Samland, M.; Schmidt, T. O. B.; Sissa, E.; Bonavita, M.; Charnay, B.; Cudel, M.; Daemgen, S.; Delorme, P.; Janin-Potiron, P.; Janson, M.; Keppler, M.; Le Coroller, H.; Ligi, R.; Marleau, G. D.; Messina, S.; Mollière, P.; Mordasini, C.; Müller, A.; Peretti, S.; Perrot, C.; Rodet, L.; Rouan, D.; Zurlo, A.; Dominik, C.; Henning, T.; Menard, F.; Schmid, H.-M.; Turatto, M.; Udry, S.; Vakili, F.; Abe, L.; Antichi, J.; Baruffolo, A.; Baudoz, P.; Baudrand, J.; Blanchard, P.; Bazzon, A.; Buey, T.; Carbillet, M.; Carle, M.; Charton, J.; Cascone, E.; Claudi, R.; Costille, A.; Deboulbe, A.; De Caprio, V.; Dohlen, K.; Fantinel, D.; Feautrier, P.; Fusco, T.; Gigan, P.; Giro, E.; Gisler, D.; Gluck, L.; Hubin, N.; Hugot, E.; Jaquet, M.; Kasper, M.; Madec, F.; Magnard, Y.; Martinez, P.; Maurel, D.; Le Mignant, D.; Möller-Nilsson, O.; Llored, M.; Moulin, T.; Origné, A.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Puget, P.; Rabou, P.; Ramos, J.; Rigal, R.; Rochat, S.; Roelfsema, R.; Rousset, G.; Roux, A.; Salasnich, B.; Sauvage, J.-F.; Sevin, A.; Soenke, C.; Stadler, E.; Suarez, M.; Weber, L.; Wildi, F.; Antoniucci, S.; Augereau, J.-C.; Baudino, J.-L.; Brandner, W.; Engler, N.; Girard, J.; Gry, C.; Kral, Q.; Kopytova, T.; Lagadec, E.; Milli, J.; Moutou, C.; Schlieder, J.; Szulágyi, J.; Thalmann, C.; Wahhaj, Z.

    2017-09-01

    Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories. Methods: We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the 17 Myr old Lower Centaurus-Crux association. Results: At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 μm indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 MJup, Teff = 1300-1600 K and R = 1.5 ± 0.1 RJup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log (g) = 4.0-5.0 with smaller radii (1.0-1.3 RJup). Conclusions: Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution. Based on observations collected at La Silla

  17. The impact of radiatively active water-ice clouds on Martian mesoscale atmospheric circulations

    Science.gov (United States)

    Spiga, A.; Madeleine, J.-B.; Hinson, D.; Navarro, T.; Forget, F.

    2014-04-01

    Background and Goals Water ice clouds are a key component of the Martian climate [1]. Understanding the properties of the Martian water ice clouds is crucial to constrain the Red Planet's climate and hydrological cycle both in the present and in the past [2]. In recent years, this statement have become all the more true as it was shown that the radiative effects of water ice clouds is far from being as negligible as hitherto believed; water ice clouds plays instead a key role in the large-scale thermal structure and dynamics of the Martian atmosphere [3, 4, 5]. Nevertheless, the radiative effect of water ice clouds at lower scales than the large synoptic scale (the so-called meso-scales) is still left to be explored. Here we use for the first time mesoscale modeling with radiatively active water ice clouds to address this open question.

  18. The search for multiple populations in Magellanic Cloud Clusters IV: Coeval multiple stellar populations in the young star cluster NGC 1978

    Science.gov (United States)

    Martocchia, S.; Niederhofer, F.; Dalessandro, E.; Bastian, N.; Kacharov, N.; Usher, C.; Cabrera-Ziri, I.; Lardo, C.; Cassisi, S.; Geisler, D.; Hilker, M.; Hollyhead, K.; Kozhurina-Platais, V.; Larsen, S.; Mackey, D.; Mucciarelli, A.; Platais, I.; Salaris, M.

    2018-04-01

    We have recently shown that the ˜2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the sub-giant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Due to its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star-formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star-formation epochs have occurred within NGC 1978. First, we use UV CMDs to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 ± 20 Myr between them. This is in tension with predictions from the AGB scenario for the origin of multiple populations. Second, we estimate the broadness of the main sequence turnoff (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of ˜65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extendend MSTO in intermediate age clusters, while it fully supports predictions from the stellar rotation model.

  19. GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Richard S. [SETI Institute, Mountain View, CA (United States); Lustig-Yaeger, Jacob [Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lupu, Roxana E.; Marley, Mark S. [Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA (United States); Lodders, Katharina, E-mail: Richard.S.Freedman@nasa.gov [Planetary Chemistry Laboratory, Washington University, St. Louis, MO (United States)

    2014-10-01

    We present new calculations of Rosseland and Planck gaseous mean opacities relevant to the atmospheres of giant planets and ultracool dwarfs. Such calculations are used in modeling the atmospheres, interiors, formation, and evolution of these objects. Our calculations are an expansion of those presented in Freedman et al. to include lower pressures, finer temperature resolution, and also the higher metallicities most relevant for giant planet atmospheres. Calculations span 1 μbar to 300 bar, and 75-4000 K, in a nearly square grid. Opacities at metallicities from solar to 50 times solar abundances are calculated. We also provide an analytic fit to the Rosseland mean opacities over the grid in pressure, temperature, and metallicity. In addition to computing mean opacities at these local temperatures, we also calculate them with weighting functions up to 7000 K, to simulate the mean opacities for incident stellar intensities, rather than locally thermally emitted intensities. The chemical equilibrium calculations account for the settling of condensates in a gravitational field and are applicable to cloud-free giant planet and ultracool dwarf atmospheres, but not circumstellar disks. We provide our extensive opacity tables for public use.

  20. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  1. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-01-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear

  2. AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD. II. THE NEAR-INFRARED SPECTROSCOPIC CATALOG

    International Nuclear Information System (INIS)

    Shimonishi, Takashi; Onaka, Takashi; Kato, Daisuke; Sakon, Itsuki; Ita, Yoshifusa; Kawamura, Akiko; Kaneda, Hidehiro

    2013-01-01

    We performed a near-infrared spectroscopic survey toward an area of ∼10 deg 2 of the Large Magellanic Cloud (LMC) with the infrared satellite AKARI. Observations were carried out as part of the AKARI Large-area Survey of the Large Magellanic Cloud (LSLMC). The slitless multi-object spectroscopic capability of the AKARI/IRC enabled us to obtain low-resolution (R ∼ 20) spectra in 2-5 μm for a large number of point sources in the LMC. As a result of the survey, we extracted about 2000 infrared spectra of point sources. The data are organized as a near-infrared spectroscopic catalog. The catalog includes various infrared objects such as young stellar objects (YSOs), asymptotic giant branch (AGB) stars, supergiants, and so on. It is shown that 97% of the catalog sources have corresponding photometric data in the wavelength range from 1.2 to 11 μm, and 67% of the sources also have photometric data up to 24 μm. The catalog allows us to investigate near-infrared spectral features of sources by comparison with their infrared spectral energy distributions. In addition, it is estimated that about 10% of the catalog sources are observed at more than two different epochs. This enables us to study a spectroscopic variability of sources by using the present catalog. Initial results of source classifications for the LSLMC samples are presented. We classified 659 LSLMC spectra based on their near-infrared spectral features by visual inspection. As a result, it is shown that the present catalog includes 7 YSOs, 160 C-rich AGBs, 8 C-rich AGB candidates, 85 O-rich AGBs, 122 blue and yellow supergiants, 150 red super giants, and 128 unclassified sources. Distributions of the classified sources on the color-color and color-magnitude diagrams are discussed in the text. Continuous wavelength coverage and high spectroscopic sensitivity in 2-5 μm can only be achieved by space observations. This is an unprecedented large-scale spectroscopic survey toward the LMC in the near

  3. A new study of N66 in the Small Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Taisheng; Turtle, A J [Sydney Univ. (Australia). School of Physics; Kennicutt, Jr, R C [Steward Observatory, Tucson, AZ (USA)

    1991-04-15

    A new sensitive method of searching for distinguishing supernova remnants (SNRs) from H II regions is described and applied to multi-frequency radio observations and narrow-band H {alpha} observations of the H II region N66 in the Small Magellanic Cloud. One SNR is identified and one SNR candidate is suggested at radio wavelengths. On an unsharp masked H{alpha} plate, the H II region shows a fascinating structure which might be described by a 'champagne model'. From this and other evidence, we suggested that giant HII regions are often associated with SNRs. (author).

  4. The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era

    International Nuclear Information System (INIS)

    Tayar, Jamie; Somers, Garrett; Pinsonneault, Marc H.; Johnson, Jennifer A.; Stello, Dennis; Mints, Alexey; Zamora, O.; García-Hernández, D. A.; Prieto, Carlos Allende; Maraston, Claudia; Serenelli, Aldo; Bastien, Fabienne A.; Basu, Sarbani; Bird, J. C.; Cohen, R. E.; Cunha, Katia; Elsworth, Yvonne; García, Rafael A.

    2017-01-01

    In the updated APOGEE- Kepler catalog, we have asteroseismic and spectroscopic data for over 3000 first ascent red giants. Given the size and accuracy of this sample, these data offer an unprecedented test of the accuracy of stellar models on the post-main-sequence. When we compare these data to theoretical predictions, we find a metallicity dependent temperature offset with a slope of around 100 K per dex in metallicity. We find that this effect is present in all model grids tested, and that theoretical uncertainties in the models, correlated spectroscopic errors, and shifts in the asteroseismic mass scale are insufficient to explain this effect. Stellar models can be brought into agreement with the data if a metallicity-dependent convective mixing length is used, with Δ α ML,YREC ∼ 0.2 per dex in metallicity, a trend inconsistent with the predictions of three-dimensional stellar convection simulations. If this effect is not taken into account, isochrone ages for red giants from the Gaia data will be off by as much as a factor of two even at modest deviations from solar metallicity ([Fe/H] = −0.5).

  5. The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era

    Energy Technology Data Exchange (ETDEWEB)

    Tayar, Jamie; Somers, Garrett; Pinsonneault, Marc H.; Johnson, Jennifer A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, OH 43210 (United States); Stello, Dennis [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Mints, Alexey [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Zamora, O.; García-Hernández, D. A.; Prieto, Carlos Allende [Instituto de Astrofísica de Canarias (IAC), Vía Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Maraston, Claudia [ICG—University of Portsmouth, Burnaby Road, PO1 3FX, Portsmouth (United Kingdom); Serenelli, Aldo [Institute of Space Sciences (CSIC-IEEC), Carrer de Can Magrans, Barcelona, E-08193 (Spain); Bastien, Fabienne A. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16803 (United States); Basu, Sarbani [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Bird, J. C. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Circle, Nashville, TN 37235 (United States); Cohen, R. E. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Cunha, Katia [Observatório Nacional-MCTI (Brazil); Elsworth, Yvonne [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); García, Rafael A. [Laboratoire AIM, CEA/DRF-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191, Gif-sur-Yvette (France); and others

    2017-05-01

    In the updated APOGEE- Kepler catalog, we have asteroseismic and spectroscopic data for over 3000 first ascent red giants. Given the size and accuracy of this sample, these data offer an unprecedented test of the accuracy of stellar models on the post-main-sequence. When we compare these data to theoretical predictions, we find a metallicity dependent temperature offset with a slope of around 100 K per dex in metallicity. We find that this effect is present in all model grids tested, and that theoretical uncertainties in the models, correlated spectroscopic errors, and shifts in the asteroseismic mass scale are insufficient to explain this effect. Stellar models can be brought into agreement with the data if a metallicity-dependent convective mixing length is used, with Δ α {sub ML,YREC} ∼ 0.2 per dex in metallicity, a trend inconsistent with the predictions of three-dimensional stellar convection simulations. If this effect is not taken into account, isochrone ages for red giants from the Gaia data will be off by as much as a factor of two even at modest deviations from solar metallicity ([Fe/H] = −0.5).

