WorldWideScience

Sample records for cloud cosmics leaving

  1. Beam Measurements of a CLOUD (Cosmics Leaving OUtdoor Droplets) Chamber

    Kirkby, Jasper

    2001-01-01

    A striking correlation has recently been observed between global cloud cover and the flux of incident cosmic rays. The effect of natural variations in the cosmic ray flux is large, causing estimated changes in the Earth's energy radiation balance that are comparable to those attributed to greenhouse gases from the burning of fossil fuels since the Industrial Revolution. However a direct link between cosmic rays and cloud formation has not been unambiguously established. We therefore propose to experimentally measure cloud (water droplet) formation under controlled conditions in a test beam at CERN with a CLOUD chamber, duplicating the conditions prevailing in the troposphere. These data, which have never been previously obtained, will allow a detailed understanding of the possible effects of cosmic rays on clouds and confirm, or otherwise, a direct link between cosmic rays, global cloud cover and the Earth's climate. The measurements will, in turn, allow more reliable calculations to be made of the residual e...

  2. Cosmic rays, clouds and climate

    Svensmark, Henrik [Danish Space Research Institute, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2007-07-01

    Changes in the intensity of galactic cosmic rays seems alter the Earth's cloudiness. A recent experiment has shown how electrons liberated by cosmic rays assist in making aerosols, the building blocks of cloud condensation nuclei, while anomalous climatic trends in Antarctica confirm the role of clouds in helping to drive climate change. Variations in the cosmic-ray influx due to solar magnetic activity account well for climatic fluctuations on decadal, centennial and millennial timescales. Over longer intervals, the changing galactic environment of the Solar System has had dramatic consequences, including Snowball Earth episodes.

  3. New experiment to investigate cosmic connection to clouds

    United Kingdom. Particle Physics and Astronomy Research Council

    2006-01-01

    "A novel experiment, known as CLOUD (Cosmics Leaving OUtdoor Droplets), begins taking its first data today with a prototype detector in a prticle beam at CERN, the world's largest laboratory for particle physics." (1,5 page)

  4. Cosmic rays, clouds, and climate

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability......A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role...... in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...

  5. Low cloud properties influenced by cosmic rays

    Marsh, Nigel; Svensmark, Henrik

    2000-01-01

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (less than or equal to3 km......), which points to a microphysical mechanism involving aerosol formation that is enhanced by ionization due to cosmic rays. If confirmed it suggests that the average state of the heliosphere is important for climate on Earth....

  6. Low cloud properties influenced by cosmic rays

    Marsh; Svensmark

    2000-12-04

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (climate on Earth.

  7. Cloud chamber photographs of the cosmic radiation

    Rochester, George Dixon

    1952-01-01

    Cloud Chamber Photographs of the Cosmic Radiation focuses on cloud chamber and photographic emulsion wherein the tracks of individual subatomic particles of high energy are studied. The publication first offers information on the technical features of operation and electrons and cascade showers. Discussions focus on the relationship in time and space of counter-controlled tracks; techniques of internal control of the cloud chamber; cascade processes with artificially-produced electrons and photons; and nuclear interaction associated with an extensive shower. The manuscript then elaborates on

  8. A study of the link between cosmic rays and clouds with a cloud chamber at the CERN PS

    Fastrup, B; Lillestøl, Egil; Thorn, E; Bosteels, Michel; Gonidec, A; Harigel, G G; Kirkby, Jasper; Mele, S; Minginette, P; Nicquevert, Bertrand; Schinzel, D; Seidl, W; Grundsøe, P; Marsh, N D; Polny, J; Svensmark, H; Viisanen, Y; Kurvinen, K L; Orava, Risto; Hämeri, K; Kulmala, M; Laakso, I; Mäkelä, J M; O'Dowd, C D; Afrosimov, V; Basalaev, A; Panov, M; Laaksonen, B D; Joutsensaari, J; Ermakov, V; Makhmutov, V S; Maksumov, O; Pokrevsky, P; Stozhkov, Yu I; Svirzhevsky, N S; Carslaw, K; Yin, Y; Trautmann, T; Arnold, F; Wohlfrom, K H; Hagen, D; Schmitt, J; Whitefield, P; Aplin, K; Harrison, R G; Bingham, R; Close, Francis Edwin; Gibbins, C; Irving, A; Kellett, B; Lockwood, M; Petersen, D; Szymanski, W W; Wagner, P E; Vrtala, A; CERN. Geneva. SPS-PS Experiments Committee

    2000-01-01

    Recent satellite data have revealed a surprising correlation between galactic cosmic ray (GCR) intensity and the fraction of the Earth covered by clouds. If this correlation were to be established by a causal mechanism, it could provide a crucial step in understanding the long-sought mechanism connecting solar and climate variability. The Earth's climate seems to be remarkably sensitive to solar activity, but variations of the Sun's electromagnetic radiation appear to be too small to account for the observed climate variability. However, since the GCR intensity is strongly modulated by the solar wind, a GCR-cloud link may provide a sufficient amplifying mechanism. Moreover if this connection were to be confirmed, it could have profound consequences for our understanding of the solar contributions to the current global warming. The CLOUD (Cosmics Leaving OUtdoor Droplets) project proposes to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical me...

  9. Cloud a particle beam facility to investigate the influence of cosmic rays on clouds

    Kirkby, Jasper

    2001-01-01

    Palaeoclimatic data provide extensive evidence for solar forcing of the climate during the Holocene and the last ice age, but the underlying mechanism remains a mystery. However recent observations suggest that cosmic rays may play a key role. Satellite data have revealed a surprising correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds \\cite{svensmark97,marsh}. Since the cosmic ray intensity is modulated by the solar wind, this may be an important clue to the long-sought mechanism for solar-climate variability. In order to test whether cosmic rays and clouds are causally linked and, if so, to understand the microphysical mechanisms, a novel experiment known as CLOUD\\footnotemark\\ has been proposed \\cite{cloud_proposal}--\\cite{cloud_addendum_2}. CLOUD proposes to investigate ion-aerosol-cloud microphysics under controlled laboratory conditions using a beam from a particle accelerator, which provides a precisely adjustable and measurable artificial source of cosmic rays....

  10. Cloud chamber researches in nuclear physics and cosmic radiation

    Blackett, P.

    1984-01-01

    An extract from Blackett's Nobel Prize speech of 1948, this recounts the work done by the author on particle tracks in a Wilson cloud chamber in 1932 at the Cavendish Laboratory, Cambridge. In particular he studied the energetic particles in cosmic rays using a cloud chamber and camera. The improvements to the equipment are recounted and photographs of cosmic ray showers taken with it are shown. (UK)

  11. Cosmic rays,Climate and the CERN CLOUD Experiment

    CERN. Geneva

    2011-01-01

    For more than two centuries, scientists have been puzzled by observations of solar-climate variability yet the lack of any established physical mechanism. Some recent observations, although disputed, suggest that clouds may be influenced by cosmic rays, which are modulated by the solar wind. The CLOUD experiment aims to settle the question of whether or not cosmic rays have a climatically-significant effect on clouds by carrying out a series of carefully-controlled measurements in a large cloud chamber exposed to a beam from the CERN PS. This talk will present the scientific motivation for CLOUD and the first results, which have recently been published in Nature (Kirkby et al. (2011). Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429-433).

  12. Interaction of clouds with the hot interstellar medium (HIM) and cosmic rays

    Voelk, H.J.

    1983-01-01

    The modification, by cosmic rays, of the interaction of interstellar clouds with the ambient HIM is considered. Small clouds should still evaporate and thereby exclude cosmic rays if they do so without cosmic rays. The possible mass accretion of massice clouds is reduced by the pressure of the compressed cosmic rays. The consequences for diffuse galactic #betta#-ray emisison are discussed. (orig.)

  13. Cosmic ray decreases affect atmospheric aerosols and clouds

    Svensmark, Henrik; Bondo, Torsten; Svensmark, J.

    2009-01-01

    Close passages of coronal mass ejections from the sun are signaled at the Earth's surface by Forbush decreases in cosmic ray counts. We find that low clouds contain less liquid water following Forbush decreases, and for the most influential events the liquid water in the oceanic atmosphere can...... diminish by as much as 7%. Cloud water content as gauged by the Special Sensor Microwave/Imager (SSM/I) reaches a minimum ≈7 days after the Forbush minimum in cosmic rays, and so does the fraction of low clouds seen by the Moderate Resolution Imaging Spectroradiometer (MODIS) and in the International...

  14. A cosmic ray-climate link and cloud observations

    Dunne Eimear M.

    2012-11-01

    Full Text Available Despite over 35 years of constant satellite-based measurements of cloud, reliable evidence of a long-hypothesized link between changes in solar activity and Earth’s cloud cover remains elusive. This work examines evidence of a cosmic ray cloud link from a range of sources, including satellite-based cloud measurements and long-term ground-based climatological measurements. The satellite-based studies can be divided into two categories: (1 monthly to decadal timescale analysis and (2 daily timescale epoch-superpositional (composite analysis. The latter analyses frequently focus on sudden high-magnitude reductions in the cosmic ray flux known as Forbush decrease events. At present, two long-term independent global satellite cloud datasets are available (ISCCP and MODIS. Although the differences between them are considerable, neither shows evidence of a solar-cloud link at either long or short timescales. Furthermore, reports of observed correlations between solar activity and cloud over the 1983–1995 period are attributed to the chance agreement between solar changes and artificially induced cloud trends. It is possible that the satellite cloud datasets and analysis methods may simply be too insensitive to detect a small solar signal. Evidence from ground-based studies suggests that some weak but statistically significant cosmic ray-cloud relationships may exist at regional scales, involving mechanisms related to the global electric circuit. However, a poor understanding of these mechanisms and their effects on cloud makes the net impacts of such links uncertain. Regardless of this, it is clear that there is no robust evidence of a widespread link between the cosmic ray flux and clouds.

  15. Effects of cosmic ray decreases on cloud microphysics

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (total significance...... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray......Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...

  16. Effects of cosmic ray decreases on cloud microphysics

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...... the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray...

  17. A MODELING METHOD OF FLUTTERING LEAVES BASED ON POINT CLOUD

    J. Tang; Y. Wang; Y. Zhao; Y. Zhao; W. Hao; X. Ning; K. Lv; Z. Shi; M. Zhao

    2017-01-01

    Leaves falling gently or fluttering are common phenomenon in nature scenes. The authenticity of leaves falling plays an important part in the dynamic modeling of natural scenes. The leaves falling model has a widely applications in the field of animation and virtual reality. We propose a novel modeling method of fluttering leaves based on point cloud in this paper. According to the shape, the weight of leaves and the wind speed, three basic trajectories of leaves falling are defined, which ar...

  18. CERN explores link between cosmic rays and clouds

    2006-01-01

    "Scientists at CERN, the European Organisation for Nuclear Research, have started a new experiment to investigate the possible influence of galactic cosmic rays on the Earths clouds and climate. This is the first time that a high energy physics accelerator has been used for atmospheric and climate science." (1 page)

  19. The CLOUD experiment

    Maximilien Brice

    2006-01-01

    The Cosmics Leaving Outdoor Droplets (CLOUD) experiment as shown by Jasper Kirkby (spokesperson). Kirkby shows a sketch to illustrate the possible link between galactic cosmic rays and cloud formations. The CLOUD experiment uses beams from the PS accelerator at CERN to simulate the effect of cosmic rays on cloud formations in the Earth's atmosphere. It is thought that cosmic ray intensity is linked to the amount of low cloud cover due to the formation of aerosols, which induce condensation.

  20. A Study of the Link between Cosmic Rays and Clouds with a Cloud Chamber at the CERN PS

    Laakso, L K; Lehtipalo, K; Miettinen, P K; Duarte branco da silva santos, F; Stojkov, Y; Jud, W; Wurm, F; Pinterich, T; Dommen, J; Curtius, J; Kreissl, F C; Minginette, P; Azeredo lima, J M; Kulmala, M T; Petaja, T T; Volkamer, R M; Schafer, M; Rodrigues tome, A; Viisanen, Y A; Onnela, A T O; Kristic, R; Ehrhart, S K; Amorim, A J; Maksumov, O; Kupc, A; Sitals, R P; Dunne, E M; Riipinen, I A; Downard, A J; Virtanen, A; Tsagkogeorgas, G; Schuchmann, S; Kvashnin, A; Hansel, A; Gonzalez carracedo, L R; Vrtala, A; Schallhart, S; Yan, C; Stratmann, F; Pinto mogo, S I; Makhmutov, V; Riccobono, F; Weingartner, E P; Kurten, C A; Rondo, L; Ruuskanen, T M; Finkenzeller, H F; Laaksonen, A J; De menezes, L; Hauser, D; Kajos, M K; Schmitt, T M; Mathot, S; Wasem, A; Guida, R; Metzger, A E; Baltensperger, U; Kirkby, J; Duplissy, J; Franchin, A; Rorup, B; Flagan, R C; Wex, H D

    2002-01-01

    Three recent independent observations suggest that galactic cosmic rays may exert a significant influence on the climate. Firstly, satellite data suggest a positive correlation between variations of cosmic ray intensity and the fraction of Earth covered by low clouds. Secondly, palaeoclimatic data provide extensive evidence for an association between cosmic ray intensity and climate over the last 10 kyr and at earlier times. Finally, the presence of ion-induced nucleation of new aerosol in the atmosphere is supported by recent observations. If cosmic rays do indeed enhance aerosol production and low cloud formation, this could exert a strong cooling influence on the radiative energy balance of Earth. Physical mechanisms by which cosmic rays may affect aerosol and clouds have been proposed and modelled, but definitive experiments are lacking. The aim of CLOUD is to investigate the nature and significance of cosmic ray-aerosol-cloud mechanisms under controlled laboratory conditions using the T11 beam at the CER...

  1. The response of clouds and aerosols to cosmic ray decreases

    Svensmark, J.; Enghoff, Martin Andreas Bødker; Shaviv, N. J.

    2016-01-01

    A method is developed to rank Forbush Decreases (FDs) in the galactic cosmic ray radiation according to their expected impact on the ionization of the lower atmosphere. Then a Monte Carlo bootstrap based statistical test is formulated to estimate the significance of the apparent response in physi......A method is developed to rank Forbush Decreases (FDs) in the galactic cosmic ray radiation according to their expected impact on the ionization of the lower atmosphere. Then a Monte Carlo bootstrap based statistical test is formulated to estimate the significance of the apparent response...... in physical and micro-physical cloud parameters to FDs. The test is subsequently applied to one ground based and three satellite based datasets. Responses (> 95%) to FDs are found in the following parameters of the analyzed datasets. AERONET: Ångström exponent (cloud condensation nuclei changes), SSM...... with the strength of the FDs, and the signs and magnitudes of the responses agree with model based expectations. The effect is mainly seen in liquid clouds. An impact through changes in UV driven photo chemistry is shown to be negligible and an impact via UV absorption in the stratosphere is found to have no effect...

  2. Cosmic rays linked to rapid mid-latitude cloud changes

    B. A. Laken

    2010-11-01

    Full Text Available The effect of the Galactic Cosmic Ray (GCR flux on Earth's climate is highly uncertain. Using a novel sampling approach based around observing periods of significant cloud changes, a statistically robust relationship is identified between short-term GCR flux changes and the most rapid mid-latitude (60°–30° N/S cloud decreases operating over daily timescales; this signal is verified in surface level air temperature (SLAT reanalysis data. A General Circulation Model (GCM experiment is used to test the causal relationship of the observed cloud changes to the detected SLAT anomalies. Results indicate that the anomalous cloud changes were responsible for producing the observed SLAT changes, implying that if there is a causal relationship between significant decreases in the rate of GCR flux (~0.79 GU, where GU denotes a change of 1% of the 11-year solar cycle amplitude in four days and decreases in cloud cover (~1.9 CU, where CU denotes a change of 1% cloud cover in four days, an increase in SLAT (~0.05 KU, where KU denotes a temperature change of 1 K in four days can be expected. The influence of GCRs is clearly distinguishable from changes in solar irradiance and the interplanetary magnetic field. However, the results of the GCM experiment are found to be somewhat limited by the ability of the model to successfully reproduce observed cloud cover. These results provide perhaps the most compelling evidence presented thus far of a GCR-climate relationship. From this analysis we conclude that a GCR-climate relationship is governed by both short-term GCR changes and internal atmospheric precursor conditions.

  3. a Modeling Method of Fluttering Leaves Based on Point Cloud

    Tang, J.; Wang, Y.; Zhao, Y.; Hao, W.; Ning, X.; Lv, K.; Shi, Z.; Zhao, M.

    2017-09-01

    Leaves falling gently or fluttering are common phenomenon in nature scenes. The authenticity of leaves falling plays an important part in the dynamic modeling of natural scenes. The leaves falling model has a widely applications in the field of animation and virtual reality. We propose a novel modeling method of fluttering leaves based on point cloud in this paper. According to the shape, the weight of leaves and the wind speed, three basic trajectories of leaves falling are defined, which are the rotation falling, the roll falling and the screw roll falling. At the same time, a parallel algorithm based on OpenMP is implemented to satisfy the needs of real-time in practical applications. Experimental results demonstrate that the proposed method is amenable to the incorporation of a variety of desirable effects.

  4. A MODELING METHOD OF FLUTTERING LEAVES BASED ON POINT CLOUD

    J. Tang

    2017-09-01

    Full Text Available Leaves falling gently or fluttering are common phenomenon in nature scenes. The authenticity of leaves falling plays an important part in the dynamic modeling of natural scenes. The leaves falling model has a widely applications in the field of animation and virtual reality. We propose a novel modeling method of fluttering leaves based on point cloud in this paper. According to the shape, the weight of leaves and the wind speed, three basic trajectories of leaves falling are defined, which are the rotation falling, the roll falling and the screw roll falling. At the same time, a parallel algorithm based on OpenMP is implemented to satisfy the needs of real-time in practical applications. Experimental results demonstrate that the proposed method is amenable to the incorporation of a variety of desirable effects.

  5. THE IMPLICATIONS OF A HIGH COSMIC-RAY IONIZATION RATE IN DIFFUSE INTERSTELLAR CLOUDS

    Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J.

    2009-01-01

    Diffuse interstellar clouds show large abundances of H + 3 which can only be maintained by a high ionization rate of H 2 . Cosmic rays are the dominant ionization mechanism in this environment, so the large ionization rate implies a high cosmic-ray flux, and a large amount of energy residing in cosmic rays. In this paper, we find that the standard propagated cosmic-ray spectrum predicts an ionization rate much lower than that inferred from H + 3 . Low-energy (∼10 MeV) cosmic rays are the most efficient at ionizing hydrogen, but cannot be directly detected; consequently, an otherwise unobservable enhancement of the low-energy cosmic-ray flux offers a plausible explanation for the H + 3 results. Beyond ionization, cosmic rays also interact with the interstellar medium by spalling atomic nuclei and exciting atomic nuclear states. These processes produce the light elements Li, Be, and B, as well as gamma-ray lines. To test the consequences of an enhanced low-energy cosmic-ray flux, we adopt two physically motivated cosmic-ray spectra which by construction reproduce the ionization rate inferred in diffuse clouds, and investigate the implications of these spectra on dense cloud ionization rates, light-element abundances, gamma-ray fluxes, and energetics. One spectrum proposed here provides an explanation for the high ionization rate seen in diffuse clouds while still appearing to be broadly consistent with other observables, but the shape of this spectrum suggests that supernovae remnants may not be the predominant accelerators of low-energy cosmic rays.

  6. A Cosmic Zoo in the Large Magellanic Cloud

    2010-06-01

    Astronomers often turn their telescopes to the Large Magellanic Cloud (LMC), one of the closest galaxies to our own Milky Way, in their quest to understand the Universe. In this spectacular new image from the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile, a celestial menagerie of different objects and phenomena in part of the LMC is on display, ranging from vast globular clusters to the remains left by brilliant supernovae explosions. This fascinating observation provides data for a wide variety of research projects unravelling the life and death of stars and the evolution of galaxies. The Large Magellanic Cloud (LMC) is only about 160 000 light-years from our own Milky Way - very close on a cosmic scale. This proximity makes it a very important target as it can be studied in far more detail than more distant systems. The LMC lies in the constellation of Dorado (the Swordfish), deep in the southern sky and well placed for observations from ESO's observatories in Chile. It is one of the galaxies forming the Local Group surrounding the Milky Way [1]. Though enormous on a human scale, the LMC is less than one tenth the mass of our home galaxy and spans just 14 000 light-years compared to about 100 000 light-years for the Milky Way. Astronomers refer to it as an irregular dwarf galaxy [2]. Its irregularity, combined with its prominent central bar of stars suggests to astronomers that tidal interactions with the Milky Way and fellow Local Group galaxy, the Small Magellanic Cloud, could have distorted its shape from a classic barred spiral into its modern, more chaotic form. This image is a mosaic of four pictures from the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. The image covers a region of sky more than four times as large as the full Moon. The huge field of view of this camera makes it possible to see a very wide range of objects in the LMC in a single picture, although only a small part of the entire

  7. Geomagnetic, ionospheric and cosmic ray variations around the passages of different magnetic clouds

    Maercz, F.

    1992-01-01

    Thirty-four interplanetary magnetic clouds have been divided into two groups on the basis of Wilson's (J.geophys. Res. 95, 215, 1990) classification: NS clouds (whose B z near cloud onset at Earth is directed northward, and soon after B z is turning southward) and SN clouds (those with an opposite behaviour with respect to B z ). Using the days of cloud onsets as key days, geomagnetic, ionospheric and cosmic ray data have been analysed by the superposed epoch analysis method for passages of both NS and SN clouds. On the basis of the daily ΣK p values, geomagnetic activity is found to suddenly increase in the vicinity of both types of cloud passages. Afterwards, the variation shown by the geomagnetic indices is found to differ for NS clouds in comparison with SN clouds. Namely, on average the recovery to a normal activity level is much slower for NS clouds. Similarly, the enhancements in the ionospheric absorption of radio waves (the so-called ''after-effects'') are found to show different signatures according to cloud type, an interpretation also valid for variations in cosmic ray intensity. The latter results are based on analyses of neutron monitor counts observed at two stations (Apatity: 67 N; and Moscow: 55 o N). (author)

  8. Cosmic rays in the large and small Magellanic clouds and the relationship to our galaxy

    Fichtel, C.E.; Sreekumar, P.

    1991-01-01

    Information on the cosmic rays in the Large and Small Magellanic Clouds may be obtained from measurements of the synchrotron radiation related to the energetic electrons, which are believed to contain only about 1% of the cosmic ray energy. Assuming the same ratio as in our galaxy between the cosmic ray electrons and nucleons, the energy density distribution may be estimated. This prediction is compared to that deduced from the matter density distribution, the concept of dynamic galance, and an appropriate coupling scale. For the Large Magellanic Cloud (LMC), the condition of quasi-equilibrium seems satisfied as is required for dynamic balance to be a valid concept, but for the Small Magellanic Cloud (SMC), this seems not to be the case. For the LMC, the scale of coupling is calculated to be about 2 1/2 kiloparsecs, within the range of estimates for our own galaxy, and the intensity level of the cosmic rays in the central region is similar to that in the local region of our own galaxy. In the SMC, the cosmic ray density seems to be lower than in our galaxy and lower than if the conditions required for dynamic equilibrium were in place for the SMC as a whole

  9. The interaction of a very large interplanetary magnetic cloud with the magnetosphere and with cosmic rays

    Lepping, R.P.; Burlaga, L.F.; Ogilvie, K.W.; Tsurutani, B.T.; Lazarus, A.J.; Evans, D.S.; Klein, L.W.

    1991-01-01

    A large interplanetary magnetic cloud has been observed in the mid-December 1982 data from ISEE 3. It is estimated to have a heliocentric radial extent of approx-gt 0.4 AU, making it one of the largest magnetic clouds yet observed at 1 AU. The magnetic field measured throughout the main portion of the cloud was fairly tightly confined to a plane as it changed direction by 174 degree while varying only moderately in magnitude. Throughout nearly the entire duration of the cloud's passage, IMP 8 was located in the Earth's dawn magnetosheath providing observations of this cloud's interaction with the bow shock and magnetopause; the cloud is shown to maintain its solar wind characteristics during the interaction. Near the end of the cloud passage, at 0806 UT on December 17, ISEE 3 (and IMP 8 at nearly the same time) observed an oblique fast forward interplanetary shock closely coincident in time with a geomagnetic storm sudden commencement. The shock, moving much faster than the cloud (radial speeds of 700 and 390 km/s, respectively, on the average), was in the process of overtaking the cloud. The index Dst decreased monotonically by ∼ 130 nT during the 2-day cloud passage by the Earth and was well correlated with the B z component of the interplanetary magnetic field. There was no significant decrease in the cosmic ray intensity recorded by ground-based neutron monitors at this time of rather strong, smoothly changing fields. However, a Forbush decrease did occur immediately after the interplanetary shock, during a period of significant field turbulence. Thus a large, smooth, interplanetary helical magnetic field configuration engulfing the Earth does not necessarily deflect cosmic rays sufficiently to cause a Forbush decrease, but there is a suggestion that such a decrease may be caused by particle scattering by turbulent magnetic fields

  10. COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS OF TRANSLUCENT CLOUDS: Cyg OB2 8A

    Snow, Theodore P.; Destree, Joshua D.; Burgh, Eric B.; Ferguson, Ryan M.; Danforth, Charles W.; Cordiner, Martin

    2010-01-01

    Data from the Cosmic Origins Spectrograph (COS) are presented for the first highly reddened target (Cyg OB2 8A) under the COS Science Team's guaranteed time allocation. Column densities of ionic, atomic, and molecular species are reported and implications are discussed. Data from Cyg OB2 8A demonstrate the ability to analyze highly reddened interstellar sight lines with the COS that were unavailable to previous UV instruments. Measured column densities indicate that the Cyg OB2 8A line of sight contains multiple diffuse clouds rather than a dominant translucent cloud.

  11. Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions

    Fedoseev, G.; Scirè, C.; Baratta, G. A.; Palumbo, M. E.

    2018-04-01

    N2 is believed to lock considerable part of nitrogen elemental budget and, therefore, to be one of the most abundant ice constituent in cold dark clouds. This laboratory-based research utilizes high energetic processing of N2 containing interstellar ice analogues using 200 keV H+ and He+ ions that mimics cosmic ray processing of the interstellar icy grains. It aims to investigate the formation of (iso)cyanates and cyanides in the ice mantles at the conditions typical for cold dark clouds and prestellar cores. Investigation of cosmic ray processing as a chemical trigger mechanism is explained by the high stability of N2 molecules that are chemically inert in most of the atom- and radical-addition reactions and cannot be efficiently dissociated by cosmic ray induced UV-field. Two sets of experiments are performed to closer address solid-state chemistry occurring in two distinct layers of the ice formed at different stages of dark cloud evolution, i.e. `H2O-rich' and `CO-rich' ice layers. Formation of HNCO and OCN- is discussed in all of the performed experiments. Corresponding kinetic curves for HNCO and OCN- are obtained. Furthermore, a feature around 2092 cm-1 assigned to the contributions of 13CO, CN-, and HCN is analysed. The kinetic curves for the combined HCN/CN- abundance are derived. In turn, normalized formation yields are evaluated by interpolation of the obtained results to the low irradiation doses relevant to dark cloud stage. The obtained values can be used to interpret future observations towards cold dark clouds using James Webb Space Telescope.

  12. Galactic cosmic ray and El Nino Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    [1] The recently reported correlation between clouds and galactic cosmic rays (GCR) implies the existence of a previously unknown process linking solar variability and climate. An analysis of the interannual variability of International Satellite Cloud Climatology Project D2 (ISCCP-D2) low-cloud...... a strong correlation with GCR, which suggests that low-cloud properties observed in these regions are less likely to be contaminated from overlying cloud. The GCR-low cloud correlation cannot easily be explained by internal climate processes, changes in direct solar forcing, or UV-ozone interactions...... properties over the period July 1983 to August 1994 suggests that low clouds are statistically related to two processes, (1) GCR and (2) El Nino-Southern Oscillation (ENSO), with GCR explaining a greater percentage of the total variance. Areas where satellites have an unobstructed view of low cloud possess...

  13. Influence of clouds on the cosmic radiation dose rate on aircraft

    Pazianotto, Mauricio T.; Carlson, Brett V.; Federico, Claudio A.; Goncalez, Odair L.; Cortes-Giraldo, Miguel A.; Quesada, Jose Manuel M.; Palomo, Francisco R.; Pinto, Marcos Luiz de A.

    2014-01-01

    Flight missions were made in Brazilian territory in 2009 and 2011 with the aim of measuring the cosmic radiation dose rate incident on aircraft in the South Atlantic Magnetic Anomaly and to compare it with Monte Carlo simulations. During one of these flights, small fluctuations were observed in the vicinity of the aircraft with formation of Cumulonimbus clouds. Motivated by these observations, in this work, the authors investigated the relationship between the presence of clouds and the neutron flux and dose rate incident on aircraft using computational simulation. The Monte Carlo simulations were made using the MCNPX and Geant4 codes, considering the incident proton flux at the top of the atmosphere and its propagation and neutron production through several vertically arranged slabs, which were modelled according to the ISO specifications. The paper presents first-order calculation about the influence of Cumulonimbus clouds on the flux and dose rate due to cosmic neutrons in the atmosphere, at aircraft flight altitudes. The simulations show variations of the order of 5.5 % in the neutrons flux and 3.6 % of the dose rate due to the presence of the cloud. Such variations can extend up to ∼1.5 km from the edge of the cloud. The spectrum of neutrons within a cloud formation was observed undergo changes due to the neutron absorption and scattering processes with the water content inside the cloud. To accomplish these simulations, it is important to have a proper knowledge of the data libraries and nuclear models to be applied, since the simulation processes are strongly dependent on these factors. These results emphasise the importance of conducting more detailed studies on this topic, since the influence of clouds can change the dose and flux on aircraft overflying such formations, as well as could explain some of the fluctuations in the experimental dose rate data obtained in aircraft flights. Future studies should extend such simulations to different types of

  14. COSMIC-RAY AND X-RAY HEATING OF INTERSTELLAR CLOUDS AND PROTOPLANETARY DISKS

    Glassgold, Alfred E.; Galli, Daniele; Padovani, Marco

    2012-01-01

    Cosmic-ray and X-ray heating are derived from the electron energy-loss calculations of Dalgarno, Yan, and Liu for hydrogen-helium gas mixtures. These authors treated the heating from elastic scattering and collisional de-excitation of rotationally excited hydrogen molecules. Here we consider the heating that can arise from all ionization and excitation processes, with particular emphasis on the reactions of cosmic-ray and X-ray generated ions with the heavy neutral species, which we refer to as chemical heating. In molecular regions, chemical heating dominates and can account for 50% of the energy expended in the creation of an ion pair. The heating per ion pair ranges in the limit of negligible electron fraction from ∼4.3 eV for diffuse atomic gas to ∼13 eV for the moderately dense regions of molecular clouds and to ∼18 eV for the very dense regions of protoplanetary disks. An important general conclusion of this study is that cosmic-ray and X-ray heating depends on the physical properties of the medium, i.e., on the molecular and electron fractions, the total density of hydrogen nuclei, and, to a lesser extent, on the temperature. It is also noted that chemical heating, the dominant process for cosmic-ray and X-ray heating, plays a role in UV irradiated molecular gas.

  15. Variation of cosmic-ray flux and global cloud-coverage

    Svensmark, H

    1998-01-01

    There has long been a search for a physical link between solar activity and the earth's climate. The most direct way the Sun could affect the Earth's climate would be through temporal changes in its luminosity, but observations have shown that these small to explain the observed temperature changes. This does not, however exclude the possibility of an indirect physical mechanism. In the talk it will be shown that the excellent correlations observed between solar activity parameters and climate c link between cosmic ray flux and global cloud cover.

  16. Confinement and Isotropization of Galactic Cosmic Rays by Molecular-Cloud Magnetic Mirrors When Turbulent Scattering Is Weak

    Chandran, Benjamin D. G.

    2000-01-01

    Theoretical studies of magnetohydrodynamic (MHD) turbulence and observations of solar wind fluctuations suggest that MHD turbulence in the interstellar medium is anisotropic at small scales, with smooth variations along the background magnetic field and sharp variations perpendicular to the background field. Turbulence with this anisotropy is inefficient at scattering cosmic rays, and thus the scattering rate ν may be smaller than has been traditionally assumed in diffusion models of Galactic cosmic-ray propagation, at least for cosmic-ray energies E above 1011-1012 eV at which self-confinement is not possible. In this paper, it is shown that Galactic cosmic rays can be effectively confined through magnetic reflection by molecular clouds, even when turbulent scattering is weak. Elmegreen's quasi-fractal model of molecular-cloud structure is used to argue that a typical magnetic field line passes through a molecular cloud complex once every ∼300 pc. Once inside the complex, the field line will in most cases be focused into one or more dense clumps in which the magnetic field can be much stronger than the average field in the intercloud medium (ICM). Cosmic rays following field lines into cloud complexes are most often magnetically reflected back into the ICM, since strong-field regions act as magnetic mirrors. For a broad range of cosmic-ray energies, a cosmic ray initially following some particular field line separates from that field line sufficiently slowly that the cosmic ray can be trapped between neighboring cloud complexes for long periods of time. The suppression of cosmic-ray diffusion due to magnetic trapping is calculated in this paper with the use of phenomenological arguments, asymptotic analysis, and Monte Carlo particle simulations. Formulas for the coefficient of diffusion perpendicular to the Galactic disk are derived for several different parameter regimes within the E-ν plane. In one of these parameter regimes in which scattering is weak, it

  17. Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes

    Ivlev, A. V.; Dogiel, V. A.; Chernyshov, D. O.; Caselli, P.; Ko, C.-M.; Cheng, K. S.

    2018-03-01

    A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the leading physical processes controlling their transport on the way from a highly ionized interstellar medium to the dense interior of the cloud. The model allows us to describe a transition between a free streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances. A self-consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence generated by the modulated CR flux, is characterized by two dimensionless numbers. We demonstrate a remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well as the ionization, heating, and chemistry in dense molecular clouds. This paper is dedicated to the memory of Prof. Vadim Tsytovich.

  18. Selective cooling on land supports cloud formation by cosmic ray during geomagnetic reversals

    Kitaba, I.; Hyodo, M.; Nakagawa, T.; Katoh, S.; Dettman, D. L.; Sato, H.

    2017-12-01

    On geological time scales, the galactic cosmic ray (GCR) flux at the Earth's surface has increased significantly during many short time intervals. There is a growing body of evidence that suggests that climatic cooling occurred during these episodes. Cloud formation by GCR has been claimed as the most likely cause of the linkage. However, the mechanism is not fully understood due to the difficulty of accurately estimating the amount of cloud cover in the geologic past. Our study focused on the geomagnetic field and climate in East Asia. The Earth's magnetic field provides a shield against GCR. The East Asian climate reflects the temperature balance between the Eurasian landmass and the Pacific Ocean that drives monsoon circulation.Two geomagnetic polarity reversals occurred at 780 ka and 1,070 ka. At these times the geomagnetic field decreased to about 10% of its present level causing a near doubling of the GCR flux. Temperature and rainfall amounts during these episodes were reconstructed using pollen in sediment cores from Osaka Bay, Japan. The results show a more significant temperature drop on the Eurasian continent than over the Pacific, and a decrease of summer rainfall in East Asia (i.e. a weakening of East Asian summer monsoon). These observed climate changes can be accounted for if the landmasses were more strongly cooled than the oceans. The simplest mechanism behind such asymmetric cooling is the so-called `umbrella effect' (increased cloud cover blocking solar radiation) that induces greater cooling of objects with smaller heat capacities.

  19. TEMPERATURE SPECTRA OF INTERSTELLAR DUST GRAINS HEATED BY COSMIC RAYS. I. TRANSLUCENT CLOUDS

    Kalvāns, Juris, E-mail: juris.kalvans@venta.lv [Engineering Research Institute “Ventspils International Radio Astronomy Center” of Ventspils University College, Inzenieru 101, Ventspils, LV-3601 (Latvia)

    2016-06-01

    Heating of whole interstellar dust grains by cosmic-ray (CR) particles affects the gas–grain chemistry in molecular clouds by promoting molecule desorption, diffusion, and chemical reactions on grain surfaces. The frequency of such heating, f{sub T}, s{sup −1}, determines how often a certain temperature T{sub CR}, K, is reached for grains hit by CR particles. This study aims to provide astrochemists with a comprehensive and updated data set on CR-induced whole-grain heating. We present calculations of f{sub T} and T{sub CR} spectra for bare olivine grains with radius a of 0.05, 0.1, and 0.2 μ m and such grains covered with ice mantles of thickness 0.1 a and 0.3 a . Grain shape and structure effects are considered, as well as 30 CR elemental constituents with an updated energy spectrum corresponding to a translucent cloud with A{sub V} = 2 mag. Energy deposition by CRs in grain material was calculated with the srim program. We report full T{sub CR} spectra for all nine grain types and consider initial grain temperatures of 10 K and 20 K. We also provide frequencies for a range of minimum T{sub CR} values. The calculated data set can be simply and flexibly implemented in astrochemical models. The results show that, in the case of translucent clouds, the currently adopted rate for heating of whole grains to temperatures in excess of 70 K is underestimated by approximately two orders of magnitude in astrochemical numerical simulations. Additionally, grains are heated by CRs to modest temperatures (20–30 K) with intervals of a few years, which reduces the possibility of ice chemical explosions.

  20. HIGH-ENERGY COSMIC-RAY DIFFUSION IN MOLECULAR CLOUDS: A NUMERICAL APPROACH

    Fatuzzo, M.; Melia, F.; Todd, E.; Adams, F. C.

    2010-01-01

    The propagation of high-energy cosmic rays (CRs) through giant molecular clouds constitutes a fundamental process in astronomy and astrophysics. The diffusion of CRs through these magnetically turbulent environments is often studied through the use of energy-dependent diffusion coefficients, although these are not always well motivated theoretically. Now, however, it is feasible to perform detailed numerical simulations of the diffusion process computationally. While the general problem depends upon both the field structure and particle energy, the analysis may be greatly simplified by dimensionless analysis. That is, for a specified purely turbulent field, the analysis depends almost exclusively on a single parameter-the ratio of the maximum wavelength of the turbulent field cells to the particle gyration radius. For turbulent magnetic fluctuations superimposed over an underlying uniform magnetic field, particle diffusion depends on a second dimensionless parameter that characterizes the ratio of the turbulent to uniform magnetic field energy densities. We consider both of these possibilities and parametrize our results to provide simple quantitative expressions that suitably characterize the diffusion process within molecular cloud environments. Doing so, we find that the simple scaling laws often invoked by the high-energy astrophysics community to model CR diffusion through such regions appear to be fairly robust for the case of a uniform magnetic field with a strong turbulent component, but are only valid up to ∼50 TeV particle energies for a purely turbulent field. These results have important consequences for the analysis of CR processes based on TeV emission spectra associated with dense molecular clouds.

  1. The Umov effect in application to an optically thin two-component cloud of cosmic dust

    Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy

    2018-04-01

    The Umov effect is an inverse correlation between linear polarization of the sunlight scattered by an object and its geometric albedo. The Umov effect has been observed in particulate surfaces, such as planetary regoliths, and recently it also was found in single-scattering small dust particles. Using numerical modeling, we study the Umov effect in a two-component mixture of small irregularly shaped particles. Such a complex chemical composition is suggested in cometary comae and other types of optically thin clouds of cosmic dust. We find that the two-component mixtures of small particles also reveal the Umov effect regardless of the chemical composition of their end-member components. The interrelation between log(Pmax) and log(A) in a two-component mixture of small irregularly shaped particles appears either in a straight linear form or in a slightly curved form. This curvature tends to decrease while the index n in a power-law size distribution r-n grows; at n > 2.5, the log(Pmax)-log(A) diagrams are almost straight linear in appearance. The curvature also noticeably decreases with the packing density of constituent material in irregularly shaped particles forming the mixture. That such a relation exists suggest the Umov effect may also be observed in more complex mixtures.