  6. Secure and Resilient Cloud Computing for the Department of Defense

    Science.gov (United States)

    2015-11-16

    platform as a service (PaaS), and software as a service ( SaaS )—that target system administrators, developers, and end-users respectively (see Table 2...interfaces (API) and services Medium Amazon Elastic MapReduce, MathWorks Cloud, Red Hat OpenShift SaaS Full-fledged applications Low Google gMail

  7. New Hsub(α) emission stars in galactic dark clouds

    International Nuclear Information System (INIS)

    Kun, M.

    1982-01-01

    The Hsub(α) emission stars have been searched in galactic dark clouds. 110 Hsub(α) emission objects not published previously were detected with the 60/90/180 cm Schmidt telescope of Konkoly Observatory in two fields containing several dark clouds. The centres of these fields have the coordinates of at αsb(1950)=2sup(n)04sup(m, deltasub(1950)=+75 deg, and αsub(1950)=22sup(h)35sup(m), deltasub(1950)=+75 deg. Most of the emission stars appears to be located near the edges of the dark regions. Their appar red magnitudes are between 11sup(m) and 16sup(m)

  8. Cloud detection method for Chinese moderate high resolution satellite imagery (Conference Presentation)

    Science.gov (United States)

    Zhong, Bo; Chen, Wuhan; Wu, Shanlong; Liu, Qinhuo

    2016-10-01

    Cloud detection of satellite imagery is very important for quantitative remote sensing research and remote sensing applications. However, many satellite sensors don't have enough bands for a quick, accurate, and simple detection of clouds. Particularly, the newly launched moderate to high spatial resolution satellite sensors of China, such as the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) and the wide field of view (WFV) sensor on-board the Gao Fen 1 (GF-1), only have four available bands including blue, green, red, and near infrared bands, which are far from the requirements of most could detection methods. In order to solve this problem, an improved and automated cloud detection method for Chinese satellite sensors called OCM (Object oriented Cloud and cloud-shadow Matching method) is presented in this paper. It firstly modified the Automatic Cloud Cover Assessment (ACCA) method, which was developed for Landsat-7 data, to get an initial cloud map. The modified ACCA method is mainly based on threshold and different threshold setting produces different cloud map. Subsequently, a strict threshold is used to produce a cloud map with high confidence and large amount of cloud omission and a loose threshold is used to produce a cloud map with low confidence and large amount of commission. Secondly, a corresponding cloud-shadow map is also produced using the threshold of near-infrared band. Thirdly, the cloud maps and cloud-shadow map are transferred to cloud objects and cloud-shadow objects. Cloud and cloud-shadow are usually in pairs; consequently, the final cloud and cloud-shadow maps are made based on the relationship between cloud and cloud-shadow objects. OCM method was tested using almost 200 HJ-1/CCD images across China and the overall accuracy of cloud detection is close to 90%.

  9. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu, E-mail: keiser@dtm.ciw.edu [Department of Terrestrial Magnetism, Carnegie Institution, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  10. ''Blue clearing'' on Mars in connection with dust clouds in August and September 1971

    International Nuclear Information System (INIS)

    Prokof'eva, V.V.; Chuprakova, T.A.; Dzyamko, S.S.; Bryzgalova, T.V.

    1975-01-01

    Photometric processing of Mars TV pictures obtained in ultraviolet, blue, green and red spectrum regions reveals the connection of the ''blue clearing'' effect with the appearance of dust clouds above the light regions of the planet. The obtained data confirm the hypothesis about the dust nature of blue clearings: the illusion of blue clearings is produced as a result of increasing brightness of thse Mars light regions, when dust clouds apr above them

  11. Properties of minimum-flux coronae in dwarfs and giants

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1976-01-01

    Using a method due to Hearn, we examine the properties of minimum-flux coronae in dwarfs and giants. If the fraction phi of the total stellar luminosity which is used to heat the corona is equal to the solar value phi/sub s/, then red dwarfs must have coronae that are cooler than the solar corona: in UV Ceti, for example, the coronal temperature is a factor 3 less than in the Sun. This is consistent with an independent estimate of coronal temperature in a flare star. If phi=phi/sub s/, main-sequence stars hotter than the Sun have coronae which are hotter than the solar corona. Soft X-rays from Sirius suggest that the coronal temperature in Sirius is indeed hotter than the Sun by a factor of about 40 percent. Giants show an even more marked decrease in coronal temperature at later spectral type than do the dwarfs. We suggest that the reason for the presence of O V emission in β Gem and O VI emission in α Aur, and the absence of O V emission in α Boo and α Tau, is that the coronae in the latter two stars are cooler (rather than hotter, as McClintock et al. have suggested) than in the former two. Our results explain why it is more likely that mass loss has been detected in α Aur and α Boo, but not in α Tau or β Gem. Using a simple flare model, we show that flares in both a dwarf star (UV Ceti) and a giant (α Aur) were initiated not in the corona, but in the transition region

  12. The chemical composition of red giants in 47 Tucanae. I. Fundamental parameters and chemical abundance patterns

    Science.gov (United States)

    Thygesen, A. O.; Sbordone, L.; Andrievsky, S.; Korotin, S.; Yong, D.; Zaggia, S.; Ludwig, H.-G.; Collet, R.; Asplund, M.; Ventura, P.; D'Antona, F.; Meléndez, J.; D'Ercole, A.

    2014-12-01

    Context. The study of chemical abundance patterns in globular clusters is key importance to constraining the different candidates for intracluster pollution of light elements. Aims: We aim at deriving accurate abundances for a wide range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D local thermodynamic equilibrium (LTE) atmospheric models, together with a combination of equivalent width measurements, LTE, and NLTE synthesis, we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al, and Ba. We find a mean [Fe/H] = -0.78 ± 0.07 and [ α/ Fe ] = 0.34 ± 0.03 in good agreement with previous studies. The remaining elements show good agreement with the literature, but including NLTE for Al has a significant impact on the behavior of this key element. Conclusions: We confirm the presence of an Na-O anti-correlation in 47 Tucanae found by several other works. Our NLTE analysis of Al shifts the [Al/Fe] to lower values, indicating that this may be overestimated in earlier works. No evidence of an intrinsic variation is found in any of the remaining elements. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (Programmes 084.B-0810 and 086.B-0237).Full Tables 2, 5, and 9 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A108Appendix A is available in electronic form at http://www.aanda.org

  13. Cloud Infrastructure & Applications - CloudIA

    Science.gov (United States)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  14. A SEARCH FOR DUST EMISSION IN THE LEO INTERGALACTIC CLOUD

    International Nuclear Information System (INIS)

    Bot, Caroline; Helou, George; Puget, Jeremie; Latter, William B.; Schneider, Stephen; Terzian, Yervant

    2009-01-01

    We present a search for infrared dust emission associated with the Leo cloud, a large intergalactic cloud in the M96 group. Mid-infrared and far-infrared images were obtained with the InfraRed Array Camera and the Multiband Imaging Photometer for Spitzer on the Spitzer Space Telescope. Our analysis of these maps is done at each wavelength relative to the H I spatial distribution. We observe a probable detection at 8 μm and a marginal detection at 24 μm associated with the highest H I column densities in the cloud. At 70 and 160 μm, upper limits on the dust emission are deduced. The level of the detection is low so that the possibility of a fortuitous cirrus clump or of an overdensity of extragalactic sources along the line of sight cannot be excluded. If this detection is confirmed, the quantities of dust inferred imply a dust-to-gas ratio in the intergalactic cloud up to a few times solar but no less than 1/20 solar. A confirmed detection would therefore exclude the possibility that the intergalactic cloud has a primordial origin. Instead, this large intergalactic cloud could therefore have been formed through interactions between galaxies in the group.

  15. Mediterranean salt giants beyond the evaporite model: The Sicily perspective

    Science.gov (United States)

    Carmelo Manuella, Fabio; Scribano, Vittorio; Carbone, Serafina; Hovland, Martin; Johnsen, Hans-Konrad; Rueslåtten, Håkon

    2017-04-01

    Mediterranean salt giants, occurring both in sub-seafloor and in onshore settings (the "Gessoso Solfifera Group"), are traditionally explained by repeated cycles of desiccation and replenishment of the entire basin. However, such hypotheses are strongly biased by mass balance calculations and geodynamic considerations. In addition, any hypothesis without full desiccation, still based on the evaporite model, should consider that seawater brines start to precipitate halite when 2/3 of the seawater has evaporated, and hence the level of the basin cannot be the same as the adjacent ocean. On the other hand, hydrothermal venting of hot saline brines onto the seafloor can precipitate salt in a deep marine basin if a layer of heavy brine exists along the seafloor. This process, likely related to sub-surface boiling or supercritical out-salting (Hovland et al., 2006), is consistent with geological evidence in the Red Sea "Deeps" (Hovland et al., 2015). Although supercritical out-salting and phase separation can sufficiently explain the formation of several marine salt deposits, even in deep marine settings, the Mediterranean salt giant formations can also be explained by the serpentinization model (Scribano et al., 2016). Serpentinization of abyssal peridotites does not involve seawater salts, and large quantities of saline brines accumulate in pores and fractures of the sub-seafloor serpentinites. If these rocks undergo thermal dehydration, for example, due to igneous intrusions, brines and salt slurries can migrate upwards as hydrothermal plumes, eventually venting at the seafloor, giving rise to giant salt deposits over time. These hydrothermal processes can take place in a temporal sequence, as it occurred in the "Caltanissetta Basin" (Sicily). There, salt accumulation associated with serpentinization started during Triassic times (and even earlier), and venting of heavy brines onto the seafloor eventually occurred in the Messinian via the hydrothermal plume mechanism

  16. All-Sky Cataloging and Analysis of Interstellar Clouds

    Science.gov (United States)

    Hojaev, Alisher S.

    2015-08-01

    Recent quick instrumental progress provides possibilities to careful study the interstellar medium (ISM) in the Galaxy and in the nearest galaxies (M31, LMC, SMC, etc.). Significant enough baryon mass of the galactic and extragalactic ISM is concentrated in the clouds with molecular content in the densest parts. The molecular clouds (MoC) are closely related to cold dust-gas clouds, particularly HI ones and should play a key-role in the star forming processes as well as in the dynamics of the Galaxy. These arguments show the importance of counting and surveying of the MoC populations. In order to attempt to solve at least some problems of the physics and evolution of the MoC system in the Galaxy (as well as in other galaxies), its impact on the dynamics and evolution of the Galaxy itself, and to extend the results to the MoC systems in other galaxies we drafted a consolidated composite catalog of molecular and dust-gas clouds based on the recent data. Online data banks and services such as VizieR, SIMBAD at CDS as well as original publications were used. In our Galaxy there are about 200 large molecular clouds, more than 2500 smaller cold dark clouds (including clumps and cores this value exceeds approximately 5000 objects) observed in 11 kpc Solar neighborhood. The general catalog has been divided into 3 sub-catalogs: 1)large and giant MoC; 2) MoC with moderate masses and sizes; 3) small MoC including the clumps and cores. All main catalogs and subcatalogs contain the coordinates, sizes, distances, masses and other physical parameters (density, temperature, radial velocity, etc.) that are available for the different clouds. Statistical and correlation analyses of the data has been performed, the spatial distribution is drawn and the total number is estimated, the dynamic model of formation and evolution of MoC system is proposed. Our results are compared and discussed with data of other investigations as well as the ways to complete and improve the catalog data

  17. Evolutionary Models of Red Supergiants: Evidence for A Metallicity-dependent Mixing Length and Implications for Type IIP Supernova Progenitors

    Science.gov (United States)

    Chun, Sang-Hyun; Yoon, Sung-Chul; Jung, Moo-Keon; Kim, Dong Uk; Kim, Jihoon

    2018-01-01

    Recent studies on the temperatures of red supergiants (RSGs) in the local universe provide us with an excellent observational constraint on RSG models. We calibrate the mixing length parameter by comparing model predictions with the empirical RSG temperatures in Small and Large Magellanic Clouds, Milky Way, and M31, which are inferred from the TiO band and the spectral energy distribution (SED). Although our RSG models are computed with the MESA code, our result may be applied to other stellar evolution codes, including the BEC and TWIN codes. We find evidence that the mixing length increases with increasing metallicity for both cases where the TiO and SED temperatures of RSGs are used for the calibration. Together with the recent finding of a similar correlation in low-mass red giants by Tayar et al., this implies that the metallicity dependence of the mixing length is a universal feature in post-main sequence stars of both low and high masses. Our result implies that typical Type IIP supernova (SN IIP) progenitors with initial masses of ∼ 10{--}16 {M}ȯ have a radius range of 400 {R}ȯ ≲ R≲ 800 {R}ȯ regardless of metallicity. As an auxiliary result of this study, we find that the hydrogen-rich envelope mass of SN IIP progenitors for a given initial mass is predicted to be largely independent of metallicity if the Ledoux criterion with slow semiconvection is adopted, while the Schwarzschild models predict systematically more massive hydrogen-rich envelopes for lower metallicity.

  18. Giant pulses of pulsar radio emission

    OpenAIRE

    Kuzmin, A. D.

    2007-01-01

    Review report of giant pulses of pulsar radio emission, based on our detections of four new pulsars with giant pulses, and the comparative analysis of the previously known pulsars with giant pulses, including the Crab pulsar and millisecond pulsar PSR B1937+21.

  19. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    Science.gov (United States)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  20. The effect of photoionizing feedback on star formation in isolated and colliding clouds

    Science.gov (United States)

    Shima, Kazuhiro; Tasker, Elizabeth J.; Federrath, Christoph; Habe, Asao

    2018-05-01

    We investigate star formation occurring in idealized giant molecular clouds, comparing structures that evolve in isolation versus those undergoing a collision. Two different collision speeds are investigated and the impact of photoionizing radiation from the stars is determined. We find that a colliding system leads to more massive star formation both with and without the addition of feedback, raising overall star formation efficiencies (SFE) by a factor of 10 and steepening the high-mass end of the stellar mass function. This rise in SFE is due to increased turbulent compression during the cloud collision. While feedback can both promote and hinder star formation in an isolated system, it increases the SFE by approximately 1.5 times in the colliding case when the thermal speed of the resulting H II regions matches the shock propagation speed in the collision.

  1. Giant Impacts on Earth-Like Worlds

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to

  2. Genomic diversification of giant enteric symbionts reflects host dietary lifestyles

    KAUST Repository

    Ngugi, David

    2017-08-24

    Herbivorous surgeonfishes are an ecologically successful group of reef fish that rely on marine algae as their principal food source. Here, we elucidated the significance of giant enteric symbionts colonizing these fishes regarding their roles in the digestive processes of hosts feeding predominantly on polysiphonous red algae and brown Turbinaria algae, which contain different polysaccharide constituents. Using metagenomics, single-cell genomics, and metatranscriptomic analyses, we provide evidence of metabolic diversification of enteric microbiota involved in the degradation of algal biomass in these fishes. The enteric microbiota is also phylogenetically and functionally simple relative to the complex lignocellulose-degrading microbiota of terrestrial herbivores. Over 90% of the enzymes for deconstructing algal polysaccharides emanate from members of a single bacterial lineage,

  3. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  4. Large-scale CO J = 1-0 observations of the giant molecular cloud associated with the infrared ring N35 with the Nobeyama 45 m telescope

    Science.gov (United States)

    Torii, Kazufumi; Fujita, Shinji; Matsuo, Mitsuhiro; Nishimura, Atsushi; Kohno, Mikito; Kuriki, Mika; Tsuda, Yuya; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Kuno, Nario; Hattori, Yusuke; Yoshiike, Satoshi; Ohama, Akio; Tachihara, Kengo; Shima, Kazuhiro; Habe, Asao; Fukui, Yasuo

    2018-05-01

    We report an observational study of the giant molecular cloud (GMC) associated with the Galactic infrared ring-like structure N35 and two nearby H II regions G024.392+00.072 (H II region A) and G024.510-00.060 (H II region B), using the new CO J = 1-0 data obtained as a part of the FOREST Unbiased Galactic Plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) project at a spatial resolution of 21″. Our CO data reveals that the GMC, with a total molecular mass of 2.1 × 106 M⊙, has two velocity components of over ˜10-15 km s-1. The majority of molecular gas in the GMC is included in the lower-velocity component (LVC) at ˜110-114 km s-1, while the higher-velocity components (HVCs) at ˜118-126 km s-1 consist of three smaller molecular clouds which are located near the three H II regions. The LVC and HVCs show spatially complementary distributions along the line-of-sight, despite large velocity separations of ˜5-15 km s-1, and are connected in velocity by the CO emission with intermediate intensities. By comparing the observations with simulations, we discuss a scenario where collisions of the three HVCs with the LVC at velocities of ˜10-15 km s-1 can provide an interpretation of these two observational signatures. The intermediate-velocity features between the LVC and HVCs can be understood as broad bridge features, which indicate the turbulent motion of the gas at the collision interfaces, while the spatially complementary distributions represent the cavities created in the LVC by the HVCs through the collisions. Our model indicates that the three H II regions were formed after the onset of the collisions, and it is therefore suggested that the high-mass star formation in the GMC was triggered by the collisions.

  5. Optical spectra of radio planetary nebulae in the large Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne J.L.

    2008-01-01

    Full Text Available We present 11 spectra from 12 candidate radio sources co-identified with known planetary nebulae (PNe in the Large Magellanic Cloud (LMC. Originally found in Australia Telescope Compact Array (ATCA LMC surveys at 1.4, 4.8 and 8.64 GHz and confirmed by new high resolution ATCA images at 6 and 3 cm (4' /2' , these complement data recently presented for candidate radio PNe in the Small Magellanic Cloud (SMC. Their spectra were obtained using the Radcliff 1.9-meter telescope in Sutherland (South Africa. All of the optical PNe and radio candidates are within 2' and may represent a population of selected radio bright sample only. Nebular ionized masses of these objects are estimated to be as high as 1.8 Mfi, supporting the idea that massive PNe progenitor central stars lose much of their mass in the asymptotic giant branch (AGB phase or prior. We also identify a sub-population (33% of radio PNe candidates with prominent ionized iron emission lines.

  6. Giant Oil Fields - The Highway to Oil: Giant Oil Fields and their Importance for Future Oil Production

    International Nuclear Information System (INIS)

    Robelius, Fredrik

    2007-01-01

    Since the 1950s, oil has been the dominant source of energy in the world. The cheap supply of oil has been the engine for economic growth in the western world. Since future oil demand is expected to increase, the question to what extent future production will be available is important. The belief in a soon peak production of oil is fueled by increasing oil prices. However, the reliability of the oil price as a single parameter can be questioned, as earlier times of high prices have occurred without having anything to do with a lack of oil. Instead, giant oil fields, the largest oil fields in the world, can be used as a parameter. A giant oil field contains at least 500 million barrels of recoverable oil. Only 507, or 1 % of the total number of fields, are giants. Their contribution is striking: over 60 % of the 2005 production and about 65 % of the global ultimate recoverable reserve (URR). However, giant fields are something of the past since a majority of the largest giant fields are over 50 years old and the discovery trend of less giant fields with smaller volumes is clear. A large number of the largest giant fields are found in the countries surrounding the Persian Gulf. The domination of giant fields in global oil production confirms a concept where they govern future production. A model, based on past annual production and URR, has been developed to forecast future production from giant fields. The results, in combination with forecasts on new field developments, heavy oil and oil sand, are used to predict future oil production. In all scenarios, peak oil occurs at about the same time as the giant fields peak. The worst-case scenario sees a peak in 2008 and the best-case scenario, following a 1.4 % demand growth, peaks in 2018

  7. The Relationship Between Infrared Dark Cloud and Stellar Properties

    Science.gov (United States)

    Calahan, Jenny; Hora, Joseph L.

    2018-01-01

    Massive stars are known to form within infrared dark clouds (IRDCs), but many details about how molecular clouds collapse and form stars remain poorly understood.We determine the relationship between the dark cloud mass and the population of young stellar objects (YSOs) associated with the cloud to shed light on the physical processes occurring within these star forming regions. We chose to use a sample of IRDCs and YSOs within the Cygnus-X region, a close-by giant star formation complex that has every stage of star formation represented. Using observations from IRAC, MIPS, PACS, and SPIRE on Spitzer and Herschel we identified a sample of 30,903 YSOs and 167 IRDCs. We derived the class of each YSO as well as the mass of YSO and IRDCs from the flux information. Using these parameters, as well as their locations in the cloud, we were sorted IRDC fragments into larger filaments and associate a set of YSOs with each IRDC. By measuring and comparing parameters such as YSO total mass, number of YSOs, Class 0, Class I, and Class II populations, distance from host filament, and filament mass we tested for correlations between the YSO and IRDC parameters. Using this treasure trove of information, we find that Class 0 and I objects are located more closely to their host IRDC than their Class II counterparts. We also find that high-density IRDCs are better environments for star formation than low-density IRDCs. However, we find no correlation between the total mass of the IRDC and the largest YSO mass in the IRDC, suggesting that IRDCs of any mass can have massive YSOs associated with them.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  8. The Carnegie Hubble Program: The Distance and Structure of the SMC as Revealed by Mid-Infrared Observations of Cepheids

    Science.gov (United States)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andy; Persson, S. E.; Rich, Jeff; Seibert, Mark; Rigby, Jane R.

    2016-01-01

    Using Spitzer observations of classical Cepheids we have measured the true average distance modulus of the Small Magellanic Cloud (SMC) to be18.96 +/- 0.01 stat +/- 0.03sys mag (corresponding to 62+/- 0.3kpc), which is 0.48 +/- 0.01 mag more distant than the LMC. This is in agreement with previous results from Cepheid observations, as well as with measurements from other indicators such as RR Lyrae stars and the tip of the red giant branch. Utilizing the properties of the mid-infrared Leavitt Law we measured precise distances to individual Cepheids in the SMC, and have confirmed that the galaxy is tilted and elongated such that its eastern side is up to20 kpc closer than its western side. This is in agreement with the results from red clump stars and dynamical simulations of the Magellanic Clouds and Stream.

  9. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). III. Possible evidence for formation of NGC 6618 cluster in M 17 by cloud-cloud collision

    Science.gov (United States)

    Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo

    2018-05-01

    We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙}yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).

  10. Laboratory investigation of nitrile ices of Titan's stratospheric clouds

    Science.gov (United States)

    Nna Mvondo, D.; Anderson, C. M.; McLain, J. L.; Samuelson, R. E.

    2017-09-01

    Titan's mid to lower stratosphere contains complex cloud systems of numerous organic ice particles comprised of both hydrocarbon and nitrile compounds. Most of these stratospheric ice clouds form as a result of vapor condensation formation processes. However, there are additional ice emission features such as dicyanoacetylene (C4N2) and the 220 cm-1 ice emission feature (the "Haystack") that are difficult to explain since there are no observed vapor emission features associated with these ices. In our laboratory, using a high-vacuum chamber coupled to a FTIR spectrometer, we are engaged in a dedicated investigation of Titan's stratospheric ices to interpret and constrain Cassini Composite InfraRed Spectrometer (CIRS) far-IR data. We will present laboratory transmittance spectra obtained for propionitrile (CH3CH2CN), cyanogen (C2N2) and hydrogen cyanide (HCN) ices, as well as various combinations of their mixtures, to better understand the cloud chemistry occurring in Titan's stratosphere.