  2. FERMI LARGE AREA TELESCOPE STUDY OF COSMIC RAYS AND THE INTERSTELLAR MEDIUM IN NEARBY MOLECULAR CLOUDS

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [CNRS, IRAP, F-31028 Toulouse cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: hayashi@hep01.hepl.hiroshima-u.ac.jp, E-mail: mizuno@hep01.hepl.hiroshima-u.ac.jp [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2012-08-10

    We report an analysis of the interstellar {gamma}-ray emission from the Chamaeleon, R Coronae Australis (R CrA), and Cepheus and Polaris flare regions with the Fermi Large Area Telescope. They are among the nearest molecular cloud complexes, within {approx}300 pc from the solar system. The {gamma}-ray emission produced by interactions of cosmic rays (CRs) and interstellar gas in those molecular clouds is useful to study the CR densities and distributions of molecular gas close to the solar system. The obtained {gamma}-ray emissivities above 250 MeV are (5.9 {+-} 0.1{sub stat}{sup +0.9}{sub -1.0sys}) Multiplication-Sign 10{sup -27} photons s{sup -1} sr{sup -1} H-atom{sup -1}, (10.2 {+-} 0.4{sub stat}{sup +1.2}{sub -1.7sys}) Multiplication-Sign 10{sup -27} photons s{sup -1} sr{sup -1} H-atom{sup -1}, and (9.1 {+-} 0.3{sub stat}{sup +1.5}{sub -0.6sys}) Multiplication-Sign 10{sup -27} photons s{sup -1} sr{sup -1} H-atom{sup -1} for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively. Whereas the energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth, the measured emissivities from 250 MeV to 10 GeV indicate a variation of the CR density by {approx}20% in the neighborhood of the solar system, even if we consider systematic uncertainties. The molecular mass calibrating ratio, X{sub CO} = N(H{sub 2})/W{sub CO}, is found to be (0.96 {+-} 0.06{sub stat}{sup +0.15}{sub -0.12sys}) Multiplication-Sign 10{sup 20} H{sub 2}-molecule cm{sup -2} (K km s{sup -1}){sup -1}, (0.99 {+-} 0.08{sub stat}{sup +0.18}{sub -0.10sys}) Multiplication-Sign 10{sup 20} H{sub 2}-molecule cm{sup -2} (K km s{sup -1}){sup -1}, and (0.63 {+-} 0.02{sub stat}{sup +0.09}{sub -0.07sys}) Multiplication-Sign 10{sup 20} H{sub 2}-molecule cm{sup -2} (K km s{sup -1}){sup -1} for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively, suggesting a variation of X{sub CO} in the vicinity of the solar system. From the

  3. Cosmic rays, gas and dust in nearby anticentre clouds. I. CO-to-H2 conversion factors and dust opacities

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2017-05-01

    Aims: We aim to explore the capabilities of dust emission and γ rays for probing the properties of the interstellar medium in the nearby anti-centre region, using γ-ray observations with the Fermi Large Area Telescope (LAT), and the thermal dust optical depth inferred from Planck and IRAS observations. We also aim to study massive star-forming clouds including the well known Taurus, Auriga, Perseus, and California molecular clouds, as well as a more diffuse structure which we refer to as Cetus. In particular, we aim at quantifying potential variations in cosmic-ray density and dust properties per gas nucleon across the different gas phases and different clouds, and at measuring the CO-to-H2 conversion factor, XCO, in different environments. Methods: We have separated six nearby anti-centre clouds that are coherent in velocities and distances, from the Galactic-disc background in H I 21-cm and 12CO 2.6-mm line emission. We have jointly modelled the γ-ray intensity recorded between 0.4 and 100 GeV, and the dust optical depth τ353 at 353 GHz as a combination of H I-bright, CO-bright, and ionised gas components. The complementary information from dust emission and γ rays was used to reveal the gas not seen, or poorly traced, by H I, free-free, and 12CO emissions, namely (I) the opaque H iand diffuse H2 present in the Dark Neutral Medium at the atomic-molecular transition, and (II) the dense H2 to be added where 12CO lines saturate. Results: The measured interstellar γ-ray spectra support a uniform penetration of the cosmic rays with energies above a few GeV through the clouds, from the atomic envelopes to the 12CO-bright cores, and with a small ± 9% cloud-to-cloud dispersion in particle flux. We detect the ionised gas from the H iiregion NGC 1499 in the dust and γ-ray emissions and measure its mean electron density and temperature. We find a gradual increase in grain opacity as the gas (atomic or molecular) becomes more dense. The increase reaches a factor of

  4. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E.; Elmegreen, B. G.; Elmegreen, D. M.; Pérez-Montero, E.; Vílchez, J. M.; Amorín, R.; Ascasibar, Y.; Papaderos, P.

    2015-01-01

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties

  5. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Elmegreen, B. G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Pérez-Montero, E.; Vílchez, J. M. [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Amorín, R. [INAF-Osservatorio Astronomico di Roma, Monte Porzio Catone (Italy); Ascasibar, Y. [Universidad Autonoma de Madrid, Madrid (Spain); Papaderos, P., E-mail: jos@iac.es [Centro de Astrofísica da Universidade do Porto, Porto (Portugal)

    2015-09-10

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  6. Influence of cosmic radiation on aerosol and cloud formation over short time periods

    Bondo, Torsten

    in the atmosphere affect aerosol and cloud creation and whether it is realistic to observe Forbush decrease events in climate data. The thesis involves a theoretical examination of the ionization caused by Forbush decreases based on studies of hourly neutron monitor data and muon telescope data as proxies...... distribution of stable nucleated clusters, the model takes condensation and coagulation into account and includes various loss mechanisms. This model is used to investigate the growth of aerosols into cloud condensation nuclei size particles and to study the influence of nucleation rates and background vapour...... resolution satellite data and aerosol ground based measurements are presented. Here it is observed that significant decreases in the angstrom exponent from AERONET aerosols and cloud liquid water from satellites take place after the largest Forbush decreases. The timescales of this indicate...

  7. CHEMICAL ANALYSIS OF A DIFFUSE CLOUD ALONG A LINE OF SIGHT TOWARD W51: MOLECULAR FRACTION AND COSMIC-RAY IONIZATION RATE

    Indriolo, Nick; Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Gerin, M. [LERMA, CNRS, Observatoire de Paris and ENS, F-75231 Paris Cedex 05 (France); Geballe, T. R. [Gemini Observatory, Hilo, HI 96720 (United States); Black, J. H. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Menten, K. M. [MPI fuer Radioastronomie, D-53121 Bonn (Germany); Goicoechea, J. R. [Departamento de Astrofisica, Centro de Astrobiologia (CSIC-INTA), E-28850 Madrid (Spain)

    2012-10-20

    Absorption lines from the molecules OH{sup +}, H{sub 2}O{sup +}, and H{sup +} {sub 3} have been observed in a diffuse molecular cloud along a line of sight near W51 IRS2. We present the first chemical analysis that combines the information provided by all three of these species. Together, OH{sup +} and H{sub 2}O{sup +} are used to determine the molecular hydrogen fraction in the outskirts of the observed cloud, as well as the cosmic-ray ionization rate of atomic hydrogen. H{sup +} {sub 3} is used to infer the cosmic-ray ionization rate of H{sub 2} in the molecular interior of the cloud, which we find to be {zeta}{sub 2} = (4.8 {+-} 3.4) Multiplication-Sign 10{sup -16} s{sup -1}. Combining the results from all three species we find an efficiency factor-defined as the ratio of the formation rate of OH{sup +} to the cosmic-ray ionization rate of H-of {epsilon} = 0.07 {+-} 0.04, much lower than predicted by chemical models. This is an important step in the future use of OH{sup +} and H{sub 2}O{sup +} on their own as tracers of the cosmic-ray ionization rate.

  8. The pillars of creation giant molecular clouds, star formation, and cosmic recycling

    Beech, Martin

    2017-01-01

    This book explores the mechanics of star formation, the process by which matter pulls together and creates new structures. Written for science enthusiasts, the author presents an accessible explanation of how stars are born from the interstellar medium and giant molecular clouds. Stars produce the chemicals that lead to life, and it is they that have enabled the conditions for planets to form and life to emerge. Although the Big Bang provided the spark of initiation, the primordial universe that it sired was born hopelessly sterile. It is only through the continued recycling of the interstellar medium, star formation, and stellar evolution that the universe has been animated beyond a chaotic mess of elementary atomic particles, radiation, dark matter, dark energy, and expanding spacetime. Using the Milky Way and the Eagle Nebula in particular as case studies, Beech follows every step of this amazing process. .

  9. Effects of an assumed cosmic ray-modulated low global cloud cover on the Earth's temperature

    Ramirez, J.; Mendoza, B. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Mendoza, V.; Adem, J. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: victor@atmosfera.unam.mx

    2006-07-15

    We have used the Thermodynamic Model of the Climate to estimate the effect of variations in the low cloud cover on the surface temperature of the Earth in the Northern Hemisphere during the period 1984-1994. We assume that the variations in the low cloud cover are proportional to the variation of the cosmic ray flux measured during the same period. The results indicate that the effect in the surface temperature is more significant in the continents, where for July of 1991, we have found anomalies of the order of 0.7 degrees Celsius for the southeastern of Asia and 0.5 degrees Celsius for the northeast of Mexico. For an increase of 0.75% in the low cloud cover, the surface temperature computed by the model in the North Hemisphere presents a decrease of {approx} 0.11 degrees Celsius; however, for a decrease of 0.90% in the low cloud cover, the model gives an increase in the surface temperature of {approx} 0.15 degrees Celsius, these two cases correspond to a climate sensitivity factor for the case of forcing by duplication of atmospheric CO{sub 2}. These decreases or increases in surface temperature by increases of decreases in low clouds cover are ten times greater than the overall variability of the non-forced model time series. [Spanish] Hemos usado el Modelo Termodinamico del Clima para estimar el efecto de variaciones en la cubierta de nubes bajas sobre la temperatura superficial de la Tierra en el Hemisferio Norte durante el periodo 1984 - 1994. Suponemos que las variaciones en la cubierta de nubes bajas son proporcionales a las variaciones del flujo de rayos cosmicos medido durante el mismo periodo. Los resultados indican que el efecto en la temperatura es mas significativo en los continentes, donde para julio de 1991, hemos encontrado anomalias del orden de 0.7 grados Celsius sobre el sureste de Asia y 0.5 grados Celsius al noreste de Mexico. Para un incremento de 0.75% en la cubierta de nubes bajas, la temperatura de la superficie calculada por el modelo en

  10. Laboratory modelling of the physico-chemical processes in the cosmic gas-dust clouds

    Bakulina, I.N.; Blashenkov, N.M.; Varshalovich, D.A.; Lavrent'ev, G.Ya.; Shustrov, B.N.

    1980-01-01

    The preliminary results of an experiment on the complex laboratory modelling of the physico-chemical processes proceeding in the interstellar gas clouds are presented. The purpose of the modelling is an analysis of the molecule formation and dissociation processes kinetics. The basic component of the modelling system is 10 cm diameter spherical container with cooled walls (the dust particles surface analogue). The high frequency discharger (the discharge region - the H 2 zone analogue) is placed in the central part of the container. The container contains the mixture of simple gases: 10 -1 Tor of H 2 and He, 10 -2 Tor of CO, O 2 and N 2 and 0.5x10 -2 Tor of H 2 S (an analogue of the H 1 zone). The reactions are induced by the electrodeless high-frequency discharge (f=20 MHz) with the discharge power of 0.1-1 W. The resulting mixture has been analyzed by the high-resolution magnetic resonance mass spectrometer. (M/ΔM=2x10 4 ) with an electron impact source. It is shown that, in the reactions of the formation of many on the interstellar molecules, the on the cold dust surface reactions rather than the gas-phase reactions may play the dominant role

  11. Blue skies for CLOUD

    2006-01-01

    Through the recently approved CLOUD experiment, CERN will soon be contributing to climate research. Tests are being performed on the first prototype of CLOUD, an experiment designed to assess cosmic radiation influence on cloud formation.

  12. Cosmic Rays and Clouds, 1. Formation of Lead Mesoatoms In Neutron Monitor By Soft Negative Muons and Expected Atmospheric Electric Field Effect In The Cosmic Ray Neutron Component

    Dorman, L. I.; Dorman, I. V.

    We extend our model (Dorman and Dorman, 1995) of cosmic ray atmospheric electric field effect on the case of neutron monitor. We take into account that about 0.07 of neu- tron monitor counting rate caused by negative soft muons captured by lead nucleons and formed mesoatoms with generation of several MeV energy neutrons from lead. In this case the neutron monitor or neutron supermonitor works as analyzer which de- tects muons of only one, negative sign. It is very important because the atmospheric electric field effect have opposite signs for positive and negative muons that main part of this effect in the muon telescope or in ionization chamber is compensated and we can observe only small part of total effect of one sign muons. On the basis of our gen- eral theory of cosmic ray meteorological effects with taking into account of negative soft muon acceleration and deceleration in the Earth atmosphere (in dependence of di- rection and intensity of electric field) we discuss the possibility of existing this effect in cosmic ray neutron component and made some rough estimations. REFERENCES: Dorman L.I. and Dorman I.V., 1995. "Cosmic-ray atmospheric electric field effects". Canadian J. of Physics, Vol. 73, pp. 440-443.

  13. Cosmic Rays in Thunderstorms

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  14. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-01-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  15. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-05-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  16. Cosmic-rays, gas, and dust in nearby anticentre clouds. II. Interstellar phase transitions and the dark neutral medium

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2018-03-01

    Aim. H I 21-cm and 12CO 2.6-mm line emissions trace the atomic and molecular gas phases, respectively, but they miss most of the opaque H I and diffuse H2 present in the dark neutral medium (DNM) at the transition between the H I-bright and CO-bright regions. Jointly probing H I, CO, and DNM gas, we aim to constrain the threshold of the H I-H2 transition in visual extinction, AV, and in total hydrogen column densities, NHtot. We also aim to measure gas mass fractions in the different phases and to test their relation to cloud properties. Methods: We have used dust optical depth measurements at 353 GHz, γ-ray maps at GeV energies, and H I and CO line data to trace the gas column densities and map the DNM in nearby clouds toward the Galactic anticentre and Chamaeleon regions. We have selected a subset of 15 individual clouds, from diffuse to star-forming structures, in order to study the different phases across each cloud and to probe changes from cloud to cloud. Results: The atomic fraction of the total hydrogen column density is observed to decrease in the (0.6-1) × 1021 cm-2 range in NHtot (AV ≈ 0.4 mag) because of the formation of H2 molecules. The onset of detectable CO intensities varies by only a factor of 4 from cloud to cloud, between 0.6 × 1021 cm-2 and 2.5 × 1021 cm-2 in total gas column density. We observe larger H2 column densities than linearly inferred from the CO intensities at AV > 3 mag because of the large CO optical thickness; the additional H2 mass in this regime represents on average 20% of the CO-inferred molecular mass. In the DNM envelopes, we find that the fraction of diffuse CO-dark H2 in the molecular column densities decreases with increasing AV in a cloud. For a half molecular DNM, the fraction decreases from more than 80% at 0.4 mag to less than 20% beyond 2 mag. In mass, the DNM fraction varies with the cloud properties. Clouds with low peak CO intensities exhibit large CO-dark H2 fractions in molecular mass, in particular the

  17. submitter Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    Nichman, Leonid; Järvinen, Emma; Ignatius, Karoliina; Höppel, Niko Florian; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Kristensen, Thomas Bjerring; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-01-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary ...

  18. Cosmic-ray cloud-chamber contributions to the discovery of the strange particles in the decade 1947-1957

    Rochester, G.D.

    1989-01-01

    This paper looks at the discovery and investigation of strange particles in the 1950s and points to the importance of two factors in achieving this, namely, penetrating-shower selection and counter control in cloud chambers. Experiments at Pic-du-Mide are detailed as is the Bagneres de Bigorre conference and concludes with some of the work done on charged strange particles. (UK)

  19. Cosmic antimatter

    Tarle, G.; Swordy, S.

    1998-01-01

    In 1928 Paul Dirac forecasted the existence of antimatter and 4 years later Carl Anderson detected the first antiparticle: the positron in a cloud chamber while studying cosmic radiation. Antiprotons were more difficult to find but in 1955 physicists from Lawrence Berkeley Laboratory got some in a particle accelerator. In 1995 a team from the CERN synthesized atoms of anti-hydrogen by binding positrons to antiprotons in a particle accelerator. Astrophysicists have built more and more complex detectors to study cosmic rays. The detector HEAT (high energy antimatter telescope) has been designed to study positrons above the atmosphere. This detector has been launched for the first time in 1994 and has measured cosmic radiation for 32 hours at an altitude of 37000 meters. The results were challenging: whereas the number of low energy positrons detected agrees with the theory, the number of high energy positrons is too important. It suggests the existence of unknown sources of positrons somewhere in the universe. The massive particles that interact weakly (WIMP) could be such sources. This article draws the history of the quest for antimatter and its implications in cosmology, the detector HEAT is described. (A.C.)

  20. Solar variability and clouds

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  1. Cosmic Topology

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  2. Cosmic rays and global warming

    Erlykin, A.D. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Sloan, T. [Lancaster University (United Kingdom); Wolfendale, A.W. [Durham University (United Kingdom)

    2010-07-01

    The possible effects of cosmic rays on clouds could contribute to global warming. The argument is that the observed increased solar activity during the last century caused a decrease in the ionization due to cosmic rays since the lower energy cosmic particles are deflected by the magnetic field created by the increasing solar wind. This would lead to a decrease in cloud cover allowing more heating of the earth by the sun. Meteorological data combined to solar activity observations and simulations show that any effect of solar activity on clouds and the climate is likely to be through irradiance rather than cosmic rays. Since solar irradiance transfers 8 orders of magnitude more energy to the atmosphere than cosmic rays it is more plausible that this can produce a real effect. The total contribution of variable solar activity to global warming is shown to be less than 14% of the total temperature rise. (A.C.)

  3. Cosmic rays and climate

    2009-01-01

    Inside the new chamber the CLOUD team will be able to recreate the conditions of any part of the atmosphere, from the polar stratosphere to the low level tropics (top). The new chamber safely in position in the East hall. Once carefully cleaned the chamber will be turned sideways onto its legs ready for the beam of 'cosmic rays' (bottom).

  4. Cosmic rays, clouds and climate

    Svensmark, Henrik

    2015-01-01

    The most profound questions with the most surprising answers are often the simplest to ask. One is: Why is the climate always changing? Historical and archaeological evidence of global warming and cooling that occurred long before the Industrial Revolution, require natural explanations....

  5. Aerosols Produced by Cosmic Rays

    Enghoff, Martin Andreas Bødker

    an experiment in order to investigate the underlying microphysical processes. The results of this experiment will help to understand whether ionization from cosmic rays, and by implication the related processes in the universe, has a direct influence on Earth’s atmosphere and climate. Since any physical...... mechanism linking cosmic rays to clouds and climate is currently speculative, there have been various suggestions of the role atmospheric ions may play; these involve any one of a number of processes from the nucleation of aerosols up to the collection processes of cloud droplets. We have chosen to start......Satellite observations have shown that the Earth’s cloud cover is strongly correlated with the galactic cosmic ray flux. While this correlation is indicative of a possible physical connection, there is currently no confirmation that a physical mechanism exists. We are therefore setting up...

  6. A disintegrating cosmic string

    Griffiths, J B; Docherty, P

    2002-01-01

    We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave. (letter to the editor)

  7. Cosmic rays and Earth's climate

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  8. Cosmic Rays and Climate

    Kirkby, Jasper

    2007-01-01

    Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial—perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic fiel...

  9. Cosmic strings and cosmic structure

    Albrecht, A.; Brandenberger, R.; Turok, N.

    1987-01-01

    The paper concerns the application of the theory of cosmic strings to explain the structure of the Universe. The formation of cosmic strings in the early Universe is outlined, along with the Big Bang theory, Grand Unified theories, and the first three minutes after the Big Bang. A description is given of the shaping of the Universe by cosmic strings, including the evolution of the string. The possibility for direct observation of cosmic strings is discussed. (U.K.)

  10. Accuracy and precision of polar lower stratospheric temperatures from reanalyses evaluated from A-Train CALIOP and MLS, COSMIC GPS RO, and the equilibrium thermodynamics of supercooled ternary solutions and ice clouds

    Lambert, Alyn; Santee, Michelle L.

    2018-02-01

    We investigate the accuracy and precision of polar lower stratospheric temperatures (100-10 hPa during 2008-2013) reported in several contemporary reanalysis datasets comprising two versions of the Modern-Era Retrospective analysis for Research and Applications (MERRA and MERRA-2), the Japanese 55-year Reanalysis (JRA-55), the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-I), and the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (NCEP-CFSR). We also include the Goddard Earth Observing System model version 5.9.1 near-real-time analysis (GEOS-5.9.1). Comparisons of these datasets are made with respect to retrieved temperatures from the Aura Microwave Limb Sounder (MLS), Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) temperatures, and independent absolute temperature references defined by the equilibrium thermodynamics of supercooled ternary solutions (STSs) and ice clouds. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of polar stratospheric clouds are used to determine the cloud particle types within the Aura MLS geometric field of view. The thermodynamic calculations for STS and the ice frost point use the colocated MLS gas-phase measurements of HNO3 and H2O. The estimated bias and precision for the STS temperature reference, over the 68 to 21 hPa pressure range, are 0.6-1.5 and 0.3-0.6 K, respectively; for the ice temperature reference, they are 0.4 and 0.3 K, respectively. These uncertainties are smaller than those estimated for the retrieved MLS temperatures and also comparable to GPS RO uncertainties (bias 0.7 K) in the same pressure range. We examine a case study of the time-varying temperature structure associated with layered ice clouds formed by orographic gravity waves forced by flow over the Palmer Peninsula and

  11. Results from the CERN pilot CLOUD experiment

    Duplissy, J; Reichl, U; Winkler, P M; Pedersen, E; Makhmutov, V; Viisanen, Y; Kulmala, M; Wilhelmsson, M; Weingartner, E; Avngaard, M; Curtius, J; Veenhof, R; Laakso, L; Gagne, S; Harrison, R G; Sipila, M; David, A; Seinfeld, J H; Nieminen, T; Verheggen, B; Aplin, K L; Stratmann, F; Arnold, F; Makela, J; Kellett, B; Fastrup, B; Marsh, N D; Lockwood, M; Carslaw, K; Wehrle, G; Aufmhoff, H; Pedersen, J O P; Baltensperger, U; Onnela, A; Laaksonen, A; Enghoff, M B; Svensmark, J; Wex, H; Lillestol, E; Wagner, P E; Kirkby, J; Stozhkov, Y; Polny, J; Bondo, T; Bingham, R; Svensmark, H

    2010-01-01

    During a 4-week run in October-November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm(-3) s(-1), and growth rates between 2 and 37 nm h(-1). The corresponding H2SO4 concentrations were typically around 10(6) cm(-3) or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid...

  12. Cosmic radiation

    Capdevielle, J N

    1984-01-01

    First, the different instruments and techniques of cosmic particle detection are presented. Then the passage of the cosmic particles through the atmosphere is studied: electrons, photons, muons. The collective behavior of the different categories is also studied, the electromagnetic cascade is distinguished from the hadron cascade. Through the principal physical properties of the radiation and the medium, the ''mean'' aspects of the radiation are then successively dealt with out of the atmosphere, at different altitudes until the sea level, then at great depths. A chapter is devoted to cosmic radiation of more than 10,000 GeV, studied separately. Then solar radiation in universe is studied through their propagation in solar system and their origin. At last, the cosmic radiation effects are studied in environment (cosmic biophysics) and some applications of cosmic radiation are presented.

  13. Cosmic rays

    Tkachev, I.I.

    2014-01-01

    In this talk I will review results of cosmic ray observations at the highest energies. This year the new results on energy spectra, composition and the study of arrival directions of cosmic ray primaries came from the Telescope Array collaboration. I present these results in comparison with measurements done by other recent experiments and discuss their implications for the search of cosmic ray sources. Some related results in gamma-ray astronomy and selected recent advances in theory are also covered. (author)

  14. Meteors, meteorites and cosmic dust

    Lebedinets, V.N.

    1987-01-01

    The problem of meteorite origin and meteorite composition is discussed. Nowadays, most scientists suppose that the giant Oort cloud consisting of ice comet nuclei is the sourse of the meteor matter. A principle unity of the matter of meteorites falling to the Earth and cosmic dust is noted as well as that of meteorite bodies evaporating in the atmosphere and bearing meteors and bodies

  15. An uncertainty principle for star formation - II. A new method for characterising the cloud-scale physics of star formation and feedback across cosmic history

    Kruijssen, J. M. Diederik; Schruba, Andreas; Hygate, Alexander P. S.; Hu, Chia-Yu; Haydon, Daniel T.; Longmore, Steven N.

    2018-05-01

    The cloud-scale physics of star formation and feedback represent the main uncertainty in galaxy formation studies. Progress is hampered by the limited empirical constraints outside the restricted environment of the Local Group. In particular, the poorly-quantified time evolution of the molecular cloud lifecycle, star formation, and feedback obstructs robust predictions on the scales smaller than the disc scale height that are resolved in modern galaxy formation simulations. We present a new statistical method to derive the evolutionary timeline of molecular clouds and star-forming regions. By quantifying the excess or deficit of the gas-to-stellar flux ratio around peaks of gas or star formation tracer emission, we directly measure the relative rarity of these peaks, which allows us to derive their lifetimes. We present a step-by-step, quantitative description of the method and demonstrate its practical application. The method's accuracy is tested in nearly 300 experiments using simulated galaxy maps, showing that it is capable of constraining the molecular cloud lifetime and feedback time-scale to <0.1 dex precision. Access to the evolutionary timeline provides a variety of additional physical quantities, such as the cloud-scale star formation efficiency, the feedback outflow velocity, the mass loading factor, and the feedback energy or momentum coupling efficiencies to the ambient medium. We show that the results are robust for a wide variety of gas and star formation tracers, spatial resolutions, galaxy inclinations, and galaxy sizes. Finally, we demonstrate that our method can be applied out to high redshift (z≲ 4) with a feasible time investment on current large-scale observatories. This is a major shift from previous studies that constrained the physics of star formation and feedback in the immediate vicinity of the Sun.

  16. Global atmospheric particle formation from CERN CLOUD measurements.

    Dunne, Eimear M; Gordon, Hamish; Kürten, Andreas; Almeida, João; Duplissy, Jonathan; Williamson, Christina; Ortega, Ismael K; Pringle, Kirsty J; Adamov, Alexey; Baltensperger, Urs; Barmet, Peter; Benduhn, Francois; Bianchi, Federico; Breitenlechner, Martin; Clarke, Antony; Curtius, Joachim; Dommen, Josef; Donahue, Neil M; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Jokinen, Tuija; Kangasluoma, Juha; Kirkby, Jasper; Kulmala, Markku; Kupc, Agnieszka; Lawler, Michael J; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mann, Graham; Mathot, Serge; Merikanto, Joonas; Miettinen, Pasi; Nenes, Athanasios; Onnela, Antti; Rap, Alexandru; Reddington, Carly L S; Riccobono, Francesco; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Simon, Mario; Sipilä, Mikko; Smith, James N; Stozkhov, Yuri; Tomé, Antonio; Tröstl, Jasmin; Wagner, Paul E; Wimmer, Daniela; Winkler, Paul M; Worsnop, Douglas R; Carslaw, Kenneth S

    2016-12-02

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere. Copyright © 2016, American Association for the Advancement of Science.

  17. Spectral measurements of the cosmic microwave background

    Kogut, A.J.

    1989-04-01

    Three experiments have measured the intensity of the Cosmic Microwave Background (CMB) at wavelengths 4.0, 3.0, and 0.21 cm. The measurement at 4.0 cm used a direct-gain total-power radiometer to measure the difference in power between the zenith sky and a large cryogenic reference target. Foreground signals are measured with the same instrument and subtracted from the zenith signal, leaving the CMB as the residual. The reference target consists of a large open-mouth cryostat with a microwave absorber submerged in liquid helium; thin windows block the radiative heat load and prevent condensation atmospheric gases within the cryostat. The thermodynamic temperature of the CMB at 4.0 cm is 2.59 +- 0.07 K. The measurement at 3.0 cm used a superheterodyne Dicke-switched radiometer with a similar reference target to measure the zenith sky temperature. A rotating mirror allowed one of the antenna beams to be redirected to a series of zenith angles, permitting automated atmospheric measurements without moving the radiometer. A weighted average of 5 years of data provided the thermodynamic temperature of the CMB at 3.0 cm of 2.62 +- 0.06 K. The measurement at 0.21 cm used Very Large Array observations of interstellar ortho-formaldehyde to determine the CMB intensity in molecular clouds toward the giant HII region W51A (G49.5-0.4). Solutions of the radiative transfer problem in the context of a large velocity gradient model provided estimates of the CMB temperature within the foreground clouds. Collisional excitation from neutral hydrogen molecules within the clouds limited the precision of the result. The thermodynamic temperature of the CMB at 0.21 cm is 3.2 +- 0.9 K. 72 refs., 27 figs., 38 tabs.

  18. Spectral measurements of the cosmic microwave background

    Kogut, A.J.

    1989-04-01

    Three experiments have measured the intensity of the Cosmic Microwave Background (CMB) at wavelengths 4.0, 3.0, and 0.21 cm. The measurement at 4.0 cm used a direct-gain total-power radiometer to measure the difference in power between the zenith sky and a large cryogenic reference target. Foreground signals are measured with the same instrument and subtracted from the zenith signal, leaving the CMB as the residual. The reference target consists of a large open-mouth cryostat with a microwave absorber submerged in liquid helium; thin windows block the radiative heat load and prevent condensation atmospheric gases within the cryostat. The thermodynamic temperature of the CMB at 4.0 cm is 2.59 +- 0.07 K. The measurement at 3.0 cm used a superheterodyne Dicke-switched radiometer with a similar reference target to measure the zenith sky temperature. A rotating mirror allowed one of the antenna beams to be redirected to a series of zenith angles, permitting automated atmospheric measurements without moving the radiometer. A weighted average of 5 years of data provided the thermodynamic temperature of the CMB at 3.0 cm of 2.62 +- 0.06 K. The measurement at 0.21 cm used Very Large Array observations of interstellar ortho-formaldehyde to determine the CMB intensity in molecular clouds toward the giant HII region W51A (G49.5-0.4). Solutions of the radiative transfer problem in the context of a large velocity gradient model provided estimates of the CMB temperature within the foreground clouds. Collisional excitation from neutral hydrogen molecules within the clouds limited the precision of the result. The thermodynamic temperature of the CMB at 0.21 cm is 3.2 +- 0.9 K. 72 refs., 27 figs., 38 tabs

  19. CLOUD: an atmospheric research facility at CERN

    The Cloud Collaboration

    2001-01-01

    This report is the second of two addenda to the CLOUD proposal at CERN (physics/0104048), which aims to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. The document places CLOUD in the framework of a CERN facility for atmospheric research, and provides further details on the particle beam requirements.

  20. Cosmic vacuum

    Chernin, Artur D

    2001-01-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  1. Cosmic vacuum

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  2. Cosmic strings

    Bennett, D.P.

    1988-07-01

    Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs

  3. Evolution of particle composition in CLOUD nucleation experiments

    Keskinen, H; Joutsensaari, J; Tsagkogeorgas, G; Duplissy, J; Schobesberger, S; Gysel, M; Riccobono, F; Bianchi, F; Yli-Juuti, T; Lehtipalo, K; Rondo, L; Breitenlechner, M; Kupc, A; Almeida, J; Amorim, A; Dunne, E M; Downard, A J; Ehrhart, S; Franchin, A; Kajos, M K; Kirkby, J; Kurten, A; Nieminen, T; Makhmutov, V; Mathot, S; Miettinen, P; Onnela, A; Petaja, T; Praplan, A; Santos, F D; Schallhart, S; Sipila, M; Stozhkov, Y; Tome, A; Vaattovaara, P; Wimmer, D; Prevot, A; Dommen, J; Donahue, N M; Flagan, R C; Weingartner, E; Viisanen, Y; Riipinen, I; Hansel, A; Curtius, J; Kulmala, M; Worsnop, D R; Baltensperger, U; Wex, H; Stratmann, F; Laaksonen, A; Slowik, J G

    2013-01-01

    Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre europ ́ een pour la recherche nucl ́ eaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during theirgrowth from sizes of a few nanometers to tens of nanometers was derived from measured hygros...

  4. Robust constraint on cosmic textures from the cosmic microwave background.

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2012-06-15

    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

  5. The role of cosmic rays in the Earth's atmospheric processes

    Cosmic rays; global electric circuit; ion-aerosol; cloud variation; weather and ... layers have also significant effect on the Earth's atmosphere heat balance .... Numerical modelling and satellite observations suggested that a 1% change in the.

  6. Search for cosmic ray origins by the study of supernova remnants associated with molecular clouds with HESS and test of HESS II sampling system

    Fiasson, A.

    2008-03-01

    The H.E.S.S. telescope (High energy Stereoscopic System), located in Namibia, is currently the most efficient for the observation of very high energy (VHE) gamma-ray sources. It is composed of 4 large diameter telescopes working in stereoscopic mode and allows an unequaled survey of the galactic plane at these extreme wavelengths. The H.E.S.S. experiment showed the presence of high energy particles up to 100 TeV within supernova remnant. This astrophysical objects are believed to be the main particle accelerator within the Galaxy. However, the particle nature remains unclear. This thesis presents a new observational approach in order to show hadronic particles acceleration through diffusive shock within supernova remnant. A search of supernova remnant associated with molecular cloud have been led within the HESS source catalog and the H.E.S.S. observations. An analysis of the new VHE gamma-ray source in Monoceros and its interpretation are presented. As well, the analysis and interpretation of new observations of the unidentified source HESS J1745-303 are presented. The multi-wavelength analysis of the new source HESS J1714-385, coincident with the supernova remnant CTB37A is presented. A contribution to the H.E.S.S. phase II building is also presented. This second phase consists in the building of a fifth telescope at the center of the existing system. The series tests of the new camera sampling system are reported. (author)

  7. Modulation of Cosmic Ray Precipitation Related to Climate

    Feynman, J.; Ruzmaikin, A.

    1998-01-01

    High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.

  8. Cosmic Ether

    Tomaschitz, R

    1998-01-01

    A prerelativistic approach to particle dynamics is explored in an expanding Robertson-Walker cosmology. The receding galactic background provides a distinguished frame of reference and a unique cosmic time. In this context the relativistic, purely geometric space-time concept is criticized. Physical space is regarded as a permeable medium, the cosmic ether, which effects the world-lines of particles and rays. We study in detail a Robertson-Walker universe with linear expansion factor and negatively curved, open three-space; we choose the permeability tensor of the ether in such a way that the semiclassical approximation is exact. Galactic red-shifts depend on the refractive index of the ether. In the local Minkowskian limit the ether causes a time variation of mass, which scales inversely proportional to cosmic time. In the globally geodesic rest frames of galactic observers the ether manifests itself in an unbounded speed of signal transfer, in bifurcations of world-lines, and in time inversion effects.

  9. A constraint on prompt supernova cosmic ray production from γ-ray observations

    Morfill, G.E.; Drury, L.O'C.

    1981-01-01

    The consequences of prompt cosmic ray production intrinsic to supernovae are examined for supernova explosions occurring in dense molecular clouds. For reasonable parameters it is shown that prompt cosmic ray production cannot exceed 10 48 erg per supernova. This suggests that cosmic ray production takes place mainly in the intercloud medium. (author)

  10. Gamma radiation associated to stellar formation in the galaxy (cosmic ray astronomy)

    Casse, Michel.

    1980-05-01

    The gamma ray sky revealed by the COS-B satellite is very peculiar: a few 'gamma ray stars' lying along the galactic plane emerge from a bright milky way. A possible interpretation of this sky is to invoke the existence of regions in which stars, cosmic rays and interstellar matter are very concentrated. A genetic link is established between clouds, stars and cosmic rays: the partial fragmentation of a cloud give birth to stars, the most massive stars accelerate cosmic rays through their supersonic stellar winds, cosmic ray interact in turn with the cloud material to copiously produce high energy gamma rays: a gamma ray source is born

  11. Cosmic Complexity

    Mather, John C.

    2012-01-01

    neutrons, liberating a little energy and creating complexity. Then, the expanding universe cooled some more, and neutrons and protons, no longer kept apart by immense temperatures, found themselves unstable and formed helium nuclei. Then, a little more cooling, and atomic nuclei and electrons were no longer kept apart, and the universe became transparent. Then a little more cooling, and the next instability began: gravitation pulled matter together across cosmic distances to form stars and galaxies. This instability is described as a "negative heat capadty" in which extracting energy from a gravitating system makes it hotter -- clearly the 2nd law of thermodynamics does not apply here! (This is the physicist's part of the answer to e e cummings' question: what is the wonder that's keeping the stars apart?) Then, the next instability is that hydrogen and helium nuclei can fuse together to release energy and make stars burn for billions of years. And then at the end of the fuel source, stars become unstable and explode and liberate the chemical elements back into space. And because of that, on planets like Earth, sustained energy flows support the development of additional instabilities and all kinds of complex patterns. Gravitational instability pulls the densest materials into the core of the Earth, leaving a thin skin of water and air, and makes the interior churn incessantly as heat flows outwards. And the heat from the sun, received mostly near the equator and flowing towards the poles, supports the complex atmospheric and oceanic circulations. And because or that, the physical Earth is full of natural chemical laboratories, concentrating elements here, mixing them there, raising and lowering temperatures, ceaselessly experimenting with uncountable events where new instabilities can arise. At least one of them was the new experiment called life. Now that we know that there are at least as many planets as there are stars, it is hard to imagine that nature's ceasess

  12. Catching Cosmic Rays with a DSLR

    Sibbernsen, Kendra

    2010-01-01

    Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly…

  13. Cosmic Connections

    Ellis, Jonathan Richard

    2003-01-01

    A National Research Council study on connecting quarks with the cosmos has recently posed a number of the more important open questions at the interface between particle physics and cosmology. These questions include the nature of dark matter and dark energy, how the Universe began, modifications to gravity, the effects of neutrinos on the Universe, how cosmic accelerators work, and whether there are new states of matter at high density and pressure. These questions are discussed in the context of the talks presented at this Summer Institute.

  14. Experimental project - Cloud chamber

    Nour, Elena; Quinchard, Gregory; Soudon, Paul

    2015-01-01

    This document reports an academic experimental project dealing with the general concepts of radioactivity and their application to the cloud room experiment. The author first recalls the history of the design and development of a cloud room, and some definitions and characteristics of cosmic radiation, and proposes a description of the principle and physics of a cloud room. The second part is a theoretical one, and addresses the involved particles, the origins of electrons, and issues related to the transfer of energy (Bremsstrahlung effect, Bragg peak). The third part reports the experimental work with the assessment of a cloud droplet radius, the identification of a trace for each particle (alphas and electrons), and the study of the magnetic field deviation

  15. George's cosmic treasure hunt

    Hawking, Lucy; Parsons, Gary

    2009-01-01

    George and Annie explore the galaxy in this cosmic adventure from Stephen Hawking and Lucy Hawking, complete with essays from Professor Hawking about the latest in space travel. George is heartbroken when he learns that his friend Annie and her father are moving to the US. Eric has a new job working for the space program, looking for signs of life in the Universe. Eric leaves George with a gift—a book called The User’s Guide to the Universe. But Annie and Eric haven’t been gone for very long when Annie believes that she is being contacted by aliens, who have a terrible warning for her. George joins her in the US to help her with her quest—and before he knows it, he, Annie, Cosmos, and Annie’s annoying cousin Emmett have been swept up in a cosmic treasure hunt, spanning the whole galaxy and beyond. Lucy Hawking's own experiences in zero-gravity flight and interviews with astronauts at Cape Kennedy and the Johnson Space Center lend the book a sense of realism and excitement that is sure to fire up ima...

  16. Testing Cosmic Inflation

    Chuss, David

    2010-01-01

    The Cosmic Microwave Background (CMB) has provided a wealth of information about the history and physics of the early Universe. Much progress has been made on uncovering the emerging Standard Model of Cosmology by such experiments as COBE and WMAP, and ESA's Planck Surveyor will likely increase our knowledge even more. Despite the success of this model, mysteries remain. Currently understood physics does not offer a compelling explanation for the homogeneity, flatness, and the origin of structure in the Universe. Cosmic Inflation, a brief epoch of exponential expansion, has been posted to explain these observations. If inflation is a reality, it is expected to produce a background spectrum of gravitational waves that will leave a small polarized imprint on the CMB. Discovery of this signal would give the first direct evidence for inflation and provide a window into physics at scales beyond those accessible to terrestrial particle accelerators. I will briefly review aspects of the Standard Model of Cosmology and discuss our current efforts to design and deploy experiments to measure the polarization of the CMB with the precision required to test inflation.