  11. Excitation of giant resonances in heavy ion collisions

    International Nuclear Information System (INIS)

    Kuehn, W.

    1991-01-01

    Introduction: What are Giant Resonances? General Features of Giant Resonances, Macroscopic Description and Classification, Basic Excitation Mechanisms, Decay Modes, Giant Resonances Built on Excited States, Relativistic Coulomb Excitation of Giant Resonances, Experimental Situation. (orig.)

  12. Floret-like multinucleated giant cells in neurofibroma

    Directory of Open Access Journals (Sweden)

    Golka Dariusz

    2007-12-01

    Full Text Available Abstract This short report discusses a case of neurofibroma containing floret-like multinucleated giant cells. This being the second such case in the literature. Floret-like multinucleated giant cells have been reported in gynaecomastia and neurofibroma in neurofibromatosis type 1. These cells have been reported in uncommon soft tissue tumours including pleomorphic lipoma, giant cell collagenoma, giant cell fibroblastoma and giant cell angiofibroma. We recommend these cells to be interpreted carefully keeping in mind the rare malignant change in neurofibromas. Immunohistochemistry would help in defining the nature of such cells.

  13. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  14. A second Uganda record of Red-footed Falcon Falco vespertinus

    African Journals Online (AJOL)

    2014-10-05

    Oct 5, 2014 ... cloud cover, I drove north from Fort Portal with my wife Jean to Lake Saka and we walked on from ... morning progressed, more birds began to arrive, with “kettles” of Steppe Buzzards and Lesser Spotted ... male Red-footed Falcon Falco vespertinus, a bird I am familiar with from Europe and from spring ...

  15. Nanodielectrics with giant permittivity

    Indian Academy of Sciences (India)

    Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal ...

  16. THE FIRST FLUORINE ABUNDANCE DETERMINATIONS IN EXTRAGALACTIC ASYMPTOTIC GIANT BRANCH CARBON STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; Dominguez, I.; Cunha, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Straniero, O.

    2011-01-01

    Fluorine ( 19 F) abundances (or upper limits) are derived in six extragalactic asymptotic giant branch (AGB) carbon stars from the HF(1-0) R9 line at 2.3358 μm in high-resolution spectra. The stars belong to the Local Group galaxies, Large Magellanic Cloud, Small Magellanic Cloud, and Carina dwarf spheroidal, spanning more than a factor of 50 in metallicity. This is the first study to probe the behavior of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations, however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low-mass, low-metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.

  17. STATISTICAL ANALYSIS OF STELLAR EVOLUTION

    OpenAIRE

    van Dyk, DA; DeGennaro, S; Stein, N; Jefferys, WH; von Hippel, T

    2009-01-01

    Color-Magnitude Diagrams (CMDs) are plots that compare the magnitudes (luminosities) of stars in different wavelengths of light (colors). High nonlinear correlations among the mass, color, and surface temperature of newly formed stars induce a long narrow curved point cloud in a CMD known as the main sequence. Aging stars form new CMD groups of red giants and white dwarfs. The physical processes that govern this evolution can be described with mathematical models and explored using complex co...

  18. Similar complex kinematics within two massive, filamentary infrared dark clouds

    Science.gov (United States)

    Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Jiménez-Serra, I.; Tan, J. C.; Fontani, F.; Pon, A.; Ragan, S.

    2018-04-01

    Infrared dark clouds (IRDCs) are thought to be potential hosts of the elusive early phases of high-mass star formation. Here, we conduct an in-depth kinematic analysis of one such IRDC, G034.43+00.24 (Cloud F), using high sensitivity and high spectral resolution IRAM-30m N2H+ (1-0) and C18O (1-0) observations. To disentangle the complex velocity structure within this cloud, we use Gaussian decomposition and hierarchical clustering algorithms. We find that four distinct coherent velocity components are present within Cloud F. The properties of these components are compared to those found in a similar IRDC, G035.39-00.33 (Cloud H). We find that the components in both clouds have high densities (inferred by their identification in N2H+), trans-to-supersonic non-thermal velocity dispersions with Mach numbers of ˜1.5-4, a separation in velocity of ˜3 km s-1, and a mean red-shift of ˜0.3 km s-1 between the N2H+ (dense gas) and C18O emission (envelope gas). The latter of these could suggest that these clouds share a common formation scenario. We investigate the kinematics of the larger-scale Cloud F structures, using lower-density-tracing 13CO(1-0) observations. A good correspondence is found between the components identified in the IRAM-30m observations and the most prominent component in the 13CO data. We find that the IRDC Cloud F is only a small part of a much larger structure, which appears to be an inter-arm filament of the Milky Way.

  19. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Science.gov (United States)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-01-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  20. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Science.gov (United States)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-05-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  1. Phylogenetic Diversity, Distribution, and Cophylogeny of Giant Bacteria (Epulopiscium) with their Surgeonfish Hosts in the Red Sea

    KAUST Repository

    Miyake, Sou

    2016-03-14

    Epulopiscium is a group of giant bacteria found in high abundance in intestinal tracts of herbivorous surgeonfish. Despite their peculiarly large cell size (can be up to 600 μm), extreme polyploidy (some with over 100,000 genome copies per cell) and viviparity (whereby mother cells produce live offspring), details about their diversity, distribution or their role in the host gut are lacking. Previous studies have highlighted the existence of morphologically distinct Epulopiscium cell types (defined as morphotypes A to J) in some surgeonfish genera, but the corresponding genetic diversity and distribution among other surgeonfishes remain mostly unknown. Therefore, we investigated the phylogenetic diversity of Epulopiscium, distribution and co-occurrence in multiple hosts. Here, we identified eleven new phylogenetic clades, six of which were also morphologically characterized. Three of these novel clades were phylogenetically and morphologically similar to cigar-shaped type A1 cells, found in a wide range of surgeonfishes including Acanthurus nigrofuscus, while three were similar to smaller, rod-shaped type E that has not been phylogenetically classified thus far. Our results also confirmed that biogeography appears to have relatively little influence on Epulopiscium diversity, as clades found in the Great Barrier Reef and Hawaii were also recovered from the Red Sea. Although multiple symbiont clades inhabited a given species of host surgeonfish and multiple host species possessed a given symbiont clade, statistical analysis of host and symbiont phylogenies indicated significant cophylogeny, which in turn suggests co-evolutionary relationships. A cluster analysis of Epulopiscium sequences from previously published amplicon sequencing dataset revealed a similar pattern, where specific clades were consistently found in high abundance amongst closely related surgeonfishes. Differences in abundance may indicate specialization of clades to certain gut environments

  2. Phylogenetic Diversity, Distribution, and Cophylogeny of Giant Bacteria (Epulopiscium) with their Surgeonfish Hosts in the Red Sea

    Science.gov (United States)

    Miyake, Sou; Ngugi, David K.; Stingl, Ulrich

    2016-01-01

    Epulopiscium is a group of giant bacteria found in high abundance in intestinal tracts of herbivorous surgeonfish. Despite their peculiarly large cell size (can be up to 600 μm), extreme polyploidy (some with over 100,000 genome copies per cell) and viviparity (whereby mother cells produce live offspring), details about their diversity, distribution or their role in the host gut are lacking. Previous studies have highlighted the existence of morphologically distinct Epulopiscium cell types (defined as morphotypes A to J) in some surgeonfish genera, but the corresponding genetic diversity and distribution among other surgeonfishes remain mostly unknown. Therefore, we investigated the phylogenetic diversity of Epulopiscium, distribution and co-occurrence in multiple hosts. Here, we identified eleven new phylogenetic clades, six of which were also morphologically characterized. Three of these novel clades were phylogenetically and morphologically similar to cigar-shaped type A1 cells, found in a wide range of surgeonfishes including Acanthurus nigrofuscus, while three were similar to smaller, rod-shaped type E that has not been phylogenetically classified thus far. Our results also confirmed that biogeography appears to have relatively little influence on Epulopiscium diversity, as clades found in the Great Barrier Reef and Hawaii were also recovered from the Red Sea. Although multiple symbiont clades inhabited a given species of host surgeonfish and multiple host species possessed a given symbiont clade, statistical analysis of host and symbiont phylogenies indicated significant cophylogeny, which in turn suggests co-evolutionary relationships. A cluster analysis of Epulopiscium sequences from previously published amplicon sequencing dataset revealed a similar pattern, where specific clades were consistently found in high abundance amongst closely related surgeonfishes. Differences in abundance may indicate specialization of clades to certain gut environments

  3. Phylogenetic Diversity, Distribution, and Cophylogeny of Giant Bacteria (Epulopiscium) with their Surgeonfish Hosts in the Red Sea

    KAUST Repository

    Miyake, Sou; Ngugi, David; Stingl, Ulrich

    2016-01-01

    Epulopiscium is a group of giant bacteria found in high abundance in intestinal tracts of herbivorous surgeonfish. Despite their peculiarly large cell size (can be up to 600 μm), extreme polyploidy (some with over 100,000 genome copies per cell) and viviparity (whereby mother cells produce live offspring), details about their diversity, distribution or their role in the host gut are lacking. Previous studies have highlighted the existence of morphologically distinct Epulopiscium cell types (defined as morphotypes A to J) in some surgeonfish genera, but the corresponding genetic diversity and distribution among other surgeonfishes remain mostly unknown. Therefore, we investigated the phylogenetic diversity of Epulopiscium, distribution and co-occurrence in multiple hosts. Here, we identified eleven new phylogenetic clades, six of which were also morphologically characterized. Three of these novel clades were phylogenetically and morphologically similar to cigar-shaped type A1 cells, found in a wide range of surgeonfishes including Acanthurus nigrofuscus, while three were similar to smaller, rod-shaped type E that has not been phylogenetically classified thus far. Our results also confirmed that biogeography appears to have relatively little influence on Epulopiscium diversity, as clades found in the Great Barrier Reef and Hawaii were also recovered from the Red Sea. Although multiple symbiont clades inhabited a given species of host surgeonfish and multiple host species possessed a given symbiont clade, statistical analysis of host and symbiont phylogenies indicated significant cophylogeny, which in turn suggests co-evolutionary relationships. A cluster analysis of Epulopiscium sequences from previously published amplicon sequencing dataset revealed a similar pattern, where specific clades were consistently found in high abundance amongst closely related surgeonfishes. Differences in abundance may indicate specialization of clades to certain gut environments

  4. Giant Clams and Rising CO2: Light May Ameliorate Effects of Ocean Acidification on a Solar-Powered Animal.

    Directory of Open Access Journals (Sweden)

    Sue-Ann Watson

    Full Text Available Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. Several giant clam species are listed as 'Vulnerable' on the IUCN Red List of Threatened Species and now climate change and ocean acidification pose an additional threat to their conservation. Unlike most other molluscs, giant clams are 'solar-powered' animals containing photosynthetic algal symbionts suggesting that light could influence the effects of ocean acidification on these vulnerable animals. In this study, juvenile fluted giant clams Tridacna squamosa were exposed to three levels of carbon dioxide (CO2 (control ~400, mid ~650 and high ~950 μatm and light (photosynthetically active radiation 35, 65 and 304 μmol photons m-2 s-1. Elevated CO2 projected for the end of this century (~650 and ~950 μatm reduced giant clam survival and growth at mid-light levels. However, effects of CO2 on survival were absent at high-light, with 100% survival across all CO2 levels. Effects of CO2 on growth of surviving clams were lessened, but not removed, at high-light levels. Shell growth and total animal mass gain were still reduced at high-CO2. This study demonstrates the potential for light to alleviate effects of ocean acidification on survival and growth in a threatened calcareous marine invertebrate. Managing water quality (e.g. turbidity and sedimentation in coastal areas to maintain water clarity may help ameliorate some negative effects of ocean acidification on giant clams and potentially other solar-powered calcifiers, such as hard corals.