  17. Atmospheric and biospheric effects of cosmic

    Cardenas, Rolando

    2007-01-01

    We briefly review and classify the action that different sources of cosmic radiations might have had on Earth climate and biosphere in the geological past and at present times. We present the action of both sparse explosive phenomena, like gamma-ray bursts and supernovae, and permanent ones like cosmic rays and ultraviolet radiation backgrounds. Very energetic cosmic radiation coming from explosions can deplete the ozone lawyer due to initial ionization reactions, while soft backgrounds might trigger low altitude cloud formation through certain microphysical amplification processes. We examine a hypothesis concerning the potential role of cosmic rays on present Global Climatic Change. We also present the potential of UV astronomy to probe some of above scenarios, and speak on the possibilities for the Cuban participation in the international mega-project World Space Observatory, a UV telescope to be launched in the period 2007-2009. (Author)

  18. Taking Leave?

    2000-01-01

    Planning a holiday? Then if you're a member of the personnel, you'll need to use the Laboratory's new leave system that will be put in place on 1 October. Leave allocations don't change - you are entitled to just as much holiday as before - but instead of being credited annually, your leave will be credited on a monthly basis, and this information will be communicated on your salary slip. The reason for the change is that with the various new leave schemes such as Recruitment by Saved Leave (RSL) and the Progressive Retirement Programme (PRP), a streamlined procedure was required for dealing with all kinds of leave. In the new system, each member of the personnel will have leave accounts to which leave will be credited monthly from the payroll and debited each time an absence is registered in the CERN Electronic Document Handling system (EDH). Leave balances will appear on monthly pay slips, and full details of leave transactions and balances will be available through EDH at all times. As the leave will be c...

  19. Cosmic rays at ultra high energies (Neutrinos.)

    Ahlers, M.; Ringwald, A.; Tu, H.

    2005-06-01

    Resonant photopion production with the cosmic microwave background predicts a suppression of extragalactic protons above the famous Greisen-Zatsepin-Kuzmin cutoff at about E GZK ∼ 5 x 10 10 GeV. Current cosmic ray data measured by the AGASA and HiRes Collaborations do not unambiguously confirm the GZK cutoff and leave a window for speculations about the origin and chemical composition of the highest energy cosmic rays. In this work we analyze the possibility of strongly interacting neutrino primaries and derive model-independent quantitative requirements on the neutrino-nucleon inelastic cross section for a viable explanation of the cosmic ray data. Search results on weakly interacting cosmic particles from the AGASA and RICE experiments are taken into account simultaneously. Using a flexible parameterization of the inelastic neutrino-nucleon cross section we find that a combined fit of the data does not favor the Standard Model neutrino-nucleon inelastic cross section, but requires, at 90% confidence level, a steep increase within one energy decade around E GZK by four orders of magnitude. We illustrate such an enhancement within some extensions of the Standard Model. The impact of new cosmic ray data or cosmic neutrino search results on this scenario, notably from the Pierre Auger Observatory soon, can be immediately evaluated within our approach. (orig.)

  20. Results from the CERN pilot CLOUD experiment

    Duplissy, J.; David, A.; Hahn, F.; Kirkby, J.; Onnela, A.; Veenhof, R.; Wilhelmsson, M.; Enghoff, M.B.; Avngaard, M.; Bondo, T.; Marsh, N.D.; Pedersen, O.P.; Polny, J.; Svensmark, H.; Svensmark, J.; Aplin, K.L.; Bingham, R.; Kellett, B.; Lockwood, M.; Arnold, F.; Aufmhoff, H.; Reichl, U.; Verheggen, B.; Baltensperger, U.; Wehrle, G.; Weingartner, E.; Carslaw, K.; Curtius, J.; Fastrup, B.; Pedersen, E.; Gagne, S.; Kulmala, M.; Laakso, L.; Nieminen, T.; Sipila, M.; Harrison, R.G.; Laaksonen, A.; Lillestol, E.; Makela, J.; Makhmutov, V.; Stozhkov, Y.; Seinfeld, J.H.; Stratmann, F.; Wex, H.; Viisanen, Y.; Wagner, P.E.; Winkler, P.M.

    2010-01-01

    During a 4-week run in October-November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving Outdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm -3 s -1 , and growth rates between 2 and 37 nm h -1 . The corresponding H2SO4 concentrations were typically around 106 cm -3 or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analyzing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most

  1. submitter Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments

    Kim, J; Yli-Juuti, T; Lawler, M; Keskinen, H; Tröstl, J; Schobesberger, S; Duplissy, J; Amorim, A; Bianchi, F; Donahue, N M; Flagan, R C; Hakala, J; Heinritzi, M; Jokinen, T; Kürten, A; Laaksonen, A; Lehtipalo, K; Miettinen, P; Petäjä, T; Rissanen, M P; Rondo, L; Sengupta, K; Simon, M; Tomé, A; Williamson, C; Wimmer, D; Winkler, P M; Ehrhart, S; Ye, P; Kirkby, J; Curtius, J; Baltensperger, U; Kulmala, M; Lehtinen, K E J; Smith, J N; Riipinen, I; Virtanen, A

    2016-01-01

    Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study, we focus on a challenging size range, i.e., particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake is useful information for indirectly obtaining chemical composition of aerosol particles. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) at subsaturated conditions (ca. 90 % relative humidity at 293 K) to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7) campaign performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was meas...

  2. Cosmic odyssey

    Heidmann, J.

    1989-01-01

    The immensity of the cosmos, the richness of the universe, the limits of space and time: these are the themes of Cosmic Odyssey, which takes the reader on imaginary journeys through the past, present and future of our universe. After a first look at the starry night sky, the enigmas posed since ancient times by the universe are reviewed. There then follows a broadbrush view of the universe as we understand it today. Following this, a trio of chapters take us to ultimate questions about its nature. The author explores in turn the relativistic universe, the quantum universe and the inflationary universe. Finally the journey returns to questions that touch on our own presence in the universe. Cosmology, the science of understanding the nature of the universe as a whole, has gone through an extraordinary revolution in its approach. This book explains in detail the link between particle physics and cosmology, the very early universe, the significance of Grand Unified Theory and superstrings, the magical qualities of the inflationary universe, and the seemingly bleak scenarios for the farthest future. (author)

  3. Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber

    Voigtländer, J; Rondo, L; Kürten, A; Stratmann, F

    2012-01-01

    To study the effect of galactic cosmic rays on aerosols and clouds, the Cosmics Leaving OUtdoor Droplets (CLOUD) project was established. Experiments are carried out at a 26.1 m3 tank at CERN (Switzerland). In the experiments, the effect of ionizing radiation on H2SO4 particle formation and growth is investigated. To evaluate the experimental configuration, the experiment was simulated using a coupled multidimensional computational fluid dynamics (CFD) – particle model. In the model the coupled fields of gas/vapor species, temperature, flow velocity and particle properties were computed to investigate mixing state and mixing times of the CLOUD tank's contents. Simulation results show that a 1-fan configuration, as used in first experiments, may not be sufficient to ensure a homogeneously mixed chamber. To mix the tank properly, two fans and sufficiently high fan speeds are necessary. The 1/e response times for instantaneous changes of wall temperature and saturation ratio were found to be in the order of fe...

  4. Temperature uniformity in the CERN CLOUD chamber

    A. Dias

    2017-12-01

    Full Text Available The CLOUD (Cosmics Leaving OUtdoor Droplets experiment at CERN (European Council for Nuclear Research investigates the nucleation and growth of aerosol particles under atmospheric conditions and their activation into cloud droplets. A key feature of the CLOUD experiment is precise control of the experimental parameters. Temperature uniformity and stability in the chamber are important since many of the processes under study are sensitive to temperature and also to contaminants that can be released from the stainless steel walls by upward temperature fluctuations. The air enclosed within the 26 m3 CLOUD chamber is equipped with several arrays (strings of high precision, fast-response thermometers to measure its temperature. Here we present a study of the air temperature uniformity inside the CLOUD chamber under various experimental conditions. Measurements were performed under calibration conditions and run conditions, which are distinguished by the flow rate of fresh air and trace gases entering the chamber at 20 and up to 210 L min−1, respectively. During steady-state calibration runs between −70 and +20 °C, the air temperature uniformity is better than ±0.06 °C in the radial direction and ±0.1 °C in the vertical direction. Larger non-uniformities are present during experimental runs, depending on the temperature control of the make-up air and trace gases (since some trace gases require elevated temperatures until injection into the chamber. The temperature stability is ±0.04 °C over periods of several hours during either calibration or steady-state run conditions. During rapid adiabatic expansions to activate cloud droplets and ice particles, the chamber walls are up to 10 °C warmer than the enclosed air. This results in temperature differences of ±1.5 °C in the vertical direction and ±1 °C in the horizontal direction, while the air returns to its equilibrium temperature with a time constant of about 200 s.

  5. Cosmic gamma-ray background radiation. Current understandings and problems

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  6. Peltier-based cloud chamber

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  7. ALICE Cosmic Ray Detector

    Fernandez Tellez, A; Martinez Hernandez, M; Rodriguez Cahuantzi, M

    2013-01-01

    The ALICE underground cavern provides an ideal place for the detection of high energy atmospheric muons coming from cosmic ray showers. ACORDE detects cosmic ray showers by triggering the arrival of muons to the top of the ALICE magnet.

  8. Experimental Investigation of Aerosols Produced by Cosmic Rays

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Svensmark, Henrik

    an experiment in order to investigate the underlying microphysical processes. The results of this experiment will help to understand whether ionisation from cosmic rays, and by implication the related processes in the universe, has a direct influence on Earth’s atmosphere and climate. Since any physical...... mechanism linking cosmic rays to clouds and climate is currently speculative, there have been various suggestions of the role atmospheric ions may play; these involve any one of a number of processes from the nucleation of aerosols up to the collection processes of cloud droplets.We have chosen to start our......Satellite observations have shown that the Earth’s cloud cover is strongly correlated with the galactic cosmic ray flux. While this correlation is indicative of a possible physical connection, there is currently no confirmation that a physical mechanism exists. We are therefore setting up...

  9. Cosmic void clumps

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  10. Cosmic Microwave Background Timeline

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  11. Cosmic rays and space weather: effects on global climate change

    L. I. Dorman

    2012-01-01

    Full Text Available We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays and cosmic dust through their influence on clouds, and thus, on climate.

  12. Cosmic rays and space weather. Effects on global climate change

    Dorman, L.I.; Israel Space Agency; Russian Academy of Sciences

    2012-01-01

    We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays and cosmic dust through their influence on clouds, and thus, on climate. (orig.)

  13. Cloud Computing Law

    Millard, Christopher

    2013-01-01

    This book is about the legal implications of cloud computing. In essence, ‘the cloud’ is a way of delivering computing resources as a utility service via the internet. It is evolving very rapidly with substantial investments being made in infrastructure, platforms and applications, all delivered ‘as a service’. The demand for cloud resources is enormous, driven by such developments as the deployment on a vast scale of mobile apps and the rapid emergence of ‘Big Data’. Part I of this book explains what cloud computing is and how it works. Part II analyses contractual relationships between cloud service providers and their customers, as well as the complex roles of intermediaries. Drawing on primary research conducted by the Cloud Legal Project at Queen Mary University of London, cloud contracts are analysed in detail, including the appropriateness and enforceability of ‘take it or leave it’ terms of service, as well as the scope for negotiating cloud deals. Specific arrangements for public sect...

  14. On Bianchi-I cosmic strings coupled with Maxwell fields in bimetric ...

    Axially symmetric Bianchi-I model is studied with source cosmic cloud strings coupled with electromagnetic field in Rosen's bimetric theory of relativity and observed that there is no contribution from cosmic strings and Maxwell fields in this theory.

  15. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    L. Nichman

    2017-09-01

    Full Text Available Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD chamber at European Organisation for Nuclear Research (CERN. The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of −30, −40 and −50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI. Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot

  16. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin

    2017-09-01

    Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly

  17. Characterisation of organic contaminants in the CLOUD chamber at CERN

    Schnitzhofer, R; Breitenlechner, M; Jud, W; Heinritzi, M; Menezes, L-P; Duplissy, J; Guida, R; Haider, S; Kikby, J; Mathot, S; Minginette, P; Onnela, A; Walther, H; Wasem, A; Hansel, A; CLOUD Team

    2014-01-01

    The CLOUD experiment (Cosmics Leaving OUtdoor Droplets) investigates the nucleation of new particles and how this process is influenced by galactic cosmic rays in an electropolished, stainless-steel environmental chamber at CERN (European Organization for Nuclear Research). Since volatile organic compounds (VOCs) can act as precursor gases for nucleation and growth of particles, great efforts have been made to keep their unwanted background levels as low as possible and to quantify them. In order to be able to measure a great set of VOCs simultaneously in the low parts per trillion (pptv) range, proton-transfer-reaction mass spectrometry (PTR-MS) was used. Initially the total VOC background concentration strongly correlated with ozone in the chamber and ranged from 0.1 to 7 parts per billion (ppbv). Plastic used as sealing material in the ozone generator was found to be a major VOC source. Especially oxygen-containing VOCs were generated together with ozone. These parts were replaced by stainless steel after ...

  18. Numerical simulation of a possible counterexample to cosmic censorship

    Garfinkle, David

    2004-01-01

    A numerical simulation is presented here of the evolution of initial data of the kind that was conjectured by Hertog, Horowitz, and Maeda to be a violation of cosmic censorship. Those initial data are essentially a thick domain wall connecting two regions of anti-de Sitter space. The initial data have a free parameter that is the initial size of the wall. The simulation shows no violation of cosmic censorship, but rather the formation of a small black hole. The simulation described here is for a moderate wall size and leaves open the possibility that cosmic censorship might be violated for larger walls

  19. submitter Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    Hoyle, C R; Järvinen, E; Saathoff, H; Dias, A; El Haddad, I; Gysel, M; Coburn, S C; Tröstl, J; Bernhammer, A -K; Bianchi, F; Breitenlechner, M; Corbin, J C; Craven, J; Donahue, N M; Duplissy, J; Ehrhart, S; Frege, C; Gordon, H; Höppel, N; Heinritzi, M; Kristensen, T B; Molteni, U; Nichman, L; Pinterich, T; Prévôt, A S H; Simon, M; Slowik, J G; Steiner, G; Tomé, A; Vogel, A L; Volkamer, R; Wagner, A C; Wagner, R; Wexler, A S; Williamson, C; Winkler, P M; Yan, C; Amorim, A; Dommen, J; Curtius, J; Gallagher, M W; Flagan, R C; Hansel, A; Kirkby, J; Kulmala, M; Möhler, O; Stratmann, F; Worsnop, D R; Baltensperger, U

    2016-01-01

    The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and −10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in ...

  20. Cosmic Accelerators: An Introduction

    Kanbach, Gottfried

    2005-01-01

    High energy, relativistic, particles are an essential component of the Universe and play a major role in astrophysics. In a few years we will reach the centennial of the discovery of cosmic rays; all through this century the properties, origin, and effects of this radiation have intrigued researchers in astrophysics and elementary particles alike. We briefly review the history, current status, and future perspectives of cosmic ray research. Emphasis will be placed on the multitude of cosmic accelerators, direct observations of these objects, and the effects of cosmic rays in the Galaxy and beyond

  1. High energy cosmic rays

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  2. The role of cosmic rays in the atmospheric processes

    Stozhkov, Y I [Lebedev Physical Institute, Russian Academy of Sciences, 119991, Leninsky Prospect, 53, Moscow (Russian Federation)

    2003-05-01

    The energy flux of galactic cosmic rays falling on the earth's atmosphere is small in comparison with solar electromagnetic irradiation (by 10{sup 8} times). But at altitudes of h {approx} 3 to 35 km in the atmosphere, cosmic rays are the only ionization source (from the ground level up to h {approx} 3 km, natural radioactivity is an additional source of ionization). Solar activity modulates cosmic ray flux. The cosmic rays produce atmospheric ions that define the electrical properties of the atmosphere. The electric charges play a very important role in the processes of cloud and thundercloud formation in the operation of the global electric circuit. The changes in electric properties of the atmosphere influence weather and climate. Thus, we have the following chain of the solar terrestrial relationship: solar activity - cosmic ray modulation - changes in the global electric properties of the atmosphere - changes in weather and climate. The following questions are discussed in this paper: light ion production in the atmosphere, role of electric charges in the formation of clouds and thunderclouds, experimental evidences of the relationships between cosmic ray flux and atmospheric current and lightning.

  3. The role of cosmic rays in the atmospheric processes

    Stozhkov, Y I

    2003-01-01

    The energy flux of galactic cosmic rays falling on the earth's atmosphere is small in comparison with solar electromagnetic irradiation (by 10 8 times). But at altitudes of h ∼ 3 to 35 km in the atmosphere, cosmic rays are the only ionization source (from the ground level up to h ∼ 3 km, natural radioactivity is an additional source of ionization). Solar activity modulates cosmic ray flux. The cosmic rays produce atmospheric ions that define the electrical properties of the atmosphere. The electric charges play a very important role in the processes of cloud and thundercloud formation in the operation of the global electric circuit. The changes in electric properties of the atmosphere influence weather and climate. Thus, we have the following chain of the solar terrestrial relationship: solar activity - cosmic ray modulation - changes in the global electric properties of the atmosphere - changes in weather and climate. The following questions are discussed in this paper: light ion production in the atmosphere, role of electric charges in the formation of clouds and thunderclouds, experimental evidences of the relationships between cosmic ray flux and atmospheric current and lightning

  4. Deepening Cosmic Education

    Leonard, Gerard

    2013-01-01

    This article is a special blend of research, theory, and practice, with clear insight into the origins of Cosmic Education and cosmic task, while recalling memories of student explorations in botany, in particular, episodes from Mr. Leonard's teaching. Mr. Leonard speaks of a storytelling curriculum that eloquently puts perspective into dimensions…

  5. Primary cosmic ray flux

    Stanev, Todor

    2001-05-01

    We discuss the primary cosmic ray flux from the point of view of particle interactions and production of atmospheric neutrinos. The overall normalization of the cosmic ray flux and its time variations and site dependence are major ingredients of the atmospheric neutrino predictions and the basis for the derivation of the neutrino oscillation parameters.

  6. Cosmic rays on earth

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted. (GSCH)

  7. Our Cosmic Insignificance

    Kahane, Guy

    2014-01-01

    The universe that surrounds us is vast, and we are so very small. When we reflect on the vastness of the universe, our humdrum cosmic location, and the inevitable future demise of humanity, our lives can seem utterly insignificant. Many philosophers assume that such worries about our significance reflect a banal metaethical confusion. They dismiss the very idea of cosmic significance. This, I argue, is a mistake. Worries about cosmic insignificance do not express metaethical worries about objectivity or nihilism, and we can make good sense of the idea of cosmic significance and its absence. It is also possible to explain why the vastness of the universe can make us feel insignificant. This impression does turn out to be mistaken, but not for the reasons typically assumed. In fact, we might be of immense cosmic significance—though we cannot, at this point, tell whether this is the case. PMID:25729095

  8. Cloud Governance

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  9. Cosmic Collisions The Hubble Atlas of Merging Galaxies

    Christensen, Lars Lindberg; Martin, Davide

    2009-01-01

    Lars Lindberg Christensen, Raquel Yumi Shida & Davide De Martin Cosmic Collisions: The Hubble Atlas of Merging Galaxies Like majestic ships in the grandest night, galaxies can slip ever closer until their mutual gravitational interaction begins to mold them into intricate figures that are finally, and irreversibly, woven together. It is an immense cosmic dance, choreographed by gravity. Cosmic Collisions contains a hundred new, many thus far unpublished, images of colliding galaxies from the NASA/ESA Hubble Space Telescope. It is believed that many present-day galaxies, including the Milky Way, were assembled from such a coalescence of smaller galaxies, occurring over billions of years. Triggered by the colossal and violent interaction between the galaxies, stars form from large clouds of gas in firework bursts, creating brilliant blue star clusters. The importance of these cosmic encounters reaches far beyond the stunning Hubble images. They may, in fact, be among the most important processes that shape ...

  10. The History of Cosmic Ray Studies after Hess

    Grupen, Claus, E-mail: grupen@physik.uni-siegen.de

    2013-06-15

    The discovery of cosmic rays by Victor Hess was confirmed with balloon flights at higher altitudes by Kolhörster. Soon the interest turned into questions about the nature of cosmic rays: gamma rays or particles? Subsequent investigations have established cosmic rays as the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. Many new results came now from studies with cloud chambers and nuclear emulsions. Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. Rochester and Butler found V's, which turned out to be short-lived neutral kaons decaying into a pair of charged pions. Λ's, Σ's and Ξ's were found in cosmic rays using nuclear emulsions. After that period, accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A and other accelerators in the sky. With the observation of neutrino oscillations one began to look beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of earth-bound accelerators.

  11. The glacial cycles and cosmic rays

    Kirkby, Jasper; Müller, R A

    2004-01-01

    The cause of the glacial cycles remains a mystery. The origin is widely accepted to be astronomical since paleoclimatic archives contain strong spectral components that match the frequencies of Earth's orbital modulation. Milankovitch insolation theory contains similar frequencies and has become established as the standard model of the glacial cycles. However, high precision paleoclimatic data have revealed serious discrepancies with the Milankovitch model that fundamentally challenge its validity and re-open the question of what causes the glacial cycles. We propose here that the ice ages are initially driven not by insolation cycles but by cosmic ray changes, probably through their effect on clouds. This conclusion is based on a wide range of evidence, including results presented here on speleothem growth in caves in Austria and Oman, and on a record of cosmic ray flux over the past 220 kyr obtained from the 10Be composition of deep-ocean sediments.

  12. Cosmic Origins Program Annual Technology Report

    Pham, Bruce Thai; Neff, Susan Gale

    2015-01-01

    What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy, from antiquity to the present.

  13. Structure formation cosmic rays: Identifying observational constraints

    Prodanović T.

    2005-01-01

    Full Text Available Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be Li. The rare isotope Li is produced only by cosmic rays, dominantly in αα → 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metalpoor halo stars. Given the already existing problem of establishing the concordance between Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model-independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1 we establish the connection between gamma-ray and Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB; 2 we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs, which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using them in

  14. Light scattering by cosmic particles

    Hovenier, J.W.; Min, M.

    2008-01-01

    We define cosmic particles as particles outside the Earth. Two types of cosmic particles can be distinguished, namely liquid and solid particles. The solid particles are often called grains or cosmic dust particles. Cosmic particles occur in a great variety of astronomical objects and environments.

  15. 11. European cosmic ray symposium

    1989-03-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific programme was organized under three main headings: Cosmic rays in the heliosphere, Cosmic rays in the interstellar and extragalactic space, Properties of high-energy interactions as studied by cosmic rays. Seven invited talks were indexed seprately for the INIS database. (R.P.)

  16. Interstellar clouds and the formation of stars

    Alfven, H; Carlqvist, P [Kungliga Tekniska Hoegskolan, Stockholm (Sweden). Institutionen foer Plasmafysik

    1978-05-01

    Part I gives a survey of the drastic revision of cosmic plasma physics which is precipitated by the exploration of the magnetosphere through in situ measurements. The 'pseudo-plasma formalism', which until now has almost completely dominated theoretical astrophysics, must be replaced by an experimentally based approach involving the introduction of a number of neglected plasma phenomena, such as electric double layers, critical velocity, and pinch effect. The general belief that star light is the main ionizer is shown to be doubtful; hydromagnetic conversion of gravitational and kinetic energy may often be much more important. In Part II the revised plasma physics is applied to dark clouds and star formation. Magnetic fields do not necessarily counteract the contraction of a cloud; they may just as well 'pinch' the cloud. Magnetic compression may be the main mechanism for forming interstellar clouds and keeping them together. Part III treats the formation of stars in a dusty cosmic plasma cloud. Star formation is due to an instability, but it is very unlikely that it has anything to do with the Jeans instability. A reasonable mechanism is that the sedimentation of 'dust' (including solid bodies of different size) is triggering off a gravitationally assisted accretion. A 'stellesimal' accretion analogous to the planetesimal accretion leads to the formation of a star surrounded by a very low density hollow in the cloud. Matter falling in from the cloud towards the star is the raw material for the formation of planets and satellites.

  17. Cosmic gamma bursts

    Ehstulin, I.V.

    1980-01-01

    A brief consideration is being given to the history of cosmic gamma burst discovery and modern knowledge of their properties. The time dependence of gamma bursts is described and their possible sources are discussed

  18. Cosmic microwave background radiation

    Wilson, R.W.

    1979-01-01

    The 20-ft horn-reflector antenna at Bell Laboratories is discussed in detail with emphasis on the 7.35 cm radiometer. The circumstances leading to the detection of the cosmic microwave background radiation are explored

  19. Cosmic ray acceleration mechanisms

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  20. A COSMIC VARIANCE COOKBOOK

    Moster, Benjamin P.; Rix, Hans-Walter; Somerville, Rachel S.; Newman, Jeffrey A.

    2011-01-01

    Deep pencil beam surveys ( 2 ) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by 'cosmic variance'. This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift z-bar and redshift bin size Δz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, z-bar , Δz, and stellar mass m * . We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates (δσ v /σ v ) is shown to be better than 20%. We find that for GOODS at z-bar =2 and with Δz = 0.5, the relative cosmic variance of galaxies with m * >10 11 M sun is ∼38%, while it is ∼27% for GEMS and ∼12% for COSMOS. For galaxies of m * ∼ 10 10 M sun , the relative cosmic variance is ∼19% for GOODS, ∼13% for GEMS, and ∼6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at z-bar =2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies, cosmic

  1. European Legalisation on Protection Against Cosmic Radiation

    Courades, M.

    1999-01-01

    Specific provisions on protection of aircrew against cosmic radiation have been laid down for the first time at EU level as part of the Basic Safety Standards for the Health Protection of the General Public and Workers against the Dangers of Ionizing Radiation (Council Directive 96/29/Euratom of 13 May 1996). These provisions, focusing mainly on health and radiological surveillance, are minimal requirements; therefore the Directive leaves significant discretion to the Member States as regards actions to be taken; Member States have to transpose these provisions into national law before 13 May 2000. Further harmonisation of Community regulations on civil aviation safety will be needed in the field of protection against cosmic radiation. This is to obtain a high level of radiation protection for the aircrew and to maintain fair competition under the common transport policy. Additionally, particular requirement are foreseen for detection and monitoring devices as well as for working instructions (Operations Manual). (author)

  2. THE ORIGIN OF COSMIC RAYS: WHAT CAN GLAST SAY?

    Bloom, Elliott

    2000-10-10

    Gamma rays in the band from 30 MeV to 300 GeV, used in combination with direct measurements and with data from radio and X-ray bands, provide a powerful tool for studying the origin of Galactic cosmic rays. Gamma-ray Large Area Space Telescope (GLAST) with its fine 10-20 arcmin angular resolution will be able to map the sites of acceleration of cosmic rays and their interactions with interstellar matter. It will provide information that is necessary to study the acceleration of energetic particles in supernova shocks, their transport in the interstellar medium and penetration into molecular clouds.

  3. Cloud Computing

    Antonopoulos, Nick

    2010-01-01

    Cloud computing has recently emerged as a subject of substantial industrial and academic interest, though its meaning and scope is hotly debated. For some researchers, clouds are a natural evolution towards the full commercialisation of grid systems, while others dismiss the term as a mere re-branding of existing pay-per-use technologies. From either perspective, 'cloud' is now the label of choice for accountable pay-per-use access to third party applications and computational resources on a massive scale. Clouds support patterns of less predictable resource use for applications and services a

  4. Shocked molecular gas and the origin of cosmic rays

    Reach, William; Gusdorf, Antoine; Richter, Matthew

    2018-06-01

    When massive stars reach the end of their ability to remain stable with core nuclear fusion, they explode in supernovae that drive powerful shocks into their surroundings. Because massive stars form in and remain close to molecular clouds they often drive shocks into dense gas, which is now believed to be the origin of a significant fraction of galactic cosmic rays. The nature of the supernova-molecular cloud interaction is not well understood, though observations are gradually elucidating their nature. The range of interstellar densities, and the inclusion of circumstellar matter from the late-phase mass-loss of the stars before their explosions, leads to a wide range of possible appearances and outcomes. In particular, it is not even clear what speed or physical type of shocks are present: are they dense, magnetically-mediated shocks where H2 is not dissociated, or are they faster shocks that dissociate molecules and destroy some of the grains? SOFIA is observing some of the most significant (in terms of cosmic ray production potential and infrared energy output) supernova-molecular cloud interactions for measurement of the line widths of key molecular shocks tracers: H2, [OI], and CO. The presence of gas at speeds 100 km/s or greater would indicate dissociative shocks, while speeds 30 km/s and slower retain most molecules. The shock velocity is a key ingredient in modeling the interaction between supernovae and molecular clouds including the potential for formation of cosmic rays.

  5. Cosmic rays in space

    Fujitaka, Kazunobu

    2005-01-01

    Cosmos is a mysterious space by which many researchers are fascinated for many years. But, going into space means that we will receive extra exposure due to existence of cosmic rays. Cosmic rays are mainly composed of highly energetic protons. It was born in the last stage of stellar life. Understanding of cosmos will certainly bring right understanding of radiation energy, or energy itself. As no one could see the very early stage of cosmic rays, there is only a speculation. But it is better to speculate something based on certain side evidences, than to give up the whole. Such attitude shall be welcomed in the space researches. Anyway, cosmic rays were born in the last explosion of a star, which is called as Super Nova. After cosmic rays are emitted from the Super Nova, it will reach to the human surroundings. To indicate its intensity, special unit of ''dose rate'' is used. When a man climbs a mountain, cosmic ray intensity surely increases. It doubles as he goes up every 1500m elevation. It was ascertained by our own measurements. Then what happens when the goes up more? At aviation altitude, where airplanes fly, the dose rate will be increased up to 100times the high mountain cases. And what is expected when he goes up further more, up to space orbit altitude? In this case, the dose rate increases up to 10times the airplane cases. Geomagnetism affects the dose rate very much. As primary cosmic ray particles are charged particles, they cannot do well with existence of the magnetic field. In effect, cosmic rays can penetrate into the polar atmosphere along geomagnetic lines of forces which stand almost vertical, but penetration of low energy cosmic rays will be banned when they intend to penetrate crossing the geomagnetic lines of forces in equatorial region. Therefore, exposure due to cosmic rays will become large in polar region, while it remains small in equatorial region. In effect, airplanes which fly over the equator. Only, we have to know that the cosmos

  6. Cloud Cover

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  7. Cloud Control

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  8. Towards Constraint-based High Performance Cloud System in the Process of Cloud Computing Adoption in an Organization

    Simalango, Mikael Fernandus; Kang, Mun-Young; Oh, Sangyoon

    2010-01-01

    Cloud computing is penetrating into various domains and environments, from theoretical computer science to economy, from marketing hype to educational curriculum and from R&D lab to enterprise IT infrastructure. Yet, the currently developing state of cloud computing leaves several issues to address and also affects cloud computing adoption by organizations. In this paper, we explain how the transition into the cloud can occur in an organization and describe the mechanism for transforming lega...

  9. Cosmic ray modulation

    Ueno, Hirosachi

    1974-01-01

    It is important to know the physical state of solar plasma region by the observation of intensity variation of cosmic ray which passed through the solar plasma region, because earth magnetosphere is formed by the interaction between geomagnetic field and solar plasma flow. The observation of cosmic ray intensity is useful to know the average condition of the space of 0.1--3 A.U., and gives the structure of the magnetic field in solar wind affecting the earth magnetosphere. The observation of neutron component in cosmic ray has been carried out at Norikura, Tokyo, Fukushima and Morioka. The lower limit of the energy of incident cosmic ray which can be observed at each station is different, and the fine structure of the variation can be known by comparison. The intensity of meson component in cosmic ray has been measured in underground, and the state of solar plasma region 2--3 A.U. from the earth can be known. The underground measurement has been made at Takeyama and Matsumoto, and a new station at Sakashita is proposed. The measurement at Sakashita will be made by proportional counters at the depth of 100m (water equivalent). Arrangement of detectors is shown. (Kato, T.)

  10. Cosmic strings and galaxy formation

    Bertschinger, E.

    1989-01-01

    Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings

  11. Cloud Computing Fundamentals

    Furht, Borko

    In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.

  12. Cosmic Sum Rules

    T. Frandsen, Mads; Masina, Isabella; Sannino, Francesco

    2011-01-01

    We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models.......We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models....

  13. Educational Cosmic Ray Arrays

    Soluk, R. A.

    2006-01-01

    In the last decade a great deal of interest has arisen in using sparse arrays of cosmic ray detectors located at schools as a means of doing both outreach and physics research. This approach has the unique advantage of involving grade school students in an actual ongoing experiment, rather then a simple teaching exercise, while at the same time providing researchers with the basic infrastructure for installation of cosmic ray detectors. A survey is made of projects in North America and Europe and in particular the ALTA experiment at the University of Alberta which was the first experiment operating under this paradigm

  14. Cosmic ray investigations

    Zatsepin, Georgii T; Roganova, Tat'yana M

    2009-01-01

    The history of cosmic ray research at the Lebedev Institute beginning with the first work and continuing up to now is reviewed. The milestones and main avenues of research are outlined. Pioneering studies on the nuclear cascade process in extensive air showers, investigations of the Vavilov-Cherenkov radiation, and some work on the origin of cosmic rays are discussed. Recent data on ultrahigh-energy particle detection at the Pierre Auger Observatory and the High Resolution Fly's Eye (HiRes) experiments are presented. (conferences and symposia)

  15. Heterotic cosmic strings

    Becker, Katrin; Becker, Melanie; Krause, Axel

    2006-01-01

    We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion

  16. Cosmic Humanity: Utopia, Realities, Prospects

    Sergey Krichevsky

    2017-01-01

    The philosophical foundations of the theory and practice of the creation of cosmic humanity as a process of the evolution of human civilization, the emergence into space, with the prospect of resettlement outside the Earth are considered. There is a connection between myths, fantasies, ideas, concepts and projects aimed at the exploration of outer space, the creation of cosmic humanity. A new and voluminous definition of cosmic humanity in the evolutionary paradigm is given. Cosmic humanity i...

  17. Cosmic ray: Studying the origin

    Szabelski, J.

    1997-01-01

    Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10 15 eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 1O 19 eV (for these are the highest energies observed in nature). (author)

  18. Cloud Computing

    Baun, Christian; Nimis, Jens; Tai, Stefan

    2011-01-01

    Cloud computing is a buzz-word in today's information technology (IT) that nobody can escape. But what is really behind it? There are many interpretations of this term, but no standardized or even uniform definition. Instead, as a result of the multi-faceted viewpoints and the diverse interests expressed by the various stakeholders, cloud computing is perceived as a rather fuzzy concept. With this book, the authors deliver an overview of cloud computing architecture, services, and applications. Their aim is to bring readers up to date on this technology and thus to provide a common basis for d

  19. Cloud Computing

    Krogh, Simon

    2013-01-01

    with technological changes, the paradigmatic pendulum has swung between increased centralization on one side and a focus on distributed computing that pushes IT power out to end users on the other. With the introduction of outsourcing and cloud computing, centralization in large data centers is again dominating...... the IT scene. In line with the views presented by Nicolas Carr in 2003 (Carr, 2003), it is a popular assumption that cloud computing will be the next utility (like water, electricity and gas) (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). However, this assumption disregards the fact that most IT production......), for instance, in establishing and maintaining trust between the involved parties (Sabherwal, 1999). So far, research in cloud computing has neglected this perspective and focused entirely on aspects relating to technology, economy, security and legal questions. While the core technologies of cloud computing (e...

  20. Mobile Clouds

    Fitzek, Frank; Katz, Marcos

    A mobile cloud is a cooperative arrangement of dynamically connected communication nodes sharing opportunistic resources. In this book, authors provide a comprehensive and motivating overview of this rapidly emerging technology. The book explores how distributed resources can be shared by mobile...... users in very different ways and for various purposes. The book provides many stimulating examples of resource-sharing applications. Enabling technologies for mobile clouds are also discussed, highlighting the key role of network coding. Mobile clouds have the potential to enhance communications...... performance, improve utilization of resources and create flexible platforms to share resources in very novel ways. Energy efficient aspects of mobile clouds are discussed in detail, showing how being cooperative can bring mobile users significant energy saving. The book presents and discusses multiple...

  1. Hydrology and Cosmic radiation

    Andreasen, Mie

    and calibration. Yet, soil moisture measurements are traditionally provided on either point or kilometer scale from electromagnetic based sensors and satellite retrievals, respectively. Above the ground surface, the cosmic-ray neutron intensity (eV range) is inversely correlated to all hydrogen present...

  2. On the cosmical constant

    Chandra, R.

    1977-01-01

    On the grounds of the two correspondence limits, the Newtonian limit and the special theory limit of Einstein field equations, a modification of the cosmical constant has been proposed which gives realistic results in the case of a homogeneous universe. Also, according to this modification an explanation for the negative pressure in the steady-state model of the universe has been given. (author)

  3. Simulating Cosmic Reionisation

    Pawlik, Andreas Heinz

    2009-01-01

    The first stars formed a few hundred million years after the Big Bang, when the Universe was only a small fraction of its present age. Their radiation transformed the previously cold and neutral hydrogen that filled intergalactic space into the hot and ionised cosmic plasma that is observed today.

  4. Note on cosmic censorship

    Jang, P.S.

    1979-01-01

    For initial data sets which represent charged black holes we prove some inequalities which relate the total energy, the total charge, and the size of the black hole. One of them is a necessary condition for the validity of cosmic censorship

  5. Investigating a solar influence on cloud cover using the North American Regional Reanalysis data

    Krahenbuhl Daniel Scott

    2015-01-01

    Full Text Available The controversial connection between cosmic rays, solar activity, and cloud cover is investigated using a climatological reconstructed reanalysis product: the North American Regional Reanalysis which provides high-resolution, low, mid-level, high, and total cloud cover data over a Lambert conformal conic projection permitting land/ocean discrimination. Pearson’s product-moment regional correlations were obtained between monthly cloud cover data and solar variability indicators, cosmic ray neutron monitors, several climatological indices, including the Atlantic Multidecadal Oscillation (AMO, and between cloud layers. Regions of the mid-latitude oceans exhibited a positive correlation with cosmic ray flux. Additionally, this maritime low cloud cover exhibits the only failed correlation significance with other altitudes. The cross correlation reveals that cloud cover is positively correlated everywhere but for ocean low cloud cover, supporting the unique response of the marine layer. The results of this investigation suggest that with the assumption that solar forcing does impact cloud cover, measurements of solar activity exhibits a slightly higher correlation than GCRs. The only instance where GCRs exhibit a positive regional correlation with cloud cover is for maritime low clouds. The AMO exerts the greatest control of cloud cover in the NARR domain.

  6. Tracing the cosmic web

    Libeskind, Noam I.; van de Weygaert, Rien; Cautun, Marius; Falck, Bridget; Tempel, Elmo; Abel, Tom; Alpaslan, Mehmet; Aragón-Calvo, Miguel A.; Forero-Romero, Jaime E.; Gonzalez, Roberto; Gottlöber, Stefan; Hahn, Oliver; Hellwing, Wojciech A.; Hoffman, Yehuda; Jones, Bernard J. T.; Kitaura, Francisco; Knebe, Alexander; Manti, Serena; Neyrinck, Mark; Nuza, Sebastián E.; Padilla, Nelson; Platen, Erwin; Ramachandra, Nesar; Robotham, Aaron; Saar, Enn; Shandarin, Sergei; Steinmetz, Matthias; Stoica, Radu S.; Sousbie, Thierry; Yepes, Gustavo

    2018-01-01

    The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast low-density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web - depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper, we bring 12 of these methods together and apply them to the same data set in order to understand how they compare. In general, these cosmic-web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore, one would not a priori expect agreement between different techniques; however, many of these methods do converge on the identification of specific features. In this paper, we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find a substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. Mhalo ∼ 1013.5 h-1 M⊙) as being in filaments. Lastly, so that any future cosmic-web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.

  7. Parental Leave in Denmark

    Rostgaard, Tine; Christoffersen, Mogens; Weise, Hanne

    This artcle considders the political aims for different leave schemes and reviews studies af these schemes. The use of parental leave is sensitive to the financial loss involved in taking leave: a decrease in the benefit payments has had a significant influence on take-up, while, in general, fami......, families'' loss of income is less if leave is taken up by the mothers. Only few fathers participate in parental leave....

  8. submitter Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber

    Ahlm, L; Schobesberger, S; Praplan, A P; Kim, J; Tikkanen, O -P; Lawler, M J; Smith, J N; Tröstl, J; Acosta Navarro, J C; Baltensperger, U; Bianchi, F; Donahue, N M; Duplissy, J; Franchin, A; Jokinen, T; Keskinen, H; Kirkby, J; Kürten, A; Laaksonen, A; Lehtipalo, K; Petäjä, T; Riccobono, F; Rissanen, M P; Rondo, L; Schallhart, S; Simon, M; Winkler, P M; Worsnop, D R; Virtanen, A; Riipinen, I

    2016-01-01

    Dimethylamine (DMA) has a stabilizing effect on sulfuric acid (SA) clusters, and the SA and DMA molecules and clusters likely play important roles in both aerosol particle formation and growth in the atmosphere. We use the monodisperse particle growth model for acid-base chemistry in nanoparticle growth (MABNAG) together with direct and indirect observations from the CLOUD4 and CLOUD7 experiments in the cosmics leaving outdoor droplets (CLOUD) chamber at CERN to investigate the size and composition evolution of freshly formed particles consisting of SA, DMA, and water as they grow to 20 nm in dry diameter. Hygroscopic growth factors are measured using a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA), which combined with simulations of particle water uptake using the thermodynamic extended-aerosol inorganics model (E-AIM) constrain the chemical composition. MABNAG predicts a particle-phase ratio between DMA and SA molecules of 1.1–1.3 for a 2 nm particle and DMA gas-phase mixing ratio...

  9. The Cloud Project Climate Research with Accelerators

    Kirkby, Jasper

    2010-01-01

    The current understanding of climate change in the in- dustrial age is that it is predominantly caused by anthro- pogenic greenhouse gases, with relatively small natural contributions due to solar irradiance and volcanoes. How- ever, palaeoclimatic reconstructions show that the climate has frequently varied on 100-year time scales during the Holocene (last 10 kyr) by amounts comparable to the present warming—and yet the mechanism is not under- stood. Estimated changes of solar irradiance on these time scales are too small to account for the climate observations. This raises the question of whether cosmic rays, which are modulated by the solar wind, may be directly affect- ing the climate, providing an effective indirect solar forcing mechanism. Indeed recent satellite observations—although disputed—suggest that cosmic rays may affect clouds un- der certain conditions. However, given the many sources of variability in the atmosphere and the lack of control of the cosmic ray flux, demonstrating overall ca...

  10. The role of ions in new particle formation in the CLOUD chamber

    R. Wagner

    2017-12-01

    Full Text Available The formation of secondary particles in the atmosphere accounts for more than half of global cloud condensation nuclei. Experiments at the CERN CLOUD (Cosmics Leaving OUtdoor Droplets chamber have underlined the importance of ions for new particle formation, but quantifying their effect in the atmosphere remains challenging. By using a novel instrument setup consisting of two nanoparticle counters, one of them equipped with an ion filter, we were able to further investigate the ion-related mechanisms of new particle formation. In autumn 2015, we carried out experiments at CLOUD on four systems of different chemical compositions involving monoterpenes, sulfuric acid, nitrogen oxides, and ammonia. We measured the influence of ions on the nucleation rates under precisely controlled and atmospherically relevant conditions. Our results indicate that ions enhance the nucleation process when the charge is necessary to stabilize newly formed clusters, i.e., in conditions in which neutral clusters are unstable. For charged clusters that were formed by ion-induced nucleation, we were able to measure, for the first time, their progressive neutralization due to recombination with oppositely charged ions. A large fraction of the clusters carried a charge at 1.5 nm diameter. However, depending on particle growth rates and ion concentrations, charged clusters were largely neutralized by ion–ion recombination before they grew to 2.5 nm. At this size, more than 90 % of particles were neutral. In other words, particles may originate from ion-induced nucleation, although they are neutral upon detection at diameters larger than 2.5 nm. Observations at Hyytiälä, Finland, showed lower ion concentrations and a lower contribution of ion-induced nucleation than measured at CLOUD under similar conditions. Although this can be partly explained by the observation that ion-induced fractions decrease towards lower ion concentrations, further investigations

  11. Bubbles, superbubbles and their impact on cosmic ray transport

    Weinreuter, Matthias; Gebauer, Iris; Boer, Wim de; Neumann, Alexander [KIT, Karlsruhe (Germany)

    2016-07-01

    The Fermi-LAT data on diffuse gamma rays show variations in the gamma ray intensity, which are linked to either variations in the gas density or variations in the cosmic ray density. Such small scale variations are not modeled in current state-of-the-art models for galactic cosmic ray propagation. Inhomogeneities in the interstellar material can be formed by cavities like the so-called Local Bubble, an underdense region surrounding our Sun, which was created by several supernova explosions in the past. We show that the Local Bubble can have a strong impact on the cosmic ray energy spectra and density. In particular, it enhances cosmic ray scattering in the surrounding molecular cloud complexes and can significantly distort the cosmic ray arrival directions. We briefly discuss the consequences for pulsar searches in energetic positrons and electrons. By making simple assumptions on the level of inhomogeneity in the interstellar medium we investigate if the observed variations in the diffuse gamma ray emission can indeed be explained by cavities similar to the Local Bubble.

  12. Cosmic ray injection spectrum at the galactic sources

    Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay

    The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.

  13. Evolution of particle composition in CLOUD nucleation experiments

    H. Keskinen

    2013-06-01

    Full Text Available Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets chamber experiments at CERN (Centre européen pour la recherche nucléaire. The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during their growth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts. In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ~0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid

  14. Hazards of cosmic radiation

    Bonnet-Bidaud, J.M.; Dzitko, H.

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: i) the magnetic field generated by the solar wind, ii) the earth magnetic field (magnetosphere), and iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  15. Note on cosmic censorship

    Tipler, F.J.

    1985-01-01

    A number of recent theorems by Krolak and Newman purport to prove cosmic censorship by showing that ''strong curvature'' singularities must be hidden behind horizons. It is proved that Newman's ''null, strong curvature'' condition, which is imposed on certain classes of null geodesics to restrict curvature growth in the space-time, does not hold in many physically realistic space-times: it is not satisfied by any null geodesic in the relevant class in any open Friedmann cosmological model, nor does it hold for any null geodesic in the relevant class in maximal Schwarzschild space. More generally, it is argued that the singularity predicted by the Penrose singularity theorem is unlikely to be of the type eliminated by Newman. Thus the Newman theorems are probably without physical significance. The Krolak theorems, although based on a physically significant definition of strong curvature singularity, are mathematically invalid, and this approach cannot be used to obtain a cosmic censorship theorem. (author)

  16. Cosmic rays and climate

    CERN. Geneva

    2009-01-01

    The current understanding of climate change in the industrial age is that it is predominantly caused by anthropogenic greenhouse gases, with relatively small natural contributions due to solar irradiance and volcanoes. However, palaeoclimatic reconstructions show that the climate has frequently varied on 100-year time scales during the Holocene (last 10 kyr) by amounts comparable to the present warming - and yet the mechanism or mechanisms are not understood. Some of these reconstructions show clear associations with solar variability, which is recorded in the light radio-isotope archives that measure past variations of cosmic ray intensity. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Estimated changes of solar irradiance on these time scales appear to be too small to account for the climate observations. This raises the question of whether cosmic rays may directly affect the climate, provi...

  17. Soft Clouding

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... archiving. The Soft Clouding Project is part of LARM - a major infrastructure combining research in and access to sound and radio archives in Denmark. In 2012 the LARM infrastructure will consist of more than 1 million hours of radio, combined with metadata who describes the content. The idea is to analyse...... the concept of ‘infrastructure’ and ‘interface’ on a creative play with the fundamentals of LARM (and any sound archive situation combining many kinds and layers of data and sources). This paper will present and discuss the Soft clouding project from the perspective of the three practices and competencies...

  18. Carl Sagan's Cosmic Connection

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  19. Cosmic ray modulation

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  20. Translational invariance and the anisotropy of the cosmic microwave background

    Carroll, Sean M.; Tseng, C.-Y.; Wise, Mark B.

    2010-01-01

    Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes lm a l ' m ' *> of the spherical-harmonic coefficients.

  1. Translational invariance and the anisotropy of the cosmic microwave background

    Carroll, Sean M.; Tseng, Chien-Yao; Wise, Mark B.

    2010-04-01

    Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes ⟨almal'm'*⟩ of the spherical-harmonic coefficients.

  2. Cloud Chamber

    Gfader, Verina

    Cloud Chamber takes its roots in a performance project, titled The Guests 做东, devised by Verina Gfader for the 11th Shanghai Biennale, ‘Why Not Ask Again: Arguments, Counter-arguments, and Stories’. Departing from the inclusion of the biennale audience to write a future folk tale, Cloud Chamber......: fiction and translation and translation through time; post literacy; world picturing-world typing; and cartographic entanglements and expressions of subjectivity; through the lens a social imaginary of worlding or cosmological quest. Art at its core? Contributions by Nikos Papastergiadis, Rebecca Carson...

  3. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-18

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies Esources for energies Esource luminosity in units of 10^{44} erg/s.

  4. Caustic Skeleton & Cosmic Web

    Feldbrugge, Job; van de Weygaert, Rien; Hidding, Johan; Feldbrugge, Joost

    2018-05-01

    We present a general formalism for identifying the caustic structure of a dynamically evolving mass distribution, in an arbitrary dimensional space. The identification of caustics in fluids with Hamiltonian dynamics, viewed in Lagrangian space, corresponds to the classification of singularities in Lagrangian catastrophe theory. On the basis of this formalism we develop a theoretical framework for the dynamics of the formation of the cosmic web, and specifically those aspects that characterize its unique nature: its complex topological connectivity and multiscale spinal structure of sheetlike membranes, elongated filaments and compact cluster nodes. Given the collisionless nature of the gravitationally dominant dark matter component in the universe, the presented formalism entails an accurate description of the spatial organization of matter resulting from the gravitationally driven formation of cosmic structure. The present work represents a significant extension of the work by Arnol'd et al. [1], who classified the caustics that develop in one- and two-dimensional systems that evolve according to the Zel'dovich approximation. His seminal work established the defining role of emerging singularities in the formation of nonlinear structures in the universe. At the transition from the linear to nonlinear structure evolution, the first complex features emerge at locations where different fluid elements cross to establish multistream regions. Involving a complex folding of the 6-D sheetlike phase-space distribution, it manifests itself in the appearance of infinite density caustic features. The classification and characterization of these mass element foldings can be encapsulated in caustic conditions on the eigenvalue and eigenvector fields of the deformation tensor field. In this study we introduce an alternative and transparent proof for Lagrangian catastrophe theory. This facilitates the derivation of the caustic conditions for general Lagrangian fluids, with

  5. Cosmic ray riddle solved?

    Anon.

    1995-01-01

    Full text: Physicists from Japan and the United States have discovered a possible answer to the puzzle of the origin of high energy cosmic rays that bombard Earth from all directions in space. Using data from the Japanese/US X-ray astronomical satellite ASCA, physicists have found strong evidence for the production of cosmic particles in the shock wave of a supernova remnant, the expanding fireball produced by the explosion of a star. Primary cosmic rays, mostly electrons and protons, travel near the speed of light. Each second, approximately 4 such particles cross one square centimetre of space just outside the Earth's atmosphere. Subsequently, collisions of these primary particles with atoms in the upper atmosphere produce slower secondary particles. Ever since the discovery of cosmic rays early this century, scientists have debated the origin of these particles and how they can be accelerated to such high speeds. Supernova remnants have long been thought to provide the high energy component, but the evidence has been lacking until now. The international team of investigators used the satellite to determine that cosmic rays are generated profusely in the remains of the supernova of 1006 AD - which appeared to medieval viewers to be as bright as the Moon - and that they are accelerated to high velocities by an iterative process first suggested by Enrico Fermi in 1949. Using solid-state X-ray cameras, the ASCA satellite records simultaneous images and spectra of X-rays from celestial sources, allowing astronomers to distinguish different types of X-ray emission. The tell-tale clue to the discovery was the detection of two diametrically opposite regions in the rapidly expanding supernova remnant, the debris from the stellar explosion. The two regions glow intensely from the synchrotron radiation produced when fast-moving electrons are bent by a magnetic field. The remainder of the supernova remnant, in contrast, emits ordinary ''thermal'' X

  6. Goodbye, Mandatory Maternity Leaves

    Nation's Schools, 1972

    1972-01-01

    In precedent-setting decrees, courts and federal and State authorities have branded compulsory maternity leaves either unconstitutional or illegal. School administrators are urged to prod boards of education to adopt more lenient maternity leave policies -- now. (Author)

  7. Leaving home in Denmark

    Nielsen, Rikke Skovgaard

    2015-01-01

    The paper focuses on ethnic differences in the timing and patterns of leaving the parental home. Leaving home is a key transition in the life course of the individual, and extensive research has been conducted on the timing and patterns of leaving it. However, ethnic differences in these patterns...... of leaving home. Results showed that while some differences disappeared when controlling for covariates, others persisted, thus indicating ethnic differences in home-leaving patterns. A strong link between leaving home and marriage was substantiated for Turks, but not for Somalis. The home-leaving patterns...... of Somalis were much more similar to those of Danes. Overall, Turkish descendants were similar to Turkish immigrants but with some differentiation. The analyses identified the existence of ethnic differences in home-leaving patterns but also found evidence of a shift towards less traditional patterns, i...

  8. Cosmic strings and galaxy formation

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  9. Persistent solar signatures in cloud cover: spatial and temporal analysis

    Voiculescu, M; Usoskin, I

    2012-01-01

    A consensus regarding the impact of solar variability on cloud cover is far from being reached. Moreover, the impact of cloud cover on climate is among the least understood of all climate components. This motivated us to analyze the persistence of solar signals in cloud cover for the time interval 1984–2009, covering two full solar cycles. A spatial and temporal investigation of the response of low, middle and high cloud data to cosmic ray induced ionization (CRII) and UV irradiance (UVI) is performed in terms of coherence analysis of the two signals. For some key geographical regions the response of clouds to UVI and CRII is persistent over the entire time interval indicating a real link. In other regions, however, the relation is not consistent, being intermittent or out of phase, suggesting that some correlations are spurious. The constant in phase or anti-phase relationship between clouds and solar proxies over some regions, especially for low clouds with UVI and CRII, middle clouds with UVI and high clouds with CRII, definitely requires more study. Our results show that solar signatures in cloud cover persist in some key climate-defining regions for the entire time period and supports the idea that, if existing, solar effects are not visible at the global level and any analysis of solar effects on cloud cover (and, consequently, on climate) should be done at the regional level. (letter)

  10. Cloud computing.

    Wink, Diane M

    2012-01-01

    In this bimonthly series, the author examines how nurse educators can use Internet and Web-based technologies such as search, communication, and collaborative writing tools; social networking and social bookmarking sites; virtual worlds; and Web-based teaching and learning programs. This article describes how cloud computing can be used in nursing education.

  11. Cloud Computing

    IAS Admin

    2014-03-01

    Mar 1, 2014 ... There are several types of services available on a cloud. We describe .... CPU speed has been doubling every 18 months at constant cost. Besides this ... Plain text (e.g., email) may be read by anyone who is able to access it.

  12. Cosmic Education: Formation of a Planetary and Cosmic Personality

    Bazaluk Oleg

    2012-04-01

    Full Text Available The major stages of development of cosmic pedagogy have been researched. Based on the achievements of the modern neurosciences as well as of psychology, cosmology, and philosophy, the authors provide their reasoning for the cosmic education and its outlooks for the educational systems of the world. Through the studies of how important human mind is for the Earth and the cosmos and by researching the evolution of human mind within the structure of the Universe, the authors create a more advanced scientific and philosophic basis for the cosmic education where the subject is a comprehensive process of formation and directed progress of both an individual mind and a conglomerate of minds called the "psychospace". The cosmic education researches the permanent progress of the intelligent matter of the Earth. The purpose of the cosmic education has been determined as formation of a planetary and cosmic personality. According to the authors, a planetary and cosmic personality is a harmony of mind, soul, and body, and such harmony is directed to use the internal creative potential of mind to the benefit of the intelligent matter of the entire Earth and the cosmos. The properties of such a planetary and cosmic personality are being improved continuously; they are a sample (the ideal of the cosmic pedagogy and the image of a human being of the future. Through the usage of the entire potential and art of upbringing and educating, the cosmic pedagogy is called to embody the major properties of the image of a human being of the future in the new generations of minds and to form a planetary and cosmic personality capable of self-actualization to the benefit of the permanent progress of the intelligent matter.

  13. Cosmic ray: Studying the origin

    Szabelski, J. [Cosmic Ray Laboratory, Soltan Institute for Nuclear Studies, Lodz (Poland)

    1997-12-31

    Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10{sup 15} eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 1O{sup 19} eV (for these are the highest energies observed in nature). (author) 101 refs, 19 figs, 7 tabs

  14. Development of Cloud Chamber by Using Peltier Device

    Woo, Jong Kwan; Kwon, Jin Young; Park, Sang Tae

    2011-01-01

    In this research, we developed the newly cloud chamber apparatus by using Peltier device to apply nuclear physics experiment in high school or university. We observed the cosmic rays track by using the developed apparatus and a camcorder. And we compared and analyzed the acquired data. From the results, we acquired the following conclusions and suggestions : First, it is very difficult to observe the cosmic rays track in the typical cloud chamber because of the low frequency of it. But in the newly developed cloud chamber we can observe easily the cosmic rays track owing to the high frequency of it. Second, when we do the experiment with the newly developed apparatus, we found that the cosmic rays track happens well under the condition that the temperature of the upper place of cooling plate must be below 5 degree Celsius with more than isopropanol 1.04X10 -5 ml.mm -3 . Third, the newly developed apparatus will be improved to have better precision by controlling the temperature of cooling plate in the cloud chamber by current intensity. Therefore we think that it is very useful to use the newly developed apparatus in the nuclear physics experiment in high school or university.

  15. Development of Cloud Chamber by Using Peltier Device

    Woo, Jong Kwan [Jae Hyun High School, Seoul (Korea, Republic of); Kwon, Jin Young [Jeon Min High School, Daejeon (Korea, Republic of); Park, Sang Tae [Dept. of Physics Education, Kongju National University, Kongju (Korea, Republic of)

    2011-09-15

    In this research, we developed the newly cloud chamber apparatus by using Peltier device to apply nuclear physics experiment in high school or university. We observed the cosmic rays track by using the developed apparatus and a camcorder. And we compared and analyzed the acquired data. From the results, we acquired the following conclusions and suggestions : First, it is very difficult to observe the cosmic rays track in the typical cloud chamber because of the low frequency of it. But in the newly developed cloud chamber we can observe easily the cosmic rays track owing to the high frequency of it. Second, when we do the experiment with the newly developed apparatus, we found that the cosmic rays track happens well under the condition that the temperature of the upper place of cooling plate must be below 5 degree Celsius with more than isopropanol 1.04X10{sup -5}ml.mm{sup -3}. Third, the newly developed apparatus will be improved to have better precision by controlling the temperature of cooling plate in the cloud chamber by current intensity. Therefore we think that it is very useful to use the newly developed apparatus in the nuclear physics experiment in high school or university.

  16. Determining Thunderstorm Electric Fields using Radio Emission from Cosmic-Ray Air Showers

    Hare, B.; Scholten, O.; Trinh, G. T. N.; Ebert, U.; Rutjes, C.

    2017-01-01

    We report on a novel non-intrusive way to investigate electric fields in thunderclouds.Energetic cosmic rays penetrating the atmosphere create a particle avalanche called an extensive air shower. The front of the shower is a plasma cloud that contains 10^6 or more free electrons and positrons moving

  17. Cosmic Dawn with WFIRST

    Rhoads, James

    Central objectives: WFIRST-AFTA has tremendous potential for studying the epoch of "Cosmic Dawn" the period encompassing the formation of the first galaxies and quasars, and their impact on the surrounding universe through cosmological reionization. Our goal is to ensure that this potential is realized through the middle stages of mission planning, culminating in designs for both WFIRST and its core surveys that meet the core objectives in dark energy and exoplanet science, while maximizing the complementary Cosmic Dawn science. Methods: We will consider a combined approach to studying Cosmic Dawn using a judicious mixture of guest investigator data analysis of the primary WFIRST surveys, and a specifically designed Guest Observer program to complement those surveys. The Guest Observer program will serve primarily to obtain deep field observations, with particular attention to the capabilities of WFIRST for spectroscopic deep fields using the WFI grism. We will bring to bear our years of experience with slitless spectroscopy on the Hubble Space Telescope, along with an expectation of JWST slitless grism spectroscopy. We will use this experience to examine the implications of WFIRST’s grism resolution and wavelength coverage for deep field observations, and if appropriate, to suggest potential modifications of these parameters to optimize the science return on WFIRST. We have assembled a team of experts specializing in (1) Lyman Break Galaxies at redshifts higher than 7 (2) Quasars at high redshifts (3) Lyman-alpha galaxies as probes of reionization (4) Theoretical simulations of high-redshift galaxies (5) Simulations of grism observations (6) post-processing analysis to find emission line galaxies and high redshift galaxies (7) JWST observations and calibrations. With this team we intend to do end-to-end simulations starting with halo populations and expected spectra of high redshift galaxies and finally extracting what we can learn about (a) reionization

  18. Increased ionization supports growth of aerosols into cloud condensation nuclei

    Svensmark, H.; Enghoff, M. B.; Shaviv, N. J.

    2017-01-01

    Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important...... and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth’s present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity....

  19. Studies in cosmic rays

    Bemalkhedkar, M.M.

    1974-03-01

    The investigation of the diurnal variation in the cosmic ray intensity on individual days has revealed a new class of diurnal variation showing a maximum around 09 hour direction in the interplanetary space. It is shown to occur during the recovery phase of Forbush decreases as well as during quiet periods. The rigidity spectrum of the anomalous diurnal variation has an exponent around zero, the same as that for the average diurnal variation exhibiting maximum around 18 hours in the interplanetary space. It is shown that the Forbush decreases associated with the diurnal variation exhibiting morning maximum, are 27 day recurrent in nature and are preceded by east limb solar flares on most of the occasions. A qualitative model of the transient modulation by solar corotating corpuscular streams of enhanced solar wind velocity, emanating from the active regions on the solar disc, is proposed to explain the anomalous diurnal anisotropy in the recovery phase of 27 day recurrent Forbush decreases. From this model, the cosmic ray diffusion coefficients, parallel and perpendicular to the interplanetary magnetic field inside the corotating stream, are derived and compared with the average values. To investigate the possibility of determining the energy spectra of cosmic ray intensity variations from a single station, a continuous record of neutron multiplicity spectrum has been obtained for the period October, 1967 - October, 1971, using the Gulmarg neutron monitor. The average multiplicity spectrum in the Gulmarg neutron monitor shows a mean multiplicity approximately equal to 1.4 for 12 Boron-tri-fluoride counters and is an increasing function of the number of counters used. The mean multiplicity measured in various other neutron monitors, when normalized to the cutoff rigidity of Gulmurg (11.91 GV), shows a systematic increase with the altitude of the station. (author)

  20. Cosmic baldness and stability

    Panchapakesan, N.; Lohiya, D.

    1985-04-01

    The stability of the de Sitter metric and the relevance of the initial state of a domain which approaches a de Sitter universe asymptotically are investigated analytically, adapting the one-dimensional wave equation with effective potential derived by Khanal and Panchapakesan (1981), for the perturbations of the de Sitter-Schwarzschild metric, to the de Sitter case. It is demonstrated that initial nonspherical perturbations do not increase exponentially with time but rather decay, the frozen modes exponentially and the backscattered perturbations of finite angular momentum l as t to the -(2l - l). It is concluded that the cosmic horizon is stable and has no hair. 14 references.

  1. Cosmic strings and inflation

    Vishniac, E.T.

    1987-01-01

    We examine the compatibility of inflation with the cosmic string theory for galaxy formation. There is a general conflict between having sufficient string tension to effect galaxy formation, and reheating after inflation to a high enough temperature that strings may form in a thermal phase transition. To escape this conflict, we propose a class of models where the inflation is coupled to the string-producing field. The strings are formed late in inflation as the inflaton rolls towards its zero-temperature value. A large subset of these models have a novel large-scale distribution of galaxies that is fractal, displays biasing without dynamics or feedback mechanisms, and contains voids. (orig.)

  2. The cosmic microwave background

    Silk, J.

    1991-01-01

    Recent limits on spectral distortions and angular anisotropies in the cosmic microwave background are reviewed. The various backgrounds are described, and the theoretical implications are assessed. Constraints on inflationary cosmology dominated by cold dark matter (CDM) and on open cosmological models dominated by baryonic dark matter (BDM), with, respectively, primordial random phase scale-invariant curvature fluctuations or non-gaussian isocurvature fluctuations are described. More exotic theories are addressed, and I conclude with the 'bottom line': what theories expect experimentalists to be measuring within the next two to three years without having to abandon their most cherished theorists. (orig.)

  3. The Cosmic Background Explorer

    Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.

    1990-01-01

    The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.

  4. Spectrum of cosmic fireballs

    Cavallo, G [Consiglio Nazionale delle Ricerche, Bologna (Italy). Lab. TESRE; Horstman, H M [Bologna Univ. (Italy). Ist. di Astronomia

    1981-03-01

    A progress report on cosmic fireballs is presented. The main new results are: (a) the phenomenon should be almost universal, and most explosive ..gamma..-ray sources should show the characteristic fireball spectrum; (b) even if the radiation density is insufficient, pair production in electron-proton or electron-electron scattering might start the fireball; (c) some computed fireball spectra are shown. They all have in common a 1/E low-energy behaviour, a 100 keV flattening, and a approx.0.5 MeV cut-off.

  5. Tracing Cosmic Dawn

    Fialkov, Anastasia

    2018-05-01

    Observational effort is on the way to probe the 21-cm of neutral hydrogen from the epochs of Reionization and Cosmic Dawn. Our current poor knowledge of high redshift astrophysics results in a large uncertainty in the theoretically predicted 21-cm signal. A recent parameter study that is highlighted here explores the variety of 21-cm signals resulting from viable astrophysical scenarios. Model-independent relations between the shape of the signal and the underlying astrophysics are discussed. Finally, I briefly note on possible alternative probes of the high redshift Universe, specifically Fast Radio Bursts.

  6. Comments on cosmic censorship

    Hawking, S.W.

    1979-01-01

    The cosmic censorship hypothesis and the closely related positive energy conjecture are the most important unsolved problems in classical general relativity. Roughly speaking the hypothesis is that nonsingular asymptotically flat initial data on a spacelike surface give rise to a solution in which any singularities that occur are not visible from infinity. Thus the solution near infinity would be unaffected by the breakdown of predictability associated with the singularities. A more precise formulation is given. The evidence for the censorship is mainly negative and this is discussed. The relationship of the hypothesis to quantum gravity and the quantum evaporation of black holes is also mentioned. (UK)

  7. Discovery of cosmic fractals

    Baryshev, Yuri

    2002-01-01

    This is the first book to present the fascinating new results on the largest fractal structures in the universe. It guides the reader, in a simple way, to the frontiers of astronomy, explaining how fractals appear in cosmic physics, from our solar system to the megafractals in deep space. It also offers a personal view of the history of the idea of self-similarity and of cosmological principles, from Plato's ideal architecture of the heavens to Mandelbrot's fractals in the modern physical cosmos. In addition, this invaluable book presents the great fractal debate in astronomy (after Luciano Pi

  8. Garden of cosmic speculation

    Jencks, Charles

    2005-01-01

    This book tells the story of one of the most important gardens in Europe, created by the architectural critic and designer Charles Jencks and his late wife, the landscape architect and author Maggie Keswick. The Garden of Cosmic Speculation is a landscape that celebrates the new sciences of complexity and chaos theory and consists of a series of metaphors exploring the origins, the destiny and the substance of the Universe. The book is illustrated with year-round photography, bringing the garden's many dimensions vividly to life.

  9. Cloud management and security

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  10. How to build a cloud chamber?

    Mariaud, C.

    2012-01-01

    The cloud chamber had its heyday in the first half of last century and allowed the discovery of new particles such as the anti-electron, the muon and the neutral and the charged kaon. The bubble chamber replaced it in the mid fifties. This article recalls the principle of the cloud chamber and shows, in a detailed way, how to proceed to build one with on-the-shelf materials. This design is based on the use of isopropanol whose liquefaction through the form of droplets materializes the track of the particle and on the use of combined Peltier cells (instead of CO 2 snow) to cool the chamber. This cloud chamber has been successfully used in schools to observe particles mainly electrons, alphas and muons generated by cosmic rays. (A.C.)

  11. Clouds blown by the solar wind

    Voiculescu, M; Condurache-Bota, S; Usoskin, I

    2013-01-01

    In this letter we investigate possible relationships between the cloud cover (CC) and the interplanetary electric field (IEF), which is modulated by the solar wind speed and the interplanetary magnetic field. We show that CC at mid–high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Thus, our results suggest that mid–high latitude clouds might be affected by the solar wind via the GEC. Since IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others. (letter)

  12. Cloud time

    Lockwood, Dean

    2012-01-01

    The ‘Cloud’, hailed as a new digital commons, a utopia of collaborative expression and constant connection, actually constitutes a strategy of vitalist post-hegemonic power, which moves to dominate immanently and intensively, organizing our affective political involvements, instituting new modes of enclosure, and, crucially, colonizing the future through a new temporality of control. The virtual is often claimed as a realm of invention through which capitalism might be cracked, but it is precisely here that power now thrives. Cloud time, in service of security and profit, assumes all is knowable. We bear witness to the collapse of both past and future virtuals into a present dedicated to the exploitation of the spectres of both.

  13. Phenomenology of cosmic phase transitions

    Kaempfer, B.; Lukacs, B.; Paal, G.

    1989-11-01

    The evolution of the cosmic matter from Planck temperature to the atomic combination temperature is considered from a phenomenological point of view. Particular emphasis is devoted to the sequence of cosmic phase transitions. The inflationary era at the temperature of the order of the grand unification energy scale and the quantum chromodynamic confinement transition are dealt with in detail. (author) 131 refs.; 26 figs

  14. Does a cosmic censor exist

    Israel, W.

    1984-01-01

    A distinction is drawn between the event horizon conjecture (EHC), the conjecture that an event horizon forms in a gravitational collapse, and cosmic censorship, the idea that every singularity which develops in the course of collapse must be enclosed within a horizon. It is argued that a body of circumstantial evidence seems to favor EHC, but cosmic censorship seems contraindicated

  15. L3 + Cosmics Experiment

    2002-01-01

    %RE4 %title\\\\ \\\\The L3+C experiment takes advantage of the unique properties of the L3 muon spectrometer to get an accurate measurement of cosmic ray muons 30 m underground. A new muon trigger, readout and DAQ system have been installed, as well as a scintillator array covering the upper surfaces of the L3 magnet for timing purposes. The acceptance amounts to 200 $m^2 sr$. The data are collected independently in parallel with L3 running. In spring 2000 a scintillator array will be installed on the roof of the SX hall in order to estimate the primary energy of air showers associated with events observed in L3+C.\\\\ \\\\The cosmic ray muon momentum spectrum, the zenith angular dependence and the charge ratio are measured with high accuracy between 20 and 2000 GeV/c. The results will provide new information about the primary composition, the shower development in the atmosphere, and the inclusive pion and kaon (production-) cross sections (specifically the "$\\pi$/K ratio") at high energies. These data will also hel...

  16. OH+ IN DIFFUSE MOLECULAR CLOUDS

    Porras, A. J.; Federman, S. R.; Welty, D. E.; Ritchey, A. M.

    2014-01-01

    Near ultraviolet observations of OH + and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH + arises from a main component seen in CH + (that with the highest CH + /CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH + detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH + as well, confirming OH + and H 2 O + observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for a high enough density and molecular fraction before detectable amounts are seen. Thus, while OH + leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds

  17. Interstellar clouds and the formation of stars

    Alfen, H.; Carlqvist, P.

    1977-12-01

    The 'pseudo-plasma formalism' which up to now has almost completely dominated theoretical astrophysics must be replaced by an experimentally based approach, involving the introduction of a number of neglected plasma phenomena, such as electric double layers, critical velocity, and pinch effect. The general belief that star light is the main ionizer is shown to be doubtful; hydromagnetic conversion of gravitational and kinetic energy may often be much more important. The revised plasma physics is applied to dark clouds and star formation. Magnetic fields do not necessarily counteract the contraction of a cloud, they may just as well 'pinch' the cloud. Magnetic compression may be the main mechanism for forming interstellar clouds and keeping them together. Star formation is due to an instability, but it is very unlikely that it has anything to do with the Jeans instablility. A reasonable mechanism is that the sedimentation of 'dust' (including solid bodies of different size) is triggering off a gravitationally assisted accretion. The study of the evolution of a dark cloud leads to a scenario of planet formation which is reconcilable with the results obtained from studies based on solar system data. This means that the new approach to cosmical plasma physics discussed logically leads to a consistent picture of the evolution of dark clouds and the formation of solar systems

  18. Negative leave balances

    Human Resources Department

    2005-01-01

    Members of the personnel entitled to annual leave and, where appropriate, saved leave and/or compensatory leave are requested to take note of the new arrangements described below, which were recommended by the Standing Concertation Committee (SCC) at its meeting on 1Â September 2005 and subsequently approved by the Director-General. The changes do not apply to members of the personnel participating in the Progressive Retirement Programme (PRP) or the Part-time Work as a pre-retirement measure, for whom the specific provisions communicated at the time of joining will continue to apply. Â Negative balances in annual leave, saved leave and/or compensatory leave accounts at the end of the leave year (30th September) and on the date on which bonuses are credited to the saved leave account (31st December): Where members of the personnel have a leave account with a negative balance on 30Â September and/or 31Â December, leave will automatically be transferred from one account to another on the relevant dates i...

  19. Negative leave balances

    Human Resources Department

    2005-01-01

    Members of the personnel entitled to annual leave and, where appropriate, saved leave and/or compensatory leave are requested to take note of the new arrangements described below, which were recommended by the Standing Concertation Committee (SCC) at its meeting on 1 September 2005 and subsequently approved by the Director-General. The changes do not apply to members of the personnel participating in the Progressive Retirement Programme (PRP) or the Part-time Work as a pre-retirement measure, for whom the specific provisions communicated at the time of joining will continue to apply.  Negative balances in annual leave, saved leave and/or compensatory leave accounts at the end of the leave year (30th September) and on the date on which bonuses are credited to the saved leave account (31st December): Where members of the personnel have a leave account with a negative balance on 30 September and/or 31 December, leave will automatically be transferred from one account to another on the relevant dates in or...

  20. Essentials of cloud computing

    Chandrasekaran, K

    2014-01-01

    ForewordPrefaceComputing ParadigmsLearning ObjectivesPreambleHigh-Performance ComputingParallel ComputingDistributed ComputingCluster ComputingGrid ComputingCloud ComputingBiocomputingMobile ComputingQuantum ComputingOptical ComputingNanocomputingNetwork ComputingSummaryReview PointsReview QuestionsFurther ReadingCloud Computing FundamentalsLearning ObjectivesPreambleMotivation for Cloud ComputingThe Need for Cloud ComputingDefining Cloud ComputingNIST Definition of Cloud ComputingCloud Computing Is a ServiceCloud Computing Is a Platform5-4-3 Principles of Cloud computingFive Essential Charact

  1. A Reputation-Based Identity Management Model for Cloud Computing

    Lifa Wu

    2015-01-01

    Full Text Available In the field of cloud computing, most research on identity management has concentrated on protecting user data. However, users typically leave a trail when they access cloud services, and the resulting user traceability can potentially lead to the leakage of sensitive user information. Meanwhile, malicious users can do harm to cloud providers through the use of pseudonyms. To solve these problems, we introduce a reputation mechanism and design a reputation-based identity management model for cloud computing. In the model, pseudonyms are generated based on a reputation signature so as to guarantee the untraceability of pseudonyms, and a mechanism that calculates user reputation is proposed, which helps cloud service providers to identify malicious users. Analysis verifies that the model can ensure that users access cloud services anonymously and that cloud providers assess the credibility of users effectively without violating user privacy.

  2. The Temporary Leave Dilemma -

    Amilon, Anna

    2010-01-01

    Lone mothers have to take care of a sick child with little or no help from the child’s other parent and have to carry all costs connected to leave-taking. This paper empirically tests whether lone mothers take more temporary parental leave to care for sick children than partnered mothers...... and whether parental leave is associated with a signaling cost. The results from this study of Swedish mothers show that lone mothers use more temporary parental leave than partnered mothers. Further, within the group of lone mothers, those with higher socioeconomic status take less temporary parental leave...... than those with lower socioeconomic status, whereas no such differences are found within the group of partnered mothers. One possible interpretation is that signaling costs negatively influence the utilization of temporary parental leave for lone mothers....

  3. Electrical signature in polar night cloud base variations

    Harrison, R Giles; Ambaum, Maarten H P

    2013-01-01

    Layer clouds are globally extensive. Their lower edges are charged negatively by the fair weather atmospheric electricity current flowing vertically through them. Using polar winter surface meteorological data from Sodankylä (Finland) and Halley (Antarctica), we find that when meteorological diurnal variations are weak, an appreciable diurnal cycle, on average, persists in the cloud base heights, detected using a laser ceilometer. The diurnal cloud base heights from both sites correlate more closely with the Carnegie curve of global atmospheric electricity than with local meteorological measurements. The cloud base sensitivities are indistinguishable between the northern and southern hemispheres, averaging a (4.0 ± 0.5) m rise for a 1% change in the fair weather electric current density. This suggests that the global fair weather current, which is affected by space weather, cosmic rays and the El Niño Southern Oscillation, is linked with layer cloud properties. (letter)

  4. The effects of cosmic radiation on implantable medical devices

    Bradley, P.

    1996-01-01

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0 -12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10 -12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  5. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  6. Can we observationally test the weak cosmic censorship conjecture?

    Kong, Lingyao; Malafarina, Daniele; Bambi, Cosimo

    2014-01-01

    In general relativity, gravitational collapse of matter fields ends with the formation of a spacetime singularity, where the matter density becomes infinite and standard physics breaks down. According to the weak cosmic censorship conjecture, singularities produced in the gravitational collapse cannot be seen by distant observers and must be hidden within black holes. The validity of this conjecture is still controversial and at present we cannot exclude that naked singularities can be created in our Universe from regular initial data. In this paper, we study the radiation emitted by a collapsing cloud of dust and check whether it is possible to distinguish the birth of a black hole from the one of a naked singularity. In our simple dust model, we find that the properties of the radiation emitted in the two scenarios is qualitatively similar. That suggests that observational tests of the cosmic censorship conjecture may be very difficult, even in principle. (orig.)

  7. Can we observationally test the weak cosmic censorship conjecture?

    Kong, Lingyao; Malafarina, Daniele; Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China)

    2014-08-15

    In general relativity, gravitational collapse of matter fields ends with the formation of a spacetime singularity, where the matter density becomes infinite and standard physics breaks down. According to the weak cosmic censorship conjecture, singularities produced in the gravitational collapse cannot be seen by distant observers and must be hidden within black holes. The validity of this conjecture is still controversial and at present we cannot exclude that naked singularities can be created in our Universe from regular initial data. In this paper, we study the radiation emitted by a collapsing cloud of dust and check whether it is possible to distinguish the birth of a black hole from the one of a naked singularity. In our simple dust model, we find that the properties of the radiation emitted in the two scenarios is qualitatively similar. That suggests that observational tests of the cosmic censorship conjecture may be very difficult, even in principle. (orig.)

  8. Program Annual Technology Report: Cosmic Origins Program Office

    Pham, Thai; Neff, Susan

    2017-01-01

    What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life, starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy.

  9. New Particle Formation in an Urban Atmosphere: The Role of Various Ingredients Investigated in the CLOUD Chamber

    Baltensperger, U.; Xiao, M.; Hoyle, C.; Dada, L.; Garmash, O.; Stolzenburg, D.; Molteni, U.; Lehtipalo, K.; El-Haddad, I.; Dommen, J.