  5. Giant Clams and Rising CO2: Light May Ameliorate Effects of Ocean Acidification on a Solar-Powered Animal.

    Science.gov (United States)

    Watson, Sue-Ann

    2015-01-01

    Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. Several giant clam species are listed as 'Vulnerable' on the IUCN Red List of Threatened Species and now climate change and ocean acidification pose an additional threat to their conservation. Unlike most other molluscs, giant clams are 'solar-powered' animals containing photosynthetic algal symbionts suggesting that light could influence the effects of ocean acidification on these vulnerable animals. In this study, juvenile fluted giant clams Tridacna squamosa were exposed to three levels of carbon dioxide (CO2) (control ~400, mid ~650 and high ~950 μatm) and light (photosynthetically active radiation 35, 65 and 304 μmol photons m-2 s-1). Elevated CO2 projected for the end of this century (~650 and ~950 μatm) reduced giant clam survival and growth at mid-light levels. However, effects of CO2 on survival were absent at high-light, with 100% survival across all CO2 levels. Effects of CO2 on growth of surviving clams were lessened, but not removed, at high-light levels. Shell growth and total animal mass gain were still reduced at high-CO2. This study demonstrates the potential for light to alleviate effects of ocean acidification on survival and growth in a threatened calcareous marine invertebrate. Managing water quality (e.g. turbidity and sedimentation) in coastal areas to maintain water clarity may help ameliorate some negative effects of ocean acidification on giant clams and potentially other solar-powered calcifiers, such as hard corals.

  6. Giant multipole resonances: an experimental review

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1979-01-01

    During the past several years experimental evidence has been published for the existance of nondipole giant resonances. These giant multipole resonances, the so-called new giant resonances were first observed through inelastic hadron and electron scattering and such measurements have continued to provide most of the information in this field. A summary is provided of the experimental evidence for these new resonances. The discussion deals only with results from inelastic scattering and only with the electric multipoles. Emphasis is placed on the recent observations of the giant monopole resonance. Results from recent heavy-ion and pion inelastic scattering are discussed. 38 references

  7. Giant dipole resonance in hot nuclei

    International Nuclear Information System (INIS)

    Mau, N.V.

    1993-01-01

    Giant resonances built on an excited state of the nucleus at a finite temperature T are studied. The following questions are investigated: how long such collective effects occur in a nucleus when T increases. How the properties of the giant resonances vary when the temperature increases. How the study of giant resonances in hot nuclei can give information on the structure of the nucleus in a highly excited state. The special case of the giant dipole resonance is studied. Some of the experimental results are reviewed and in their theoretical interpretation is discussed. (K.A.). 56 refs., 20 figs., 4 tabs

  8. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon

    2017-01-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  9. Electrified BPS giants: BPS configurations on giant gravitons with static electric field

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Sheikh-Jabbari, Mohammad Mahdi

    2007-01-01

    We consider D3-brane action in the maximally supersymmetric type IIB plane-wave background. Upon fixing the light-cone gauge, we obtain the light-cone Hamiltonian which is manifestly supersymmetric. The 1/2 BPS solutions of this theory (solutions which preserve 16 supercharges) are either of the form of spherical three branes, the giant gravitons, or zero size point like branes. We then construct specific classes of 1/4 BPS solutions of this theory in which static electric field on the brane is turned on. These solutions are deformations about either of the two 1/2 BPS solutions. In particular, we study in some detail 1/4 BPS configurations with electric dipole on the three sphere giant, i.e. BIons on the giant gravitons, which we hence call BIGGons. We also study BPS configurations corresponding to turning on a background uniform constant electric field. As a result of this background electric field the three sphere giant is deformed to squashed sphere, while the zero size point like branes turn into circular or straight fundamental strings in the plane-wave background, with their tension equal to the background electric field

  10. Dust and gas distribution in molecular clouds: an observational approach

    International Nuclear Information System (INIS)

    Campeggio, Loretta; Elia, Davide; Maiolo, Berlinda M T; Strafella, Francesco; Cecchi-Pestellini, Cesare

    2005-01-01

    The interstellar medium (ISM), gas and dust, appears to be arranged in clouds, whose dimensions, masses and densities span a large range of scales: from giant molecular clouds to small isolated globules. The structure of these objects show a high degree of complexity appearing, in the range of the observed scales, as a non-homogeneous ('clumpy') distribution of matter. The arrangement of the ISM is clearly relevant for the study of the fragmentation of the clouds and then of the star formation processes. To quantify observationally the ISM structure, many methods have been developed and our study is focused on some of them, exploiting multiwavelength observations of IS objects. The investigations presented here have been carried out by considering both the dust absorption (in optical and near IR wavelengths) and the gas emission (in the submm-radio spectral range). We present the maps obtained from the reduction of raw data and a first tentative analysis by means of methods as the structure function, the autocorrelation, and the Δ-variance. These are appropriate tools to highlight the complex structure of the ISM with reference to the paradigm given by the supersonic turbulence. Three observational cases are briefly discussed. In order to analyse the structure of objects characterized by different sizes, we applied the above-mentioned algorithms to the extinction map of the dark globule CB 107 and to the CO(J = 1-0) integrated intensity map of Vela Molecular Ridge, D Cloud. Finally we compare the results obtained with synthetic fractal maps known as 'fractional Brownian motion' fBm images

  11. Deep learning classification in asteroseismology

    Science.gov (United States)

    Hon, Marc; Stello, Dennis; Yu, Jie

    2017-08-01

    In the power spectra of oscillating red giants, there are visually distinct features defining stars ascending the red giant branch from those that have commenced helium core burning. We train a 1D convolutional neural network by supervised learning to automatically learn these visual features from images of folded oscillation spectra. By training and testing on Kepler red giants, we achieve an accuracy of up to 99 per cent in separating helium-burning red giants from those ascending the red giant branch. The convolutional neural network additionally shows capability in accurately predicting the evolutionary states of 5379 previously unclassified Kepler red giants, by which we now have greatly increased the number of classified stars.

  12. Giant comets and mass extinctions of life

    Science.gov (United States)

    Napier, W. M.

    2015-03-01

    I find evidence for clustering in age of well-dated impact craters over the last 500 Myr. At least nine impact episodes are identified, with durations whose upper limits are set by the dating accuracy of the craters. Their amplitudes and frequency are inconsistent with an origin in asteroid breakups or Oort cloud disturbances, but are consistent with the arrival and disintegration in near-Earth orbits of rare, giant comets, mainly in transit from the Centaur population into the Jupiter family and Encke regions. About 1 in 10 Centaurs in Chiron-like orbits enter Earth-crossing epochs, usually repeatedly, each such epoch being generally of a few thousand years' duration. On time-scales of geological interest, debris from their breakup may increase the mass of the near-Earth interplanetary environment by two or three orders of magnitude, yielding repeated episodes of bombardment and stratospheric dusting. I find a strong correlation between these bombardment episodes and major biostratigraphic and geological boundaries, and propose that episodes of extinction are most effectively driven by prolonged encounters with meteoroid streams during bombardment episodes. Possible mechanisms are discussed.

  13. Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells?

    Science.gov (United States)

    Miron, Richard J; Zohdi, Hamoon; Fujioka-Kobayashi, Masako; Bosshardt, Dieter D

    2016-12-01

    Recently accumulating evidence has put into question the role of large multinucleated giant cells (MNGCs) around bone biomaterials. While cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials, it was originally thought that specifically in bone tissues, all giant cells were bone-resorbing osteoclasts whereas foreign body giant cells (FBGCs) were found associated with a connective tissue foreign body reaction resulting in fibrous encapsulation and/or material rejection. Despite the great majority of bone grafting materials routinely found with large osteoclasts, a special subclass of bone biomaterials has more recently been found surrounded by large giant cells virtually incapable of resorbing bone grafts even years after their implantation. While original hypotheses believed that a 'foreign body reaction' may be taking place, histological data retrieved from human samples years after their implantation have put these original hypotheses into question by demonstrating better and more stable long-term bone volume around certain bone grafts. Exactly how or why this 'special' subclass of giant cells is capable of maintaining long-term bone volume, or methods to scientifically distinguish them from osteoclasts remains extremely poorly studied. The aim of this review article was to gather the current available literature on giant cell markers and differences in expression patterns between osteoclasts and MNGCs utilizing 19 specific markers including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. This review article presents 19 specific cell-surface markers to distinguish between osteoclasts and MNGCs including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (often

  14. Establishing the accuracy of asteroseismic mass and radius estimates of giant stars - I. Three eclipsing systems at [Fe/H] ˜ -0.3 and the need for a large high-precision sample

    Science.gov (United States)

    Brogaard, K.; Hansen, C. J.; Miglio, A.; Slumstrup, D.; Frandsen, S.; Jessen-Hansen, J.; Lund, M. N.; Bossini, D.; Thygesen, A.; Davies, G. R.; Chaplin, W. J.; Arentoft, T.; Bruntt, H.; Grundahl, F.; Handberg, R.

    2018-05-01

    We aim to establish and improve the accuracy level of asteroseismic estimates of mass, radius, and age of giant stars. This can be achieved by measuring independent, accurate, and precise masses, radii, effective temperatures and metallicities of long period eclipsing binary stars with a red giant component that displays solar-like oscillations. We measured precise properties of the three eclipsing binary systems KIC 7037405, KIC 9540226, and KIC 9970396 and estimated their ages be 5.3 ± 0.5, 3.1 ± 0.6, and 4.8 ± 0.5 Gyr. The measurements of the giant stars were compared to corresponding measurements of mass, radius, and age using asteroseismic scaling relations and grid modelling. We found that asteroseismic scaling relations without corrections to Δν systematically overestimate the masses of the three red giants by 11.7 per cent, 13.7 per cent, and 18.9 per cent, respectively. However, by applying theoretical correction factors fΔν according to Rodrigues et al. (2017), we reached general agreement between dynamical and asteroseismic mass estimates, and no indications of systematic differences at the precision level of the asteroseismic measurements. The larger sample investigated by Gaulme et al. (2016) showed a much more complicated situation, where some stars show agreement between the dynamical and corrected asteroseismic measures while others suggest significant overestimates of the asteroseismic measures. We found no simple explanation for this, but indications of several potential problems, some theoretical, others observational. Therefore, an extension of the present precision study to a larger sample of eclipsing systems is crucial for establishing and improving the accuracy of asteroseismology of giant stars.

  15. Cloud-Top Entrainment in Stratocumulus Clouds

    Science.gov (United States)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  16. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount

    Directory of Open Access Journals (Sweden)

    B. H. Kahn

    2008-03-01

    Full Text Available The precision of the two-layer cloud height fields derived from the Atmospheric Infrared Sounder (AIRS is explored and quantified for a five-day set of observations. Coincident profiles of vertical cloud structure by CloudSat, a 94 GHz profiling radar, and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO, are compared to AIRS for a wide range of cloud types. Bias and variability in cloud height differences are shown to have dependence on cloud type, height, and amount, as well as whether CloudSat or CALIPSO is used as the comparison standard. The CloudSat-AIRS biases and variability range from −4.3 to 0.5±1.2–3.6 km for all cloud types. Likewise, the CALIPSO-AIRS biases range from 0.6–3.0±1.2–3.6 km (−5.8 to −0.2±0.5–2.7 km for clouds ≥7 km (<7 km. The upper layer of AIRS has the greatest sensitivity to Altocumulus, Altostratus, Cirrus, Cumulonimbus, and Nimbostratus, whereas the lower layer has the greatest sensitivity to Cumulus and Stratocumulus. Although the bias and variability generally decrease with increasing cloud amount, the ability of AIRS to constrain cloud occurrence, height, and amount is demonstrated across all cloud types for many geophysical conditions. In particular, skill is demonstrated for thin Cirrus, as well as some Cumulus and Stratocumulus, cloud types infrared sounders typically struggle to quantify. Furthermore, some improvements in the AIRS Version 5 operational retrieval algorithm are demonstrated. However, limitations in AIRS cloud retrievals are also revealed, including the existence of spurious Cirrus near the tropopause and low cloud layers within Cumulonimbus and Nimbostratus clouds. Likely causes of spurious clouds are identified and the potential for further improvement is discussed.