    2017-12-01

    Atmospheric aerosols play an important role on climate via aerosol-radiation interaction and aerosol-cloud interaction. The latter is strongly influenced by new particle formation (NPF). The physical and chemical mechanisms behind the NPF process are still under investigation. Great advancements were made in resolving chemical and physical mechanisms of NPF with a series of experiments conducted at the CLOUD (Cosmics Leaving Outdoor Droplets) chamber facility at CERN (Geneva, Switzerland), including binary nucleation of sulfuric acid - water, ternary nucleation of sulfuric acid - water with ammonia or dimethylamine as well as oxidation products (highly oxygenated molecules, HOMs) from biogenic precursors with and without the presence of sulfuric acid. Here, we investigate possible NPF mechanisms in urban atmospheres, where large populations are exposed to high aerosol concentrations; these mechanisms are still missing and are urgently needed. Urban atmospheres are highly polluted with high concentrations of SO2, ammonia, NOx and volatile organic vapors from anthropogenic activity as well as with high particle concentrations, which provide a high condensation sink for condensable gases. Aromatic hydrocarbons from industrial activities, traffic and residential combustion are present at high concentrations and contribute significantly to photochemical smog in the urban environment.The experiments were conducted at the CLOUD chamber facility during the CLOUD11 campaign in fall 2016. Three aromatic hydrocarbons were selected: toluene, 1,2,4-trimethylbenzene (1,2,4-TMB) and naphthalene (NPT). Experiments were also conducted with mixtures of the three aromatic hydrocarbons to better represent the urban atmosphere. All the experiments were conducted in the presence of sulfuric acid concentrations with or without the addition of ammonia and NOx. New particle formation rates and early growth rates derived for each precursor and their mixture, together with sulfuric acid and

  10. Cosmic magnetic fields

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  11. Cosmic ray synergies

    Laëtitia Pedroso

    2010-01-01

    In laboratories, cosmic rays have been the subject of scientific research for many years. A more recent development is their appearance in schools, as educational tools. A recent workshop at CERN, organised by ASPERA in collaboration with EPPOG and EPPCN, had the goal of bringing together ideas and initiatives with a view to setting up a future common project.   Presentation at the workshop on 15 October. In research, as in education, you can sometimes get things done more rapidly and easily by joining forces. For roughly the past decade, physicists have been taking their particle detectors to secondary schools. “The challenge now is to bring all of these existing projects together in a network,” says Arnaud Marsollier, in charge of communication for the ASPERA network and organiser of the workshop. The workshop held on Friday, 15 October was attended by representatives of major European educational projects and members of the European Particle Physics Communication Network...

  12. Highest energy cosmic rays

    Nikolskij, S.

    1984-01-01

    Primary particles of cosmic radiation with highest energies cannot in view of their low intensity be recorded directly but for this purpose the phenomenon is used that these particles interact with nuclei in the atmosphere and give rise to what are known as extensive air showers. It was found that 40% of primary particles with an energy of 10 15 to 10 16 eV consist of protons, 12 to 15% of helium nuclei, 15% of iron nuclei, the rest of nuclei of other elements. Radiation intensity with an energy of 10 18 to 10 19 eV depends on the direction of incoming particles. Maximum intensity is in the direction of the centre of the nearest clustre of galaxies, minimal in the direction of the central area of our galaxy. (Ha)

  13. Overproduction of cosmic superstrings

    Barnaby, Neil; Berndsen, Aaron; Cline, James M.; Stoica, Horace

    2005-01-01

    We show that the naive application of the Kibble mechanism seriously underestimates the initial density of cosmic superstrings that can be formed during the annihilation of D-branes in the early universe, as in models of brane-antibrane inflation. We study the formation of defects in effective field theories of the string theory tachyon both analytically, by solving the equation of motion of the tachyon field near the core of the defect, and numerically, by evolving the tachyon field on a lattice. We find that defects generically form with correlation lengths of order M s -1 rather than H -1 . Hence, defects localized in extra dimensions may be formed at the end of inflation. This implies that brane-antibrane inflation models where inflation is driven by branes which wrap the compact manifold may have problems with overclosure by cosmological relics, such as domain walls and monopoles

  14. Our cosmic habitat

    Rees, Martin

    2001-01-01

    Our universe seems strangely 'biophilic,' or hospitable to life. Is this providence or coincidence? According to Martin Rees, the answer depends on the answer to another question, the one posed by Einstein's famous remark: 'What interests me most is whether God could have made the world differently.' This highly engaging book centres on the fascinating consequences of the answer being 'yes'. Rees explores the notion that our universe is just part of a vast 'multiverse,' or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be local by laws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge.

  15. The Cosmic Microwave Background

    Jones Aled

    1998-01-01

    Full Text Available We present a brief review of current theory and observations of the cosmic microwave background (CMB. New predictions for cosmological defect theories and an overview of the inflationary theory are discussed. Recent results from various observations of the anisotropies of the microwave background are described and a summary of the proposed experiments is presented. A new analysis technique based on Bayesian statistics that can be used to reconstruct the underlying sky fluctuations is summarised. Current CMB data is used to set some preliminary constraints on the values of fundamental cosmological parameters $Omega$ and $H_circ$ using the maximum likelihood technique. In addition, secondary anisotropies due to the Sunyaev-Zel'dovich effect are described.

  16. Cosmic Ray Antimatter

    CERN. Geneva

    2017-01-01

    Over the last decade, space-born experiments have delivered new measurements of high energy cosmic-ray (CR) antiprotons and positrons, opening new frontiers in energy reach and precision. While being a promising discovery tool for new physics or exotic astrophysical phenomena, an irreducible background of antimatter comes from CR collisions with interstellar matter in the Galaxy. Understanding this irreducible source or constraining it from first principles is an interesting challenge: a game of hide-and-seek where the objective is to identify the laws of basic particle physics among the forest of astrophysical uncertainties. I describe an attempt to obtain such understanding, combining information from a zoo of CR species including massive nuclei and relativistic radioisotopes. I show that: (i) CR antiprotons most likely come from CR-gas collisions; (ii) positron data is consistent with, and suggestive of the same astrophysical production mechanism responsible for antiprotons and dominated by proton-proton c...

  17. Cosmic Magnetic Fields

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  18. Primary cosmic radiation

    Anderson, H.R.

    1972-01-01

    The term cosmic radiation means the charged particle flux that reaches the earth from outside its magnetosphere with energies above the solar wind energy of a few keV. There are two sources of flux. Sporadically the sun produces such particles, generally within the energy range 1--200 MeV, and these solar cosmic rays arrive at the earth for a period ranging from hours to days. There may be a small, rather constant flux from the sun also, but the bulk of the steady flux originates outside the earth's orbit. Although some have conjectured that part of this latter flux may be accelerated in the outer portions of the solar system where the outward flowing interplanetary medium meets the interstellar medium, it is generally thought that most or all of it arises in unique systems such as supernovae, and is distributed throughout the galaxy. These galactic particles range in energy from a few MeV to at least 10 13 MeV and consist primarily of protons with significant numbers of heavier nuclei, positrons and electrons. They are supposed to fill our galaxy, or at least the disc, more or less uniformly. However, the flux with energies below a few GeV that reaches earth's orbit is modulated by the interplanetary medium so that the number at earth varies inversely with solar activity and is always somewhat below the interstellar flux. A discussion is presented of primary galactic radiation at earth, its modulation by solar activity, and its interaction with the geomagnetic field. (U.S.)

  19. What is cosmic radiation?

    2004-01-01

    The earth was indeed receiving ionizing radiations from the heavens. This cosmic radiation consists of particles travelling near the speed of light. It consists of two components, the first of which is permanent and of galactic origin, while the other is more sporadic, depending on the sun's activities. Natural land-based sources expose each of us to an average total dose of 2.4 mSv per year (source UNSCEAR). In addition, the human activities using ionizing radiation contribute to an average annual exposure of 1.4 mSv, originating primarily with medical activities ( radiodiagnostic and radiation therapy). Members of flights crew are subject to exposure. The total dose of cosmic radiation received is is directly proportional with the duration of exposure, and thus with the duration of the flight. Measurement taken on board aircraft during the 1990's showed that flight personnel (on long haul flights) receive an average dose of approximately the same magnitude as the one due to exposure to natural radioactivity in France. The damage caused by ionizing radiation depends on the quantity of energy released by radiation into the cells of each organ or tissue of the human body(exposure dose). For a given quantity of absorbed energy (dose expressed in Gray), the damage will vary according to the nature of the radiation and the affected organ. These effects are of two types: acute effects and deferred effects. Two measurements are essential for radiation protection: the measurements of the dose of radiation absorbed by the body and the assessment of the risk associated with the absorbed dose. Two units were thus created: the gray and the sievert. (N.C.)

  20. Cloud Computing, Tieto Cloud Server Model

    Suikkanen, Saara

    2013-01-01

    The purpose of this study is to find out what is cloud computing. To be able to make wise decisions when moving to cloud or considering it, companies need to understand what cloud is consists of. Which model suits best to they company, what should be taken into account before moving to cloud, what is the cloud broker role and also SWOT analysis of cloud? To be able to answer customer requirements and business demands, IT companies should develop and produce new service models. IT house T...

  1. Test particle trajectories near cosmic strings

    We present a detailed analysis of the motion of test particle in the gravitational field of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.

  2. A cosmic microwave background feature consistent with a cosmic texture.

    Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M

    2007-12-07

    The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.

  3. On technical security issues in cloud computing

    Jensen, Meiko; Schwenk, Jörg; Gruschka, Nils

    2009-01-01

    , however, there are still some challenges to be solved. Amongst these are security and trust issues, since the user's data has to be released to the Cloud and thus leaves the protection sphere of the data owner. Most of the discussions on this topics are mainly driven by arguments related to organisational......The Cloud Computing concept offers dynamically scalable resources provisioned as a service over the Internet. Economic benefits are the main driver for the Cloud, since it promises the reduction of capital expenditure (CapEx) and operational expenditure (OpEx). In order for this to become reality...... means. This paper focusses on technical security issues arising from the usage of Cloud services and especially by the underlying technologies used to build these cross-domain Internet-connected collaborations....

  4. Intensity of Upward Muon Flux Due to Cosmic-Ray Neutrinos Produced in the Atmosphere

    Lee, T. D.; Robinson, H.; Schwartz, M.; Cool, R.

    1963-06-01

    Calculations were performed to determine the upward going muon flux leaving the earth's surface after production by cosmic-ray neutrinos in the crust. Only neutrinos produced in the earth's atmosphere are considered. Rates of the order of one per 100 sq m/day might be expected if an intermediate boson exists and has a mass less than 2 Bev. (auth)

  5. Moving towards Cloud Security

    Edit Szilvia Rubóczki; Zoltán Rajnai

    2015-01-01

    Cloud computing hosts and delivers many different services via Internet. There are a lot of reasons why people opt for using cloud resources. Cloud development is increasing fast while a lot of related services drop behind, for example the mass awareness of cloud security. However the new generation upload videos and pictures without reason to a cloud storage, but only few know about data privacy, data management and the proprietary of stored data in the cloud. In an enterprise environment th...

  6. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation

    M. Kulmala

    2010-02-01

    Full Text Available Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996–2008 that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII. We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically significantly less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation events, and so for the connected aerosol-climate effects as well.

  7. Cloud-Top Entrainment in Stratocumulus Clouds

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  8. Cloud Infrastructure & Applications - CloudIA

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  9. Interplanetary cosmic-ray scintillations

    Toptygin, I N; Vasiliev, V N [Kalininskij Sel' skokhozyajstvennyj Inst. (USSR)

    1977-05-01

    The equation for the two-particles cosmic-ray distribution function is derived by means of the Boltzmann kinetic equation averaging. This equation is valid for arbitrary ratio of regular and random parts of the magnetic field. For small energy particles the guiding-center approximation is used. On the basis of the derived equation the dependence between power spectra of cosmic-ray intensity and random magnetic field is obtained. If power spectra are degree functions for high energy particles (approximately 10 GeV nucleon/sup -1/), then the spectral exponent ..gamma.. of magnetic field lies between rho and rho-2, where rho is the spectral exponent of cosmic-ray power spectra. The experimental data concerning moderate energy particles are in accordance with ..gamma..=rho, which demonstrates that the magnetic fluctuations are isotropic or cosmic-ray space gradient is small near the Earth orbit.

  10. Silicon Photonics Cloud (SiCloud)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  11. A cosmic cake mix

    Grady, Monica; Wright, Ian

    1990-01-01

    Meteorites are the best evidence we have of how the Solar System began. Some types of meteorite have remained almost unchanged since then, unlike rocks on Earth which have been melted and recrystallised into entirely different forms. For many years, cosmologists relied on meteorites to help them reconstruct the complex processes which took place in the earliest part of Solar System history. More recently, researchers have begun to come across puzzling anomalies in the chemical make up of some types of meteorite. Now they have realised that components of these meteorites are the remnants of much older processes that went on even before the Solar System existed. It has been found that some carbon-based meteorites of the chondrite type contain inert gases that pre-date the formation of the Solar System. Thus the theory that the Solar System had been formed from a homogeneous cloud of gas and dust was replaced by the idea that the gas and dust cloud contained traces of material still labelled by where they had come from -supernova, nova or red giantstar. New discoveries and new theories of meteorites are discussed. (author)

  12. Cosmic string induced CMB maps

    Landriau, M.; Shellard, E. P. S.

    2011-01-01

    We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.

  13. Cosmic microwave background, where next?

    CERN. Geneva

    2009-01-01

    Ground-based, balloon-borne and space-based experiments will observe the Cosmic Microwave Background in greater details to address open questions about the origin and the evolution of the Universe. In particular, detailed observations the polarization pattern of the Cosmic Microwave Background radiation have the potential to directly probe physics at the GUT scale and illuminate aspects of the physics of the very early Universe.

  14. Cosmic ray diffusion in a violent interstellar medium

    Bykov, A.M.; Toptygin, I.N.

    1985-01-01

    A variety of the avaiable observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM

  15. Cosmic microwave background power asymmetry from non-Gaussian modulation.

    Schmidt, Fabian; Hui, Lam

    2013-01-04

    Non-Gaussianity in the inflationary perturbations can couple observable scales to modes of much longer wavelength (even superhorizon), leaving as a signature a large-angle modulation of the observed cosmic microwave background power spectrum. This provides an alternative origin for a power asymmetry that is otherwise often ascribed to a breaking of statistical isotropy. The non-Gaussian modulation effect can be significant even for typical ~10(-5) perturbations while respecting current constraints on non-Gaussianity if the squeezed limit of the bispectrum is sufficiently infrared divergent. Just such a strongly infrared-divergent bispectrum has been claimed for inflation models with a non-Bunch-Davies initial state, for instance. Upper limits on the observed cosmic microwave background power asymmetry place stringent constraints on the duration of inflation in such models.

  16. Calculation of cosmic ray induced single event upsets: Program CRUP (Cosmic Ray Upset Program)

    Shapiro, P.

    1983-09-01

    This report documents PROGRAM CRUP, COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic ray induced single-event error rates in microelectronic circuits exposed to several representative cosmic-ray environments.

  17. Illustrated cosmic monopole

    Seagrave, Wyken

    2015-01-01

    Truly bizarre, utterly unique I've never read a novel quite like this before. The author takes you on an exciting adventure full of unforgettable and vivid imagery. Solidly written with each character's personality shining through. If you find physics fascinating you will not be disappointed by the author's keen intellect and clear understanding of this most challenging (for me anyway) scientific subject. This is not a novel I will forget anytime soon, I would highly recommend it. Andrewly Very imaginative tale Anybody interested in a very imaginative and engrossing sci fi story needs to check this one out. I have been reading sci fi for decades and this story has elements that surprise me which is very unusual considering the number of novels and stories I have over the years. ric freeman Summary of the story The cosmic monopole has been wandering the Universe since it was created in the Big Bang. Its existence is fundamental to the way the Universe works. It is finally trapped by the powerful magnetic f...

  18. Falling for Clay Leaves.

    Kernan, Christine

    2002-01-01

    Describes an art project that integrated science and art education. Explains that students create ceramic bowls by using real leaves. Discusses the process of creating the ceramic bowls, including how to glaze the bowls. Includes a list of materials. (CMK)

  19. Looking for Cosmic Neutrino Background

    Chiaki eYanagisawa

    2014-06-01

    Full Text Available Since the discovery of neutrino oscillation in atmospheric neutrinos by the Super-Kamiokande experiment in 1998, study of neutrinos has been one of exciting fields in high-energy physics. All the mixing angles were measured. Quests for 1 measurements of the remaining parameters, the lightest neutrino mass, the CP violating phase(s, and the sign of mass splitting between the mass eigenstates m3 and m1, and 2 better measurements to determine whether the mixing angle theta23 is less than pi/4, are in progress in a well-controlled manner. Determining the nature of neutrinos, whether they are Dirac or Majorana particles is also in progress with continuous improvement. On the other hand, although the ideas of detecting cosmic neutrino background have been discussed since 1960s, there has not been a serious concerted effort to achieve this goal. One of the reasons is that it is extremely difficult to detect such low energy neutrinos from the Big Bang. While there has been tremendous accumulation of information on Cosmic Microwave Background since its discovery in 1965, there is no direct evidence for Cosmic Neutrino Background. The importance of detecting Cosmic Neutrino Background is that, although detailed studies of Big Bang Nucleosynthesis and Cosmic Microwave Background give information of the early Universe at ~a few minutes old and ~300 k years old, respectively, observation of Cosmic Neutrino Background allows us to study the early Universe at $sim$ 1 sec old. This article reviews progress made in the past 50 years on detection methods of Cosmic Neutrino Background.

  20. Maternity Leave Policies

    Strang, Lucy; Broeks, Miriam

    2017-01-01

    Abstract Over recent years many European Union countries have made changes to the design of the maternity leave provision. These policy developments reflect calls for greater gender equality in the workforce and more equal share of childcare responsibilities. However, while research shows that long period of leave can have negative effects on women's labour market attachment and career advancements, early return to work can be seen as a factor preventing exclusive breastfeeding, and therefore, potentially having negative health impacts for babies. Indeed, the World Health Organisation recommends exclusive breastfeeding up to 6 months of age to provide babies with the nutrition for healthy growth and brain development, protection from life-threatening ailments, obesity and non-communicable diseases such as asthma and diabetes. Therefore, labour market demands on women may be at odds with the health benefits for children gained by longer periods of maternity leave. The aim of this article is to examine the relationship between leave provision and health benefits for children. We examine maternity and parental leave provision across European countries and its potential impact on the breastfeeding of very young babies (up to 6-months of age). We also consider economic factors of potential extension of maternity leave provision to 6 months, such as costs to businesses, effects on the female labour market attachment, and wider consequences (benefits and costs) for individuals, families, employers and the wider society. PMID:28983432

  1. Extrapolating cosmic ray variations and impacts on life: Morlet wavelet analysis

    Zarrouk, N.; Bennaceur, R.

    2009-07-01

    Exposure to cosmic rays may have both a direct and indirect effect on Earth's organisms. The radiation may lead to higher rates of genetic mutations in organisms, or interfere with their ability to repair DNA damage, potentially leading to diseases such as cancer. Increased cloud cover, which may cool the planet by blocking out more of the Sun's rays, is also associated with cosmic rays. They also interact with molecules in the atmosphere to create nitrogen oxide, a gas that eats away at our planet's ozone layer, which protects us from the Sun's harmful ultraviolet rays. On the ground, humans are protected from cosmic particles by the planet's atmosphere. In this paper we give estimated results of wavelet analysis from solar modulation and cosmic ray data incorporated in time-dependent cosmic ray variation. Since solar activity can be described as a non-linear chaotic dynamic system, methods such as neural networks and wavelet methods should be very suitable analytical tools. Thus we have computed our results using Morlet wavelets. Many have used wavelet techniques for studying solar activity. Here we have analysed and reconstructed cosmic ray variation, and we have better depicted periods or harmonics other than the 11-year solar modulation cycles.

  2. Nearest Cosmic Mirage

    2003-07-01

    Discovery of quadruply lensed quasar with Einstein ring Summary Using the ESO 3.6-m telescope at La Silla (Chile), an international team of astronomers [1] has discovered a complex cosmic mirage in the southern constellation Crater (The Cup). This "gravitational lens" system consists of (at least) four images of the same quasar as well as a ring-shaped image of the galaxy in which the quasar resides - known as an "Einstein ring". The more nearby lensing galaxy that causes this intriguing optical illusion is also well visible. The team obtained spectra of these objects with the new EMMI camera mounted on the ESO 3.5-m New Technology Telescope (NTT), also at the La Silla observatory. They find that the lensed quasar [2] is located at a distance of 6,300 million light-years (its "redshift" is z = 0.66 [3]) while the lensing elliptical galaxy is rougly halfway between the quasar and us, at a distance of 3,500 million light-years (z = 0.3). The system has been designated RXS J1131-1231 - it is the closest gravitationally lensed quasar discovered so far . PR Photo 20a/03 : Image of the gravitational lens system RXS J1131-1231 (ESO 3.6m Telescope). PR Photo 20b/03 : Spectra of two lensed images of the source quasar and the lensing galaxy. Cosmic mirages The physical principle behind a "gravitational lens" (also known as a "cosmic mirage") has been known since 1916 as a consequence of Albert Einstein's Theory of General Relativity . The gravitational field of a massive object curves the local geometry of the Universe, so light rays passing close to the object are bent (like a "straight line" on the surface of the Earth is necessarily curved because of the curvature of the Earth's surface). This effect was first observed by astronomers in 1919 during a total solar eclipse. Accurate positional measurements of stars seen in the dark sky near the eclipsed Sun indicated an apparent displacement in the direction opposite to the Sun, about as much as predicted by Einstein

  3. BUSINESS INTELLIGENCE IN CLOUD

    Celina M. Olszak

    2014-01-01

    . The paper reviews and critiques current research on Business Intelligence (BI) in cloud. This review highlights that organizations face various challenges using BI cloud. The research objectives for this study are a conceptualization of the BI cloud issue, as well as an investigation of some benefits and risks from BI cloud. The study was based mainly on a critical analysis of literature and some reports on BI cloud using. The results of this research can be used by IT and business leaders ...

  4. Cloud Robotics Platforms

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  5. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    Neyrinck, Mark C.; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term `cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile `spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  6. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations.

    Neyrinck, Mark C; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term 'cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile 'spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  7. Fitting cosmic microwave background data with cosmic strings and inflation.

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2008-01-18

    We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).

  8. Cloud Processed CCN Suppress Stratus Cloud Drizzle

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Conversion of sulfur dioxide to sulfate within cloud droplets increases the sizes and decreases the critical supersaturation, Sc, of cloud residual particles that had nucleated the droplets. Since other particles remain at the same sizes and Sc a size and Sc gap is often observed. Hudson et al. (2015) showed higher cloud droplet concentrations (Nc) in stratus clouds associated with bimodal high-resolution CCN spectra from the DRI CCN spectrometer compared to clouds associated with unimodal CCN spectra (not cloud processed). Here we show that CCN spectral shape (bimodal or unimodal) affects all aspects of stratus cloud microphysics and drizzle. Panel A shows mean differential cloud droplet spectra that have been divided according to traditional slopes, k, of the 131 measured CCN spectra in the Marine Stratus/Stratocumulus Experiment (MASE) off the Central California coast. K is generally high within the supersaturation, S, range of stratus clouds (< 0.5%). Because cloud processing decreases Sc of some particles, it reduces k. Panel A shows higher concentrations of small cloud droplets apparently grown on lower k CCN than clouds grown on higher k CCN. At small droplet sizes the concentrations follow the k order of the legend, black, red, green, blue (lowest to highest k). Above 13 µm diameter the lines cross and the hierarchy reverses so that blue (highest k) has the highest concentrations followed by green, red and black (lowest k). This reversed hierarchy continues into the drizzle size range (panel B) where the most drizzle drops, Nd, are in clouds grown on the least cloud-processed CCN (blue), while clouds grown on the most processed CCN (black) have the lowest Nd. Suppression of stratus cloud drizzle by cloud processing is an additional 2nd indirect aerosol effect (IAE) that along with the enhancement of 1st IAE by higher Nc (panel A) are above and beyond original IAE. However, further similar analysis is needed in other cloud regimes to determine if MASE was

  9. The Galactic Center: A Petaelectronvolt Cosmic-ray Acceleration Factory

    Guo, Yi-Qing; Tian, Zhen; Wang, Zhen [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Li, Hai-Jin; Chen, Tian-Lu [Physics Department of the Science School, Tibet University, Lhasa 850000 (China)

    2017-02-20

    The multiteraelectronvolt γ -rays from the galactic center (GC) have a cutoff at tens of teraelectronvolts, whereas the diffuse emission has no such cutoff, which is regarded as an indication of petaelectronvolt proton acceleration by the HESS experiment. It is important to understand the inconsistency and study the possibility that petaelectronvolt cosmic-ray acceleration could account for the apparently contradictory point and diffuse γ -ray spectra. In this work, we propose that the cosmic rays are accelerated up to greater than petaelectronvolts in the GC. The interaction between cosmic rays and molecular clouds is responsible for the multiteraelectronvolt γ -ray emissions from both the point and diffuse sources today. Enhanced by the small volume filling factor (VFF) of the clumpy structure, the absorption of the γ -rays leads to a sharp cutoff spectrum at tens of teraelectronvolts produced in the GC. Away from the GC, the VFF grows, and the absorption enhancement becomes negligible. As a result, the spectra of γ -ray emissions for both point and diffuse sources can be successfully reproduced under such a self-consistent picture. In addition, a “surviving tail” at ∼100 TeV is expected from the point source, which can be observed by future projects CTA and LHAASO. Neutrinos are simultaneously produced during proton-proton (PP) collision. With 5–10 years of observations, the KM3Net experiment will be able to detect the petaelectronvolt source according to our calculation.

  10. Cosmic logic: a computational model

    Vanchurin, Vitaly

    2016-01-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps

  11. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  12. The Gas-Grain Chemistry of Galactic Translucent Clouds

    Maffucci, Dominique M.; Herbst, Eric

    2016-01-01

    We employ a combination of traditional and modified rate equation approaches to simulate the time-dependent gas-grain chemistry that pertains to molecular species observed in absorption in Galactic translucent clouds towards Sgr B2(N). We solve the kinetic rate laws over a range of relevant physical conditions (gas and grain temperatures, particle density, visual extinction, cosmic ray ionization rate) characteristic of translucent clouds by implementing a new grid module that allows for parallelization of the astrochemical simulations. Gas-phase and grain-surface synthetic pathways, chemical timescales, and associated physical sensitivities are discussed for selected classes of species including the cyanopolyynes, complex cyanides, and simple aldehydes.

  13. The cloud chamber. A wonderful instrument for discoveries

    Fadel, Kamil

    2012-01-01

    The author proposes an overview of the various applications and discoveries based on the use of the cloud chamber or Wilson chamber: blood flow rate measurements, investigation of alpha radiation (interaction of an alpha particle with gas atoms), investigation of beta radioactivity with the evidence of the existence of the neutrino, confirmation of a relativistic effect, discovery of the neutron in the 1930's, uranium fission, evidence of the cosmic origin of a ionizing radiation in the 1930's. The author briefly evokes the technological evolutions of these cloud chambers

  14. Cosmic Ray Energetics and Mass

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  15. Interpreting the cosmic ray composition

    O'C Drury, L.; Ellisson, D.C; Meyer, J.-P.

    2000-01-01

    The detailed pattern of elemental abundances in the Galactic Cosmic Rays is well determined at energies of a few GeV per nucleon. After correction for propagation effects the inferred source composition shows significant deviations from the standard pattern of Galactic elemental abundances. These deviations, surprisingly overabundances of the heavy elements relative to Hydrogen, are clearly a significant clue to the origin of the cosmic rays, but one which has proven very difficult to interpret. We have recently shown that the 'standard' model for the origin of the bulk of the Galactic cosmic rays, namely acceleration by the diffusive shock acceleration process at the strong shocks associated with supernova remnants, can quantitatively explain all features of the source composition if the acceleration occurs from a dusty interstellar medium. This success must be regarded as one of the stronger pieces of evidence in favour of the standard model

  16. Interpreting the cosmic ray composition

    O' C Drury, L.; Ellisson, D.C; Meyer, J.-P

    2000-01-31

    The detailed pattern of elemental abundances in the Galactic Cosmic Rays is well determined at energies of a few GeV per nucleon. After correction for propagation effects the inferred source composition shows significant deviations from the standard pattern of Galactic elemental abundances. These deviations, surprisingly overabundances of the heavy elements relative to Hydrogen, are clearly a significant clue to the origin of the cosmic rays, but one which has proven very difficult to interpret. We have recently shown that the 'standard' model for the origin of the bulk of the Galactic cosmic rays, namely acceleration by the diffusive shock acceleration process at the strong shocks associated with supernova remnants, can quantitatively explain all features of the source composition if the acceleration occurs from a dusty interstellar medium. This success must be regarded as one of the stronger pieces of evidence in favour of the standard model.

  17. High-energy cosmic rays

    Cronin, James Watson

    1996-01-01

    Recently two cosmic rays with energy in excess of 2 1020 eV have been recorded. These are some 108 times more energetic than the protons produced by accelerators on earth. There is no credible understanding of the mechanism of acceleration by known a Because of the short mean free path in the cosmic background radiation they must come from nearby distances on a cosmological scale (< 50 Mpc). Their magnetic rigidity suggests that they should point to their source. Lectures will cover the present available data on the highest energy cosmic rays, their detection, possible acceleration mechanisms, their propagation in the galaxy and in extra galactic space and design of new detectors where simulations of air show ers play an important role.

  18. Paradigm transition in cosmic plasma physics

    Alfven, H.

    1982-01-01

    In situ measurements in the magnetospheres together with general advancement in plasma physics are now necessitating introduction of a number of effects that have been recently discovered or earlier neglected. Examples are: electric double layers (like in the lower magnetosphere); thin current layer (like in the magnetopause) giving space a cellular structure; current produced filaments (e.g., in prominences, solar corona and interstellar clouds). Further it is important to use the electric current (particle) description and to study the whole circuit in which the current flows. The pinch effect cannot be neglected as is now usually done. The critical velocity phenomenon is essential, for example for the band structure of solar system. Theory of dusty plasmas is important. The result is a change in so many theories in cosmic plasma physics that it is appropriate to speak of an introduction of a new paradigm. This should be based on empirical knowledge from magnetospheric and laboratory investigations. Its application to astrophysics in general, including cosmology, will necessarily lead to a revision of, e.g., the present theories of the formation of stars, planets and satellites. It is doubtful whether the big bang cosmology will survive. (Auth.)

  19. Paradigm transition in cosmic plasma physics

    Alfven, H.

    1982-06-01

    In situ measurements in the magnetospheres together with general advancement in plasma physics are now necessitating introduction of a number of effects that have been recently discovered or earlier neglected. Examples are: 1) Electric double layers (like in the lower magnetosphere) 2) Thin current layer (like in the magnetopause) giving space a cellular structure. 3) Current produced filaments (e.g. in prominences, solar corona and interstellar clouds). 4) Further it is important to use the electric current (particle) description and to study the whole circuit in which the current flows. 5) The pinch effect cannot be neglected as is now usually done. 6) The critical velocity phenomenon is essential, for example for the band structure of solar systems. 7) Theory of dusty plasmas is important. The result is a change in so many theories in cosmic plasma physics that it is appropriate to speak of an introduction of a new paradigm. This should be based on empirical knowledge from magnetospheric and laboratory investigations. Its application to astrophysics in general, including cosmology, will necessarily lead to a revision of e.g. the present theories of the formation of stars, planets and satellites. It is doubtful whether the big bang cosmology will survive. (Author)

  20. Cloud CCN feedback

    Hudson, J.G.

    1992-01-01

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result

  1. Clouds and the Near-Earth Environment: Possible Links

    Condurache-Bota Simona

    2015-12-01

    Full Text Available Climate variability is a hot topic not only for scientists and policy-makers, but also for each and every one of us. The anthropogenic activities are considered to be responsible for most climate change, however there are large uncertainties about the magnitude of effects of solar variability and other extraterrestrial influences, such as galactic cosmic rays on terrestrial climate. Clouds play an important role due to feedbacks of the radiation budget: variation of cloud cover/composition affects climate, which, in turn, affects cloud cover via atmospheric dynamics and sea temperature variations. Cloud formation and evolution are still under scientific scrutiny, since their microphysics is still not understood. Besides atmospheric dynamics and other internal climatic parameters, extraterrestrial sources of cloud cover variation are considered. One of these is the solar wind, whose effect on cloud cover might be modulated by the global atmospheric electrical circuit. Clouds height and composition, their seasonal variation and latitudinal distribution should be considered when trying to identify possible mechanisms by which solar energy is transferred to clouds. The influence of the solar wind on cloud formation can be assessed also through the ap index - the geomagnetic storm index, which can be readily connected with interplanetary magnetic field, IMF structure. This paper proposes to assess the possible relationship between both cloud cover and solar wind proxies, as the ap index, function of cloud height and composition and also through seasonal studies. The data covers almost three solar cycles (1984-2009. Mechanisms are looked for by investigating observed trends or correlation at local/seasonal scale

  2. Cosmic Humanity: Utopia, Realities, Prospects

    Sergey Krichevsky

    2017-07-01

    Full Text Available The philosophical foundations of the theory and practice of the creation of cosmic humanity as a process of the evolution of human civilization, the emergence into space, with the prospect of resettlement outside the Earth are considered. There is a connection between myths, fantasies, ideas, concepts and projects aimed at the exploration of outer space, the creation of cosmic humanity. A new and voluminous definition of cosmic humanity in the evolutionary paradigm is given. Cosmic humanity is (essence and 4 stages of evolution: 1. Humanity living on Earth, sensing, knowing, understanding its cosmic origin, relationship with the cosmos and cosmic destiny. 2. Humanity living on Earth, leading aerospace activity for the purposes of exploration and use of aerospace space (Heaven, Space for survival and development. 3. Humanity living on Earth and outside the Earth — in the solar system, preserving the Earth and mastering the Cosmos for survival and development. 4. Humanity, settled and living in the Cosmos. Now humanity is in the process of transition from the second to the third stage. In the process of this evolution, a complex transformation of man and society takes place. The problem-semantic field of cosmic humanity is described and its general model is presented. The meta-goal-setting is the justification of cosmic humanity with the application of the anthropic principle and its “active” super (post anthropic supplement: “Cosmic humanity has an evolutionary purpose to actively manage evolution: change man, humanity and the universe.” The evolution of the “cosmic dream”, goals and technologies of space activities is formalized in the form of a conceptual model. Challenges and negative trends are considered in connection with the crisis of space activity, criticism and attempts to limit the flights of people into space. The prototype of cosmic humanity, its basis and acting model is the cosmonauts’ community. The main

  3. High-energy cosmic rays

    Gaisser, Thomas K. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)]. E-mail: gaisser@bartol.udel.edu; Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2006-10-17

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the knee above 10{sup 15} eV and the ankle above 10{sup 18} eV. An important question is whether the highest-energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  4. Dust in cosmic plasma environments

    Mendis, D.A.

    1979-01-01

    Cosmic dust is invariably immersed in a plasma and a radiative environment. Consequently, it is charged to some electrostatic potential which depends on the properties of the environment as well as the nature of the dust. This charging affects the physical and dynamical properties of the dust. In this paper the basic aspects of this dust-plasma interaction in several cosmic environments - including planetary magnetospheres, the heliosphere and the interstellar medium - are discussed. The physical and dynamical consequences of the interaction, as well as the pertinent observational evidence, are reviewed. Finally, the importance of the surface charge during the condensation process in plasma environments is stressed. (Auth.)

  5. Ultra high energy cosmic rays

    Watson, A.A.

    1986-01-01

    Cosmic radiation was discovered 70 years ago but its origin remains an open question. The background to this problem is outlined and attempts to discover the origin of the most energetic and rarest group above 10 15 eV are described. Measurements of the energy spectrum and arrival direction pattern of the very highest energy particles, mean energy about 6 x 10 19 eV, are used to argue that these particles originate outside our galaxy. Recent evidence from the new field of ultra high energy γ-ray astronomy are discussed in the context of a galactic origin hypothesis for lower energy cosmic rays. (author)

  6. Closing CMS to hunt cosmic rays

    Claudia Marcelloni

    2006-01-01

    Every second the Earth is bombarded by billions of cosmic rays and occasionally one of these cosmic particles will collide with the Earth's atmosphere generating a shower of particles known as an 'air shower'. This is similiar to the collisions and subsequent particle showers observed in accelerators such as the LHC. Here the CMS detector is closed so that systems can be tested using muon cosmic rays in the 'Cosmic Challenge'.

  7. TRAVEL AND HOME LEAVE

    Human Resources Division

    2002-01-01

    Administrative procedures for : Travel to the home station and home leave (hl) Additional travel to the home station (at) Travel to the home station and home leave for family reasons (hlf) As part of the process of simplifying administrative procedures, HR and AS Divisions have devised a new, virtually automatic procedure for payment of travel expenses to the home station. The changes are aimed at rationalising administrative procedures and not at reducing benefits. The conditions of eligibility are unchanged. The new procedure, which will be operational with effect from 1st June 2002, will greatly simplify the administrative processing of claims for travel expenses and the recording of home leaves. Currently, requests for payment are introduced manually into the Advances and Claims system (AVCL) by divisional secretariats. All travel to the home station starting prior to 1st June 2002 will be processed according to the existing system whereas that starting on 1st June and after will be processed accordi...

  8. Voids and the Cosmic Web: cosmic depression & spatial complexity

    van de Weygaert, Rien; Shandarin, S.; Saar, E.; Einasto, J.

    2016-01-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe

  9. Chandra Discovers Cosmic Cannonball

    2007-11-01

    One of the fastest moving stars ever seen has been discovered with NASA's Chandra X-ray Observatory. This cosmic cannonball is challenging theories to explain its blistering speed. Astronomers used Chandra to observe a neutron star, known as RX J0822-4300, over a period of about five years. During that span, three Chandra observations clearly show the neutron star moving away from the center of the Puppis A supernova remnant. This remnant is the stellar debris field created during the same explosion in which the neutron star was created about 3700 years ago. Chandra X-ray Image of RX J0822-4300 in Puppis A Chandra X-ray Image of RX J0822-4300 in Puppis A By combining how far it has moved across the sky with its distance from Earth, astronomers determined the neutron star is moving at over 3 million miles per hour. At this rate, RX J0822-4300 is destined to escape from the Milky Way after millions of years, even though it has only traveled about 20 light years so far. "This star is moving at 3 million miles an hour, but it's so far away that the apparent motion we see in five years is less than the height of the numerals in the date on a penny, seen from the length of a football field," said Frank Winkler of Middlebury College in Vermont. "It's remarkable, and a real testament to the power of Chandra, that such a tiny motion can be measured." Labeled Image of RX J0822-4300 in Puppis A Labeled Image of RX J0822-4300 in Puppis A "Just after it was born, this neutron star got a one-way ticket out of the Galaxy," said co-author Robert Petre of NASA's Goddard Space Flight Center in Greenbelt, Md. "Astronomers have seen other stars being flung out of the Milky Way, but few as fast as this." So-called hypervelocity stars have been previously discovered shooting out of the Milky Way with speeds around one million miles per hour. One key difference between RX J0822-4300 and these other reported galactic escapees is the source of their speed. The hypervelocity stars are

  10. Hybrid cloud for dummies

    Hurwitz, Judith; Halper, Fern; Kirsch, Dan

    2012-01-01

    Understand the cloud and implement a cloud strategy for your business Cloud computing enables companies to save money by leasing storage space and accessing technology services through the Internet instead of buying and maintaining equipment and support services. Because it has its own unique set of challenges, cloud computing requires careful explanation. This easy-to-follow guide shows IT managers and support staff just what cloud computing is, how to deliver and manage cloud computing services, how to choose a service provider, and how to go about implementation. It also covers security and

  11. Secure cloud computing

    Jajodia, Sushil; Samarati, Pierangela; Singhal, Anoop; Swarup, Vipin; Wang, Cliff

    2014-01-01

    This book presents a range of cloud computing security challenges and promising solution paths. The first two chapters focus on practical considerations of cloud computing. In Chapter 1, Chandramouli, Iorga, and Chokani describe the evolution of cloud computing and the current state of practice, followed by the challenges of cryptographic key management in the cloud. In Chapter 2, Chen and Sion present a dollar cost model of cloud computing and explore the economic viability of cloud computing with and without security mechanisms involving cryptographic mechanisms. The next two chapters addres

  12. Clouds of Venus

    Knollenberg, R G [Particle Measuring Systems, Inc., 1855 South 57th Court, Boulder, Colorado 80301, U.S.A.; Hansen, J [National Aeronautics and Space Administration, New York (USA). Goddard Inst. for Space Studies; Ragent, B [National Aeronautics and Space Administration, Moffett Field, Calif. (USA). Ames Research Center; Martonchik, J [Jet Propulsion Lab., Pasadena, Calif. (USA); Tomasko, M [Arizona Univ., Tucson (USA)

    1977-05-01

    The current state of knowledge of the Venusian clouds is reviewed. The visible clouds of Venus are shown to be quite similar to low level terrestrial hazes of strong anthropogenic influence. Possible nucleation and particle growth mechanisms are presented. The Pioneer Venus experiments that emphasize cloud measurements are described and their expected findings are discussed in detail. The results of these experiments should define the cloud particle composition, microphysics, thermal and radiative heat budget, rough dynamical features and horizontal and vertical variations in these and other parameters. This information should be sufficient to initialize cloud models which can be used to explain the cloud formation, decay, and particle life cycle.

  13. THE EFFECTS OF DARK MATTER ANNIHILATION ON COSMIC REIONIZATION

    Kaurov, Alexander A.; Hooper, Dan; Gnedin, Nickolay Y., E-mail: kaurov@uchicago.edu [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)

    2016-12-20

    We revisit the possibility of constraining the properties of dark matter (DM) by studying the epoch of cosmic reionization. Previous studies have shown that DM annihilation was unlikely to have provided a large fraction of the photons which ionized the universe, but instead played a subdominant role relative to stars and quasars. The DM might, however, have begun to efficiently annihilate with the formation of primordial microhalos at z  ∼ 100–200, much earlier than the formation of the first stars. Therefore, if DM annihilation ionized the universe at even the percent level over the interval z  ∼ 20–100, it could leave a significant imprint on the global optical depth, τ . Moreover, we show that cosmic microwave background polarization data and future 21 cm measurements will enable us to more directly probe the DM contribution to the optical depth. In order to compute the annihilation rate throughout the epoch of reionization, we adopt the latest results from structure formation studies and explore the impact of various free parameters on our results. We show that future measurements could make it possible to place constraints on the DM’s annihilation cross-sections, which are at a level comparable to those obtained from the observations of dwarf galaxies, cosmic-ray measurements, and studies of recombination.

  14. Radiative properties of clouds

    Twomey, S.

    1993-01-01

    The climatic effects of condensation nuclei in the formation of cloud droplets and the subsequent role of the cloud droplets as contributors to the planetary short-wave albedo is emphasized. Microphysical properties of clouds, which can be greatly modified by the degree of mixing with cloud-free air from outside, are discussed. The effect of clouds on visible radiation is assessed through multiple scattering of the radiation. Cloudwater or ice absorbs more with increasing wavelength in the near-infrared region, with water vapor providing the stronger absorption over narrower wavelength bands. Cloud thermal infrared absorption can be solely related to liquid water content at least for shallow clouds and clouds in the early development state. Three-dimensional general circulation models have been used to study the climatic effect of clouds. It was found for such studies (which did not consider variations in cloud albedo) that the cooling effects due to the increase in planetary short-wave albedo from clouds were offset by heating effects due to thermal infrared absorption by the cloud. Two permanent direct effects of increased pollution are discussed in this chapter: (a) an increase of absorption in the visible and near infrared because of increased amounts of elemental carbon, which gives rise to a warming effect climatically, and (b) an increased optical thickness of clouds due to increasing cloud droplet number concentration caused by increasing cloud condensation nuclei number concentration, which gives rise to a cooling effect climatically. An increase in cloud albedo from 0.7 to 0.87 produces an appreciable climatic perturbation of cooling up to 2.5 K at the ground, using a hemispheric general circulation model. Effects of pollution on cloud thermal infrared absorption are negligible

  15. Protostellar formation in rotating interstellar clouds. I. Numerical methods and tests

    Boss, A.P.

    1980-01-01

    The details of how dense interstellar clouds collapse to form protostars are obscured from observation by the very clouds in which the condensation takes place, leaving an observational gap between the clouds and pre--main-sequence (PMS) stars. There is also a gap of roughly four orders of magnitude between the specific spin angular momentum of such clouds and that of PMS stars. Thus in order to fully understand the sequence of events in stellar formation, we must construct theoretical models of the collapse and fragmentation of rotating interstellar clouds into single or multiple protostellar systems

  16. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free

  17. Art and the Cosmic Connection

    Cobb, Whitney H.; Aiello, Monica Petty; Macdonald, Reeves; Asplund, Shari

    2014-01-01

    The interdisciplinary unit described in this article utilizes "Art and the Cosmic Connection," a free program conceived of by artists Monica and Tyler Aiello and developed by the artists, scientists, and educators through NASA's Discovery and New Frontiers Programs, to inspire learners to explore mysterious worlds in our solar…

  18. Cosmic-ray sum rules

    Frandsen, Mads T.; Masina, Isabella; Sannino, Francesco

    2011-01-01

    We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays; we show how they can be used to predict the positron fraction at energies not yet explored by current experiments, and to constrain specific models.

  19. Davis Meeting on Cosmic Inflation

    Kaloper, N; Knox, L; Cosmic Inflation

    2003-01-01

    The Davis Meeting on Cosmic Inflation marked an exciting milestone on the road to precision cosmology. This is the index page for the proceedings of the conference. Individual proceedings contributions, when they appear on this archive, are linked from this page.

  20. Solar-cosmic-ray variability

    Reedy, R.C.

    1976-01-01

    The maximum flux of particles from solar events that should be considered in designing the shielding for a space habitation is discussed. The activities of various radionuclides measured in the top few centimeters of lunar rocks are used to examine the variability of solar cosmic ray fluxes over the last five million years. 10 references

  1. Delayed recombination and cosmic parameters

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  2. Cosmic Censorship for Gowdy Spacetimes.

    Ringström, Hans

    2010-01-01

    Due to the complexity of Einstein's equations, it is often natural to study a question of interest in the framework of a restricted class of solutions. One way to impose a restriction is to consider solutions satisfying a given symmetry condition. There are many possible choices, but the present article is concerned with one particular choice, which we shall refer to as Gowdy symmetry. We begin by explaining the origin and meaning of this symmetry type, which has been used as a simplifying assumption in various contexts, some of which we shall mention. Nevertheless, the subject of interest here is strong cosmic censorship. Consequently, after having described what the Gowdy class of spacetimes is, we describe, as seen from the perspective of a mathematician, what is meant by strong cosmic censorship. The existing results on cosmic censorship are based on a detailed analysis of the asymptotic behavior of solutions. This analysis is in part motivated by conjectures, such as the BKL conjecture, which we shall therefore briefly describe. However, the emphasis of the article is on the mathematical analysis of the asymptotics, due to its central importance in the proof and in the hope that it might be of relevance more generally. The article ends with a description of the results that have been obtained concerning strong cosmic censorship in the class of Gowdy spacetimes.

  3. Cosmic censorship and the dilaton

    Horne, J.H.; Horowitz, G.T.

    1993-01-01

    We investigate extremal electrically charged black holes in Einstein-Maxwell-dilaton theory with a cosmological constant inspired by string theory. These solutions are not static, and a timelike singularity eventually appears which is not surrounded by an event horizon. This suggests that cosmic censorship may be violated in this theory

  4. Cosmic censorship and test particles

    Needham, T.

    1980-01-01

    In this paper one unambiguous prediction of cosmic censorship is put to the test, namely that it should be impossible to destroy a black hole (i.e. eliminate its horizon) by injecting test particles into it. Several authors have treated this problem and have not found their conclusions in contradiction with the prediction. Here we prove that if a general charged spinning particle (with parameters very much smaller than the respective hole parameters) is injected in an arbitrary manner into an extreme Kerr-Newman black hole, then cosmic censorship is upheld. As a by-product of the analysis a natural proof is given of the Christodoulou-Ruffini conditions on the injection of a spinless particle which yield a reversible black-hole transformation. Finally we consider the injection of particles with parameters that are not small compared with those of the hole, for which cosmic censorship is apparently violated. By assuming the validity of cosmic censorship we are led to a few conjectures concerning the extent of the particle's interaction with the hole while approaching it

  5. Cosmology with the cosmic web

    Forero-Romero, J. E.

    2017-07-01

    This talk summarizes different algorithms that can be used to trace the cosmic web both in simulations and observations. We present different applications in galaxy formation and cosmology. To finalize, we show how the Dark Energy Spectroscopic Instrument (DESI) could be a good place to apply these techniques.

  6. Clusters and the Cosmic Web

    Weygaert, R. van de

    2006-01-01

    Abstract: We discuss the intimate relationship between the filamentary features and the rare dense compact cluster nodes in this network, via the large scale tidal field going along with them, following the cosmic web theory developed Bond et al. The Megaparsec scale tidal shear pattern is

  7. Does Leave Work?

    Heleen van Luijn; Saskia Keuzenkamp

    2004-01-01

    More and more people have to combine work and care responsibilities, and work part-time or use daycare and after-school care facilities to help them do so. The Work and Care Act, which came into force on 1 December 2001, combined all the existing schemes - such as parental and maternity leave -

  8. Maternity Leave in Taiwan

    Feng, Joyce Yen; Han, Wen-Jui

    2010-01-01

    Using the first nationally representative birth cohort study in Taiwan, this paper examines the role that maternity leave policy in Taiwan plays in the timing of mothers returning to work after giving birth, as well as the extent to which this timing is linked to the amount of time mothers spend with their children and their use of breast milk…

  9. REMINDER: Saved Leave Scheme (SLS)

    2003-01-01

    Transfer of leave to saved leave accounts Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'* annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No 22B) can be transferred to the saved leave account at the end of the leave year (30 September). We remind you that unused leave of all those taking part in the saved leave scheme at the closure of the leave year accounts is transferred automatically to the saved leave account on that date. Therefore, staff members have no administrative steps to take. In addition, the transfer, which eliminates the risk of omitting to request leave transfers and rules out calculation errors in transfer requests, will be clearly shown in the list of leave transactions that can be consulted in EDH from October 2003 onwards. Furthermore, this automatic leave transfer optimizes staff members' chances of benefiting from a saved leave bonus provided that they ar...

  10. Moving towards Cloud Security

    Edit Szilvia Rubóczki

    2015-01-01

    Full Text Available Cloud computing hosts and delivers many different services via Internet. There are a lot of reasons why people opt for using cloud resources. Cloud development is increasing fast while a lot of related services drop behind, for example the mass awareness of cloud security. However the new generation upload videos and pictures without reason to a cloud storage, but only few know about data privacy, data management and the proprietary of stored data in the cloud. In an enterprise environment the users have to know the rule of cloud usage, however they have little knowledge about traditional IT security. It is important to measure the level of their knowledge, and evolve the training system to develop the security awareness. The article proves the importance of suggesting new metrics and algorithms for measuring security awareness of corporate users and employees to include the requirements of emerging cloud security.

  11. Cloud Computing for radiologists.

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  12. Cloud Computing for radiologists

    Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future

  13. Cloud computing for radiologists

    Amit T Kharat

    2012-01-01

    Full Text Available Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  14. Marine cloud brightening

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identi...

  15. Cloud computing strategies

    Chorafas, Dimitris N

    2011-01-01

    A guide to managing cloud projects, Cloud Computing Strategies provides the understanding required to evaluate the technology and determine how it can be best applied to improve business and enhance your overall corporate strategy. Based on extensive research, it examines the opportunities and challenges that loom in the cloud. It explains exactly what cloud computing is, what it has to offer, and calls attention to the important issues management needs to consider before passing the point of no return regarding financial commitments.

  16. Towards Indonesian Cloud Campus

    Thamrin, Taqwan; Lukman, Iing; Wahyuningsih, Dina Ika

    2013-01-01

    Nowadays, Cloud Computing is most discussed term in business and academic environment.Cloud campus has many benefits such as accessing the file storages, e-mails, databases,educational resources, research applications and tools anywhere for faculty, administrators,staff, students and other users in university, on demand. Furthermore, cloud campus reduces universities’ IT complexity and cost.This paper discuss the implementation of Indonesian cloud campus and various opportunies and benefits...

  17. Cloud Infrastructure Security

    Velev , Dimiter; Zlateva , Plamena

    2010-01-01

    Part 4: Security for Clouds; International audience; Cloud computing can help companies accomplish more by eliminating the physical bonds between an IT infrastructure and its users. Users can purchase services from a cloud environment that could allow them to save money and focus on their core business. At the same time certain concerns have emerged as potential barriers to rapid adoption of cloud services such as security, privacy and reliability. Usually the information security professiona...

  18. Cloud services in organization

    FUXA, Jan

    2013-01-01

    The work deals with the definition of the word cloud computing, cloud computing models, types, advantages, disadvantages, and comparing SaaS solutions such as: Google Apps and Office 365 in the area of electronic communications. The work deals with the use of cloud computing in the corporate practice, both good and bad practice. The following section describes the methodology for choosing the appropriate cloud service organization. Another part deals with analyzing the possibilities of SaaS i...

  19. Orchestrating Your Cloud Orchestra

    Hindle, Abram

    2015-01-01

    Cloud computing potentially ushers in a new era of computer music performance with exceptionally large computer music instruments consisting of 10s to 100s of virtual machines which we propose to call a `cloud-orchestra'. Cloud computing allows for the rapid provisioning of resources, but to deploy such a complicated and interconnected network of software synthesizers in the cloud requires a lot of manual work, system administration knowledge, and developer/operator skills. This is a barrier ...

  20. Cloud security mechanisms

    2014-01-01

    Cloud computing has brought great benefits in cost and flexibility for provisioning services. The greatest challenge of cloud computing remains however the question of security. The current standard tools in access control mechanisms and cryptography can only partly solve the security challenges of cloud infrastructures. In the recent years of research in security and cryptography, novel mechanisms, protocols and algorithms have emerged that offer new ways to create secure services atop cloud...

  1. Cloud computing for radiologists

    Amit T Kharat; Amjad Safvi; S S Thind; Amarjit Singh

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as...

  2. Cloud Robotics Model

    Mester, Gyula

    2015-01-01

    Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen a...

  3. Genomics With Cloud Computing

    Sukhamrit Kaur; Sandeep Kaur

    2015-01-01

    Abstract Genomics is study of genome which provides large amount of data for which large storage and computation power is needed. These issues are solved by cloud computing that provides various cloud platforms for genomics. These platforms provides many services to user like easy access to data easy sharing and transfer providing storage in hundreds of terabytes more computational power. Some cloud platforms are Google genomics DNAnexus and Globus genomics. Various features of cloud computin...

  4. Chargeback for cloud services.

    Baars, T.; Khadka, R.; Stefanov, H.; Jansen, S.; Batenburg, R.; Heusden, E. van

    2014-01-01

    With pay-per-use pricing models, elastic scaling of resources, and the use of shared virtualized infrastructures, cloud computing offers more efficient use of capital and agility. To leverage the advantages of cloud computing, organizations have to introduce cloud-specific chargeback practices.

  5. On CLOUD nine

    2009-01-01

    The team from the CLOUD experiment - the world’s first experiment using a high-energy particle accelerator to study the climate - were on cloud nine after the arrival of their new three-metre diameter cloud chamber. This marks the end of three years’ R&D and design, and the start of preparations for data taking later this year.

  6. Cloud Computing Explained

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  7. Greening the Cloud

    van den Hoed, Robert; Hoekstra, Eric; Procaccianti, G.; Lago, P.; Grosso, Paola; Taal, Arie; Grosskop, Kay; van Bergen, Esther

    The cloud has become an essential part of our daily lives. We use it to store our documents (Dropbox), to stream our music and lms (Spotify and Net ix) and without giving it any thought, we use it to work on documents in the cloud (Google Docs). The cloud forms a massive storage and processing

  8. Security in the cloud.

    Degaspari, John

    2011-08-01

    As more provider organizations look to the cloud computing model, they face a host of security-related questions. What are the appropriate applications for the cloud, what is the best cloud model, and what do they need to know to choose the best vendor? Hospital CIOs and security experts weigh in.

  9. Astronomers Unveiling Life's Cosmic Origins

    2009-02-01

    Processes that laid the foundation for life on Earth -- star and planet formation and the production of complex organic molecules in interstellar space -- are yielding their secrets to astronomers armed with powerful new research tools, and even better tools soon will be available. Astronomers described three important developments at a symposium on the "Cosmic Cradle of Life" at the annual meeting of the American Association for the Advancement of Science in Chicago, IL. Chemistry Cycle The Cosmic Chemistry Cycle CREDIT: Bill Saxton, NRAO/AUI/NSF Full Size Image Files Chemical Cycle Graphic (above image, JPEG, 129K) Graphic With Text Blocks (JPEG, 165K) High-Res TIFF (44.2M) High-Res TIFF With Text Blocks (44.2M) In one development, a team of astrochemists released a major new resource for seeking complex interstellar molecules that are the precursors to life. The chemical data released by Anthony Remijan of the National Radio Astronomy Observatory (NRAO) and his university colleagues is part of the Prebiotic Interstellar Molecule Survey, or PRIMOS, a project studying a star-forming region near the center of our Milky Way Galaxy. PRIMOS is an effort of the National Science Foundation's Center for Chemistry of the Universe, started at the University of Virginia (UVa) in October 2008, and led by UVa Professor Brooks H. Pate. The data, produced by the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, came from more than 45 individual observations totalling more than nine GigaBytes of data and over 1.4 million individual frequency channels. Scientists can search the GBT data for specific radio frequencies, called spectral lines -- telltale "fingerprints" -- naturally emitted by molecules in interstellar space. "We've identified more than 720 spectral lines in this collection, and about 240 of those are from unknown molecules," Remijan said. He added, "We're making available to all scientists the best collection of data below 50 GHz ever produced for

  10. Supporting the scientific lifecycle through cloud services

    Gensch, S.; Klump, J. F.; Bertelmann, R.; Braune, C.

    2014-12-01

    Cloud computing has made resources and applications available for numerous use cases ranging from business processes in the private sector to scientific applications. Developers have created tools for data management, collaborative writing, social networking, data access and visualization, project management and many more; either for free or as paid premium services with additional or extended features. Scientists have begun to incorporate tools that fit their needs into their daily work. To satisfy specialized needs, some cloud applications specifically address the needs of scientists for sharing research data, literature search, laboratory documentation, or data visualization. Cloud services may vary in extent, user coverage, and inter-service integration and are also at risk of being abandonend or changed by the service providers making changes to their business model, or leaving the field entirely.Within the project Academic Enterprise Cloud we examine cloud based services that support the research lifecycle, using feature models to describe key properties in the areas of infrastructure and service provision, compliance to legal regulations, and data curation. Emphasis is put on the term Enterprise as to establish an academic cloud service provider infrastructure that satisfies demands of the research community through continious provision across the whole cloud stack. This could enable the research community to be independent from service providers regarding changes to terms of service and ensuring full control of its extent and usage. This shift towards a self-empowered scientific cloud provider infrastructure and its community raises implications about feasability of provision and overall costs. Legal aspects and licensing issues have to be considered, when moving data into cloud services, especially when personal data is involved.Educating researchers about cloud based tools is important to help in the transition towards effective and safe use. Scientists

  11. A fuzzy neural network model to forecast the percent cloud coverage and cloud top temperature maps

    Y. Tulunay

    2008-12-01

    Full Text Available Atmospheric processes are highly nonlinear. A small group at the METU in Ankara has been working on a fuzzy data driven generic model of nonlinear processes. The model developed is called the Middle East Technical University Fuzzy Neural Network Model (METU-FNN-M. The METU-FNN-M consists of a Fuzzy Inference System (METU-FIS, a data driven Neural Network module (METU-FNN of one hidden layer and several neurons, and a mapping module, which employs the Bezier Surface Mapping technique. In this paper, the percent cloud coverage (%CC and cloud top temperatures (CTT are forecast one month ahead of time at 96 grid locations. The probable influence of cosmic rays and sunspot numbers on cloudiness is considered by using the METU-FNN-M.

  12. How large is the cosmic dust flux into the Earth's atmosphere?

    Plane, John; Janches, Diego; Gomez-Martin, Juan Carlos; Bones, David; Diego Carrillo-Sanchez, Juan; James, Sandy; Nesvorny, David; Pokorny, Petr

    2016-07-01

    Cosmic dust particles are produced in the solar system from the sublimation of comets as they orbit close to the sun, and also from collisions between asteroids in the belt between Mars and Jupiter. Current estimates of the magnitude of the cosmic dust input rate into the Earth's atmosphere range from 2 to well over 100 tons per day, depending on whether the measurements are made in space, in the middle atmosphere, or at the surface in polar ice cores. This nearly 2 order-of-magnitude discrepancy indicates that there are serious flaws in the interpretation of observations that have been used to make the estimates. Dust particles enter the atmosphere at hyperthermal velocities (11 - 72 km s ^{-1}), and mostly ablate at heights between 80 and 120 km in a region of the atmosphere known as the mesosphere/lower thermosphere (MLT). The resulting metal vapours (Fe, Mg, Si and Na etc.) then oxidize and recondense to form nm-size particles, termed "meteoric smoke". These particles are too small to sediment downwards. Instead, they are transported by the general circulation of the atmosphere, taking roughly 5 years to reach the surface. There is great interest in the role smoke particles play as condensation nuclei of noctilucent ice clouds in the mesosphere, and polar stratospheric clouds in the lower stratosphere. Various new estimates of the dust input will be discussed. The first is from a zodiacal dust cloud model which predicts that more than 90% of the dust entering the atmosphere comes from Jupiter Family Comets; this model is constrained by observations of the zodiacal cloud using the IRAS, COBE and Planck satellites. The cometary dust is predicted to mostly be in a near-prograde orbit, entering the atmosphere with an average velocity around 14 km s ^{-1}. The total dust input should then be about 40 t d ^{-1}. However, relatively few of these particles are observed, even by the powerful Arecibo 430 MHz radar. Coupled models of meteoroid differential ablation

  13. CLOUD STORAGE SERVICES

    Yan, Cheng

    2017-01-01

    Cloud computing is a hot topic in recent research and applications. Because it is widely used in various fields. Up to now, Google, Microsoft, IBM, Amazon and other famous co partnership have proposed their cloud computing application. Look upon cloud computing as one of the most important strategy in the future. Cloud storage is the lower layer of cloud computing system which supports the service of the other layers above it. At the same time, it is an effective way to store and manage heavy...

  14. Cloud Computing Quality

    Anamaria Şiclovan

    2013-02-01

    Full Text Available Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered to the consumers as a product delivered online. This paper is meant to describe the quality of cloud computing services, analyzing the advantages and characteristics offered by it. It is a theoretical paper.Keywords: Cloud computing, QoS, quality of cloud computing

  15. Benchmarking Cloud Storage Systems

    Wang, Xing

    2014-01-01

    With the rise of cloud computing, many cloud storage systems like Dropbox, Google Drive and Mega have been built to provide decentralized and reliable file storage. It is thus of prime importance to know their features, performance, and the best way to make use of them. In this context, we introduce BenchCloud, a tool designed as part of this thesis to conveniently and efficiently benchmark any cloud storage system. First, we provide a study of six commonly-used cloud storage systems to ident...

  16. The Magellanic clouds

    1989-01-01

    As the two galaxies nearest to our own, the Magellanic Clouds hold a special place in studies of the extragalactic distance scale, of stellar evolution and the structure of galaxies. In recent years, results from the South African Astronomical Observatory (SAAO) and elsewhere have shown that it is possible to begin understanding the three dimensional structure of the Clouds. Studies of Magellanic Cloud Cepheids have continued, both to investigate the three-dimensional structure of the Clouds and to learn more about Cepheids and their use as extragalactic distance indicators. Other research undertaken at SAAO includes studies on Nova LMC 1988 no 2 and red variables in the Magellanic Clouds

  17. Cloud Computing Bible

    Sosinsky, Barrie

    2010-01-01

    The complete reference guide to the hot technology of cloud computingIts potential for lowering IT costs makes cloud computing a major force for both IT vendors and users; it is expected to gain momentum rapidly with the launch of Office Web Apps later this year. Because cloud computing involves various technologies, protocols, platforms, and infrastructure elements, this comprehensive reference is just what you need if you'll be using or implementing cloud computing.Cloud computing offers significant cost savings by eliminating upfront expenses for hardware and software; its growing popularit

  18. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-01-01

    For over 20 years, the term ‘cosmic web’ has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile ‘spiderwebs’ is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos. PMID:29765637

  19. Probing cosmic-ray acceleration and propagation with H{sub 3}{sup +} observations

    Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J. [3D University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-01-22

    As cosmic rays traverse the interstellar medium (ISM) they interact with the ambient gas in various ways. These include ionization of atoms and molecules, spallation of nuclei, excitation of nuclear states, and production of pions among others. All of these interactions produce potential observables which may be used to trace the flux of cosmic rays. One such observable is the molecular ion H{sub 3}{sup +}-produced via the ionization of an H{sub 2} molecule and its subsequent collision with another H{sub 2}-which can be identified by absorption lines in the 3.5-4 μm spectral region. We have detected H{sub 3}{sup +} in several Galactic diffuse cloud sight lines and used the derived column densities to infer ζ{sub 2}, the cosmic-ray ionization rate of H{sub 2}. Ionization rates determined in this way vary from about 7×10{sup −17} s{sup −1} to about 8×10{sup −16} s{sup −1}, and suggest the possibility of discrete sources producing high local fluxes of low-energy cosmic rays. Theoretical calculations of the ionization rate from postulated cosmic-ray spectra also support this possibility. Our recent observations of H{sub 3}{sup +} near the supernova remnant IC 443 (a likely site of cosmic-ray acceleration) point to even higher ionization rates, on the order of 10{sup −15} s{sup −1}. Together, all of these results can further our understanding of the cosmic-ray spectrum both near the acceleration source and in the general Galactic ISM.

  20. CLOUD COMPUTING SECURITY

    Ştefan IOVAN

    2016-05-01

    Full Text Available Cloud computing reprentes the software applications offered as a service online, but also the software and hardware components from the data center.In the case of wide offerd services for any type of client, we are dealing with a public cloud. In the other case, in wich a cloud is exclusively available for an organization and is not available to the open public, this is consider a private cloud [1]. There is also a third type, called hibrid in which case an user or an organization might use both services available in the public and private cloud. One of the main challenges of cloud computing are to build the trust and ofer information privacy in every aspect of service offerd by cloud computingle. The variety of existing standards, just like the lack of clarity in sustenability certificationis not a real help in building trust. Also appear some questions marks regarding the efficiency of traditionsecurity means that are applied in the cloud domain. Beside the economic and technology advantages offered by cloud, also are some advantages in security area if the information is migrated to cloud. Shared resources available in cloud includes the survey, use of the "best practices" and technology for advance security level, above all the solutions offered by the majority of medium and small businesses, big companies and even some guvermental organizations [2].

  1. Department of Cosmic Radiation Physics: Overview

    Gawin, J.

    1999-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We analysed nearly 100,000 events of energies above 10 15 eV registered by the Lodz hodoscope. We have developed the method of data analysis which allows us to verify different models of cosmic ray mass composition. In our research in high energy cosmic rays we also used experimental data from other collaborating experiments in Karlsruhe, Baksan and THEMISTOCLE. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Science, University of Perpignan and Uppsala University (Sweden). (author)

  2. Department of Cosmic Radiation Physics - Overview

    Gawin, J.

    1997-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of the asymptotic properties of hadronic interactions from the analysis of cosmic ray propagation in the atmosphere. -Studies of structure and properties of Extensive Air Showers induced by cosmic ray particles. -Search for point sources of high energy cosmic rays. -Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. -Studies of the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed employing results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register electromagnetic components of cosmic ray showers in the atmosphere as well as muons at two energy thresholds. Data collected by the Lodz array are also used to study mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. The Lodz group collaborates with foreign institutes and laboratories on construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de France, the Institute for Nuclear Studies of the Russian Academy of Sciences, the University of Durham, and the University of Perpignan. (author)

  3. Department of Cosmic Radiation Physics: Overview

    Gawin, J.

    1998-01-01

    (full text) The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. -Studies of the structure and properties of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range l0 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed based on the results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register the electromagnetic component of cosmic ray showers developing in the atmosphere as well as muons of two energy thresholds. Data collected by the Lodz array are also used to study the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de' France, the Institute for Nuclear Studies of the Russian Academy of Science, the University of Perpignan (France) and Uppsala University (Sweden). (author)

  4. Cosmic strings and black holes

    Aryal, M.; Ford, L.H.; Vilenkin, A.

    1986-01-01

    The metric for a Schwarzschild black hole with a cosmic string passing through it is discussed. The thermodynamics of such an object is considered, and it is shown that S = (1/4)A, where S is the entropy and A is the horizon area. It is noted that the Schwarzschild mass parameter M, which is the gravitational mass of the system, is no longer identical to its energy. A solution representing a pair of black holes held apart by strings is discussed. It is nearly identical to a static, axially symmetric solution given long ago by Bach and Weyl. It is shown how these solutions, which were formerly a mathematical curiosity, may be given a more physical interpretation in terms of cosmic strings

  5. Characterising CCDs with cosmic rays

    Fisher-Levine, M.; Nomerotski, A.

    2015-01-01

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors

  6. Vector superconductivity in cosmic strings

    Dvali, G.R.; Mahajan, S.M.

    1992-03-01

    We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs

  7. Evolution of the Cosmic Web

    Einasto, J.

    2017-07-01

    In the evolution of the cosmic web dark energy plays an important role. To understand the role of dark energy we investigate the evolution of superclusters in four cosmological models: standard model SCDM, conventional model LCDM, open model OCDM, and a hyper-dark-energy model HCDM. Numerical simulations of the evolution are performed in a box of size 1024 Mpc/h. Model superclusters are compared with superclusters found for Sloan Digital Sky Survey (SDSS). Superclusters are searched using density fields. LCDM superclusters have properties, very close to properties of observed SDSS superclusters. Standard model SCDM has about 2 times more superclusters than other models, but SCDM superclusters are smaller and have lower luminosities. Superclusters as principal structural elements of the cosmic web are present at all cosmological epochs.

  8. Galactic cosmic ray iron composition

    Scherzer, R.; Enge, W.; Beaujean, R.

    1980-11-01

    We have studied the isotopic compostition of galactic cosmic ray iron in the energy interval 500-750 MeV/nucleon with a visual track detector system consisting of nuclear emulsion and cellulose-nitrate platic. Stopping iron nuclei were identified from ionization - range measurements in the two detector parts. Cone lengths were measured in the plastic sheets and the residual ranges of the particles were measured in plastic and in emulsion. We have determined the mass of 17 iron nuclei with an uncertainty of about 0.3 amu. The isotopic composition at the detector level was found to be 52 Fe: 53 Fe: 54 Fe: 55 Fe: 56 Fe: 57 Fe: 58 Fe = 0:1: 4:3:8:1:0. These numbers are not in conflict with the assumption that the isotopic composition of cosmic ray iron at the source is similar to the solar system composition. (author)

  9. Racetrack inflation and cosmic strings

    Brax, P. [CEA-Saclay, Gif sur Yvette (France). CEA/DSM/SPhT, Unite de Recherche Associee au CNRS, Service de Physique Theorique; Bruck, C. van de [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics; Davis, A.C.; Davis, S.C. [Cambridge Univ. (United Kingdom). DAMTP, Centre for Mathematical Sciences; Jeannerot, R. [Instituut-Lorentz for Theoretical Physics, Leiden (Netherlands); Postma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)

    2008-05-15

    We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)

  10. Cosmic Visions Dark Energy: Technology

    Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, Katrin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hirata, Chris [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Roodman, Aaron [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seljak, Uroš [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Slosar, Anže [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Trodden, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-04-26

    A strong instrumentation and detector R&D program has enabled the current generation of cosmic frontier surveys. A small investment in R&D will continue to pay dividends and enable new probes to investigate the accelerated expansion of the universe. Instrumentation and detector R&D provide critical training opportunities for future generations of experimentalists, skills that are important across the entire Department of Energy High Energy Physics program.

  11. Cosmic microwave background theory

    Bond, J. Richard

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321

  12. Racetrack inflation and cosmic strings

    Brax, P.; Postma, M.

    2008-05-01

    We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)

  13. Cosmic Visions Dark Energy: Technology

    Dodelson, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Slosar, Anze [Brookhaven National Lab. (BNL), Upton, NY (United States); Heitmann, Katrin [Brookhaven National Lab. (BNL), Upton, NY (United States); Hirata, Chris [Brookhaven National Lab. (BNL), Upton, NY (United States); Honscheid, Klaus [Brookhaven National Lab. (BNL), Upton, NY (United States); Roodman, Aaron [Brookhaven National Lab. (BNL), Upton, NY (United States); Seljak, Uros [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-02

    A strong instrumentation and detector R&D program has enabled the current generation of cosmic frontier surveys. A small investment in R&D will continue to pay dividends and enable new probes to investigate the accelerated expansion of the universe. Instrumentation and detector R&D provide critical training opportunities for future generations of experimentalists, skills that are important across the entire DOE HEP program.

  14. Cosmic censorship in higher dimensions

    Goswami, Rituparno; Joshi, Pankaj S.

    2004-01-01

    We show that the naked singularities arising in dust collapse from smooth initial data (which include those discovered by Eardley and Smarr, Christodoulou, and Newman) are removed when we make a transition to higher dimensional spacetimes. Cosmic censorship is then restored for dust collapse, which will always produce a black hole as the collapse end state for dimensions D≥6, under conditions to be motivated physically such as the smoothness of initial data from which the collapse develops

  15. Diffuse Cosmic Infrared Background Radiation

    Dwek, Eli

    2002-01-01

    The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.

  16. Cosmic objects and elementary particles

    Rozental, I L [AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij

    1977-02-01

    Considered are the connections between the parameters of elementary particles (mass ''size'') and the characteristics of stars (the main sequence stars, white dwarf stars and pulsars). Presented is the elementary theory of black hole radiation in the framework of which all the regularities of the process are derived. The emphiric numerical sequence connecting nucleon mass and universe constants (G, h, c) with the masses of some cosmic objects is given.

  17. Employer Provisions for Parental Leave.

    Meisenheimer, Joseph R., II

    1989-01-01

    Slightly more than one-third of full-time employees in medium and large firms in private industry were covered by maternity- or paternity-leave policies; days off were usually leave without pay. (Author)

  18. Early reheating and cosmic strings

    Stebbins, A.J. III.

    1987-01-01

    In the first chapter, possible thermal histories of the universe during the epoch z = 10 - 100 are studied. Expression for the fractional ionization and electron temperature are given in the case of homogeneous heating as a function of the parameters of arbitrary ionizing sources. It is shown that present and future limits on spectral distortions to the microwave background radiation do not provide very restrictive constraints on possible thermal histories of the universe. Heating by cosmic rays and very massive stars is discussed. In the second chapter, accretion of matter onto the wakes left behind by horizon-size pieces of cosmic string is studied. It was found that in a universe containing cold dissipationless matter (CDM), accretion onto wakes produce a network of sheet-like regions with a nonlinear density enhancement. In the third chapter, a formalism is developed for calculating the microwave ansisotropy produced by cosmic string loops in Minkowski space. The final formalism involves doing a one-dimensional integral along the string for each point on the sky. Exact solutions have only been found for a circular loop seen face-on. The equations are integrated for one particular loop configuration at nine points in its evolution

  19. Elemental composition of cosmic ray

    Yanagida, Shohei

    1987-01-01

    The report first summarizes some data that have been obtained so far from observation of isotopes and elements in cosmic rays in the low energy region. Then, objectives of studies planned to be carried out with Astromag are outlined and the number of incident particles expected to be measured by baloon observation is estimated. Heavy elements with atomic numbers of greater than 30 are considered to be formed through neutron absorption reactions by the s- or r-process. Observations show that products of the r-process is abundant in cosmic ray sources. The escape length depends on energy. In relation to this, it has been reported that the ratios Ar-Fe and Ca-Fe increase above 200 GeV-n while such a tendency is not observed for K, Sc, Ti or V. Thus, no satisfactory models are available at present which can fully explain the changes in the escape length. The ratio 3 He- 4 He in the range of 5 - 10 GeV-n is inconsistent with the general theory that interprets the escape length of heavy elements. Some models, including the supermetallicity model and Wolf Rayet theory, have been proposed to explain unusual ratios of isotopes in cosmic rays, but more measurements are required to verify them. It is expected that Astromag can serve to make observations that can clarify these points. (Nogami, K.)

  20. Cosmic disposal of radioactive waste

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  1. The Cosmic Microwave Background Anisotropy

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  2. Searchable Encryption in Cloud Storage

    Ren-Junn Hwang; Chung-Chien Lu; Jain-Shing Wu

    2014-01-01

    Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying ...

  3. REMINDER Saved Leave Scheme (SLS) : Transfer of leave to saved leave accounts

    HR Division

    2002-01-01

    Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'*) annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No. 22B) can be transferred to the saved leave account at the end of the leave year (30 September). We remind you that, since last year, unused leave of all those taking part in the saved leave scheme at the closure of the leave-year accounts is transferred automatically to the saved leave account on that date. Therefore, staff members have no administrative steps to take. In addition, the transfer, which eliminates the risk of omitting to request leave transfers and rules out calculation errors in transfer requests, will be clearly shown in the list of leave transactions that can be consulted in EDH from October 2002 onwards. Furthermore, this automatic leave transfer optimizes staff members' chances of benefiting from a saved leave bonus provided that they are still participants in the schem...

  4. Saved Leave Scheme (SLS) : Simplified procedure for the transfer of leave to saved leave accounts

    HR Division

    2001-01-01

    As part of the process of streamlining procedures, the HR and AS Divisions have jointly developed a system whereby annual and compensatory leave will henceforth be automatically transferred1) to saved leave accounts. Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'2) annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No. 22 B) can be transferred to the saved leave account at the end of the leave year (30 September). Previously, every person taking part in the scheme has been individually issued with a form for the purposes of requesting the transfer of leave to the leave account and the transfer has then had to be done manually by HR Division. To streamline the procedure, unused leave of all those taking part in the saved leave scheme at the closure of of the leave-year accounts will henceforth be transferred automatically to the saved leave account on that date. This simplification is in the ...

  5. Enterprise Cloud Adoption - Cloud Maturity Assessment Model

    Conway, Gerry; Doherty, Eileen; Carcary, Marian; Crowley, Catherine

    2017-01-01

    The introduction and use of cloud computing by an organization has the promise of significant benefits that include reduced costs, improved services, and a pay-per-use model. Organizations that successfully harness these benefits will potentially have a distinct competitive edge, due to their increased agility and flexibility to rapidly respond to an ever changing and complex business environment. However, as cloud technology is a relatively new ph...

  6. INTERSTELLAR METASTABLE HELIUM ABSORPTION AS A PROBE OF THE COSMIC-RAY IONIZATION RATE

    Indriolo, Nick; McCall, Benjamin J.; Hobbs, L. M.; Hinkle, K. H.

    2009-01-01

    The ionization rate of interstellar material by cosmic rays has been a major source of controversy, with different estimates varying by three orders of magnitude. Observational constraints of this rate have all depended on analyzing the chemistry of various molecules that are produced following cosmic-ray ionization, and in many cases these analyses contain significant uncertainties. Even in the simplest case (H + 3 ), the derived ionization rate depends on an (uncertain) estimate of the absorption path length. In this paper, we examine the feasibility of inferring the cosmic-ray ionization rate using the 10830 A absorption line of metastable helium. Observations through the diffuse clouds toward HD 183143 are presented, but yield only an upper limit on the metastable helium column density. A thorough investigation of He + chemistry reveals that only a small fraction of He + will recombine into the triplet state and populate the metastable level. In addition, excitation to the triplet manifold of helium by secondary electrons must be accounted for as it is the dominant mechanism which produces He* in some environments. Incorporating these various formation and destruction pathways, we derive new equations for the steady state abundance of metastable helium. Using these equations in concert with our observations, we find ζ He -15 s -1 , an upper limit about 5 times larger than the ionization rate previously inferred for this sight line using H + 3 . While observations of interstellar He* are extremely difficult at present, and the background chemistry is not nearly as simple as previously thought, potential future observations of metastable helium would provide an independent check on the cosmic-ray ionization rate derived from H + 3 in diffuse molecular clouds, and, perhaps more importantly, allow the first direct measurements of the ionization rate in diffuse atomic clouds.

  7. Star clouds of Magellan

    Tucker, W.