  17. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  18. Cloud Computing, Tieto Cloud Server Model

    OpenAIRE

    Suikkanen, Saara

    2013-01-01

    The purpose of this study is to find out what is cloud computing. To be able to make wise decisions when moving to cloud or considering it, companies need to understand what cloud is consists of. Which model suits best to they company, what should be taken into account before moving to cloud, what is the cloud broker role and also SWOT analysis of cloud? To be able to answer customer requirements and business demands, IT companies should develop and produce new service models. IT house T...

  19. Giant Planets: Good Neighbors for Habitable Worlds?

    Science.gov (United States)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  20. Cloud cover detection combining high dynamic range sky images and ceilometer measurements

    Science.gov (United States)

    Román, R.; Cazorla, A.; Toledano, C.; Olmo, F. J.; Cachorro, V. E.; de Frutos, A.; Alados-Arboledas, L.

    2017-11-01

    This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.

  1. STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS

    International Nuclear Information System (INIS)

    Yang Jun; Abbot, Dorian S.; Cowan, Nicolas B.

    2013-01-01

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.

  2. Should the Endangered Status of the Giant Panda Really Be Reduced? The Case of Giant Panda Conservation in Sichuan, China.

    Science.gov (United States)

    Ma, Ben; Lei, Shuo; Qing, Qin; Wen, Yali

    2018-05-03

    The International Union for Conservation of Nature (IUCN) reduced the threat status of the giant panda from “endangered” to “vulnerable” in September 2016. In this study, we analyzed current practices for giant panda conservation at regional and local environmental scales, based on recent reports of giant panda protection efforts in Sichuan Province, China, combined with the survey results from 927 households within and adjacent to the giant panda reserves in this area. The results showed that household attitudes were very positive regarding giant panda protection efforts. Over the last 10 years, farmers’ dependence on the natural resources provided by giant panda reserves significantly decreased. However, socio-economic development increased resource consumption, and led to climate change, habitat fragmentation, environmental pollution, and other issues that placed increased pressure on giant panda populations. This difference between local and regional scales must be considered when evaluating the IUCN status of giant pandas. While the status of this species has improved in the short-term due to positive local attitudes, large-scale socio-economic development pressure could have long-term negative impacts. Consequently, the IUCN assessment leading to the classification of giant panda as “vulnerable” instead of “endangered”, should not affect its conservation intensity and effort, as such actions could negatively impact population recovery efforts, leading to the extinction of this charismatic species.

  3. Should the Endangered Status of the Giant Panda Really Be Reduced? The Case of Giant Panda Conservation in Sichuan, China

    Directory of Open Access Journals (Sweden)

    Ben Ma

    2018-05-01

    Full Text Available The International Union for Conservation of Nature (IUCN reduced the threat status of the giant panda from “endangered” to “vulnerable” in September 2016. In this study, we analyzed current practices for giant panda conservation at regional and local environmental scales, based on recent reports of giant panda protection efforts in Sichuan Province, China, combined with the survey results from 927 households within and adjacent to the giant panda reserves in this area. The results showed that household attitudes were very positive regarding giant panda protection efforts. Over the last 10 years, farmers’ dependence on the natural resources provided by giant panda reserves significantly decreased. However, socio-economic development increased resource consumption, and led to climate change, habitat fragmentation, environmental pollution, and other issues that placed increased pressure on giant panda populations. This difference between local and regional scales must be considered when evaluating the IUCN status of giant pandas. While the status of this species has improved in the short-term due to positive local attitudes, large-scale socio-economic development pressure could have long-term negative impacts. Consequently, the IUCN assessment leading to the classification of giant panda as “vulnerable” instead of “endangered”, should not affect its conservation intensity and effort, as such actions could negatively impact population recovery efforts, leading to the extinction of this charismatic species.

  4. A search for lithium-rich giant stars

    International Nuclear Information System (INIS)

    Brown, J.A.; Sneden, C.; Lambert, D.L.; Dutchover, E. Jr.

    1989-01-01

    Lithium abundances or upper limits have been determined for 644 bright G-K giant stars selected from the DDO photometric catalog. Two of these giants possess surface lithium abundances approaching the cosmic value of the interstellar medium and young main-sequence stars, and eight more giants have Li contents far in excess of standard predictions. At least some of these Li-rich giants are shown to be evolved to the stage of having convectively mixed envelopes, either from the direct evidence of low surface carbon isotope ratios, or from the indirect evidence of their H-R diagram positions. Suggestions are given for the unique conditions that might have allowed these stars to produce or accrete new lithium for their surface layers, or simply to preserve from destruction their initial lithium contents. The lithium abundance of the remaining stars demonstrates that giants only very rarely meet the expectations of standard first dredge-up theories; the average extra Li destruction required is about 1.5 dex. The evolutionary states of these giants and their average masses are discussed briefly, and the Li distribution of the giants is compared to predictions of Galactic chemical evolution. 110 refs

  5. Macroscopic description of isoscalar giant multipole resonances

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1980-01-01

    On the basis of a simple macroscopic model, we calculate the isoscalar giant-resonance energy as a function of mass number and multipole degree. The restoring force is determined from the distortion of the Fermi surface, and the inertia is determined for the incompressible, irrotational flow of nucleons with unit effective mass. With no adjustable parameters, the resulting closed expression reproduces correctly the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole energy and the magnitude of the giant octupole energy for 208 Pb. We also calculate the isoscalar giant-resonance width as a function of mass number and multipole degree for various macroscopic damping mechanisms, including two-body viscosity, one-body dissipation, and modified one-body dissipation. None of these damping mechanisms reproduces correctly all features of the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole width and the magnitude of the giant octupole width for 208 Pb

  6. Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist.

    Science.gov (United States)

    Fei, Yuxiang; Hou, Rong; Spotila, James R; Paladino, Frank V; Qi, Dunwu; Zhang, Zhihe

    2017-01-01

    The red panda (Ailurus fulgens) has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204-0.342) in summer and 0.361 ml/g/h in winter (range 0.331-0.406), with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17), more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves.

  7. Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist.

    Directory of Open Access Journals (Sweden)

    Yuxiang Fei

    Full Text Available The red panda (Ailurus fulgens has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204-0.342 in summer and 0.361 ml/g/h in winter (range 0.331-0.406, with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17, more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves.

  8. The evolution of hydrocarbons past the asymptotic giant branch: the case of MSX SMC 029

    Science.gov (United States)

    Pauly, Tyler; Sloan, Gregory C.; Kraemer, Kathleen E.; Bernard-Salas, Jeronimo; Lebouteiller, Vianney; Goes, Christopher; Barry, Donald

    2015-01-01

    We present an optimally extracted high-resolution spectrum of MSX SMC 029 obtained by the Infrared Spectrograph on the Spitzer Space Telescope. MSX SMC 029 is a carbon-rich object in the Small Magellanic Cloud that has evolved past the asymptotic giant branch (AGB). The spectrum reveals a cool carbon-rich dust continuum with emission from polycyclic aromatic hydrocarbons (PAHs) and absorption from simpler hydrocarbons, both aliphatic and aromatic, including acetylene and benzene. The spectrum shows many similarities to the carbon-rich post-AGB objects SMP LMC 011 in the Large Magellanic Cloud and AFGL 618 in the Galaxy. Both of these objects also show infrared absorption features from simple hydrocarbons. All three spectra lack strong atomic emission lines in the infrared, indicating that we are observing the evolution of carbon-rich dust and free hydrocarbons in objects between the AGB and planetary nebulae. These three objects give us a unique view of the elusive phase when hydrocarbons exist both as relatively simple molecules and the much more complex and ubiquitous PAHs. We may be witnessing the assembly of amorphous carbon into PAHs.

  9. Tests of the Giant Impact Hypothesis

    Science.gov (United States)

    Jones, J. H.

    1998-01-01

    The giant impact hypothesis has gained popularity as a means of explaining a volatile-depleted Moon that still has a chemical affinity to the Earth. As Taylor's Axiom decrees, the best models of lunar origin are testable, but this is difficult with the giant impact model. The energy associated with the impact would be sufficient to totally melt and partially vaporize the Earth. And this means that there should he no geological vestige of Barber times. Accordingly, it is important to devise tests that may be used to evaluate the giant impact hypothesis. Three such tests are discussed here. None of these is supportive of the giant impact model, but neither do they disprove it.

  10. +Cloud: An Agent-Based Cloud Computing Platform

    OpenAIRE

    González, Roberto; Hernández de la Iglesia, Daniel; de la Prieta Pintado, Fernando; Gil González, Ana Belén

    2017-01-01

    Cloud computing is revolutionizing the services provided through the Internet, and is continually adapting itself in order to maintain the quality of its services. This study presents the platform +Cloud, which proposes a cloud environment for storing information and files by following the cloud paradigm. This study also presents Warehouse 3.0, a cloud-based application that has been developed to validate the services provided by +Cloud.

  11. Hadron excitation of giant resonances

    International Nuclear Information System (INIS)

    Morsch, H.-P.

    1985-01-01

    A review is given on giant resonance studies in heavy nuclei using scattering of different hadronic probes. Concerning isoscalar giant resonances compression modes are discussed with the possibility to obtain more detailed structure information. From detailed studies of α scattering the distribution of isoscalar strengths of multipolarity up to L=6 was obtained. Some recent aspects of heavy ion excitation of collective modes are mentioned. The possibility to study isovector giant resonances in hadron charge exchange reactions is discussed. Finally, a comparison is made between α and 200 MeV proton scattering from which isoscalar and spin-isospin continuum response are extracted. (orig.)

  12. Giant Double Radio Source DA 240: Purveyor of Galaxies

    Science.gov (United States)

    Chen, Ru-Rong; Strom, Richard; Peng, Bo

    2018-05-01

    Galaxies of stars are building blocks of the baryonic universe. Their composition, structure, and kinematics have been well studied, but details of their origins remain sketchy. The collapse of gas clouds, induced by external forces whereby gravity overcomes internal pressure to form stars, is the likely starting point. Among the perturbing initiators of galaxy formation, radio source beams (jets) are quite effective. Typically, a beam may spawn one galaxy, though instances of several aligned with the radio axis are known. Recently, we found an impressive 14 companions in the lobes of the giant radio galaxy DA 240, which we argue formed as the result of jet instigation. This conclusion is bolstered by the fact that the galaxy groups display Z-shaped symmetry with respect to the radio axis. There is some evidence for star formation among the aligned companions. We also conclude that galaxy alignments at low redshift may derive from line-emitting gas observed in radio components of high-redshift galaxies.