    1981-01-01

    The Magellanic Clouds are two irregular galaxies belonging to the local group which the Milky Way belongs to. By studying the Clouds, astronomers hope to gain insight into the origin and composition of the Milky Way. The overall structure and dynamics of the Clouds are clearest when studied in radio region of the spectrum. One benefit of directly observing stellar luminosities in the Clouds has been the discovery of the period-luminosity relation. Also, the Clouds are a splendid laboratory for studying stellar evolution. It is believed that both Clouds may be in the very early stage in the development of a regular, symmetric galaxy. This raises a paradox because some of the stars in the star clusters of the Clouds are as old as the oldest stars in our galaxy. An explanation for this is given. The low velocity of the Clouds with respect to the center of the Milky Way shows they must be bound to it by gravity. Theories are given on how the Magellanic Clouds became associated with the galaxy. According to current ideas the Clouds orbits will decay and they will spiral into the Galaxy

  8. Cloud Computing Governance Lifecycle

    Soňa Karkošková

    2016-06-01

    Full Text Available Externally provisioned cloud services enable flexible and on-demand sourcing of IT resources. Cloud computing introduces new challenges such as need of business process redefinition, establishment of specialized governance and management, organizational structures and relationships with external providers and managing new types of risk arising from dependency on external providers. There is a general consensus that cloud computing in addition to challenges brings many benefits but it is unclear how to achieve them. Cloud computing governance helps to create business value through obtain benefits from use of cloud computing services while optimizing investment and risk. Challenge, which organizations are facing in relation to governing of cloud services, is how to design and implement cloud computing governance to gain expected benefits. This paper aims to provide guidance on implementation activities of proposed Cloud computing governance lifecycle from cloud consumer perspective. Proposed model is based on SOA Governance Framework and consists of lifecycle for implementation and continuous improvement of cloud computing governance model.

  9. Cloud services for the Fermilab scientific stakeholders

    Timm, S; Garzoglio, G; Mhashilkar, P

    2015-01-01

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. We present in detail the technological improvements that were used to make this work a reality. (paper)

  10. THE CALIFORNIA MOLECULAR CLOUD

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F.

    2009-01-01

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). Both a uniform foreground star density and measurements of the cloud's velocity field from CO observations indicate that this cloud is likely a coherent structure at a single distance. From comparison of foreground star counts with Galactic models, we derive a distance of 450 ± 23 pc to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of ∼ 10 5 M sun , rivaling the Orion (A) molecular cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion molecular cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps of both clouds shows that the new cloud contains only 10% the amount of high extinction (A K > 1.0 mag) material as is found in the OMC. This, in turn, suggests that the level of star formation activity and perhaps the star formation rate in these two clouds may be directly proportional to the total amount of high extinction material and presumably high density gas within them and that there might be a density threshold for star formation on the order of n(H 2 ) ∼ a few x 10 4 cm -3 .

  11. Cosmic ray physics goes to school

    2002-01-01

    With the help of a CERN physicist, German Schools bring the Largest Cosmic Ray Detector in Europe one step closer to reality   Eric Berthier and Robert Porret (CERN, ST/HM), Frej Torp and Christian Antfolk from the Polytechnics Arcada in Finland, and Karsten Eggert, physicist at CERN who initiated this project, during the installation of cosmic ray detectors in the Pays de Gex, at point 4. Niina Patrikainen and Frej Torp, Finnish students from Rovaniemi and Arcada Polytechnics, installing cosmic ray counters at the Fachhochschule in Duesseldorf. The science of cosmic ray detection is growing, literally. Cosmic rays, energetic particles from space, strike our planet all the time. They collide with the air molecules in our upper atmosphere and initiate large showers of elementary particles (mainly electrons, photons, hadrons and muons) which rain down upon the earth. The shower size and the particle density in the showers reflect the initial energy of the cosmic ray particle, a detail which makes d...

  12. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  13. Fast "swarm of detectors" and their application in cosmic rays

    Shoziyoev, G. P.; Shoziyoev, Sh. P.

    2017-06-01

    New opportunities in science appeared with the latest technology of the 21st century. This paper points to creating a new architecture for detection systems of different characteristics in astrophysics and geophysics using the latest technologies related to multicopter cluster systems, alternative energy sources, cluster technologies, cloud computing and big data. The idea of a quick-deployable scaleable dynamic system of a controlled drone with a small set of different detectors for detecting various components of extensive air showers in cosmic rays and in geophysics is very attractive. Development of this type of new system also allows to give a multiplier effect for the development of various sciences and research methods to observe natural phenomena.

  14. A Tale of cosmic rays narrated in γ rays by Fermi

    Tibaldo, Luigi

    2014-01-01

    Because cosmic rays are charged particles scrambled by magnetic fields, combining direct measurements with other observations is crucial to understanding their origin and propagation. As energetic particles traverse matter and electromagnetic fields, they leave marks in the form of neutral interaction products. Among those, γ rays trace interactions of nuclei that inelastically collide with interstellar gas, as well as of leptons that undergo Bremsstrahlung and inverse-Compton scattering. Data collected by the Fermi large area telescope (LAT) are therefore telling the story of cosmic rays along their journey from sources through their home galaxies. Supernova remnants emerge as a notable γ -ray source population, and older remnants interacting with interstellar matter finally show strong evidence of the presence of accelerated nuclei. Yet the maximum energy attained by shock accelerators is poorly constrained by observations. Cygnus X, a massive star-forming region established by the LAT as housing cosmic-ray sources, provides a test case to study the impact of wind-driven turbulence on the early propagation. Interstellar emission resulting from the large-scale propagation of cosmic rays in the Milky Way is revealed in unprecedented detail that challenges some of the simple assumptions used for the modeling. Moreover, the cosmic-ray induced γ -ray luminosities of galaxies-scale quasi-linearly with their massive-star formation rates: the overall normalization of that relation below the calorimetric limit suggests that for most systems, a substantial fraction of energy in cosmic rays escapes into the intergalactic medium. The nuclear production models and the distribution of target gas and radiation fields, not determined precisely enough yet, are key to exploiting the full potential of γ - ray data. Nevertheless, data being collected by Fermi and complementary multiwavelength/multi messenger observations are bringing ever closer to solving the cosmic-ray mystery

  15. A Tale of cosmic rays narrated in γ rays by Fermi

    Tibaldo, Luigi, E-mail: ltibaldo@slac.stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park (United States)

    2014-07-01

    Because cosmic rays are charged particles scrambled by magnetic fields, combining direct measurements with other observations is crucial to understanding their origin and propagation. As energetic particles traverse matter and electromagnetic fields, they leave marks in the form of neutral interaction products. Among those, γ rays trace interactions of nuclei that inelastically collide with interstellar gas, as well as of leptons that undergo Bremsstrahlung and inverse-Compton scattering. Data collected by the Fermi large area telescope (LAT) are therefore telling the story of cosmic rays along their journey from sources through their home galaxies. Supernova remnants emerge as a notable γ -ray source population, and older remnants interacting with interstellar matter finally show strong evidence of the presence of accelerated nuclei. Yet the maximum energy attained by shock accelerators is poorly constrained by observations. Cygnus X, a massive star-forming region established by the LAT as housing cosmic-ray sources, provides a test case to study the impact of wind-driven turbulence on the early propagation. Interstellar emission resulting from the large-scale propagation of cosmic rays in the Milky Way is revealed in unprecedented detail that challenges some of the simple assumptions used for the modeling. Moreover, the cosmic-ray induced γ -ray luminosities of galaxies-scale quasi-linearly with their massive-star formation rates: the overall normalization of that relation below the calorimetric limit suggests that for most systems, a substantial fraction of energy in cosmic rays escapes into the intergalactic medium. The nuclear production models and the distribution of target gas and radiation fields, not determined precisely enough yet, are key to exploiting the full potential of γ - ray data. Nevertheless, data being collected by Fermi and complementary multiwavelength/multi messenger observations are bringing ever closer to solving the cosmic-ray mystery

  16. Solar flares and the cosmic ray intensity

    Hatton, C.J.

    1980-01-01

    The relationship between the cosmic ray intensity and solar activity during solar cycle 20 is discussed. A model is developed whereby it is possible to simulate the observed cosmic ray intensity from the observed number of solar flares of importance >= 1. This model leads to a radius for the modulation region of 60-70 AU. It is suggested that high speed solar streams also made a small contribution to the modulation of cosmic rays during solar cycle 20. (orig.)

  17. Parental leave and child health.

    Ruhm, C J

    2000-11-01

    This study investigates whether rights to parental leave improve pediatric health. Aggregate data are used for 16 European countries over the 1969 through 1994 period. More generous paid leave is found to reduce deaths of infants and young children. The magnitudes of the estimated effects are substantial, especially where a causal effect of leave is most plausible. In particular, there is a much stronger negative relationship between leave durations and post-neonatal or child fatalities than for perinatal mortality, neonatal deaths, or low birth weight. The evidence further suggests that parental leave may be a cost-effective method of bettering child health.

  18. Cosmic-ray-veto detector system

    Miller, D.W.; Menlove, H.O.

    1992-12-01

    To reduce the cosmic-ray-induced neutron background, we are testing a cosmic-ray veto option with a neutron detector system that uses plastic scintillator slabs mounted on the outside of a 3 He-tube detector. The scintillator slabs eliminate unwanted cosmic-ray events, enabling the detector to assay low-level plutonium samples, for which a low-background coincident signature is critical. This report describes the design and testing of the prototype cosmic-ray-veto detector system

  19. Department of Cosmic Radiation Physics: Overview

    Szabelski, J.

    2000-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. -Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for high-energy cosmic ray point sources. - Studies of cosmic ray propagation in the Galaxy and particle acceleration mechanisms. -Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mainly on the basis of the results obtained by the Lodz Extensive Air Shower Array. We have analysed nearly 100,000 events of energies above 10 15 eV registered in the Lodz hodoscope. We have developed a method to verify different models of cosmic ray mass composition. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). (author)

  20. Cosmic radiation exposure to airline flight passenger

    Momose, Mitsuhiro

    2000-01-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  1. Cosmic radiation exposure to airline flight passenger

    Momose, Mitsuhiro [Shinshu Univ., Matsumoto, Nagano (Japan). School of Medicine

    2000-08-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  2. Expansion of magnetic clouds

    Suess, S.T.

    1987-01-01

    Magnetic clouds are a carefully defined subclass of all interplanetary signatures of coronal mass ejections whose geometry is thought to be that of a cylinder embedded in a plane. It has been found that the total magnetic pressure inside the clouds is higher than the ion pressure outside, and that the clouds are expanding at 1 AU at about half the local Alfven speed. The geometry of the clouds is such that even though the magnetic pressure inside is larger than the total pressure outside, expansion will not occur because the pressure is balanced by magnetic tension - the pinch effect. The evidence for expansion of clouds at 1 AU is nevertheless quite strong so another reason for its existence must be found. It is demonstrated that the observations can be reproduced by taking into account the effects of geometrical distortion of the low plasma beta clouds as they move away from the Sun

  3. Encyclopedia of cloud computing

    Bojanova, Irena

    2016-01-01

    The Encyclopedia of Cloud Computing provides IT professionals, educators, researchers and students with a compendium of cloud computing knowledge. Authored by a spectrum of subject matter experts in industry and academia, this unique publication, in a single volume, covers a wide range of cloud computing topics, including technological trends and developments, research opportunities, best practices, standards, and cloud adoption. Providing multiple perspectives, it also addresses questions that stakeholders might have in the context of development, operation, management, and use of clouds. Furthermore, it examines cloud computing's impact now and in the future. The encyclopedia presents 56 chapters logically organized into 10 sections. Each chapter covers a major topic/area with cross-references to other chapters and contains tables, illustrations, side-bars as appropriate. Furthermore, each chapter presents its summary at the beginning and backend material, references and additional resources for further i...

  4. Cosmic ray diffusion: report of the workshop in cosmic ray diffusion theory

    Birmingham, T.J.; Jones, F.C.

    1975-02-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory. (auth)

  5. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  6. The prevalence of sick leave

    Backhausen, Mette; Damm, Peter; Bendix, Jane

    2018-01-01

    of long-term sick leave. Method Data from 508 employed pregnant women seeking antenatal care was collected by questionnaires from August 2015 to March 2016. The questionnaires, which were filled in at 20 and 32 weeks of gestation, provided information on maternal characteristics, the number of days spent...... on sick leave and the associated reasons. Descriptive statistics and logistic regression analysis were applied. Results The prevalence of sick leave was 56% of employed pregnant women in the first 32 weeks of gestation and more than one in four reported long-term sick leave (>20 days, continuous...... was a negative predictor. Conclusions The prevalence of sick leave was 56% in the first 32 weeks of gestation and more than one in four women reported long-term sick leave. The majority of reasons for sick leave were pregnancy-related and low back pain was the most frequently given reason....

  7. Considerations for Cloud Security Operations

    Cusick, James

    2016-01-01

    Information Security in Cloud Computing environments is explored. Cloud Computing is presented, security needs are discussed, and mitigation approaches are listed. Topics covered include Information Security, Cloud Computing, Private Cloud, Public Cloud, SaaS, PaaS, IaaS, ISO 27001, OWASP, Secure SDLC.

  8. Evaluating statistical cloud schemes

    Grützun, Verena; Quaas, Johannes; Morcrette , Cyril J.; Ament, Felix

    2015-01-01

    Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based re...

  9. Cloud Computing Governance Lifecycle

    Soňa Karkošková; George Feuerlicht

    2016-01-01

    Externally provisioned cloud services enable flexible and on-demand sourcing of IT resources. Cloud computing introduces new challenges such as need of business process redefinition, establishment of specialized governance and management, organizational structures and relationships with external providers and managing new types of risk arising from dependency on external providers. There is a general consensus that cloud computing in addition to challenges brings many benefits but it is uncle...

  10. Security in cloud computing

    Moreno Martín, Oriol

    2016-01-01

    Security in Cloud Computing is becoming a challenge for next generation Data Centers. This project will focus on investigating new security strategies for Cloud Computing systems. Cloud Computingisarecent paradigmto deliver services over Internet. Businesses grow drastically because of it. Researchers focus their work on it. The rapid access to exible and low cost IT resources on an on-demand fashion, allows the users to avoid planning ahead for provisioning, and enterprises to save money ...

  11. CLOUD TECHNOLOGY IN EDUCATION

    Alexander N. Dukkardt

    2014-01-01

    Full Text Available This article is devoted to the review of main features of cloud computing that can be used in education. Particular attention is paid to those learning and supportive tasks, that can be greatly improved in the case of the using of cloud services. Several ways to implement this approach are proposed, based on widely accepted models of providing cloud services. Nevertheless, the authors have not ignored currently existing problems of cloud technologies , identifying the most dangerous risks and their impact on the core business processes of the university. 

  12. Cloud Computing: An Overview

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  13. Genomics With Cloud Computing

    Sukhamrit Kaur

    2015-04-01

    Full Text Available Abstract Genomics is study of genome which provides large amount of data for which large storage and computation power is needed. These issues are solved by cloud computing that provides various cloud platforms for genomics. These platforms provides many services to user like easy access to data easy sharing and transfer providing storage in hundreds of terabytes more computational power. Some cloud platforms are Google genomics DNAnexus and Globus genomics. Various features of cloud computing to genomics are like easy access and sharing of data security of data less cost to pay for resources but still there are some demerits like large time needed to transfer data less network bandwidth.

  14. The global atmospheric electric circuit and its effects on cloud microphysics

    Tinsley, B A

    2008-01-01

    This review is an overview of progress in understanding the theory and observation of the global atmospheric electric circuit, with the focus on its dc aspects, and its short and long term variability. The effects of the downward ionosphere-earth current density, J z , on cloud microphysics, with its variability as an explanation for small observed changes in weather and climate, will also be reviewed. The global circuit shows responses to external as well as internal forcing. External forcing arises from changes in the distribution of conductivity due to changes in the cosmic ray flux and other energetic space particle fluxes, and at high magnetic latitudes from solar wind electric fields. Internal forcing arises from changes in the generators and changes in volcanic and anthropogenic aerosols in the troposphere and stratosphere. All these result in spatial and temporal variation in J z . Variations in J z affect the production of space charge in layer clouds, with the charges being transferred to droplets and aerosol particles. New observations and new analyses are consistent with non-negligible effects of the charges on the microphysics of such clouds. Observed effects are small, but of high statistical significance for cloud cover and precipitation changes, with resulting atmospheric temperature, pressure and dynamics changes. These effects are detectable on the day-to-day timescale for repeated J z changes of order 10%, and are thus second order electrical effects. The implicit first order effects have not, as yet, been incorporated into basic cloud and aerosol physics. Long term (multidecadal through millennial) global circuit changes, due to solar activity modulating the galactic cosmic ray flux, are an order of magnitude greater at high latitudes and in the stratosphere, as can be inferred from geological cosmogenic isotope records. Proxies for climate change in the same stratified depositories show strong correlations of climate with the inferred global

  15. The global atmospheric electric circuit and its effects on cloud microphysics

    Tinsley, B A [Physics Department and Center for Space Sciences, WT15, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX, 75080-3021 (United States)], E-mail: Tinsley@UTDallas.edu

    2008-06-15

    This review is an overview of progress in understanding the theory and observation of the global atmospheric electric circuit, with the focus on its dc aspects, and its short and long term variability. The effects of the downward ionosphere-earth current density, J{sub z}, on cloud microphysics, with its variability as an explanation for small observed changes in weather and climate, will also be reviewed. The global circuit shows responses to external as well as internal forcing. External forcing arises from changes in the distribution of conductivity due to changes in the cosmic ray flux and other energetic space particle fluxes, and at high magnetic latitudes from solar wind electric fields. Internal forcing arises from changes in the generators and changes in volcanic and anthropogenic aerosols in the troposphere and stratosphere. All these result in spatial and temporal variation in J{sub z}. Variations in J{sub z} affect the production of space charge in layer clouds, with the charges being transferred to droplets and aerosol particles. New observations and new analyses are consistent with non-negligible effects of the charges on the microphysics of such clouds. Observed effects are small, but of high statistical significance for cloud cover and precipitation changes, with resulting atmospheric temperature, pressure and dynamics changes. These effects are detectable on the day-to-day timescale for repeated J{sub z} changes of order 10%, and are thus second order electrical effects. The implicit first order effects have not, as yet, been incorporated into basic cloud and aerosol physics. Long term (multidecadal through millennial) global circuit changes, due to solar activity modulating the galactic cosmic ray flux, are an order of magnitude greater at high latitudes and in the stratosphere, as can be inferred from geological cosmogenic isotope records. Proxies for climate change in the same stratified depositories show strong correlations of climate with the

  16. Void hierarchy and cosmic structure

    Weygaert, Rien van de; Ravi Sheth

    2004-01-01

    Within the context of hierarchical scenarios of gravitational structure formation we describe how an evolving hierarchy of voids evolves on the basis of two processes, the void-in-void process and the void-in-cloud process. The related analytical formulation in terms of a two-barrier excursion problem leads to a self-similarly evolving peaked void size distribution

  17. Paid Family Leave, Fathers' Leave-Taking, and Leave-Sharing in Dual-Earner Households

    Bartel, Ann P.; Rossin-Slater, Maya; Ruhm, Christopher J.; Stearns, Jenna; Waldfogel, Jane

    2015-01-01

    This paper provides quasi-experimental evidence on the impact of paid leave legislation on fathers' leave-taking, as well as on the division of leave between mothers and fathers in dual-earner households. Using difference-in-difference and difference-in-difference-in-difference designs, we study California's Paid Family Leave (CA-PFL) program, which is the first source of government-provided paid parental leave available to fathers in the United States. Our results show that fathers in Califo...

  18. Review of Cloud Computing and existing Frameworks for Cloud adoption

    Chang, Victor; Walters, Robert John; Wills, Gary

    2014-01-01

    This paper presents a selected review for Cloud Computing and explains the benefits and risks of adopting Cloud Computing in a business environment. Although all the risks identified may be associated with two major Cloud adoption challenges, a framework is required to support organisations as they begin to use Cloud and minimise risks of Cloud adoption. Eleven Cloud Computing frameworks are investigated and a comparison of their strengths and limitations is made; the result of the comparison...

  19. +Cloud: An Agent-Based Cloud Computing Platform

    González, Roberto; Hernández de la Iglesia, Daniel; de la Prieta Pintado, Fernando; Gil González, Ana Belén

    2017-01-01

    Cloud computing is revolutionizing the services provided through the Internet, and is continually adapting itself in order to maintain the quality of its services. This study presents the platform +Cloud, which proposes a cloud environment for storing information and files by following the cloud paradigm. This study also presents Warehouse 3.0, a cloud-based application that has been developed to validate the services provided by +Cloud.

  20. Observational probes of cosmic acceleration

    Weinberg, David H.; Mortonson, Michael J.; Eisenstein, Daniel J.; Hirata, Christopher; Riess, Adam G.; Rozo, Eduardo

    2013-01-01

    The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of “dark energy” with exotic physical properties, or that Einstein’s theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious efforts to understand its origin, with experiments that aim to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and the abundance of galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit “Stage IV” dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock–Paczynski effect, and direct measurements of the Hubble constant H 0 . We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from General Relativity, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and cosmic microwave background data. We also show the level of precision required for clusters or other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets that support a wide range of scientific investigations, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over ever

  1. Observational probes of cosmic acceleration

    Weinberg, David H., E-mail: dhw@astronomy.ohio-state.edu [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH (United States); Mortonson, Michael J. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH (United States); Eisenstein, Daniel J. [Steward Observatory, University of Arizona, Tucson, AZ (United States); Harvard College Observatory, Cambridge, MA (United States); Hirata, Christopher [California Institute of Technology, Pasadena, CA (United States); Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD (United States); Rozo, Eduardo [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL (United States)

    2013-09-10

    The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of “dark energy” with exotic physical properties, or that Einstein’s theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious efforts to understand its origin, with experiments that aim to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and the abundance of galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit “Stage IV” dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock–Paczynski effect, and direct measurements of the Hubble constant H{sub 0}. We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from General Relativity, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and cosmic microwave background data. We also show the level of precision required for clusters or other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets that support a wide range of scientific investigations, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over

  2. About cosmic gamma ray lines

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  3. A cosmic hall of mirrors

    Luminet, J.-P. [Departement Univers et Theories, Observatoire de Paris, Meudon (France)]. E-mail: jean-pierre.luminet@obspm.fr

    2005-09-01

    Most astronomers think that the universe is infinite, but recent measurements suggest that it could be finite and relatively small. Indeed, as Jean-Pierre Luminet describes, we could be living in an exotic universe shaped rather like a football. Surprisingly, the latest astronomical data suggest that the universe is finite and expanding but it does not have an edge or boundary. In particular, accurate maps of the cosmic microwave background - the radiation left over from the Big Bang - suggest that we live in a finite universe that is shaped like a football or dodecahedron, and which resembles a video game in certain respects. (U.K.)

  4. Cosmic polarimetry in magnetoactive plasmas

    Giovannini, Massimo

    2009-01-01

    Polarimetry of the Cosmic Microwave Background (CMB) represents one of the possible diagnostics aimed at testing large-scale magnetism at the epoch of the photon decoupling. The propagation of electromagnetic disturbances in a magnetized plasma leads naturally to a B-mode polarization whose angular power spectrum is hereby computed both analytically and numerically. Combined analyses of all the publicly available data on the B-mode polarization are presented, for the first time, in the light of the magnetized $\\Lambda$CDM scenario. Novel constraints on pre-equality magnetism are also derived in view of the current and expected sensitivities to the B-mode polarization.

  5. International Conference on Cosmic Rays

    W.O. LOCK

    1964-01-01

    Towards the end of last year the 8th International conference on cosmic rays, held under the auspices of the International Union of Pure and Applied Physics (I.U.P.A.P.) and the Department of Atomic Energy of the Government of India, was held at Jaipur, India. Among the participants was W.O. Lock, head of CERN's Emulsion Group, who gave an invited talk on recent work in the field of what is normally known as high-energy physics — though in the context of this conference such energies seem quite low. In this article, Dr. Lock gives a general review of the conference and of the subjects discussed.

  6. Ground level cosmic ray observations

    Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements); Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Piccardi, S. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Hof, M. [Siegen Univ. (Germany). Fachbereich Physik

    1995-09-01

    Cosmic rays at ground level have been collected using the NMSU/Wizard - MASS2 instrument. The 17-hr observation run was made on September 9. 1991 in Fort Sumner, New Mexico, Usa. Fort Sumner is located at 1270 meters a.s.l., corresponding to an atmospheric depth of about 887 g/cm{sup 2}. The geomagnetic cutoff is 4.5 GV/c. The charge ratio of positive and negative muons and the proton to muon ratio have been determined. These observations will also be compared with data collected at a higher latitude using the same basic apparatus.

  7. Traces of a cosmic catastrophe

    Chuianov, V. A.

    1982-03-01

    It is suggested that the ecological crisis which led to the extinction of many animal species approximately 65-million years ago may have been caused by a cosmic phenomenon, the fall of a giant meteorite (approximately 10 km in diameter). The fall of such a meteorite would have released a vast amount of dust into the atmosphere, leading to radical climatic changes and the extinction of the aforementioned species. The so-called iridium anomaly is cited as possible evidence of such an event.

  8. High energy cosmic ray astronomy

    Fonseca, V.

    1996-01-01

    A brief introduction to High Energy Cosmic Ray Astronomy is presented. This field covers a 17 decade energy range (2.10 4 -10 20 ) eV. Recent discoveries done with gamma-ray detectors on-board satellites and ground-based Cherenkov devices are pushing for a fast development of new and innovative techniques, specially in the low energy region which includes the overlapping of satellite and ground-based measurements in the yet unexplored energy range 20 keV-250 GeV. Detection of unexpected extremely high energy events have triggered the interest of the international scientific community. (orig.)

  9. Hydrodynamic constants from cosmic censorship

    Nakamura, Shin

    2008-01-01

    We study a gravity dual of Bjorken flow of N=4 SYM-theory plasma. We point out that the cosmic censorship hypothesis may explain why the regularity of the dual geometry constrains the hydrodynamic constants. We also investigate the apparent horizon of the dual geometry. We find that the dual geometry constructed on Fefferman-Graham (FG) coordinates is not appropriate for examination of the apparent horizon since the coordinates do not cover the trapped region. However, the preliminary analysis on FG coordinates suggests that the location of the apparent horizon is very sensitive to the hydrodynamic parameters. (author)

  10. Paid Family Leave, Fathers' Leave-Taking, and Leave-Sharing in Dual-Earner Households.

    Bartel, Anne P; Rossin-Slater, Maya; Ruhm, Christopher J; Stearns, Jenna; Waldfogel, Jane

    Using difference-in-difference and difference-in-difference-in-difference designs, we study California's Paid Family Leave (CA-PFL) program, the first source of government-provided paid parental leave available to fathers in the Unites States. Relative to the pre-treatment mean, fathers of infants in California are 46 percent more likely to be on leave when CA-PFL is available. In households where both parents work, we find suggestive evidence that CA-PFL increases both father-only leave-taking (i.e., father on leave while mother is at work) and joint leave-taking (i.e., both parents on leave at the same time). Effects are larger for fathers of first-born children than for fathers of later-born children.

  11. Lost in Cloud

    Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian

    2012-01-01

    Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.

  12. Radiative Importance of Aerosol-Cloud Interaction

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  13. Spontaneous ad hoc mobile cloud computing network.

    Lacuesta, Raquel; Lloret, Jaime; Sendra, Sandra; Peñalver, Lourdes

    2014-01-01

    Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.

  14. Is cosmic radiation exposure of air crew amenable to control?

    McEwan, A.C.

    1999-01-01

    ICRP Committee 4 currently has a Working Party on Cosmic Ray Exposure in Aircraft and Space Flight. It has assembled information on doses arising in aircraft and space flight and considered the appropriateness of the Commission's recommendations relating to air crew. A central issue is whether the exposures received should be considered amenable to control. Factors of relevance to the enhanced cosmic radiation exposure of air crew, and frequent fliers such as couriers, are doses to pregnant staff, the issue of controllability of doses, and the implementation of regulatory controls. It is concluded that while air crew in the current range of subsonic jet aircraft are exposed to enhanced levels of cosmic radiation, these exposures are not readily controllable nor likely to exceed about 6 mSv/y. The revised ICRP Recommendations in 1991 (ICRP 60) propose air crew be designated as occupationally exposed. However, none of the usual optimisation of dose actions associated with regulation of practices, such as classification of work areas and rules governing working procedures, can be implemented, and in practice the doses are not amenable to control. The International Basic Safety Standards therefore leave this designation to the judgement of national regulatory authorities. One requirement that stems from designation as occupational exposure is that of restriction of doses to pregnant women. Both from the points of view that it is questionable whether exposure of air crew can reasonably be considered to be amenable to control, and the magnitude of the risks from exposures incurred, there is little reason to invoke additional restrictions to limit exposures of pregnant air crew. Copyright (1999) Australasian Radiation Protection Society Inc

  15. Gravitational effects of cosmic strings in Friedmann universes

    Veeraraghavan, S.

    1988-01-01

    Cosmic strings have been invoked recently as a possible source of the primordial density fluctuations in matter which gave rise to large-scale structure by the process of gravitational collapse. If cosmic strings did indeed seed structure formation then they would also leave an observable imprint upon the microwave and gravitational wave backgrounds, and upon structure on the very largest scales. In this work, the energy-momentum tensor appropriate to a cosmic string configuration in the flat Friedmann universe is first obtained and then used in the linearized Einstein equations to obtain the perturbations of the background space-time and the ambient matter. The calculation is full self-consistent to linear order because it takes into account compensation, or the response of the ambient matter density field to the presence of the string configuration, and is valid for an arbitrarily curved and moving configuration everywhere except very close to a string segment. The single constraint is that the dimensionless string tension Gμ/c 2 must be small compared to unity, but this condition is satisfied in any theory that leads to strings of cosmological relevance. The gravitational wave spectrum and the microwave background temperature fluctuations from a single infinite straight and static string are calculated. The statistically expected fluctuations from an ensemble of such strings with a mean density equal to that found in computer simulations of the evolution of string networks is also calculated. These fluctuations are compared with the observational data on the microwave background to constrain Gμ. Lastly, the role of infinite strings in the formation of the large-scale structure on scales of tens of Megaparsecs observed in deep redshift surveys is examined

  16. Interstellar propagation of low energy cosmic rays

    Cesarsky, C.J.

    1975-01-01

    Wave particles interactions prevent low energy cosmic rays from propagating at velocities much faster than the Alfven velocity, reducing their range by a factor of order 50. Therefore, supernovae remnants cannot fill the neutral portions of the interstellar medium with 2 MeV cosmic rays [fr

  17. Maximum entropy analysis of cosmic ray composition

    Nosek, D.; Ebr, Jan; Vícha, Jakub; Trávníček, Petr; Nosková, J.

    2016-01-01

    Roč. 76, Mar (2016), s. 9-18 ISSN 0927-6505 R&D Projects: GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : ultra-high energy cosmic rays * extensive air showers * cosmic ray composition Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.257, year: 2016

  18. The Spine of the Cosmic Web

    Aragón-Calvo, Miguel A.; Platen, Erwin; van de Weijgaert, Rien; Szalay, Alexander S.

    We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its walls, filaments, and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb method invokes the local adjacency properties of the boundaries between

  19. Ultra high-energy cosmic ray composition

    Longley, N.P.

    1993-01-01

    The Soudan 2 surface-underground cosmic ray experiment can simultaneously measure surface shower size, underground muon multiplicity, and underground muon separation for ultra high energy cosmic ray showers. These measurements are sensitive to the primary composition. Analysis for energies from 10 1 to 10 4 TeV favors a light flux consisting of predominantly H and He nuclei

  20. The Spine of the Cosmic Web

    Aragón-Calvo, Miguel A.; Platen, Erwin; van de Weijgaert, Rien; Szalay, Alexander S.

    2010-01-01

    We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its walls, filaments, and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb method invokes the local adjacency properties of the boundaries between

  1. Sealed drift tube cosmic ray veto counters

    Rios, R.; Tatar, E.; Bacon, J.D.; Bowles, T.J.; Hill, R.; Green, J.A.; Hogan, G.E.; Ito, T.M.; Makela, M.; Morris, C.L.; Mortenson, R.; Pasukanics, F.E.; Ramsey, J.; Saunders, A.; Seestrom, S.J.; Sondheim, W.E.; Teasdale, W.; Saltus, M.; Back, H.O.; Cottrell, C.R.

    2011-01-01

    We describe a simple drift tube counter that has been used as a cosmic ray veto for the UCNA experiment, a first-ever measurement of the neutron beta-asymmetry using ultra-cold neutrons. These detectors provide an inexpensive alternative to more conventional scintillation detectors for large area cosmic ray anticoincidence detectors.

  2. Cosmic Rays and Extensive Air Showers

    Stanev, Todor

    2010-01-01

    We begin with a brief introduction of the cosmic ray energy spectrum and its main features. At energies higher than 105 GeV cosmic rays are detected by the showers they initiate in the atmosphere. We continues with a brief description of the energy spectrum and composition derived from air shower data.

  3. Early history of cosmic rays at Chicago

    Yodh, Gaurang B.

    2013-02-01

    Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.

  4. NEXUS: tracing the cosmic web connection

    Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.

    2013-01-01

    We introduce the NEXUS algorithm for the identification of cosmic web environments: clusters, filaments, walls and voids. This is a multiscale and automatic morphological analysis tool that identifies all the cosmic structures in a scale free way, without preference for a certain size or shape. We

  5. Research on cloud computing solutions

    Liudvikas Kaklauskas; Vaida Zdanytė

    2015-01-01

    Cloud computing can be defined as a new style of computing in which dynamically scala-ble and often virtualized resources are provided as a services over the Internet. Advantages of the cloud computing technology include cost savings, high availability, and easy scalability. Voas and Zhang adapted six phases of computing paradigms, from dummy termi-nals/mainframes, to PCs, networking computing, to grid and cloud computing. There are four types of cloud computing: public cloud, private cloud, ...

  6. VMware vCloud security

    Sarkar, Prasenjit

    2013-01-01

    VMware vCloud Security provides the reader with in depth knowledge and practical exercises sufficient to implement a secured private cloud using VMware vCloud Director and vCloud Networking and Security.This book is primarily for technical professionals with system administration and security administration skills with significant VMware vCloud experience who want to learn about advanced concepts of vCloud security and compliance.

  7. Security Architecture of Cloud Computing

    V.KRISHNA REDDY; Dr. L.S.S.REDDY

    2011-01-01

    The Cloud Computing offers service over internet with dynamically scalable resources. Cloud Computing services provides benefits to the users in terms of cost and ease of use. Cloud Computing services need to address the security during the transmission of sensitive data and critical applications to shared and public cloud environments. The cloud environments are scaling large for data processing and storage needs. Cloud computing environment have various advantages as well as disadvantages o...

  8. Security in hybrid cloud computing

    Koudelka, Ondřej

    2016-01-01

    This bachelor thesis deals with the area of hybrid cloud computing, specifically with its security. The major aim of the thesis is to analyze and compare the chosen hybrid cloud providers. For the minor aim this thesis compares the security challenges of hybrid cloud as opponent to other deployment models. In order to accomplish said aims, this thesis defines the terms cloud computing and hybrid cloud computing in its theoretical part. Furthermore the security challenges for cloud computing a...

  9. Orientation selective neural network for cosmic muon identification

    Abramowicz, H.; Tel Aviv Univ.; Horn, D.; Naftaly, U.; Sahar-Pikielny, C.

    1997-01-01

    We discuss a novel method for identification of a linear pattern of pixels on a two-dimensional grid. Motivated by principles employed by the visual cortex, we construct orientation selective neurons in a neural network that performs this task. The method is then applied to a sample of data collected with the ZEUS detector at HERA in order to identify cosmic muons that leave a linear pattern of signals in the segmented uranium-scintillator calorimeter. A two dimensional representation of the relevant part of the detector is used. The algorithm performs well in the presence of noise and pixels with limited efficiency. Given its architecture, this system becomes a good candidate for fast pattern recognition in parallel processing devices. (orig.)

  10. Standard Clock in primordial density perturbations and cosmic microwave background

    Chen, Xingang; Namjoo, Mohammad Hossein

    2014-01-01

    Standard Clocks in the primordial epoch leave a special type of features in the primordial perturbations, which can be used to directly measure the scale factor of the primordial universe as a function of time a(t), thus discriminating between inflation and alternatives. We have started to search for such signals in the Planck 2013 data using the key predictions of the Standard Clock. In this Letter, we summarize the key predictions of the Standard Clock and present an interesting candidate example in Planck 2013 data. Motivated by this candidate, we construct and compute full Standard Clock models and use the more complete prediction to make more extensive comparison with data. Although this candidate is not yet statistically significant, we use it to illustrate how Standard Clocks appear in Cosmic Microwave Background (CMB) and how they can be further tested by future data. We also use it to motivate more detailed theoretical model building

  11. Cloud security in vogelvlucht

    Pieters, Wolter

    2011-01-01

    Cloud computing is dé hype in IT op het moment, en hoewel veel aspecten niet nieuw zijn, leidt het concept wel tot de noodzaak voor nieuwe vormen van beveiliging. Het idee van cloud computing biedt echter ook juist kansen om hierover na te denken: wat is de rol van informatiebeveiliging in een

  12. CLOUD SERVICES IN EDUCATION

    Z.S. Seydametova

    2011-05-01

    Full Text Available We present the on-line services based on cloud computing, provided by Google to educational institutions. We describe the own experience of the implementing the Google Apps Education Edition in the educational process. We analyzed and compared the other universities experience of using cloud technologies.

  13. Cloud MicroAtlas

    We begin by outlining the life cycle of a tall cloud, and thenbriefly discuss cloud systems. We choose one aspect of thislife cycle, namely, the rapid growth of water droplets in ice freeclouds, to then discuss in greater detail. Taking a singlevortex to be a building block of turbulence, we demonstrateone mechanism by which ...

  14. Greening the cloud

    van den Hoed, Robert; Hoekstra, Eric; Procaccianti, Giuseppe; Lago, Patricia; Grosso, Paolo; Taal, Arie; Grosskop, Kay; van Bergen, Esther

    The cloud has become an essential part of our daily lives. We use it to store our documents (Dropbox), to stream our music and films (Spotify and Netflix) and without giving it any thought, we use it to work on documents in the cloud (Google Docs).

  15. Learning in the Clouds?

    Butin, Dan W.

    2013-01-01

    Engaged learning--the type that happens outside textbooks and beyond the four walls of the classroom--moves beyond right and wrong answers to grappling with the uncertainties and contradictions of a complex world. iPhones back up to the "cloud." GoogleDocs is all about "cloud computing." Facebook is as ubiquitous as the sky.…

  16. Kernel structures for Clouds

    Spafford, Eugene H.; Mckendry, Martin S.

    1986-01-01

    An overview of the internal structure of the Clouds kernel was presented. An indication of how these structures will interact in the prototype Clouds implementation is given. Many specific details have yet to be determined and await experimentation with an actual working system.

  17. Cosmic Feast of the Elements

    Morisset, C.; Delgado-Inglada, G.; García-Rojas, J.

    2017-11-01

    In the past few decades most of our understanding of the history and chemical evolution of galaxies has been guided by the study of their stars and gaseous nebulae. Nebulae, thanks to their bright emission lines, are especially useful tracers of chemical elements from the very center to the outskirts of galaxies. In order to pin down the chemical abundances in nebulae, we must rely on careful analysis of emission lines combined with detailed models of the microscopic physical processes inside nebulae and state-of-the-art atomic data. Another important piece of the puzzle is the interplay between galaxy evolution and the activity of their central engines either as optical AGNs or radio jets. Last but not least, let us not forget the huge population of lineless, retired galaxies ionized by hot low-mass evolved stars: after nuclear and star formation activity quiets down, retired galaxies are the natural consequence of galaxy evolution. Grażyna Stasińska has made important contributions to each and every one of those aspects. This conference is to honor her work. We invite you to take part and share the latest news on this cosmic feast that transmutes chemical species, the onward journey of elements inside and outside galaxies either as lonely atoms or gregarious molecules and crystals, and their recycling in stars, which starts the cosmic feast all over again.

  18. Nexus of the Cosmic Web

    Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.; Frenk, Carlos S.; Hellwing, Wojciech A.