  13. WFIRST: Retrieval Studies of Directly Imaged Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark; Lupu, Roxana; Lewis, Nikole K.; WFIRST Coronagraph SITs

    2018-01-01

    The typical direct imaging and spectroscopy target for the WFIRST Coronagraph will be a mature Jupiter-mass giant planet at a few AU from an FGK star. The spectra of such planets is expected to be shaped primarily by scattering from H2O clouds and absorption by gaseous NH3 and CH4. We have computed forward model spectra of such typical planets and applied noise models to understand the quality of photometry and spectra we can expect. Using such simulated datasets we have conducted Markov Chain Monte Carlo and MultiNest retrievals to derive atmospheric abundance of CH4, cloud scattering properties, gravity, and other parameters for various planets and observing modes. Our focus has primarily been to understand which combinations of photometry and spectroscopy at what SNR allow retrievals of atmospheric methane mixing ratios to within a factor of ten of the true value. This is a challenging task for directly imaged planets as the planet mass and radius--and thus surface gravity--are not as well constrained as in the case of transiting planets. We find that for plausible planets and datasets of the quality expected to be obtained by WFIRST it should be possible to place such constraints, at least for some planets. We present some examples of our retrieval results and explain how they have been utilized to help set design requirements on the coronagraph camera and integrated field spectrometer.

  14. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    International Nuclear Information System (INIS)

    Nesvorný, David

    2011-01-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ∼15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  15. Young Solar System's Fifth Giant Planet?

    Science.gov (United States)

    Nesvorný, David

    2011-12-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ~15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  16. Optical Spectra of Radio Planetary Nebulae in the Large Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne, J. L.

    2008-12-01

    Full Text Available We present 11 spectra from 12 candidate radio sources co-identified with known planetary nebulae (PNe in the Large Magellanic Cloud (LMC. Originally found in Australia Telescope Compact Array (ATCA LMC surveys at 1.4, 4.8 and 8.64~GHz and confirmed by new high resolution ATCA images at 6 and 3~cm (4arcsec/2arcsec, these complement data recently presented for candidate radio PNe in the Small Magellanic Cloud (SMC. Their spectra were obtained using the Radcliffe 1.9-meter telescope in Sutherland (South Africa. All of the optical PNe and radio candidates are within 2arcsec and may represent a population of selected radio bright sample only. Nebular ionized masses of these objects are estimated to be as high as 1.8~$M_odot$, supporting the idea that massive PNe progenitor central stars lose much of their mass in the asymptotic giant branch (AGB phase or prior. We also identify a sub-population (33\\% of radio PNe candidates with prominent ionized iron emission lines.

  17. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  18. Giant multipole resonances: perspectives after ten years

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1980-01-01

    Nearly ten years ago evidence was published for the first of the so-called giant multipole resonances, the giant quadrupole resonance. During the ensuing years research in this field has spread to many nuclear physics laboratories throughout the world. The present status of electric giant multipole resonances is reviewed. 24 figures, 1 table

  19. No Evidence of Chemical Abundance Variations in the Intermediate-age Cluster NGC 1783

    Science.gov (United States)

    Zhang, Hao; de Grijs, Richard; Li, Chengyuan; Wu, Xiaohan

    2018-02-01

    We have analyzed multi-passband photometric observations, obtained with the Hubble Space Telescope, of the massive (1.8 × 105 M ⊙), intermediate-age (1.8 Gyr-old) Large Magellanic Cloud star cluster NGC 1783. The morphology of the cluster’s red giant branch does not exhibit a clear broadening beyond its intrinsic width; the observed width is consistent with that owing to photometric uncertainties alone and independent of the photometric selection boundaries we applied to obtain our sample of red giant stars. The color dispersion of the cluster’s red giant stars around the best-fitting ridgeline is 0.062 ± 0.009 mag, which is equivalent to the width of 0.080 ± 0.001 mag derived from artificial simple stellar population tests, that is, tests based on single-age, single-metallicity stellar populations. NGC 1783 is comparably as massive as other star clusters that show clear evidence of multiple stellar populations. After incorporating mass-loss recipes from its current age of 1.8 Gyr to an age of 6 Gyr, NGC 1783 is expected to remain as massive as some other clusters that host clear multiple populations at these intermediate ages. If we were to assume that mass is an important driver of multiple population formation, then NGC 1783 should have exhibited clear evidence of chemical abundance variations. However, our results support the absence of any chemical abundance variations in NGC 1783.

  20. Solitary ulcerated congenital giant juvenile xanthogranuloma

    Directory of Open Access Journals (Sweden)

    Su Yuen Ng

    2015-01-01

    Full Text Available A 3-month-old female patient with a giant ulcerated nodule over the back since birth was diagnosed as congenital giant juvenile xanthogranuloma (JXG based on clinical and histopathological examination. Congenital giant JXG with ulceration at birth is a rare presentation of JXG and commonly misdiagnosed. This case emphasizes the importance of being aware of the myriad presentations of JXG in order to make a correct diagnosis and avoid unnecessary investigations or treatment.

  1. Giant resonances in heavy-ion reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1982-11-01

    The several roles of multipole giant resonances in heavy-ion reactions are discussed. In particular, the modifications in the effective ion-ion potencial due to the virtual excitation of giant resonances at low energies, are considered and estimated for several systems. Real excitation of giant resonances in heavy-ion reactions at intermediate energies are then discussed and their importance in the approach phase of deeply inelastic processes in emphasized. Several demonstrative examples are given. (Author) [pt

  2. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.

    2015-10-20

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  3. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.; Osipov, Sergey; Bantges, R.; Smirnov, A.; Banks, J.; Levy, R.; Jish Prakash, P.; Stenchikov, Georgiy L.

    2015-01-01

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  4. Swiss roll operation for giant fibroadenoma.

    Science.gov (United States)

    Soomro, Saleem A; Memon, Sohail A; Mohammad, Noor; Maher, Mumtaz

    2009-01-01

    Fibroadenoma 5 cm or more is called giant fibroadenoma. Giant fibroadenoma can distort the shape of breast and causes asymmetry, so it should be excised. There are several techniques for excision of giant fibroadenoma. In our technique we remove them through cosmetically acceptable circumareolar incision to maintain the shape and symmetry of breast. The objectives were to assess the cosmetic results of Swiss roll operation for giant fibroadenoma. The study was conducted for six years from January, 2002 to December, 2007. Seventy patients of giant fibroadenoma were included in this study. They were diagnosed on history and clinical examination supported by ultrasound and postoperative histopathological examination. Data were collected from outpatient department and operation theatre. Swiss roll operation was performed under general anaesthesia. Mean tumor size was 6.38 cm. Three cm and 4 cm incisions were used for tumour 6 cm in size respectively. Skin closed with Vicryl 3/0 subcuticular stitches. Sixteen out of 70 patients had no scar while others hadminimal scar. All patients had normal shape and symmetry of breast. On histopathology fibroadenoma was confirmed. Giant fibroadenoma should be removed through cosmetically acceptable cicumareolar incision especially in unmarried young females who have small breast. Swiss-roll operation is superior in maintaining the shape and symmetry of breast. No major complication was found in our series except seroma formation in 10 patients.

  5. Giant serpentine intracranial aneurysm: a case report

    International Nuclear Information System (INIS)

    Park, Jae Seong; Lee, Myeong Sub; Kim, Myung Soon; Kim, Dong Jin; Park, Joong Wha; Whang, Kum

    2001-01-01

    The authors present a case of giant serpentine aneurysm (a partially thrombosed aneurysm containing tortuous vascular channels with a separate entrance and outflow pathway). Giant serpentine aneurysms form a subgroup of giant intracranial aneurysms, distinct from saccular and fusiform varieties, and in this case, too, the clinical presentation and radiographic features of CT, MR imaging and angiography were distinct

  6. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    Science.gov (United States)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  7. Footpoints of the giant molecular loops in the Galactic center region

    Science.gov (United States)

    Riquelme, D.; Amo-Baladrón, M. A.; Martín-Pintado, J.; Mauersberger, R.; Martín, S.; Burton, M.; Cunningham, M.; Jones, P. A.; Menten, K. M.; Bronfman, L.; Güsten, R.

    2018-05-01

    Aims: We aim to reveal the morphology, chemical composition, kinematics, and to establish the main processes prevalent in the gas at the footpoints of the giant molecular loops (GMLs) in the Galactic center region. Methods: Using the 22-m Mopra telescope, we mapped the M-3.8+0.9 molecular cloud, placed at the footpoints of a GML, in 3-mm range molecular lines. To derive the molecular hydrogen column density, we also observed the 13CO(2 - 1) line at 1 mm using the 12-m APEX telescope. From the 3 mm observations 12 molecular species were detected, namely HCO+, HCN, H13CN, HNC, SiO, CS, CH3OH, N2H+, SO, HNCO, OCS, and HC3N. Results: Maps revealing the morphology and kinematics of the M-3.8+0.9 molecular cloud in different molecules are presented. We identify six main molecular complexes. We derive fractional abundances in 11 selected positions of the different molecules assuming local thermodynamical equilibrium. Conclusions: Most of the fractional abundances derived for the M-3.8+0.9 molecular cloud are very similar over the whole cloud. However, the fractional abundances of some molecules show significant difference with respect to those measured in the central molecular zone (CMZ). The abundances of the shock tracer SiO are very similar between the GMLs and the CMZ. The methanol emission is the most abundant species in the GMLs. This indicates that the gas is likely affected by moderate 30 km s-1 or even high velocity (50 km s-1) shocks, consistent with the line profile observed toward one of the studied position. The origin of the shocks is likely related to the flow of the gas throughout the GMLs towards the footpoints. OPRA and APEX final data cubes (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A42

  8. HH 222: A GIANT HERBIG-HARO FLOW FROM THE QUADRUPLE SYSTEM V380 ORI

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo; Aspin, Colin; Connelley, M. S. [Institute for Astronomy, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States); Bally, John [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Geballe, T. R. [Gemini Observatory, 670 North Aohoku Place, Hilo, HI 96720 (United States); Kraus, Stefan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Appenzeller, Immo [Landessternwarte Heidelberg, Königstuhl 12, D-69117 Heidelberg (Germany); Burgasser, Adam, E-mail: reipurth@ifa.hawaii.edu, E-mail: caa@ifa.hawaii.edu, E-mail: msc@ifa.hawaii.edu, E-mail: John.Bally@colorado.edu, E-mail: tgeballe@gemini.edu, E-mail: stefan.kraus@cfa.harvard.edu, E-mail: iappenze@lsw.uni-heidelberg.de, E-mail: aburgasser@ucsd.edu [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States)

    2013-11-01

    HH 222 is a giant shocked region in the L1641 cloud, and is popularly known as the Orion Streamers or ''the waterfall'' on account of its unusual structure. At the center of these streamers are two infrared sources coincident with a nonthermal radio jet aligned along the principal streamer. The unique morphology of HH 222 has long been associated with this radio jet. However, new infrared images show that the two sources are distant elliptical galaxies, indicating that the radio jet is merely an improbable line-of-sight coincidence. Accurate proper motion measurements of HH 222 reveal that the shock structure is a giant bow shock moving directly away from the well-known, very young, Herbig Be star V380 Ori. The already known Herbig-Haro object HH 35 forms part of this flow. A new Herbig-Haro object, HH 1041, is found precisely in the opposite direction of HH 222 and is likely to form part of a counterflow. The total projected extent of this HH complex is 5.3 pc, making it among the largest HH flows known. A second outflow episode from V380 Ori is identified as a pair of HH objects, HH 1031 to the northwest and the already known HH 130 to the southeast, along an axis that deviates from that of HH 222/HH 1041 by only 3.°7. V380 Ori is a hierarchical quadruple system, including a faint companion of spectral type M5 or M6, which at an age of ∼1 Myr corresponds to an object straddling the stellar-to-brown dwarf boundary. We suggest that the HH 222 giant bow shock is a direct result of the dynamical interactions that led to the conversion from an initial non-hierarchical multiple system into a hierarchical configuration. This event occurred no more than 28,000 yr ago, as derived from the proper motions of the HH 222 giant bow shock.