    2015-01-01

    One of the important unknowns of current cosmology concerns the effects of the large scale distribution of matter on the formation and evolution of dark matter haloes and galaxies. One main difficulty in answering this question lies in the absence of a robust and natural way of identifying the large scale environments and their characteristics. This work summarizes the NEXUS+ formalism which extends and improves our multiscale scale-space MMF method. The new algorithm is very successful in tracing the Cosmic Web components, mainly due to its novel filtering of the density in logarithmic space. The method, due to its multiscale and hierarchical character, has the advantage of detecting all the cosmic structures, either prominent or tenuous, without preference for a certain size or shape. The resulting filamentary and wall networks can easily be characterized by their direction, thickness, mass density and density profile. These additional environmental properties allows to us to investigate not only the effect of environment on haloes, but also how it correlates with the environment characteristics.

  19. Cosmic evolution, life and man

    Oro, J.

    1995-01-01

    Among the most basic problems confronting science are those regarding the origin of the universe, the origin of life and the origin of man. This general overview starts (1) with a brief introduction addressed primarily to the Cyril Ponnamperuma Memorial. Then, the thesis is presented that the appearance of life and intelligence on our planet can be understood as the result of a number of cosmic and biological evolutionary processes, including (2) the stellar thermonuclear synthesis of the biogenic elements other than hydrogen (C, N, O, P and S), their dispersal into space, and their combination into circumstellar and interstellar molecules. (3) The formation of the Solar System and the Earth-Moon System. (4) The role of comets and carbonaceous chondrites in contributing organic matter to the primitive Earth. (5) The prebiotics synthesis of amino acids, purines, pyrimidines, fatty acids, and other biochemical monomers. (6) The prebiotic condensation reactions leading to the synthesis of oligomers such as oligonucleotides and oligopeptides, with replicative and catalytic activities. (7) The synthesis of amphiphilic lipids, and their self-assembly into liposomes with bi-layered membranes. (8) The formation of protocellular structures. (9) The activation of protocells into a functioning Darwin's ancestral cell. (10) Early evolution of life. (11) The K-T boundary event and the disappearance of dinosaurs. (12) Evolution of hominids leading to Homo sapiens. (13) The rapid development of civilization. (14) The exploration of the Solar System. (15) Life beyond our planetary system. (16) Epilogue. Peace from cosmic evolution? (Abstract only)

  20. [Cosmic Microwave Background (CMB) Anisotropies

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  1. Cosmic perspectives in space physics

    Biswas, Sukumar

    2000-01-01

    In the early years of the twentieth century, Victor Hess of Germany flew instruments in balloons and so discovered in 1912 that an extra-~errestial radiation of unknown origin is incident on the earth with an almost constant intensity at all times. These penetrating non­ solar radiations which were called Cosmic Rays by Millikan, USA, opened the new frontier of space physics and many leading scientists were attracted to it. At the end of World War II a number of space vehicles, e.g. stratospheric balloons, rockets and satellites were developed. In 1950 and onwards, these vehicles enabled spectacular advances in space physics and space astrophysics. New horizons were opened in the explorations of cosmic rays, the earth's magnetosphere, the Sun and the heliosphere, the moon and the planets. Using space-borne instruments, exciting discoveries were made of stars, and galaxies in the infra-red, ultra violet, x-ray and gamma-ray wavelengths. In this text book these fascinating new findings are presented in depth a...

  2. Cosmic evolution, life and man

    Oro, J [Houston Univ., Houston, TX (United States). Dept. of Biochemical and Biophysical Sciences

    1995-08-01

    Among the most basic problems confronting science are those regarding the origin of the universe, the origin of life and the origin of man. This general overview starts (1) with a brief introduction addressed primarily to the Cyril Ponnamperuma Memorial. Then, the thesis is presented that the appearance of life and intelligence on our planet can be understood as the result of a number of cosmic and biological evolutionary processes, including (2) the stellar thermonuclear synthesis of the biogenic elements other than hydrogen (C, N, O, P and S), their dispersal into space, and their combination into circumstellar and interstellar molecules. (3) The formation of the Solar System and the Earth-Moon System. (4) The role of comets and carbonaceous chondrites in contributing organic matter to the primitive Earth. (5) The prebiotics synthesis of amino acids, purines, pyrimidines, fatty acids, and other biochemical monomers. (6) The prebiotic condensation reactions leading to the synthesis of oligomers such as oligonucleotides and oligopeptides, with replicative and catalytic activities. (7) The synthesis of amphiphilic lipids, and their self-assembly into liposomes with bi-layered membranes. (8) The formation of protocellular structures. (9) The activation of protocells into a functioning Darwin`s ancestral cell. (10) Early evolution of life. (11) The K-T boundary event and the disappearance of dinosaurs. (12) Evolution of hominids leading to Homo sapiens. (13) The rapid development of civilization. (14) The exploration of the Solar System. (15) Life beyond our planetary system. (16) Epilogue. Peace from cosmic evolution? (Abstract only).

  3. Electric currents in cosmic plasmas

    Alfven, H.

    1977-05-01

    Since the beginning of the century physics has been dualistic in the sense that some phenomena are described by a field concept, others by a particle concept. This dualism is essential also in the physics of cosmical plasmas: some phenomena should be described by a magnetic field formalism, others by an electric current formalism. During the first period of evolution of cosmic plasma physics the magnetic field aspect has dominated, and a fairly exhaustive description has been given of those phenomena--like the propagation of waves--which can be described in this way. We have now entered a second period which is dominated by a systematic exploration of the particle (or current) aspect. A survey is given of a number of phenomena which can be understood only from the particle aspect. These include the formation of electric double layers, the origin of explosive events like magnetic substorms and solar flares, and further, the transfer of energy from one region to another. A useful method of exploring many of these phenomena is to draw the electric circuit in which the current flows and study its properties. A number of simple circuits are analyzed in this way. (author)

  4. Cosmic ray production curves below reworking zones

    Blanford, G.E.

    1980-01-01

    A method is presented for calculating cosmic ray production profiles below reworking zones. The method uses an input reworking depth determined from data such as signatures in the depth profile of ferromagnetic resonance intensity and input cosmic ray production profiles for an undisturbed surface. Reworking histories are simulated using Monte Carlo techniques, and depth profiles are used to determine cosmic ray exposure age limits with a specified probability. It is shown that the track density profiles predict cosmic ray exposure ages in lunar cores that are consistent with values determined by other methods. Results applied to neutron fluence and spallation rare gases eliminate the use of reworking depth as an adjustable parameter and give cosmic ray exposure ages that are compatible with each other

  5. Cosmic rays and the interstellar medium

    Wolfendale, A.W.

    1986-01-01

    It is inevitable that there is a close connection between cosmic rays and the ISM insofar as the propagation of cosmic rays is conditioned by the magnetic field in the ISM and the cosmic rays interact with the gas (and photon fluxes) in this medium. This paper deals with both topics. Propagation effects manifest themselves as an anisotropy in arrival directions and a review is given of anisotropy measurements and their interpretation. The status of studies of cosmic ray interactions is examined whit particular reference to the information about the ISM itself which comes from observations of the flux of secondary γ-rays produced by cosmic ray interactions with gas, the situation regarding molecular as in the Inner Galaxy being of particular concern

  6. High energy physics in cosmic rays

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  7. To the problem of superfluous cosmic radiation

    Savenko, I.A.; Saraeva, M.A.; Shavrin, P.I.

    1979-01-01

    From consideration of a number of basic works on the excessive cosmic radiation given is the most probable composition (electron, proton, and nuclear components) of this radiation in equatorial regions at altitudes corresponding to minimum altitudes of the drift trajectories hsub(min) <= 0, in case of detecting by detector on the artificial satellite of the Earth (ASE) with the mass up to 1t and of the heavier ASE. The disagreement in spectra of solar cosmic rays obtained along the latitude effect on the ASE. ''Molniya-1'' and in the experiments out of the magnetosphere on the ASE ''Explorer-41'' is explained by excessive radiation production of solar cosmic rays. The comparison of readings of the neutron channel with those of the charged particle channels of the apparatus on the ASE ''Molniya-1'' during the proton event on 25.01.1971 does not contradict to the supposition on the similarity of excessive cosmic radiation production of galactic and solar cosmic rays

  8. Cosmic Ray Physics with ACORDE at LHC

    Pagliarone, C.

    2008-01-01

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2x10^10 - 2x10^12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10^15 - 10^17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

  9. Cosmic ray physics with ACORDE at LHC

    Pagliarone, C; Fernandez-Tellez, A

    2008-01-01

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2·10 10 to 2· 10 12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10 15 to 10 17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program

  10. Cosmic ray physics with ACORDE at LHC

    Pagliarone, C [Universita degli Studi di Cassino and INFN Pisa, Largo B. Pontecorvo, 3 - Pisa (Italy); Fernandez-Tellez, A [Benemerita Universidad Autonoma de Puebla (BUAP), Puebla (Mexico)], E-mail: pagliarone@fnal.gov

    2008-05-15

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2{center_dot}10{sup 10} to 2{center_dot} 10{sup 12} eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10{sup 15} to 10{sup 17} eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

  11. Cosmic physics: the high energy frontier

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies 10 8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic γ-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violations of Lorentz invariance as well as Planck scale physics and quantum gravity. (topical review)

  12. [Precautionary maternity leave in Tirol].

    Ludescher, K; Baumgartner, E; Roner, A; Brezinka, C

    1998-01-01

    Under Austrian law, precautionary maternity leave is a decree issued by the district public health physician. It forbids a pregnant woman to work and mandates immediate maternity leave. Regular maternity leave for all women employed in all jobs begins at 32 weeks of gestation. Women who work in workplaces deemed dangerous and women with a history of obstetric problems such as premature or growth-retarded babies from previous pregnancies are regularly 'sent' into precautionary maternity leave. The public health physicians of Tirol's nine administrative districts were interviewed and supplied data on precautionary maternity leave from their districts. In 100 women who attended the clinic for pregnancies at risk of the Obstetrics/Gynecology Department of Innsbruck University Hospital and who had already obtained precautionary maternity leave, the medical/administrative procedure was studied in each case and correlated with pregnancy outcome. The town district of Innsbruck and the district that comprises the suburbs of the provincial capital had the highest rates of precautionary maternity leave. The town district of Innsbruck had a rate of 24.3% of all pregnant women (employed and not employed) in precautionary maternity leave in 1997, whereas the whole province of Tirol had 13.4%. More than 80% of decrees for precautionary maternity leave are issued by district public health physicians on the basis of written recommendations from gynecologists. One third of women who are sent into precautionary maternity leave are issued the decree prior to 12 weeks of gestation - mostly cases of multiple pregnancies and women with previous miscarriages. The present system of precautionary maternity leave appears to work in the sense that most working pregnant women with risk factors are correctly identified - with most errors on the side of caution. As the system also helps employers - the employee's pay is paid from the federal family support fund and state insurance once she is in

  13. Cloud computing basics

    Srinivasan, S

    2014-01-01

    Cloud Computing Basics covers the main aspects of this fast moving technology so that both practitioners and students will be able to understand cloud computing. The author highlights the key aspects of this technology that a potential user might want to investigate before deciding to adopt this service. This book explains how cloud services can be used to augment existing services such as storage, backup and recovery. Addressing the details on how cloud security works and what the users must be prepared for when they move their data to the cloud. Also this book discusses how businesses could prepare for compliance with the laws as well as industry standards such as the Payment Card Industry.

  14. Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback

    Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas

    2018-05-01

    The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

  15. Surfatron accelerator in the local interstellar cloud

    Loznikov, V. M., E-mail: vloznikov@yandex.ru; Erokhin, N. S.; Zol’nikova, N. N.; Mikhailovskaya, L. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2017-01-15

    Taking into account results of numerous experiments, the variability of the energy spectra of cosmic rays (protons and helium nuclei) in the energy range of 10 GeV to ~10{sup 7} GeV is explained on the basis of a hypothesis of the existence of two variable sources close to the Sun. The first (soft) surfatron source (with a size of ~100 AU) is located at the periphery of the heliosphere. The second (hard) surfatron source (with a size of ~1 pc) is situated in the Local Interstellar Cloud (LIC) at a distance of <1 pc. The constant background is described by a power-law spectrum with a slope of ~2.75. The variable heliospheric surfatron source is described by a power-law spectrum with a variable amplitude, slope, and cutoff energy, the maximum cutoff energy being in the range of E{sub CH}/Z < 1000 GeV. The variable surfatron source in the LIC is described by a power-law spectrum with a variable amplitude, slope, and cut-off energy, the maximum cut-off energy being E{sub Ð}¡{sub L}/Z ≤ 3 × 10{sup 6} GeV. The proposed model is used to approximate data from several experiments performed at close times. The energy of each cosmic-ray component is calculated. The possibility of surfatron acceleration of Fe nuclei (Z = 26) in the LIC up to an energy of E{sub CL} ~ 10{sup 17} eV and electron and positrons to the “knee” in the energy spectrum is predicted. By numerically solving a system of nonlinear equations describing the interaction between an electromagnetic wave and a charged particle with an energy of up to E/Z ~ 3 × 10{sup 6} GeV, the possibility of trapping, confinement, and acceleration of charged cosmic-ray particles by a quasi-longitudinal plasma wave is demonstrated.

  16. Department of Cosmic Ray Physics: Overview

    Szabelski, J.

    2001-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy and primary particle mass composition. Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. In September we have started registration of 5 GeV muon flux with the underground muon telescope. We registered 3 decreases of muon intensity correlated with Forbush decreases registered at lower energies. Variations of primary cosmic ray of energies up to about 100 GeV were responsible for our registrations. These set the upper limits for geometrical size of geomagnetic disturbances in interplanetary space. In construction and data interpretation of cosmic ray experiments, the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). We have organised (together with the Physics Department of the University of Lodz) the 17 th European Cosmic Ray Symposium (24-?8 July 2000) in which about 150 physicists participated (about 100 from abroad). (author)

  17. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  18. Deuterium fractionation mechanisms in interstellar clouds

    Dalgarno, A.; Lepp, S.

    1984-01-01

    The theory of the fractionation of deuterated molecules is extended to include reactions with atomic deuterium. With the recognition that dissociative recombination of H + 3 is not rapid, observational data can be used in conjunction with the theory to derive upper and lower bounds to the cosmic deuterium-hydrogen abundance ratio. We find that [D]/[H] is at least 3.4 x 10 -6 and at most 4.0 x 10 -5 with a probable value of 1 x 10 -5 . Because of the reaction HCO + +D→DCO + +H, upper limits can be derived for the fractional ionization which depend only weakly on the cosmic ray flux, zeta. In four clouds, the upper limits to the fractional ionization lie between 1.1 x 10 -6 and 1.5 x 10 -6 if zeta = 10 -7 s -1 and between 3.1 x 10 -6 and 1.8 x 10 -6 if zeta = 10 -16 s -1

  19. Light, Wind and Fire - Beautiful Image of a Cosmic Sculpture

    2010-02-01

    Today ESO has released a dramatic new image of NGC 346, the brightest star-forming region in our neighbouring galaxy, the Small Magellanic Cloud, 210 000 light-years away towards the constellation of Tucana (the Toucan). The light, wind and heat given off by massive stars have dispersed the glowing gas within and around this star cluster, forming a surrounding wispy nebular structure that looks like a cobweb. NGC 346, like other beautiful astronomical scenes, is a work in progress, and changes as the aeons pass. As yet more stars form from loose matter in the area, they will ignite, scattering leftover dust and gas, carving out great ripples and altering the face of this lustrous object. NGC 346 spans approximately 200 light-years, a region of space about fifty times the distance between the Sun and its nearest stellar neighbours. Astronomers classify NGC 346 as an open cluster of stars, indicating that this stellar brood all originated from the same collapsed cloud of matter. The associated nebula containing this clutch of bright stars is known as an emission nebula, meaning that gas within it has been heated up by stars until the gas emits its own light, just like the neon gas used in electric store signs. Many stars in NGC 346 are relatively young in cosmic terms with their births dating back only a few million years or so (eso0834). Powerful winds thrown off by a massive star set off this recent round of star birth by compressing large amounts of matter, the first critical step towards igniting new stars. This cloud of material then collapses under its own gravity, until some regions become dense and hot enough to roar forth as a brilliantly shining, nuclear fusion-powered furnace - a star, illuminating the residual debris of gas and dust. In sufficiently congested regions like NGC 346, with high levels of recent star birth, the result is a glorious, glowing vista for our telescopes to capture. NGC 346 is in the Small Magellanic Cloud, a dwarf galaxy some 210

  20. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  1. Parental Leave Policies and Parents' Employment and Leave-Taking

    Han, Wen-Jui; Ruhm, Christopher; Waldfogel, Jane

    2009-01-01

    We describe trends in maternal employment and leave-taking after birth of a newborn and analyze the extent to which these behaviors are influenced by parental leave policies. Data are from the June Current Population Survey (CPS) Fertility Supplements, merged with other months of the CPS, and cover the period 1987 to 1994. This time span is one…

  2. CLOUD COMPUTING BASED INFORMATION SYSTEMS -PRESENT AND FUTURE

    Maximilian ROBU

    2012-12-01

    Full Text Available The current economic crisis and the global recession have affected the IT market as well. A solution camefrom the Cloud Computing area by optimizing IT budgets and eliminating different types of expenses (servers, licenses,and so on. Cloud Computing is an exciting and interesting phenomenon, because of its relative novelty and explodinggrowth. Because of its raise in popularity and usage Cloud Computing has established its role as a research topic.However the tendency is to focus on the technical aspects of Cloud Computing, thus leaving the potential that thistechnology offers unexplored. With the help of this technology new market player arise and they manage to break thetraditional value chain of service provision. The main focus of this paper is the business aspects of Cloud. In particularwe will talk about the economic aspects that cover using Cloud Computing (when, why and how to use, and theimpacts on the infrastructure, the legalistic issues that come from using Cloud Computing; the scalability and partiallyunclear legislation.

  3. CO line ratios in molecular clouds: the impact of environment

    Peñaloza, Camilo H.; Clark, Paul C.; Glover, Simon C. O.; Klessen, Ralf S.

    2018-04-01

    Line emission is strongly dependent on the local environmental conditions in which the emitting tracers reside. In this work, we focus on modelling the CO emission from simulated giant molecular clouds (GMCs), and study the variations in the resulting line ratios arising from the emission from the J = 1-0, J = 2-1, and J = 3-2 transitions. We perform a set of smoothed particle hydrodynamics simulations with time-dependent chemistry, in which environmental conditions - including total cloud mass, density, size, velocity dispersion, metallicity, interstellar radiation field (ISRF), and the cosmic ray ionization rate (CRIR) - were systematically varied. The simulations were then post-processed using radiative transfer to produce synthetic emission maps in the three transitions quoted above. We find that the cloud-averaged values of the line ratios can vary by up to ±0.3 dex, triggered by changes in the environmental conditions. Changes in the ISRF and/or in the CRIR have the largest impact on line ratios since they directly affect the abundance, temperature, and distribution of CO-rich gas within the clouds. We show that the standard methods used to convert CO emission to H2 column density can underestimate the total H2 molecular gas in GMCs by factors of 2 or 3, depending on the environmental conditions in the clouds.

  4. Caught in the Cloud: Privacy, Encryption, and Government Back Doors in the Web 2.0 Era

    Soghoian, Christopher

    2017-01-01

    Over the last few years, consumers, corporations and governments have rushed to move their data to “the cloud,” adopting web-based applications and storage solutions provided by companies that include Amazon, Google, Microsoft and Yahoo. Unfortunately the shift to cloud computing needlessly exposes users to privacy invasion and fraud by hackers. Cloud based services also leave end users vulnerable to significant invasions of privacy by the government, resulting in the evisceration of traditio...

  5. REMINDER Saved Leave Scheme (SLS) : Simplified procedure for the transfer of leave to saved leave accounts

    HR Division

    2001-01-01

    As part of the process of streamlining procedures, the HR and AS Divisions have jointly developed a system whereby annual and compensatory leave will henceforth be automatically transferred1) to saved leave accounts. Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'2)Previously, every person taking part in the scheme has been individually issued with a form for the purposes of requesting the transfer of leave to the leave account and the transfer has then had to be done manually by HR Division. To streamline the procedure, unused leave of all those taking part in the saved leave scheme at the closure of the leave-year accounts will henceforth be transferred automatically to the saved leave account on that date. This simplification is in the interest of all parties concerned. This automatic transfer procedure has a number of advantages for participants in the SLS scheme. First, staff members will no longer have to take any administrative steps. Secondly, the new proced...

  6. Making and Breaking Clouds

    Kohler, Susanna

    2017-10-01

    Molecular clouds which youre likely familiar with from stunning popular astronomy imagery lead complicated, tumultuous lives. A recent study has now found that these features must be rapidly built and destroyed.Star-Forming CollapseA Hubble view of a molecular cloud, roughly two light-years long, that has broken off of the Carina Nebula. [NASA/ESA, N. Smith (University of California, Berkeley)/The Hubble Heritage Team (STScI/AURA)]Molecular gas can be found throughout our galaxy in the form of eminently photogenic clouds (as featured throughout this post). Dense, cold molecular gas makes up more than 20% of the Milky Ways total gas mass, and gravitational instabilities within these clouds lead them to collapse under their own weight, resulting in the formation of our galaxys stars.How does this collapse occur? The simplest explanation is that the clouds simply collapse in free fall, with no source of support to counter their contraction. But if all the molecular gas we observe collapsed on free-fall timescales, star formation in our galaxy would churn a rate thats at least an order of magnitude higher than the observed 12 solar masses per year in the Milky Way.Destruction by FeedbackAstronomers have theorized that there may be some mechanism that supports these clouds against gravity, slowing their collapse. But both theoretical studies and observations of the clouds have ruled out most of these potential mechanisms, and mounting evidence supports the original interpretation that molecular clouds are simply gravitationally collapsing.A sub-mm image from ESOs APEX telescope of part of the Taurus molecular cloud, roughly ten light-years long, superimposed on a visible-light image of the region. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin]If this is indeed the case, then one explanation for our low observed star formation rate could be that molecular clouds are rapidly destroyed by feedback from the very stars

  7. Cloud Computing: An Overview

    Libor Sarga

    2012-10-01

    Full Text Available As cloud computing is gaining acclaim as a cost-effective alternative to acquiring processing resources for corporations, scientific applications and individuals, various challenges are rapidly coming to the fore. While academia struggles to procure a concise definition, corporations are more interested in competitive advantages it may generate and individuals view it as a way of speeding up data access times or a convenient backup solution. Properties of the cloud architecture largely preclude usage of existing practices while achieving end-users’ and companies’ compliance requires considering multiple infrastructural as well as commercial factors, such as sustainability in case of cloud-side interruptions, identity management and off-site corporate data handling policies. The article overviews recent attempts at formal definitions of cloud computing, summarizes and critically evaluates proposed delimitations, and specifies challenges associated with its further proliferation. Based on the conclusions, future directions in the field of cloud computing are also briefly hypothesized to include deeper focus on community clouds and bolstering innovative cloud-enabled platforms and devices such as tablets, smart phones, as well as entertainment applications.

  8. Community Cloud Computing

    Marinos, Alexandros; Briscoe, Gerard

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.

  9. Characterization of Mixed-Phase Clouds in the Laboratory

    Foster, T. C.; Hallett, J.

    2005-12-01

    A technique was developed in which a mixed-phase cloud of controllable ice and water content is created. First a freezer filled with a water droplet cloud becomes supercooled. Then, in an isolated small volume of the freezer, an adjustable adiabatic expansion locally nucleates ice. Finally the two regions of the cloud are vigorously stirred together producing a mixed-phase cloud throughout the chamber. At this point the water droplets evaporate and the crystals grow at a slow measurable rate, until a fully glaciated cloud results. Experiments were carried out at temperatures near -20 C in a standard top-opening chest freezer. A cloud of supercooled water droplets several micrometers in diameter was produced by a commercial ultrasonic nebulizer. Ice was nucleated using the discharge of an empty compressed air pistol pumped to different initial pressures. In that process high-pressure room temperature air in the pistol expands adiabatically, cooling the air enough to nucleate water droplets which then freeze homogeneously if sufficiently cold. The freezer was partitioned with thick movable walls of foam material to isolate the ice cloud in a small volume of the freezer before mixing occurs. Clouds of supercooled water droplets or of ice particles are readily produced and examined in collimated white light beams. They look similar visually in some cases although normally large crystals with flat reflecting surfaces clearly differ due to the flashes of reflected light. When the pistol is discharged into the supercooled water cloud, it displays a distinct hazy bluish "plume." But discharge into the ice particle cloud leaves no such plume: that discharge only mixes the particles present. This discharge is a test of glaciation in our initially mixed freezer cloud. A visible plume indicates that supercooled water remains in the cloud and no plume indicates the cloud is entirely ice at a high concentration. Our first unsuccessful experiments were done with the freezer

  10. Negotiating leave in the workplace

    Bloksgaard, Lotte

    In Denmark leave entitlement is not only regulated by law but is also part of the various collective agreements established in the respective occupational sectors and at the local workplace level. Consequently, Danish fathers have very different leave entitlements, depending on the sector, branch...

  11. Negotiating leave in the workplace

    Bloksgaard, Lotte

    2014-01-01

    In Denmark leave entitlement is not only regulated by law but is also part of the various collective agreements established in the respective occupational sectors and at the local workplace level. Consequently, Danish fathers have very different leave entitlements, depending on the sector, branch...

  12. New results from cosmic rays

    Tonwar, S. C.

    1980-07-01

    Behavior of elementary particles at very high energies and new phenomena observed are discussed in the light of results obtained by cosmic ray studies. Methods of determining hadron-nucleus inelastic cross-sections are described. Proton energy spectra are studied at 2000-50,000 GeV and the hadron-proton total cross section is deduced. Measurement of the cross-section by measurement of the intensity of transition radiation is described. The instrumental effects and the corrections effected are mentioned. The results obtained by different groups of investigators are compared. Observations on the scaling violation at high energies are reported. New particles or phenomena observed include: (i) the long flying component (ii) centauro events, (iii) delayed particles (iv) high energy cascades in underground experiments and (v) charm hadron production in hadron collisions. New experiments being planned for further research are mentioned.

  13. The cosmic microwave background radiation

    Wilson, R.W.

    1980-01-01

    The history is described of the discovery of microwave radiation of the cosmic background using the 20-foot horn antenna at the Bell Laboratories back in 1965. Ruby masers with travelling wave were used, featuring the lowest noise in the world. The measurement proceeded on 7 cm. In measuring microwave radiation from the regions outside the Milky Way continuous noise was discovered whose temperature exceeded the calculated contributions of the individual detection system elements by 3 K. A comparison with the theory showed that relict radiation from the Big Bang period was the source of the noise. The discovery was verified by measurements on the 20.1 cm wavelength and by other authors' measurements on 0.5 mm to 74 cm, and by optical measurements of the interstellar molecule spectrum. (Ha)

  14. Polarization of Cosmic Microwave Background

    Buzzelli, A; Cabella, P; De Gasperis, G; Vittorio, N

    2016-01-01

    In this work we present an extension of the ROMA map-making code for data analysis of Cosmic Microwave Background polarization, with particular attention given to the inflationary polarization B-modes. The new algorithm takes into account a possible cross- correlated noise component among the different detectors of a CMB experiment. We tested the code on the observational data of the BOOMERanG (2003) experiment and we show that we are provided with a better estimate of the power spectra, in particular the error bars of the BB spectrum are smaller up to 20% for low multipoles. We point out the general validity of the new method. A possible future application is the LSPE balloon experiment, devoted to the observation of polarization at large angular scales. (paper)

  15. Cerenkov radiation from cosmic rays

    Turver, K.E.

    1988-01-01

    It is almost 40 years since it was suggested that Cerenkov radiations may be produced in the atmosphere by the passage of the cosmic radiation and account for a small part of the night sky brightness. The first detection of this visible Cerenkov radiation followed within a few years and by the 1960s the atmospheric Cerenkov radiation technique was established as a tool in high energy astrophysics. An exciting new field of astronomy, high energy gamma ray astronomy, has developed which relies on the atmospheric Cerenkov light. We here review the mechanism for the production of Cerenkov light in the atmosphere and summarize the contributions to high energy astrophysics made using the technique. (author)

  16. Diffuse interstellar clouds

    Black, J.H.

    1987-01-01

    The author defines and discusses the nature of diffuse interstellar clouds. He discusses how they contribute to the general extinction of starlight. The atomic and molecular species that have been identified in the ultraviolet, visible, and near infrared regions of the spectrum of a diffuse cloud are presented. The author illustrates some of the practical considerations that affect absorption line observations of interstellar atoms and molecules. Various aspects of the theoretical description of diffuse clouds required for a full interpretation of the observations are discussed

  17. Cloud Computing Security

    Ngongang, Guy

    2011-01-01

    This project aimed to show how possible it is to use a network intrusion detection system in the cloud. The security in the cloud is a concern nowadays and security professionals are still finding means to make cloud computing more secure. First of all the installation of the ESX4.0, vCenter Server and vCenter lab manager in server hardware was successful in building the platform. This allowed the creation and deployment of many virtual servers. Those servers have operating systems and a...

  18. Aerosols, clouds and radiation

    Twomey, S [University of Arizona, Tucson, AZ (USA). Inst. of Atmospheric Physics

    1991-01-01

    Most of the so-called 'CO{sub 2} effect' is, in fact, an 'H{sub 2}O effect' brought into play by the climate modeler's assumption that planetary average temperature dictates water-vapor concentration (following Clapeyron-Clausius). That assumption ignores the removal process, which cloud physicists know to be influenced by the aerosol, since the latter primarily controls cloud droplet number and size. Droplet number and size are also influential for shortwave (solar) energy. The reflectance of many thin to moderately thick clouds changes when nuclei concentrations change and make shortwave albedo susceptible to aerosol influence.

  19. Trusted cloud computing

    Krcmar, Helmut; Rumpe, Bernhard

    2014-01-01

    This book documents the scientific results of the projects related to the Trusted Cloud Program, covering fundamental aspects of trust, security, and quality of service for cloud-based services and applications. These results aim to allow trustworthy IT applications in the cloud by providing a reliable and secure technical and legal framework. In this domain, business models, legislative circumstances, technical possibilities, and realizable security are closely interwoven and thus are addressed jointly. The book is organized in four parts on "Security and Privacy", "Software Engineering and

  20. RELICS of the Cosmic Dawn

    Bradac, Marusa; Coe, Dan; Strait, Victoria; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Oesch, Pascal; Lam, Danel; Carrasco Nunez, Daniela Patricia; Paterno-Mahler, Rachel; Frye, Brenda

    2018-05-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose to complete deep Spitzer imaging of the fields behind the 10 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 440 Spitzer hours). 6 clusters out of 10 are still lacking deep data. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 60 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.

  1. Symbols of a cosmic order

    Madjid, F. Hadi; Myers, John M.

    2016-10-01

    The world runs on networks over which signals communicate sequences of symbols, e.g. numerals. Examining both engineered and natural communications networks reveals an unsuspected order that depends on contact with an unpredictable entity. This order has three roots. The first is a proof within quantum theory that no evidence can ever determine its explanation, so that an agent choosing an explanation must do so unpredictably. The second root is the showing that clocks that step computers do not "tell time" but serve as self-adjusting symbol-handling agents that regulate "logically synchronized" motion in response to unpredictable disturbances. Such a clock-agent has a certain independence as well as the capacity to communicate via unpredictable symbols with other clock-agents and to adjust its own tick rate in response to that communication. The third root is the noticing of unpredictable symbol exchange in natural systems, including the transmission of symbols found in molecular biology. We introduce a symbol-handling agent as a role played in some cases by a person, for example a physicist who chooses an explanation of given experimental outcomes, and in other cases by some other biological entity, and in still other cases by an inanimate device, such as a computer-based detector used in physical measurements. While we forbear to try to explain the propensity of agents at all levels from cells to civilizations to form and operate networks of logically synchronized symbol-handling agents, we point to this propensity as an overlooked cosmic order, an order structured by the unpredictability ensuing from the proof. Appreciating the cosmic order leads to a conception of agency that replaces volition by unpredictability and reconceives the notion of objectivity in a way that makes a place for agency in the world as described by physics. Some specific implications for physics are outlined.

  2. Black holes and cosmic censorship

    Hiscock, W.A.

    1979-01-01

    It is widely accepted that the complete gravitational collapse of a body always yields a black hole, and that naked singularities are never produced (the cosmic censorship hypothesis). The local (or strong) cosmic censorship hypothesis states that singularities which are even locally naked (e.g., to an observer inside a black hole) are never produced. This dissertation studies the validity of these two conjectures. The Kerr-Newman metrics describes the black holes only when M 2 greater than or equal to Q 2 + P 2 , where M is the mass of the black hole, a = J/M its specific angular momentum, Q its electric charge, and P its magnetic charge. In the first part of this dissertation, the possibility of converting an extreme Kerr-Newman black hole (M 2 = a 2 + Q 2 + P 2 ) into a naked singularity by the accretion of test particles is considered. The motion of test particles is studied with a large angular momentum to energy ratio, and also test particles with a large charge to energy ratio. The final state is always found to be a black hole if the angular momentum, electric charge, and magnetic charge of the black hole are all much greater than the corresponding angular momentum, electric charge, and magnetic charge of the test particle. In Part II of this dissertation possible black hole interior solutions are studied. The Cauchy horizons and locally naked timelike singularities of the charged (and/or rotating) solutions are contrasted with the spacelike all-encompassing singularity of the Schwarzschild solution. It is determined which portions of the analytic extension of the Reissner-Nordstroem solution are relevant to realistic gravitational collapse

  3. RELICS of the Cosmic Dawn

    Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trentu, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Patricia Carasco Nunez, Daniela; Paterno-Mahler, Rachel; Strait, Victoria

    2017-10-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind the most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 550 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 20 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal is a unique opportunity to establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed, this result will require a paradigm shift in our understanding of the earliest star formation.

  4. COMPARATIVE STUDY OF CLOUD COMPUTING AND MOBILE CLOUD COMPUTING

    Nidhi Rajak*, Diwakar Shukla

    2018-01-01

    Present era is of Information and Communication Technology (ICT) and there are number of researches are going on Cloud Computing and Mobile Cloud Computing such security issues, data management, load balancing and so on. Cloud computing provides the services to the end user over Internet and the primary objectives of this computing are resource sharing and pooling among the end users. Mobile Cloud Computing is a combination of Cloud Computing and Mobile Computing. Here, data is stored in...

  5. Molecular clouds near supernova remnants

    Wootten, H.A.

    1978-01-01

    The physical properties of molecular clouds near supernova remnants were investigated. Various properties of the structure and kinematics of these clouds are used to establish their physical association with well-known remmnants. An infrared survey of the most massive clouds revealed embedded objects, probably stars whose formation was induced by the supernova blast wave. In order to understand the relationship between these and other molecular clouds, a control group of clouds was also observed. Excitation models for dense regions of all the clouds are constructed to evaluate molecular abundances in these regions. Those clouds that have embedded stars have lower molecular abundances than the clouds that do not. A cloud near the W28 supernova remnant also has low abundances. Molecular abundances are used to measure an important parameter, the electron density, which is not directly observable. In some clouds extensive deuterium fractionation is observed which confirms electron density measurements in those clouds. Where large deuterium fractionation is observed, the ionization rate in the cloud interior can also be measured. The electron density and ionization rate in the cloud near W28 are higher than in most clouds. The molecular abundances and electron densities are functions of the chemical and dynamical state of evolution of the cloud. Those clouds with lowest abundances are probably the youngest clouds. As low-abundance clouds, some clouds near supernova remnants may have been recently swept from the local interstellar material. Supernova remnants provide sites for star formation in ambient clouds by compressing them, and they sweep new clouds from more diffuse local matter

  6. Taxonomy of cloud computing services

    Hoefer, C.N.; Karagiannis, Georgios

    2010-01-01

    Cloud computing is a highly discussed topic, and many big players of the software industry are entering the development of cloud services. Several companies want to explore the possibilities and benefits of cloud computing, but with the amount of cloud computing services increasing quickly, the need

  7. Cosmic growth history and expansion history

    Linder, Eric V.

    2005-01-01

    The cosmic expansion history tests the dynamics of the global evolution of the universe and its energy density contents, while the cosmic growth history tests the evolution of the inhomogeneous part of the energy density. Precision comparison of the two histories can distinguish the nature of the physics responsible for the accelerating cosmic expansion: an additional smooth component--dark energy--or a modification of the gravitational field equations. With the aid of a new fitting formula for linear perturbation growth accurate to 0.05%-0.2%, we separate out the growth dependence on the expansion history and introduce a new growth index parameter γ that quantifies the gravitational modification

  8. Propagation of ultrahigh-energy cosmic rays

    Stanev, Todor [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)], E-mail: stanev@bartol.udel.edu

    2009-06-15

    We briefly describe the energy loss processes of ultrahigh-energy protons, heavier nuclei and {gamma}-rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic-ray energy spectrum in propagation by the energy loss processes and the charged cosmic-ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh-energy cosmic rays goes into {gamma}-rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.

  9. High energy cosmic rays: sources and fluxes

    Stanev, Todor; Gaisser, Thomas K.; Tilav, Serap

    2014-04-01

    We discuss the production of a unique energy spectrum of the high energy cosmic rays detected with air showers by shifting the energy estimates of different detectors. After such a spectrum is generated we fit the spectrum with three or four populations of cosmic rays that might be accelerated at different cosmic ray sources. We also present the chemical composition that the fits of the spectrum generates and discuss some new data sets presented this summer at the ICRC in Rio de Janeiro that may require new global fits.

  10. Cosmic censorship, black holes, and particle orbits

    Hiscock, W.A.

    1979-01-01

    One of the main reasons for believing in the cosmic censorship hypothesis is the disquieting nature of the alternative: the existence of naked singularities, and hence loss of predictability, the possibility of closed timelike lines and so forth. The consequences of assuming the cosmic hypothesis can also be somewhat strange and unexpected. In particular, Hawking's black hole area theorem is applied to the study of particle orbits near a Schwarzschild black hole. If the cosmic censorship hypothesis (and hence the area theorem) is true, then there exist stable near-circular orbits arbitrarily close to the horizon at r = 2M. (author)

  11. High-energy cosmic-ray acceleration

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  12. 5 CFR 630.1204 - Intermittent leave or reduced leave schedule.

    2010-01-01

    ... insurance, health benefits, retirement coverage, and leave accrual). (e) The agency shall determine the... REGULATIONS ABSENCE AND LEAVE Family and Medical Leave § 630.1204 Intermittent leave or reduced leave schedule... reduced leave schedule unless the employee and the agency agree to do so. (b) Leave under § 630.1203(a) (3...

  13. Cloud Computing (1/2)

    CERN. Geneva

    2012-01-01

    Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  14. Cloud Computing (2/2)

    CERN. Geneva

    2012-01-01

    Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  15. IBM SmartCloud essentials

    Schouten, Edwin

    2013-01-01

    A practical, user-friendly guide that provides an introduction to cloud computing using IBM SmartCloud, along with a thorough understanding of resource management in a cloud environment.This book is great for anyone who wants to get a grasp of what cloud computing is and what IBM SmartCloud has to offer. If you are an IT specialist, IT architect, system administrator, or a developer who wants to thoroughly understand the cloud computing resource model, this book is ideal for you. No prior knowledge of cloud computing is expected.

  16. Cloud MicroAtlas∗

    ∗Any resemblance to the title of David Mitchell's book is purely intentional! RESONANCE | March 2017. 269 .... The most comprehensive reference we know of on the subject of cloud microphysics is the book .... Economic and. Political Weekly ...

  17. Green symbiotic cloud communications

    Mustafa, H D; Desai, Uday B; Baveja, Brij Mohan

    2017-01-01

    This book intends to change the perception of modern day telecommunications. Communication systems, usually perceived as “dumb pipes”, carrying information / data from one point to another, are evolved into intelligently communicating smart systems. The book introduces a new field of cloud communications. The concept, theory, and architecture of this new field of cloud communications are discussed. The book lays down nine design postulates that form the basis of the development of a first of its kind cloud communication paradigm entitled Green Symbiotic Cloud Communications or GSCC. The proposed design postulates are formulated in a generic way to form the backbone for development of systems and technologies of the future. The book can be used to develop courses that serve as an essential part of graduate curriculum in computer science and electrical engineering. Such courses can be independent or part of high-level research courses. The book will also be of interest to a wide range of readers including b...

  18. Entangled Cloud Storage

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    keeps the files in it private but still lets each client P_i recover his own data by interacting with S; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of c as this will imply that none of the clients can......Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation...

  19. D-term inflation, cosmic strings, and consistency with cosmic microwave background measurements.

    Rocher, Jonathan; Sakellariadou, Mairi

    2005-01-14

    Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained.

  20. Marine Cloud Brightening

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.