  9. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2004-04-01

    We report new chemical abundances of 23 bright red giant members of the globular cluster M3, based on high-resolution (R~45,000) spectra obtained with the Keck I telescope. The observations, which involve the use of multislits in the HIRES Keck I spectrograph, are described in detail. Combining these data with a previously reported small sample of M3 giants obtained with the Lick 3 m telescope, we compare metallicities and [X/Fe] ratios for 28 M3 giants with a 35-star sample in the similar-metallicity cluster M13, and with Galactic halo field stars having [Fe/H]=A(Si), we derive little difference in [X/Fe] ratios in the M3, M13, or halo field samples. All three groups exhibit C depletion with advancing evolutionary state beginning at the level of the red giant branch ``bump,'' but the overall depletion of about 0.7-0.9 dex seen in the clusters is larger than that associated with the field stars. The behaviors of O, Na, Mg, and Al are distinctively different among the three stellar samples. Field halo giants and subdwarfs have a positive correlation of Na with Mg, as predicted from explosive or hydrostatic carbon burning in Type II supernova sites. Both M3 and M13 show evidence of high-temperature proton-capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13: the M3 giants exhibit only modest deficiencies of O and corresponding enhancements of Na, less extreme overabundances of Al, fewer stars with low Mg and correspondingly high Na, and no indication that O depletions are a function of advancing evolutionary state, as has been claimed for M13. We have also considered NGC 6752, for which Mg isotopic abundances have been reported by Yong et al. Giants in NGC 6752 and M13 satisfy the same anticorrelation of O abundances with the ratio (25Mg+26Mg)/24Mg, which measures the relative contribution of rare to

  10. Stellar oscillations in planet-hosting giant stars

    Energy Technology Data Exchange (ETDEWEB)

    Hatzes, Artie P; Zechmeister, Mathias [Thueringer Landessternwarte, Sternwarte 5, D-07778 (Germany)], E-mail: artie@tls-tautenburg.de

    2008-10-15

    Recently a number of giant extrasolar planets have been discovered around giant stars. These discoveries are important because many of these giant stars have intermediate masses in the range 1.2-3 Msun. Early-type main sequence stars of this mass range have been avoided by radial velocity planet search surveys due the difficulty of getting the requisite radial velocity precision needed for planet discoveries. Thus, giant stars can tell us about planet formation for stars more massive than the sun. However, the determination of stellar masses for giant stars is difficult due to the fact that evolutionary tracks for stars covering a wide range of masses converge to the same region of the H-R diagram. We report here on stellar oscillations in three planet-hosting giant stars: HD 13189, {beta} Gem, and {iota} Dra. Precise stellar radial velocity measurements for these stars show variations whose periods and amplitudes are consistent with solar-like p-mode oscillations. The implied stellar masses for these objects based on the characteristics of the stellar oscillations are consistent with the predictions of stellar isochrones. An investigation of stellar oscillations in planet hosting giant stars offers us the possibility of getting an independent determination of the stellar mass for these objects which is of crucial importance for extrasolar planet studies.

  11. Giant nuclear resonances

    International Nuclear Information System (INIS)

    Snover, K.A.

    1989-01-01

    Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes

  12. An intergalactic absorbing cloud in the neighbourhood of the North galactic pole

    International Nuclear Information System (INIS)

    Murawski, W.

    1983-01-01

    The purpose of this investigation is to study the possibility that the lack of galaxies in the area between the Virgo and Coma clusters, to which OKROY (1965) drew attention, is due to an intergalactic cloud. Using Zwicky's Catalogue of Galaxies and Clusters of Galaxies, it is shown that there is a shortage of galaxies in the suspected area for all magnitude classes. The absorption of the cloud is calculated to be 0.45+-05 mag. A quantity called the areal colour index (ACI) is introduced and defined as ACI=a sub(b) b sub(b)/(a sub(r) b sub(r)) where a and b are the lengths of the major and minor axes of a galaxy, respectively, and the subscripts b and r respectively refer to measurements on the blue and red prints of the Palomar survey, given in the Uppsala Catalogue of Galaxies. The average ACI is found to be 1.25 for the control area, and 1.04 for the area covered by Okroy's alleged obscuring cloud. On the basis of this colour data an approximate map showing the shape of the cloud is given. The effect of the alleged cloud on the shape frequency of types of galaxies is discussed. It is found that the cloud significantly increases the ratio of elliptical and dwarf galaxies to SO's. The determination of the distance to the cloud and its density is discussed. (author)

  13. KIC 9821622: An interesting lithium-rich giant in the Kepler field

    Science.gov (United States)

    Jofré, E.; Petrucci, R.; García, L.; Gómez, M.

    2015-12-01

    We report the discovery of a new exceptional young lithium-rich giant, KIC 9821622, in the Kepler field that exhibits an unusually large enhancement of α, Fe-peak, and r-process elements. From high-resolution spectra obtained with GRACES at Gemini North, we derived fundamental parameters and detailed chemical abundances of 23 elements from equivalent widths and synthesis analysis. By combining atmospheric stellar parameters with available asteroseismic data, we obtained the stellar mass, radius, and age. The data analysis reveals that KIC 9821622 is a Li-rich (A(Li)NLTE = 1.80 ± 0.2) intermediate-mass giant star (M = 1.64 M⊙) located at the red giant branch near the luminosity bump. We find unexpectedly elevated abundances of Fe-peak and r-process elements. In addition, as previously reported, we find that this is a young star (2.37 Gyr) with unusually high abundances of α-elements ([α/Fe] = 0.31). The evolutionary status of KIC 9821622 suggests that its Li-rich nature is the result of internal fresh Li that is synthesized through the Cameron-Fowler mechanism near the luminosity bump. However, its peculiar enhancement of α, Fe-peak, and r-process elements opens the possibility of external contamination by material enriched by a supernova explosion. Although it is less likely, planet accretion cannot be ruled out. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).Appendix A is available in electronic form at http://www.aanda.org

  14. Determination of giant resonance strengths

    International Nuclear Information System (INIS)

    Serr, F.E.

    1983-01-01

    Using theoretical strength functions to describe the different giant resonances expected at excitation energies of the order of (60-85)/Asup(1/3) MeV, we calculate the double differential cross sections d 2 sigma/dΩ dE associated with the reactions 208 Pb(α, α') and 90 Zr(α, α') (Esub(α) = 152 MeV). The angular distributions for the giant quadrupole and giant monopole resonances obtained from fits to these spectra, making simple, commonly used assumptions for the peak shapes and background, are compared to the original angular distributions. The differences between them are an indication of some of the uncertainties affecting the giant resonance strengths extracted from hadron inelastic scattering data. Fits to limited angular regions lead to errors of up to 50% in the value of the energy-weighted sum rule, depending on the angles examined. While it seems possible to extract the correct EWSR for the GMR by carrying out the analyses at 0 0 , no single privileged angle seems to exist in the case of the GQR. (orig.)

  15. CMB lensing and giant rings

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, Ben; Itzhaki, Nissan, E-mail: nitzhaki@post.tau.ac.il, E-mail: ben.rathaus@gmail.com [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  16. FIRST RESULTS FROM THE NOAO SURVEY OF THE OUTER LIMITS OF THE MAGELLANIC CLOUDS

    International Nuclear Information System (INIS)

    Saha, Abhijit; Olsen, Knut; Knezek, Patricia; Harris, Jason; Claver, Jennifer; Olszewski, Edward W.; Brondel, Brian; Smith, Chris; Rest, Armin; Subramaniam, Annapurni; Seitzer, Patrick; Cook, Kem H.; Minniti, Dante; Suntzeff, Nicholas B.

    2010-01-01

    We describe the first results from the Outer Limits Survey, an NOAO survey designed to detect, map, and characterize the extended structure of the Large and Small Magellanic Clouds (LMC and SMC). The survey consists of deep images of 55 0. 0 6 x 0. 0 6 fields distributed at distances up to 20 0 from the Clouds, with 10 fields at larger distances representing controls for contamination by Galactic foreground stars and background galaxies. The field locations probe the outer structure of both the LMC and SMC, as well as exploring areas defined by the Magellanic Stream, the Leading Arm, and the LMC orbit as recently measured from its proper motion. The images were taken with C, M, R, I, and DDO51 filters on the CTIO Blanco 4 m telescope and Mosaic2 camera, with supporting calibration observations taken at the CTIO 0.9 m telescope. The CRI images reach depths below the oldest main-sequence (MS) turnoffs at the distance of the Clouds, thus yielding numerous probes of structure combined with good ability to measure stellar ages and metallicities. The M and DDO51 images allow for discrimination of LMC and SMC giant stars from foreground dwarfs, allowing us to use giants as additional probes of Cloud structure and populations. From photometry of eight fields located at radii of 7 0 -19 0 north of the LMC bar, we find MS stars associated with the LMC out to 16 0 from the LMC center, while the much rarer giants can only be convincingly detected out to 11 0 . In one field, designated as a control, we see the unmistakable signature of the Milky Way (MW) globular cluster NGC 1851, which lies several tidal radii away from the field center. The color-magnitude diagrams show that while at 7 0 radius LMC populations as young as 500 Myr are present, at radii ∼>11 0 only the LMC's underlying old metal-poor ([M/H] ∼-1) population remains, demonstrating the existence of a mean population gradient at these radii. Nevertheless, even at extreme large distances, the dominant age is

  17. Role of nature reserves in giant panda protection.

    Science.gov (United States)

    Kang, Dongwei; Li, Junqing

    2018-02-01

    Giant panda (Ailuropoda melanoleuca) is a flagship species in nature conservation of the world; to protect this species, 67 nature reserves have been established in China. To evaluate the protection effect of giant panda nature reserves, we analyzed the variation of giant panda number and habitat area of 23 giant panda nature reserves of Sichuan province based on the national survey data released by State Forestry Administration and Sichuan Forestry Department. Results showed that from the third national survey to the fourth, giant panda number and habitat area of 23 giant panda nature reserves of Sichuan province failed to realize the significant increase. Furthermore, we found that the total population growth rate of 23 nature reserves in the last 12 years was lower than those of the province total of Sichuan and the national total of China, and the total habitat area of the 23 nature reserves was decreasing in the last 12 years, but the province total and national total were all increasing. We propose that giant panda protection should pay more attention to how to improve the protective effects of nature reserves.

  18. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  19. Cloudless Atmospheres for L/T Dwarfs and Extrasolar Giant Planets

    Science.gov (United States)

    Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S.; Mourier, P.; Venot, O.

    2016-01-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection 20 years ago has always been the key role played by micron-size condensates, called "dust" or "clouds," in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/ CH4 and N2/NH3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J-H and J-K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH4 instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution.

  20. FAR-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wanggi [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States)

    2014-01-10

    Progress in understanding star formation requires detailed observational constraints on the initial conditions, i.e., dense clumps and cores in giant molecular clouds that are on the verge of gravitational instability. Such structures have been studied by their extinction of near-infrared and, more recently, mid-infrared (MIR) background light. It has been somewhat more of a surprise to find that there are regions that appear as dark shadows at far-infrared (FIR) wavelengths as long as ∼100 μm! Here we develop analysis methods of FIR images from Spitzer-MIPS and Herschel-PACS that allow quantitative measurements of cloud mass surface density, Σ. The method builds on that developed for MIR extinction mapping by Butler and Tan, in particular involving a search for independently saturated, i.e., very opaque, regions that allow measurement of the foreground intensity. We focus on three massive starless core/clumps in the Infrared Dark Cloud (IRDC) G028.37+00.07, deriving mass surface density maps from 3.5 to 70 μm. A by-product of this analysis is the measurement of the spectral energy distribution of the diffuse foreground emission. The lower opacity at 70 μm allows us to probe to higher Σ values, up to ∼1 g cm{sup –2} in the densest parts of the core/clumps. Comparison of the Σ maps at different wavelengths constrains the shape of the MIR-FIR dust opacity law in IRDCs. We find that it is most consistent with the thick ice mantle models of Ossenkopf and Henning. There is tentative evidence for grain ice mantle growth as one goes from lower to higher Σ regions.